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AUXILIARY LOOP FOR REMOVAL OF DECAY HEAT FROM 

A SPACE POWER REACTOR 

by George E. Turney and Edward J. Petrik 

Lewis Research Center 

SUMMARY 

An auxiliary loop using sodium as a coolant was investigated as a means for remov- 

ing decay heat from a proposed 2.17-megawatt space power reactor. This loop consists 
of an auxiliary radiator, an auxiliary heat exchanger, a liquid sodium pump, and the 
necessary flow control valves and piping. 

Based on a selected set  of operating conditions and assumptions, minimum areas  
were determined for the auxiliary loop heat exchanger and radiator. The minimum 
auxiliary heat exchanger surface area  required to transfer the decay heat from the re-  

2 2 actor loop to the auxiliary loop was 0.64 ft (0.0594 m ). The minimum auxiliary radi- 
2 2 ator surface area  required to reject the decay heat was 37.7 ft (3.50 m ). Based on 

these areas ,  the maximum temperature of the auxiliary radiator was 1760' R (978 K). 
The configurations and minimum areas  for the auxiliary loop heat exchanger and 

radiator were used to determine sodium flow rates and temperatures throughout the 
auxiliary loop a s  a function of time after reactor shutdown. The sodium flow rates and 
temperatures were determined for preshutdown reactor operating times of 1 year and 
1 day. 

It was concluded from this preliminary study that the size (and/or mass) of the 
auxiliary loop is relatively small, 

INTRODUCTION 

In the coming years, the electric power requirements for our nation's projected 
space programs will continue to increase. To meet these projected requirements, the 
Lewis Research Center has been participating in a technology program aimed a t  a rela- 
tively high-powered nuclear Brayton space powerplant. 

The heat source being considered for the Brayton cycle space powerplant is a com- 



pact, fast-spectrum nuclear reactor.  The design thermal output of the reactor i s  2 .17  
megawatts, and the design operating lifetime for  the reactor and powerplant has been se t  

a t  50 000 hours. 

An a r e a  of concern in the overall design of this powerplant is the removal of decay 

heat from the nuclear reactor following a system shutdown Although shutdowns a r e  un- 

desirable, particularly in a space power system, they must be considered in the system 

design. And provisions must be made for removing the reactor decay heat following a 

shutdown. 

In this report, an auxiliary radiator loop with sodium coolant is investigated a s  a 

means for removing reactor decay heat. The objectives of this preliminary investigation 

a r e  (1) to determine the size of an auxiliary radiator which will reject  the decay heat and 

operate a t  an acceptable temperature level during the shutdown period, (2) to determine 

the size of an auxiliary heat exchanger which will transfer the decay heat from the re -  

actor primary loop to the auxiliary radiator loop, and (3) to evaluate the sodium flow 

ra tes  and temperatures in the auxiliary radiator loop a s  a function of time after shutdown. 

An important consideration related to shutdown is the ability to r e s t a r t  the system 

and return it to the design operating level in a minimum amount of t ime.  Based on this 

consideration, a mode of operation was chosen in which the reactor coolant temperatures 

were maintained a t  their respective design values during the period of shutdown. 

DESCRIPTION OF POWERPLANT 

A simplified diagram of a conceptual nuclear Brayton space powerplant is shown in 

figure 1. This system, in its present design configuration, has a single liquid-metal 

(lithium) primary loop, one o r  more complete inert-gas power conversion loops, and a 
main radiator loop for waste heat rejection. 

The path of coolant flow in each of the three main loops is indicated in figure 1. 
During normal operation, the heat gained by the liquid lithium a s  it flows through the 

reactor is transferred to the gas power conversion loop by a heat- source heat exchanger. 

The heated inert gas is then expanded through a turbine. The work produced by the tur-  

bine drives a compressor and an electrical alternator. The exhaust from the turbine is 
cooled as i t  flows, first through the recuperator, and then through the waste heat ex- 

changer. 

Figure 2 shows a cutaway view of the reactor core design for this space power sys- 

tem. A detailed description of this reactor design is given in reference 1. The system 

design point operating conditions which a re  relevant to this study a r e  listed in table I. 



Gas power conversion loop 

Primary loop 

Figure 1. - Schematic diagram of a three-loop, recuperated, nuclear Brayton system. 
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F igure  2. - Nuclear Brayton space power reactor. 

TABLE I. - DESIGN POINT OPERATING CONDITIONS 

Lithium temperature a t  reactor inlet, OR (K) 



AUXILIARY LOOP 

General Considerations 

Following a shutdown of the nuclear reactor ,  decay heat continues to be generated in 

the reac tor  core a t  a r a t e  which depends pr imari ly  on (4)  the reac tor ' s  initial operating 

power level, and (2) the period of t ime during which the reactor was in operation before 

the shutdown. In a space power reactor ,  the decay heat must ultimately be rejected to 

space by some type of waste-beat radiator.  

It may be both impractical and undesirable to  use the main radiator loop of the sys-  

tem (fig. I) as a primary scheme for  rejection of decay heat. It is conceivable that a 

shutdown may be caused by a failure in the main radiator loop. In such case, it may be 

impossible to use the main radiator.  Furthermore,  it may be desirable in the system 

design to  have a method for  rejection of decay heat which is independent of the main sys-  

tem operation. 

