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FOREWORD

NASA experience has indicated a need for uniform design criteria for space vehicles.

Accordingly, criteria are being developed in the following areas of technology:

Environment

Structures
Guidance and Control

Chemical Propulsion

Individual components of this work will be issued as separate monographs as soon as they

are completed. This document, Effects of Structural Flexibility on Launch Vehicle Control

Systems, is one such monograph. All previous monographs in this series are listed on the last

page of this document.

These monographs are to be regarded as guides to design and not as NASA requirements,

except as may be specified in formal project specifications. It is expected, however, that the
criteria sections of these documents, revised as experience may indicate to be desirable,

eventually will become uniformly applied to the design of NASA space vehicles.
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EFFECTSOF STRUCTURALFLEXIBILITYON
LAUNCHVEHICLECONTROLSYSTEMS

1. INTRODUCTION

Experience with launch vehicle control systems shows that to achieve a satisfactory design
the structural flexibility of the vehicle must be considered. The flexible structure can be

excited by forces acting on the vehicle with the resulting deformations giving rise to control

system sensor inputs. Thus the structure is an integral part of the control loop. If the
deformation inputs (referred to herein as structural feedback) are ignored or improperly

considered, the space vehicle may not be properly controlled and, in many instances, the
vehicle can exhibit self-excited divergent oscillations that may be destructive. Thus, the

control system designer must be aware of the numerous ways in which structural feedback
can occur and must ensure that the effects or feedback phenomena are properly considered.

Launch vehicle control systems to date have been designed by means of frequency domain

analytical techniques supplemented by extensive simulation studies, component tests,

system tests, and when necessary, flight tests. Problems arising from the dynamic interaction

of the control system with the flexible structure are influenced by sensor location, local

structural flexibility, and structural mode shapes, frequencies, and damping characteristics.
If an adverse structural flexibility interaction with the control system is predicted, an

attempt is made to ameliorate the interaction by modifying the control system (e.g., by

changing filter networks or relocating sensors). If these modifications fail to resolve the

interaction problem, structural redesign to decrease the interaction may be necessary.

Important factors affecting the design of the control system are

• Transient conditions

thrust transients

liftoff and staging transients

engine failure
switchover to redundant control system

slingshot effect

• Environmental conditions

noise

buffet

winds

Pogo

panel flutter



• Otherconsiderations

sampleintervalsandquantizationincrements(digitalsystems)
spinresonance
"garden-hose"effect
pilot-in-the-loop

The control systemdesignis also affectedby trajectoryconstraints(mission-connected
constraints),e.g.,drift rate,launchandexit window,andpropellantmanagement.

This monographis concernedwith control during the boostphase;significantflexibility
may exist in the launchvehicleonly or in the entirespacevehicle-whichterm comprises
both the booststagesandthe spacecraft.All significantaspectsof spacevehiclestructural
feedbackon the control systemare considered.This monographcomplementsNASA
SP-8016,Effects of Structural Flexibility on Spacecraft Control Systems (ref. 1) which

discusses how structural flexibility affects the design of control systems of vehicles

operating in space.

2. STATE OF THE ART

2.1 The Problem

The primary function of the launch vehicle control system is to direct the flexible vehicle to

a desired set of end conditions, without violating an extensive set of operational

requirements or constraints. Physically, the control system must process data from sensors

to provide command signals to engine or control surface actuators. The sensors measure

angular or translational motion; their outputs indicate the gross (rigid-body) motion of the

vehicle plus motion caused by structural deformations at the locations of the sensors. These

deformations affect the command signals to the control effectors, usually gimballed engines

or control surfaces. Since the effectors apply forces to the structure, energy can be fed into

the structure at various frequencies, including those where resonant oscillations may be

excited. Because structural damping is small, it is possible for the effectors to add energy
faster than it is dissipated. The ensuing structural deflections may be excessive, and
structural failure can result.

To avert this situation, the control system must process the sensor signals so that there is a

net flow of energy out of the structure. This can be accomplished in two ways. First, the

control system may block or filter sensor signals at resonant structural frequencies, thereby

preventing the effectors from supplying energy at those frequencies. Thi_ method, called

gain stabilization, depends upon structural damping for net energy removal and is used to

avoid excessive response in high frequency modes. The control system must perform its

primary task of controlling the gross motion of the vehicle, and to do so effectively it must



supply energy in a band of frequenciesdetermined by control and/or guidance
requirements.In generalone or moreof the lowestfrequencymodesarenot sufficiently
separatedfrom this bandto permit gainstabilization.Thealternative,phasestabilization,is
to designthe controllersothat controlforcesarephasedto removeenergyfrom themodes.
Most designsemployboth methods,with phasestabilizationof low frequencymodesand
gainstabilizationof higherfrequencymodes.

A typical block diagramof the control loop with flexiblebody dynamicsis illustratedin
figure 1. The controller processesinput Commandsand feedbacksignals,and generates
outputsto commandthe effectors.The controller,whichmaybeanalog,digital,orhybrid,
includesany gain changingprograms,compensationsystems,and signalconditioningor
filtering. Actuatorsdrivethe enginegimbalsor control surfaceswith their own motions
controlledby actuatorfeedbackloops.The forcesintroduced by thrustor controlsurface
deflectionaffect the vehiclemotion and inevitablyexcite the flexible body modes.The
motion of the massiveenginesor control surfacesalsoproducesinertial forceswhichcan
yield undesirabledeflectionsof the support structure, and in turn producecontrol
disturbances.In addition,externalinfluencesproducedisturbingforceswhichmayexcite
the modes.Vehicle.motionat the locationof thesensorsisdetectedby thesensorsandfed
backto the controller.In addition to thebasicstructuralfeedbackloopillustratedin figure
1,a numberof otherinteractionpathsmaycausedifficulty. Actuatorsandenginedynamics
may interact with structuraldeformations.Enginenoiseandvibration canaffect sensor
performance.Thesensormountingstructuremayexhibitundesiredresponsesresultingfrom
local flexibility. Propellantandpayloadsmayalsoexhibitsignificantdynamiccharacteristics
andshouldbe includedin thedeterminationof thespacevehiclestructuralvibrationmodes.
In addition,boundary-layernoise,andbuffet andaeroelasticeffectsmayproducesignificant
inputsto thesensors.

2.2 The Design Process

Control system design necessitates the investigation of the dynamic characteristics of the

entire vehicle dynamic system including all significant vibration modes. Generally, vehicle

configuration and mission trajectory are defined, and control system requirements are

generated therefrom. A number of influences, usually derived from operational
considerations, constrain the control system design. For example, the vehicle must clear the

launch tower and follow a prespecified trajectory with required accuracy; the control

system must tolerate and correct for wind and other aerodynamic disturbances encountered

during flight; and engine deflections must be confined within specified limits that are

normally less than the mechanical limits. Freedom to select sensor location is usually limited

by the physical restrictions imposed by other subsystems. Reliability is most important; and

the control system must be capable of completing the mission under certain partial failure
conditions. Finally, there are additional characteristics such as simplicity, maintainability,

and ease of checkout which must be considered in design tradeoffs.
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In early design stages previous designs are reviewed to benefit from past experience, and a
candidate control system is configured from the rigid-body control requirements.

Refinement of the design necessitates the investigation of the flexible vehicle dynamics and

usually results in considerable modification to the candidate control system gains derived

from the rigid-body analysis. The control loop design with flexible-body dynamics is a

nonlinear problem with time-varying coefficients and contemporary analytic methods are

inadequate to handle the complete system. Simplifying assumptions must therefore be made
to obtain a tractable solution. The structure is modeled as a finite parameter system by

ignoring high frequency modes (truncating the model). Time-varying parameters are
assumed to be constant over small flight-time intervals, and the system is analyzed as a

sequence of constant parameter systems (time-slice analysis). The candidate control system
is linearized about a set of nominal parameter values and a preliminary stability analysis is

conducted to identify basic design requirements such as those modes that must be phase

stabilized and whether baffles are needed to suppress slosh modes. Compensation, filtering,

and sensor location are chosen as required for stability of the system. Since data on

pertinent structure and control system parameter values are seldom known with precision at

this time, the design must be such as to tolerate a range of parameter variations.

Improved mathematical models are then developed, which reflect the complexity of the

system and the accuracy requirements. These models must account for all significant

dynamic phenomena and typically include higher frequency vibration modes,

cross-coupling, input data tolerances, flexible internal subsystems, sensor and actuator

dynamics, and effects of malfunctions.

Once a system is nominally designed, based on the above considerations, additional

requirements such as launch pad stability and control and stability during and after staging

are investigated. If the same sensors and signal processors control upper stages throughout

the boost, the function of the system during each successive stage must be considered.

Alternatively, separate control systems for each stage must be designed, in their entirety,

taking account of structural flexibility.

