FIFTH QUARTERLY REPORT
1 JANUARY 1970 to 31 MARCH 1970

STUDIES IN FUNDAMENTAL CHEMISTRY
OF FUEL CELL REACTIONS
NGR 39-010-002

UNIVERSITY OF PENNSYLVANIA
ELECTROCHEMISTRY LABORATORY
PHILADELPHIA, PENNSYLVANIA 19104
FIFTH QUARTERLY REPORT
1 JANUARY 1970 to 31 MARCH 1970

STUDIES IN FUNDAMENTAL CHEMISTRY
OF FUEL CELL REACTIONS
NCR 39-010-002

Submitted to:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D. C. 20546

Submitted by:
Professor John O'M. Bockris
The Electrochemistry Laboratory
University of Pennsylvania
Philadelphia 19104
NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

(a) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

(b) Assumes any liabilities with respect to the use of or for any damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor, prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Personnel</td>
<td>iv</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Reversibility of organic reactions</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Oxygen-dissolution reaction—a theoretical study</td>
<td>6</td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Zinc electrode study for silver-zinc batteries</td>
<td>9</td>
</tr>
</tbody>
</table>
PROJECT PERSONNEL

Section I

Dr. D. Cipris, Postdoctoral Research Fellow
Dr. J.O'M. Bockris, Supervisor

Section II

Mr. R. Sen, Graduate Student
Dr. J.O'M. Bockris, Supervisor

Section III

Mr. J. Ricodeau, Graduate Student
Dr. J.O'M. Bockris, Supervisor
SECTION I

Title of Project: Reversibility of Organic Reactions

Long-term Technological Aims: Investigation of capability of organic compounds for use in high energy secondary batteries.

Specific Aims for This Period: Testing of the efficiency of the rhodizonic acid (RA) graphite paste electrode with newly designed cell.

Results of Work in This Period: The cell employed in study of RA graphite paste electrode is schematically presented in Fig. 1. Both the paste electrode and the counter electrode compartments were provided with inlets and outlets for the passing of N₂. The two compartments were separated by cationic exchange membrane to prevent diffusion of the dissolved portion of RA to the working electrode compartment. The RA graphite paste electrode was made by mixing 5 g of solid RA with a wet mixture of graphite and activated charcoal in a ratio of 1:1. The activated charcoal was employed in order to hold adsorbed RA at its surface and prevent the loss of RA by dissolution in the surrounding
electrolyte. The potential of the paste electrode was measured against the saturated calomel electrode through a Luggin capillary adjacent to the glass frit separating the paste electrode from the solution. All potential values were corrected for IR drop through both solution and glass frit.

The discharge characteristics of the RA graphite paste electrode with Pt as a counter electrode in 1.2 N NaCL are presented in Fig. 2. The main loss in the current efficiency was observed during the first discharge. The discharge was followed by changing to the initial potential, and discharging again. Up to ten discharge and charge cycles of the RA paste electrode were performed during which the current efficiency remained practically unchanged and equal to 100% of the first discharge cycle.

The current efficiency for the reduction of RA to hexahydroxy benzene (HHB) according to the reaction

$$RA + 4H^+ + 4e \rightleftharpoons HHB$$

has been followed in separate experiments by potentiometric titration of the reduction
product with K_3FeCy_6 (the reduction being performed upon a Pt screen cathode of 100 cm2 area). The analysis of the results shows that the loss in the current efficiency is partially due to the formation of the stable intermediate tetrahydroxyquinone. A detailed analysis of these results will be presented in the next report period.

Specific Aims for The further study of the current efficiency of the RA graphite paste electrode.

Next Report Period: Detailed mechanistic study of the electrode reaction.

