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THE CALCULATION OF ELECTROMAGNETIC FIELDS
BY THE KIRC1111OFF-KOTTLEH METHOI)

Richard F. Schmidt
Advanced Development Division

ABSTRACT

This document discusses some of the implications of the Kirchhoff-
Kottler formulation for discontinuous surface distributions. The
intrinsic impedance of free-space is recovererl from the equations for
the electric and magnetic fields, and the gain dependence of the antenna
on frequency and geometry is identified. The frequency dependence of
each integral is tabulated, and each is associated with a physical quantity
on the reflecting surface. It is shown that the Kottler contour integral
vanishes for closed surfaces, independent of field values on the boundary.
The behavior of V,P, the gradient of the solution to the wave equation, is
examined in a local context on the antenna surface to illustrate that
charge distribution can give rise to transverse field components in the
intermediate near-field region. Finally, derivations originally due to
(1) J. A. Stratton and (2) M. 1. Sancer are reviewed to bring out the fact
that the Kirchhoff-Kottler formulation inherently satisfies the radiation
conditions and vanishes the radial fields of scattering surfaces in the
limit as the observer recedes to infinity. This important conclusion is
established by two unique approaches. The developniont of Sancer also
demonstrates chat the Kottler contour integral can be evolved without
,iny appeal to physical intuition, for the case of discontinuous illumination
distributions, via the dyadic Green's function.
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G T-KiSSA RY OF NOTATION

^'RECEDIN^ P11^GF' p	
1`+01' FILMED.Sy ni lx ► I 

E( x' , y' , z') , li(x' , y' , z') backscattered electric and magnetic fields

^, R	 solutions to the wave equation

p, p'	 radius

k wave nu m ber

E 1 , II I fields of the illumination distribution

n unit normal vector to a surf^jce

(IS, cif differential area and are length

i , j , k Cartesian basis vectors

1 r , le,	 1 4) basis vectors

(A) angular frequency

E, U constitutive parameters:	 magnetic permeability,
inductive capacity, electric conductivity

imaginary operator =

D, D dielectric displacement and magnetic flux density

Z o intrinsic impedance of free space

Pt, P't power contained in 9 and (^, polarized waves

0 order

I integral

J current density

t ti!.ie

a
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GLOSSARY OF NOTATION (Continued)

Symbol	 Meaning

I	 identity dyad

r	 tangent vector

G free- space dyadic Green's function

I.	 operator 0 x V x- k 2

V	 arbitrary vector

a	 proportionality symbol
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THE CALCULATION OF ELECTROMAGNETIC FIELDS
BY THE KIRCIIIIOFF-KOT'rLEII ME,riior)

INTRODUCTION

The starting;-point of this document is the Kirchhoff-Kottler formulation for
computing backscattered electric and mrgnetic fields from surfaces carrying
charge and current distributions. Although standard textbooks' have carried
this formulation for many years, the analytical difficulties associated with the
evaluation of the integrals have delayed application to many practical antenna
configurations. The advent of high-speed digital electronic computers has made
possible the numerical evaluntion of the otherwise intractable integrals, and
has brought about rene,.%,ed interest and a re-examination of the theory.

A few dates are interesting and significant. Nlaxwe::'s equations appeared around
1865, and Kirchhoff's theory was presented about 1882. By 1923 Kohler 2 had
annexed his contour integral which, when taken in conjunction with Kirchhoff's
results formed a theory which satisfied Maxwell's equations. More up-to-date
discussion of the Kirchhoff-Kottler formulation appears in Physical ileview by
Stratton and Chu' in 19:39, the textbook by Stratton I in 1941, and the well-known
microwave antenna text by Silver 1 in 1949. Jones" mentions the Kottler in-
tegral again in the representation of the electromagnetic field in his 1964 text.
Up to this t i me, it appears that the Kirchhoff integrals over current and charge
distributions are regarded as basic, and the Kottler contour integral on boundary-
line charge is considered a "correction" term or approximation. A 1.964 textbook
by Van Bladel, 5 which makes extensive use of the dyadic Green's function in the
calculation of fields, comments en the linear charge density, and provides back-
ground for a unified approach to the diffraction forn v.--lation. In Radio Science,
1968, Sancer O presents a derivation of the general vector Kirchhoff equation-.,
via the free-space dyadic Green's function, which intrinsically includes Kottler's
boundary-line charge for open surfaces. The latter derivation is in a sense com-
plete, and does not appeal to separate physical argument or intuition in achieving;
its objectives.

The Kirchhoff-Kottler formulation is usually presented in the notation of vector
analysis, and constitutes a rather formidable array of symbols. It is abst ,act in

1 Ref. 1, p. 469, Ref. 2, p. 160
2Ref. 3
3 Ref. 4
4 Ref. 5, p. 56
5 Ref. 6, p. 221, p. 361
6Ref. 7
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that the general formulation simply postulates existing fields ( E,, H,) which are
to be integrated over same unspecified surface. The computer programmer
u:rually notes that complex vectors are used throughout so that each of the eight
original integrals decomposes into six integrals in the real domain (appropriately
sorted according to their Cartesian vector components and the real-imaginary
quadrature). Sometimes the prograun language and commuter system allow direct
vector operations and complex algebra. Nowhere, in the original formulation,
is there an explicit connective between the sources and the illuminated su rface.1
The boundary conditions at the surface are not specified in the general formula-
tion. In short, a theo ry descriptive of a physical process has been made avail-
able, not a flexible empirical formula which Is adapted to a Li rge class of prob-
lems on the basis of existing knowledge of antenna systems as is sometinies
suggested. 'I'iae theory is used exactly as it stands, without mortification of any
kind, and the test of 4s validity lies in comparison with other analyses and care-
ful measurements on actual physical systems.

One way to remove the abstract character of the general formulation is to begin
to specialize its application and examine the simplified result. Probably the most
natural and practical assumption is that of a perfect conductor, leading to the
concept of a sheet current and a charge distribution on the surface of the idealized
conductor. The assumption of an infinitely remote observer affords another
oppo.rtit ity to gain familiarity with the notation -.in([ the Kirchhoff-Kottler formula-
tion. When these assumptions are inade the gain dependence on frequency and
geometry can be scen clearly for both E(x' , y'. z' ) and H(x' , Y', z' ) . Ail
identification of the radial and transverse spherical components of the composite
field is ensily made for the case of the distant observer.

