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ABSTRACT
This paper presents a rapid method for computing satellite
accelerations, position partials, and partials with respect to har-
monic coefficients in the earth's geopotential using spherical re-
currences. Some timing estimates and accuracy comparisons are
given as a function of order of the harmonics for two different

satellites.
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AN ALGORITHM FOR COMPUTING SPHERICAL PARTIALS

INTRODUCTION

The nonlinear equations of motion of a satellite moving in the gravitaticnal
field of the earth are presently being solved by high order predictor-corrector
methods of numerical integration. The advent of extremely accurate electronic
and optical measurements makes it both desirable and necessary to include in
the force model terms of high degree and order as well as other forces suck as
drag, solar radiation, etc. when estimating geodetic parame‘ters. tracking station
coordinates, etc.

This paper describes a fast method for computing accelerations, partial
derivatives with respect to position, and partial derivatives with respect to
harmonic coefficients in the earth's geopotential using recurrences in spherical
coordinates. This method [1], [3] was compared with De Witt's method [2]
which uses recurrences in cartesian coordinates. The spherical recursion
algorithm was found to be as accurate and at least twice as fast in t! 2 calculation
of accelerations alone [1]. The author reached the same conclusion and, in ad-
dition found the spherica“ version much simpler from both analysis and program-
ming points of view. The method described here computes the total acceleration
(Keplerian plus perturbative) due to the geopotential field for an artificial satel-
lite orbiting the earth. The principal features of this method have been applied
in a program which estimates geodetic parameters, tracking station coordinates,

etc. using multiple arcs of various satellites.



GRAVITATIONAL POTENTIAL OF THE EARTH
The potential function of the earth (adopted at the meeting of Commission 7
on celestial mechanics at the Berkeley meeting of the International Astronomical

Union in August 1961) is given by

s 41 9 vl P (n) [Cn cosmA +§" sin m>\]
n“1 m=0

where,
P "™ (1) = associated Legendre functions of degree n and orderm,
i = z/r = gine of the geocentric latitude,
G = Universal gravitational constant,
M = mass of the earth,
R = mean equatorial radius of the earth,
A = east longitude of the satellite,
r = geocentric distance to satellite,
cr ’. S," = unnormalized harmonic coefficients.
If the center of gravity of the earth is chosen as the center of the coordinate
system, the terms for n = 1 do not exist, i.e., ¢’ = ¢! = 50 = s =0 T

1

form of the potential then becomes

. GM o o N =
U - I+ZZ s r [Cn cosm\ + 8’ smm)\] (1)

n=2 m=0



where
N = maximum order of harmonic expansion selected,
It is well known that the potential function U is a soluticn of Laplace's

equation, which in rectangular coordinates is given by

Ay ‘ d?yU 9%y

l = 0,
dx? dy? dz? @)
and in spherical coordinates by
LIFE Y B R L = e S L 0 @)
dr? ror - 25,2 o2 OV S r?cos? y dr? >

COORDINATE SYSTEMS
Two different orthogonal right handed coordinate systems shown in Figure 1
are used, These systems are
(1) An inertial coordinate system referenced with respect to the first point
of Aries,T, and
(2) A geocentric coordinate system referenced with respect to the Green-

wich meridian,

where
r = satellite position ve:cor in either coordinate system,
T = first point of Aries,
x, ¥y, z = inertial cartesian coordinates of position vector r,
Xgr ¥gr 2 = geocentric coordinates referenced to Greenwich meridian,

3



XG (Greenwich)

Figure 1.

R
|

= right ascension of the satellite,

..
"

ou = right ascension of the Greenwich meridian,

= east longitude of the satellite,

Y = geocentric latitude of the satellite.

We obtain the angle ) and the sine of / from the following equations

1 Y

= : =
T A-F =g siny =

8 * kb .

The partials of r, /, A with respect to x, y, z can be obtained from differ-

entiating the following expressions:

2 = - 2 & a8 = = - z = + —
r X y 8% v/ tan (x2+y2)1/2' A ag tan

l—a

%<



We obtain after differentiation the following partial derivatives:

Jr X dar y dr z

ax = ,Iy r 7;. r '

d - o -yz ay (x’ *y’LV’
X - (xz ‘ yz)m ' ay r2 (xz, yz)m ' o5 r2 '
o _ = an x A :

dx y2+y? ' Jy x2+y? " dz

'he equations for the total accelerations “en become

: . 2 = xz au
Ui G, 80 rz(xz*yz)m%—/

y du x dU yz dU
y ror ' 3

2 dA rz(xz*yz)n/z dy

It should be noticed that in the equations for tha partials of U with respect
to the spherical coordinates r,/, and » certain quantities such as P", C" cos mA
+$§ " sinm\, and GM/r are common to these partials and need be computed oqu
once. Furthermore, recursive relations are used for generating expressions

such as sinm\, cos mA, m tany, and P so as to increase the speed of computation.