Auxiliary Loop Descr ip t ion 

One scheme for rejecting the decay heat is to  use  a liquid-metal auxiliary radiator  

loop. Figure 3 shows a sodium-cooled auxiliary loop which is connected to  the reac tor  

pr imary  loop by an  auxiliary heat exchanger. The auxiliary loop consists of a high- 

temperature auxiliary radiator,  an  auxiliary heat exchanger, a liquid- sodium pump, and 

the necessary flow control valves and piping. Sodium was selected a s  the coolant in the 

auxiliary loop because it has a reasonably low melting point and also a relatively low 

vapor pressure  for  the temperatures which we will be considering. 

During normal system operation, nearly a.11 the heat generated in the reac tor  is 

t ransfer red  to  the gas power conversion loop. But when a shutdown occurs,  the decay 

heat generated in the reactor  must be t ransfer red  to the auxiliary loop. To accomplish 

this,  the flow of lithium in the pr imary loop must  be bypassed around the heat-source 

heat exchanger; and the sodium flow ra te  in  the auxiliary loop must be increased to 

t ransfer  the decay heat. Hence, the auxiliary loop undergoes a transient s tar tup imme- 

diately foil-owing the reactor  shutdown. 

Operat ing Assumpt ions  

To investigate the operation of this loop, some assumptions were made regarding 

the initial conditions in the loop and the mode of operation of this loop during the reactor  



Auxi l iary loop 
(sodium coolant) 

------- 

(Lithium coolant) 

Figure 3. - Pr imary loop with auxi l iary radiator loop for decay heat rejection. 
(See appendix for number designaiions. 

shutdown transient.  Fo r  the preliminary investigation presented herein, we assume that 

the shutdown is not the resu l t  of a ser ious failure and that, as a consequence, the sys-  

tem is capable of being res ta r ted  and returned to  its design operating condition. 

As a point of interest ,  the restar t ing of this fast-spectrum reactor  is, in some r e -  
spects,  l ess  complicated than that of a thermal-spectrum reac tor .  This is because the 

xenon-135 and samarium-149 concentrations, which build up after shutdowns, do not a c t  

as strong absorbers  (i. e .  , their absorption c ros s  sections a r e  small)  for  high-energy 

neutrons. And the problem of overriding the poisoning effects of these isotopes is far 
less  ser ious in this reac tor .  

The major assumptions used in this preliminary analysis and related t o  the operat- 

ing conditions a r e  l isted below: 



(1) The lithium temperature a t  the reactor inlet is maintained constant a t  2100' R 
(1169 K) during the shutdown. (This is the design point operating temperature (table I). ) 

(2) The lithium temperature a t  the reactor outlet is held constant a t  2200' R ($222 K) 

during shutdown. (This is also the design point operating temperature (table I).  ) 

(3) The initial temperature of sodium in the auxiliary loop a t  shutdown is 100' R 

(55. 6 K) above the melting temperature of sodium, or 770' R (428 K). 

(4) In order to keep the auxiliary loop temperatures reasonably uniform after shut- 

down, we assume the mixed-mean temperature difference across  the auxiliary heat ex- 

changer to be constant a t  100' R (55.6 K); that is, (TNa, - TNa, ) = 100' R (55.6 K). 

(All symbols a r e  defined in appendix A. ) 

(5) A maximum allowable sodium temperature of 1760' R (978 K) a t  the auxiliary 

radiator inlet is assumed. 
Assumptions (1) and (2) a r e  consistent with a requirement that the system be capable 

of being restarted in a minimum time. Maintaining the primary loop temperatures at 
their  respective design values will minimize the time required to return the system to 

its design operating level. 

The selection of an auxiliary loop temperature of 770' R (428 K) (assumption (3))  was 

based on several considerations. F i rs t ,  this initial (or standby) temperature level of 

770' R (428 K) gives a reasonable margin of safety against freezing of sodium in the 

auxiliary loop. At the same time, this temperature is low enough during standby oper- 

ation that the heat rejected by the auxiliary radiator (which is a parasitic thermal load) 

is small  relative to the reactor design thermal power. 

Assumptions (4) and (5) limit the operating temperature and the differential tempera- 

tu re  in the auxiliary loop. These values should not be considered a s  absolute limits. 

They were selected somewhat arbi trar i ly for this preliminary investigation in order to 

place some constraint on the operating conditions in the auxiliary loop during the decay 

heat removal period. 

Auxiliary Loop Flow Models 

In order to make a preliminary investigation of this loop, simplified flow models 

were developed to represent the auxiliary radiator and auxiliary heat exchanger. The 

auxiliary loop material (including the auxiliary heat exchanger, auxiliary radiator, and 

piping) is assumed to be tantalum. All tantalum physical properties used were taken 

from reference 2 .  A description of the flow models is given below. 

Auxiliary heat exchanger. - The auxiliary heat exchanger is a counterflow type, 

consisting of two concentric cylindrical ducts. Figure 4 is a sketch of the auxiliary heat 

exchanger. Lithium is assumed to flow through the inner passage, and sodium flows 



L i t h  
f low Section A-A 

Figure 4. - Aux i l i a ry  heat exchanger flow model. 

TABLE 11. - AUXILIARY HEAT EXCHANGER CROSS- 

SECTIONAL CONFIGURATION 

Inside diameter  of sodium annular flow passage, in. (cm) 
Outside diameter  of sodium annular flow passage, in. (c 

cou~ltercurrent ly in the annular passage. Based on preliminary estimates of the a r e a  

requirements of this  heat exchanger, a cross-sectional configuration was selected. The 
cross-sectional configuration is described in table II. 

Auxiliary radiator .  - The auxiliary radiator is made up of a number of coplanar 

parallel  tubes with central connecting fins. F o r  this study, the effectiveness of the fins 

was assumed to be 100 percent. A sketch of the auxiliary radiator configuration is 
shown in figure 5. 