Iteturning to the general formulation, and assuming a perfectly conducting sur
fa ^e, the intermediate near-field can be studied. The function of the term 0^b,
where 4) = e - ' k`/ r is taken as a solution to the wave equation, in a local context
on the antenna surface can be related to an intuitive concept of fields clue to
point-charge dishibutions. Finally the question of whether or not the complete
Kirchhoff -Kottler formulation satisfies the radiation condition- ; can be answered
without resorting to numerical evaluation or reference to specific illuminations
or reflector geome^ries. The vaniFr<ing of the Kottler integral for closed surfaces,
wider arbitrary illuminaticn conditions, is obtained simultaneously while resolving
the preceding question. It has been found that these exercises are invaluable in
purging errors from a freshly written computer program and contribute to the
overall appreciation of the Kirchhoff -Kottler diffraction theory. Most striking,

t Rcf. 2, p. 150, P. 418, are especially helpful in obtaining 1; 1 , H1
Ref. 1, P. 37

3 Ref. 1, p. 485, Ref. 2, p. 85
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perhaps, is the internal self-consistency and clone adherence to well-established
physical principlew that emerge through application of the theory.

GENERAL i''ORMULATION

The hackseatterod electric ,rnd magnetic fields of the genera l Kirchhoff-Kottler
formulation are:

1	 i

to
(Kottler)

_	 i	 1

	

4,,	 iwp (n
C	

x 1i 1/ ^^ + (ri x E 1) x,7,, + ( ii • E e l V'111 (is
Sr l	 J

(20	 (D
	

C
(Kirchhoff)

1	 1ii(x' , y' , 2') = 	 4,1 	 w E 1 	 c1^
,

r
(Kott1rr)

1

f 4,r	 r 10-E (Hx E 1 )	 - (n x li r ^ xVy^i — (ri	 il l ) vp ^.ls
S1 L

©	 O	 V
(Kirchhoff)
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where

e akr	 1	 a

I	 (jk

In the above, f: a and 11, are electric and imignetic distributions which exist in
space and may or may not be associated Mth in actual physica! `urface. When
a material surface is chosen, :appropriate boundary conditions are applied to
evaluate E a , 11 a in terms of the incident fields E j , Ii,  . Vectors such AS ti, E a , 11, ,
df., and V4) are ordinarily specified by their Cartesian components and associated
with :a definite point of :application in the pre -ni. They are bou11d, 2 not to the
origin, but to the surface and are taken in :a local context. These vectors are
part of an integration on the four-diniension:al na:anifold ( f " . 1 N'. f I' j ) where the
Cartesian basis vectors are fixed in space. The resulting vector fields F( x' , y' , z' ),
H(x' . y', z' ) are usually rewritten in terms of projectimis on the movinp- sp1wrical
triad ( 1 . . i '9 1 i ,, ) and a phase angle.

SPEC IAI.IZATION OF THE GENERAL FOR:NIULATION

When the general formulation is applied to the class of problems for which the
illumination distributions reside on perfectly conducting; surfaces, the Kirchhoff-
Kottler theory reduces to:•a

E(x' , Y ' ' z')	 - j (' e_ 4„	 Vq,	 • d	
4T7, [ 

j , µ(n x N ►	 ( t ' - k ► ) Vq, J ds
a

0	 ^	 ^
radial	 traiasverso & radial	 radial

1
If( x' . y' , z' >	 _	 - 4;,	 (^1 h ii ► ) xV4 (Is

, ► 	
7Q t ransverse

I Sil ver ' s com entions are used for 4, in the above.
^Ref. 8, pp. ;3-3i, Ref. `. pp. S-G. These references distinpuish several kinds of sectors.

Fhe component fields .ue radial and transverse, as indicated, for an infinitely remote observer.

r
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where

^	 - - ()k ,	
1

r 	 ^	 r	 ,.

as before.

The simplification is due to the boundary conditions'

i^( 13 2 -i3 1 )	 =	 0	 0	 Ivl -• 0

4P	 "	 ^ f) 2 - I)^^ 	 x (If 1 -i{ 	 K1	 1012 
-• 00

B 2 	H2	 D2	 E2 - 0 .

Physically, the antenna surface is considered locally plane, and the normal com-
ponents of F1, and the tangential components of E 1 vanish at the interface. In
effect, the normal F a and tangential H a fields are converted into electric charge
distributions, and electric sheet currents flowing along the. local tangent to the
surface. The contour integral can be regarded as a discontinuity of the surface
sheet current resulting in a surfeit .-)r deficit of electric charge.

The vector mechanics by which the Kirchhoff-Bottler formulation achieves
results satisfying physical intuition about the problc.n may be worth reviewing.
Vector clot- and cross-products can serve as mnemonic devices for identifying
sheet currents lying in the reflecting surface, surface charges, and boundary
charges. It is fundamental that a dot-product amounts to a projection between
two vectors and a cross-product always results in a vector which is orthogonal
to the given pair of vectors. From this it follows that n • E a ^ ^^ of integral C
is dice to that part of E 1 which is orthogonal to the surface and induces charge.
Since n • E 1 ^ Ow is radial, this component of the total field acts radially on an

1 Ref. 1, pp. 34-3
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observer, as do all fields from clutrges. ► Also the tern ri - H ► ^ must be a
vector %%-hich is orthogonal to both n and H t . If n x H ► is orthogonal to n it
must be in the tangent plane of the surface, and is suited for describing a sheet
current clue to tangential H ► as in in;.a c,rral (2. Depending on th.e orientation of ri

over the surface, ( ri x H t ) can obvious ly exhibit either radial )r . ransverse fields
at the point of the observer. In integral C the sheet current is crossed, vector-
tally, into V^ , , which is purely radial. Then the integrand ( ii .K N ► ) . V'/) is,
necessarily purely transverse, as is intuitively required of the scattered magnetic
field. Finally, the contribution of integral O3 is radial since 11, • d t is a scalar
aad V^ is purely radial. Since d 7l lies to the surface along the contour and is a
t: ► ngent to it in a local context, the magnitude of N r • dT, depends on the relative
aspect between fl ► and d7 according to the projection rule. Obviously the tangential
mart of N ► affects the magnitude of the charge or the contour as stated previously.

The preceding conclusions about the radial and transverse nature of the field
components were obtained on the assumption that the observer was infinitely
remote and the surface was perfectly conducting. It cou!d be seen that H( x', y', z')
was transverse since any vector crossed into a radial V4 is transverse, and
only a single integral provided the solution for the scattered magnetic field. The
scattered electric field E( x' , y' . z' ) contained one integral Mth both transverse
and radial components, and two other integrals were shown to contribute only
radial fields. It is not a priori evident that the three radial components combine
cooperatively, in general, in the Kirchhoff-Kottler theory and annihilate to satisfy
the radiation condition. 2 On the assumption that the radial fields might vanish,
the remaining transverse fields should yield a well-known ratio, the intrinsic
impedance of free space.

I El x ' , y'	 Z,)!

