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ABSTRACT 

Elastohydrodynam5c o i l  film measurements f o r  r o l l i n g  point  con- 
t a c t  under s t a rva t ion  condit ions a r e  obtained using o p t i c a l  i n t e r f e r -  
ometry. The experimental measurements present  a  reasonably c l e a r  
p i c t u r e  of  t h e  s t a rva t ion  phenomenon and a r e  shown t o  agree with 
t h e o r e t i c a l  predic t ions ,  Starvat ion i n h i b i t s  t h e  generat ion of 
pressure  and, therefore ,  reduces f i l m  thickness.  It a l s o  causes t h e  
o v e r a l l  pressure,  s t r e s s  and e l a s t i c  deformation t o  become more 
Hertzian. 

Addit ional  experiments using interferometry i l l u s t r a t e :  ,The 
.cavi ta t ion  pa t t e rn ,  lubr ican t  entrapment, grease lubr ica t ion ,  b a l l  
sp in ,  and edge e f f e c t s  i n  l i n e  contact .  

INTRODUCTION 

The thickness of t h e  hydrodynamic f i lm between bearing surfaces  
i s  a very important considerat ion,  p a r t i c u l a r l y  fo r  elastohydrodynamic 
(EHD) condit ions where f i lm thickness and surface  i r r e g u l a r i t i e s  a r e  
o f t en  of  t h e  same order of  magnitude. The present  s t a t e  o f  MD shows 
t h a t  t h e  development of  an MD f i lm i s  now q u i t e  w e l l  understood, and 
t h a t  t h e  thickness of  such f i lms can be predic ted  t h e o r e t i c a l l y  with 
commendable accuracy. Presently,  some inves t iga t ions  a r e  concerned 
with i s o l a t e d  aspects  of  EHD and t h e  explanations of discrepancies be- 
tween theory and experiment. Considerable emphasis i s  being placed on 
t h e  appl ica t ion of EHD pr inc ip les  t o  e s t a b l i s h  t h e  most favorable op- 
e r a t i n g  condit ions i n  machine elements. 

Many appl ica t ions ,  however, do not  operate under t h e  i d e a l  con- 
d i t i o n s  which are normally assumed o r  provided i n  most t h e o r e t i c a l  and 
experimental inves t iga t ions ,  An important p r a c t i c a l  considerat ion 
which i s  often -omitted i s  t h e  supply and d i s t r i b u t i o n  of lubr ican t  i n  
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the v ic in i t y  of t h e  contact region, Lubricant s tarvat ion,  which may 
of-ten ex i s t  but  not always be recognized, can have an overriding 
e f f ec t  on f i lm thickness and other EHS) aspects. 

An important aspect inherent i n  t he  EHD problem which was brought 
out i n  t h e  Grubin theory [ l ]  i s  t h a t  f i lm thickness i s  primarily 
developed i n  t h e  I n l e t  region, jus t  i n  advance of t he  f l a t  Hertzian 
region, The experimental work of Crook 121 and t h e  thermal solutfons 
of Cheng and S te rn l ich t  [ 3  1 and Dowson and 'brJhit&er [4 ] provide fu r -  
t he r  evidence of t h e  f a c t  t h a t  f i lm thickness i s  governed by tine con- 
d i t i ons  i n  t h e  i n l e t  region, Therefore, t h e  conditions of  speed, 
v iscosi ty ,  and geometry, a s  f az  a s  f i lm thickness i s  concerned, must 
be those re levant  t o  t he  i n l e t  region. These a r e  t he  controll ing 
var iables  i n  t he  f i lm thickness equations. 

A condition of t he  i n l e t  region which i s  not representea i n  t h e  
f i lm thickness equations i s  t h a t  of t h e  supply of lubr icant .  Hydro- 
dynamic considerations require  t he  gap between t he  surfaces t o  be 
adequately f i l l e d  t o  f a c i l i t a t e  t h e  important pressure buildup. If 
t h e  i n l e t  region i s  adequately f i l l e d  with lubr icant ,  t he  i n l e t  
pressure buildup w i l l  develop a f i lm thickness which i s  insens i t ive  
t o  t h e  fu r ther  inc reases  i n  lubr icant  supply, This condition of 
lubr ica t ion  i s  defined as "flooded". I f  t he  i n l e t  region i s  inade- 
quately f i l l e d ,  t h e  i n l e t  pressure buildup w i l l  be delayed, and a 
f i lm thkckness which i s  dependent upon t he  avai lable  lubr icant  supply 
w i l l  r e s u l t .  The condition of Lubrication i s  then defined a s  "starvedet, 
This s tarved condition of lubr icat ion,  which has received very l i t t l e  
theore t ica l  and experimental consideration, forms most of t he  work 
presented here. The experimental and t heo re t i c a l  work i s  l imi ted t o  
HLD point  contact conditions; however, t h e  fundamental features  have 
more general application.  

NOMENCLATURE 

a Hertzian radius  8 8 Angstrom un i t  8 = 10- m 

dimensionless term i n  Hertzian equation = 3w 
2rraE ' ho 

%9JEZ modulus of e l a s t i c i t y  of bearing mater ia ls  

h f i lm thickness 



film thickness a t  lubr icant  boundary 

Hertzian deformation fo r  dry contact 

mintmum f i lm thickness 

cen t r a l  f i lm thkGkness 

cen t r a l  f i lm thickness under flooded conditions 

dimensionless f i lm thickness = h/ho 
4k 

transformed ciistance, m = log  r e 
pressure 
meximum Hertzian pressure 

1 reduced pressure = dl - emw) 

dimensionless reduced pressure = 12fi-ua 
rl 

u 
maximum dimensionless reduced pressure = i,+Ouaa 

radius  *om center of Hertzian region 

dimensionless radius  = r/a 

1 1  1 
reduced radius of contact, = - + -  

R, R, 

radius  of contacting bodies 

i n l e t  distance,  S = (xb - a )  

i n l e t  distance t o  obtain a flooded condition 
1 combined surface veloci ty  = -$+ui + ug) 

veloci ty  of bearing surfaces 

load on bearing contact 

coordinates 

dis tance *om t h e  i n l e t  lubr ican t  boundary t o  t h e  center 
of t h e  Hertzian region 

pressure viscosi ty  coef f ic ien t  

angulw dimension *om axis of symmetry 

l o c a l  v i scos i ty  of lubr icant  

ambient v i scos i ty  of lubr icant  

Poibsson'x r a t i o  of bearing m ~ t e r i a l s  

transformed angular dimension, T@ = 28 



Reynalds equation i s  

Viscosity i s  assumed t o  vary with pressure according t o  

A reduced pressure, q, i s  defined as 

~ e ~ n o l d s  equation then becomes 

Grubin [ l ]  applied t h i s  t o  l i n e  contact (where 8q/ay = 0 )  by 
assuming ( f )  t h e  shape outs ide  t h e  contact was ~ e r t z i a n  and ( i i )  
t h a t  q # l/a everywhere ins ide  t h e  contact. The va l i d i t y  of  t h i s  
has previously been discussed (e .g , ,  r e f .  5). The Grubin analysis  has 
been extended t o  point  contacts by Cameran and Gohar [ 6 ] ,  Archard and 
Cowking [ 7 1, and more recent ly  by Cheng [ 8  1 , 

The contact geometry i s  shown i n  Fig. 1, The f i lm thickness h 
at any point  i s  t h e  sum of t h e  cen t r a l  f i lm thickness ho and t he  
Hertzian deformation fo r  dry contabt [5].  Thus 



Define 

s o  t h a t  

To reduce t h e  parameters of  t h e  problem t h e  following terms are defined: 

Also, a s  t h e  pressure  falls rap id ly  with d is tance  a new d i s tance  m 
i s  chosen m = l o g  r Also, an angle 4 , chosen s o  it ranges f'rom 
+1 t o - 1  is  definedeas ??-d) = 28 where 0 i s  t h e  angular displacement 
from t h e  l i n e  of f l u i d  motion on t h e  axis o f  symmetry. 

