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ABSTRACT
 

This research develops computational methods for the digital
 

simulation of continuous systems. These methods are applicable.to
 

a wider class of systems and are more efficient than the methods used
 

in currently available simulation languages. Two fundamentally differ­

ent approaches to simulation are distinguished and described, and the
 

characteristics of the simulation which result from using these methods
 

are investigated.
 

Two serious limitations of available simulation langu4ges are
 

their inability to solve sets of implicit equations-And to deal effi­

ciently with stiff systems. Methods suitable for the efficient
 

handling of stiff systems are developed within the framework of the
 

two approaches to simulation. It is shown that these methods yield
 

implicit equations for the overall simulation. In order to structure
 

simulation languages to deal with implicit equations, sorting and
 

iteration procedures for the efficient solution of these equationsare
 

presented.
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CHAPTER I
 

INTRODUCTION
 

1.1 Motivation
 

As systems increase in size and complexity, simulation becomes
 

an essential tool in their analysis and design. Simulation is used
 

to corroborate theoretical derivations, to help in evaluation of alter­

nate designs, to generate failure data without costly physical testing,
 

to train human operators, to optimize design parameters, and for many
 

other purposes.
 

Simulation may be applied to either continuous-time or discrete­

time systems. The variables of continuous-time systems (hereafter
 

referred to as continuous systems) are capable of changing at any
 

instant of time, whereas the variables of discrete-time systems @is­

crete systems) change only at discrete instants, and their values at
 

all other points are of no interest. It is the simulation of contin­

uous systems on the digital computer that will be considered in this
 

thesis. A point worth noting, however, is that the modeling of con­

tinuous systems for simulation on the digital computer necessarily
 

involves the theory of discrete systems since the digital computer
 

functions as a discrete-time machine.
 

Prior to 1960, the simulation of continuous systems was carried
 

out almost exclusively on the analog computer. Over the past decade,
 

however, interest in the use of the digital computer has grown,
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apparently beginning when the digital computer was first used to give
 

check solutions for analog simulations. There are many reasons for
 

the increased use of the digital computer for simulation, including
 

greater accuracy, accessibility, no hardware setup, availability of
 

mathematical functions and, most importantly, the existence of problem
 

oriented simulation languages which allow the analyst to interface
 

easily with the computer. Also, the growing availability of terminals
 

and display devices is increasing the man-machine interaction, which
 

was previously possible only with the analog computer.
 

Simulation languages for the digital computer have grown to a
 

high level of sophistication, and can simulate a large class of sys­

tems. However, almost all languages are integrator oriented, that is,
 

they separate integrators from the system and consider what remains as
 

a functional block, which may be used as desired by a central integra­

tion routine. While for many systems this is effective, if any sub­

system does not lend itself to evaluation as desired by the central
 

integration routine, then difficulties may arise.
 

The goal of this research is to develop computational techniques
 

both for the modeling of individual subsystems and for interconnection
 

and coordination of the overall simulation. When incorporated into a
 

general simulation language these techniques will extend the class of
 

systems to which the language may be applied and increase its effi­

ciency.
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1.2 Historical Background
 

The first digital analog simulator was reported by Selfridge in
 

1955 [1.1]. This was a digital computer program developed at the
 

U.S. Naval Ordinance Testing Station, Inyokern, Calif., to accept a
 

larger problem and provide more accuracy than was possible on the
 

available REAC (Reeves Electronic Analog Computer). Since that time,
 

the field of simulation languages for digital computers has grown at
 

a rapid rate. A history of simulation languages is given in several
 

survey papers [1.2-1.4], thus only that history which is necessary to
 

motivate this research will be presented here.
 

In their survey article, Clancy and Pineberg [1.3] state that the
 

"essence" (in the metaphysical sense) of simulation languages may be
 

parallelism, the apparent parallel operation of a serial digital com­

puter. In many simulation languages, this apparent parallel operation
 

is achieved by the analyst, who orders the input statements to the
 

computer so that the proper computational sequence is followed at
 

execution time. If one block follows another in the system under
 

simulation, then the analyst must describe them to the computer in
 

that order. Stein and Rose [1.5] in 1958 provided the theoretical and
 

practical background needed to write a sorting routine, i.e., an­

algorithm to process the input statements in whatever order they
 

appear and to deduce the proper computational sequence from them.
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Although overlooked by many later authors, a sorting algorithm is one
 

of the keys to a useful language. A sorting algorithm is contained
 

in most of the successful simulation languages, including MIDAS
 

(Modified Integration Digital Analog Simulator) [1.6], MIMIC [1.7],
 

PACTOLUS [1.81, DSL/90 [1.9] and most recently 360/CSMP [1.10].
 

Each of these languages, however, treats integrator outputs
 

as known entities, and thus the sorting algorithm always begins the
 

computational sequence at the integrator outputs. If the system being
 

simulated has memoryless loops, or if any subsystem has been modeled
 

by an implicit difference equation, then these sorting algorithms will
 

fail. The existence of memoryless loops will be discovered by 360/CSMP
 

and a message to that effect printed for the user, and the simulation
 

will not be continued. The user may then break each memoryless loop
 

with a special coding block, and, provided that there are no multiply
 

imbedded loops, the program will attempt to solve the loop by a very
 

simple iteration procedure. It is one purpose of the present investi­

gation to develop a sorting algorithm which will accept memoryless
 

loops and set up the necessary computational procedure to solve them
 

by iteration.
 

Even if the system being simulated contains no memoryless loops,
 

it is possible that they will be introduced through the modeling of the
 

dynamic subsystems. In the literature, it has been shown [l.ll]that
 

numerical stability and efficiency are related to the use of implicit
 



numerical techniques. It will be seen that if subsystems are modeled
 

using implicit techniques, memoryless loops result. Thus, a strong
 

motivation is provided for the development of techniques to deal
 

effectively with the equations of memoryless loops.
 

The numerical techniques referred to above lie in the domain of
 

numerical analysis. Historically, the techniques of numerical analy­

sis were the first to be applied to the discrete modeling of linear
 

systems. After it became common to represent feedback control sys­

tems by transfer functions, the Tustin [1.121 and other substitutional
 

techniques for simulation [1.13-1.14] were developed. Other methods
 

followed [1.15-1.171. Simultaneous with this work in simulation, many
 

parallel concepts were developed in digital filtering 11.18]. Of
 

particular interest in this respect is a paper by Steiglitz [1.191,
 

in which an isomorphism between the discrete and continuous signal
 

spaces leads to an identification of a discrete modeling method for
 

continuous linear systems. In this thesis, the discrete modeling of
 

systems will be approached from the point of view of numerical sta­

bility and efficiency, and the relationship of the techniques devel­

oped here to the work done in numerical analysis, digital filtering
 

and simulation will be discussed.
 

http:1.13-1.14
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1.3 Summary of the Thesis
 

In Chapter II, a general model of a system as an interconnection
 

of individual subsystems is given as well as a more precise definition
 

of what is meant by simulation. Two approaches to the simulation of
 

continuous systems are presented, and the modeling of linear and non­

linear subsystems is discussed. Some limitations of conventional
 

numerical methods when applied to stiff systems are shown.
 

Dahlquist's [1.11] definition of A-stability is given, and the impli­

cations of using A-stable methods are developed.
 

The concept of A-stability is extended in Chapter III to the dis­

crete modeling of linear systems, and a new technique for applying
 

the bilinear transformation to irrational transfer functions is
 

developed.
 

A sorting algorithm for general simulation use is developed in
 

Chapter IV, which sets up the computational sequence for solution of
 

the problem by iteration. A presentation of iteration procedures
 

for solution of nonlinear equations is also given.
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CHAPTER II
 

INTERCONNECTED SYSTEMS
 

2.1 Introduction
 

In this Chapter, two basic methods for the simulation of continuous
 

systems are given. In one approach, the overall system modeling (OSM)
 

method, the continuous input-output-state relations of the individual
 

subsystems are combined to obtain one relation for the overall system.
 

This combined relation is then digitally simulated. The limitations of
 

this approach, when applied to subsystems of many different mathematical
 

types, is shown.
 

A second approach, the individual subsystem modeling (ISM) method,
 

overcomes these limitations. The ISM method chooses a discrete model
 

for each individual subsystem and interconnects these models to pro­

duce the overall simulation. Techniques for modeling individual sub­

systems are classified here. Most importantly, the stability and effi­

ciency of the simulation for the different classes of modeling methods
 

are discussed. Of particular interest is the use of A-stable tech­

niques when dealing with stiff systems, i.e., systems with widely
 

varied time constants. It should be noted that, for the OSM method,
 

once the combined continuous system relation has been obtained,, the
 

completion of the method can be considered an application of the ISM
 



method to a system containing only one subsystem. Hence, the discussion
 

of stability and efficiency for the ISM method is relevant to the OSM
 

method as well.
 

2.2 System Description
 

In order to define exactly what is meant by a digital simulation,
 

a mathematical model of a system as an interconnection of subsystems
 

must be given. A collection of N subsystems is considered, each de­

fined by an input-output-state relation
 

Yi(t) = Ai~xi(to), vi,t]
 

where yi(t) is the vector output of the ith subsystem, xi(to) is the
 

initial state and vi is the vector input Ai is a function of the
 

initial state xi(to) and a functional of vi and t on the interval
 

Etot]. Only causal subsystems will be considered, i.e., for any two
 

input vectors v. and v. if
 

1 2
 
v. = v for t t St
 

then causality implies
 

Ailxi(to),V ,t] = AiE×i(to)0V2 ,t tto S t t 

for all to t1 and xi(to).
 



12.
 

An interconnected system formed from these subsystems can be
 

modeled as shown in Fig. 2.1. Letting
 

v(t) = col[vl(t),v2(t), ... VN(t)]
 

and defining x(t) and x(t) similarly as the column vectors of outputs
 

and states, an overall relationship for the interconnected system may
 

be written as
 

v(t) = M y(t) + P u(t) (2.1)
 

where u(t) is a vector of external inputs. For simplicity, it will be
 

assumed, with no loss of generality, that each component of a subsys­

tem's input vector is connected either to one component of another
 

subsystem's output vector or to one of the external inputs. In
 

equation (2.1), this means that each row of the combined matrix
 

EM P] has one and only one non-zero entry. The input-output-state
 

relationships for all of the subsystems can be written collectively as
 

y(t) = A[(to), v~t] (2.2)
 

where A1[x1 (t0 ),vlt)
 

A2x 2 (to0)V 2,t
A[X(t0 ),vt] = 

AN[XN(to),vNt]
 



--

13.
 

F IG 

FIG. 2.1 INTERCONNECTION OF SUBSYSTEMS 
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If equation (2.2) is substituted into equation (2.1), we have
 

v(t) = MA[x(t ),vZt] + Pu(t) (2.3)
 

Since u(t) represents known external inputs, a solution of the system
 

equations is the calculation of v in equation (2.3) and thus the
 

determination of z(t) through equation (2.2).
 

A digital simulation of a system of the form shown in Fig. 2.1
 

is a numerical approximation to the solution of equation (2.3) at a
 

n 
sequence of discrete time points tn = t0 + . h. . The step size, 

j=! 

h., may be fixed or variable depending on the type of numerical tech­

nique used. Approximations Xn and/or vn are desired such that
 

2nF Z(tn) 

v v(tn) 
-n -~ n) 

2.3 The Overall System Modeling Method
 

In the OSM method of digital simulation, the individual sub­

system input-output-state relations are combined to obtain a single
 

relation for the overall system. A discrete model is then chosen
 

for this combined relation to produce the simulation outputs. If
 

each subsystem is described by a set of normal form differential
 

equations or by an equivalent block diagram, then each input-output­

state relation is of the form
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~t) = fi[xi(t),vi(t),tJ
 

i = 1,2, ... N (2.4) 
yi(t) = gi[xi(t),vi(t),tJ
 

If the output equation in (2.4) contains vi(t) as an argument,
 

as shown, this represents an instantaneous feed-forward of information
 

from input to output. If equations (2.4) are combined into a single
 

vector equation, there results
 

x(t) = P[(t),(t),t] 

(2.5) 

x(t) = G[x(t),(t),tl 

where
 

fl[x1(t),vl(t)1t] gl[xl(t)'vl(t)'t 1
 

= f(t),(t),t]fEx22(t),v 2 (t),tJ and G[x(t), (t),t] = g2 [x2(t),v2(t),t ] 

fN t'N' 
 g[xN(t),vN(t)t]
 

Substituting the combined output relationship of (2.5) into
 

(2.1) yields
 

v(t) = M G[x(t),v(t),tJ + P u(t) (2.6) 
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Equation (2.6) will generally be implicit in v(t) because of the
 

instantaneous connections from inputs to outputs in the individual
 

subsystems. Equations (2.5) and (2.6) are a canonical form for the
 

overall system. Equation (2.5) represents N coupled differential
 

equations and equation (2.6) are N auxiliary constraint relations.
 