^H(x', y', z 

I

- 

`1

1 f	 __
( ti x 1-1) x V^ ds

,1

k - I El - zo

- jk
	

('Fix H 1 ) x 1 r ids

i

(f recce space)

ju"4(n x H ► ) 4) (Is 

	
(fix l ► 1^ '^' d

'1

'Ref. 1, Appendix I, p. 6-02 gives the dimensions of the physical quantities that also assist in
identifying the behavior of the integrands. The physical constants a), µ, and E are not included

t in the discussion above, and onl y the vector character of the integrands is examined.
`Th,! discussion of the proof is deferred to the latter sections of this document. 'gee Appendix A
and Appendix B.
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The cross-product im ,olving 1. in the denominator causes no difficulty here.
Since it has been assumed, tentatively, that the fields are purely transverse for
the infinitely remote observer, it fellows that

6

( ri x H 1 ) x l r < I ti	 l: i x	 (i i Y H ^) j' ( I S

sl	 I	 >>

;ski r l	 ( ►, ^111) ^d^
`t

s:n/i r , E(x 	 Y' Z' )

k
`
 (nxlil)`/ids
1

From this preliminary analysis it appears that the Kirchhoff-Kottler theory can
provide a diverging spherical backsc!attered wave, subject to additional analysis
concerning the vanishing of the radial fields.

Additional confidence in the description of the backscattered fields can be ob-
tained by postulating a pair of incident fields E i , H , which give a Poynting vector
P i - E i x Il i thu d is directed toward some scatterer. A locally plane segment of
the scatterer can be taken, and the directions of the scattered fields are assigned
by the integrals ^, and J7 of the theory, Mth g lue regard for signs. It is easy to
verify that the scattered fields give a Poynting vector P. - E( x', y', z') x

 is-easy
 y', z')

away from the reflector. This result, although somewhat trivial in appearance,
is important since subsequent applications utilize the backscattered fields to
illuminate other surfaces (i.e. dual reflector systems such as those of Cassegrain
and Gregory).' The E(x' , y', z' ) , H(x' , y', z') comprise a new illumination
function, effectively, and determine a new E 1 , 1--1 1  , but the incident fields are not,
in general, related simply to one another as in the case of a spherical wave.

Rcf. 1, pp. 131-137

i
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A subject of considerable interest in the antenna field is directive gain, which is
t	 defined asi

G(6, ^) _	 P(y, ^)
1	

I w	
12-

4, f	 I	 P( t) , (t) s i n g d4 dc)qu o "1-o

Pq (e, m) + P,t ( 0 , (r-)
l	 T f2?r	 1	 .,	 2„

4.,.	 PA (6, (P) cis + 4,.'	 P1, (B, ^) cis
0 0	 0 0

This Topic Mll not be discussed at length but it is interesting to discover how
gain variations are introduced in the Kirchhoff--Kottler formulation.

A special class of scatterers is considered, initially, for which all the differential
contributions, of integrals (-2) or Q arrive in- jAmse at the point of the observer.
Focal-point fed paraboloids, observed on-axis, are familiar examples. The
directive gain of such reflectors is usually given by

c(
'7Td) 

2 

where c is an efficiency factor related to illumination edge taper. For a fixed
geometry diameter d ?s fixed and

G(6, 0) or wz

In the Kirchhoff -Kottler formulation, considering both the electric and magnetic
fields, the same frequency dependence is required by intuition.

1 Ref. 9, pp. 179-180, Ref. 2, p. 90

8
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Since a copha sed aperture exists by assumption,

G((?, (k ) n If( x ' , y, ,	
)12,1  w2

by integral (_J. Similarl 'v, the identical gain must come about for the magnetic
field, integral 0, through Vq- since no coefficients appear.

^z

G(A, ^)x^H(x', y', z')^ 2 Ot V 12	 =	 i- ijk+ T)^klrl

In the far-field, only O( 1 / r) I terms remain, and the wave nu tuber k -- 27i/,k
establishes the fact that

(;(0 ' () 0x I H(x' . y ' z ' )1 Z j W2

It is anticipated, therefore, that

fs I 

(n xH^^ ^dS

is invariant with frequency for cophased apertures of the type assumed, observed
on-axis, providing a check on computer programs. Useful decisions, concerning
the need for double precision, sampling etc., can be made by insisting on this
invariance of the integral.

1
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When the cophased aperture assumption is ren ► oved, it can be seen that

^0 x11 i ) '{^^IS
fs1

leads to complex phasor polygons which :ire now not straight lines, but may

have contrilfflOons tending to annihilate to some extent. They yield reduced field
strengths, and imply gain degradation of the system. In the far-field region, each
transverse component E., E, , of the scattered field leads to a I)hasor polygon.
No attempt will be made here to relate the envelope or shci pe of the scattered
radiation pattern to absolute signal strength consistent with energy conservation
principles via the integral, over all space, as required by the definition of gain.
The implications of the superposition principle (a linear concept) and the notion
of energy conservation (a square-law for fields) are not peculiar to the Kirchhoff-
Kottler formulation.'

1laving discussed the frequency dependence of integrals 0 and (i) in the far--
field for a cophased iperture system, integrals 1) and 0 are examined as
these complete the formulation under the assumption of perfect conductivity.
Since V^, implies the first power of (,, it follows that the Kottler contour integral
is frequency independent due to the presence of the coefficient w-' outside of the
integral. The surface charge integral ®, however is without any coefficient and
varies directly as the first power of (.) or frequency. To sum up:

F( X ', y', z') - ICB (w°) + IT((6) + I®(C')

inva ri ant

1I(x' , y ` , z')	 10(«)

for simple cophased apertures observed on-axis.

THE INTERMEDIATE NEAR-FIELD

Returning to the general formulation, and assuming a perfectly conducting sur-
face, only the integrals T, (^), and ® of the electric field and the integral Q

I RCL 10, pp, 101-105.
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of the magnetic fleld remain and are examined here in some detail. The behavior
of the sum of these integrals in the intermediate near-field region is of interest,
as is the special case when the observer recedes to infinity. Also, prior to be-
coming engrossed in computational aspects of the problem several questions
might; be asked concerning the Kirchhoff-Kottler formulation:

(1) Does the solution for the scattered field satisfy Ai. ► Xwell's e(fuations ?

(2) Can one expect the solution to satisfy the radiation conditions at infinity?
(i.e. Is there a net radial field component?)

(3) Is the Kottler integral an appended "correction" tern (approximation)
lased on physical intuition or argument ?

(4) What is the behaivor of the Kottler integral for closed surfaces since the
contour C was or igimi Ily for omen surfaces ?

The answers to these questions cnn he obtained without resorting to evaluation
involving particular geometries, illmnination, etc., even though the task is
tedious and involves numerous manipulations on the field expressions.