Applying these  transforms Reynolds equat5on takes  t h e  form 

Boundary Conditions 

1. Along AB ( ~ i g .  1 )  
Due t o  symmetry along AB, % = 0 

2, Along BC 
q* = 0 along BC a t  some value of r*, This i s  t h e  i n l e t  boundary 

condit ion which is  loca ted  at decreasing values of r* t o  obta in  
s t a rva t ion  condit ions,  

3 Along CD (g ide  leakage) 
q* = q* /h along CD. The power of  l/h was i n i t i a l l y  set t o  

2 as i n  [GI; but ,  fo r  low values of  B i n  t h e  neighborhood of 
t h e  Hertz r ad ius  minima would occur i n s i d e  t h e  boundary 4 = 1 i n -  
s t e a d  of on t h e  b o u n d ~ ~ ,  A more compatible boundary condit ion could 



be obtained by increa$ing t he  power of l /h,  However, t he  nature of 
the s ide  lealrage had no e f f ec t  on t h e  values along t he  ax i s  of symmet.rye 

4, Along DA ( ~ e r t z  radius)  1 The Grubin solut ion shows q -9 - and a q / a m  -3 0 at t he  Hertzian 
radius.  Therefore, q* = % a1gng DA; however aq*/am = 0 was 
only held a t  point  A. The v* values along t h e  ax i s  of symmetry 
were used t o  estimate t h e  der ivat ive  of q* a t  t h e  Hertz radius 
(m = 0 ) .  Suff ic ien t ly  good s t a r t i n g  values f o r  q* at  m = 0 re- 
su l t ed  i n  der ivat ives  which were l i n e a r l y  dependent on t he  %= value and thus l i n e a r  in terpola t ion of a few values enabled 

%ax with = 0 t o  be a t t a ined ,  

F i n i t e  - Difference Approximation 

The (m, 4 ) plane i s  covered by a moderately f i n e  mesh of up t o  
50 equidis tant  s t eps  i n  the m direct ion and up t o  36 i n  t he  4 
direct ion t o t a l i ng  1800 points ,  2 and 3  point  f i n i t e  differences were 
used as approximations t o  t he  p a r t i a l  der ivat ives  yielding a 5-point 
d i f ference equation fo r  each mesh point. Application of such a 
formula t o  a l l  mesh points r e s u l t s  i n  a matrix equation Ax = b where 
x i s  t h e  column vector of values a t  each mesh point ,  b i s  a column 
vector of constants and A i s  a (1800 x 1800) matrix. 

Inversion of a Ltwrge Matrix 

Such a matrix would be impossible t o  inver t  ( o r  even s to re )  on 
present-day computers. The nature  of A i s  such t h a t  it may be 
par t i t ioned  i n t o  submatriceg-with each row of submatrices consist ing 
of t h r ee  matrices (maximum 36 x 3 6 ) ,  two of which a r e  diagonal matrices. 

Inversion of t h e  o r ig ina l  matrix i s  achieved by Gaussian Elimina- 
t i o n  Process with t he  submatrices and t h e i r  inverses replacing t h e  con- 
ventional  elements and reciprocals.  

A "reasonable" value fo r  %ax at t h e  Hertzian radius (m = 0) 
fo r  a given value of B i s  used and t h e  m-interval ( i n i t i a l l y  s e t  so  
t h a t  t h e  boundary i s  wel l  outside t h e  pressure f i e l d )  i s  reduced thus 
bringing i n  the  boundary u n t i l  t h e  vector of q-values beings t o  change. 
This then es tab l i shes  t h e  boundary f o r  t h e  par t i cu la r  flooded case 
and t h e  minimum i n t e r v a l  i s  achieved. Next t h e  number of in te rva l s ,  
which i s  i n i t i a l l y  36, i s  reduced u n t i l  t h e  "picture" changes. The 
speed of t h e  program i s  mainly determined by t h e  s i z e  of t h i s  number. 



Results  f o r  Flooded Condition 

The values of were determined f o r  a f a i r l y  extensive 
range of  B values $% loglO B ranging *om -3 t o  +3. A p l o t  of 

aga ins t  l o g  B gave a good s t r a i g h t  l i n e  i n  t h e  range 
1 0  loglo $3-0.2  t o  1 .0  gxving 

l o g l o  

1 Remembering t h a t  at  t h e  Hertzian rad ius  q j - and 
a! 

t h e  following f i lm thickness formula f o r  a flooded condition i s  
obtained: 

Resul ts  f o r  Starved Condition 

The r e s u l t s  f o r  a s tarved condition a r e  represente  i n  Fig. (2) .  
Here is  plot$  d agai  st n (where r* = 1 + 2"~') f o r  con- 9 3 s t a n t  va%es of q*B . q*B can be aetknhined from t h e  operat ing condi- 
t i o n s  as shown i n  [g], 

For a given i n l e t  condition r*) can be determined from Fig. ( 2 )  
and ho can be ca lcula ted  from equ@ion (10) .  



A schematic diagram of t h e  apparatus i s  shown i n  Fig. 3. The 
apparatus provides a system whereby t h e  END f i lm thickness i n  a b a l l  
t h r u s t  bearing can be measured using o p t i c a l  interferometry.  The 
experimental bearing is shown i n  F ig*  4, It cons i s t s  of  two f l a t  
r aces  separated by t h r e e  1-inch diameter s t e e l  b a l l s ,  The lower r a c e  
i s  made of  steel and i s  supported by an a i r  thxust  bearing which i s  
driven by an e l e c t r i c  motor, The upper race  i s  an o p t i c a l  crown 
g l a s s  d i sk  6 inches i n  &meter and l/2-inch t h i c k ,  I ts  lower surface  
i s  coated with a t h i n  (-170 2) chromium l a y e r  of  15 percent  r e f l e c t i v i t y ,  
and f t s  upper surface has an a n t i r e f l e c t i o n  coating. Load i s  appl ied  
t o  t h e  upper race  with a lever a rm,  and t h e  in te r fe rence  f r inges  are 
observed wi th  a microscope having a magnification of W50, 

The bearing was operated i n  a counterrotat ion mode f o r  most of 
t h e  experiments by holding t h e  cage s t a t ionary  (p ig .  4), This causes 
t h e  test b a l l ,  which can be adjus ted  r a d i a l l y  i n  a laminated phenolic 
cage, t o  r o t a t e  about a s i n g l e  a x i s  fixed i n  space, Both bottom and 
t o p  r a c e  speeds were measured with a magnetic transducex. S l i p  
measurements between races  were always l e s s  than 2 percent  f o r  a l l  ex- 
perimental conditions. 

The bearing was a l s o  operated by holding t h e  top  race  s t a t ionary ,  
The b a l l s  then have curv i l inea r  as w e l l  a s  r o t a t i o n a l  motion, The 
in ter ference  f r inges  of t h e  test b a l l  a r e  then observed stroboscopical ly 
by synchronizing t h e  l i g h t  source with t h e  cage by means of  a lamp and 
photot rans is tor  as shown i n  Fig,  3. 

The microscope is i l luminated with a xenon $ischarge tube  which 
emits white l i g h t  a t  a color  temperature of 6000 K. The tube  can be 
discharged a t  a high r e p e t i t i o n  rate f o r  continuous observations, and 
it can be discharged s ing ly  f o r  high-speed photography. 

The requirements f o r  good f r i n g e  " v f s i b i l i t y "  and how they can be 
used t o  design an in te r fe romet r i c  system which i s  compatible with t h e  
experimental measurements i s  discussed i n  [9 1, A duochromatic system 
which is composed of green and r e d  wavebands, obtained wi th  a Wratten 
77A f i l t e r ,  provides f r inges  o f  good " v i s i b i l i t y "  over a s a t i s f a c t o r y  
f i lm thickness range of 80 microinches. The fxinges are c losely  spaced 
and form a d e f i n i t e  color  sequence which can be used t o  determine 
f r i n g e  order ,  The c a l i b r a t i o n  of t h i s  system is given i n  [ g ]  and [ lo ] .  