The implications of this canonical form for computer-aided analysis
 

of nonlinear networks is discussed by Stern [2.11.
 

If equation (2.6) is implicit, then any of the large simulation
 

programs will have difficulty. Implicit equations represent memoryless
 

loops in the original system, and of the more advanced simulation
 

languages, only a few will attempt to solve these equations. If the
 

loops are first found by the user, and if there are no loops imbedded
 

within one another (equations must be uncoupled), then some of the
 

programs will attempt solution by simple iteration procedure which
 

converges only under strict constraints on the form of the functions
 

involved. The sorting and iteration procedures developed in Chapter IV
 

provide the necessary methods for solving equation (2.6) for very
 

general systems.
 

To continue with the OSM method, if the simulation is limited to
 

subsystems with no direct connections from input to output, then
 

equation (2.6) specializes to
 

v(t) = M G[x(t),t] + P u(t) 
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and this may be substituted into equations (2.5) to give
 

*(t) = F[Px(t)4M G[x(t),t] + P u(t),t]
 
(2.7)
 

y(t) = G[x(t),M GEx(t),t] + P u(t),t]
 

This is the normal form representation for the overall system. Any
 

standard integration technique,e.g., Runge-Kutta, may now be applied
 

to this combined set of equations. The available simulation languages
 

[see Refs. [1.2-lao] of Chapter I] use essentially this approach,
 

although equation (2.7) is never explicitly generated by the program.
 

Instead, the program determines the proper computational sequence
 

(sorting) so that evaluation of the subsystems in the prescribed order
 

yields the necessary derivative values.
 

While any integration technique can be applied to equation (2.7),
 

the available simulation languages are restricted to the use of ex­

plicit methodsi.e., methods which use only past values of input,
 

output, and state to calculate the present output. The reason for
 

this is that the sorting algorithms assume that integrator outputs are
 

known quantities and thus are available for evaluation of derivatives.
 

For implicit integration techniques, this is not true, because impli­

cit equations must be solved at each time point to obtain the output
 

or state. The limitations of explicit integration techniques, and
 

hence of presently available simulation languages will be shown in the
 

next section.
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If all the individual subsystems are described by normal form
 

differential equations, then the OSM method can be used. If implicit
 

equations of the form (2.6) are present, or if it is desired to use an
 

implicit integration scheme, then techniques must be developed to solve
 

the resultant implicit equations. The sorting and iteration procedures
 

presented in Chapter IV are designed for this purpose.
 

If, however, any subsystem is not in normal form, for example, if
 

only its impulse response is given, then it may not be possible to use
 

the OSM method, because a combined relation for the overall system may
 

be difficult or impossible to obtain. In this case, another approach
 

must be taken. When the subsystems are of different mathematical
 

types, it is preferable to develop a discrete model for each of the
 

individual subsystems and then to combine these models to obtain the
 

overall simulation. This method, called the individual subsystem
 

modeling (ISM) method, is described in the next section.
 

2.4 The Individual Subsystem Modeling Method
 

The ISM method fot digital simulation of continuous systems, as
 

indicated in the previous section, is first to approximate each sub­

system by a discrete model, and then to interconnect these individual
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models in order to obtain a simulation of the overall system. In this
 

section, techniques applicable to the modeling of general linear and
 

nonlinear systems will be discussed. A detailed development of dis­

crete models for linear systems will be left for Chapter III.
 

The subsystem easiest to model is a memoryless subsystem des­

cribed by an input-output relation of the form
 

y(t) = g(v(t),t)
 

This equation is carried over into a discrete model of the form
 

Yn =g(vntn) (2.8)
 

If all subsystems are memoryless, e.g., resistive electrical networks,
 

then when the individual models are interconnected, the discrete ver­

sion of equation (2.3) for the overall system becomes
 

vn = M G(vn tn ) + Pu (2.9)
 

where gl(Vln;tn) 

G(vnt n ) = g2(v2,n;tn) 

gN(VNn ;tn)
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A simulation requires the solution of the N coupled implicit equations
 

in (2.9) at each time point, tn. This set of equations is usually
 

sparse: therefore, in order to calculate the solution efficiently,
 

advantage should be taken of the structure of the system [2.22. The
 

sorting and iteration procedures of Chapter IV are designed for this
 

purpose. The modeling of memory subsystems, including all dynamic
 

systems, is an area of wide interest and varied approach. It is
 

possible, however, to form some classifications of the available
 

techniques which help in determining the nature of the interconnection
 

process once the individual models have been chosen.
 

The general form for a discrete model of the input-output-state
 

relation of a subsystem can be written either as
 

(2.10)
Yn = P(Yo .'Yn;vo'... Vn;to.. tn) 


or as
 

Xn = q(xo,... ,xn;vo,. .. Vn;to,... ,tn) (2.11a)
 

Yn = r(xo' . ,xn;Vo...I n;to'.. 'tn) (2.11b) 

where, as in Section 2.2, yk is the output vector, xk the state
 

vector and vk the input vector at time tk
.
 

Normally only a few of the arguments shown in the equations are
 

actually present. The classification of the discrete models is deter­

mined by the presence or absence of certain arguments as set forth in
 

the following definitions.
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Definition 2.1: A discrete model of the form (2.10) which con­

tains yn as an argument, or a discrete model of the form
 

(2.11a) which contains xn as an argument, is called internally implicit.
 

The presence of yn as an argument in (2.10) or of xn in (2.11a) 

indicates that the right hand side cannot be explicitly evaluated at 

time t . The word "internally" is used in the definition to distin­

guish an equation of the form (2.10) or (2.11a), which must be solved 

in order to update an individdal subsystem, from other implicit rela­

tions which may arise when all the individual models are interconnected. 

Subsystems of the following type generate these equations for the 

overall system. 

Definition 2.2: A discrete model is called externally memoryless
 

if it is of the form (2.10) and contains vn as an argument or if it is
 

of the form (2.11) and either:
 

i) contains v as an argument in (2.11b) or
 

ii) contains vn and xn as arguments in (2.11a) and (2.11b)
 

respectively.
 

This terminology results from the following point of view: If
 

the subsystem is considered to store all necessary past values of input,
 

output, or state, then the appearance of vn in equation (2.10) or
 

(2.11) indicates that the output at time tn is directly dependent on
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the input at time tn , which is similar to the discrete model of a
 

memoryless subsystem, equation (2.8).
 

To illustrate these definitions, consider-the following example:
 

Example 2.1: A set of normal form differential equations of the
 

form
 

* f(x~v't) 

y = g(xt) 

can be approximated by many techniques. Euler integration,
 

+ hf(xn_lv
xn = xn-1 1 n 2 tn_1 )
 

=
Yn g(xnltn)
 

is neither internally implicit nor externally memoryless. Backward
 

Euler integration,
 

Xn = Xn_1 + hf(xn Vn tn
 

Yn = g(xntn) 

however is both: internally implicit because xn appears on both sides
 

of the first equation, and externally memoryless by Definition 2.2ii.
 

The second order Runge-Kutta formula
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xn =xn_! + hf(xn_l,vn_l,tn)
 

x X h e
 
)n =Xn 1 + f[f(xnllvn±ltn_!) + f(xnvntn)]
 

Yn =g(xntn)
 

is also externally memoryless, but is not internally implicit.
 

An example of the fourth possibility, internally implicit but not ex­

ternally memoryless, is not easily given for this example, since for
 

most standard integration methods, the appearance of xn is usually
 

linked with the appearance of vn. For general subsystems, however, the
 

two definitions are independent.
 

At the beginning of this section, it was stated that each sub­

system would be approximated by a discrete model, and the individual
 

models then interconnected to produce the overall simulation. In the
 

original physical system, the connected variables are equal for all
 

time. A discrete model of a continuous subsystem, as we have defined
 

it in this section, produces output values, y , only at the discrete
 

time points of the simulation, tn. and values at any other time points
 

are not available. Accordingly, when an output of one subsystem is
 

connected to the input of another, equality is defined only at the
 

points tn 
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To see how this discretization may affect the choice of numerical
 

techniques used, consider a 4th order Runge-Kutta integration method
 

for a set of normal form equations of the type considered in Example
 

2.1. This method requires evaluation of the quantity
 

hf +~ K, nn~1-- 2)hflc-1 V~/2 n 


where
 

/2= v(t-) 

and K1 has been previously evaluated. If the subsystem were to be
 
used alone, with v(t) an external continuous input, then v(tn - h/2)
 

would be available exactly. If, however, the input to this subsystem
 

is the output of another subsystem, then only values vn_1 and vn are
 

available, while the intermediate value vn-1/2 is not. Of course
 

interpolation may be used to approximate the desired value, but in
 

general this causes a loss in accuracy which negates the purpose of
 

using a high-order integration technique. This discussion leads to
 

the following definition.
 

Definition 2.3: A discrete model is admissible for the ISM method
 

if it is of the form (2.10) or (2.11), i.e., it only requires inputs at
 

the discrete time points of the simulation.
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In all that follows, only admissible models for the ISM method
 

will be considered.
 

In Example 2.1, it was seen that the choice of the numerical tech­

nique to be used determines whether or not a subsystem is modeled as
 

externally memoryless. The effect upon the overall simulation of
 

modeling all memory subsystems as externally memoryless will now be
 

determined.
 

The notation of equation (2.10) or (2.11) for an externally
 

memoryless subsystem can be simplified if all arguments for past time'
 

points are suppressed. It will also be assumed for the moment that the
 

subsystem is not internally implicit. With these conventions understood,
 

the input-output-state equation of an externally memoryless subsystem
 

can be written exactly as that of an ordinary memoryless subsystem
 

=Yn r(Vnltn) 

Equation (2.1) for the overall simulation then becomes
 

vn =MR ntn) +PU (2.12)
 

where all variables are defined as in (2.7). Again, as in the case of
 

a system composed only of memoryless elements, a sparse system of
 

possibly nonlinear implicit equations must be solved. Had the
 

dynamic subsystems not been modeled as externally memoryless, then this
 

would have been the case only if there were loops of ordinary memoryless
 

elements.
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ine special case where one or more subsystems are internally im­

plicit will now be considered. An internally implicit subsystem has, 

by definition, an implicit equation associated with it. In order to 

update the subsystem, this equation must be solved. Two very different 

computational approaches to the solution of this equation are possible. 

The first approach assumes that this equation is solved internal to the 

subsystem, by its own solution technique, e.g., iteration . Prom an 

input output point of view, the implicit equation does not exist, so 

that the previous discussion of externally memoryless subsystems still 

applies, and equations of the form (2.12) result for the overall simu­

lation. This approach ignores the interconnection of the subsystem with 

other subsystems as far as its internal implicit equation is concerned. 

A more efficient approach, however, is to consider all the implicit
 

equations of the entire simulation simultaneously. These include both
 

the equations of internally implicit subsystems and the equations which
 

result when externally memoryless subsystems are interconnected. A de­

tailed description of exactly how this is accomplished is given in
 

Chapter IV.
 