Effects of the highest probability malfunctions are analyzed and simulated to determine if
tradeoffs can be made in the nominal design to improve off-nominal performance. A period

of comprehensive design confirmation then begins, involving extensive reanalysis,

simulation, and tests of the control system and its components. System performance with

off-nominal parameter values is examined. Nonlinear effects are studied in detail to
determine the character of significant limit cycles. Changes in mission and vehicle

configuration are monitored up to launch to determine their effects on performance.

Subsequent to launch, flight data are collected, and comparisons are made with detailed

simulations to verify the mathematical models.



2.3 Review of Design

Flight Experience

and

Space vehicle configurations are illustrated in figure 2. Each vehicle shown has been used to

launch payloads which vary from the payload configurations shown. Variations in payload

and mission requirements often require a significant diversity of control system hardware.

Each control system design must be examined for potential difficulties created by changes

in vehicle mass and stiffness distribution, as well as flight envelope.

In the past, structural flexibility effects on the control system usually have been anticipated

and successfully accounted for by appropriate analysis and design methods. However, those

instances when interactions were overlooked are particularly instructive because they reveal

the intricate nature of the problem and its costly consequences (ref. 2). Hence, it is useful to

review cases of successful initial designs, failures, and design changes to circumvent previous
causes of failure.

2.3.1 Structural Feedback Problems

The most common structural feedback problems are those in which either gross vehicle or

local body oscillations are reinforced by the control system.

2.3.1.1 Vehicle Body Deformation

Sensor location.-Improper sensor location can result in structural feedback problems. An

idealized representation of a beam-like space vehicle deflected in its fundamental bending

mode is shown in figure 3. Typically, an angular motion sensor, such as a rate gyro, senses

structural pitch deflections. When these deflections are added to rigid-body vehicle pitch
deflection, the outcome may be undesirable control action resulting in continued or

increased structural deformation. References 3, 4, and 5 illustrate and elaborate on this

phenomenon.

One of the earliest encounters with phenomena of this type was with the Vane Test Vehicle

Number 4 (VTV-4) illustrated in figure 4. This vehicle was an experimental missile for

testing the feasibility of exhaust vane attitude control systems. The control system

employed angular displacement and rate gyros to provide feedback information. A

command signal to the vane servo was generated from a linear combination of the

displacement and rate gyro feedback signals. The vane servo positioned deflection vanes in

the rocket exhaust to produce attitude control forces. All control system parameter values

were constant during the flight.
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Telemetry records of the VTV-4 flight indicated existence of a 10-Hz oscillation, beginning

immediately after launch and rapidly increasing until limited by saturation in the servo

system. Since the oscillations occurred immediately after launch, aerodynamic forces did

not contribute significantly to the oscillation. The severity of the oscillation resulted in the

complete destruction of the vehicle. An analytical investigation (ref. 6) indicated that

structural feedback involving the vehicle first bending mode caused the unstable oscillation.

The analysis proposed that either the gyros be relocated or an electronic compensation

network be employed to stabilize the structural feedback control loop.

Vibration mode characteristics.-Improper determination and selection of vibration modes

may lead to structural feedback problems. On Atlas/Mercury launch MA-2 (Atlas 67D), a

nondestructive control system limit cycle occurred which was caused by structural feedback

associated with the seventh vibration mode. The characteristics of this mode had not been

accurately predicted because of an uncertainty regarding upper stage fairing flexibility.

Electronic filtering, based on modal characteristics determined from flight data, was used to

solve the problem (ref. 7).

Roll Launch-escape

]]_ tower

_ Command module

?__ Service module

[

I

i

__Pitch

Booster stage

J Aerodynamic

J control

J surface

Figure 5.-Little Joe II/Apollo vehicle.

Vehicle design changes result in changes in

vibration mode characteristics which must

be properly assessed as to their effect on

structural feedback. For example, a

structural feedback problem occurred

during the flight of Little Joe II/Apollo

vehicle 12-15-1 (fig. 5). A 3.5-Hz vibration

mode oscillation was sensed by the rate

gyros, causing excessive elevon motion. The

inflight frequency was well below the

predicted value of 5.25 Hz for the first

vehicle vibration mode. The discrepancy

was attributed to incorrect estimates of

payload mass distribution used to calculate

the first bending mode of the Apollo

launch escape tower. Although the

oscillation was undamped, its amplitude

was not sufficient to affect the mission. To

preclude occurrence of the oscillation on

subsequent flights, a notch filter which

provided attenuation at 3.4 Hz was added

to the control system (ref. 8).

It is common practice to establish stability

objectives for the control loop with flexible

body dynamics. As more precise models

evolve during the design process, these

objectives may be relaxed if the results of a



more extensive analysis, usually a tolerance analysis, warrant it. For example, the Titan III-C

series of launch vehicles, illustrated in figure 6, had a specified requirement that the third

and higher modes be gain stabilized by at
least 10 dB. The third mode of vehicle

C-11 did not meet this requirement.

Tolerance analysis indicated no stability

problems. The vehicle was flown

successfully (ref. 9). Reference 10 presents

another example of a noncritical

experience with structural interaction on

the Titan III-C series-a case involving the

proper selection of space vehicle modes.

The vibration mode characteristics of a

space vehicle before liftoff usually

approach those of a structure in cantilever

support, with holddown or slow-release
mechanisms contributing to the cantilever
effect. Since the vibration mode

characteristics are substantially different

from those of the vehicle during flight, the
vehicle may be susceptible to undesirable

feedback or control activity before liftoff.

During the holddown period of Saturn IB

mission SA-203, the vehicle was disturbed

by ground winds and the control system

gimballed the engines through three

oscillation cycles prior to release. The

oscillations were very lightly damped and
involved feedback between the control

system and the flexible vehicle and
holddown

the design

i

\
i

t \

= /Strap-on solid
_-_ booster

-----1

Figure 6.-Titan III-C.

mechanism. Fortunately, the engine angles at and after liftoff remained within

envelope (ref. 11).

Propellant slosh.-Propellant sloshing can be a major contributor to system instability.

Propellant slosh dynamics are considered in analytical control system design studies by

methods such as those presented in references 12 and 13. The most common solution to

minimizing the contribution of propellant sloshing to structural feedback instability is to

use baffles as a means of augmenting energy dissipation and thereby reducing slosh

amplitudes.

The Atlas/Mercury launch MA-2 (Atlas 67D) flight test demonstrated a nondestructive

oscillation involving coupling between the control system and a fundamental slosh mode,

which was of greater amplitude than tolerable for a manned vehicle. Autopilot gains were
changed to suppress the oscillations in subsequent vehicles (refs. 7 and 14).

10



A propellantslosh-modeinteractionwith vehicledynamicswaspredictedby the control
systemdesignanalysesfor Titan III-C-5.Theanalysesrevealedthat the secondpropellant
sloshmodewould causea divergentoscillationat about 80secondsinto theflight andjust
before releaseof the strapon solid boosters(seefig. 6). However,simulation studies
indicatedthat the oscillationwouldnot increasein amplitudefastenoughto affectcontrol.
Postflightexaminationof telemetrydataindicatedthat no inflight divergentslosh-mode
oscillationshadoccurred.

Aeroelastic effects.-Aerodynamic forces acting on a flexible structure can contribute to

aeroelastic phenomena that may affect the control system. Studies using quasi-steady

aerodynamics have shown that the aerodynamic forces may couple rigid-body and
flexible-body dynamics. The result may be a system whose resonant frequencies undergo

substantial and irregular variations along the trajectory, tending sometimes to approach one
another rather than to increase uniformly with time as would result from consumption of

propellant. A more difficult problem is therefore presented to the control system designer.
Phase stabilization of lowest frequency vibration modes may be required in situations where

gain stabilization might have been acceptable in the absence of large lifting surface or high

flight dynamic pressures (see refs. 15 and 16).

For example, investigations of the control stability of the Titan II with the winged Dyna

Soar (X-20) payload indicated that aeroelastic coupling was destabilizing because it lowered

the first vibration mode frequency closer to the controlled rigid-body frequency while

moving the aerodynamic center of pressure toward the nose (forward of the center of mass).

To compensate for these effects, large fins mounted aft on the Titan II were proposed. The

aerodynamic loads on the fins increased the first vibration mode frequency and shifted the

center of pressure closer to the center of mass, thereby simplifying the control task.

