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A BST RA CT

This paper presents a rapid method for computing satellite

accelerations, position partials, and partials with respect to har--

monic coefficients in the earth's geopotential using spherical re-

currences. Some timing estimates and accuracy comparisons are

given as a function of order of the harmonics for two different

satellites.

S

111



1
0

CONTENTS

PRE
CEDING P ,Gr BLANK NOT FILPAED.

	
Page

ABSTRACT ........................................	 iii

INTRODUCTION .....................................	 1

GIV,,VITATIONAL POTENTIAL OF THE EARTH „ .... .. ..... . . 	 2

COORDINATE SYSTEMS ... ..... . . .. ..... ,, .............	 3

ACCELERATIONS . ............... .. ... ,, .. . . ........ . 	 6

POSITION PARTIALS ...... .. . . .... .. ...... .... .. .....	 8

HARMONIC COEFFICIENT PARTIALS .. .... .. ............. 	 14

TIMING ESTIMATES ... . . ..... . . . , ........ .. .. .. . .. .. 	 16

ACKNOWLEDGMENTS ..... . ..... ..... .. . .... .......... 	 21

REFERENCES ......................................	 21

I

V



ILLUSTRATION

Figure	 Rme

1	 ...........................................	 4

TABLES

Table page

1 Time	 Estimates	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 ..	 ....	 .	 .	 ..	 ..	 ..... .....	 17

2 Significant	 Digits	 ....	 .	 ....	 .	 .	 ........	 .	 .	 ..... .	 .	 ...	 18

3 Time	 Estimates	 ......	 ....	 ......	 ......	 ..	 ..	 .. ..	 ..	 19

4 Significant	 Digits	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 20

6

I

vi



A.	 y	 .n 	 r-	 .ri.n....	 ..^..r.

AN ALGORITHM FOR COb1 i-,UTING SPHERICAL PAIMA LS

INTRODUCTION

The nonlinear equations of motion of a satellite moving in the gravitaticnal

field of the earth are presently being solved by high order predictor-corrector

methods of numerical integration. The advent of extremely accurate electronic

and optical measurements makes it both desirable and necessary to include in

the force model terms of high degree and order as well as other forces suer as

drag, solar radiation, etc. when estimating geodetic parameters, tracking station

coordinates, etc.

This paper describes a fast method for computing accelerations, partial

derivatives with respect to position, and partial derivatives with respect to

harmonic coefficients in the earth's geopotential using recurrences in spherical

I
coordinates. This method 11], 13 1  was compared with De Witt's method f 2l

which uses recurrences in cartesian coordinates. The spherical recursion

algorithm was found to be as accurate and at least twice as fast in V ,; calculation

of accelerations alone Il l. The author reached the same conclusion and, in ad-

dition found the spherica l .version much simpler from both analysis and program-

ming points of view. The method described here computes the total acceleration

(Keplerian plus perturbative) due to the geopotential field for an artificial satel-

lite orbiting the earth. The principal features of this method have been applied

in a program which estimates geodetic parameters, tracking station coordinates,

etc. using multiple arcs of various satellites.
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GRAVITATIONAL I XOTE'NTIAL OF TIIF: EARTH

The potential function of the earth (adopted at the meeting of Commission 7

on celestial mechanics at the Berkeley meeting of the International Astronomical

Union in August 1961) is given by

OD	 „
GM	 ( R )rI

U	 r	 1 ,	 r	 P (nm j (C ,m 
COs MA + S ^r S ill MX

n 1 m 0

where,

P 1 "' (µ) = associated Legendre functions of degree n and order m,

fc = z%r -= sine of the geocentric latitude,

G	 Universal gravitational consOnt,

M	 mass of the earth,

R	 mean equatorial radius of the earth,

X = east longitude of the satellite,

r = geocentric distance to satellite,
rCM.  S m = unnormalized harmonic coefficients.nn

If the center of gravity of the earth is chosen as the center of the coordinate

system, the terms for n - 1 do not exist, i.e., c 1	 c 
11	

S i	 S 
11	

0. The

form of the potential than becomes

GM	 "
U	 T	 1 { 	 T) Pn I (Cnn Cos Mk + S^ S i Il M,\]	 ^1)un = 2 m=0

2
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where

N = maximum order of harmonic expansio n reelected.