References:

Captions to Figures:

1. Schematic representation of cell used in determining charge-discharge characteristics of the RA-HHB couple.

2. Discharge characteristics (expressed as total coulombs passed vs. potential) as a function of total current. Electrode area 3.1 cm2.
Fig. 1

Platinum coil counter electrode

Reference electrode compartment

Glass frit

Teflon

Cationic exchange membrane

Carbon paste electrode - 2 cm. dia.
SECTION II

Title of Project: Oxygen Dissolution Reaction: A Theoretical Study

Long-term Aims: To calculate theoretically the rate of the oxygen dissolution reaction and then study the properties of the metal electrode on which the rate of the above reaction depends most. Such a study, if successful, will be of great help in developing a catalyst for the oxygen dissolution reaction.

Specific Aims for This Period: The aim for this period was to look into the initial state of the reaction in detail.

Results of Work in This Period: As mentioned in the previous report, the rate determining step of the oxygen dissolution reaction is:

\[\text{O}_2 + \text{H}^+ + e^-(M) \rightarrow \text{O}_{\text{ads}} + \text{OH}_{\text{ads}} \]

Thus the initial state for this reaction consists of an O₂ molecule and a proton in solution, and the electron in the metal. It is pretty obvious from the above rate determining step that in this step a three-body process is occurring. The O₂ and H⁺ have to arrive at a particular configuration, and the moment such a configuration is
established the electron transfer from the metal to the species in solution occurs. Now, we considered the various possible ways in which the H_3O^+ can approach the O molecule near the electrode surface. There are a large number of ways in which such a process can occur. However, two distinct possibilities were ultimately considered to be important, namely (a) a co-linear approach, i.e., \(\text{O} = \text{O} \quad \text{H}^+ - \text{O} \quad \text{H} \quad \text{H} \), i.e., the $\text{O} - \text{O}$ bond in the molecule and the $\text{H}^+ - \text{O}$ bond in H_3O^+ lie in the same line, and (b) the perpendicular approach, i.e., \(\text{O} \quad \| \quad \text{H}^+ - \text{O} \quad \text{H} \quad \text{H} \), where the $\text{H}^+ - \text{O}$ bond in H_3O^+ is perpendicular. In the latter case the species has a $\text{C}_{2\text{O}}$ symmetry. Now the problem was to decide which of these approaches plays the predominant role in the rate determining step of the oxygen dissolution reaction. Since there is no experimental evidence for the occurrence of any of those species in any form or any state, we had to decide on some theoretical criteria. The criterion that was decided upon was the following: It is usually agreed that whenever two configurations can be formed for the same species, the preferred configuration is the
one having the lower energy. So it was decided that we will do a SCF-LCAC-MO calculation for both the configurations as the H^+ approaches the oxygen molecule and whichever configuration gives the lower energy will be considered to be the preferred configuration. However, what we have said up till now is truly valid for the gas phase. But, unfortunately, we have the solvent in our case to take care of. It is easily imaginable that the solvent will play a very important role in deciding the configuration of the above-mentioned species. It is extremely difficult to take the effect of the solvent into account quantum-mechanically because the problem then becomes too immense to be solved. So the effect of the solvent has to be taken into account in some classical manner.

Specific Aims for Next Period:

In the next period we would like to decide on the exact manner in which the solvent effect can be taken into account. Then we would like to decide in detail our model for the final state.
SECTION III

Title of Project: Zinc Electrode Study for Silver-Zinc Batteries

Long-Term Aims: Prevention of dendrites' growth and of decrease of active surface on the Zn electrode.

Specific Aims for This Period: While crystallization process is also involved, we first deal with organic adsorption in order to understand dendrites' growth inhibition.

Previous studies\(^{(1)}\) invite to investigate adsorption of large organic cations (tetraalkylamonium..., hemulphogene, Triton...) and to select those which would adsorb on the cathodic side, Zn deposition, i.e., charging potential region, and desorb on the anodic side, Z dissolution, i.e., discharge potential region of a battery. Dendrite growth is expected to be inhibited if we can decrease the exchange current density by adsorption of organic species in the charge potential region, while the battery efficiency need the exchange cur-
rent density not to be decreased in the discharge region of potential.