2.3.1.2 Local Deformation

Sensor mounting.-Local structural deformations can produce erroneous sensor signals or

sensor saturation which may seriously affect control system operation. Such difficulties

were experienced during four launches of the Thor-Agena A vehicle, whose first stage had a

gimballed engine (ref. 17). A 5-Hz oscillation occured during first stage flight and might

have destroyed the vehicles if capacity limitations in the hydraulic system had not caused

engine-actuator saturation and prevented the oscillations from becoming destructive. Flight
data indicated that the oscillations occured only in the yaw plane and at the predicted first

vibration mode frequency. The telemetered flight data showed that the yaw rate gyro sensed

the first bending mode slopes 180 ° out of phase with those predicted by theory. Analyses

and a subsequent modal vibration test determined that the gyro mounting bracket was

responding to deflections of the sidewall structure (a thin cylindrical shell) and measuring a
local bending slope opposite in sign to the body deflection slope at the instrument station.

The problem was corrected by introducting a pivot support at each end of the mounting

11



bracketwhich effectivelymadethe gyro locationinsensitiveto localsidewalldeformation.
This mountingarrangementwasincorporatedon all subsequentThor launchvehicles(ref.
18).

Localdeformationeffectswerealsoencounteredon the SaturnV spacevehicle.Attitude
controlof thisvehiclewasaccomplishedbygimballingthefour outboardF-1rocketengines
on the first stage(fig. 7). Controlsignalsto the gimbalactuatorsweregeneratedasoutputs
from an analogcomputerwhich decoupledvehicleresponsein roll, pitch, andyaw.The
analogcomputeralsoprovidedcompensationandmeansfor lo0pgainadjustment.Attitude
signalswere generatedby an inertialmeasurementunit andattitude ratesignalswerealso
availablefrom the body-mountedrate gyros.The attitude signalswereprocessedby the
launchvehicledigital computerand the dataadapter,which providedcommandsto the
analogcomputer.

Thecontrol gyrosfor all threeaxeswereoriginallymountedon aplateattachedto theshell
of the instrumentunit on the yawaxis(fig. 8a).Duringdynamictestingthe pitch control
gyroproducedsignificantlylargersignalsthanabackuppitchgyro locatedon thepitchaxis.

Outboardengine

Figure7. EnginearrangementofSaturnV firststage.
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Assessmentof the causerevealedthat, underapplieddynamicshearsandbendingmoments,
the mountingplatewasflexible enoughto bendlocally asresultof instrumentunit shell
deformation.As shownin figure8b, theselocal pitch deflectionswereamplifiedby the
mannerin which the loadsweretransferredinto the instrumentunit from the adjoining
structure.The original control systemdesignhad not accountedfor the observedlocal
deformations.Data from more detailed tests indicated the possibility of a divergent
structuralfeedbackprobleminvolvingthe secondvehiclevibrationmodeandthe primary
pitch gyro.Theproblemwassolvedby movingthis gyro to a position lesssensitiveto this
mode,at a lowercornerof the mountingplate,andbyredesigningthecontrolsystemfilter
networks (ref. 19). The feedbackproblemsproduced by out-of-planebendingof the
mountingplate couldhavebeenavoidedif the pitch andyawgyroshadbeenmountedon
their respectiveneutralaxes,becausethe slopesalongtheseaxesareproducedby shearand
aresubstantiallylowerthanthoseproducedby out-of-planebending.

Actuators and engine mount flexibility.-A nondestructive 17-Hz limit-cycle oscillation was

observed on telemetry during the flight of the Atlas 4A launch vehicle (ref. 20). Analysis

showed that the limit cycle was a structural feedback problem to which both local and

vehicle body deformations contributed. It was concluded that the gimbal actuator

flexibility, in conjunction with certain engine servo nonlinearities and the third lateral

vibration mode, created a control system instability. This behavior was unexpected because

preflight analysis and simulation did not cover this combination of system characteristics in
sufficient detail. The control system was subsequently modified to include a filter which

eliminated the problem (ref. 21). A similar feedback problem that involved engine mount

flexibility occurred on Atlas 3E (ref. 22). The problem was alleviated by relocating the rate

gyro.

Effects of ma/or components.-The dynamics of internal payloads or other major

components, particularly those of relatively large mass, can affect local deformation
characteristics and even overall vehicle response. A problem, related to but distinct from the

Saturn V difficulty discussed above, was discovered during dynamic testing of the S-IVB

Saturn stage with all spacecraft payloads in place. The lunar module, mounted in the

spacecraft adapter section, exhibited several strong resonances close to the second vibration
frequency of the S-IVB stage in the 7 to 10 Hz frequency range. Large associated

deformations of the adapter structure were observed in the vicinity of the four lunar module

attachment points. These deformations also extended down into the instrument unit, where

the resulting loads caused amplification because of local mounting plate deflection (see

fig. 8). Theoretical predictions of control gyro resources which did not include these local

deformation effects, were of opposite sign and differed radically from the measurements.

This problem was solved by moving the gyro package to the bottom of the mounting plate

(ref. 19).

Engine inertia and resonance effects.-The inertia forces introduced by the motion of

gimballed engines (as shown in fig. 9) can cause dynamic instability. On a space vehicle
controlled by gimballed engines, an excitation frequency exists at which the engine inertia

reaction force magnitude is equal and opposite to the magnitude of the lateral component

13
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of thrust. Below this so called "tail-wags-dog" frequency, the resultant lateral force at the

gimbal is predominantly due to thrust and is in phase with the gimbal angle; that is, an

increase in gimbal angle results in an increase in the lateral component of thrust. Above this

frequency, the engine inertia forces produce the dominant lateral force which is in phase

with the gimballing acceleration. Since the gimbal angle and acceleration are 180 ° out of

phase for a sinusoidal oscillation, the phase of the lateral force produced by the engine will

change by 180 ° as the frequency of engine excitation passes through the tail-wags-dog

frequency. A system designed to control or stabilize some aspect of vehicle motion by

means of the thrust component alone could perform unsatisfactorily above the tail-wags-dog
frequency. In particular, one of the higher frequency vibration modes might be driven into

divergent oscillation by this phase reversal of the apparent control force if adequate

structural damping or filter attenuation is not present (ref. 23).

This phenomenon occurred on early uprated Saturn I vehicles during stage separation when
the engine thrust decay was more rapid than the "bleeding off" of the hydraulic pressure of

the control system. In effect, for a few seconds an active control system existed with no

thrust, causing a phase reversal of the transverse control force because of the tail-wags-dog

effect. The first vehicle vibration mode oscillated sinusoidally until the hydraulic pressure

was depleted in the control system (ref. 24). The problem was alleviated by reducing the

control system gains during stage separation.

The tail-wags-dog effect also occurred in the absence of thrust during ground checkout of

the Apollo command service module (CSM) SC 009 stack with the control system active.The

lowest lateral vibration mode frequency was estimated to be above 20Hz. A
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one-dimensional analysis was used which idealized the structure as a nonuniform beam. The

thrust vector system was designed to take advantage of this high frequency level by using

substantial lead compensation near rigid-body frequencies. During this test the CSM was
mounted atop the complete launch vehicle. The vehicle, excited only by gimbal actuators on

the service propulsion system engine of the Apollo CSM, exhibited divergent oscillation at
17 Hz. This behavior was later confirmed to be associated with bending vibration when it

was simulated using modal data obtained from a three-dimensional finite-element analysis of

the Apollo vehicle. The new data predicted a first modal frequency of 17 Hz. Compensation
networks were revised on the basis of the improved analysis and test data, and the vehicle

was successfully flown.

Structural feedback can lead to unsatisfactory control system performance if the frequency

of a vehicle vibration mode (normally the fundamental) falls below the tail-wags-dog

frequency and some form of actuator load feedback is employed (see fig. 1). For example,
divergent motion caused by vibration mode and engine mode coupling was predicted by

analyses performed on stage II of the Titan III-B and Titan III-M. Because previous Titan
versions had performed satisfactorily, the motion was attributed primarily to radically

different vibration mode shapes between the Titan III-C with the Transtage and the

Titan III-B and III-M with the Agena and MOL payloads, respectively. The situation was

corrected by (1) reducing the differential pressure feedback to the servo-valve on the

hydraulic actuator, which tended to stabilize the important mode; (2)modifying the

autopilot with a gain change in the rate and displacement channels, together with a filter in
the rate loop; (3) increasing the engine actuator moment arm, which aided in providing the

required stability margin; and (4)increasing the propellant tank bottom stiffness which
increased the stiffness of the backup structure and effectively kept the engine natural

frequency higher than the tail-wags-dog frequency. This problem is discussed in depth in
reference 25.

Another form of structural feedback associated with engine resonance is caused by a

coincidence of a structural vibration frequency and engine natural frequency. The latter is a

function of engine mass and inertia, engine mount elasticity, and actuating equipment

dynamic characteristics..As a consequence of the coincident frequencies, control system

sensors may demonstrate a particularly high response at the resonant frequencies, even

though coupling in the actuator does not occur. Problems with this form of engine

resonance are usually revealed by design analyses which normally include engine dynamics.