The remainder of this section will show why it may be desirable
 

to model dynamic subsystems as externally memoryless even though the
 

added complexity of implicit equations results. The discussion first
 

will be limited to subsystems described in normal form. It will be
 

shown that for these subsystems the motivation for externally
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memoryless modeling stems from a consideration of the stability and
 

efficiency of numerical integration methods. For simplicity of
 

notation, the system equations will be assumed to be in the form
 

A = f(x~t), x(O) = x0 . (2.13)
 

The input to-the subsystem, v, has not been shown, since, when model­

ing an individual subsystem, the input is considered a known function
 

of time. The output equation is also not shown, since it does not 

enter into the choice or use of an integration method for the state 

equation. The eigenvalues of the Jacobian, J = are denoted-f , 

X1, X2 ..., XN (arranged in order of increasing magnitude) and the 

linearized system is assumed to be asymptotically stable, i.e., 

Re(X.)< 0 i N...= N.
 

In many applications it often happens that equation (2.13) is
 

stiff, i.e., the stiffness ratio, p 4 IXNI/IIlI > 1. For these
 

systems, the solution is smooth after a transient period during which
 

there is a rapid variation. Examples abound in circuit theory, chemical
 

kinetics, nuclear reactor calculation, and in many other fields. The
 

majority of classical integration methods are unsatisfactory for stiff
 

systems because the fast component of the solution continues to affect
 

the numerical solution long after its effect in the physical system
 

has died out.
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For most single-step methods, e.g., Runge-Kutta, the step size is
 

limited by the largest eigenvalue of the Jacobian, J i.e.,
 

max lh kil d (2.14)
 

where d is'a constant that is characteristic for the method. If
 

this condition is not satisfied, then the solution will in general be
 

numerically unstable, and hence useless.
 

It is reasonable to assume that the solution interval, T, is
 

proportional (by some factor c such as 3 or 10) to the inverse of
 

the magnitude of the smallest eigenvalue,
 

-cmin lxiii . (2.15)
 

A lower bound on the number of steps necessary to compute the solution
 

over the interval T is T/h where h satisfies (2.14), and thus from
 

(2.15), T/h - p. If the spread of eigenvalues is large, then the num­

ber of steps required will be excessive. For example, this bound can
 

easily become arbitrarily large if some parameter, say a capacitor
 

value in a linear R-C electrical network, becomes arbitrarily small.
 

Methods having this limitation are called step length limited.
 

Explicit multi-step integration methods have much the same problem
 

when used to integrate stiff systems of differential equations.
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The following example shows these difficulties for some particular
 

integration methods.
 

Example 2.2*: Consider the linear system of differential equations,
 

= Ax, x(0) = x°
 

with distinct real eigenvalues, 0 > X! > ?2 > ... 

Since the analytic solution is
 

x(nh) = nx = e x((n-l)h) 

and all eigenvalues are negative, the least that should be required is
 

that
 

im x = 0
 
n
n-


For the explicit Euler, Heun or usual 4th order Runge-Kutta schemes,
 

the approximate solution is
 

xn = EM(hA)Jn x° (2.16) 

where 
l+q Euler 

M(q) = l+q+ 2/21 Heun 

!+q+q2/2!+ q3/3t +q4/4! Runge-Kutta 

*This example is taken from a short paper, "Stiff Systems of Differential
 
Equations," by J. S. Rosenbaum, prepared for a course in nonlinear
 
systems at Columbia University, (Fall, 1968)
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Since the eigenvalues of A are distinct, there exists a matrix P
 

such that
 

p-1 AP = diag[kl, ..., Xn= A.
 

Therefore, the difference equation (2.16) becomes
 

x = P-1[M(hA)1n Px° 

which implies that
 

"r o iff IM(hX)j < 1 i =1, , N 
n 

In particular, for Euler's method, there results
 

Xn = Xn-1 + h f(xn_lt)
 

or xn = P-I(1 + h A) Pxn_1
 

therefore, stability requires that
 

Ii + h kil < 1 i = ., N 

or 1h Xil < 2 

For Heun's method the stability condition is that fh Xj < 2 and for
 

the Runge-Kutta method the stability condition is jh Xi < 2.78.
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To demonstrate the difficulties that these conditions imply for
 

stiff systems, consider the following second order example,
 

= Dv + C , v(o) = v 0 

where
 

D= 0] and c= ] 

For this equation, vl(t) = v2(t) = 2(l-e-t ) and the stability conditions
 

for Euler (h < 2), Heun (h-< 2) and Runge-Kutta (h < 2.78) place reason­

able limits.on h. However, consider the system
 

w=A+Cw(o) 

[]
 

where
 

A 500.5 499.5 and C = [] 
499.5 -500.52
 

for which the solution is
 

-1 0 0 0t
-t ) - .1 e
= 2(l - e
w1 


- 10 0 0t
-

w2 = 2(l - e t ) - .l e
 

http:limits.on
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-1000t < 2.5
For t > .02, .1 e x 10-10 , or v 4 w. However, the eigen­

values of A are -1 and -1000, which r~quires that h be 1000 times 

smaller for the w equation than for the v equation. 

In the previous discussion, it has been seen that the efficiency
 

of numerical integration methods when applied to stiff systems is
 

closely related to the stability of the numerical solution. In many
 

applications, it is stability rather than accuracy considerations which
 

necessitate the use of a very small step size. Dahlquist [2.3J has
 

given a definition of stability for numerical methods which leads to
 

the identification of integration methods suitable for stiff systems.
 

Definition 2.4: A numerical integration method is called A-stable
 

if all solutions tend to zero as n when the method is applied with
 

fixed positive h to any differential equation of the form
 

x = qx 

where q is a complex constant with negative real part. 

This definition states that for A-stable methods, the transient 

solution eventually goes to zero, and also that the transient solution 

does not affect the step size. 

It can easily be shown that the usual explicit 4th order Runge-

Kutta method is not A-stable, for the Runge Kutta method yields a 

truncated Taylor series when applied to equation (2.15), i.e., it 

gives the sequence 
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El + qh + (qh)2 /21 + (qh)3/31 + (qh)4/4!n n = 0,1,2,... 

and this does not tend to zero everywhere in the left half plane,
 

Re(q) < 0. Runge-Kutta methods are not admissible for the ISM method, but
 

they can be used in the 0SM method. If the OSM method is to be used
 

efficiently for stiff systems, then, since explicit Runge-Kutta methods
 

are not A-stable, implicit Runge-Kutta methods must be used [2.4].
 

Implicit Runge-Kutta techniques give externally memoryless discrete
 

models, because they always use the input at the present time. This,
 

as shown previously, results in implicit equations-of the form (2.12),
 

which must be solved at each time point.
 

A linear multi-step integration method has the form
 

akxn + aklxn_1 + ... +aoxn k = h(bkf n + ... + bofn k )  (2.17) 

where ai, bi are real constants, i = 0,12)... k, and f = f(X ,tm). 

If the vectors x0,x!,... xk_1 and v0,vl,..., vk_1 are given, then 

xkxk+l ... are computed recursively through (2.17). If the method 

is implicit, i.e., bk # 0, then equation (2.13) must be solved for xn 

at each time point. In the notation of this section, bk 0 also indi­

cates that the technique is externally memoryless. Since only values 

at the discrete points tn are required, linear multi-step methods are 

admissible for the ISM method, and hence the discussion to follow is 

relevant to both the ISM and OSM methods. 

Dahlquist [2.3] proves the following theorem, presented here
 

using the terminology of this Chapter.
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Theorem 2.1: An A-stable linear multi-step method must be inter­

nally implicit and externally memoryless, i.e., bIk 0.
 

Thus, in order to achieve A-stability of the simulation using
 

linear multi-step methods, externally memoryless models must be used.
 

It will be seen in Chapter III that this same motivation for exter­

nally memoryless modeling exists in the simulation of linear rational
 

and irrational transfer functions.
 

To carry the discussion of linear multi-step methods further,
 

it is necessary to define the order, p. of an approximate method.
 

Assume that the values xo0xl,...,xn are exact, i.e., xi = x(ti). and
 

that the value x+ 1 is calculated using the method in question. Ex­

panding both xn+l and X(tn+l) in a Taylor series about the point
 

t = t., there results
 

X(tn+l) =X(tn) + h/11 xO(tn ) + h2/2! xt(tn) +
 

and
 

xn+1 =x(tn ) + h/l! c1 + h2/2!o 2 +
 

The highest exponent of h for which corresponding terms in the two
 

series are equal is called the order, p. of the method, i.e.,
 

c = X)(tn),... cp =x(p)(t but ep+ ! x(P+±)(tn) 

Dahlquist proves the following theorem.
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Theorem 2.2: The order, p. of an A-stable linear multi-step method 

cannot exceed two. The smallest truncation error is obtained with the 

trapezoidal rule, 

Xn = Xn_ + h/2(fn_1 + fn)
 

A-stable linear multi-step methods for the solution of stiff
 

systems of differential equations have been discussed in the litera­

ture [2.5-2.7] and Liniger and Willoughby [2.5] give several examples
 

of the dramatic increase in efficiency that is possible using these
 

methods.
 

The previous discussion has shown that externally memoryless
 

modeling is useful in order to achieve an efficient simulation of
 

stiff systems. Another motivation for the use of externally memoryless
 

models exists when the waveforms of the system being simulated have
 

discontinuities or discontinuous derivatives. In this case, the use
 

of the present value of the input will tend to force the solution to
 

react more quickly to the effect of the discontinuity. For example,
 

if the input to a system in normal form (2.13) is a ramp, beginning
 

at t = T > to. then, if an explicit method is used, the next value
 
n0
 

Xn+l is calculated using only past values of input, which are iden­

tically zero. An externally memoryless technique, however, uses the
 

value of the input at time tn+l(nonzero), and hence calculates Xn+l
 

using the fact that the input has changed.
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In the next section, an example is presented which shows the
 

benefits of externally memoryless modeling for systems with discon­

tinuous waveforms. This example consists of a transmission line with
 

nonlinear loads and thus represents two coupled subsystems of differ­

ent mathematical types. For this reason, it is necessary to use the
 

ISM method.
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2.5 Transmission Line Example
 

In this section, an example is presented which illustrates the use
 

of externally memoryless modeling to achieve accurate simulation for an
 

interconnection of two systems of different mathematical type. The
 

problem considered is shown in Fig. 2.2, and consists of a step current
 

source shunted by a parallel R-C network feeding a lossless transmission
 

line. The transmission line is terminated in-a nonlinear load. As
 

suggested by Wing [2.8], we may model this network as two interconnected
 

subsystems, one representing the source and load, and one representing
 

the transmission line. Fig. 2.3 is a block diagram of this representa­

tion.
 

If the transmission line is regarded as a two-port, the terminal
 

relation may be written as
 

i(t) = h(t)*v(t)
 

where i(t) = col[i1 (t), i2(t)] and v(t) = col[v 1 (t), v2(t)] 

h(t) is the impulse response of the network and * denotes convolution. 

Thus, for this system, v(t) is regarded as the input and i(t) as the 

output. 

For the lossless transmission line, h(t) is found to be
 

hll = h22 = 8(t) + 2 3 8(t-2k) 

k=l 

h12 = h21 =- 3 6(t-2k+l) 

k=l
 



L L2
 

0 + + 

FIG. 2..2 TRANSMISSION LINE EXAMPLE 

co
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I23AUMPEO TRANSMISSIONOB"NEELEMETS LI 1_2. 

• IG. 2.3 BLOCK DIAGRAM OF TRANSMISSION LINE PROBLEM 
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Since the impulse response contains only impulses, a numerical approxi­

mation to the convolution of h(t) with v(t) becomes a simple weighted
 

sampling of present and past values of v. The impulse at the origin
 

in h and h22 samples the present value, vnand hence this model is
 

externally memoryless. If the transmission line were not lossless, a
 

more complex h(t) would-result, with a corresponding increase in the
 

complexity of the discrete model. In general, however,, the model
 

would still be externally memoryless.
 

The discrete model of the lossless line can be reduced to
 

in n 
 In_
 

where In_1 depends only upon the past values of the input, v. The
 

sampling involved in calculating In_1 at each step occurs because it
 

takes two time units for a signal to travel down the line, be re­

flected, and return.
 