Most of the usual methods of adsorption studies are forbidden for our purpose: electrocapillary, varied sweep or pulse methods, hydrogen coverage measurement . . . because we want to operate on a solid metal which is far from "noble," while all these methods need to avoid large currents as those expected in the potential range to be investigated. After an investigation using diffusion theory (3) which failed, we started to use thin film ellipsometry measurements.

Ellipsometry method relate the changes in intensity and polarization, of an elliptically polarized light beam, to the characteristics of the surface reflecting the light beam. (4)

One needs a smooth and flat electrode as a mirror. We were able to obtain such a zinc surface by mechanical polishing, but the brightness was never very good, perhaps due to oxide layer, and optical parameters differences between grains of different crystal faces.

Inside the cell we must maintain this mirror-like surface, i.e., have neither dissolution nor H₂ bubble formation. In

Results of the Work:
1 N KOH solution the rest potential of Zn was -1.5 V (SCE) and it was possible to vary the potential between this value and -1.7 V (SCE): in this cathodic region the corrosion is decreased while the hydrogen evolution reaction is not too strong and bubble formation is avoided. Moreover, the surface must remain oxide-free and this appeared to be very difficult: the ellipsometry measured values of polarization angle and intensity were found generally to vary with time and to correspond to those of an oxide film on the surface.

The compound to be observed must have a $\frac{R}{V}$ larger than that of water. In the absence of accurate values in the literature for our tetraalkylammonium salts we measured the refraction index of tetraalkylammonium hydroxide: increase of the refractive index with concentration proves (OH$^-$ is optically the same as water) that these larger cations are optically active for ellipsometric measurements. We had to avoid the presence of chloride or bromide salts because these anions are optically very active, and change in their adsorption on the Zn surface would mask change in adsorption of our cation.
Because the electrochemically unstable An surface we couldn't use a wide potential region as in other adsorption studies by ellipsometry.\(^{(4)}\) We thus put our compounds in the solution and measured the change in ellipsometric values (change in the refractive index of the solution due to the addition of compounds may disturb the optical system) before and after. No change was observed, when we were expecting absorption.\(^{(5)}\)

We tried also on platinum whose stability allows better experimental conditions: no change was observed, but we didn't find adsorption data of tetraalkylammonium salts on platinum in the literature; perhaps as for iron\(^{(6)}\) there is on platinum no adsorption of these species.

Specific Aims for Next Report Period:

Since ellipsometry gives no results, the last method to be used, according to the previous report, is the radiotracer method.\(^{(2)}\) The accuracy of this method decreases when the concentration of the adsorbing species increases in the solution. The high concentrations \((10^{-4} - 10^{-2} \text{ M})\) to be used may be a problem. We expect first to study some of the tetraalkylammonium salts which are available from sulfur as \(\text{C}_{14}\) labelled compounds. A Zn tape will be in a cell for
adsorption to occur, then will be taken out of the cell through a slit and the activity of the thin film of solution which remains on the metal surface will be counted by a proportional gas flow counter.

References

1. Diggle, Damjanovic, and Bockris, paper presented at the Electrochemical Society fall meeting, Detroit, October 1969, paper 18.

OFFICIAL DISTRIBUTION LIST FOR FUEL CELL REPORTS

August 1968

NASA and JPL

National Aeronautics & Space Admin.
Attn: US/Winnie M. Morgan
Washington, D. C. 20546
2 copies plus 1 reproducible

National Aeronautics & Space Admin.
Attn: RNW/E.M. Cohn
Washington, D. C. 20546

National Aeronautics & Space Admin.
Attn: SAC/A.M. Greg Andrus
Washington, D. C. 20546

National Aeronautics & Space Admin.
Attn: Office of Tech. Utilization
Washington, D. C. 20546

National Aeronautics & Space Admin.
Attn: John L. Patterson, MS-472
Langley Research Center
Hampton, Virginia 23365

National Aeronautics & Space Admin.
Attn: Dr. Louis Rosenblum
Stop 302-1
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