Control surfaces may also exhibit frequencies which cause control system response. During

ground checkout of the autopilot of Little Joe II launch vehicle 12-51-1 (fig. 5), the

aerodynamic control surfaces oscillated when the hydraulic system was activated. It was

determined that a natural frequency of the control surface was approximately equal to a

resonant frequency present in the rate gyro sensor system. Thus, control system vibration
was fed back through the vehicle structure and sensed by the gyros... This problem was

rectified by the addition of a second-order filter to the control system which provided

satisfactory attenuation at 22 Hz (ref. 8).
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2.3.2 Transient Response Problems

Transient factors imposed on the vehicle from various sources may initiate structural

responses which can interact with the control system.

Thrust transients.-Thrust transients (e.g., engine ignition, engine shutdown, and uneven

burning) can create significant loads or vibration levels. These can cause overall or local

response of the vehicle resulting in structural feedback to the control system (see ref. 26).

For instance, unsynchronized burnout of pairs of solid propellant engines, such as used on
Titan III-C and III-M (fig. 6), can create a transient thrust misalinement. Thrust transients

have not caused any known problems to date.

Liftoff and staging transients.- The control system may be adversely influenced by space

vehicle response to liftoff and staging transients. For example, pyrotechnic devices used to

separate the stages may cause shock pulses which could momentarily saturate the sensors.
Structural response to these transients has not caused any documented control problems to

date. Staging loads are discussed in reference 27.

Engine failure.-Failure of one or more engines of a multi-engined space vehicle can cause
severe transient response because of the rapidly changing thrust vector. The influence of this

effect is most pronounced when the engine gimbal angles approach the travel limit. Failure

analyses for engine-out conditions of multi-engined space vehicles are normally conducted
so that the effects of engine hardover and transients on the control system can be

determined. Engine failures on the Saturn V (as originally designed) could have caused

transient bending moments due to thrust misatinement. These moments could have resulted

in a structural failure of the spacecraft payload. To preclude this possibility the outboard

engines (fig. 7) were canted by a command to the control system in order to move the
thrust vector closer to the center of mass.

Switchover to redundant control system.- Switchover from the primary control system to a

redundant system, in the event of a detected malfunction, can result in severe transient

response of the vehicle. The dynamic characteristics of the switchover circuit (i.e., the

gimbal position sensors and switching relays) and the engine actuators may cause excitation
of the vehicle vibration modes. In the case of the Titan launch vehicle used for the Gemini

program, a switchover could have excited the first lateral bending mode of the vehicle
because the frequencies of the switchover transient response and the vibration mode

coincided. To rectify the situation, the switchover circuit was modified and the actuator
maximum velocity limits were reduced to detune engine hardover transients from the

,vibration mode (ref. 28).

Slingshot effect.--The high acceleration near the end of a stage burn causes the propellants

to be pressed firmly against the bottom of their tanks. Energy will be stored in the
deformation of the tank structure. If the thrust tailoff at engine shutdown is rapid enough,
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the storedenergyandthe releaseof theinertiaforcescouldpropelanyresidualstowardthe
forward bulkhead-the socalled"slingshot" effect. The resulting impact will producea
transientwhichcouldbe sensedby the control system.No knownsignificantproblemson
existinghardwarehaveresultedfrom theslingshoteffect.

2.3.3 Environmental Problems

Space vehicles are subjected to various environmental conditions which can cause oscillatory

structural responses that initiate structural feedback. Principal sources of environmental

loading are the air flow about the vehicle and the engines. Several of the more significant

environmental problems are discussed in detail.

Noise.- Acoustic energy can cause control system problems primarily through its effects on

sensors. This noise may reach sensors both by atmospheric and structural paths (ref. 29).

Engine noise at liftoff produces a severe acoustic environment, but noise caused by the

engines, the attached boundary layer, and flow separation may be equally severe at other

times during flight in the lower atmosphere. A noise problem on a Saturn IB control gyro

resulting from a low digital sampling rate is discussed in reference 30. A high frequency

multiple of the sampling rate was introduced into the gyro data (frequency foldback). The

problem was eliminated by increasing the digital sampling rate and filtering the resultant

data input to the control computer which properly attenuated the noise.

The most significant noise problem is sensor saturation. The information contained in the

desired signal may be severely attenuated or destroyed by saturation, The high level of

engine noise at liftoff has been cited as a major reason for not locating instruments and

sensors at the aft end of the space vehicles. The instrument unit section of the Saturn V is

located in the forward part of the vehicle (fig. 8).

In addition to sensor saturation, there is the possibility of intermittent instrument operation
or mechanical failure. At least two unsuccessful launchings of Atlas E and F vehicles were

attributed to diode failures in the guidance computer caused by acoustic and mechanical

vibration. Extensive research was expended in determining design modifications to isolate

this acoustic and vibration environment (refs. 31 and 32).

Buffet.-Aerodynamic flow disturbances arising from flow separation at forward sections of

space vehicles and impingement on aft sections cause a dynamic response phenomenon
called buffeting. Protuberances and blunt and hammerhead nose sections are principal

sources of these disturbances (ref. 33). Buffet manifests itself as a source of random
vibration that can cause excitation of sensors and their mounts with attendant signal

saturations.

Buffet, while not a major cause of structural feedback problems, has been observed to

produce structural response. On Titan III-C vehicle 17, which incorporated a digital flight
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controlsystem,sensorenvironmentalnoisecausedlargelyby aerodynamicbuffetingcould
couplethroughthe control systemvia the sampled-datefolding phenomenon(frequency
foldback)andexcitethe first vibrationmode,therebyinducinglargestructuralloads.The
potentialproblemwasalleviatedby incorporatinganalogprefilteringonsensorinputsbefore
sampling(ref. 34). On SaturnIB flight 202, somelocal noiseeffectsweredetectedwhich
werebelievedto becausedby buffet.Buffet canalsoproduceavehiclebodyvibrationmode
response,e.g.,a0.2-gresponsein theSaturnV secondvibrationmode.

Winds.-A prime considerationin the control systemdesignis the vehicle responseto
inflight winds.Thesewindscanbeseparatedinto low frequencyinputscalled"wind shears"
andhighfrequencyinputs called"gusts".Transientresponsecausedby thegustportionof
the wind loadscan initiate structural feedback.Gust analysesand recommendedwind
profiles and design methods for determining structural responseare discussedin
reference35. Generally,wind sheareffectsarea rigid-bodyconsiderationin the designof
the control system,andproduceonly secondaryeffectsthroughstructuralflexibility. For
example,a load-reliefcontrol loop usingalateralaccelerometerfeedbackwasimplemented
on the TitanIII-C to reducevehicleangleof attack and the associatedpeakstructural
loadingresultingprimarily from wind shear.Theloadcontrolloopwasdesignedto improve
the rigid-bodyperformance;however,in addition to sensingrigid-bodyaccelerations,the
accelerometersensedstructuralvibrationsignalswhichnecessitatedheavyfiltering of this
channel(ref. 36).

Structuralresponseto groundwindsis alsoconsideredin the designof the launchvehicle
control system.In addition to the wind shearand gust componentsof the winds,the
phenomenonof vortex sheddingcan inducestructural responseand undesiredcontrol
systemactivity beforeliftoff. Theenginemotioninducedby groundwindsprecedingliftoff
must stay within the boundsof acceptablemotion as determinedby the rigid-body
considerationof towerclearance.Enginegimballingprior to liftoff asa resultof structural
excitationof the SaturnIB hasbeendiscussedinsection2.3.1.1.

Pogo.-A sustained oscillation involving the coupling of the space vehicle longitudinal
vibration modes and the propulsion system is commonly referred to as Pogo. The

phenomenon has been observed on the Thor, Titan II, Atlas, and Saturn V launch vehicles

(see refs. 37 and 38). While Pogo is basically divorced from control system interaction, the
vibration levels associated with the phenomenon (if interaction occurs) may cause

undesirable responses and saturation of control system instruments and sensors.

In some cases, more direct interaction may occur if coupling of the lateral and longitudinal

modes is present. The Saturn V vehicle had strong pitch/longitudinal coupling which served
as a mechanism to convert Pogo oscillations to lateral motion at the control gyros. The

coupling was associated with stiffness asymmetries in the major components of the Apollo

spacecraft. To determine the coupled modal characteristics of Saturn V, a three-dimensional
finite element analysis was performed (refs. 39 and 40). Fortunately, the Pogo frequency

was in a range (about 5-Hz) that was greatly attenuated by filter networks in the launch

vehicle control system (ref. 41 ).

19



Panel flutter.-An aeroelastic instability of structural panels called panel flutter may cause

an undesirable vibration environment with effects similar to those discussed previously

under Noise. The panel flutter problem and its solution are presented in reference 42. To

date, panel flutter has not been a significant problem to the control system designer.