The lumped elements will be described by a set of normal form
 

differential equations
 

= f(vi) (2.18) 

which for the network given is
 

_________L:: [(2
-1<1:711)/Cl]
v2 ( g(Vl ) - i 2)/C2 

* In Chapter III it will be shown that this is not necessarily the best way
 
to approximate h(t), but it will be used here for simplicity.
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Here, i is now considered the input, and v the output. The trapezoidal
 

rule will be used as a discrete model for the lumped elements, but
 

modified, as suggested by Liniger and Willoughby [2.52, to include
 

one Newton-Raphson iterdtion.
 

The trapezoidal rule applied to equation (2.18) gives
 

Vn =V 1 + n- +n 

where fk f(vk k). 

Letting z = v., this can be written 

q(z) = z - h + f(zi - 0 
2 n-ln n-i
 

and taking one derivative with respect to z,
 

Qi(z) = I - f (Z~in) 

f(z~in ) 2n
 

f = where z az
 

Taking one Newton-Raphson iteration using z0 as the initial point gives
 

1 =0 - [i (z)]-1i 02~Q(z0° ) 
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Taking only this first iteration, letting zo = vn-1 there results the
 

explicit integration formula
 

V n-i + [I - fv(vn-lin)J " fn-i + f(Vn-l'in)] . (2.19) 

This formula is the discrete model for the lumped elements. It should
 

be noted that the model is externally memoryless due to the presence
 

of the input value in' but it is no longer internally implicit because
 

the Newton-Raphson iteration has removed vn as an argument on the right
 

hand side. To simplify notation, equation (2.19) is written symbolic­

ally as
 

vn = F(in i n_vn_. (2.20)
 

Since both subsystems are modeled by externally memoryless
 

techniques, it is expected that implicit relationships will exist when
 

the individual models are interconnected. The interconnection has in
 

essence been accomplished already, through the use of identical variable
 

names, i and v, when modeling each subsystem. Therefore, the general
 

equation for interconnected models, equation (2.1), becomes for this
 

example
 

[nJ = [ZC+Z1 :,v 
(2.21)
 

Vn F(inn n l- n_I
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Solution techniques for the general case of equation (2.1) will be
 

left for Chapter IV, but so as to be able to continue with the example,
 

a simple iteration procedure will be used here. If the second equation
 

in (2.21) is substituted into the first, there results
 

inn = F(inin-l'Vn-l) + In-i 
 (2.22)
 

Since in-l, Vnl, and In_ are known quantities at time tn this 

equation is of the form 

x = c(x) 

An obvious iterative solution technique is
 

k+l k 

which will be shown in Chapter IV to converge if
 

where I.'I denotes the matrix norm IIAil A max E Ia. .-i i j 

This method is used to solve equation (2.22), resulting in
 

k + l. = F(ikn"n I lni1Vl) + In­n-i " 
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At each time point tn, an initial estimate i must be chosen. The use
 
tn n 

of the previous value, i = i was first tried, but it was found that 
n ni 

if a linear prediction was made, the total number of iterations neces­

sary for convergence was reduced. Hence,
 

.O 

1n0 2in_ - in_
 

Each time a reflected wave reaches one end of the line, discon­

tinuities in the slopes of the variables occur. The use of externally
 

memoryless modeling for both the transmission line and the lumped
 

elements helps in handing these waveforms, as explained in the previ­

ous section. During calculation, it is seen that the iteration count
 

in solving equation (2.22) is higher for the time points where the
 

discontinuities occur than for time points where the waveforms are
 

well behaved.
 

The transmission line example discussed above was run on a time­

shared SDS/940 computer for both linear and nonlinear loads. For the 

first simulation, R! = lx, C1 = lpf5 R2 = 2K, and C2 = lpf. Pig. 2.4 

is a plot of v1,V2 5i1 and i2 for a step size of 1/32 ns. The iteration 

at each step was stopped if the difference between the predicted and 

calculated values was less than an iteration tolerance, E. 

Since with linear loads the entire problem is linear, it is
 

possible to compute the exact values using Laplace transform techniques
 

and working with the incident and reflected waves. These values agree
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very closely with the computed results, the error being too small to
 

show in Fig. 2.4.
 

To determine the effect upon solution accuracy of choosing differ­

ent values for the iteration tolerance, E. and the step-size, h,
 

several runs for different values were made. These results are
 

summarized in Table 2.1. It is seen that reducing E beyond a certain
 

value simply increases the iteration count with no increase in accuracy.
 

As would be expected, this value of E is approximately the same as the
 

truncation errors introduced in the numerical approximation techniques.
 

The linear resistor R2 is now replaced by a diode modeled by the
 

diode equation
 

i = Io(e TT
 

with I° = .005 ma and vT = .026 v. A plot of the results for h = 1/64
 

ns appears in Fig. 2.5 and Fig. 2.6. It is not possible to obtain
 

analytic results, but the computed results approach the correct
 

steady-state values, and several runs with smaller step-sizes indicate
 

that these results are approximately of the same accuracy as achieved
 

for the linear example.
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TABLE 2.1 

Statistics For Transmission Line Example With Linear Loads.
 

Step Maximum Average 
Size 
(ns) 

Iteration 
Tolerance 

Error 
(X 10-3 

Error 
(x 10-3 ) 

Iterations/ 
Step 

1/32 .01 4.7 1.51 1.26 

1/32 .005 2.1 .88 1.45 

1/32 .001 1.7 .32 1.89 

1/32 .0005 1.6 .34 2.01 

1/32 .0001 1.4 .32 2.34 

1/32 K set 2 1.5 .33 2.00 

1/64 .005 2.1 .599 1.10 

1/64 .001 .47 .172 1.51 

1/64 .0005 .42 .091 1.72 

1/64 .0001 .38 .081 2.00 

1/64 5 x 10-5 .37 .081 2.07 

1/64 1 x 10­5 .35 .076 2.33 

1/64 K set = 2 .37 .079 2.00 

1/128 .0005 .260 .077 1.24 

1/128 .001 .099 .021 1.77 

1/128 5 x 10- 5 .094 .018 1.89 

1/128 1 X 10-5  .092 .019 2.04 

1/128 5 x 10-6 .090 .020 2.10 

1/128 K set = 2 :090 .019 2.00 
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CHAPTER III
 

MODELING OF LINEAR SYSTEMS
 

3.1 Introduction
 

In this Chapter, general methods of A-stable modeling of linear
 

fixed systems are presented. It is shown that A-stable techniques
 

result in externally memoryless models, and hence the question of
 

solution of implicit equations for the overall simulation again
 

arises.
 

A-stable techniques are applied to the irrational transfer func­

tions that are typical of distributed systems. An example is given in
 

order to illustrate the difficulties which may be encountered when the
 

more conventional approaches to modeling are used.
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3.2 A-stable Modeling of Fixed Linear Systems
 

In Chapter II, a gener'al formulation of a system as an intercon­

nection of subsystems was given, and some general approaches to
 

modeling of the subsystems were discussed. If each subsystem is now
 

considered to be linear and fixed (but not necessarily lumped), then
 

the following problem can be considered. Let the original intercon­

nected system be stable. It is possible that the original system may
 

contain some subsystems which are unstable, even though the overall
 

system is stable. The problem is to determine a class of discrete
 

modeling methods, which, if used to model each individual subsystem,
 

gives A-stability for the overall simulation when the individual models
 

are interconnected. Application of A-stable modeling to the unstable
 

subsystems would generally produce unstable models. What is required
 

here, however, is that the interconnection of all the models, both
 

stable and unstable, produce an A-stable overall model when the ori­

ginal overall system is stable. It will also be required that the
 

model be consistent, i.e., a reasonable approximation of the original
 

system. This problem of A-stable modeling will now be more precisely
 

defined using some basic definitions and theorems (Theorems 3.1 - 3.4)
 

from the theory of linear systems (see e.g , [3.1-2].
 

Definition 3.1: A linear fixed causal continuous system, S, with
 

input vector u and output vector y is stable if its zero-state
 

response remains bounded for any bounded input.
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If F(s) represents the transfer function matrix of S, with input and
 

output defined as above, and if f(t) is the impulse response of S,
 

i.e., f(t) is the inverse Laplace transform of F(s),- then the follow­

ing well known theorem applies.
 

Theorem 3.1: S is stable if and only if each component of the im­

pulse response, fij(t) satisfies the condition
 

Ifij(t)Idt <
 
0
 

It will prove useful later to have a necessary condition for stability
 

in the frequency domain.
 

Theorem 3.2: A necessary condition for the stability of S is that
 

each component of the transfer function matrix, Pij(s), be finite for 

Re(s) z 0. 

Proof:
 

Fij(s) f(t)e-st dt
 
0
 

Prom this, there follows
 

IF ij (S) 1 Ifij(t)Ie -at dt Re(S) O
( 
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where a = Re(s). If Re(s) 0, then e = 1 , and therefore 

IFi.(s)j < f if..(t)Idt Re(s) : O. 
0
 

The right hand side is finite by Theorem 3.1, which completes the
 

proof. Note that this theorem applies to irrational as well as
 

rational transfer functions.
 

Since an identification must be made between stability of a con­

tinuous system and stability of its discrete model, the following
 

definition and theorems for stability of discrete systems are given.
 

Definition 3.2: A linear fixed causal discrete system, D, with input
 

vector u and output vector y, is stable if its zero-state response
 

remains bounded for any bounded input sequence.
 

If G(z) represents the transfer function matrix of D, and if g(n) is 

the response to the input sequence 1,0, ... , i.e., g(n) is the inverse 

z-transform of G(z), then the following theorem applies. 

Theorem 3.3: D is stable if and only if each component of the zero­

state response, gij(n), satisfies the condition
 

i (~jn)I<
 
n=o
 

It is interesting to note that Theorem 3.1 does not require Ifij(t)l 


-as t but Theorem 3.3 does require Igij(n)I - 0 as n 
-

0 
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A necessary condition for stability in the frequency domain will
 

be useful later.
 

Theorem 3.4: A necessary condition for the stability of D is that
 

each component of the transfer function matrix, Gij(z), be finite
 

for Izi 1.
 

The proof follows that of Theorem 3.2 and makes use of Theorem
 

3.3, and so will not be given here.
 

A class of discrete models for continuous systems will be defined
 

by a mapping from the s-plane to the z-plane. For each subsystem
 

transfer function Fi(s) let
 

F*(z,h) = Fi(g(z~h))
 

where the mapping s = g(z,h) is chosen so that the resulting discrete
 

model F'(z,h) has the following properties:
 

(1) Consistency
 

Let
 

fi(n,h) = T F*(zh)zn-1
 

C
 
-I
where C is a circle enclosing all the singularities of F*(zh)zn
 

i.e., f.(nh) is the inverse z-transform of F4(zh). The discrete
 

model is then said to be consistent if
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lim 
n-o fi(n,h) = fi(t) 

h-h 
h
nh--t 


except possibly at discontinuities.
 

Rewriting, it is required that
 

lim
 
n- a fin, = i t)
 

(2) 	A-Stability
 
If Fi(s) is a stable transfer function, then F*(z,h) must be
 

stable for all h 0, i.e., the discrete model is stable for all
 

positive values of the step-size.
 

The second property implies the following theorem.
 

Theorem 3.5: If s = g(zh) is an A-stable mapping, i.e., it satisfies
 

condition (2) above, then
 

Re(s) < 0 implies IZI < 1
 

Proof: Fi(s) stable implies Re(s) < 0 if Fi(s) is not finite~from
 

Theorem 3.2. F(z,h) stable implies zI < 1 if F'(zh) is not
 
I 	 I 

finite from Theorem 3.4. Hence if s = g(z,h) satisfies condition (2),
 

A-stability, then
 

Re(s) < 0 implies Izi < 1
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Thus it is seen that the left half s-plane must map into the interior
 

of the unit circle in the z-plane.
 

It is obvious that if the same consistent A-stable transformation
 

is made for each subsystem, then the overall model, formed from the
 

interconnection of the individual models, will also be consistent and
 

A-stable. It will be shown laterhowever, that applying different
 

transformations to subsystems, each of which is consistent and A­

stable, will not lead in general to a consistent A-stable overall
 

model.
 