The formulas used in recursion ave:
PO (1) [(2n =1) siny PO (u)-(n-~ 1)Pn°.2(m]/n
P,,m(/l) Pn":'z ¥ (Z\*l)cosan“_"l‘ (u)m 70, m<n

For sectorials m - n and we have

P"(u) (2n-l)cosan"_'l' (LWYm 70, m~ n.
sinmA = ZcosAsin(m=1)A - sin(m~ 2)A
cosmh ° 2cosAcos(m=1)A - cos(m=2)A
mtany = [(m'- l)tanw] t tany .
ACCELERATIONS

The total gravitational acceleration vector F in inertial coordinates (x,y, z)

is given by

e * i9x tigy tk3z

where i, j, k form a triad of mutually orthogonal unit vectors in the inertial co-
ordinate system, and the partial derivatives of the potential function U are given

with respect to inertial coordinates x, y, z. Applying the chain rule of calculus



to the function

U

Ux, y, z)

W VA,

we obtain the following equations for the accelerations:

s . &
X ax
s
e
z dz

ou s
dr dx

=¥
<
D
-

N

“

QD
-

D
s
B
q

B
-
J
N

du

9y

dU dA

Y9y ay "IN Gy

aN 9z @)

The partials of U with respect to r,y,, i.e., dU/dr, dU 'y, dU/dA are ob-

tained by explicit differentiation of the potential function U and are expressed by

the following equations:

n*3

au 1 (oM " (RY o e
3¢ - 1 *Z v (n*l)Z (Cn cosmA + 8 smm>\) e
m=0 -l

N n
U GM R\"
:9_\47 = ('—r') E (—r') E (Cn"‘ cos m\ + 8™ sin m>\) [Pn"‘” - m tan Y Pn"‘]

n=2 m=0

.y ., B
- T T Z: v Zm(Sn cosmh -C/ smmk/Pn. 5)

R m=0



POSITION PARTIALS
The desired partial derivatives with respect to inertial cartesian coordinates

can be written in the following matrix form

= . o]
2y a2y 9?U (9% 9% 9%
%2 IxXdy Ix 0z ax dy dz
42U d?u a?u , ay ay ay
dy ox dy? dy dz ax Jdy oz
22y iy R az 9z 97

L?z a% dzdy 822_ ‘_3? dy 37_

From Laplace's Equation 2 we can solve for 42 U/dx?, i.e.,

i B (a’u . 62U) :
dx? dy? 9z?

Since the above matrix is symmetric, we need only compute the elements
above the principal diagonal and two remaining elements on the principal diag-
onal yielding a total of 5 elements.

The elements in the above matrix can be obtained by differentiating the ex-

pressions (4) with respect to x, y, and z and are given as follows:

X  dUad%r 9UA%Yy AU I a’u(ar)2 020(04;)2 a’ij(a)\)2
Tx . TF 5.0 "W 53 T UK 58 T L \IRI 7 ax/ G \ax

(a’u )
* 2\3ray ox

-
D
x|

* 9rox ax ax T IPIn 9x Ix

»®

d2U dr ar 42U 9y ax)



B e ~ ¥

<<

au a%r au a2y au 42
Jr dydx  d) dyax | dx Jy dx

02
dr?

s
QL
‘
QD
-

d2U ay ay
Y 902 Jy Ix

+

>
<1

a?u (ar dy dr aw)
YOrog \ayax " axay) !

oU d%2r U 92y AU a2
gr 9xdz " 9) dxoz ' In Ox 0z

d?U ar

d2U A ar
" a2 9y a%

a?u
7)1‘3;\

(

dr dA dr oA
dy ax ' dx dy

d?y (_«w dN 9y IN

dr
4 arz'&'—za—x'4'_53;5'P a)\zﬁﬁ

y?