National Aeronautics & Space Admin.
Attn: Harvey Schwartz
Stop 500-201
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

National Aeronautics & Space Admin.
Attn: Dr. J. Stewart Fordyce
Stop 6-1
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

National Aeronautics & Space Admin.
Attn: Richard Boehme
R-ASTR-EP
Marshall Space Flight Center
Huntsville, Alabama 36812

National Aeronautics & Space Admin.
Attn: Jon Rubenzer
Ames Research Center
Moffett Field, California 94035

National Aeronautics & Space Admin.
Attn: Mr. W.E. Rice
Manned Spacecraft Center
Houston, Texas 77001

National Aeronautics & Space Admin.
Attn: CPE/Dr. Sol Gilman
Electronics Research Center
575 Technology Square
Cambridge, Mass. 02139

National Aeronautics & Space Admin.
Attn: Jon Rubenzer
Ames Research Center
Moffett Field, California 94035

Department of the Army

U.S. Army Engineer R&D Labs.
Attn: Energy Conversion
Research Lab.
Fort Belvoir, Virginia 22060

U.S. Army Electronics R&D Labs.
Attn: Mr. Nathan Kaplan
Room 300, Building 92
Conn. Ave. & Van Ness St., N.W.
Washington, D. C. 20438
U.S. Army Natick Laboratories
Attn: Leo A. Spano

Department of the Army

Attn: Leo A. Spano

Clothing & Organic Materials Div.
Natick, Mass. 01762

Department of the Navy

Office of Naval Research
Attn: Director, Power Program
Code 473
Washington, D.C. 20360

Office of Naval Research
Attn: Harry Fox
Code 472
Washington, D.C. 20360

U.S. Naval Research Laboratory
Attn: Dr. J.C. White
Code 6160
Washington, D.C. 20390

U.S. Naval Research Laboratory
Attn: Dr. J.C. White
Code 6160
Washington, D.C. 20390

U.S. Naval Observatory
Attn: Robert E. Trumble
STIC, Bldg. 52
Washington, D.C. 20390

Naval Ship System Command
Attn: Mr. Bernard B. Rosenbaum
Code 03422
Washington, D.C. 20360

Naval Ship Engineering Center
Attn: Mr. C.F. Viglotti
Code 6157D
Washington, D.C. 20360

Naval Weapons Center
Attn: Mr. William C. Spindler
Corona Laboratories
Corona, California 91720

Naval Ordnance Laboratory
Attn: Mr. Philip B. Cole
Code 232
Silver Spring, Maryland 20910

Naval Ship R&D Center
Attn: J.H. Harrison
Code M760
Annapolis, Maryland 21402

Department of the Air Force

Aero Propulsion Laboratory
Attn: James E. Cooper
APIP-2
Wright-Patterson AFB, Ohio 25433

AF Cambridge Research Lab.
Attn: Francis X. Doherty
Edward Raskind (Wing f)
L.G. Hanscom Field
Bedford, Mass. 01731

Rome Air Development Center
Attn: Mr. Frank J. Mollura
EMEAM
Griffiss AFB, New York 13442

Space & Missile Systems Organization
SMTRE
Attn: Lt. J.B. Beaver
Los Angeles Air Force Station
Los Angeles, California 90045

Private Organizations

Aeronutronic Div., Philco-Ford Co.
Technical Information Services
Ford Road
Newport, California 92663

Aerospace Corp.
Attn: Library Acquisitions Group
P.O. Box 95085
Los Angeles, California 90045

Airco Speer Research
Attn: Dr. E.A. Heintz
Packard Road at 47th St.
Niagra Falls, New York 14304

Allis-Chalmers Mfg. Co.
Attn: Don Smith
Dept. 3341
5400 So. 60th Street
Greendale, Wisconsin 53201

American Machine & Foundry Co.
Attn: R.A. Knight, Research Div.
689 Hope Street
Stamford, Connecticut 06907
Globe-Union, Inc.
Attn: John R. Thomas
P.O. Box 591
Milwaukee, Wisconsin 53201