It now remains to determine functions g(z,h) which satisfy both
 

conditions (1) and (2) above, that is, they are both consistent and
 

A-stable. If the search is.limited to rational functions of z, then
 

it is possible to derive certain characteristics of the allowable
 

transformations. Consider a k-th order transformation of the form
 

a(z) = h 	 akz +.. 0 (.1

bkzk +...


g(z,h)g~zh)= 1 	•b(z) 1 " 
+ a

+ b
 

where a(z) and b(z) have no common zeros. If the system being
 

modeled is of the form l/s, then a transformation (3.1) is equivalent
 

to using a linear multi-step integration formula. Dahlquist [3.3]
 

has worked with A-stable integration formulas of this type, and it is
 

possible to follow a similar development here. The following theorem
 

establishes necessary and sufficient conditions for a transformation
 

of the form (3.1) to be A-stable.
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Theorem 3.-6: A k-th order transformation s g(z h) of the form
 

(3.1) is A-stable if and only if g(z) = a(z)/hb(z) is analytic for
 

Proof: If s = g(zh) is A-stable, from Theorem 3.5,
 

Re(s) < 0 implies IzI < 1 

or 

Izi t 1 implies Re(s) 0 

For a transformation of the form (3.1),
 

h b(z)
 

If z1 is a zero of b(z), then a(z11) 0 since a(z) and b(z) have
 

no common factors. In the neighborhood of zl,
 

a(z) c(z-zl )-m c o
 
h b(z) 1
 

for some positive integer m. But Re[a(z)/hb(z)] a 0 in a whole 

circle around zI if 1zl 1 for stability. Hence b(z) / 0 if' 

z t 1, i.e., a(z)/hb(z) is analytic for Iz 1 

Theorem 3.7: A k-th order transformation of the form (3.1) is not
 

A-stable if bk = 0.
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Proof: For some integer m, m t1,
 

- mb(z) c zk 
, when z c o 

k
However, a(z) - kz, ak o . Hence 

a2
b(z) d zm where d 0, m 1. 

This however, contradicts the condition Re(s) t 0 for IzI ! 1
 

Theorem 3.8 has important implications for the modeling of
 

linear systems. For A-stable transformations, Theorem 3.8 implies
 

that the resultant model is externally memoryless, as shown below.
 

Consider the initial value theorem for the z-transform
 

lim 
fi(o~h) = Fi[g(zh)]
 

For g(z,h) of the form (3.1), with bk 0
 

lim i 
z-m g(z,h) 

_ 

= h bk
 

hence
 

h %k 

and therefore f(Oh) will in general have a nonzero value. The use of
 

the discrete model can be represented by the convolution
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n 

Yn = fi(j,h)vnj 

j=o 

where y is the subsystem output and v is the subsystem input.
 

The leading term in the convolution is fi(O,h) v , and hence the
 

present value of the input appears on the right hand side of the
 

discrete input-output relation. By Definition 2.2, the model is
 

therefore externally memoryless, and implicit equations are expected
 

for the overall interconnected model. It is important to note that
 

these implicit equations result specifically from the A-stable
 

modeling.
 

As an-example of a transformation of the Form (3.1), consider
 

the well known bilinear transformation
 

S - z-1 (3.2)hh z+l 

This is both A-stable and consistent as is shown below:
 

(1) Consistency
 

For the bilinear transformation applied to a transfer function
 

F(s), consistency requires
 

lim- n fi(n, ty f(t)n T f n j =ft 

but 

lim nin lim 1 Fi[2 z-1} zn- I dz 
ln~ fi(n~~hro= h Jin zi-li 

C
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where C is a circle centered at z--O, with radius r > 1 since the 

integrand has all singularities inside the unit circle. The integral 

along C in the z-plane can be transformed into an integral in the 

s-plane. 

If the inverse transformation
 

sh
 

Z = sh
 
2 

-(1- ­

dz 2 )(h/2) - (9 + s(-h/2 ) h ds 

(1 2 2-dsh/2)
 

is made, there results
 

stn-i'
 

lira 1 )+ S(l+ ds
 
n7-- Fs) n-l 2
 

where C' is a line parallel to the imaginary axis and an infinite
 

semicircle. This can be reduced to
 

lim i" 
 F I + 2n-- n
 
l1 t 1 st
i st 

-n 2rj C? U 2J 2l +2stn
 

and asandnn- , s +st Thus, there results in the limit-.as 2n 
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-- j F(s) estds =f(t)
 
C?
 

and consistency has been proved.
 

(2) A-Stability
 

sh ah bh 

2
1-sh 

2 

ah 
+ 3___ Y 

bh 
2 T2 -T 

where s = a + jb. Clearly, if a<O, Iz < 1 for all h > 0.
 

A system described by a rational transfer function can always
 

be put into normal form, hence for all rational transfer functions,
 

the following theorem of Dahlquist [3.1] applies.
 

Theorem 3.8: The order of an A-stable technique cannot exceed 2. The
 

smallest truncation error is achieved with the bilinear transformation
 

(trapezoidal rule).
 

The bilinear transformation also has the desirable characteristic
 

that rational transfer functions of order p transform into discrete
 

models of the same order.
 

The bilinear transformation has been used in many different areas
 

and approached in many different ways. In numerical analysis, it
 

represents the generating function of the trapezoidal rule, which was
 

one of the first techniques to be used for the integration of
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differential equations. In the field of digital filtering, it is used
 

to obtain a discrete filter from a given continuous filter, with a
 

compensation usually made because of a nonlinear warping of the fre­

quency scale [3.4]. This nonlinear warping occurs because if
 

2(z-j)
 

sit
 

and if z = e ,then
 

s = tanh 1 2h 

Working in digital signal processing, Steiglitz [3.51, has defined an
 

isomorphism between the space L2(--') of continuous signals and the
 

space 12 of discrete signals. He then shows that this isomorphism can
 

be used to associate a discrete filter with every continuous filter
 

through the bilinear transformation.
 

The bilinear transformation is not new to simulation, where it
 

is called the Tustin [3.61 method. In the application of this method
 

(to rational transfer functions), however, an arbitrary unit delay is
 

inserted into every feedback loop to prevent the occurrence of implicit
 

equations. The approach presented in this chapter does not insert any
 

delays, for this in general destroys the A-stability of the model. The
 

bilinear transformation will be considered further in the next section
 

in order to explore the implications of A-stable modeling, especially
 

when applied to irrational transfer functions.
 



3.3 The Bilinear Transformation
 

The bilinear transformation is equivalent to the trapezoxidal
 

rule, which was discussed in Chapter II for use with general non­

linear subsystems. In the simulation of a complex nonlinear system,
 

if the trapezoidal rule is used for the nonlinear subsystems and the
 

bilinear transformation for the linear subsystems, then the same A­

stable discrete modeling method will have been used for the entire
 

simulation. For this reason, the application of the bilinear transfor­

mation to both rational and irrational transfer functions will be con­

sidered further in this section.
 

If the subsystem transfer function is rational, Ft(s) = p(s) 

direct substitution of the bilinear transformation s = g(zh) gives a
 

new rational function Ft(zh) of the same order as F(s). This can
 

be used to define a difference equation to be used as the discrete
 

model of the subsystem. It has been observed [3.4] that for high
 

order systems, the method is less sensitive to numerical round off
 

error if Fi(s) is first expanded into partial fractions and then the
 

substitution s = g(zh) made. A simple example will serve to illus­

trate the method.
 

Example 3.1: Let F(s) be the second order damped system
 

K
 
=
F(s) 2
 

s + 26 s+l
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2 z-l 
Substituting s = z+-1 there results 

F*(zh) = K 

h2 z+- ]2 [ z+l 

and expanding
 

2 (z2
F*(z,h) =K(h/2) + 2z + 1) 

[l+6h +'(h/2) 2 ] z2 + [-i + (h/2)2 2z + [l-6h + (h/2)
2 

If the input to this system is denoted vn and the output y., then
 

this equation may be interpreted as a difference equation, giving
 

the discrete model
 

Yn= L +l(h/2)2[vn + 2Vn-i + Vn 2I - [-1 + (h/2)212Yn_lL+ 6h + (h/27) 

[1-6h + (h/2)2 ]yn 2} 

(3.3)
 

Note the appearance of vn on the right hand side of equation (3.3),
 

which means that the model is externally memoryless, as expected.
 

The computed response of this model to a step input is shown in Fig.
 

3.1 for different values of the step size, h. For these computations, 

K was taken as unity, and a damping ratio of 6 = .15 was used. The 

error between the exact solution and the computed response for h = .1 

is smaller than the resolution of the graph, hence the curve for h = .1" 

can also be considered as the exact response. 
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If F(s) is not rational, a finite difference scheme cannot be
 

used, hence the calculation is done in the time domain, determining
 

f(n,h) (the unit response) and using the convolution summation
 

n 

y(n) = X f(n-kh)v(k)
 

k=o
 

The f(nh) are identified as coefficients in the expansion
 

"
 = f(nh)z -n
F*(Z~h) 

n=o
 

Depending on the form of F(s), various techniques can be used to deter­

mine the desired coefficients. One method is a direct expansion in
 

powers of z-1 as shown in the following example.
 

Example 3.2: Let
 

f(t) = 1 F(s) 

Then applying the bilindar transformation,
 

F*(z~h) lz1 2-
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Expanding 	, 1-z"1 using the binomial theorem,
 

-2 -2 1/2(-1/2) z-4 _ 1/2(-1/2)(-3/2 +
 

gives
 

-5 
F*(zh) h [1 + z-l+ 1/2 z-2 + 1/2 z-3 + 3/8 + 3.. z J 

Thus 

tf(n,h) h [ 11 1/2,1/2,3/8,3/8, ... 

Another method to evaluate f(nh) involves the use of Laguerre
 

functions. For a general subsystem,
 

F*(zh) 	 F* Eg- (sh),h] = F(s) (3.4) 

hence
 

sh\n
1-


F(s) = Z 	 f(nh) ) n
 
(1 + sh/2)
n=o 


To carry the development further, a discussion of the properties of the
 

Laguerre functions (see e.g., [3.71, p. 93f) must be given. The
 

Laguerre polynomials are defined as
 

n 	 dqn (e-q) 

_n n2 n-i n(+(_l)nn2n-2 
n(-i qn 	 - . + 21 n +'' 
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thus
 

Z0(q) = 1 

l(q) = 1-q 

L2(q) = q2 - 4q + 2 

The Laguerre functions are defined as
 

e-/2L (q)
 
cpn(q)A
 

These functions form an orthonormal set,
 

cr(q) n(q) dq = 6rn 

0
 

and have the generating function
 

cp(q,x) 1 e X %Pn(q) (3.5) 

n=o 

A useful recurrence relation for the Laguerre functions is
 

(2n+l-q) Tn- nyn­
cn+l(q) -- n+l (3.6)
 

Their Laplace transform pair is
 

. (s - 1/2)(s) = £EPn(t)] 
n 

n (s + i/2)n +l
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Returning now to the problem of finding f(nh), equation (3.4) is
 

expressed in the form
 

(i shn 

n+l
Lsh~
F(S) = (1 +. s) I2 f(n,h) - nn=o T)+-­

or, letting
 

F(s) = ) and (t)= [-IF(s)]
 
_ +2sh ft+ 


as
 

f(t) = f(n,h)(..)n tPn(4fl
 

n~o
 

Thus f(n,h) equals the product of (-13 n and nth coefficient in the expan­

sion of f(t) in Laguerre functions cpn( " Note, because of orthogonality,
 

f(nh) = (-l)n T(t) n( -)dt. 
0 

Other equivalent relations can be obtained.
 

This second method will be demonstrated with an example.
 

Example 3.3: Consider an ideal delay,
 

f(t) = u (t-T) 

-sTF(S) = e 
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then
 

2T Fl-z-! (.7
 

F*(zh) =e
 

In this example, effort can be saved if the similarity of (3.7) to
 

(3.5) is noted.
 