To obta in  t h e  absolute  thickness corresponding t o  each f r i n g e  t h e  
ca l ib ra ted  f r inges  (obtained i n  a i r )  must be divided by t h e  ref 'xactive 



index of t h e  medium. A maximum experimental pressure of  87 000 p s i  
increases t h e  r e f r ac t i ve  index of a t yp i ca l  o i l  by about 8 percent 
from i t s  atmospheric value, The Lorenz-Lorent z r e l a t i on  I 1 1  1 was 
used t o  determine t h e  change of r e f r ac t i ve  index with density,  and 
t he  Hartung empirical formula f o r  hydrocarbons [121 was used t o  deter- 
mine t h e  change i n  density with pressure,  

Experimental f i lm thickness measurements using a lubr ican t  (LW D)  
t h a t  i s  wel l  documented [13] a r e  p lo t t ed  i n  Fig; 5 as a function of 
four theore t ica l  f i lm thickness formulas. There i s  a very good agree- 
ment between theory and experiment fo r  t he  present formula ( ~ q .  11) 
and t h a t  of Cheng [81. These solut ions  were based on Grubin assump- 
t i ons  have enabled a reasonably accurate f i lm thickness formula f o r  
point  contacts t o  be developed i n  t he  same manner a s  they did  f o r  
l i n e  contact i n  t h e  1950's when a f u l l  solut ion had not y e t  been 
achieved, 

Figure 6 i s  a p lo t  of t he  measured f i lm shape obtained from a 
high-speed photomicrograph [g] ,  The measurements were corrected f o r  
r e f r ac t i ve  index change by using an estimated pressure p ro f i l e .  The 
film shape i n  t he  transverse d i rec t ion  shows t h a t  t h e  minimum f i lm 
thickness h a t  t h e  l a t e r a l  const r ic t ions  (hm = 8.5 microinch) i s  
much l e s s  th%n t h e  cen t r a l  film thickness (ho = 18.3 microinch). The 
a b i l i t y  t o  predic t  t h e  minimum f i lm thickness i s  of  p r a c t i c a l  importance. 
The cen t ra l  film thickness (ho) and t h e  minimum f i lm thickness (hm) 
a s  measured from random photomicrographs taken over a range of loads 
between 1.92 l b f  and 12 lb f  a r e  p lo t ted  i n  Fig,  7, The data  fo r  a 
mater ia ls  combination of sapphire/tungsten carbide given by Gohar 
[14] are a l so  included. The p l o t  shows a ce r ta in  degree of s c a t t e r  
because hm i s  more sens i t ive  t o  load than hoe However, t o  a first 
approximat lon 

An in t e r e s t i ng  fea ture  of t he  r e s u l t s  is  t h a t  t h e  load parameter 
f o r  t h e  sapphire/tungsten carbide i s  nearly t h e  same a s  t h e  
lowest load parameter f o r  t h e  glass /s teel  data,  These two cases show 
very good correkation even though the  reduced e l a s t i c  modulus of t he  
former (66 .6~10  p s i )  i s  four times t h e  l a t t e r ,  and t he  m a x i m u m  Hertzian 
pressure of the  former (405 000 p s i )  i s  over eight  times t he  l a t t e r .  



The s ta rva t ion  experiments were conducted with t h e  bearing oper- 
a t i n g  i n  t h e  counterrotat ion mode. Before each test t h e  bearing com- 
ponents were cleaned with a solvent  ( e i t h e r  benzene or  acetone). 
Lubricant was appl ied  t o  t h e  b a l l  and raceway surfaces  during t h e  re- 
assembly of t h e  bearing. Under s t a t i c  condit ions surface tens ion 
causes t h e  lubr ican t  t o  form a c i r c u l a r  boundary o r  meniscus around 
t h e  contact  region,  A s i d e  v i  ew of t h e  meniscus can be seen i n  Fig. 4. 

Under dynamic conditions t h e  quant i ty  and d i s t r i b u t i o n  of lub- 
r i c a n t  i n  t h e  i n l e t  region i s  r e f l e c t e d  i n  t h e  shane and locat ion of  
t h e  lubr ican t  boundary i n  t h e  i n l e t  region. Figs. 8 ( a )  and ( b )  show 
c l e a r l y  defined areas  where t h e  gap between t h e  bearing surfaces i s  
completely f i l l e d  with lubr ican t ,  $ince t h e  medium is  continuous i n  
these  areas  they form very uniform in te r fe rence  f r inges .  Outside 
these  areas  t h e  med5u.m i s  a composite o f  a i r  and o i l ,  and t h e  f r inges  
which form between t h e  b a l l  and g l a s s  r ace  are s h i f t e d  t o  loca t ions  
of g rea te r  thickness because t h e  r e f r a c t i v e  index of  a i r  i s  l e s s  than 
o i l .  This i s  c l e a r l y  seen i n  t h e  i n l e t  region of Fig. 8(b) .  The 
degree of  f r inge  s h i f t  depends on t h e  r e l a t i v e  amounts of a i r  and o i l  
at  each loca t ion*  I n  t h i s  way t h e  r ipp led  fringes i n  t h e  i n l e t  
region show quan t i t a t ive ly  t h e  d i s t r i b u t i o n  o f  lubr ican t  on t h e  bear-  
ing  surfaces.  A f r i n g e  which i s  s h i f t e d  c loser  t o  t h e  Hertzian region 
ind ica tes  a g rea te r  percent  o f  o i l ,  

The r i p p l e d  f r inges  i n  t h e  i n l e t  region a l s o  show t h a t  t h e  lub- 
r i c a n t  i s  d i s t r i b u t e d  over t h e  bearing surfaces  i n  t h e  form of  small 
r i b s  which a r e  genera l ly  or iented  i n  t h e  d i r e c t i o n  of  motion. These 
r i b s  are developed i n  t h e  o u t l e t  region where t h e  lubr icant  film 
ruptures  i n t o  s t r i a t i o n s  of  a i r  and o i l ,  These r i b s ,  though somewhat 
f l a t t e n e d  out,  can a l s o  be seen i n  t h e  i n l e t  region. I n  t h i s  way 
t h e  mount  and d i s t r i b u t i o n  of lubr ican t  i n  t h e  o u t l e t  region inf luences  
t h e  i n l e t  region. 

Excess lubr ican t  i s  frequently found on t h e  s i d e s  of  t h e  t r a c k  
a s  shown i n  Fig. 8(b).  These areas  a c t  a s  r ese rvo i r s  from which lub- 
r i c a n t  can flow i n t o  t h e  i n l e t  region by t h e  ac t ion of surface  tension.  
The rate of  flow i s  probably a function of surface  tension,  v i scos i ty ,  
gap thickness,  and t h e  shape of  t h e  lubr ican t  boundary; and t h e  amount 
of lubr ican t  which i s  recaptured i n  t h e  i n l e t  region by surface  ten- 
s ion w i l l  c e r t a i n l y  depend on the  time ava i l ab le ,  i , e @ ,  t h e  speed of  
t h e  beaxing surfaces ,  The amount and d i s t r i b u t i o n  of lubr ican t  which 
f i l ls  t h e  gap a t  any given time i s  c l e a r l y  determined by t h e  i n l e t  
lubr ican t  boundmy. 



The E3ID films shown i n  Fig. 8 a r e  c l e a r l y  8 f fec ted  by a s t a rved  
i n l e t  region; and t h e  f i h  shape, which can be obtained by reading 
t h e  f r inges  as l i n e s  of constant thickness,  i s  s t rongly  dependent 
upon t h e  shape of t h e  i n l e t  lubr ican t  boundary. The EHD f i lm of 
Pig,  8 ( c )  i s  very severe ly  s t a rved  and cons i s t s  o f  a s e r i e s  of 
channels. These channels a r e  caused by t h e  r i b s  of  lubr ican t  which 
can be seen i n  t h e  i n l e t  region,  

These r e s u l t s  not only show t h a t  t h e  f i lm thickness i s  pr imar i ly  
determined i n  t h e  i n l e t  region, but  a l s o  t h a t  t h e  l o c a l  f i lm th ick-  
ness at each po in t  within t h e  Hertzian region i s  primari ly a function 
of t h e  micro i n l e t  conditions immediately upstream of t h a t  point .  