AR A 4o



ay U a%r a9U 4%y U 42
dz dr dydz ' d) dydz  oh dydz
2IJa£ar aUqag*asz I\
20y dz 9yd 9y 9z ' 32 9y T
a?u (g_raw z) a2U(ar arn  dr ax)
Yorop \dy az ' TJ'; dror \dy gz ' 9z dy
d?u (a_wgi a¢;a>)
. alpai\ aya +3_Z-a_)7
a7z au 62 au aw au a2 A a2U(ar)2 a2U(aw) a2u(a;\)2
dz T 5,0 Wy g8 "I 508 T N NNRT PERLE 3 \5E

O/azua gy 92U dr ax  d2U 9y ar
Y e\Orody dz 9z ' dronodz dz mrr

We need the expression for the double gradient of U given by

- 92y a2y 42U
.57 P drdiy dar dA
N = e [a_u EAY a_u] 3 d%u d*u d?u
W) = 13 L3 0 ] ° oy - 3,2 9%On
% 92U a2y a%u
e d

|gxar | XY a1

We notice that the 3 x 3 matrix is symmetric and hence need only to compute
the elements on and above the principal diagonal. But we can also obtain one of

the e2lements on the principal diagonal from Laplace's Equation 3. This means
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that only a total of 5 partials are required in this matrix. The second partials
of U with respect to r, /, and A are obtained by differentiating the expressions (5)

for the first partials and are given by

2 N'\ " '
%r_l; %[p 2—_.(%) (n+2)(n+1) z(cn“cosm’\*s.."‘si""\’*)?.?]

“‘.:2 nzﬂ

2 L n -
77ar ¢ - %) (B e ) (crcosme sy sinm)(Pet - mean yP)
¥ n=2 m=0
a?U : M N (R n L -
o l‘—3 Z ?) (nts) Zm(snm cos mA “CnmSU'\ m)\,)an
n=2 =0

03;‘: : (GTJ') ZN (%)“ i(cn'“ cos m\

n=2 m= 0

+8 sinm\) {tan x,’an"'” + [m sec? y-mtan? y-n{n+ 1)] an}

N n
aa;aUA (%) Z('!:‘) Z m(Sn"‘ cosmA -C" sinmk) ( P! - mtan tlan"‘)
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We mentioned above that we needed only 5 partials. Hence, we arbitrarily

chose to compute d? U/dy? from Laplace's Equation 3, i.e.,

a?u T , 92U ol d?u
ey an . = :
a2 v 7y g ar? for cos? y ar?

The second partial derivatives of r, /, and A with respect to x, y, and z can

be represented in the symmetric matrix form

(92r  32r 9%y |
Ix? dxdy dxdz
% r a%r a%r
dy o x dy? dydz
a%r % r a%r
szgx dzdy 922 |
where the elements of the r matrix are given by
a?r 1 x? gty & 1.9
o i dy? ) 922 £ .3
r o - & P 2t - ia- . 3
IX dy yex - 48 axdz ~ Jdzdx 3 dyds  Jsdy 4

12
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The partial derivatives of / with respect to x, y, and z can be represented by

the symmetric matrix

62\# 32‘/, 02\/1
Ix? dxdy ox oz
a?y a2y a?y
dy dx dy? dyoz
a2y 32y %y
Bzﬁ dzdy 3’:

where the elements of the y matrix are given by

%y z
ol el Gl Lt D R

a2y = a?y Xyz 2 2 2
dxdy  dyox rd (x2+y2)3"2 [3(x *Y)*z]

a2y %y X
dxdz ~ dzdx r‘(xz*yz)’/z [22_("2 +y2)]

9%y z
o e (x2 +y2)32 [23’2 (st oyt - ! "2]

1

%y 3%y y
dydz 9zdy 4 (x2+y2)12 [22_(x2+y2)]

- .f_: (x2+y2)1~2 .
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The partial derivatives of » with respect to x,y, and z can be represented

by the symimetric matrix

FEDN ED) EDN

Py ax dy Ix92z

a2 A a2 a2 )

Jy dx (-)yz' dyadz| *

a2\ a2 A ERN

L«er?x dzdy azz_J
where the elements of the » matrix are given by
' % 2xy 32X K 1 s i
Job dy? e (x2+y2$2' Ixdy  dyodx (x2+y2 2 (y . )’

PR EEDN a2\ FEDN FEDN

JaF - URUR © %zdx  dydz  dzdy 0.

The higher accuracy that is required in computing accelerations is not
needed in the calculation of the position partials so that fewer terms are in-

cluded in the geopotential.