2.3.4 Other Predicted Phenomena

In addition to the experience discussed above, other phenomena have been predicted that

can influence structural feedback problems but which are not readily categorized. Several
are discussed in this section.

Digital systems.-While most launch vehicles to date have been equipped with analog control

systems, a digital flight control system was successfully flown in Titan III-C vehicle C-17

(ref. 43). An extensive study was performed on this vehicle to determine the extent of

vibration mode fi'equency folding caused by the sampled data rate. It was found that, with

the analog prefiltering on the sensor inputs (see sec. 2.3.3, Buffet), no stability problems
existed as a result of vibration mode foldback (ref. 44).

In addition to basic system logic digital effects due to discretization of sensor inputs and

guidance commands cause input signals at frequencies which can interact with either the

control system or the vehicle dynamics (ref. 45).

Spin resonance.- Spin resonance involves a coincidence between spin rate and natural

frequencies of transverse bending modes of slender bodies that results in excessive structural
deformation similar to that associated with the critical shaft speeds. The phenomenon was

encountered in the flight of a spin-stabilized Scout launch vehicle. The spin resonance

problmn is investigated analyticaUy in references 46 and 47.

"Garden-hose" e.¢fect.--A potential interaction problem is that caused by extremely high

thrust levels in a tong, flexible launch vehicle. Oi1 an accelerating vehicle, the high thrust

causes compression of the structure so that a condition similar to buckling of a column is

approached. Structural flexibility causes a realinement of the thrust vector and the coupled

structure/propulsion system may become self-excited. The situation is compared to the

whipping of a garden or fire hose with high-pressure flow. While basically a

structure/propulsion phenomenon, the excitation of vibration modes and the engine motion

can severely complicate the control system design. The related phenomenon of high speed

flow in pipes is discussed in references 48 and 49.

Pilot-in-the-loop.-Consideration has been given to performance of manual guidance and
control functions during at least a portion of the flight of the space vehicle (refs. 50 and

51). For example, the Saturn V control system was designed with a pilot-in-the-loop control

capability in a backup mode. The use of a pilot in the control loop introduces the possibility
of pilot induced oscillations which could excite interactions between the control system and

the structure. On the other hand, pilot control could possibly be effective in preventing

interaction; however, this potential has not beeJ_ fully investigated.
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3. CRITERIA

It shall be demonstrated that there exists no divergent oscillation or other behavior,

involving interaction of the control system with structural deformations of the launch

vehicle, which could impair flightworthiness or, if the mission is manned, compromise crew

safety. This demonstration shall include an investigation of the structural feedback effects

on the control system acting under constraints imposed on the system by stability and

response considerations, environment, and specified off-nominal flight conditions.
Definition of the constraints, whether specified initially or evolved from design tradeoffs,

should include consideration of at least the following:

Stability and response considerations

Launch

restrained vehicle dynamics (holddown)

dynamics at release
tower clearance

Inflight

external loads and resulting internal loads and stresses

propellant dynamics
vehicle attitude

engine gimbal angles and rates

propellant management

control response (rates and limit angles)

major component dynamics

linear stability margins

pilot-in-the-loop

Staging

vehicle attitude and attitude rates at burnout

separation clearance

structural response

Environment

Wind environment

ground winds

inflight winds (winds shears and gusts)
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Acousticenvironment

propulsionsystemnoise
aerodynamicnoise

Extraneousvibrationenvironment

buffet
panelflutter
Pogoandthrusttransients

Off-nominal conditions

System failures

engine out

engine actuator failure

redundant system operation

System tolerances

vehicle dynamics

vibration modes-frequency and shape

modal damping ratios

local flexibility effects at sensors and engine mount

control system

components
nonlinearities

limit cycle amplitudes

The control system should also be designed so that it is relatively insensitive to changes in

the characteristics of the structure and/or control system hardware, and designed to have

sufficient inherent versatility to handle limited changes in guidance and control

requirements.
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3.1 Design Verification

3.1.1 Analytical Studies

Analytical studies using proven methods and mathematical models of sufficient detail and

complexity shall be performed to determine the structural flexibility effects on the control

system. System performance and stability, and compliance with system requirements and

specifications, shall be demonstrated.

3.1.2 Simulation Studies

Simulation studies shall be conducted whenever the interaction of the control system with

flexible-body becomes so complex that available analytical techniques are inadequate and/or

the space vehicle is so large that testing becomes impractical or impossible. These simulation
studies should be used as a design tool, to demonstrate system performance, stability and

compliance with system requirements and specifications. To achieve the most realistic
simulation of the actual system, as much flight hardware as is feasible should be included.

All manned systems should have manned system simulations.

3.1.3 Tests

A test program shall be established that ensures that estimates and assumptions made during

analysis and simulation are verified, and that the control system meets performance and

stability requirements throughout the flight envelope. The test program should be planned
to ensure that test data are obtained early enough in the development cycle to benefit

design decisions. Ground tests shall include structural and control system component

testing, vibration and acoustic testing of realistic structure, control system operation tests,

and if possible, overall system tests of the combined structure, populsion, and control

system. The test plan should provide that the control system flight tests will be made
concurrently with other system flight tests. If the launch vehicle is to be used for manned

missions, flight test plans should ensure compliance with applicable crew safety criteria.

4. RECOMMENDED PRACTICES

The design of a flexible launch-vehicle control system entails a series of decisions involving

interacting disciplines including controls, guidance, structure, aerodynamics, propulsion, and
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testgroups.A satisfactoryconfigurationcanbestbeachievedif considerationisgivento all
interactingaspectsof designthroughoutthe designingprocess,sothat themeritsof various
options may beassessedand their full impacton all systemsidentified.Therefore,it is

recommended that personnel from the control systems, structural analysis, and other
concerned groups work closely together throughout development and participate in all

tradeoff decisions.

As an effective means of ensuring the proper interface of design groups, it is recommended

that all relevant data be documented and kept current in a common data book to facilitate

accurate communications and provide a record for future reference.

4.1 Analytical Studies

4.1.1 Structural Modeling

It is recommended that, for the initial design analysis, free-free and/or cantilever vibration

modes and frequencies be computed by idealizing the vehicle as a slender beam, and by

using procedures such as those given in references 52 to 56. Other recommended practices

for determining modal vibration data are reviewed in references 21 and 57 to 58.

Space vehicle mass and aerodynamic characteristics change appreciably during a flight. As a
consequence a "time slice" analysis should be employed wherein a series of complete

structural modal analyses are performed accounting for the vehicle characteristics at

periodic intervals along the trajectory. Vehicle parameter values, applicable at the midpoint
of each such interval, should be used to calculate vibration modes and frequencies.

Characteristics should be obtained for as many modes as are deemed necessary to

characterize adequately the structural dynamics (refs. 4, 13, and 59). Selection of modes for

control system analysis should be made on the basis of modal gain-a measure of the flexible

body motion induced at a control sensor by the control force applied by the gimballed

engine or control surface with the inclusion of convergence studies to ensure that no

important modes have been omitted. Time-slice intervals should be chosen short enough to

reduce approximation errors to tolerable limits.

Tolerances should be introduced into the structural model to account for uncertainties in

the vibration data. Based on recommendations presented in reference 56, vibration

frequencies should be accurate to within -+5 percent for the first mode and + 10 percent for

the second through the fourth or fifth modes. The values of vibration frequencies vary from

vehicle to vehicle and from stage to stage. The data (approximate) listed in table I illustrate

typical results that should be expected for various configurations. (See refs. 60 and 61 for
correlation of analytical and test values for the Saturn IB and Saturn V, respectively.) It is

strongly recommended that, whenever possible, the mathematical model be verified by tests.
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Table I.- Vibration Mode Data (Fully-Loaded Configuration)

Vehicle

Closed-loop
rigid-body Vibration Frequency* Dampingt
frequency mode (Hz) ratio

(nz)

Atlas/Able-4B 0.40 First 2.7
Second 6.3
Third 12.7

Atlas/Agena/OAO 0.40 First 3.6
Second 7.2

Third 8.2
Fourth 9.5
Fifth 15.0

Atlas/Centaur/ 0.42 First 2.0
Surveyor Second 5.2

Third 6.9

Thor/Delta or 0.20 First 2.2
Agena Fourth 17.0

Titan III-C 0.25 First 1.8

Stage 0 Second 2.9
Third 5.4
Fourth >6.5

Upgraded Saturn I First 1.7
(SAD-6) (dynamic Second 3.3
test vehicle) Third 4.1

Fourth 5.0
Fifth 5.6
Sixth 7.2

Upgraded Saturn 1 0.15 First 1.1 l/

(AS-205) Second 2.2 "_
Third 3.8

Fourth 5.8
Fifth 8.4
Sixth 10.0

Saturn V/Apollo 0.20 First 1.0
Second 1.7
Third 2.3
Fourth 3.0

0.007

0.016

0.012

0.012

0.019

0.013

0.019

0.007 ]

0.010 / _

0.008 _ *_
0.010 l

O.OLO/
0.015 j

0.008 ]

0.009 |

0.014 }
0.008 | _

0.006 |
0.007 J

0.0051

0.005
0.005

0.005 .-

0.005

0.005

0.005 /

0.007
{D

0.006 E-

0.010

* These frequencies are free-free; test values are corrected from test support conditions.