Honeywell, Inc.
Attn: Library
Livingston Electronic Lab.
Montgomeryville, Pa. 18936

Dr. P.L. Howard
Centreville, Maryland 21617

Institute for Defense Analyses
Attn: Mr. R. Hamilton
400 Army Navy Drive
Arlington, Virginia 22202

Institute for Defense Analyses
Attn: Dr. R. Briceland
400 Army Navy Drive
Arlington, Virginia 22202

Ionics, Inc.
Attn: W.A. McRae
65 Grove Street
Watertown, Mass. 02172

Johns Hopkins University
Attn: R.C. Evans
Applied Physics Laboratory
8621 Georgia Ave.

LTV Research Center
Attn: W.C. Schwemer
P.O. Box 6144
Dallas, Texas 75222

Leesona Moos Laboratories
Attn: Dr. A. Moos
Lake Success Park
Community Drive
Great Neck, New York 11021

Arthur D. Little, Inc.
Attn: Dr. Ellery W. Stone
Acorn Park
Cambridge, Mass. 12040

Martin Marietta Corp.
Attn: William B. Collins
MS 1620
Electronics Research Dept.
P.O. Box 179
Denver, Colo. 80201

McDonnel Douglass Aircraft Co.
Astropower Laboratory
2121 Campus Drive
Newport Beach, Calif. 92663

Monsanto Co.
Attn: Dr. J.O. Smith
New Enterprise Division
Everett, Mass. 02149

Monsanto Research Corporation
Attn: Librarian
Dayton Laboratory
Dayton, Ohio 45407

North American Aviation Co.
Attn: Dr. James Nash
S&ID Division
Downey, Calif. 90241

Oklahoma State University
Attn: Prof. Wm. L. Hughes
School of Electrical Engineering
Stillwater, Oklahoma 74074

Power Information Center
University City Science Institute
3401 Market St., Rm. 2107
Philadelphia, Pa. 19104

Rocketdyne Division
Attn: TIC, D/086-306
6633 Canoga Ave.
Canogno Park, Calif. 91304

Texas Instruments, Inc.
Attn: Dr. Isaac Trachtenberg
MS-145
P.O. Box 5936
Dallas, Texas 75222
OFFICIAL DISTRIBUTION LIST FOR BATTERY REPORTS

August 1968

National Aeronautics & Space Admin.
Attn: US/Winnie M. Morgan
Washington, D. C. 20546
 2 copies + 1 reproducible

National Aeronautics & Space Admin.
Attn: RNW/E.M. Cohn
Washington, D. C. 20546

National Aeronautics & Space Admin.
Attn: SAC/A.M. Gred Andrus
Washington, D. C. 20546

National Aeronautics & Space Admin.
Attn: Office of Tech. Utilization
Washington, D. C. 20546

National Aeronautics & Space Admin.
Attn: Gerald Halpert
Code 735
Goddard Space Flight Center
Greenbelt, Maryland 20771

National Aeronautics & Space Admin.
Attn: Thomas Hennigen
Code 716.2
Goddard Space Flight Center
Greenbelt, Maryland 20771

National Aeronautics & Space Admin.
Attn: Joseph Sherfey
Code 735
Goddard Space Flight Center
Greenbelt, Maryland 20771

National Aeronautics & Space Admin.
Attn: Dr. Louis Rosenblum
Stop 302-1
Lewis Research Center
41000 Brookpark Road
Cleveland, Ohio 44135

National Aeronautics & Space Admin.
Attn: Harvey Schwartz
Stop 500-201
41000 Brookpark Road
Cleveland, Ohio 44135

National Aeronautics & Space Admin.
Attn: John L. Patterson
MS-472
Langley Research Center
Hampton, Virginia 23365

National Aeronautics & Space Admin.
Attn: M.B. Seyffert
MS-112
Langley Research Center
Hampton, Virginia 23365