Test  Conditions and Procedure 

The purpose of  t h e  s t a rva t ion  experiments was t o  determine t h e  
e f fec t  of t h e  i n l e t  boundary on t h e  c e n t r a l  film thickness f o r  a 
range of operat ing conditions. For constant  speed, load, and lubr ican t  
p roper t i e s  t h e  required  information i s  t h e  c e n t r a l  f i lm thickness ho and t h e  boundary dis tance  xb measured from t h e  center  of t h e  
Hertzian region t o  t h e  i n l e t  boundary immediately upstream ( s e e  Fig .  9 ) .  
These measurements were taken from high-speed photomicrographs, 

Starvat ion was achieved by gradually reducing t h e  quant i ty  o f  
lubr ican t  wi th in  t h e  bearing system. The chosen operat ing conditions 
consis ted  of t h r e e  loads  on t h e  test b a l l  (1.92, 6, and I2 l b f )  and 
four  i n i t i a l  ( i .  e.,  flooded) f i lm th icknesses  which correspond t o  t h e  
first four red f r i n g e s  of t h e  duochromatic system. A l l  combinations 
of t h e  chosen operat ing condit ions were t e s t e d ,  thus  giving twelve in -  
d iv idual  test runs.  The t h r e e  t e s t  loads  g ive  a maximum Hertzian 
pressure ranging from 47 400 t o  87 000 p s i ,  and t h e  four i n i t i a l  f i l m  
thicknesses range *om 8 t o  30 microinches. To maintain a convenient 
operat ing speed, on t h e  order of  1 0  in./sec, these  f i lm thicknesses 
were obtained by varying t h e  t e s t  lubr ican t  as w e l l  a s  t h e  bearing 
speed. Five test lubr ican t s  were used* Their p roper t i e s  are shown 
i n  Table 1. The lubr ican t s  designated 8A.Z 10, &B 30, and 8AX 40 
a r e  p a r a f f i n i c  mineral  o i l s ,  while TN 631 i s  a medium v i scos i ty  index 
naphthenic mineral  o i l .  LUB D i s  a high v i s c o s i t y ,  low v i scos i ty  
index mineral  o i l  which was previously used by Dyson e t  a l .  [15] and 
Foord e t  81. 1x61. It was used here as a reference  f l u i d  f'rom which 
t h e  pressure-viscos i ty  coef f i c ien t s  of t h e  o ther  t e s t  lubr ican t s  were 
obtained. The apparatus i tself  was used t o  obta in  t h e  pressure- 
v i s c o s i t y  c o e f f i c i e n t s  i n  t h e  masner described by Foord e t  a l ,  [161. 



Starvat ion Resul ts  

Figure LO shows a sample of  photomicrographs taken *om a test 
run, The t e s t  load  i s  l,92 l b f ,  and t h e  i n i t i a l  f i lm th ickness  corres-  
ponds t o  t h e  four th  r e d  f r i n g e  (ho = 30 microinches) . I n  Fig.  10(a)  
t h e  boundwy dis tance  i s  s u f f i c i e n t l y  removed from t h e  center  of t h e  
Hertzian region t o  obta in  a flooded condition, Fig. 10(b-f) show a 
diminishing f i l m  thickness a s  t h e  i n l e t  boundary progressively 
approaches t h e  Hertzian region.  The diminishing film thickness i s  
apparent i f  one observes t h a t  t h e  f r inge  i n  t h e  center  of t h e  Hertzian 
region f o r  a given f igure  i s  always i n  t h e  cons t r i c t ion  regions i n  
t h e  previous f igure ,  %t should a l s o  be noted t h a t  a s  s t a rva t ion  pro- 
gresses,  t h e  MD shape approaches t h e  Hertzian shape. Therefore, t h e  
M B  pressure  must a l s o  8,pproach t h e  Hertzian pressure,  Xn t h e  l i m i t ,  
i a e . ,  when ho equals zero, t h e  Hertzian shape and pressure  are 
a t t a ined ,  

Some of  t h e  experimental and t h e o r e t i c a l  c e n t r a l  f i lm thicknesses 
me: pXotted 5n Figs.  11 and 1 2  as a function of 
t h e  ca lcu la ted  Hertzian radius .  Figure 11 shows 
i n i t i a  f i l m  th icknesses  f o r  a given lo&, and Fig. 12 shows t h e  
e f f e c t  of  load  f o r  a given i n i t i a l  f i l m  thickness.  The r e s u l t s  i n -  
d i c a t e  t h a t  f i l m  thickness becomes increas ingly  more s e n s i t i v e  t o  t h e  
i n l e t  boundary as t h e  boundary approaches t h e  Hertzian radius.  Indeed, 
t h e  f i l m  thickness approaches zero a s  the i n l e t  boundary approaches 
t h e  H e ~ t z i a n  rad ius .  This emphasizes t h e  importance of  t h e  i n l e t  
regjon i n  regaxds t o  f i lm thickness.  To obtain a flooded condition 

11 shows t h a t  t h e  required  i n l e t  boundary, expressed a s  t h e  r a t i o  
increases  with f i lm thickness.  This r e f l e c t s  t h e  expected 

pressure  buildup which commences f u r t h e r  upstream a,s t h e  film 
t h i  ckness (and hence speed and/or v i scos i ty )  increases .  Figure 1 2  
shows t h e  required  i n l e t  boundary x /a t o  decrease with load. This 
r e f l e c t s  t h e  o v e r a l l  pressure  d i s t r i$u t ion  which must become more 
Hertzian as t h e  load increases ,  

The agreement between theory and experiment i s  q u i t e  good when 
one considers t h e  s c a t t e r  i n  t h e  experimental da ta  together  with t h e  
Grubin assumptions inherent  i n  t h e  t h e o r e t i c a l  so lut ion,  It must 
a l s o  be remembered t h a t  t h e  f i lm thickness predic ted  by theory is sub- 
jec ted  t o  t h e  accuracy of t h e  measured experimental operat ing con- 
d i t ions ,  p a r t i c u l a r l y  t h e  l u b r i c m t  p roper t i e s  of  a and pee It is 
of i n t e r e s t  t h a t  t h e  agreement between theory and experiment is no 
worse f o r  s t a r v a t i o n  conditions than it i a  f o r  flooded conditions. 
I n  f a c t ,  it i s  l i k e l y  t o  be b e t t e r  under s t a rva t ion  conditions s ince  
t h e  f i lm shape becomes more l i k e  t h e  assumed Hertzian shape when the  
i n l e t  region i s  s tarved,  



Wediction of t he  Onset of Starvation 

The above r e s u l t s  imply t h a t  f i lm thickness i s  dete~mined by 
t h e  EHD pressure generated i n  t h e  i n l e t  region and t h a t  s t a rva t ion  
w i l l  i n i t i a t e  when t h e  i n l e t  lubr icant  boundary approaches t h e  ex- 
pected locat ion of pressure commencement. The approximate loca t ion  
of pressure commencement can be obtained from t h e  in tegra ted  form 
of Reynolds equation. Neglecting t he  side-leakage term equation 
(4)  can be in tegrated t o  give t h e  reduced pressure gradient  