Damping ratio is the ratio of actual damping to critical damping. Test values are from
decay records. Estimated values are extrapolations of test data on similar vehicles.
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The accuracy with which structural dynamic parameters can be predicted is highly
dependent on the model used. For example, the frequency of the first four vibration modes

of the Saturn V vehicle during the first stage boost were predicted within +4 percent. The

modal gains for these modes were predicted within margins ranging from -+3 dB on the first

mode to +-8 dB on the fourth mode. For second stage boost, the frequency prediction error

was .+3 percent on the first mode, .+13 percent on the second mode, +-4 percent on the third

mode, and .+50 percent on the fourth mode. After improvement of the model following test

correlation, the frequency of all four modes for the second stage was predicted within -+10

percent. Before testing, the modal gain prediction accuracy ranged from -+4 dB on the first

mode to -+12 dB on the fourth mode (ref. 61).

Since the structural energy dissipation is a nonlinear function of amplitude and cannot be

calculated, it is recommended that, where possible, modal damping estimates be obtained

from measurements made on the actual vehicle structure, excited to flight amplitudes. If the

foregoing procedure cannot be accomplished, it is recommended that the modal damping

ratios be estimated on the basis of past experience with similar vehicle structure. Experience

has shown that the damping ratio can be estimated between 0.005 and 0.019 for the first
four to six modes. Typical values are presented in Table 1.

For space vehicles that have inertial or stiffness asymmetry and may therefore possess

significant cross-coupling characteristics, a more detailed structural analysis with less
beam-type idealization of structure is recommended, at least in the later design stages

(refs. 52 to 55, 62 and 63). Payload and internal component characteristics should be
included in the analysis. The finite-element mechanization which was finally used to

compute the three-dimensional modal characteristics of the Saturn V/Apollo vehicle is an
example of this type of analysis (refs. 39 and 40).

4.1.2 Control System Design

Selection of an appropriate control system configuration is bounded by numerous
mission-connected constraints such as those discussed in section 2.2. Consideration of these

constraints results in basic control system selections which involve implementation by

analog or digital equipment, number of gimballed engines, need for load relief, and extent of

redundancy.

The control system should initially be designed to stabilize the rigid launch vehicle. The

basic choice of sensors, actuating equipment, computing equipment, compensation and

signal conditioning are dependent on satisfying rigid-body stability requirements. Whenever

possible, it is recommended that the control system be designed using assumed negligible

coupling between the pitch, roll, and yaw axes. The effects of cross-coupling between axes

should be evaluated later in the design, usually in simulation studies. Structural flexibility

and propellant slosh effects should then be added to the analysis; the performance of the

control system reevaluated; and the design altered to provide acceptable performance of the

total system.
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It is recommendedthat linearcontroltheorybeusedfor the initial analysis(refs.64 to 69).
Linear,time-invariantstability analysismethodsareparticularlyusefulto provideinsight,
and asdesigntools. Associatedwith thesetechniquesarethe conceptsof gainandphase
stabilization,which werediscussedin section2.1. Linearanalysisisvalid only for system
responsesof limited amplitudeandfor short intervalsduringwhich the systemmay be
assumedstationary.In spiteof theselimitations, thesemethodshaveprovedinvaluableand
providedthe primary toolsfor thedesignof almostall the launchvehiclecontrolsystemsto
date.Gain and phasemargin(seeref. 66) areespeciallyusefulas indicationsof system
performance.Thegainandphasemarginvaluesgivenin tableII arerepresentativeof those
usedon successfuldesignsin the past.Basedon this pastexperience,it is recommended
that, if the conventionalcontrol systemdesignis adequateto meet launchvehicle
requirements,thefollowingshouldbeperformed:

(1) Phasestabilizethefirst vibrationmode*

(2) Gainand/or phasestabilizethesecondvibrationmode

(3) Gainstabilizethethird andhighervibrationmodes.

Gainmarginsof 6 dBandphasemarginsof 40° haveprovedto besuitablevalueswith which
to beginthedesign.

Sincethe dynamiccharacteristicsof spacevehicleschangerapidly during the flight, the
control systemgainvalueschosento satisfyliftoff stabilityrequirementsmaybeinadequate
later in the flight. Implementationof a preprogramedchangein gain(gainscheduling)is a
recommendedprocedure.

If sufficientgainand/orphasestabilizationcannotbeobtainedusingconventional(simple)
controllawsandfiltering,thefollowingtechniquesshouldbeinvestigated:

(1) Useof notch filters to attenuatecontrol systemresponseat a critical structural
vibration frequency.This techniquehasbeenappliedsuccessfullybut its useis limited
becauseof therapidlychangingstructuralresponsecharacteristics.

(2) Useof multiplefeedbacksensors(ref. 70).

(3) Useof anadaptivecontrolsystem(ref. 71and72).

Oncealineardesignis completed,the effectsof nonlinearelementsshouldbeinvestigated
(see,e.g.,refs.68 and73). Hardnonlinearitiessuchassaturation,deadzones,andbacklash

*An exceptionis that somestagesoperatingoutsideof the sensibleatmosphere(e.g.,
Centaur)maypossiblybegainstabilizedin all modes.
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TableII.-Gain and Phase Margins

Vehicle
Vibration

mode
Stabilization

technique
Design requirements

Atlas First

Second and

higher

Phase

Gain

From launch to 20 sec of flight: 15 °
phase margin for 6 = 0.3 ° (zero to

peak of engine angular oscillation at
first vibration mode frequency);
from launch throughout flight: 30 °
phase margin for 6 = 0.1 o.

Maintain 6 dB gain margin

Centaur First

Second and

higher

Gain

Gain

Maintain 6 dB gain margin

Maintain 6 dB gain margin

Thor First

Second and

higher

Phase

Gain

30 ° phase margin with respect to
servo loop tolerances.

6 dB gain against forward loop servo
gain tolerances.

Titan III First

Second

Third and

higher

Phase

Gain or phase

Gain

30 ° phase margin (low frequency side
of mode peak (frequency); 45 °

phase margin (high frequency side
of mode peak frequency);

8 dB gain margin between first and
second modes.

45 ° phase margin (low and high

frequency side of mode peak
frequency);
8 dB gain margin between first and
second modes.

10 dB gain margin (independent of
phase)

SaturnlB First

Second and

higher

Phase

Gain

45 ° phase margin

6 dB gain margin

Saturn V First

Second

Third and

higher

Phase

Gain and phase

Gain

45 ° phase margin

45 ° phase margin; 6 dB gain margin

6 dB gain margin
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are of particular interestbecausethey admit the possibility of limit cycleoscillations:
Quantizationand finite samplingeffects of digital controllersmay also exhibit this
phenomenon.Quasi-linearanalysisusingthe describedfunction techniqueis especially
useful and, when appropriate,is recommendedfor predicting limit cycle frequency,
amplitude,and stability. Phaseplaneanalysiscanalsobe usefulto provideinsight into
nonlinearbehavior;thismethodisgenerallylimitedto secondordersystems.

Preliminarywork hasbegunin the applicationof statisticalmethodsandoptimalcontrol
theory to the designof launchvehiclecontrolsystems(refs.74 to 76). Certainaspectsof
thesemethodsareespeciallypromisingbecausetheyaffordamoredirectmeasureof system
performancerelativeto the operationalrequirementsand/orconstraintsgivenin section2.2.
For example,covarianceanalysis(ref. 77) can be used to obtain a measureof the
probabilityof exceedingstructurallimits duringflight. Thetheoryof optimalcontrolcanbe
usedasa designguideto indicatethebestsystemthat canbeobtainedfrom aspecificsetof
criteria.

4.2 Structural Feedback

System Simulation

The control system design for a flexible space vehicle necessitates the investigation of the

response of interacting vehicle vibration modes. Present experience with these systems

suggests that vehicle vibration modes should be included from the earliest stages of dynamic

analysis. If liquid propellants are to be used, propellant slosh dynamics should be included.