National Aeronautics & Space Admin.
Attn: Dr. J. Stewart Fordyce
Stop 6-1
Lewis Research Center
41000 Brookpark Road
Cleveland, Ohio 44135

National Aeronautics & Space Admin.
Attn: Richard Boehme
R-ASTR-EP
Geo. C. Marshall Space Flight Center
Huntsville, Alabama 35812

National Aeronautics & Space Admin.
Attn: W.E. Rice
EP-5
Manned Spacecraft Center
Houston, Texas 77058

National Aeronautics & Space Admin.
Attn: Jon Rubenzer
Code PBS, MS 244-2
Ames Research Center
Moffett Field, Calif. 94035

National Aeronautics & Space Admin.
Attn: Dr. Sol Gilman
Code CPE
Electronics Research Center
575 Technology Square
Cambridge, Mass. 02139
Other Government Agencies

National Bureau of Standards
Attn: Dr. W.J. Hamer
Washington, D. C. 20234

Private Organizations

A.M.F.
Attn: R.A. Knight
Research Division
689 Hope Street
Stamford, Conn. 06907

Aerospace Corporation
Attn: Library Acquisitions Group
P.O. Box 95085
Los Angeles, Calif. 90045

American University
Attn: Dr. R.T. Foley
Department of Chemistry
Mass. & Nebraska Ave., N.W.
Washington, D. C. 20016

Atomics International Division
Attn: Dr. H.L. Recht
North American Aviation, Inc.
8900 DeSoto Avenue
Canoga Park, Calif. 91304

Battelle Memorial Institute
Attn: Dr. C.L. Faust
505 King Ave.
Columbus, Ohio 43201

Bellcomm
Attn: B.W. Moss
1100 17th St., N.W.
Washington, D.C. 20036

Bell Laboratories
Attn: U.B. Thomas
D.O. Feder
Murray Hill, N.J. 07974

Dr. Carl Berger
13401 Kootenay Drive
Santa Ana, Calif. 92705

Burgess Battery Company
Attn: Dr. Howard J. Strauss
Foot of Exchange Street
Freeport, Illinois 61032

C&D Batteries
Attn: Dr. Eugene Willinghans
Division of Electric Autolite Co.
Conshohocken, Pa. 19428

Calvin College
Science Building
Attn: Dr. T.P. Dirkse
3175 Burton St., S.E.
Grand Rapids, Mich. 49506

Catalyst Research Corporation
Attn: H. Goldsmith
6101 Falls Road
Baltimore, Maryland 21209

Communications Satellite Corp.
Attn: Mr. Robert Strauss
1835 King Street, N.W.
Washington, D. C. 20036

G&W Corson, Inc.
Attn: Dr. L.J. Minnick
Plymouth Meeting, Pa. 19462

Cubic Corporation
Attn: Librarian
9233 Balboa Ave.
San Diego, Calif. 92123

Delco Remy Division
Attn: J.A. Keralla
General Motors Corporation
2401 Columbus Ave.
Anderson, Indiana 46011

E.I. duPont de Nemours & Co.
Attn: J.M. Williams
Engineering Materials Lab.
Experimental Station
Building 304
Wilmington, Delaware 19898
RAI Corporation
36-40 37th Street
Long Island City, N.Y. 11101

Sonotone Corp.
Attn: A. Mundel
Saw Mill River Road
Elmsford, New York 10523

Southwest Research Institute
Attn: Library
8500 Culebra Road
San Antonio, Texas 78206

TRW Systems, Inc.
Attn: Dr. A. Krausz
Bldg. 60, Room 1047
One Space Park
Redondo Beach, Calif. 90278

TRW Systems, Inc.
Attn: Dr. Herbert P. Silverman
(R-1/2094)
One Space Park
Redondo Beach, Calif. 90278

TRW, Inc.
Attn: Librarian
23555 Euclid Ave.
Cleveland, Ohio 44117

Tyco Laboratories, Inc
Attn: Dr. A.C. Makrides
Bear Hill, Hickory Drive
Waltham, Mass. 02154