Prel iminary estimates were made to determine the a r e a  requirements and a reason- 

able planform configuration for the auxiliary radiator.  From these estimates,  a c ross-  

sectional configuration was selected. It i s  based on the assumption that beat is rejected 



TABLE 111. - AUXILIARY RADIATOR CROSS-SECTIONAL CONFIGURATION 

- 

Outside diameter of tubes, in. (cm) 
Inside diameter of tubes, in. (em) 

t o  space f rom both s ides  of the auxiliary radiator.  A description of the auxiliary radi-  

a to r  cross-sectional configuration is given in table 111. 

The central  fin width (1.055 in.  o r  2 .68  cm) was chosen for  convenience. With this 

fin width, the surface a r e a  of a l l  tubes is equivalent to the product of total  radiator su r -  

face a r e a  (which includes tubes and connecting fins) and the configuration factor f rom the 

auxiliary radiator to space. 

ANALY S IS 

Heat-Transfer Corre lat ions 

The correlations used to  compute the ra te  or" heat flow in the auxiliary loop a r e  de- 



scribed below. The heat-transfer coefficient on the lithium side of the auxiliary heat ex- 

changer was computed from the correlation (ref. 3)  

The lithium properties used in this study were obtained from reference 4. 

The sodium heat-transfer coefficient of the annular flow passage was determined 

from the equation (ref. 5). 

The physical properties of sodium were taken from reference 6. 

The overall heat- transf e r  coefficient for the auxiliary heat exchanger, based on the 

surface a r e a  of the sodium side, is given by 

In the auxiliary radiator, an infinite heat-transfer coefficient was assumed on the 

liquid-sodium side of the flow passages. This assumption is discussed later in this 

section. 

Analytical Equations 

Primary loop. - The lithium flow ra te  required to maintain a constant temperature 

difference of 100' R (55.6 K) across  the core a t  any time t after shutdown is given by 

where TLi, = 2200' R (1222 K) and TLi, = 2100' R (1167 K). In equation (4), Q is 

the decay heat generation rate, which varies with time after shutdown. 

Auxiliarv loop. - The total flow rate of sodium needed to maintain a constant mixed- 



mean temperature difference of 100' R (55.6 K) in the auxiliary loop at any time t after 

shutdown is given by 

From operating assumption number (4) in the section AUXILIARY LOOP, 

( T ~ a ,  8 - T ~ a ,  5 ) is constant and equal to loo0 R (55.6 K) throughout the shutdown period. 

The decay heat generation rate and the overall lithium-to-sodium temperature differ- 

ence ac ross  the auxiliary heat exchanger change with time following a shutdown. Conse- 

quently, the flow ra te  of sodium in the auxiliary heat exchanger wNa, must also change 

with time. The sodium flow ra te  needed to transfer the decay heat from primary loop to 

auxiliary loop at any time t after shutdown was determined from the equation 

The sodium flow ra te  which bypasses the auxiliary heat exchanger is the difference be- 

tween the total sodium flow rate and the sodium flow rate which goes through the auxil- 

ia ry  heat exchanger; that is, 

The effectiveness of the counterflow auxiliary heat exchanger (E in eq. (6)) is also 

time variant, and is defined by the following expression (ref. 7): 

The sodium temperature a t  the outlet of the auxiliary heat exchanger was determined 

from the equation 

For calculational purposes, the flow passages in the auxiliary radiator were con- 

sidered to be made up of a number of equal length segments arranged in ser ies .  (The 
actual cross-sectional configuration of this radiator is described in table III. ) A sketch 
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Figure 6. - Analytical model used to represent auxi l iary radiator. 

of the analytical model for  the auxiliary radiator is shown in figure 6. As indicated in 

the figure, each tube in the auxiliary radiator was assumed to be made up of "nu seg- 

ments.  A segment length of 1 . 8  inches (4.57 cm) was used in  the analysis. The reason 

for  using a segment length of 1 . 8  inches or  4.57 cm is given later in this section. 

The following assumptions were used in the auxiliary radiator calculations: 

(1) The temperature drop through the auxiliary radiator  tube wall is negligible. 

(2) Heat conduction along the length of the auxiliary radiator is negligible. 

(3) Only the thermal  capacitance of the auxiliary radiator (which includes tubes and 

fins) is considered. 

(4) Sink temperature is constant and equal to  400' R (222 K). 

(5) Radiator surface emissivity E is equal to  0.80. 

With steady flow in the auxiliary radiator,  a n  energy balance on a typical segment 

(e. g. , segment j )  is 

Rate of change of Rate of heat trans- Rate of change in Rate of heat re-  
sodium internal fer from sodium sensible heat of jection by radi- 

- - - - 
energy across to radiator wall radiator seg- + ator segment j 

segment j in segment j ment j to sink 



Or, in equation form, 
- 

- W ~ a ,  / ~ ~ p ~ a  d T ~ a ,  j = hR A+ (? Na, j - T ~ ,  j) 

In equation (11) the subscripts i and o on AA refer to the inside and outside surfaces 

of the radiator tubes (see fig. 6). 
With liquid-sodium flow, the wall-to-bulk temperature difference in the auxiliary 

radiator tubes is relatively small.  (For a radiator temperature of 1 '200~ R (944 K), the 

wall-to-bulk. AT with turbulent flow is less than 10' R (5.56 K). ) Therefore, we can 

neglect the liquid-metal film resistance and assume that T R, 
- - TNa, without introduc- 

ing a significant e r ro r .  And equation (I 1 ), in finite-difference form, becomes 

where 

- 
- T ~ a ,  j,  in + T ~ a ,  j ,  out 

T ~ a ,  j - 2 

The sodium flow ra te  in the bypass around the auxiliary radiator is given by 

The mass  of each radiator segment (i. e.  , the value of AM in eq. (11)) was deter- 

mined from the cross-sectional configuration listed in table 111 along with the assumed 

length of the segments. As stated earl ier  in this section, only the mass  of the auxiliary 

radiator (which includes tubes and fins) was considered in the study; and the thermal 

capacitance of the auxiliary heat exchanger, inlet plenums, valves, and piping were 

ignored. 