HARMONIC COEFFICIENT PARTIALS
The equations for computing partial derivatives of acceleration with respect

to harmonic coefficients C " or S " obtained by explicit differentiation of the

14



equations for the accelerations (4) are given by

au
ay

d

: dar
3-2—4

U
ar

A

as™

dsS "

Az

where

m
n

)(_]:_)n (n+1)cosm\ P

GM
2 &

el ¢ - 3

d
aC"

n

R

) (%

GM

(77) - (

d
dC™

)n cosmA (P™* ! -m tanyP™)

r

r

n

msinmAP"™

:
)(

)6

GM
r

) - -

U
an

n
) (nt1)sinmAP"

R
r

15



TIMING ESTIMATES

Several runs were made on the IBM 360 model 91 which uses the OS MVT
multiprogramming system, Some estimates of running time were obtained by a
pair of routines called ETIMIN, ETIMOT (TIMEIN, TIMOUT). The first routine
reads the system clock but returns no output and the second routine returns the
time elapsed since the first routine was called. This actual elapsed time may
include other users' time as well, Consequently, the estimates do vary some-
what and are usually greater than they should be.

The program was called upon repeatedly for 10,000 cases to simulate the
calculations required for the same number of time points t. Some timing estimates
are presented for accelerations plus position partials, and position partials only
in Tables 1 and 3. The number of "'significant' digits indicated in Tables 2 and
4 represents the number of digits agreeing with the standard case (degree = 15,
order = 15). The first and second columns in each table show the order and de-
gree of the harmonic coefficients respectively for the computation of accelera-

tions, In addition the third column provides the degree of the 2xpansion used in

computing the position partials.

16



Table 1

Time Estimates

Degree Running Time in Seconds
Degree
Order (position Accelerations Plus
(accelerations) Accelerations
partials) Position Partials
15 15 2 57.0 59.9
15 15 4 57.0 60.9
15 15 6 57.0 62.0
15 15 8 57.0 63.3
15 15 10 57.1 64.1
15 15 12 57.1 64.7
15 15 15 57.2 65.5
10 10 10 32.3 38.2
5 5 5 11.7 14.5
2 2 2 3.4 4.7

TETR-C DATA

-0.197 171 190 (06) Meters
-0.646 084 338 (07) Meters

+0.250 067 586 (07) Meters

17




Table 2

Significant Digits

Degree No. of Significant Digits
Degree
Order (position Accelerations Plus
(accelerations) Accelerations
partials) Position Partials
15 15 2 16 3
15 15 4 16 3
15 15 6 16 4
15 15 8 16 4
15 15 10 16 5
15 15 12 16 5
15 15 15 16 16
10 10 10 6 5
5 5 5 4 3
2 2 2 4 3
TETR-C DATA
x = =0,197 171 190 (06) Meters
y = -0.646 084 338 (07) Meters

]

+0.250 067 586 (07) Meters
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Table 3

Time Estimates

Degree Running Time in Seconds
Degree
Order (position Accelerations Plus | Position
(accelerations) Accelerations
partials) Position Partials | Partials
15 15 2 45.5 48.4 46.6
15 15 4 45.5 48.9 48.0
15 15 6 45.5 51.5 48.4
15 15 8 45.5 54.5 49.5
15 15 10 45.5 56.3 49.9
15 15 12 45.5 55.3 50.4
15 15 15 45.5 53.1 52.7
10 10 10 26,2 32.8 31.1
5 5 5 - 12.9 12.3
2 2 2 - 4.6 4.4
GEOS DATA
x = 40,569 053 863 879 2412 (07) Meters
y = +0,147 453 452 873 1973 (07) Meters

+0.601 344 521 360 5027 (07) Meters
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Table 4

Significant Digits

Degree No. of Significant Digits
Degree
Order (position Accelerations Plus
(accelerations) Accelerations
partials) Position Partials
15 15 2 16 4
15 15 4 15 5
15 15 6 16 5
15 15 8 16 5
15 15 10 16 5
15 15 12 16 6
15 15 15 16 16
10 10 10 6 5
5 5 5 6 5
2 2 2 5 4
GEOS DATA
x = 40,569 053 863 879 2412 (07) Meters
y = +0,147 4£3 452 873 1973 (07) Meters

+0.601 344 521 360 5027 (07) Meters

20




Hence, it is possible to compute position partials of the same or lower order
than the accelerations. This option is available when position partials need not

be computed as accurately as the accelerations,
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