Also, the dynamics of any gimballed engine and associated actuation hardware should be
included (refs. 4 and 78). A computerized control system simulation incorporating the

flexible structure dynamics is recommended. Real-time simulation of the operation of the

system, utilizing as much of the flight or flight-type hardware as practical, is recommended.
It is also recommended that the simulation investigate, as a minimum, the following flight

events:

• First stage

Before liftoff

Liftoff

Attitude program

High dynamic pressure

Engine shutdown

Separation
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• Upperstages

Ignition
Guidance-controlinteraction
Towerjettison(if applicable)
Engineshutdown
Separation

During further refinementof the simulation,a mathematicalmodel shouldbedeveloped
that considersall significantdynamicphenomenasuchascross-couplingin pitch andyaw,
unsteadyaerodynamiceffectson lifting surfaces,flexibleinternal structures,anddynamic
characteristicsof sensorsandactuators(see,e.g.,refs.4, 12,23, and79 to 81). Provision
shouldbe madein the simulationfor changesin parametervaluessothat off-nominalor
malfunctionconditionscanbe investigated(ref. 82).Theeffectsof the highestprobability
malfunctionsshouldbe investigatedto determineif modificationscan be madein the
nominal designto improve off-nominalperformance(refs.83 and 84). The simulation
should include all significant nonlinearitiesin both the control systemand structure.
Investigationsof limit cycleamplitude,frequency,andstability shouldthenbecarriedout
to verify nonlinearanalysis.In addition, the simulationshouldmodelthe effectsof digital
componentsin the control loop. Frequencyfolding due to finite sampleintervalsand
quantization may have important effectsand shouldbe investigated.Roundoff errors
resulting from finite word length, as well as computerspeedrequirements,should be
investigated.Either the computeritself or an accuratecomputersimulationshouldbe
includedin thetotal systemsimulatorsothat controlsystemsoftwaremaybetested.

4.3 T ests

Tests to determine control system and structural hardware characteristics are recommended

in the development of every vehicle (refs. 85 to 89). Dynamic tests should be performed on

control system gyros, sensors, and actuators to determine their frequency response

characteristics. Tests for friction, hysteresis, leakage, and other contributors to saturation
dead-zones and backlash should be conducted (ref. 85). Test results Should be correlated

with analyses and appropriate modification made when necessary.

Recommended tests for determination of structural data are described in reference 56. They

include static tests to verify major load displacement characteristics using, if possible,

full-scale engineering models or prototype vehicles. If full scale tests are not feasible, similar

data can be obtained from replica models (refs. 39 and 90). These data should be used with

caution since these models are not capable of predicting local effects accurately. The tests

should obtain, at a minimum, the elastic characteristics for the primary load carrying

structure with loads applied at the location of primary masses or major attachment points.
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Dynamictestsarealsorecommendedon full-scaleengineeringmodel,prototype,and/or
flight hardwareto determinestructuralfrequencies,modeshapes,anddamping.Thetest
vehicleshouldbe suspendedor mountedto reproduce,as closelyaspossible,the true
inflight boundary conditions, so that free-freemodesof the vehiclecan be properly
obtained.Examplesof how free-freemodeshapesweredeterminedfor Thor andSaturnV
aregivenin references91 and 40, respectively.Local responseaswell asoverallresponse
shouldbemonitored,especiallyat stationswhereimportantcontrolinstrumentationmight
belocated(reference86).

It is recommendedthat the test programbe initiated as soon as possible,following
preliminarycontrol systemdesign.Gimbaltest standsshouldbe developedearly in the
programusing simulatedenginemassand inertia, as well as mount elasticity,with a
capabilityprovidedto vary theseparameters.A test standpermitsevaluationof prototype
components,aswell asthe aboveparameters.In addition, theresonantfrequencyof the
effector includingthe engine,actuator,andbackupstructurecanbeestablished.Dynamic
test standsshouldalsobeusedwhichmayutilizespeciallybuilt testspecimensor functional
mockupsof the aft portion of thevehicle.If possible,actualengineequipmentshouldbe
utilizedasshouldprototypeelectronicpackagesandfeedbacksensors.Frequencyresponse
tests are recommendedto determine the control system characteristics,including
nonlinearitieswhichcouldresultin limit cycles,andtheeffectsof structuralresonanceson
control systemperformance.Enginegimbal testsshouldbe run open-loopto yield more
accurate data.* Closed-loop tests are recommendedto demonstratethe dynamic
performanceof the flight control system:As a final evaluationbeforeflight, the launch
vehicleshouldbe testedin a restrainedcondition with the enginesfiring andthe control
systemoperatingopen-loop.Thistestisparticularlyusefulfor verifyingassumptionsrelative
to the effects of enginetransients,acousticor engine Structuralvibration, and local
structuralresonances.Theabovetestsaredescribedin moredetailin reference85.

4.4 Specific Recommended

Practices
Extensive flight experience with space vehicles has resulted in a number of specific practices

and considerations developed to cope with the structural feedback problems reviewed in

section 2.3. As these practices were developed for particular vehicles, their applicability to

otlaer vehicles must be properly evaluated.

*The flight control loop is open but the actuator loop is closed.
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4.4.1 Structural Feedback Prob|em$

4.4.1.1 Vehicle Body Deformation

Sensor location.

(1) Within design limitations, sensor location should be determined by consideration of
the effects on control of the flexible vehicle.

(2) Insofar as possible, locate gyros near the nodes and accelerometers near the

antinodes of all modes that are phase stabilized by the control system, and conversely for

modes that are gain stabilized. In practice, the actual placement of flight control

instruments will be a compromise location, neither close to nodes nor antinodes, but rather

the location giving the best stability margins from the consideration of all vibration modes.

(3) Consider the use of multiple sensor installations to aid in stabilization and to

diminish control system sensitivity to structural vibration (see, e.g., ref. 70). For example,

the blending of two separately located rate gyros signals on the Titan vehicles effectively
cancelled the first vibration mode.

Vibration mode characteristics.-

(1) Choose important modes for control system analysis on the basis of modal gain-the
modal deflection at the engine gimbat times the modal slope at the gyro location divided by

the generalized mass (see ref. 1, appendix B, equation B-7). Higher frequency modes whose

amplitudes do not produce significant modal gain may be neglected; however, if modal gain

is low because the point under consideration is a node or antinode, slight variations in mode

shape may produce significant gains. Both gain and mode shape should be considered before

a particular mode is rejected.

(2) Select vibration modes that reflect static as well as dynamic deformation patterns

(ref. 39).

(3) Determine the effects of configuration changes on vibration mode characteristics.

(4) If vibration mode frequencies lie close to the controlled rigid-body frequencies,

consider coupling between the two. If possible, the control frequency should be less than or

equal to one-fifth of the first bending-mode frequency to avoid coupling (ref. 45).

(5) Consider the effects of flexible modes on the control system preceding liftoff,

particularly if the space vehicle is restrained following ignition and the controls are activated

before liftoff (ref. 11).

32



Propellant slosh.-

(1) Include propellant slosh dynamics in the structural feedback analysis using methods

such as those presented in references 12 and 92.

(2) Use baffles if possible to correct slosh stability problems for both normal and

off-loaded propellant requirements (refs. 13 and 93).

Aeroelastic effects.-

(1) For analysis of launch vehicles with winged or tong flexible payloads, consider the

coupling effects of steady and unsteady aerodynamics on the flexible and rigid-body modes
as discussed in reference 15.

(2) Analyze flutter of fixed and movable surfaces (including engine deflector vanes) by

methods such as those described in references 21 and 94.

(3) Determine the aeroelastic effects associated with body deformations from the
distribution of normal-force-coefficient slopes over the length of the vehicle at various

angles of attack. Since the reduced frequencies for most space vehicles are in the

neighborhood of 0.1, quasi-steady aerodynamics should be used to obtain the distributions.

In the low supersonic region, use Van Dyke Second Order Hybrid Potential Flow (ref. 95).

Where this theory is inapplicable (e.g., on a blunt nose) shock expansion theory may often

be used (ref. 96). If a computer program is not available, load predictions can be based on
test data found in reference 97. When integrated force and moment wind tunnel data are

available, they should be checked against corresponding theoretical results; the theoretical
distribution should be adjusted to eliminate any discrepancy.

4.4.1.2 Local Deformation

Sensor mounting.-

(1) When possible, the natural frequency of the sensor mounting structure should be at

least twice that of the sensor bandpass.

(2) Include sensor mounting structure in the structural math model; slopes should be

predicted for the actual sensor locations (refs. 39 and 40).

(3) If possible, locate sensors away from massive or dynamically active components that
can cause local deformation. Consideration should also be given to the effects of local

deformation due to noise, panel flutter, and buffet.
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(4) Designsensormountsto ensurethat the desiredquantity is measured.TheThor
problemof section2.3.1.2isacasein point.

(5) Becauselocal deformationfrequently is a problem,considermountingpitch and
yawgyrosseparatelyon their respectivestructuralneutralaxes.

Actuators and engine mount flexibility.-

(1) Determine the coupling of structural flexibility with engine and actuator dynamics.