Let
 
-1 4T
 

=-z q=
 

Let 

- q/2 (T--_-) 
F(X) e 1 -1 4T 

(q,x)= l-x 

Thus, from (3.5)
 

cc 
1 F*( x-I1 4T xnny%)1
1- x ' -( = Z cn(q) 

n=o 

or 
cc 

F.z-1) _n -n %q
(-l c(q)
Fz, 7(+z z 

n~o
 

= (-!)nZ-n yn(q) + 3 (-l)nZ-n- cpn(q) 

n=o n=o 

(3.8)
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From (3.8) there results
 

-q/2
 
= co(q) = e
f(O,h) 


= qe- /2f(lh) = (l(q) -cp0(q) 

n
f(nh) = (-1) Eyn(q) -n_l(q)] n 1 (3.9)
 

If the recursion relation (3.6) is used to obtain yn(q), then f(n,h)
 

is easily obtained from the previously computed values of the Laguerre
 

functions. It should be noted that the step-size, h, is not limited to
 

an integral submultiple of the delay time, T. The model obtained is
 

valid for any positive h.
 

Plots of f(nh) for a time delay of three units, T=3, and for
 

various values of h are given in Fig. 3.2. These results are difficult
 

to interpret, since a discrete model of a unit impulse at T=3 is being
 

generated. The plots of Fig. 3.3, however, in which the step response
 

of the above model is plotted, demonstrate that the model produces a reas­

sonable approximation to the true step response, a step at time T=3.
 
-st 

The bilinear transform applied to e results in a more complex 

model than would the usual z-transform identification z = esh. In 

general, consider a transfer function of the form 

F(s) = Fse -sT 

where for simplicity, T = kh k an integer.
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One might suppose that the transformation
 

P*(z,h) = F(g(zh), zk)
 

would have the same stability properties as g(zh) alone, since 
sh 

z = e also maps the left hand s-plane into the interior of the unit 

circle in the z-plane. This corresponds to using one A-stable trans­

formation on one part of the problem, and another on a second part. 
-st -k 

The second transformation, e = z , replaces a delay in the 

continuous time domain by a delay in the discrete-time domain, and 

thus is very easy to implement. The fact is however, that A­

stability is not generally preserved when different transformations 

are used, as is shown by the following example. 

Example 3.4: Consider the system shown in Fig. 3.4a, which consists
 

of a damped second order system followed by a time delay in a simple
 

feedback loop. The second order system has been considered in
 

Example 3.2. and the model derived there using the bilinear transform,
 

equation (3.3) will be used here. 

If a discrete model for the overall system is formed, combining 

the above model for the second order system with the simple model 
-st = k for the ideal delay, where k T/h, an integer, the re­

sultant model will not be A-stable, as can be seen from the following
 

argument.
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The discrete transfer function z-k is obtained by usual z­

transformation of e However, it is possible to consider z-k to
 

be the result of applying the bilinear transformation to the transfer
 

function
 

G~s)=L1 +- sh/2sh/2 J) 


= z-k
G(g(z,h)) 


Hence, if the original continuous system were to have G(s) in place
 
-sT
 

of e as shown in Fig. 3.4c, A-stable modeling (bilinear everywhere)
 

would result in the model of Fig. 3.4b. If the system of Fig. 3.4c
 

is stable, then the model of Fig. 3.4b will be A-stable. However, it
 

is easy to choose values for the parameters for which the original
 

system is stable, but for which the systems of Fig. 3.4c and therefore
 

the discrete model of Fig. 3.4b are not stable.
 

Nyquist plots for both the original system, Fig. 3.4a;,and the
 

system of Fig. 3.4c are given in Fig. 3.5, with T=3, K = .39, and
 

6 = .15, k=2. The first plot does not enclose the -l point, but the
 

second does. Thus the original system is stable, yet the model of
 

Fig. 3.4b, derived using two different modeling techniques fo the
 

separate parts of the problem, is not stable.
 

To verify these conclusions, a computer simulation to obtain the
 

step response was performed and the results are given in Fig. 3.6.
 

The calculated results for both models using a very small step size,
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h = .01, coincide. As expected from the Nyquist diagram, the solution
 

is a damped sinusoid, settling to some positive value. The result for
 

the model of Fig. 3.4b, which mixes two modeling techniques, is shown
 

tobe unstable. The remaining curve is the response of the discrete
 

.model formed by using'the bilinear transformation for both subsystems.
 

The model for esT was derived earlier, equation (3.9).
 

It was found that the model of Fig. 3.4b was marginally stable
 

at h = .75, and since the natural frequency of the second order system
 

is equal to unity, step-sizes larger than .75 are well within the
 

limits of the sampling theorem. The model formed using the bilinear
 

transformation for both subsystems is, as expected; A-stable, i.e.,
 

stable for any value of h.
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CHAPTER IV
 

SORTING AND ITERATION 

4.1 	Introduction
 

It was seen in the previous chapters that for both the OSM and
 

the ISM methods, a set of equations, usually implicit, must be solved
 

at ,each time point to provide the simulation outputs. Computational
 

procedures for the solution of these equations are presented in this
 

Chapter.
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4.2 System Equations and Directed Graphs
 

The OSM method for simulation, which was presented in Chapter II,
 

resulted in a constraint equation (2.6) to be solved at each time
 

point tn. This equation, in discrete notation, is
 

(4.1)
-vn = M G(4n ntn) + PUn 

As in equation (2.6), G represents the combined vector of output
 

equations for each system described in normal form. The appearance
 

of v on the right hand side of (4.1) is due solely to direct physical
-n 

connections from input to output in the original continuous system.
 

The ISM method for simulation produced a similar equation to be
 

solved, equation (2.12), repeated here for convenience,
 

v = M R (v tnn) + Pu (4.2)-- n-n n
 

where R represents the combined vector of discrete models for the
 

input-output-state relations of the subsystems, assuming none are
 

internally implicit. The appearance of vn on the right hand side of
 

(4.2) is due either to direct physical connections from input to output
 

in the original physical system (which was the only reason that v
 --n 

appears in (4.1)) or to the modeling of dynamic subsystems as externally
 

memoryless. The case of internally implicit subsystems is left to the
 

end of this section.
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In equation (4.1), the state of each subsystem is assumed to be
 

computed before it is needed in the evaluation of each component of
 

G. thus x can be regarded as a known entity. For solution purposes,
-n 

equations (4.1) and (4.2) are thus in the same form, and in what
 

follows only equation (4.2) need be considered.
 

It will be recalled that the combined matrix [M!PJ has only one
 

non-zero element, a(+l), in each row, so that equation (4.2) represents
 

a sparse system of equations. To attempt solution without taking ad­

vantage of the structure of the equations would be computationally
 

inefficient. For example, consider a simple cascade of N single­

input single-output subsystems, with an external input, ul, feeding
 

the first system. Equation (4.2) for this system is
 

v 0 0 0 .... 0 0 r(' 1 tn) u1 

V2 1 0 0 . . . . 0 0 r2(v2,tn) 0 

v3 0 1 0 . . . . 0 0 r3(v3,tn) 0 

v4 0 0 1 0 0 r4(v4 tn) 0
 

Vn- 0 0 0 . .. . 1 0 rn(vntn) 0
 

where the time subscript has been deleted on all variables except tn
 

in order to simplify notation. As one possible approach to solution,
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consider a simple iteration procedure of the type used in the trans­

mission line example of Section 2.4, i.e.,
 

i =MR (vt) +Pu-n --n -n
 

which begins with some initial estimate vn . For each iteration, all N 

I n 

subsystems are evaluated, and it can be shown that convergence is 

achieved in exactly N iterations. Hence a total of N2 subsystem 

evaluations must be made. But this would be an extremely inefficient 

method of solution, for the equations can be solved by simply evalua­

ting them in the proper cascaded order, 

u
v1 1
 

V = r1(vltn) 

VN Nl(vNl~tn)
 

In general, a sequential evaluation of the above type is possible only
 

if equation (4.2) is not implicit, i.e., the system is free of directed
 

loops. For example, if the input to the first system of the cascade
 

connection considered above is connected to the final output, the
 

result is a simple feedback loop. If each equation is substituted into
 

the succeeding equation, there results,
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vN = rN(rN_!(rN_2( .... rl(VN) ...)) 

Thus there exists only one unknown, vN to be determined. For this
 

simple loop, a substitution technique is one obvious method that
 

reduces the work to be done in solving the equations. In general,
 

however, the structure-is more complex and more sophisticated tech­

niques will be necessary.
 

In order to take advantage of the structure of equation (4.2) 

for general systems, a directed graph representation will be used. 

Each vertex of the graph will represent one subsystem, and the arcs 

will represent components of v . The external inputs, u , will be 

considered source nodes. An example is given in Fig. 4.1, in which 

the arc v. . represents the jth input to subsystem i. This example 

can be used to suggest a general solution technique based on the 

theory of directed graphs. 

Looking at the graph, it can be seen that there ara no directed
 

arcs from the set of -nodes [3,4,5,6] to the set [1,2], or equiva­

lently, there is only feed-forward of information from subsystems
 

[1,2] to subsystems [3,4,5,6]. Hence, with v1 51 = u1 (known), one
 

method of solution is to solve the equations represented by the
 

directed loop between systems [i] and [21 and thus to produce v .
 

With v3 ,1 determined, the relationships among the subsystems [3,4,5,61
 

can now be solved.
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Generalizing, it is desired to partition the subsystems (nodes)
 

into sequential groups, with each group containing a minimum number
 

of subsystems, so that only a feed-forward of information exists from
 

each group to the groups that follow. With this partitioning, the
 

equations of each group can be solved simultaneously, and the results
 

used in solving the equations of the groups which follow. A minimum
 

number of systems is desired in each group because this minimizes the
 

number of equations which must be solved simultaneously. For each
 

group, the subgraph formed by deleting all arcs from the system graph­

except those interconnecting the nodes of the group will be called the
 

group-graph. For complex systems, an algorithm is necessary to accom­

plish the partitioning and one developed by Steward [4.1], based on
 

previous work of Sargent and Westerberg [4.2] is given in Section 4.3.
 

The partitioning process is only the first step toward a solution,
 

for it now remains to solve the coupled equations of each partitioned
 

group. A subset of the variables of the group-graph, called iteration
 

variables, are chosen such that it would be possible to evaluate all
 

the subsystems of the group in some order if these variables had known
 

values. If we denote this subset as wi. for the ith  group, then, for
 

this group, equation (4.2) can be simplified to
 

w.=Q (W (4.3) 

where the function Q. is simply a sequence of subsystem evaluations.
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If all the subsystems of the group are linear, then equation
 

(4.3) is linear, i.e.,
 

wi = Dwi + d.
 

In this case, the equations of the group can be solved explicitly
 

to give,
 

w. = [I-D] d.1
 

By definition, the determination of wi allows the explicit evaluation
 

of all the subsystems of the group, and hence the updating process
 

for the group is complete. If, however,, the group contains any non­

linear subsystem, then an explicit solution is not generally possible,
 

and iteration procedures must be used.
 

An iteration procedure is a technique of the form
 

w E[ll= (4.4) 

k th
where w. denotes the kth iterate and the sequence'begins with
 
l0
 

some initial estimate w. . E is some estimation operator which chooses1
 

a new and hopefully better value for w. from the previous value. In
 

order to reduce the computational effort, the smallest possible set of
 

variables w. should be chosen for each partitioned group.

1
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The choice of a minimum number of iteration variables for each
 

group can be shown equivalent to a standard problem in the theory of
 

directed graphs, the determination of a minimum feedback arc set for
 

each group-graph. The following definitions, taken from Younger [4.3],
 

will help to make this identification.
 

Definition 4.1: For a directed graph, a feedback arc set is a
 

set of arcs which, if removed, leaves the resultant graph circuit free.
 

Definition 4.2: A feedback arc set is minimum if no other feed­

back arc set for that graph consists of a smaller number of arcs.
 

Definition 4.3: A sequential ordering of a graph of N nodes is
 

a 1-1 function from the nodes of the graph to the integers 1,... ,N.
 

Definition 4.4: For a directed graph of N nodes with sequential
 

order R. the connection matrix
 

C = [CR(i),R(j)4N,N 

has one row and one column for each node of the graph, and the entry 

at row R(i), column R(j), denoted CR(i),R(j) = number of arcs from 

node i to node j. 