It is well known that the potential function U is a solution of Laplace's

equation, which in rectangular coordinates is given by

	

2 U	 t)2U	 ,)2 U

	

rOx 2	 ()y2	 ^)z2

cind in spherical coordinates by

2 U 	 2 dU	 1_ O2 U 	 1	 d 	 1	 2U

^ r	 r	 0,, , 2	 r	 r cos ^b a 

COORDINATE SYSTEMS

Two different orthogonal right handed coordinate systems shown in Figure 1

are used. 'These systems are

(1) An inertial coordinate system referenced with respect to the first point

of Aries,m, and

(2) A geocentric coordinate system referenced with respect to the Green-
,

wick meridian,

where

r - satellite position vw cor in either coordinate system,

	

`T'	 first point of Aries,

	

X. y, z	 inertial cartesian coordinates of position vector r,

	

x G , Y G . ' G 	 geocentric coordinates referenced to Greenwich meridian,

3



X

T
(Arie

-00-y

Z ' zC

i

X  (Greenwich)

Figure 1.

a = right ascension of the satellite,

IGM	 right ascension of the Greenwich meridian,

east longitude of the satellite,

w = gt.ocemtric latitude of the satellite.

We obtain the angle X and the sine of ^,, from the following equations

_	 _	 z
a	 _tF..II 1 X	 - a	 aG	 s I n 4)	 T

The partials of r, tp, X with respect to x, y, z can be obtained from differ-

entiating the following expressions:

z
r2	 x2 + y 2 + Z 2	- 	 tan-1 / X 2 +y211/2 _	 a + tan - 1 XG 	 .

4
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We obtain after differentiation the following; partial derivatives:

	

r	 x	 i) r

	

SIX	 r	 y

	

r)X	 r2 ( X 2, y2)t.'2

	

X	 - y	 a^

	

d X 	Y2 +y 2 	 ply

Y	
r)r	 z

r	 dz	 r

_ yz  	 (X2 , y 2^ t 2

r 2 ( X 2 y1 112	 Tz	 r2

X	 aX
X2 ` yz	 'j 7	 o .

4

The equations for the total acceleration- `ien become

X du	 y	 %1U	 X 	 du
X	 r d  _ X 2, y 2 dN	 r2 (X2+y2)L2

Y d 	 X	 -3v	 yz	 C)U
y	 ^ , r	 X2 + y2  d	 r2 (X2 { y 2)1/2 dw

z -lv	 X 2 4 y2 ^)U
z	 r	 2

r

It should be noticed that in the equations for t ► 1-, partials of U with respect

to the spherical coordinates r, ^P, and ,^ certain quantities such as P n m , C nm cos mX

{ S,,' s i n mX , anti GM , r are common to these partials and need be computed only

once. Furthermore, recursive relations are used for generating expressions

such as s i n rn^., cos mom, m tan qj, and P , " so as to increase the speed of computation.

5



The formulas used in recursion a.-e:

P°(l!)	 [f 2n-1) sin q P ,°( Fi)-(n	 1)P° 201>l/I^

P, 
m 

( /L)	 PI -	 4 (2n ` 1) COs v , P^"'_ ^ 1 (M) In 1 U . In < 11

For sectorials m n and we have

P ," (fc)	 ( 21, -- l ) cos w P.:'_ 11 (A) m • U . m	 n .

sill ni _
	

;'cos & sin ( m -- 1 )X - sin (m- 2)X

cos mX -	 2 cos X cos (m - 1 ) X - cos (In •- 2) ,\

M tan 4	 f (m - 1) tan P) + t an 4 .