The time interval AT used in equation (12) is equal to the auxiliary loop transport 

delay (or delay time). The transport delay is defined a s  the time required for the sodium 

coolant to traverse the auxiliary loop. Expressed a s  an equation, 

Total volume of auxiliary loop A, = - 
Sodium volumetric flow rate 



AT = (Volume of auxiliary radiator) + (Volume of auxiliary loop flow lines) 
(16) 

W ~ a ,  5 

3 A volume of 0. 260 cubic feet (0.02835 m ) was assumed for the auxiliary loop flow 

lines. This volume is equivalent to that of a I. 5-inch- (3. 81-cm-) inside-diameter pipe 

with a length of about 2% feet (5. I m) .  

The volume of the auxiliary radiator is equal to the product of the auxiliary radiator 

flow a r e a  and length. The flow a r e a  is obtained from table 111, and the procedure used to 

de'termine the length of the auxiliary radiator is described later in this section. 

Analytical Procedure 

A digital computer code was written to analyze the decay heat removal from the pri- 

mary  loop of the nuclear space powerplant. For purposes of analysis, the removal of 

decay heat from the primary loop can be considered to take place in two sequential steps. 

F i rs t ,  for some period of time immediately following a shutdown, most of the decay 

power goes to increasing the sensible heat of the sodium-cooled auxiliary loop. During 

this period, the sodium flow ra tes  through and around the auxiliary heat exchanger 

(fig. 3)  a r e  regulated such that the mixed-mean sodium temperature r i se  ac ross  the 

auxiliary heat exchanger is 100' R (55.6 K). (This is consistent with operating assump- 

tion (4) in the section AUXILIARY LOOP. ) Throughout this auxiliary loop heat-up period, 

the total flow of sodium passes through the auxiliary radiator. And the auxiliary loop 

temperature is raised from its initial value of 770' R (428 K) to some selected final oper- 

ating temperature. (In the section AUXILIARY LOOP, a maximum allowable sodium tern- 

perature of 1 7 6 0 ~  R (978 K) a t  the auxiliary radiator inlet was assumed. ) 

The second part of the decay heat removal period begins when the sodium tempera- 

ture a t  the auxiliary radiator inlet reaches its final operating temperature. Then, the 

mixed-mean sodium temperatures in the auxiliary loop (TNa, and TNa, in fig. 3) 

a r e  held a t  their respective levels by regulating the flow ra tes  of sodium through and 

around the auxiliary heat exchanger and auxiliary radiator. A sketch of the typical his- 

tory of the sodium temperature a t  the auxiliary heat exchanger inlet following a shutdown 

is shown in figure 7.  

In the following paragraphs, we describe the procedure used in the decay heat r e -  

moval analysis. Decay heat generation ra tes  for the space power reactor were calculated 

for several  full-power operating time periods. The method of calculating the decay heat 



Increasing t ime after shutdown 

Figure 7. -Typical h is to ry  of sodium temperature at auxi l iary heat exchanger 
i n l e t  as funct ion of t ime after shutdown. 

r a t e s  is described in reference 8. From these calculated values, an upper and lower 

limit for decay heat generation rate was determined. The upper limit corresponds to a 

reactor full-power operating period of 1 year; the lower limit corresponds to a full- 

power operating period of 1 day. 

An iterative technique was used to determine the minimum areas  required by the 
auxiliary heat exchanger and auxiliary radiator. The upper limit of decay heat genera- 

tion was used a s  the basis for these calculations. The calculations were made by picking 

t r i a l  values of a r e a  (or length) for the auxiliary loop heat exchanger and radiator. 

With these trial values, flow ra tes  and temperatures were calculated in the auxiliary 

loop a s  a function of time after shutdown. 

The temperatures and flow ra tes  obtained were then used a s  guidelines to update the 

a r e a s  (or lengths) of the auxiliary heat exchanger and auxiliary radiator. The calcula- 

tions were then repeated with the updated areas .  This calculational procedure (in which 

successive computations were made with updated values of a rea  or  length) was continued 

until the final a reas  (or lengths) obtained were minimum values consistent with the estab- 

lished temperature limitations for the auxiliary loop. 

The flow rate in the auxiliary heat exchanger wNa, was calculated a s  a function of 

t ime after shutdown from equations (6) and (8). An iterative technique was used to solve 

these equations for each t r ia l  value of auxiliary heat exchanger area .  

The sodium temperature a t  the auxiliary radiator outlet TNa, was determined by 

numerically integrating equation (11) from auxiliary radiator inlet (segment I )  to outlet 

(segment n) .  As stated earl ier  in this section, the total sodium flow rate passes through 



the auxiliary radiator dtrrmg the au~i l ia~ry-  loop heatup period. But when the sodium tem- 
perature a t  the auxiliary radiator i n k t  reaches  1'560~ IEZ (958 K), the decay heat genera- 

tion r a t e  must be balanced by the net ra te  of heat lost by the sodium in the a u i l i a r y  radi- 

a tor .  This cr i ter ion was used to determine the minimum a r e a  (or length) of the a u i l i a r y  

radiator .  