For constant speed and v i scos i ty  t h e  reduced pressure gradient  with- 
i n  t h e  i n l e t  region i s  determined by t h e  geometry term (h  - ho)/h3. 
This term, and therefore  t h e  reduced pressure gradient ,  reaches a 
maximum when h/ho = 1 .5  and diminishes approaching zero i n  t h e  up- 
stream direct ion a s  h/ho increases.  I f  hb i s  t h e  thickness of  
t h e  lubr icant  film a t  t h e  i n l e t  boundary ( see  Fig,  9 ) ,  then it i s  
expected t h a t  l a rge  values of t h e  i n l e t  geometry r a t i o  q h o  w i l l  
provide a flooded condition. This i s  shown i n  Fig. l-3 where all  t h e  
experimental data a r e  p lo t ted  as hp((h ) against  h d h  where 
(ho)f i s  t h e  f i lm thickness under looae i  conditions. ~ g e  s o l i d  
curve represents t h e  t heo re t i c a l  r e s u l t s  over t he  experimental range 
of' operating conditions and shows very good agreement with experiment 
except near t h e  flooded condition. The i n t e r e s t i ng  feature  of t h e  
r e s u l t s  i s  t h a t  t h e  degree of s tarvat ion,  over a range of loads and 
i n i t i a l  f i lm thicknesses, can be described by a s ing le  curve. The 
r e s u l t s  a l so  show t h a t  t he  flooded condition i s  approached asymptot- 
i c a l l y  as q h o  increases.  Therefore, t h e  onset of s ta rva t ion  
cannot be very wel l  defined. However, most of t h e  experimental r e -  
s u l t s  indicate  a flooded condition a t  hb/ho = g, and t h e  t heo re t i c a l  
curve predic ts  a f i lm thickness which i s  95 percent flooded, 

For p r ac t i c a l  appl icat ions  a more appropriate measure of t he  
degree of s ta rva t ion  i s  t he  i n l e t  distance S defined as 

and shown diagramatically i n  Fig. 9* 8 can be wr i t t en  i n  terms of 
hb/ho as follows: By def in i t ion  



where i s  the  Hertzian deformation for  dry contact ( ~ i g ,  1 ) .  
For poi& contacts % can be approximated by (see re f .  5) 

T h i s  re la t ion  i s  accurate only for  small r a t io s  of % / a  Figure 11 
shows tha t  over the  experimental range starvation occurs within 

q a  = 4.5. The calculation of Prom equation (17) for  
d a  = 4.5 i s  about 14 percent s than tha t  calculated from the  
Hertzian re la t ion  ( ~ q .  5) . For most MD c o n a t i  ons starvation occurs 
within an xb/a r a t i o  of 3 or 2 where the  error  i s  7.6 percent and 
2 percent, respectively. Now we can write 

and 

Substituting equations (17), (18) and (19) i n  equation (16) and solv- 
ing for  S gives 



A s imi la r  r e l a t i o n  can be derived f o r  EHD l i n e  contacts  [g 1. If 
t h e  onset of s t a rva t ion  i s  defined by hb/h = 9> then t h e  minimum 
i n l e t  d is tance  Sf t o  obtain a flooded conait ion can be approxi- 
mated by 

Thf s i s  very s imi la r  t o  t h e  statement of Fzin and Kreutz [I71 t h a t  
t h e  v a s t  major i ty  of pressure buildup f o r  an EHD point  contact occurs 
wi th in  about 

ahead of t h e  Hertzian f l a t ,  

Figure 14 i s  a p l o t  of a l l  t h e  s t a rva t ion  r e s u l t s  using t h e  in-  
l e t  d is tance  S as a measure of t h e  degree of s t a rva t ion ,  The ex- 
perimental da ta  i s  represented by four curves each showing t h e  f i lm 
thickness appoaching zero a s  t h e  i n l e t  d i s t ance  approaches zero. 
Each curve contains t h e  da ta  f o r  a l l  th ree  t e s t  loads thus ind ica t ing  
t h a t  s t a rva t ion  i s  not very s e n s i t i v e  t o  load.  This i s  consis tent  
with t h e  view t h a t  f i lm thickness i s  pr imar i ly  determined by t h e  EZD 
pressure  generated i n  t h e  i n l e t  region. The primary e f f e c t  of load 
i s  merely t o  a l t e r  t h e  s i z e  of the  Hertzian region and t h e  magnitude 
o f  t h e  pressure  the re in ,  Load has only a secondary influence on t h e  
EHD pressure  generated i n  t h e  i n l e t  region,  Therefore, t h i s  Pressure, 
and hence t h e  f i l m  thickness determined by t h i s  pressure,  w i l l  r e -  
main e s s e n t i a l l y  t h e  same regardless  of load.  

The onset  of  s t a rva t ion  given by equation (21) i s  p l o t t e d  i n  
Fig, 1 4  f o r  each test  load. It compares very w e l l  with t h e  experi-  
mental r e s u l t s .  An i n t e r e s t i n g  fea tu re  i s  t h a t  f o r  a given c e n t r a l  
f i lm th ickness  ho, equation (21) p red ic t s  t h a t  s t a rva t ion  w i l l  com- 
mence a t  s l i g h t l y  smaller i n l e t  d is tances  when t h e  load increases.  
The experimental d a t a  a l s o  reveals  t h i s  tendency* This va r ia t ion  with 
load occurs because t h e  gap thickness increases  with load f o r  a con- 
s t a n t  S and hO, thus  making t h e  r a t i o  %/ho l a r g e r .  

Also p l o t t e d  i n  Fig ,  14  is  t h e  l i n e  def in ing t h e  equation 



Over t h e  experimental operating conditions t h i s  equation approximates 
the onset of s tarvat ion and indicates  the  r e l a t i ve  magnitude of the  
dimensions involved. 

A l l  t he  s tarvat ion r e su l t s  a re  replot ted i n  Fig. 15 where of, 
a s  a dimensionless s tarvat ion parameter, now represents t he  degree 
of starvation.  The experimental data  can be approximated by a quadrant of 
a c i rc le ,  i , e , ,  

This can be employed i n  equation (11) t o  provide the  following sem5- 
empirical film thickness formula which includes the e f f ec t s  of starvation 

ho 1/2 Wo u 5/7 
-1/2 1 

- =  
R 1 * 7 3 [ % k - & ]  ( R ) (3) (24) 

The greates t  p rac t ica l  problem i n  applying equation (24) i s  the  
determination of the  i n l e t  distance fo r  the  par t icu la r  application, 
The i n l e t  distance i s  difficult t o  measure d i rec t ly  and d i f f i c u l t  t o  
predict  f'rom external conditions. Besides the  method and amount of 
1ubrican-t supplied, these external conditions must involve those aspects 
which deal with the  transport  and dis t r ibut ion of lubr icant  within the  
bewing, i ,e.  viscosity,  surface tension, bearing dynamics, and geometry. 
There i s  cer ta inly a great  need for p rac t ica l  reseazch along these l i nes ,  

IXETECT OF STARVATION ON OTHER ASPECTS OF MD 

Fr ic t ion  

Fr ic t ion arises f'rom the  viscous shear forces acting on the bear- 
ing surfaces, For EHD contacts ro l l i ng  f 'riction i s  associated with the 
pressure generation i n  the  i n l e t  region, and s l iding f r i c t i on ,  or t ract ion,  
i s  associated with the  f l a t  Hertzian region and i s  inversely proportional 
t o  the  cen t ra l  film thickness hoe A starved i n l e t  region inh ib i t s  the  i n l e t  
pressure buildup and reduces the cen t ra l  film thickness. Therefore, a 
reduction i n  ro l l i ng  f r ic t ion  and an increase i n  s l iding f r i c t i on ,  or 
t rac t ion ,  i s  expected t o  accompany starvation.  Both these e f f ec t s  have 
p rac t i ca l  implications. Pn ro l l i ng  element bearings, fo r  example, it is 
desirable t o  have low ro l l i ng  f r i c t i on  and high t ract ion.  The lettter is 
important for  preventing s l i p ,  and hence bearing fa i lu re ,  between the  
ro l l i ng  elements and raceways. 