For the reader who is interested primarily in the application of the theory, and
to a lesser degree in the mathematical arguments underlying it, the answers
are tabulated here. The derivations can he found in the Appendix of this document.

(1) The Kirchhoff-Kottler forn ► ulation leads to solutions E(x' , Y0, z' )
It( x' , y' , z' ) which satisfy ,1Iax1ve11's e(fuations.

^)fi OD
V X E _	 o f	 V x H - J , O t	 (free space)

(2) The radiation conditions are satisfied by the Kirchhoff-bottler formulation
and the radial components of integrals T , (j), and (1 annihilate for the
remote observer of the electric field. The magnetic field is inherently
transverse at infinity since the radial field is precluded by a cross-product
involving a radial vector.

Iim rE(x'. y'. z') is finite,
r-m

t

11
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1/2_	 E	 _
lim r l r xH(x', Y', z') f Cµ)	 E(x', y', z
m r -

1 im rH( x' , y' , z' ) i s f i ii i te,
r_m

[ (t:	 _
im r	

)1/2 
1 r x E(x', y'z 'y' , z') 	 0

r-m 

The proof lies in a development' which shows that both E(x' , y', z')
and H(x' , y' , z' ) are divergenceless, so that

V' • E(x', y , , z , )	 =	 V' • H(x', Y ', z')	 =	 0

Further evidence is presented by a separate proof due to Sancer 2 who
shows that

^k^•lr
E(x	 Y	 z)	 4n ^(I - 1 r 1 r)	 (11 x H 1 ) a	 ds	 as r	 W

til

-	 r( i	 ^	 r)	 _	 JkA^1r 
ds	 as rH x y z	 jk^p	 k	 nxHl) a	 0,f (

1

The hatter development substantiates in detail an assertion by Silveri
that the far-zone field is transverse by the current distribution method
(i.e. by the Kirchhoff-bottler method).

'Ref. 1, pp. 469- 470; and Appendix A, this document
2Ref.	 p. 143; and Appendix B, this document
3 Ref. 2, p. 149

0
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(3) The Kottler integral, which i:j introduced via a physical argrument that
envisions a discontinuity in a sheet current is shown by Sancer to evolve
naturally using; the free-space dyadic Green's function.

G = (I + klz V Vg)

where

4_	 1 e—jk^ ^ -^'^
g - 477 - 47-7

It appears that the Kottler contour term is more than a "correction"
term that incidentally leads to the satisfaction of the :A'laxwell equations.

(4) The Kottler integral for a closed surface vanishes identically for arbi-
trary illumination distribution because a dyad analogue to Stokes'
theorem' is applicable and clearly shows that the contour itself vanishes.
That is

R • Vx(H I V,P ) dS -	 d7 l • ( —H 1 ^Nj) +	 d?Z	 - Vw^

S 	 fc
	

fe 

V4,	 clt	 0

1 See Appendix A for the vector and dyadic form of the curl theorem of Stokes on an open iurface.

13
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since

dt1 = - & 2 .

The intermediate near-field formulation is now examined. As shown in Fig. 1,
an arbitrary reflecting surface, feed-point, and point of observation are con-
sidered. The phase and magnitude of the gave front arriving at the surface is
affected by a factor of the form - j k n '/, ' , and accounts for the path length
traversed in passing from feed to reflector. This is already stated implicitly
in the theory when F l and Fi g are specified at y1.

1r

6

rlr
El,Ht

rl r

E,,H,

lsoc.	 FIELD POINT	 Pt
Ip

Ioc.	 A
lm x

REFERENCE FRAME
rl r loc.	 o

Y	 Z

FEED-POINT
REFLECTOR tit	 P

	 i

E l ,Ht

Figure 1. The Intermediate Near-Field Region

Only three paths are traced from the feed to the observer to suggest the process
being described. It can be seen that the distance and direction from feed to
surface must be assumed unique, and the same is true of the distance and direc-
tion from surface to observer. A factor e- jkr 'r is evidently required for the
latter part of the path. Over the entire path the product ( e - j kp/p)(e - , kr-i r)
describes the amplitude and phase of a propagated wave.

In the Kirchhoff -Kottler formulation the history of the fields emanating from the
surface is of concern, and is given by the quantities 4 = e -, k r and DEG

14
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n

- ( jk + 1/r) tk1,. These factors are it 	 the integral sign, in general, since
each differential area is uniquely affected. Since the charge distributions are
not associated with propa gation, but fields, Vk appears instead of q above. By
this device, the formulation introduces terms which descend as O( 1 /r ) 1 and

g	 O(1 /r)2 and simultaneously achieves the (local) radial character of these fields
arising from charge distribution. Soe integrals 	 and Q . Only the quantity 1,
appears for integral 'P, and the orientatior of this field component is determined
by the direction of a (local) unit tangent, ( n x H l )/  F. K N 1 1 = T . The (total) HeId
given by integral T is purely transverse (in a local context) since, effectively,
the tangent ► is crossed into a radial vector 1 r contained !n V^, .

To conclude, it is noted that the backscattered, fields 4 the Kirchhoff-Kottler
formulations are formed in Cartesian components E , , E y , E , and later resolved
into spherica. components E r , EA , E^,. From Figure 1 is can be seen that sup-
posed radial fields, which can only attract or repel along a line of action between
a differential area ds and the observer, can have an EF and/or E,,, resolute with
respect to the moving; spherical triad of. basis vectors. Likewise, supposed trans-
verse fields arising from a differential area in such a manner that they are
orthogonal to Vq (or 1 . ),can have radial resolutes relative to the spherical sys-
tem. The 1 ^, 1^, 1 basis vectors are shown iit Figure 1 to illustrate this fact.
The notion that the 1^;, i m vectors lead to a description of a transverse field
is not particularly useful, therefore, in the intermediate near-field region.
Mathematically the resolution into spherical components is correct but it does
not appear to aid the understanding of the physical aspects of the problem. Also,
since fields other than those synchronous and orthogonal fields associated with a
spherical wave are now obtainer: in the solution, it appears that dual reflector
systems may be measurably affected by induction as well as propagation terms.