After the sodium temperature a t  the auxiliary radiator inlet reaches 1 '360~ R (978 K), 

a part  of the total  sodium flow must be bypassed around the auxiliary radiator in order  to 

maintain the proper heat rejection ra tes .  The flow ra t e s  through and around the auxil- 

i a ry  radiator were calculated from equations (12) and (14). An iterative procedure was 

used to determine these flow ra t e s  a s  a function of t ime. 

The numerical open-loop integration of equation (12) is subject to a cumulative e r r o r .  

The significance of the e r r o r  depends pr imari ly  on (I) the s ize  and/or number of seg- 

ments used to  represent  the auxiliary radiator ,  and (2) the number of numerical integra- 

tions car r ied  out. 

The magnitude of this cumulative e r r o r  was investigated by using radiator segments 

with lengths ranging from 0.72 to 7'. 2 inches (1. 83 to  18 .3  cm). F rom this investigation, 

it was determined that a segment length of 1 . 8  inches (4.5'7 cm) gives a reasonably aecu- 

r a t e  representation of the auxiliary loop variables, provided the shutdown t imes  used in 

the analysis a r e  relatively shor t  (i. e . ,  on the order  of 3 h r  ( I0 800 sec )  or  less ) .  

All calculations required in  this quasi-steady-state analysis were performed on a 
high-speed digital computer. In table IV, we have summarized the values used for the 

input variables i n  this analysis. These input values have been stated and discussed in 

previous sections of this  report .  

TABLE IV. - SUMMARY OF VALUES USED IN ANALYSIS 

Radiator surface emissivity, E 

Sink temperature, Ts, OR (K) 
Lithium temperature a t  reactor  inlet, TLi, OR (K) 
Lithium temperature a t  reactor  outlet, TLi, 2, OR (K) 
Initial temperature of auxiliary loop prior to 

shutdown, OR (K) 

Sodium mixed-mean temperature difference, 

TNa, 8 - T ~ a ,  57 OR (K) 
NIaxin~um allowable sodium temperature a t  

auxiliary radiator inlet, TNa, 8, OR (K) 



RESULTS A N D  DISCUSSION 

Decay heat generation ra tes  in the nuclear space power reactor were calculated a s  a 
frtnciiorr of time following reactor shatdom. Figure 8 shows the ratio of reactor decay 

power to steady-state design power against time after reactor shutdown. The parameter 

in  figure 8 is the reactor full-power operating time before shutdown. 

Time after shutdown, sec 

F igure 8. - Ratio of reactor decay power t o  steady-state paver against t ime after shutdov~n wi th  reactor 
f u l l  power operating t ime as a parameter. 

The lithium flow ra tes  required to maintain a constant lithium temperature difference 

of 100' R (55.6 K) across  the reactor core a r e  shown against time after shutdown in fig- 

u r e  9. These flow ra tes  were calculated from equation (4), and a r e  based on the reactor  

design operating power of 2.17 megawatts-thermal. 

As explained in the section ANALYSIS, the upper limit of decay heat generation 

(which corresponds to 1 year of reactor full-power operation before shutdown) was used 

t o  determine the a rea  requirements of the auxiliary heat exchanger and auxiliary radi- 

a tor .  From the procedure described in the section ANALYSIS, the following a r e a  and/or 

length requirements were determined: 

F o r  the auxiliary heat exchanger, 

Length, LHX, ft (m) . . . . . . . . . . .  ... . . . . . . . . . . . . . . . .  1. 81 (0.562) 
2 2 Heat-transfer surface area,  As, ,, f t  (m ). . . . . . . . . . . . . . . . . .  0.64 (0.0594) 

(The cross-sectional configuration of the auxiliary heat exchanger is described in 
table 11. j 
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Figure 9. - L i th ium flow rate against t ime after shutdown w i th  reactor f u l l  power 
operating t ime as a parameter. L i th ium temperature r i s e  across core constant 
at 100" R (55.5 K). 

For the auxiliary radiator, 

Planform length, Lhd, f t  (m) . . . . . . . . . . . . . . . . . . . . . . . . . .  6 . 0  (1.83) 
2 2 Effective radiation a r e a  (both sides), f t  (m ) . . . . . . . . . . . . . . . . .  37.7 (3.50) 

Planform width (tubes and fins), f t  (m). . . . . . . . . . . . . . . . . . . . .  3.14 (0.958) 

(The cross-sectional configuration of the auxiliary radiator is described in table 111. ) 

From the cross-sectional configuration and the value of Lmd, the total mass  of the 

auxiliary radiator (which includes tubes and fins only) was calculated to be approximately 

22 5 pounds (1 02 kg). 

The auxiliary radiator mass  and the heat-transfer surface a reas  just listed were 

used to determine flow rates and temperatures in the auxiliary loop a s  a function of time 

after shutdown. Two se t s  of data were calculated. One se t  was based on a reactor full- 

power operating time of 1 year; the other se t  was for a full-power operating time of 

1 day. In the following paragraphs, we present data for each of these reactor  operating 

times. 

Reactor Operating Time of 1 Year 

Calculated sodium flow rates and temperatures in the auxiliary loop a r e  shown a s  a 
function of time after reactor shutdown in figures 10 to 14. These data (figs. I0  to  14) 
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Figure 10. - Total sodium flow rate i n  auxiliary loop and s d i u m  flow rate in auxiliary 
heat exchanger against t ime after shutdown. Reactor operating time, 1 year; reactor 
power, 2.17 megawatts-thermal. 

a r e  based on a reactor operating time of 1 year before shutdown. 