Unified Science Associates, Inc.
Attn: Dr. S. Naiditch
2925 E. Foothill Blvd.
Pasadena, Calif. 91107

Union Carbide Corp.
Development Laboratory Library
P.O. Box 5056
Cleveland, Ohio 44101

Union Carbide Corporation
Attn: Dr. Robert Powers
Consumer Products Division
P.O. Box 6116
Cleveland, Ohio 44101

University of Pennsylvania
Attn: Prof. John O'M. Bockris
Electrochemistry Laboratory
Philadelphia, Pa. 19104

Westinghouse Electric Corp.
Attn: Dr. C.C. Hein
Contract Admin.
Research & Development Center
Churchill Borough
Pittsburgh, Pa. 15235

Whittaker Corporation
Attn: J.W. Reiter
3850 Olive Street
Denver, Colorado 80237

Whittaker Corporation
Attn: Dr. M. Shaw
Narmco R&D Division
12032 Vose Street
North Hollywood, Calif. 91605
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. I. Dalins</td>
<td>Attn: Dr. R.B. King</td>
</tr>
<tr>
<td>George C. Marshall Space Flight</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>Center</td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td>Huntsville, Alabama 35812</td>
<td>Cleveland, Ohio 44135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. E.W. Otto</td>
<td>Attn: Dr. H.H. Youngblood</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>Hampton, Virginia</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R.A. Lindberg</td>
<td>Attn: Dr. A.A. Uchiyama</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. P.E. Moorehead</td>
<td>Attn: Dr. B.J. Bragg</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>Manned Spacecraft Center</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R.L. Davies</td>
<td>Attn: Dr. E.M. Cohn</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. A.E. Potter</td>
<td>Attn: Dr. W.J. Nagle</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td>Cleveland, Ohio 44135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. A.H. Smith</td>
<td>Attn: Dr. W.J. Britz</td>
</tr>
<tr>
<td>NADA Headquarters</td>
<td>George C. Marshall Space Flight</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>Center</td>
</tr>
<tr>
<td></td>
<td>Huntsville, Alabama</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. L.W. Slifer</td>
<td>Attn: Dr. W.A. Robertson</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>Greenbelt, Maryland</td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Attn: Dr. R. Lutwack</td>
<td>Attn: Dr. S. Gilman</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>Electronics Research Center</td>
</tr>
<tr>
<td>4800 Oak Grove Drive</td>
<td>575 Technology Square</td>
</tr>
<tr>
<td>Pasadena, Calif. 91103</td>
<td>Cambridge, Mass. 02139</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. W.H. Goodhue</td>
<td>Attn: Dr. R.J. Boehme</td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td>Huntsville, Ala. 35812</td>
<td>Huntsville, Ala. 35812</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. J.M. Sherfy</td>
<td>Attn: Dr. M. Weinstein</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>Greenbelt, Maryland</td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. H.J. Schwartz</td>
<td>Attn: Dr. K. Behrndt</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>Electronics Research Center</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>575 Technology Square</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td>Cambridge, Mass. 02139</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. D.G. Soltis</td>
<td>Attn: Dr. H.H. Brown</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>Washington, D.C. 20546</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. M.R. Unger</td>
<td>Attn: Dr. H.F. Hardrath</td>
</tr>
<tr>
<td>Lewis Research Center</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>21000 Brookpark Road</td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. F. E. Ford</td>
<td>Attn: Dr. S. Ellis</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>Greenbelt, Maryland</td>
<td>Moffett Field, Calif. 94035</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. K.O. Sizemore</td>
<td>Attn: Dr. E.L. Smith</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>Greenbelt, Maryland</td>
<td>Moffett Field, Calif. 94035</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. T.J. Hennigan</td>
<td>Attn: Dr. R.L. Kenimer</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>Greenbelt, Maryland</td>
<td>Hampton, Virginia 23365</td>
</tr>
</tbody>
</table>