Pressure and S t ress  Distribution 

It was shown i n  Fig, 10 t h a t  as  s tarvat ion progresses t h e  EHD 
f i lm shape approaches t he  Rertzian shape. Thus, it should follow t h a t  
t h e  pressure d i s t r ibu t ion  and therefore t h e  s t r e s s  d i s t r ibu t ion  w i l l  
a lso  approach the  Hertzian condition, 

Cavihation 

Ordinary lubr ican ts  contain about 10 percent (by volume) of dis- 
solved gas or  a i r  a t  atmospheric pressure, When t h e  lubr icant  pres- 
sure is reduced below the  saturat ion pressure i n  t h e  exit region t h e  
dissolved g%s dif fuses  i n t o  small gas bubbles within t he  lubr icant  
causing the  bubbles t o  grow i n  s ize .  This form of bubble growth, 
described by $chweitzer and 8zebehely [18]  and Floberg [19], i s  the  
usual fom of cavi ta t ion which occurs i n  lubr icat ing fi lms,  

The cavitated region, under slow speeds, may often be contained 
within t he  lubr icant  meniscus surrounding the  contact region, A t  
very slow speeds it may consist  of a s ing le  gas bubble l i k e  t h a t  ob- 
served by Archaxd and ~ i r k [ 2 0 ] ;  or ,  a t  higher speeds it may develop 
i n t o  a la rge  number of gas bubbles, If the  beming i s  stopped, t h e  
bubbles often coalesce i n t o  a s ing le  bubble which detaches i t s e l f  
from t h e  contact region and slowly goes back i n t o  solut ion a s  it 
moves downstream, This i s shown i n  Fig* 16. Figure 16(a),  which 
was taken about one second a f t e r  the  bearing had stopped, shows a 
bubble j u s t  p r io r  t o  i t s  separation from the  contact region. Fig- 
ure  16(b) shows a bubble approximately two seconds a f t e r  t h e  bearfng 
had stopped. An i n t e r e s t i ng  feature  is the  interference pa t te rn  
which has developed, apparently between the  g lass  race  and t h e  sur-  
face  of t he  gas bubble, It indicates  an "MD" f i lm which has t h e  
features  of t he  c l a s s i c a l  EHB point  contact shape. Both t h e  l a t e r a l  
and r ea r  constr ic t ions  a r e  v i s i b l e  as wel l  a s  t he  s l i g h t  increase i n  
f i h  thickness must p r io r  t o  t he  reax constrict ion.  

Under normal beming speeds t he  ca;vitated region breaks through 
the  lubr icant  meniscus on t h e  downstream side,  thus exposing i tself 
t o  t h e  atmosphere, This has l i t t l e  e f f ec t  on t he  general appearance 
of t h e  cavitated pat tern .  The lubr icant  which passes through t h e  
Hertzfan region generally ruptures a t  a f i lm t h i e b e s s  which i s  a- 
bout 1 , 5  times t he  cen t ra l  f i lm thickness. The cavi ta t ion pa t te rn  
consis ts  of t h in  r i b s  of lubr icant  separated by a i r  spaces. This i s  
most cleaxly seen f o r  l a rge  cen t ra l  f i lm thicknesses l i k e  t h a t  shown 
i n  Fig. 17(a) .  



The lubr ican t  which escapee mound t h e  Hertzian region ruptures  
i n t o  cav i t a t ion  f ingers  which grow perpendicular t o  a l i n e  which 
makes an angle of  35' with t h e  d i rec t ion  of motion. The shape of 
t h e  cav i t a t ion  f i n g e r s  i s  p a r t i a l l y  determined by surface  tens ion,  
A high surface  tens ion f l u i d  causes t h e  cav i t a t ion  f ingers  t o  become 
more rounded, This i s  shown i n  Fig. 17(b) where t h e  lubr ican t  i s  
glycerol ,  It has a surface  tens ion of 63 dynes/cm which i s  twice 
t h a t  of  most l u b r i c a t i n g  o i l s ,  The small bubble t o  t h e  r i g h t  of  t h e  
Hertzian region has cav i t a ted  prematurely. This may be due t o  a 
fore ign p a r t i c l e  wi th in  t h e  f l u i d  which has provided a p r e f e r e n t i a l  
nucleat ing s i t e  f o r  cav i t a t ion  t o  take place ,  

The lubr ican t  i n  Fig. 17(c)  i s  a concentrated dispersion of 
vary f i n e  c o l l o i d a l  graphi te  ( ~ i l d a g )  i n  SAE 30 o i l ,  These g raph i t e  
pa r t%cles  provide add i t iona l  nuelewing s i t e s  thus  causLng t h e  
branches t o  form on t h e  cav i t a t ion  fingems. 

I n  most bearing appl ica t ions  a cav3.tated o u t l e t  region i s  
immediately followed by an i n l e t  region. The inf luence  of t h e  cav i t a ted  
region on t h e  lubr ican t  supply condition i n  t h e  i n l e t  region i s  an 
important p r a c t i c a l  aspect  which i s  o f ten  overlooked. It i s  of  i n -  
t e r e s t ,  therefore ,  t o  consider t h e  d i s t r i b u t i o n  of  lubr ican t  wi th in  
t h e  cav i t a ted  region. 

The r e l a t i v e  s h i f t  of  t h e  in te r fe rence  f r inges  due t o  t h e  d i f f e r e n t  
r e f r a c t i v e  ind ices  of  air and o i l  i n d i c a t e  t h e  d i s t r i b u t i o n  of l u b r i -  
cant wi th in  t h e  cav i t a ted  region. Figure 18(a)  shows schematically t h e  
d i s t r i b u t i o n  of lubr ican t  within t h e  cav i t a ted  region a t  a constant  
r a d i u s  from t h e  b a l l  center  ( i . e . ,  where t h e  gap thickness i s  constant ) ,  
The ind iv idua l  air spaces, as w e l l  as t h e  r i b s  of lubr icant ,  wi th in  t h e  
b a l l  t r a c k  e s s e n t i a l l y  extend across  t h e  gap between t h e  bearing sur-  
faces.  After t h e  b a l l  has passed, t h e  g l a s s  r ace  i s  l e f t  with t h e  
s i t u a t i o n  shown schematically i n  Fig,  18(b) .  Narrow r i b s  of  lubr%cant 
remain on t h e  t r ack  while t h i n  waves of lubr ican t  form adjacent  t o  t h e  
t r ack ,  The sane genera l  lubr ican t  d i s t r i b u t i o n ,  though somewhat 
f l a t t e n e d  out ,  appears i n  t h e  i n l e t  region,  Unless t h i s  t r a c k  i s  f i l l e d  
i n ,  it i s  t h i s  depleted supply of  lubr ican t  which must provide a 
s u f f i c i e n t  quant i ty  of  lubr ican t  i n  t h e  i n l e t  region t o  maintain a 
flooded condition. If t h e  design of  a beming and t h e  method of  lub- 
r i c a n t  supply do not  filfill t h e  l o c a l  lubr ican t  requirements i n  t h e  
i n l e t  region, t h e  bearing may be operat ing under s tarved conditions even 
though it i s  " w e l l  lubricated", 

Entrapment 

Bn o i l  entrapment between t h e  b a l l  and g l a s s  r ace  i s  shown i n  Fig. 
l g ( a ) ,  The surfaces  a r e  i n  contact  ( o r  very nearly so)  only along t h e  
edge of  t h e  Hertzian region, The e i n g e s ,  which a r e  of a monochromatic 



green system, ind ica te  a wedge-shaped f i lm shown schemati.cally i n  
Pig, 19(b) ,  

The p a r t i c u l a r  shape of t h e  entrapment and i t s  formation i s  some- 
what d i f f e r e n t  *om t h e  normal approach entrapments described by other  
workers [16, 21-23 1. The bearing was r o t a t e d  slowly i n  a viscous lub- 
r i c a n t  (LUB D) and then stopped by applying a breaking torque. The 
wedge-shaped f i l m  is probably t h e  r e s u l t  of a decreasing surface  speed 
which generated a th inner  f i lm i n  t h e  i n l e t  region as t h e  motion was 
stopped, The braking torque produced a s l i g h t  reverse  motion equal  
t o  about one-fourth t h e  Hertzhan diameter. This caused some of  t h e  
f l u i d  t o  leak out  and produced t h e  crescent-shaped r idge  i n  t h e  f i l m  
thickness along t h e  right-hand edge of t h e  Hertzian region. 