SUMMARY

This document assumed the Kirchhoff -Kottler diffraction fo r i>>ulation presented
in the literature and discussed some of the implications of theory for different
specializations. A consideration of the behavior of the formulation when the
reflectors are idealized open or closed surfaces, and when the observer is at a
large distance from the scattering object, for example, provided valuable connec-
tives between the mathematical theory and the physics of the problem. Recovery
of the intrinsic impedance of free space from the ratio of F,( x' , y', z' ) to
H( x' , y', z') , and the gain dependence on •_, , as well as the vanishing of the
radial fields at infinity, not only satisfied intuitive ideas on diffraction, but also
provided means for verifying a computer program. Satisfaction of Max,%vell's
equations by the general solutions for the scattered fields was also demonstrated.
Finally, the derivation of the Kirchhoff-Kottler formulation in a direct manner
via the dyadic Green's function afforded an interesting departure from the his-
torical development.

t
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In conclusion, the objective of this document was to provide an overview of the
Kirchhoff-Kottler formulation and stimulate further interest in diffraction studies
by their method of analysis coupled with present-day computer technology.
The ni(xlular Fortran diffraction program developed at Goddard Space Flight
Center by the Antenna Systems Branch has been used in a large variety of ap-
plications including monopulse configurations, thermally distorted satellite
antennas, large arrays of source elements :ind dual-reflector systems. While the
mathematics and theoretical disciissions may at times appear abstract, the
ultimate objective has been that of determining; the extent of the inherent soundness
of the Kirchhoff -Kottler approach for simulating objects in the physical world.
The combined effect of wave curvature, surface curvature and size, and observer
range and angle on this 88-year old theory are still not generally known.

"...to pursue mathematical analysis while at the same time turning one's back on
its ,ipplications and on intuition is to condemn it to hopeless atrophy." (It.
Courant)' Increased computer capability should enhance applications and thereby
clarify the range of validity of the theory.
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APPENDIX A

ST[LATTON'S PROOFS (FIELD DIVERGENCE AND
MAXWELL'S EQUATIONS)I

or

Stratton has shown that the Kirchhoff -Kottler formulation for E( x' , y', z' ) ,
consisting of four integrals, has zero divergence and leads to waves which are
transverse at great distances from the sources, lie has also shoum that
V' x H(x' , _v' , z' ) _ ( d /c? t ) E( x' , y' , z' ). It is stated that li( x' , y' , z' ) has zero
divergence, and `?' x E( x' , y', z') _ - (Ai/d t ) ( x' , y' , z' ). The former proofs
are carried out en the general formulation, and the conclusions are therefore,
also valid when the boundary conditions for a perfect reflector (a , - 1m ) are
invoked.

iiff	
In this appendix the proofs of Stratton are given in detail for both. V' • E( x' , y' , z' )
and V' • N( x' , y' , z' ) , For completeness, ?' x E( x', y', z') !-^- (/a t ) -3(x', y', z')
and V' x H( x' , y' , z' ) _ (t3/at) E( x', y', z') are both verified. Stratton's operator

ip	
V is not used, and associations such as V • (H '741 are treated as the diver-
gence 	 of a dyad (II I v"i'), since neither a vector dot- or cross--product is in-
dicated. All of the terms arising; through the use of vector identities are written
out in detail. The arguments which subsequently vanish some of these terms are
then presented. In some instances identities could not be found for operators.
vectors, and dyads and only identities for vectors and dyads were available. In
such instances detailed expansions were actually written as indicated, but will not
be given here as they are easily verified. It was not assumed that an operator
could be substituted for a vector in these cases. Some of the more tedious
expansions involved as many as 72 terms to prove an identity relationship, and

 these are not reproduced here. Even so, the derivations still tend to be tedious;
however, they provide Valuable insight	 cerning the behavior of the Kirchhoff-
Kottler formulation.

TABULATION OF IDENTITIES

v	 + OV
	

(1)

V • (AxB) = B • VxA - A • 17 B
	

(II)

1 Fief. 1, pp. 469-470.

Ai
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V x (VO)	 0	
(III)

	

(V x A)	 n (iS	 A	 dT	 curl theorem of Stokes	 (IV)

	

V x (¢A) _	 V x A^ V(t x A	 (V)

	

(AxB) • C	 - A • (5x^)
	

(VI)

	

V x	 ` 3 ) B - (BV • - 13 • V) A	 (VII)

	dt D	 n V x D ds	 dyad analogue of Stokes'	 (VIII)
theorem

	

A	 (B x D) _ (A x B) • D	 %+here D is a dyad	 (IX)

	V 	 A dv	 n • A ds	 divergence theorem of Gauss (X)

t

V • D dv =	 n • D ds	 dyad analogue of Gauss' theorem	 (XI)
S

20



THE TRANSVERSE ELECTRIC FIELD

Reheating the general formulation for the scattered electric field:

! 	 i
E( " t ' yI' z0
	

fjcvE 471 	 ^` '̂ H^	 dZ

_ 1

4^i	 ^j^,^El^ti x H ► ^ ^l^' (nY E 1 ^ x ^+ (n • E1) V	 (is
S1

The transverse character of the field at great distances follows from'

V' • E(x'' 
y ^' '') -	 j1;E	 1	 '^^ I1 1 • df,)	 Vq) + ( H ► • de )V' • (V4,)	 (I)

I s 1 

)(41
µIV

'	 (n x H	 J1^ ► tpV'	 (I1 x 
A1)	 d 

,. 

1	 _
V]'V'x( ►1xEi)-(nxE

_
1)•V'x(V(p)1 (is1	 J

(II), (III)

1_	 _ _
4-u` C V' (ii • E 1 ^ • (W) + (n • 

E1) 
V' • ( V01 d 	 (I)

t	 J

i The Roma n ri-meral designates the tabulated identity used.

e

(I)

H
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Since n' = -V whc,n the operators apply to P or its derivatives;' , 2 and since the
illumination distribution is not affected by a change of coordinates on the Dart
of the observer (x', y', Z'),

1	 1
O' - E(xl, y' ' x')	 jwE 4^i	 U2'1'11t	 dT

+ 41T	 I j(.)µ^ti K H ^^ • ^^ ; ^ n	 E^^ 
02 f 

l 
cis

L

	

- k 2 1	 _	 k2 f,

	

jwc 4rt	 Flit ' &4„ ids

+ i Wki

 
^z x it t ) • Vw ds

f1

'Ref. 1, p. 469, p. 169.
2Stratton uses (t = e +ik` , / r and Silver uses ^^ = e ^ k`/r for the solution to the homogeneous wave

equation 72 0 + k 2	 = 0. In this document ¢ is reserved for a spherical coordinate or a generic
scaler with identities. Take 41 = e +'k "/r above.
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f 
p 

x ^^ F^,) ] • n ds

	

fC I —	

I

PH, • d,

(,pC 7 x H, + oqj KR,) • n ds	 (IV), (V)

n	
( 
n x H,) • w	 (VI)

k 2 1k2
E( X' • Y', z') 	 jwE 477

f ( ^	 f ̂ Fi l • d^ - 471	 ri F,)	 ds

	H, • dt + 4'	 4V x H, n' ds
4-a 

fc	
7T

Then

since

ox Hi	
- 

J + aD	 - Eat
	 -jG,.'EEIp lit •

ti
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THE TRANSVERSE MAGNETIC FIELD