The total flow ra te  of sodium in the auxiliary loop and the flow ra te  which passes 
through the auxiliary heat exchanger a r e  shown against time in figure 10. The difference 

between the two flow ra tes  is equal to  the auxiliary heat exchanger bypass flow rate; that 

'Na, 6 = ' ~ a ,  8 - W ~ a ,  7 a t  any time t after shutdown. 

At approximately 106 seconds after  shutdown, the difference between the curves in 
figure 10 approaches zero. And the bypass flow rate at this time is essentially zero. 

The fact that the curves in figure 10 a r e  tangent at some time after shutdown signifies 

that the area  (or length) assigned to the auxiliary heat exchanger is indeed a minimum for 
the configuration assumed and described in table 11. 
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Figure 11. -Total  sodium flow rate in aux i l i a ry  loop and sodium flow rate in aux i l i a ry  
radiator against t ime  after shutdown. Reactor operating tirne, 1 year; reactor 
power, 2. 17 megawatts-thermal. 

The total sodium flow ra te  in the auxiliary loop and the flow ra te  in the auxiliary ra- 
diator a r e  shown as a function of t ime after shutdown in figure 11. As indicated i n  fig- 

u re  11, for  the t ime span from 0 to  166 seconds a f te r  shutdown, the total sodium flow 

passes  through the auxiliary radiator.  But for t imes greater  than 166 seconds, a f r ac -  

tion of the total flow bypasses the auxiliary radiator.  The bypass flow ra te  wNa, is 
the difference between the total flow ra te  WNa, 8 and the flow ra te  through the auxiliary 

radiator GNa, 4. Figure 1 l (b)  shows that after 2-1 hours (9000 sec) ,  only about 20 per- 
2 

cent of the total sodium flow goes through the auxiliary radiator.  

The mixed-mean temperatures of sodium at the auxiliary radiator inlet and auxiliary 
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Figure 12. - Mixed-mean temperature of sodium at aux i l i a ry  radiator in le t  and auxi l iary 
heat exchanger i n l e t  against t ime  after shutdown. Reactor operating time, 1 year; 
reactor power, 2.17 megawatts-thermal. 

heat exchanger inlet a r e  shown against time after shutdown in figure 12. The difference 

in temperature between these curves at any time t (i. e . ,  TNa, 8 - TNa, 5) is constant and 

equal to loo0 R (55.6 K) throughout the shutdown period. The slopes of the curves in fig- 

u re  12 decrease with time and asymptotically approach a final value of zero. About 

166 seconds a r e  required before the mixed-mean temperatures (TNa, 8 and TNa, 5) 

reach their final values. For times greater than 166 seconds, the temperatures TNa, 8 

and T ~ a ,  5 a r e  essentially constant and equal to 1760' R (978 K) and 1660' R (922 K), 

respectively. 

The shapes of the curves in figure 12 a r e  influenced primarily by the effectiveness of 

the auxiliary radiator and the decay heat input to the auxiliary loop. The auxiliary radi- 

ator effectiveness increases with temperature and/or time after shutdown, whereas the 

decay heat generation ra te  (fig. 8) decreases with time. 

Figure 13 shows the sodium temperature a t  the auxiliary heat exchanger outlet 

against time after reactor shutdown. Shortly after a shutdown occurs, the sodium tem- 

perature a t  the auxiliary heat exchanger outlet is approximately 1300' R (722 K). It in- 

creases from this value a t  a significant rate during the first 400 seconds after shutdown; 

and thereafter it slowly approaches the maximum lithium temperature TLi, in the pri- 

mary loop. 

During normal system operations (i. e. , prior to a shutdown), a small flow rate of 

sodium is required in the auxiliary heat exchanger in order to keep the sodium mixed- 

mean temperatures at the assumed standby level of 760' R (372 K).  Even with the low 
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Figure 13. - Sodium temperature at auxiliary heat exchanger outlet against time afler 
shutdown. Reactor operating time, 1 year; reactor power, 2.17 megawatts-thermal. 

sodium flow rate which occurs during normal system operation, the liquid-sodium heat- 

transfer coefficient is relatively large. And a s  a result, the sodium temperature at the 
auxiliary heat exchanger outlet during normal system operation is near the maximum 

lithium temperature TLi, of 2200' R (1222 K). Hence, immediately after a shutdown, 
a sudden change must occur in the auxiliary heat exchanger outlet temperature. 

This momentary transient was not considered; and for this reason the temperature 

curve in figure 13 does not extend to the time zero  point. 

Figure 14 shows the sodium temperature at the auxiliary radiator outlet a s  a func- 

tion of time after shutdown. The temperature TNa, reaches a maximum of 1660' R 
(922 K) at about 166 seconds after shutdown. (As shown in figure 11, this time also 

corresponds to the initiation of bypass flow around the auxiliary radiator. ) After about 

166 seconds, the temperature TNa, decreases with time. The reason for the gradual 

decrease in TNa, is that the sodium flow ra te  which goes through the auxiliary radi- 
ator gets smaller with time. As a result,  the dwell time of the sodium in the auxiliary 

radiator gets larger with time after shutdown. 
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Figure 14. - Sodium temperature at auxi l iary radiator outlet against t ime  after shutdown. 
Reactor operating time, 1 year; reactor power, 2.17 megawatts-thermal. 

Reactor Operating Time of 1 Bay 

The flow ra tes  and temperatures of sodium in the auxiliary loop following a reactor  

full-power operating time of 1 day a r e  shown in figures 15 to 19. Some of the data in 

these figures a r e  similar to the data shown in figures P O  to 14  for a reactor operating 

time of 1 year. 