The structural analysis should include the condition where the control engines are rigidly

attached at the gimbals so that the effect of local structural flexibility at the actuator attach

points will not be lost. This analysis can be conducted with the engine mass removed if

necessary; however, high frequency modes which are usually not included in the control

system analysis must be included, in addition to the engine rotation degree of freedom in
order to obtain proper convergence (ref. 40).

(2) In addition to actuator dynamics, consider hydraulic fluid compressibility, hose

restraint, gimbal friction, backup structure flexibility, and if necessary, engine flexibility.

(3) In the selection of hydraulic actuators, choose maximum velocity and maximum

force capabilities with respect to control system performance requirements. Do not

arbitrarily put large margins of safety on these limits because the hydraulic system

saturation characteristics provide a limit on the amount of moment applied to the vehicle
during high frequency oscillation.

Effects of major components.-

(1) Design the control system so that the flexibility of internal vehicle components does
not cause structural feedback problems. The stiffness, inertial damping, and location of the

internal components should be considered (refs. 39 and 40).

(2) If the effects of a flexible vehicle component on the overall dynamics appear to be

important, add the component dynamics as separate degrees of freedom and conduct a
tolerance analysis on the component effects.

(3) Allow for structural cross-coupling in the control system design. Both stiffness and
inertia asymmetry should be assessed (refs. 39 and 40).

Engine inertia and resonance effects.-

(1) Include engine inertia effects in the control system design (ref. 23).

(2) Consider the possibility of engine and actuator dynamics coupling with the flexible
structure (ref. 25).

(3) If possible, keep the gimballed engine resonant frequency above the tail-wags-dog
frequency.
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4.4.2 Transient Response Problems

Thrust transients.-

(1) For proper consideration of the dynamic excitation introduced by thrust transients,

see reference 26.

(2) Consider thrust transient effects due to unsynchronized burnout of engines.

Lift-off and staging transients

(1) For proper consideration of the dynamic excitation introduced by lift-off and staging

transients see reference 27.

(2) Determine and allow for the effects of thrust misalinement variations on loads,

controllability, and staging dynamics.

Engine failure.-lf possible, design the control system of multi-engine launch vehicles to
maintain the vehicle attitude within specified limits in the event of engine failures (refs. 83

and 84).

Switchover to redundant control system.-

(1) Investigate the effects of switchover lags, actuator rate limits, coincidence of
switchover circuit and vibration mode frequencies, and other switchover phenomena on the

dynamics of the controlled vehicle.

(2) If the switchover circuit frequency is coincident with a vibration mode frequency,

modify the circuit to detune it (ref. 28).

Slingshot effect.-Include the slingshot effect (described under sec. 2.3.2) in the analysis of

propellant dynamics. This effect is discussed in reference 98.

4.4.3 Environmental Problems

Noise.-Consider the acoustic environment in the selection of sensors and their location. See

reference 99 for consideration of acoustic loads.

Buffet.-Use reference 33 and documents cited therein for details on the effects of buffet,
and methods to minimize the buffet conditions. If possible, do not locate sensors in areas

that are buffet prone.
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Winds'.

(1) Consider the effects of inflight winds (gusts and wind shears) in the control system

design using methods similar to those given in reference 35.

(2) Consider the effect of ground winds including vortex shedding using methods

similar to those given in reference 100.

Pogo. If the space vehicle has significant longitudinal-lateral cross-coupling, consider the

possibility of a control system interaction with Pogo. Pogo can be investigated by methods

noted in references 101 and 102. If pogo problems are suspected, consider the use of filters

to remove pogo oscillation inputs from sensor signals.

Panel flutter.-Examine external panels for the possibility of panel flutter as discussed in

reference 42. Control system sensors should not be located near skin panels which have
marginal stability.

4.4.4 Other Predicted Phenomena

Digital systems.-

(1) In general, consider the effects of input and output quantization increments on

vibration mode response (ref. 103).

(2) Consider the effect of frequency foldback (sampling rate problem) on vibration

mode stability:

(3) Filter rate gyro and accelerometer signals before sampling to eliminate potential

problem of noise folding.down into structural mode regime.

(4) The frequency of programed pitch and guidance commands should not coincide

with either flexible or rigid-body modal frequencies. If this cannot be accomplished, several

alternatives which can be tried are: (a) do not guide during those portions of the flight when

coincidence of sampling rate and vibration frequencies is critical; (b)revise the guidance

program to avoid coincidence of frequencies; and (c) filter input commands to remove that

portion of the signal exciting the vibration frequency.

Spin resonance.-

(1) Use analysis methods as given in references 46 and 47.

(2) Spin rate should not exceed 70 percent of the natural frequency of the first lateral

mode. This margin reflects uncertainties in the values of the natural frequency and of the
spin rate that may be achieved.
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(3) Spinratesabovethe naturalfrequenciesof the lowermodesarenot recommended.
If, however,a spinrate abovethe lower natural frequenciesis required,accomplishthe
followingif possible:

(a) The rate shouldbe nearly midway betweenadjacentnatural frequenciesif
practical.

(b) Therateshouldbeseparatedfrom the nearestnatural frequencyby a margin
equalto at least30percentof the lowestnaturalfrequency.

(c-) The spin accelerationshould be high enough that the transient lateral
deformationdevelopedduringpassageof the spinratepastthe naturalfrequencieswill not
beexcessive.

"Garden-hose"effect. Determine if structural response is being excited by high thrust

levels; include in analysis if this is a problem. The effects of high velocity flow in pipes.are
discussed in reference 48.

Pilot-in-the-loop. -

(1) If a pilot control mode is to be used, include the pilot in the simulation of the

control system with flexibile-body dynamics.

(2) Investigate the use of the pilot for control of space vehicles having a low first

vibration mode frequency. It is expected that pilot control will be effective only in systems

requiring pilot response at frequencies less than approximately 1.5 Hz.
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NASA SPACEVEHICLEDESIGNCRITERIA
MONOGRAPHSISSUEDTO DATE

SP-8001 (Structures)

SP-8002 (Structures)

SP-8003 (Structures)

SP-8004 (Structures)

SP-8005 (Environment)

SP-8006 (Structures)

SP-8007 (Structures)

SP-8008 (Structures)

SP-8009 (Structures)

SP-8010 (Environment)

SP-8011 (Environment)

SP-8012 (Structures)

SP-8013 (Environment)

SP-8014 (Structures)

SP-8015 (Guidance and

Control)

SP-8016 (Guidance and

Control)

SP-8017 (Environment)

SP-8018 (Guidance and

Control)

Buffeting During Launch and Exit, May 1964

Flight-loads Measurements During Launch and Exit,
December 1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, May t 965

Solar Electromagnetic Radiation, June 1965

Local Steady Aerodynamic Loads During Launch

and Exit, May 1965

Buckling of Thin-Walled Circular Cylinders, revised

August 1968

Prelaunch Ground Wind Loads, November 1965

Propellant Slosh Loads, August 1968

Models of Mars Atmosphere (1967), May 1968

Models of Venus Atmosphere (1968), December 1968

Natural Vibration Modal Analysis, September 1968

Meteoroid Environment Model--1969 (Near Earth to

Lunar Surface), March 1969

Entry Thermal Protection, August 1968

Guidance and Navigation for Entry Vehicles,
November 1968

Effects of Structural Flexibility on Spacecraft

Control Systems, April 1969

Magnetic Fields Earth and Extraterrestrial,
March 1969

Spacecraft Magnetic Torques, March 1969
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SP-8019(Structures)

SP-8020(Environment)

SP-8021(Environment)

SP-8023(Environment)

SP-8024(Guidanceand
Control)

SP-8025(Chemical
Propulsion)

SP-8026(Guidanceand
Control)

SP-8027(Guidanceand
Control)

SP-8028(Guidanceand
Control)

SP-8029(Structures)

SP-8031(Structures)

SP-8032(Structures)

SP-8033(Guidanceand
Control)

SP-8034(Guidanceand
Control)

SP-8035(Structures)

SP-8046(Structures)

Bucklingof Thin-WalledTruncatedCones,
September1968

MarsSurfaceModels(1968),May 1969

Modelsof Earth'sAtmosphere(120to 1000km),
May1969

LunarSurfaceModels,May1969

SpacecraftGravitationalTorques,May1969

SolidRocketMotorMetalCases,April 1970

SpacecraftStarTrackers,July 1970

SpacecraftRadiationTorques,October1969

Entry VehicleControl,November1969

AerodynamicandRocket-ExhaustHeatingDuring
LaunchandAscent,May1969

SloshSuppression,May1969

Bucklingof Thin-WalledDoublyCurvedShells,
August1969

SpacecraftEarthHorizonSensors,December1969

SpacecraftMassExpulsionTorques,December1969

WindLoadsDuringAscent,October1969

LandingimpactAttenuationfor Non-Surface-Planing
Landers,April 1970
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