Repeating the general formulation for the scattered magnetic field:

a	 H(X^ Y^ Z ^)	 -	 j1:µ 4,^	 V1'Er	 cif

+ 477	 xE ) q, -(11AH r ^ xV7p-(n H1)Vq,]ds
si	 L

The transverse character of the field at great distances follows from

1	 1
V'	 ii( X' • Y I , ^')	 - j^µ 4,	 V^ E 1 ' d ) ' `	 E^ ' d'^ ) V' ' VO	 (I)

+ 4„ jU-F^V'^,•pnxEi^'4^'' ^nxE i ^Ps (I)
S1

1 /

fS
	 rVi^i • V' xirl xH l nxHr

l
^ • "'x	 (is (11),	 (III)

i

1
-}^

_
CVO ^ n 'f -H.^

_
V+ ^ r^ 	 H 1 ^' ' ( V^ ) ] ds	 (I)

S 1 :^
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4

c

	

- 4, ;	 ^ja;E ^n x Ei)	 ^n • N 1 )V 2 ],IS

	

2_	 _	 2

jaµ 41T	 `^'E (IT- 4-n	 ^ ►i H r	 ids

	

fe	 sl

	41T 	 xE 1 ) • Vq, ds

[v x^^E l ^]	 ii cis	 "	 kfl* dT	 (qn x E 1 r Vq x E1) • ri cis (IV), (V)
tir

	

- Fp x E,^	 11	 Cri x F r )	 pq,	 (VI)

k 2	 1	 k2

	

0' • H(x', y', Z') -	 jc^µ 4,	 /Er • dT - 4„	 (11 • H 1 ^ yids

	

f C	 f 1

	

jLJE	 - _ jaE
+ 4;7fcd^ 	 4) (V x E 	 1i (IS
 S1

A
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Then

	

V'	 [i( x I , y I , L ' )	 0

since

_ d
V x E 1 	-	 9t (I3 1 e -jvc )	 jc^uEl^ e - j,^c

THE CURL OF THE SCATTERED MAGNETIC FIELD

Repeating the general formulation for the scattered magnetic field:

H (x ' , y o , z')	 j c,.^u, 4,^	 V^ E 1 • dt

f ^ 	 + 4-r, I j	 n x El) 4) - I ii K H i) x w-	 ii • H^ VIP] cis

Idiaxwell's equation V Y H - ,j + (d b/d t ) (free apace) is satisfied as follows:

1	 1	 _
	V' x H( x' , y' , z') = jcĉ4 4„	 C (F • J) V' x Vk + V' ^E 1 • dT) x V^ 1	 (V)

, L	 J

47	 j(CE rbV' x (n x E 1 ) + (V' ^) x tix	 ]dS (V)
sl

6

C
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,I
	 where

i
i11	

)
- 4^ ► 	 I k^ (x H 1 ) 4, , (11 x H ^) • Vw1(is (VII)

sl L

I	 I

4, J
	

[(1, • 11 1 ) V
0

xVV+O
0
(It -II I ) xVNlcts(V)

r 1	 J

V' x [( fi Y H I ) " v,', ]

 
"	 ( n • Ii 1 ) ^7' . V^G

- [( ii x HI) • V'] Vki- VtpV' • (ii x H I ) + (V^ • V') (nx H1)

k'(11 {HI) kk + ( nx HI)	 VVkp.
	 (VII)

It c mi be verified that

f
( —[I 	 VV4 d s	 i i - V x H I ) Vq) CIS - I	 I I	 ( H I Vq) (I S

by treating (ill, V 4) as a dyad' and writing out the 72 terms of the equality.
Derivatives of the illumination distribution with respect to the operator V do not
vanish.

1 Ref. 6, Appendix 3; lief 1 I, Chapters V, VI, and VII; lief. 12, p. 420, p 520; Ref. 13, p. 46, p. 113;
Ref. 14, See Index.

I
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Using the dyad analogue to Stokes' theorem,

V4(if, • dj	 _	 (`17 • 11,)	 1^ • ( 1^1 v^^

fI 	 f,
n • 0 x (H, 0'%' ds 	n x V • (H, V1 . ) ( is .	 (VIII)

The last equalit- • was verified, term-by-tee ni, by expanding (N, 11 , 3 ) , and also
follows from identity IX when E3 -7. to general, operators cannot replace vectors
or dyads in identity relationships. 'Therefore,

 
f r

and

V # x H(x' , y', z') = 4„	 V4,HI • d^, 
fc

jWE
+ 

477
C(n x E,) X  + µ(n x H,) ^+ (n E,) V,-] ds

J S	 L
1

•

r
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so that

	

1' X H(x' . y' . z' )	 -	 - j„ , F(x' , y' , Z' )

and Maxwell's first equation is satisfied by the Kirchhoff-Kottler formulation.

THE CITRI, OF THE SCA': rERED ELECTRIC FIELD

Reheating the general formulation for the electric field:

_	 r
E(xf ' y' ' zi )	 -	 - j I 	 1	 7.1, }1^	 dT

1
- 4 	 C jc.^µ(n X Ht) 0 + (fix Ei) " ^`^'	 (n • F,1) '7WJ cis

J

Maxxvell's equation V x E _ - (aB/d t) is satisfied as follows:

2
V' K E(x' y'. z ')[(H I • dT)7'xV^+	 Nr • d?)xw	 (V)

•	 1
4,r	 j w pv, x(n x H 1 ) + (V' tp) x fix H r )] cis	 (V)

6
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1	 _

4 n	 [ k 2	 " ' E t) `^' ^ ^ ty V F ^)	
VV; ' l (I S	 (VII)

1	 [(—
" ' E^) C7' x Vtk+ V' (ii E^^	 V;I

	
CIS (V)

sl 

where

V . x r( 1-1 x k j ) x VIP]
	 (nxgl) V' V^ -((nxE l ) V-'I Vkk

- V. V' • (rix E 1 ) + (W) - V') (n x EJ)

k 2 (n xE,) ill1 (ilx E 1 ) • VV4,	 (VII)

It can be verified that

^11 x E 1 )	 VV4 ds -	 (t	

fi

• V x E) Vikds - 	n x V^E V^) cis
s`1

by treating (E l Vy)as a dyad and writing out the individual terms of the equality.
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Using the dyad analogue to Stokes' theorem,

V^,^F 1 • dT	 ((I^ • E^ oq,	 dT	 E1 VP)

i

ii	 V x ^E 1 ^^^ ds	 n x V	 ^F 1 Vi,)(IS.(VIII)