The total flow ra te  of sodium in the auxiliary loop and the flow rate through the 

auxiliary heat exchanger a r e  shown against time in figure 15. A comparison of fig- 

u res  15 and 10 shows that the curves in figure 15 a r e  not tangent a t  any point in time 

after shutdown; but in figure PO, the curves a r e  tangent a t  approximately 106 seconds. 

The fact that the curves in figure 15 a r e  not tangent signifies that the auxiliary heat ex- 
2 2 changer area  (Asb = 0 .64  f or  0.0594 m ) i s  more than adequate to transfer the decay 
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Figure 15. -To ta l  sodium flow rate i n  aux i l i a ry  loop and sodium flow rate i n  aux i l i a ry  
heat exchanger against t ime  after shutdown. Reactor operating t ime, 1 day; reactor 
power, 2.17 megawatts-thermal. 

heat to the auxiliary loop for  a reactor  preshutdown operating time of 1 day. Conse- 

quently, a large fraction of the total  sodium flow r a t e  bypasses the auxiliary heat ex- 

changer throughout the shutdown. (The auxiliary heat exchanger bypass flow ra t e  is the 

difference between the curves in  fig. 15. ) 

Figure 16 shows the total sodium flow r a t e  in the auxiliary loop and the sodium flow 

ra te  in the auxiliary radiator against t ime after shutdown. A comparison of figures 16 
and I 1  shows that the bypass flow around the auxiliary radiator begins at approxi- 

mately the same time (about 166 s e c  after shutdown) for both reactor  preshutdown oper- 

ating t imes.  This indicates that the rat ios  of heat rejection ra te  to  decay heat input rate  

for the two preshutdown operating t imes a r e  equal a t  about the same time af ter  shutdown. 

Figure 17 shows the mixed-mean sodium temperatures  at the auxiliary radiator 
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Fiyure 16. -Tota l  sodium flow rate i n  aux i l ia ry  loop and scd iun~  f1oi.i rate i n  aclxiliary 
radiator against t ime after shutdown. Reactor operating time, 1 day; reactor poiver, 
2. 17 megawatts-thermal, 
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Figure 17. - Mixed-mean temperatc~re of sodiunl d l  aux i l ia ry  radiator inlet and aux i l ia rv  
heat exchanger in le t  against t ime after shutdoivn. Reactor operatincl time, 1 day; 
reactor power, 2. 17 megawatts-thermal. 



inlet and auxiliary heat exchanger inlet against time after shutdown. The ternperahrres 

in figure 17 increase with time and reach their final values a t  approximately 166 seconds 

after shutdown. Mter  166 seconds, the temperatures TNa, 8 and TNa7 a r e  essen- 

tially constant and equal to 1 7 1 0 ~  and 1 6 1 0 ~  R (950 and 894 I(), respectively. These final 

temperatures a r e  approximately 50' R (27.8 K)  lower than those shown in figure 12. 

The sodium temperature a t  the auxiliary heat exchanger outlet is shown against time 

after shutdown in figure 18. This temperature curve is similar to that shown in figure 13. 
Figure 19 shows the sodium temperature a t  the auxiliary radiator outlet against time 

after shutdown. The temperature TNa, reaches a maximum of 1610' R (894 K) a t  
about 166 seconds after shutdown. (Figure 16 shows that this time also corresponds to 

the initiation of bypass flow around the auxiliary radiator. ) After 166 seconds, the tem- 

perature TNa, decreases gradually with time. 

From a control standpoint, the range of sodium flow ra tes  required during the shut- 

down period is important. The calculated data show that some of the sodium flow ra tes  

in the auxiliary loop change by two orders a t  magnitude (or more) during the first 9000 
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Figure 18. - Sodium temperature at aux i l i a ry  heat exchanger outlet against t ime  after 
shutdown. Reactor operating time, 1 day; reactor power, 2.17 megawatts-thermal. 
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Figure 19. - Sodium temperature at auxi l iary radiator outlet against t ime  after shutdown. 
Reactor operating time, 1 day; reactor power, 2.17 megawatts-thermal. 

seconds after shutdown. To properly regulate these flow rates over such a wide range 
may require a special flow control valve arrangement. 

In the foregoing sections, we have shown how the flow rates and temperatures in the 
auxiliary loop vary with time after reactor shutdown. These calculated data a r e  based on 
a specified set of operating conditions along with selected cross-sectional configurations 
for  the auxiliary heat exchanger and auxiliary radiator. The required areas  of the auxil- 
iary  heat exchanger and auxiliary radiator were determined to be relatively small. (The 

2 2 auxiliary heat exchanger surface area  was determined to be 0.64 f t  or  0.0594 m ; 
2 2 and the auxiliary radiator surface area was 37.7 f t  or 3.50 m . ) 



The reason that the auifiary radiator is so smal l  is due, i n  par t ,  to  the thermal  

capacitance of the a v x ~ l i a r y  loop. Immediately following a shutdown, the decay heat gen- 

eration rates (fig. 8) a r e  relatively large. h d  the thermal capacita~lce of the a.uxiliary 
loop is used during tine ear ly  part  of the shutdown period (I. e . ,  for about the first 60 s e e  

or so) to absorb most  of the decay heat. 

An auxiliary radiator  loop with sodium coolant was investigated as a possible means 

for  removing decay heat f rom a proposed 2.15-megawatt-thermal space power reactor .  