The photomicrograph was taken approximately f i v e  minutes after 
t h e  entrapment was formed. During t h a t  t i m e  some of t h e  lubr ican t  
leaked out  around t h e  edge of t h e  Hertzian region and along t h e  
scra tches  i n  t h e  bearing surfaces. These r e s u l t s  imply t h a t  i n  a 
bearing app l i ca t ion  where t h e r e  i s  a ve loc i ty  r e v e r s a l  it i s  poss ib le  
t o  maintain a f u l l  MD fi lm even though t h e  r e l a t i v e  surface  ve loc i ty  
i s  momentarily zero, 

Grease Lubrication 

Figure 20 i s  a p l o t  of f i l m  thickness aga ins t  speed f o r  t h r e e  
l i th ium hydroxystearate soap greases  and t h e i r  base o i l s ,  The base 
o i l  v i s c o s i t y  and soap content o f  t h e  greases  a r e  given i n  t a b l e  2, 
Each grease g ives  a higher f i l m  thickness than i t s  base o i l  thus i n -  
d ica t ing  t h a t  t h e  apparent v i s c o s i t y  of  t h e  grease i s  greateg than 
t h e  base o i l  v i scos i ty ,  even at very high rates of shear (10 sec-I) .  
It i s  a l s o  noted t h a t  t h e  grease G2 with 1 0 , 5  percent  soap content 
g ives  a g r e a t e r  f i l m  thickness than t h e  grease  G3 with 6 percent  soap 
content.  This i s  i n  l i n e  with recent  work by Dyson and Wilson [241 
on t h e  same greases which indicated  t h a t  t h e  soap breaks down i n t o  
hard  spheroidal  p a r t i c l e s .  These p a r t i c l e s  have a thickening e f f e c t  
on t h e  base o i l  which prevents t h e  apparent d i s c o s i t y  from reaching 
t h e  base o i l  v i s c o s i t y ,  

A comparison of t h e  grease and o i l  f i l m  shapes under moderate 
speeds showed no noticeable d5fference, provided they were compwed 
a t  t h e  same nominal f i lm th ickness ,  A t  extremely slow speeds, how- 
ever, r e l a t i v e l y  t h i c k  and i r r e g u l a r  f i lms were observed with grease 
p a r t i c u l ~ l y  when operat ing i n  a e s h  grease. These f i lms remained un- 
der  s t a t i c  condit ions a s  shown i n  Fig ,  21. Figure 21(a) was obtained 
a f i e r  t h e  b a l l  had been r o l l e d  very slowly i n  f resh  grease ( ~ 1 ) .  The 
fr inges wi th in  t h e  Hertzian region a r e  very i r r e g u l a r  i n  shape, thus  
ind ica t ing  a nonuniform film shape o r  poss ib ly  l a r g e  changes i n  re- 
f r a c t i v e  index due t o  t h e  heterogeneous s t r u c t u r e  of  t h e  grease.  



Figure 21(b) was obtained a f t e r  t h e  b a l l  had been r o l l e d  severa l  times 
over t h e  same t r a c k ,  The r e s u l t i n g  f i lm is th inner  (nnte  t h e  pos i t ion  
of  t h e  black f r i n g e  i n  each photomicrograph) and more uniform, thus  
suggestPng a breakdown i n  soap s t r u c t u r e ,  It i s  poss ib le  t h a t  t h e  
small  c i r c u l a r  spo t s  i n  Fig. 21(b) a r e  broken down soap p a r t i c l e s .  It 
was only poss ib le  t o  obta in  a f i lm of t h e  thickness shown i n  Fig,  21(a) 
by resupplying t h e  bearing with unworked grease. 

A test ,  run at  constant speed, showed no change i n  film thickness 
with grease G1 over a period o f  30 minutes, It i s  l i k e l y ,  therefore ,  
t h a t  most of  t h e  soap s t r u c t u r e  had broken down soon after t h e  bearing 
was s t a r t e d ,  The test was terminated after 45 minutes when t h e  f i lm 
thickness became c l e a r l y  a f fec ted  by s t a rva t ion ,  This was always 
found d i f f i c u l t  t o  avoid. 

Starvat ion t e s t s  performed with grease G2 and i t s  base 021 showed 
no appment d i f fe rence  i n  t h e  way t h e  f i lm thickness diminishes with 
t h e  i n l e t  d i s t ance  from i t s  i n i t i a l l y  flooded value, Important differ- 
ences, however, between grease-and o i l  lubr ica t ion  i n  connection with 
s t a rva t ion  axe l i k e l y  t o  be found i n  t h e  mechanisms by which t h e  
lubr ican t  i s  t ranspor ted  and r e d i s t r i b u t e d  i n  t h e  v i c i n i t y  of t h e  in-  
l e t  region. 

B a l l  Spin 

Figure 22 shows two photomicrographs taken with t h e  top  race  of 
t h e  t h r u s t  bearing held  s t a t ionary .  The q u a l i t y  of  t h e  image i s  lack- 
ing  because a t  high object  speeds t h e  f l a s h  durat ion i s  not shor t  
enough t o  prevent image b lu r ,  I n  Fig. 22(a) ,  where t h e  cage speed i s  
263 rpm, t h e  f i l m  shape and wake p a t t e r n  are similw t o  t h a t  found 
when t h e  bearing i s  operating i n  a counterrotat ion manner. Figure 
22(b) was taken when t h e  cage speed was increased t o  300 rpm. Both 
t h e  f i l m  shape and wake pa t t e rn  are skewed on t h e  order of 15' away 
from t h e  o r b i t a l  d i rec t ion  of *he b a l l .  This can be a t t r i b u t e d  t o  a 
gyroscopic moment which produces a s l i d i n g  ve loc i ty  component i n  t h e  
t ransverse  d i rec t ion .  The gyxoacopic moment i n  Fig. 22(a) i s  resisted 
by t h e  f r i c t i o n a l  fo rces  at  t h e  cage and bearing races .  This re- 
qu i res  an e f f e c t i v e  coef f i c ien t  of f r i c t i o n  of 0,02 f o r  t h e  p a r t i c u l a r  
operat ing condit ions [ 9 ] .  

Edge E f f e c t s  i n  Line Contact 

Preliminary work was ca r r i ed  out  on a tapered r o l l e r  t h r u s t  bear- 
ing  where t h e  t o p  g l a s s  r ace  was held  s t a t ionary  and t h e  in te r fe rence  
f r inges  were observed strobos topically , I n  Fig. 23(a) t h e  deformation 
of t h e  g l a s s  beyond t h e  r o l l e r  end causes an add i t iona l  compressive 
stress a t  t h e  r o l l e r  end which produces t h e  c h a r a c t e r i s t i c  "dog bonet' 
shape, Also, a very predominant l a t e r a l  cons t r i c t ion  i n  f i lm thickness 



can be seen a t  t h e  contact  edge. This can be a t t r i b u t e d  t o  side-  
leakage e f f e c t s ,  pr imar i ly  i n  t h e  i n l e t  region. 