Theref,)re,

fl

n x E t^	 VV^ d s = j wµ 	( r i • -i 1 V^p d s-	 V4 E 1	 dT

1
and

V , x E(x' , y' , Z') = 4„ ( vq)	 dT

+ '4^ f	
Cjw E(ii x 

E t^ - ( 11 x 1( 1 ) x w - (ri • H 1 ) o I ds
1	 L	 \

6

r
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so that

6

0'E( <	 Y	 z/ )X jwµ H( x' , y' , z ' )

and Maxwell's second equation is satisfied by the Kirchhoff-Kottler formulation.
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APPENDIX B

SANCER'S DERIVATIONS (THE FREE-SPACE
DYADIC GREEN'S FUNCTION)'

Sancer has shown that the complete Kirchhoff-Kottler formulation for E( x' y ' z' )
can he obtained using the free-space dyadic Green's function, thereby avoiding
separate physical or intuitive urgruments to obtain the contour integral. Sancer
has also manipulated the general formulation in such a way as to establish the
fact that the radial fields vanish at infinity as required. 2 The special case of a
closed surface is treated in terms of two open surfaces using the vector fore»
of Stokes' theorem. 3

In this appendix, the derivations of Sancer are not reproduced since that author
uses conventiomil notation, operators, etc, throughout. 'Phis appendix aug ► nents
Sancer's article through a discussion of certain dyadic identities, arbitrary
vectors, and operators in spherical coordinates. References to texts containing
special identities are given, and dyad analogues to expressions known from
vector analysis are identified. Wherever the expressions are too involved for
complete presentation, the method of obtaining the desired result is simply
outlined.

The dyadic Green's function

G	 (I 1 V
l; 2

where

1

9
	 r'I	

,
exp. ( ik , r - r

, 
^) ,

l Ref. 7, pp. 141-144.

2 Ref. 2, i% 149 and P. 88. Silver states that "The effect of the boundary-line distribution is
therefore to cancel the longitudinal field component introduced by the surface charge and current
distribu,ions." Reference is then made to a volume integral argument for the far-zone fields. J iie
bottler integral is not explicity involved.

3,?ef. 15, P. 352.
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is fundamental to Sancer's development' One of the first relationships involving;
G is

a

( LG ) -V - L(G•`"

where V' (r' ) is an arbitrary vector field, and the operator L `7 x 0 x - k 2 . The
given relationship is verified in a straightforward manner by expanding both
sides, beginning with the curl of the curl of the dyad G .

N ow V x G

	

d	 C) l
	

..

	

( t six	 ,)y { k d  / x ( G
.X ii ; G. i j + G .  ik

+ Gi + G lJ	 G -k + G 1,1+ G kj - G CC)Yx	 YY	 YZ	 zx	 ZY	 zz

	

;)G	 Y	 ;^Gx	 c3 G z 	 +GY	 ^Gx
7	

^)G	 1

	

\ d X	 0Y

where

	

Gx - Gx x
' + G X Y	 + G x z k

C Y = GY x i	 G` Y	 GY 
z k

G 7 	 G7 X i 
+ C7 Y	

+ G  7 k

l Ref. G, p. 221 Van Blade] makes extensive use of the dyadic Green's function in solving a large
^• ariet% • o f mechanics and electromagnetics problems.

2Ref. 7, p. 142, Equation (2.8).

34



Then V x (V x G)

(^3G= d r
=l

t ax + l dy + k itzl	 i	 oy - 
dz

6

G,

Y _C 0z - ,,x	 + k ;ix	 (TYC	 Y

dGx

C

+G	 (i)G, oG.)]

^E
Y	 d z

O 	 'd G ! dGY d dGx
+

;z CY 0z

( ,16Y
_—

dx	 ;)x
_

d Y

^^	 dG x dG= d	 G =;/YdG+

C: Jx	 d z dx / J	 ^1^^Y dz

The analogy with vector analysis is obvious. In the expression' for V x Vx V
replace vector V by the dyad G.

The left-hand side of the equation can now be expanded, and the result dotted
into V to form (LG) W. The right-nand side of the equation is then treated
by forming the vector

-rl

G	 V' - (G V' + G	 V' + G V') i + ^G	 V'

	

xx x	 xy y	 xz z	 yx x

Y

+ G Y Y VY + G Y = V=/	 } (G = x Vx + G= Y VY 
+ G= = Vz,)

l Ref. 7, p - 490, identity 59. A correction is required. The last factor should read d 2 v /dydz

	

instead of d 2 v y/dxdz•	 Y
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and writing out V x V x (G V ). The identity

(LG) , V ,	 _ L(
G - V)

is verified by this process, however, it appears that the arbitrary vector field
V' (r') is a constant vector field relative to the unprimed partials. Writing only
the i component of the equality here, to save space, the left-hand and right-hand
sides of the relationship yield

	

(
i)2 Gyx

	

	 `/2 Gxx	 d G xx	 `)2 C'zx)

	

y dx	
d z	 ^l y

d 2 G	 d2 G	 o2 G	 ;)2 G 1
+ V
	

y y	 _—_	 Y _	 Y F	 —Y 

JY (	 y;)x	
(9 z 2	 y 2	 d  ;)x

	

i) 2 G	 )2 G xz	 2 Gxz	 i)2 ^zz l
_I

/

+ Vz
	

Oy ax	 az2	 r) y2 	 + -Ti^^x

() 2

	

,)y ox (Gyx Vx 4-
	 Vy' + Gyz Vz')

J2

^ y 2 ( G x x Vx + Gxy Vy + G x z V 

02

- z 22 ( G x x Vx + G x y V 	 + Gxz Vz' )

02

+ z—^x ( G z x 
Vx + G z y V 	 + G z z Vz,)

4

I
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It is noted that the dot product of a dyad with a vector is non - comrr► utative in
general. The curl of the curl of a dyad is a dyad, and a dyad clotted with a
vector is a vector.

•1

After applying the divergence theorem of Gauss,' Sancer writes

G	 V' • G

which expresses the fact that G is symmetric. As expected, .in expansion of the
equality ;shows th.it the symmetry refers to the principal diagonal symmetry of
the matrix representation of G, so that Gi i = G  i when the i, J are the row-
CtulUmn designation. Sancer next employs a relationship

V x (G • V') = Vg x V'

which is easily verfied by expanding the left-hand side and writing out the expres-
sion G = (I + 1 /k 2 VV) g . Since

d2	 2	 ()2
VV =	 lldx2 { ' J dx^1y	 'k (T-x--Tx 7)z

	

()2	 0 	 d2	 c7 2 	 r)2	 d2

J ' i)ydx + JJ 
dy 2 + Jk dydz + ki ^z dx + kJ (Tzc)y + k  - 2

V x ( G • V ) -	1 [sly ( gV Z ) - ,^z (KV^)^

+ J [ Z 
(gVX) - 

c X 
1^'V^)J	 k L Î x- (gV y ) - ^y (tVX)]

1 See the identities X and X1 in Appendix A.
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Then the identity is verified %%-hen V' is an arbitrary constant vector field rel-
ative to the unprimed partials.