Younger shows that for any sequential ordering R of the nodes of
 

the graph, the removal of those arcs (ij) for which R(i) ' R(j) must
 

eliminate all directed loops. If all arcs (ij) for which R(i) R(j)
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are selected as iteration variables, then, since no directed loops
 

remain, the subsystems can be evaluated in the'order determined by R.
 

Hence, a sequential ordering determines a choice of iteration varia­

bles. To find a minimum number of such variables, it is therefore
 

desired to find a sequential ordering Rwhich minimizes the number of
 

arcs (ij) for which R(i) R(j). This is exactly the problem of de­

termining a minimum feedback arc set for the group-graph. This
 

problem is considered in the next section, but-first a discussion of
 

systems containing internally implicit subsystems will be given.
 

It was seen in Chapter II that there are two approaches to the
 

solution of the equations of internally implicit subsystems. In the
 

first approach the equations were to be solved by a process
 

internal to the subsystem. Hence, from an input-output viewpoint,
 

the equations of the subsystems need never be considered and the de­

velopment of the proceeding section applies exactly.
 

It is possible, however, to treat the equations of an internally
 

implicit subsystem simultaneously with the implicit equations of the
 

overall simulation. This approach will in general be more efficient
 

since the structure of the overall simulation is taken into account.
 

A method of accomplishing this will now be given.
 

The equations of an internally implicit subsystem can have two
 

forms, equations (2.10) and (2.11). Equation (2.11) will be considered
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first, since the solution technique is more easily illustrated for
 

this form. Equation (2.11) is,
 

xn =q(xo ... xn; Vo ... vn;to ...2tn)
 

Yn r(xop....n ; Vo05 ''3 Vn;to ' 'tn -


Since, for this model, the equation is implicit in the state, x
 

an obvious solution technique is to consider the state as an auxiliary
 

iteration variable for this subsystem. This in no way affects the
 

choice of iteration variables for each group-graph, since only inputs
 

and outputs are shown in these graphs.
 

If the system equation is of the form (2.10), repeated here,
 

o ' . y n ; Yn = P(y . . Vo... ...'Vn;to 'tn) 

then the implicit equation for this subsystem involves the output, yn"
 

This would represent a self-loop in the group-graph, were it to be added
 

there. In order to break all loops, this self loop must be broken.
 

Thus yn can be immediately labeled as an iteration variable, and re­

moved from the group-graph.
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To remove the arcs corresponding to Yn for a specific
 

subsystem, it is necessary only to modify the matrix M as follows.
 

The (ij)th entry of M indicates that the jth output is connected
 

to the ith input. Thus all entries in the column corresponding to the
 

output in question need simply be removed. In the following section,
 

it will be assumed that this modification has been made, if necessary.
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4.3 Sorting Procedure
 

As seen in the previous section, the sorting procedure should act
 

in two steps. The first step is to partition the nodes of the system
 

graph into sequential groups such that there exists only feed-forward
 

of information from any group to those groups which follow it in the
 

ordering. This defines which subsystem equations must be solved
 

simultaneously and in what order. The second step is to find a mini­

mum feedback arc set for each group-graph, which determines a set of
 

iteration variables for each group of equations.
 

A preliminary simplification of the system graph is possible
 

which reduces the complexity of the partitioning process. The source
 

nodes (external inputs) and the arcs which leave them, can never be
 

iteration variables, for they represent known quantities. In es­

sence, the source nodes can be considered as a first group of the
 

partition, for their "equations" are always solved by definition.
 

Hence in what follows, the matrix of external input connections P,
 

neednot be considered.
 

In order to apply the partitioning algorithm, the connection
 

matrix, C, must be determined. All the information necessary to
 

determine this matrix is contained in the matrix M of equation (4.2)
 

from which the system graph was derived. Adding together all the'
 

rows of M corresponding to subsystem i, i=l,...,N and adding together
 

all the columns corresponding to subsystem j, j=I... N, there results
 



95.
 

a new matrix, S, whose (i,j) th element is the number of arcs from
 

subsystem j to subsystem i. Hence, the connection matrix is the
 

transpose of S, or C = St.
 

Once the connection matrix is determined, the algorithm presented
 

by Steward [4.1] can be used to partition the subsystems into the
 

desired groups. This algorithm proceeds as follows:
 

(1) A column is sought having no predecessors, i.e., no entry
 

in the column, and that column and the row corresponding to it elimi­

nated. This process is repeated until there are no further columns
 

without predecessors.
 

(2) Any path traced following predecessors must lead into a loop.
 

Since the graph is finite and by Step (1) there is no column without
 

a predecessor, such a path must eventually repeat a column. Retracing
 

the path from this column gives a loop.
 

The union of two columns is defined to.be the sum of the columns, mod 2.
 

(3) When a loop is found, the set of columns in the loop is
 

replaced by one column which is the union of the columns replaced.
 

This is called collapsing the columns of the loop. Similarly, the
 

rows corresponding to these columns are collapsed. Any entries which
 

result on the diagonal are set equal to zero, since they simply re­

present connections within the collapsed loop.
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When a column without predecessors is eliminated, that column
 

and the columns which collapsed to form it represent the subsystems
 

in a group. The order in which columns without predecessors are
 

eliminated gives an order in which these groups may be solved.
 

Example 4.1: The connection matrix for the graph of Fig. 4.1,
 

eliminating the known input v1 1 and source ul, is
 

1 2 3 4 5 6 

1 0 1 0 0 0 0 

2 1 0 1 0 0 0 

3 0 0 0 1 0 1 
C= 

4 0 0 0 0 0 1 

5 0 0 1 1 0 0 

6 0 0 0 0 1 0 

There are no columns without predecessors. Beginning in column (1),
 

the loop 1-2 is found. Collapsing the loop gives
 

1-2 3 4 5 6
 

1-2 0 1 0 0 0 

3 0 0 1 0 1 

4 0 0 0 0 1 

5 0 1 1 0 0 

6 0 0 0 1 0 
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Column (1) now has no predecessors, and .can be removed. Thus, [1,21
 

is the first group. Removing this column and row gives
 

3 4 5 6 

3 0 1 0 1 

4 0 0 0 1 

5 1 1 0 0 

6 0 0 1 0 

The loop 3-5-6 is now found, and collapsing these rows and columns
 

gives,
 

3-5-6 4
 

3-5-6 0 1 

4 10 

These two columns form a loop, hence the second group is [3.4,5,6).
 

This grouping was previously obtained intuitively.
 

With the partitioning accomplished, a minimum set of iteration
 

variables must be found for each group. In the previous section, it
 

was stated that the problem of determining a minimum set of iteration
 

variables corresponds to the problem of determining a minimum feedback
 

arc set for the group-graph. In order for this correspondence to hold
 

for all systems,- a simple modification must be made in the group-graph,
 

under certain conditions, to adjust for the following difficulty. In
 

the group-graph, a single output of one subsystem going to many inputs
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represents only one variable, but many arcs. However, if the subsystem
 

has separate outputs going to each of the other inputs, then this
 

represents many variables and as many arcs. The two graphs look
 

identical except for labeling of the arcs, but are very different as
 

far as choice of iteration variables is concerned. If the single
 

variable of the first situation is chosen for iteration, then this
 

removes all the arcs which it labels. To break all the arcs in the
 

second case, all the variables must be chosen for iteration. To
 

remedy this difficulty, a single output going to a multiplicity of
 

inputs will first be removed from the node through a single arc to a
 

new inserted node which will then branch to the necessary input loca­

tions. The cutting of the single arc connecting the original node and
 

the inserted node will always be equivalent to the cutting of all the
 

branching arcs.
 

Once the graph has been modified as above, a minimum feedback arc
 

set for the group-graph is a minimum set of iteration variables. It
 

was seen in the previous section that an ordering of the nodes deter­

mines a feedback arc set. Hence, such an ordering will be determined
 

according to the following definition [4.31.
 

Definition 4.5: An optimum ordering R is a sequential ordering
 

of the nodes of a directed graph for which f(ij), R(i) ; R(j)] is a
 

minimum feedback arc set.
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Before an optimum ordering is sought, recognition of certain charac­

teristics of the graph may simplify the problem. The first concerns loops
 

of two arcs. A theorem of Younger's gives this simplification.
 

Theorem 4.5: The set of optimum orderings for a given graph is
 

invariant under the removal of loops involving two arcs. In the
 

case of multiple arcs between nodes, e.g., p arcs from node i to node j
 

and q arcs from node j to i, with p > q, then up to q arcs may be re­

moved from i to j and the same number removed from j to i.
 

Hence, when searching for an optimum sequential ordering, all loops
 

involving only two nodes can ,be removed from the graph. As an example,
 

the first group of the graph in Fig. 14.1], nodes [1,21, contains a
 

loop which can be removed. In this case, both possible orderings are
 

optimal, for the ordering [1,21 gives v as the only iteration vari­
1,2
 

able, and the ordering [2,1] gives v2 p1 as the only iteration varia­

ble.
 

A second simplification, which is an extension of a simplification
 

first given by Sargent and Westerberg [4.21, can be accomplished if the
 

form shown in Fig. 4.2a appears in the graph. The arcs to the left
 

and right of nodes 1 and 3 respectively denote connections to the
 

remaining nodes of the graph. For this configuration, to cut all
 

paths 1-2-3, only-the min[pq] arcs need be cut. Node 2 therefore
 

can be temporarily removed, and the arcs from nodes 1-3 replaced,
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using Theorem 4.5, by a number of arcs r-s+ min[p,q], where a positive
 

result is interpreted as arcs from 1-3 and a negative result as arcs
 

from 3-1. If the chart in Fig. 4.2b is examined, it is seen that the
 

final position of node 2 is determined by the relative position of
 

nodes 1 and 3. If 1 precedes 3, then the final ordering should be
 

1-2-3 and if 3 precedes 1, then the final ordering should be 2-3-1
 

if p < q or 3-1-2 if q < p.
 

The simplification techniques presented above greatly reduce the
 

effort involved in finding an optimum ordering; however, the algorithm
 

developed by Younger will work whether or not they have been applied.
 

Younger's algorithm is given in complete detail in [4.3], but the
 

'salient characteristics are presented here.
 

Definition 4.6: For a sequential ordering R of a directed
 

graph, a consecutive subraph is any nonempty subgraph composed of
 

nodes consecutively ordered by R and the arcs connecting them in the
 

overall graph.
 

For subgraphs G1 and G2 of a directed graph G which contain
 

no common node, let CG G denote the number of arcs each of which
 

leaves a node in G1 and enters a node in G2
.
 

Definition 4.7: An orderind R for a directed graph is admissible if:
 

(a) the graph ordered by R satisfies C G C for all appro­

priate consecutive subgraphs G1,G2
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(b) the feedback arc set determined by R contains no proper sub­

set that is also a feedback arc set.
 

An admissible ordering for a group-graph is intuitively a good
 

ordering. A first admissible ordering is easy to find and in fact,
 

the search process could be stopped here if it were decided that a
 

small, but not necessarily minimum, number of iteration variables
 

would be acceptable. Yqunger's algorithm begins by finding an ad­

missible reference ordering. A new ordering Rt . which has a smaller
 

number of feedback arcs, is sought, through a perturbation process.
 

This new ordering RI becomes the new reference ordering, and this
 

process repeated until a reference ordering is obtained which cannot
 

be improved. This is an optimum ordering, and determines a minimum
 

number of iteration variables.
 

Example 4.2: A brief sketch of the application of this algorithm
 

to the graph of Fig. 4.1 will now be given. For the second partitioned
 

group, nodes [3,4,5,6], the first step is to choose an initial ordering
 

and check to see if it is admissible. If it is not, the testing
 

process yields the information needed to change to an ordering which
 

is admissible. For the example, the given numbering of the nodes,
 

[3,4,5,6] serves as a first try. This is shown to be not admissible,
 

because the subgroup [3,4) has no arcs going to the group [5], while
 

[51 has two returning to [3,41. The algorithm permutes the nodes to
 

obtain the admissible reference ordering [3,6,5,41. This ordering
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gives the two iteration variables v6 1 and v3 ,2. It is seen in the
 

graph that if these two arcs are removed, no loops remain. However,
 

this ordering is not optimum, for the algorithm next produces the
 

ordering [5,3,4,61 with only one feedback arc, v5 I . It is seen in
 

the graph that removing only v5,1 does break all loops. Fig. 4.3
 

shows how the overallsimulation would proceed, once the sorting in­

formation is available for this example.
 