The' auxiliary loop considered for  this study is made up of an auxiliary heat exchanger, a n  

auxiliary radiator,  a liquid-sodium pump, and the necessary flow control valves and pip- 

ing, The sodium-cooled auxiliary loop is connected to the reactor  pr imary loop by the 

auxiliary heat exchanger. 

Based on a selected s e t  of operating conditions and assumptions, minimum a r e a s  

were determined for  both the auxiliary heat exchanger and the auxiliary radiator.  

The minimum auxiliary heat exchanger surface a r e a  required to  t ransfer  the decay 

heat froan the reactor  pr imary  loop to the auxiliary loop was determined to be 0 .64  
2 square foot (0.0594 m ). The auxiliary heat exchanger model used in this  study is a 

simple counterflow type, consisting of two concentric cylindrical ducts. 

The minimum surface a r e a  required by the auxiliary radiator was determined to be 
2 37. '5 sq.uare feet (3.50 m ). Based on this surface a rea ,  the maximum radiator temper- 

a ture  was about 1 7 6 0 ~  R (998 K). The auxiliary radiator model consisted of 24 coplanar 

parallel  tubes with central  connecting fins of 100 percent effectiveness. The planform 

dimensions of the auxiliary radiator (assuming heat is rejected to  space f rom both s ides  

of the radiator) a r e :  planform length, 6. 0 feet (1.83 m); planform width, 3 .  14 feet  

(0.958 m) .  

The configurations and minimum a r e a s  for  the auxiliary heat exchanger and auxiliary 

radiator were used to determine sodium flow r a t e s  and temperatures  throughout the 

auxiliary loop as a function of t ime after reactor  shutdown. The sodium flow r a t e s  and 

temperatures  were determined for preshutdown reactor  operating t imes of 1 year and 

9 day. 

The calculated data show that some of the sodium flow r a t e s  in  the auxiliary loop 

change by two o rde r s  of magnitude (or more )  during the f i r s t  9000 seconds af ter  shut- 

down. 



A significant conclusion obtained f rom this preliminary study is that the s ize  (and/or 

mass) of the auxiliary loop is relatively small .  

Lewis Research Center, 

National Aeronautics and Space Administration, 
Cleveland, Ohio, May 26, 1970, 

120-27. 



APPENDIX - SYMBOLS 

surface a rea  of segment in ana- thermal coxlductivity of auxiliary 
heat exchanger material (tanta- 
lum), ~ t u / ( s e c )  (ft) (OR); 

kW/ (m) (Po 

lytical model of auxiliary radi- 
ator, ft2; m 2 

surface a rea  for heat transfer in 
length of auxiliary heat exchanger, 

ft; m 
auxiliary heat exchanger based 
on inside surface of sodium an- 
nular flow passage, ft2; m 2 

length of auxiliary radiator, ft; m 

specific heat of radiator material 
(tantalum), ~ tu / ( l bm)  VR); 
kW-sec/(kg) (K) 

mass of radiator segment in ana- 
lytical model of auxiliary radi- 
ator, lbm; kg 

specific heat, Btu/ (lbm) (OR); 

k ~ - s e c /  (kg) (K) 
Nusselt number 

Peclet number 
inside diameter of lithium flow 

duct in auxiliary heat exchanger 
(see fig. 4), f t ;  m 

Prandtl number 

reactor decay heat generation 

rate, Btu/sec; kW inside diameter of sodium annu- 
lar  flow passage in auxiliary 
heat exchanger (see fig. 4), 
f t ;  m 

Reynolds number 

temperature, OR; K 

average coolant temperature in 
radiator segment, OR; K outside diameter of sodium annu- 

lar flow passage in auxiliary 
heat exchanger (see fig. 4), 
ft; m 

average material temperature of 
radiator segment, OR; K 

effectiveness of counterflow auxil- t time after reactor shutdown, sec 

iary heat exchanger (eq. (8)) Ub overall heat-transfer coefficient 

convective heat-transfer coeffi- for auxiliary heat exchanger 

cient in auxiliary heat ex- (eq. (311, ~ t u / ( s e c ) ( f t ~ ) ? ~ ) ;  

changer, Btu/(sec) (ft2) YR); kw/(m2) (K) 

kw/(m2) (K) w flow rate, lbm/sec; kg/sec 

convective heat-transfer coeffi- E radiator surface emissivity 
cient in auxiliary radiator, 

P 
3 

2 o density, ibm/ft ; kg/m3 
Btu/(sec) (ft ) ( R); kw/(m2) (K) 



a Stefan- Boltzmann constant, 
2 0 4  13. 476x10-l2 ~ t u / ( s e c ) ( f t  ) ( R ); 

5.71x10-" k ~ / ( m ' ) ( ~ ~ )  

AT auxiliary loop transport delay 

(eta. (15)), set 

Subscripts : 

i inside surface of auxiliary radi- 

ator tubes (fig. 6) 

in  inlet of segment in analytical 

model of auxiliary radiator 

(fig. 6) 

j segment number in analytical 
model of auxiliary radiator 

Li  lithium 

Na sodium 

o outside surface of auxiliary radi- 

ator tubes (fig. 6) 

out outlet of segrvrent in  analytical 

model of auxiliary radiator 

(fig. 6) 

reactor outlet (fig. 3) 

reactor inlet (fig. 3) 

auxiliary radiator bypass (fig. 3) 

auxiliary radiator outlet (fig. 3) 

auxiliary heat exchanger inlet 

(fig. 3) 

auxiliary heat exchanger bypass 

(fig. 3) 

auxiliary heat exchanger outlet 

(fig. 3) 

auxiliary radiator inlet (fig. 3) 
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