The edge e f f e c t s  can be  reduced by blending t h e  r o l l e r  ends, a s  
shown by Gohar and Cameron [25], o r  crowning t h e  r o l l e r  p r o f i l e .  A 
r o l l e r  with a blended end i s  shown i n  Fig.  23(b),  The c e n t r a l  f i l m  
thickness i s  t h e  sane a s  t h a t  i n  Fig. 23(a) but  t h e  l a t e r a l  con- 
s t r i c t i o n  has  almost been eliminated, 

Some i n t e r e s t i n g  impl ica t ions  a r i s e  fPom t h e  f i lm shapes i n  
Fig* 23, The f i lm shape at  t h e  edge of  t h e  blended r o l l e r  i s  very 
s imi la r  t o  t h a t  found i n  point  contacts .  Even t h e  cav i t a t ion  p a t t e r n  
along t h e  edge i s  similar t o  t h e  point  contact  case. I n  t h i s  respect ,  
point  contacts  can be considered as "natural ly" blended or  crowned. 
While point  contacts  may not  have t h e  optimum crown t o  e l iminate  t h e  
l a t e r a l  const r ic t ions ,  it i s  poss ib le  t h a t  an e l l i p t i c a l  contact, found, 
f o r  exmple ,  between a b;zll and grooved raceway may provide t h e  re- 
quired  geometry f o r  i t s  el imination.  These r e s u l t s  f u r t h e r  imply 
t h a t  t h e  l a t e r a l  cons t r i c t ion  fo r  an unblended r o l l e r ,  as found i n  
Fig. 23(a), may be f a r  more severe than those  associa ted  with po in t  
contacts  . 

CONCLUSIONS 

Starvat ion under EHD conditions i s  associa ted  with t h e  loca t ion  
of t h e  lubr ican t  boundary i n  t h e  i n l e t  region. Under s t a rva t ion  
conditions t h e  l o c a l  f i lm thickness i n  t h e  Hertzian region i s  a func- 
t i o n  of t h e  lubr ican t  boundary immediately upstream. The r e s u l t s  
show t h a t  t h e  onset  of s t a rva t ion  i s  r e f l e c t e d  i n  t h e  expected loca- 
t i o n  of pressure commencement, and t h a t  film thickness diminishes t o  
zero as t h e  lubr ican t  boundary approaches t h e  Hertzian region. This 
implies t h a t  f i lm th ickness  i s  es tab l i shed  by t h e  MD pressure  gen- 
erated i n  t h e  i n l e t  region,  The primary e f f e c t  of s t a rva t ion  i s  t h a t  
it i n h i b i t s  t h e  generat ion of t h i s  pressure.  The e f f e c t  o f  t h i s  was 
measwed i n  terms of  f i lm th ickness  and w a s  found t o  be i n  harmony 
with EBD theory based on Grubin assumptions. 

Under constant  operat ing conditions t h e  hydrodynamic pressure  
generat ion i s  a f'unction of  t h e  i n l e t  gap geometry. The r a t i o  h/ho 
descr ibes  t h e  r e l a t i v e  th ickness  of t h i s  gap and r e f l e c t s  t h e  
re lah ive  magnitude of t h e  hydrodynmic pressure  generat ion along t h e  
i n l e t  region. The experimental r e s u l t s  c o r r e l a t e  with t h e  i n l e t  
geometry r a t i o  h d h o  where hb i s  t h e  gap th ickness  at  t h e  lubr ican t  
boundmy. The onset  of s t a r v a t i o n  i s  not very we l l  defined, but can 
be approximated by hb/ho = 9. This can be used t o  der ive  t h e  onset  



of s t a r v a t i o n  i n  terms of t h e  i n l e t  d is tance  $ which i s  t h e  d i s -  
tance  between t h e  lubr ican t  boundary and t h e  edge of  t h e  Hertzian 
region. E f  t h e  loca t ion  of t h e  i n l e t  boundary i s  known, f i lm th ick-  
ness can be predic ted  t h e o r e t i c a l l y  or  by a semi-empirical formula 
based on t h e  ~ e r i m e n t a l  r e s u l t s .  

Film thickness i s  only one aspect  of  s t a rva t ion .  The suppression 
of hydrodynamic pressure  by s t a rva t ion  causes t h e  o v e r a l l  pressure  
and stress d i s t r i b u t i o n  t o  conform t o  t h e  Hertzian condition. It 
a l s o  reduces r o l l i n g  f r i c t i o n  and increases  t r a c t i o n ,  Because these  
aspects  have p r a c t i c a l  implicat ions,  s t a rva t ion  should not be con- 
s ide red  as j u s t  a s i t u a t i o n  t o  avoid, but  should be d e a l t  with as 
an add i t iona l  EKD p a r m e t e r  which can be use fu l ly  employed, 
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TABWE I* - m O m T I E S  OF TEST LUBRICJS;I3CS 

TABLE 11. - PROPEBTIES OF LITHIUM 

HYDROXYSTEXUTE SOAP GREASES 

ase oil viscosity, cs 
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Figure 1. - Contact geometry. 

Figure 2. -Theoretical resul ts f o r  starvation. 
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F igure  3. - Schematic diagram of apparatus. 



Figure 4. -Exper imental  ball t h r u s t  bearing w i th  stat ionary cage. 

! )  theory  = y(!!q($~ 
SYMBOL SOURCE THEORETICAL CONSTANTS 

K a  b 

ARCHARD & COWKING L 4 0.74 -a 074 
CAMERON & GOHAR 3 1 -. 33 

A CHENG 1.69 .725 -. 058 
EQUATION (11) 173 .714 -.048 

Figure  5. - Comparison of point  contact theor ies w i t h  
e m e r i r n e n t  
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Figure 6. -Measured film shape (a) along the centerline i n  the 
direction of motion, and (b) i n  the transverse direction at the 
location of minimum fi lm thickness; u = 2.74 in. Isec; 
po = 80x106 (Ibf)(sec)lin. 2, a = 2.5x10-~ psi-1, w = 12 Ibf, 
pmaX = 87 000 psi. 
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Figure 7. - Plot of the  central f i lm thickness versus 
min imum f i lm  thickness fo r  a range of experimental 
conditions. 



(b) 
F igure  9. - Contact geometry showing requi red meas- 

u rements  f o r  starvation; (a) p lan view, (b) cross- 
sectional view along centerl ine. 

Fiyure 8. - Effect of inlet lubricant boundary on 

f i lm shape. 



THEORY 

Figure 10. - Photomicrographs showing progressive starvation. 
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F igure  11. - Effect of i n l e t  boundary o n  f i l m  thickness fo r  d i f fe r -  
en t  in i t ia l  f i l m  thicknesses. 
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Figure 12. - Effect of in le t  boundary on f i lm thickness for dif- 

ferent loads. 
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Figure 13. - Comparison of theory and experiment fo r  all the 
starvation results using the inlet  geometry ratio hb/h,. 
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Figure 14. - Experimental results plotted as f i lm thickness 
against inlet distance. 

F igure  15. - T h e  degree of starvation as a 
funct ion of t he  starvation parameter SISf. 



Figure 16. - Coalescence and separation of t he  cavitation bubbles: 

(a J about one second after bearing stopped, (bJ about two seconds 

after bearing stopped showing t he  "EHD lubr icat ion" of a n  a i r  

bubble. 

Figure 17. - Cavitation pattern i n  rol l ing point 
contact: (a) for large f i lm thickness tho = 67 

microinches) showing striations of air  and oil, 
(b) for h igh surface tension f lu id (glycerol), 
and (c) for a concentrated dispersion of 
colloidal graphite (Oildagl. 



BALL L ~ l ~ ~  OF L~~~~~~~~~~ 
LUBRICANT FINGERS 

Figure 18. - Schematic representation of t he  cavitated region: (a) at  
a constant radius from the  ball center, and (b) showing t he  distr i -  
bu t i on  of lubr icant  after t he  ball has passed. 

Figure 19. - ( a )  Photomicrograph of an oil entrapment; ( b )  schematic 
representation of f i lm thickness. 



'eases 

Figure 21. - Grease fi lms under static conditions: (a)  ob- 
tained after rol l ing i n  fresh grease, ( b )  obtained after rol l -  
i ng  several times over the same track. 



Figure 22. - Observa 
spin at cage speed o 

Figure 23. - Edge effects i n  l i ne  contact: ( a )  u n -  
blended rol ler end, ( b )  blended rol ler end. 