Younger's algorithm has one characteristic, already alluded to,
 

that makes it more suitable to computer sorting of the equations than
 

other techniques. This algorithm can be stopped at any point, and
 

the results used meaningfully, because whatever admissible refer­

ence ordering has been found at that point serves to determine a good
 

(but not optimum) set of iteration variables. The other applicable
 

techniques, in particular dynamic programming, must work completely
 

to a solution before any choice of iteration variables is possible.
 

For a large problem, it may be preferable to preset an amount of com­

putation time that will be allowed for this stage of the simulation,
 

and stop the search if this time is reached. With Younger's algori­

thm, the simulation proper could be begun at this point, whereas with
 

dynamic programming the search has simply failed.
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A summary of the entire sorting procedure is given below:
 

(1) Partition the nodes with the partitioning algorithm.
 

(2) Modify any outputs which connect to more than one input to
 

include an extra node.
 

(3) Apply the two simplification methods to each group-graph
 

(optional)
 

(4) Find a sequential ordering for each group which determines
 

a minimum set of iteration variables (optionally, a suboptimal set).
 

The final result is the sequential ordering of the groups, with each
 

group properly ordered (and thus determining the iteration variables).
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4.4 Iteration Procedures
 

In the preceding section, the equations of each partitioned group
 

were shown to have the form of equation (4.3), repeated here
 

wi = Q(w.) (4.5)
 

whereQi is a sequence of subsystem evaluations determined by the sequen­

tial ordering, R for the ith group-graph. The ordering R. was found
 

which minimized the number of variables, wi. In this section, techniques
 

for solving (4.5) for each group-graph will be discussed, where it is
 

assumed that the group contains at least one nonlinear subsystem. The
 

purpose of this discussion is to show how the structure of the system
 

model influences the choice'of an iteration procedure.
 

In order to simplify notation, the subscript i will be dropped in
 

what follows, since only the equations of one group will be considered
 

at a time. It will be recalled that equation (4.5) must be solved at
 

each time point, and that the time subscript, n, was previously removed.
 

Thus in what follows, the solution of equations of the form.
 

w = Q(w) 

are considered.
 

The first method which suggests itself is direct iteration of the form ##
 

k+l k o
 
w = Q(w ,w (4.6) 

Throughout this section the superscript notation ( ) indicates
 
"k-th iterate".
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This method was successfully used in the transmission line example
 

of Section 2.4. The properties of this iteration procedure follow
 

easily from some definitions and theorems of analysis (see, e.g.,
 

[4.4J, p. 627ff).
 

Definition 4.8: A mapping q(w) of the w-space into itself is
 

said to be a contraction if there exists a c < 1 such that
 

for all w,w?IIQ(w) - Q(w')II - cIIw-w' H 

Here 11'11 denotes a vector norm, e.g. jxii A max Ixi 

Let = 

Theorem 4.6: Given a continuously differentiable function Q(w),
 

if 

IIII !5c < 1 for all w, 

then Q(w) is a contraction. Here 11.11 denotes the matrix norm
 

IIqII A max Eq I.= . 



108.
 

Theorem 4.7: If Q is a contraction mapping, a unique solution
 

w* of equation (4.6) exists. w* can be obtained as the limit of a
 

sequence [w, where
 

wk+l= Q(w ) k = 01,2... (4.7) 

and w is any given initial value.
 

The rate of convergence of wk to the solution is given by
 

I - w*O i 

= 11 w ­wll 

The direct iteration procedure thus converges only if the norm of
 

the Jacobian of Q satisfies a Lipschitz condition. The Lipschitz con­

stant, c, determines the rate of convergence of the sequence and if
 

c > I, the sequence may diverge. For most systems, the function Q is
 

not a contraction and more sophisticated iteration procedures must be
 

used.
 

At this point it is worth noting the effect of integration step­

size on the convergence of the iteration procedure. The implicit equa­

tions will often result from the use of A-stable modeling of subsystems,
 

in which case the step-size h will appear as a parameter in the func­

tion Q. In this case, Q will often be a contraction only for values
 

of the step-size less than some value, h . If direct iteration is to be
 

used to solve the equations, then to achieve convergence, it must be re­

quired that h be less than he . But this reintroduces a limitation on h,
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which negates the purpose of A-stable modeling. Thus direct iteration
 

is not generally useful when A-stable modeling has been used.
 

Another useful technique is Newton-Raphson, which for equation
 

(4.6) is
 

wk+l =wk 'k - wk Qk k=01 .
 

where 0wk A'= a'W W Wk 

The difficulty in applying Newton-Raphson to the solution of
 

equation (4.6) for general systems results from the necessity of
 

k k
evaluating the Jacobian at each iteration. In general, % may be 
very difficult to compute, or may simply not be available. If the
 

Jacobians of each individual subsystem are included in the mathematical
 

model of that subsystem, then the sorting procedure of the previous
 

section can be used to select the proper derivatives as the loops are
 

traversed. It would be desirable however, to avoid as much of the
 

aforementioned computation as possible. A method due to Broyden [4.5)
 

has this property. The method of Broyden chooses a new estimated value
 

for [I - kJ from the values of the functions at each iteration. The
 

method uses this estimated value in place of the true value in a Newton
 

iteration, and hence belongs to a class of methods called quasi-Newton
 

methods.
 

This method is outlined below, with slight modifications due to
 

the special nature of the simulation equations being solved.
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0
(1) Obtain an initial estimate w of the solution. The final
 

value for w at the previous time point will usually be a good choice.
 

(2) Obtain an initial estimate of the iteration matrix
 

Fo$01 o
 

Again, the final value for H from the previous time point is a very
 

good choice.
 

(3) Compute £k =k Q(wk)
-

= _ fk
(4) Compute pk 


(5) Choose tk such that if'
 

k+l k k k w =w + pt
 

then
 

l1fk+l11 < 11fk.11 

Broyden shows [4.61, that if the method is close to a solution of (4.5),
 

then the Newtonian value of unity for tk can be chosen and
 

the norm minimization avoided. Since, in the problem considered here,
 

good initial estimates are available at each time step, tk will be set
 

to unity.
 

(6) Test fk+l for convergence. If convergence has not been reached,
 

(7) Compute yk = fk+l _ fk
 

Hk - (Hkyk - Pkk )(p ) ttHk/(pk)tF
(8) Compute Hk +l = 


(9) Repeat from step (4).
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Broyden's method avoids the computation of the Jacobian, but the
 

cost may be an increased number of iterations at each step. However,
 

since a good initial estimate of the solution and iteration matrix are
 

available at each step, in general the number of iterations will not be
 

much higher than that achieved using true Newton-Raphson.
 

The following example illustrates the necessity of using the
 

more complex iteration procedures.
 

Example 4.2: Consider the transmission line example of Section
 

2.4, with the capacitor C2 removed from the nonlinear termination
 

(see Pig. 2.2). With the capacitor removed, there results a term in
 

the Jacobian Q corresponding to the incremental resistance of the
 

right hand termination, i.e.,
 

av2
 

In the linear case, this term equals R2, and with a value of 2K, the
 

norm of Q exceeds unity in magnitude and it is expected that direct
 

iteration would diverge. Similarly, for the diode load,
 

N2 vT
ai2 - iT2_0
 

which for small values of i2 also exceeds unity in magnitude. It was
 

confirmed experimentally that direct iteration divebged for either the
 

linear or diode load.
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Both Newton-Raphson and Broydents method were now applied to the
 

problem with good results. For the linear load, with h = 1/32 and
 

E = .001, both methods'took almost exactly the same average number of
 

iterations per step, 1.78. This is not surprising, for once Broyden's
 

method has solved the equations at the first time point, it has con­

verged to the exact value of the iteration matrix, which is constant in
 

time for the linear loads. Hence, after the first time point, there
 

is essentially no difference between Broyden's method and Newton-Raphson.
 

In the nonlinear case, both methods converged, with Broyden's method
 

taking a slightly higher average number of iterations per step, 1.92
 

for Broyden's versus 1;83 for Newton-Raphson. Computationally however,
 

this means that Broyden's method was more efficient, since two extra
 

function evaluations are needed to compute the necessary derivatives
 

for Newton-Raphson.
 

The above analysis and computational results suggest that it is
 

useful to have available a good hierarchy of iteration schemes, using
 

direct iteration if possible, followed by Broyden's method if the
 

former diverged. Ideally, however, a general purpose simulation
 

language would have a large repertoire of iteration routihes, similar
 

to the presently available repertoires of integration methods, with
 

the choice left to the user.
 



113.
 

REFERENCES
 

[4.1] D. V. Steward, "Partitioning and Tearing Systems.of Equations," 

J. SIAM Numer. Anal. Ser. B 2, no. 2, pp. 345-365 (1965). 

[4.2] R. W. H. Sargent and A. W. Westerberg, "Speed-up in Chemical 

Engineering Design," Tran. Instn. Chem. Enqrs. 42, pp. T190-T197, 

(1964). 

[4.3] D. H. Younger, "Minimum Feedback Arc Sets for a Directed 

Graph," IEEE Trans. Circuit Theory CT-10, no. 2, pp. 229-245, 

(June, 1963). 

[4.4] L. V. Kantorovich and G. P. Akilov, "Functional Analysis in 

Normed Spaces, Pergamon Press, London, England (1964). 

[4.5] C. G. Broyden, "A Class of Methods for Solving Nonlinear 

Simultaneous Equations," Math. Comp. 19, pp. 577-593, 

(October, 1965). 

[4.6] C. G. Broyden, "A New Method of Solving Nonlinear Simultaneous 

Equations," Computer Journal 12, no. 1, pp. 94-99, 

(February, 1969). 



114.
 

CHAPTER V
 

CONCLUSIONS
 

The primary goal of this research has been to develop computational
 

methods for the digital simulation of continuous systems. It was de­

sired to develop methods which would be applicable to a wider class of
 

systems and would be more efficient than currently available simulation
 

languages.
 

By analyzing current simulation methods, it was possible to dis­

tinguish and describe two fundamentally distinct approaches to simula­

tion, herein named the 0SM and the ISM methods. The 0SM method, in
 

general use in available simulation languages, models the overall sys­

tem, its component parts or subsystems having already been incorporated.
 

The ISM method models the subsystems and then interconnects these
 

models. It was shown that the ISM method is applicable to a wider
 

class of systems than the OSM method. Thus, to achieve greater
 

generality for a simulation languages, the ISM method should be used.
 

Within this context the types of numerical modeling techniques admis­

sible for the ISM method were determined, and the characteristics of
 

the simulation.which result from using these methods were investigated.
 

One problem which limits the generality of available simulation
 

languages is their inability to solve sets of implicit equations.
 

Previously, this problem was not considered a limitation serious enough
 

to justify structuring a simulation language around the solution of
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implicit equations. As was shown in this research, however, the solution
 

of implicit eqfuations is related to another very Serious limitation of
 

current simulation languages: their inability to simulate stiff systems
 

efficiently.
 

A-stable modeling is discussed as a satisfactory technique for the
 

efficient simulation of stiff systems, and a new development for the
 

application of A-stable methods to modeling of linear systems is given.
 

It was shown that A-stable modeling results in implicit equations for
 

the overall simulation. Thus, since the practical, efficient handling
 

of stiff systems involves implicit equations, solving these equations
 

becomes a necessity and justifies the structuring of simulation lan­

guages around this problem.
 

In order to structure simulation languages to deal with implicit
 

equations, sorting and iteration procedures for the efficient solution
 

of these equations are presented. Subsystems are sorted to obtain a
 

good computational sequence. Since nonlinear systems are generally
 

present, iteration procedures to solve the system equations are
 

presented.
 