After a considerable amount of manipulation; which is stralghtfo:ward, but
tedious to verify, Sancer arrives at a result 2 that is written in his notation as

+ icq^g (n' x H') + 
(aE 

VO
^^ g ' (nx N)} (is

a)

The integrals C2 and3 of Stratton's formulation can be identified. Further
manipulation which employs various artifices such as adding and subtracting
the same inteff -ai, finall y results in 

E( r) = E i (r) + s {(n x E k ') XV'g

I 111

CI

+ is>Pg (11' x }1 k'^ + 0' g /n	 E k ' ) y , I S I^
O J

i

'The triple scalar product and identity IX of Appendix B are used.
2Ref. 7, P. 142, Equation (2.17).
3 Ref. 7, p. 143, Equation (2.24).

I
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which can be identified as the original formulation of Stratton. The existence
of the contour integral is especially significant since it %vas obtained directly via
the free-space dyadic Green's function. The intermediate expression, above,
will be used subsequently to investigate the radial fields in the far-zone.

Returning to an argument by Sancer 2 concerning the contour integral for closed
surfaces,

V^	 .;E V^ (11 1 - H^) ^i^

is said to vanish when If is continuous on the surface due to Stokes' theorem for
a closed surface. The argument 's subtle since, if If is continuous, H = 1 11 - 11 2 = 0
end it is easy to lose sight of the fact that it is the contour %% ,hich vanished.

The following alternative vic%N , point is presented to avoid the a priori statement
that the surface integral vanishes, since it is the vanishing of the contour integral
which establishes the far-less obvious vanishing of the surface integral. Ob-
viously, the presence of the arbitiary field vector V allows Sancer to employ
the vector form of Stokes' theorem. The bchavior of the contour integral can
be determined without the use of V' by using the dyad aru-iogue to Stokes'
theorem.

From Stokes, in Stratton's notation,

V^/ 11 1 • dT =	 dT • (H 1 V P ) _	 , • ' J x (H 1 V4 ) d s

visualizing a simple open surface s 1 initially. The contour is by common con-
vention, oriented so that the right-hand rule holds for the normal to the surface.
If a second simple open surface should exist such that the boundary c 1 is also

1 Ref. 1, p. 469.
) Ref. 7, p. 143, Equation (2.23).
3 Ref. 15, P. 352.

*I

39



1

•

the boundary - c z , it follows that

ri	 0	 (N,Okk)(is
s,+s 2 = s f. 

`l` • (11 , V-P)

f,7 I 

(P ,	 ( li l Vy) +	 d . z (l l , ^^)	 (&t; l + d^	 H , ^^) = 0

because OR surfaces and contours are orientable. That is & ,	 - d ,-, 2 . 'Cher.
the concluf ion is that the integral over the cl ,)sed surface also vanishes,'
necessarily, since thn contour has been annihilated.

Sancer's intermediaw result

E(r)	 Ei(r) i	 (n' X E' )x V',
4 /

1

+ iwktg0-1,XH ') + ^E 0 '^'K' (nxH') ds

a)

leads to the conclusion that the Kirchhoff -Kottler formulation exhibits transverse
fields only in the far-zone limit. Recalling the dyadic Green's function,

= I +2G  

1 Ref. 1., p. 338. Several examples of orievtable and non-orientaLie surfaces are Riven with sketches,
and dir-ct reference to Stokes' theorem is also made when S = S 1 +S 2  as above.

of
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Sancer NNTites

k r
E(r) =	 E i (r) + 47.r	 (1	 Ar ar)

( n x H I S(,- i kor ' r (IS ,	a x	 (n' x E' )^,' il a r ' r	 cis
i	 47! f	 r	 i

after injecting the far-field approximation v - k " r' r ,and rewriting G in snherical
coordinates in the limit as r

The G( r ) follows from the spherical operator

d	 1 •)	 1	 a
V= l r ar + l g r	 + 1 ,t r sir:'? a¢

and the basis vectors of the moving spherical triad

r

I  - sin g cos¢ I+ sin0 sin¢ j + cos ::k

10 = cos B cos ¢ i + cos B s i n ¢ j - s in E"^

sin¢i	 Cos (f

i
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Then

r	 a	 ,^ ,	 d(	 1!g	 1	 v
G ^ 	 lr ,fir ( l r r ► r	 l^ Jor \ 1 ^ r	 lr Tr l m r sir► , JT)

1^ ^^^	 i9 a	 i ^^g	 i9 a i	 1
r	 lr r► r)	 r JC ( l c r r)c)	 r' a (m r sines a

i m	 a te. _. i m
	 ^)	 1 r^	 1,a _ a	 1.^

r sin g a^ ( l r %)r 	 r s in g 610 (le r aO	 r sin	 (lm r 
sines acs`)

,) 2 g	 le "g ag	 l m im 'gl r l r ^ r 2 	 r	 a r 	 r	 ()r

1 1 ( 2 - 2:k _ k2/

	

+ i 1	 tk - 1 \	 ik - _1

	

r r	 B © \ 	 i l m i m 	 ^ gr2	 r	 r	 r2	 r	 r2

From this representation of Wg,l

G(r) _ i + k2 	 g

\	

1 ( 

i	 1	 =	 \
1 - a r a^ I g r - ^ 2 r2 ) I - 3a r a r ^ K

The various authors use different symbols to represent the unit radial vector. Here 1 7 a r (Sancer) =ar
(Van Bladel) = r  (Newton ) uhIch is usually clear from the context. Al.;o, K - e' k`/r (Sancer) and
g - e ,k '/r (Van Bladel).

•
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In the linAL1 as r

0

1

as used ► ,y Sancer. Whcn G°°(r) operates in a (lot product against an integral of
the form

(tl x i^' ^^. i k u r' r	 clS'

the result can he regarded as the , ntire vector field minus the radial Dart of
that field via ( I - a r a r )g. Alternatively, the result can be regarded as the dot
product of a dyad G' ( r ) which has only 1, 1 . and 1, 1 T con► poi,ents in a matrix,
with a field of i r . ? ^^' lm values. This is equivalent to taking only the transverse
components of the field.

To ,um up, Sancer has shown, that the Kirchhoff-Kottler formulation has only
tra,isverse fields in the far-zone limit since (1)

(n' X E') x'V 1; ds

is necessarily transverse (but vanishes anyway when the conductor is perfectly
•	 reflecting), and (2) the radial part of the integral for electric sheet current is

annihilated by an integral ^^'hich is equivalent to the boundary curve integral on
electric charge plus the integral on surface-charge distribution.

6

10

if

l Ref. 7 , p. 221 and Ref. 17, P. 1"'
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