ACCELERATIONS

The total gravitational acceleration vector F., 	 inertial coordinates (x, y, z)

is given by

du	 d 	 dU
Fc 	 ld 	 dy +i`dz

where i, j, k form a triad of inutually orthogonal unit vectors in the inertial co-

ordinate system, and the partial derivatives of the potential function U are given

with respect to inertial coordinates x, y, z . Applying, the chain rule of calculus

6
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I to the function

U	 U(X. Y. z)	 U("r, ik, \) ,

we obtain the following equations for the accelerations:

dU	 ()U ( ► r	 dU op 	 dU o 
X	 .7x	 ,) rr ')x	 dT '?x + 07 ,)x

.. - dU 	 d U d r	 dU dr/,	 i^U d X
Y Ty-	 i) r ;ly + TT t)y , 77Y

a

(1U	 dU d r	 •)U dq,	 <)U (),\

7	 ()z	 ;)r r)z + dry dz + T dz	 (4)

The partials if U with respect to I , ,; ,X, i.e., i)U1dr, dU/d ry, ^)U/d,\ are ob-

tained by explicit differentiation of the potential function U and are expressed by

the following; equations:

	

riU	 1	 (;M	
N	
it 

	

r	 r	 I'	 CC	
II	 ^^	 ^rm cos rn\ 4 S rm S I n m ,\) Pnn

/	
(	

/

	

rt Y	 rn ' 0	 J

N n	 ^

	

U

	

	 (
(;M) 	

IPI IC J	
(!^

)C	 (CIIrn cos III + .S r m ti lIl TIIX^	 m+ I — mtc'ln	 P^nJ
n-2	 n=0

(.lNI
N

	

d U	 R " 

n

	

(^/\	 ( r )	 CI /	 m Sr,m cos ml , - C ron s i n mil Pr^n

	

l	 (5)
ri 2	 m ` 0

t

6
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POSITION PARTIALS

The desired partial derivatives with respect to inertial cartesian coordinates

can he written in the following matrix form

,) 2 U a2U a2U
ax 2 x' Y oxioz

q 2 U 02U 02U
.^l x a Y 2 y r z

'^2 u a2 
U aI u

T(7—rTx- a z r) y d z 2

r► x	 a x 	 a)

,7x	 ay	 0z

o	 ay	 ay

a 	 0  az
ay az

From Laplace's Equation 2 we can solve for ^ ► 2 U/dx 2 , i.e.,

a 2 U 	 C a 2U	 a2 u1
+	 /J

dx 2 	 aye	 0z2

Since the above matrix is symmetric, we need only compute the elements

above the principal diagonal and two remaining elements on the principal diag-

onal yielding a total of 5 elements.

The elements in the above matrix can be obtained by differentiating the ex-

pressions (4) with respect to x, y, and z and are given as follows:

dX	 au a 2 r	 aU a 2 p	 aU a 2	 a2u 
(;7X)
ar2 a 2 u a^ 12a 2 Uak2

	

Ttx - Or axea^ axe+^axe + a r 2 	' a 2 \ax / + axe \7/

C 0 2 U a  a^p	 02U Or a&	 a2 U ap a^,1
+ 2 d r Op ax a x + a r a,\ ax ax + aqa^. ax d 

i

8



6

d z	 dU a 2 r	 aU 0
2 V)	 au a 2 \

^7rdy x'Ty,x'rT

a 2 U dr a r 	 a2U d ^) aq,	 a2 U a& ak
a r t ;;-y (Tx-+ 	 ^ ^ + ak2 ^ r x

(3 2 U r^ r a^u	 ar dkk	 a2U ( a r ak	 a  di'.`
+ ^\m a x + ax dy) ` c)r^ \aye ax TY

a 2 U	 oJ) aX	 a4 1 13), l
+) ^ . (ay ax + rx y

a x	 aU a 2 r	 aU a 2 qj	 aU a2X
^z	 77 xx;z+ ^7) ;—%7 z '

a 2 ll ar ar	 a 2 U 	 3	 a2 U ak 3^,
^^r2,^ZX	

a 2
aZ + a^.2 r)Z

a 2 U ( ar ar a^, 1	 a2 U	 'or d^,	 d  d,\
+ (90 `,az ax	 + ax az J #1r Ti- ax +	 az J1

a 2 u a
+

 ak	 a4( aq,
azax +^xazJ

2a U a 	r	 dU a 2	 i	 aU a 2 a2 U 	 ar	 2 cat y
2	

a2
2ay	 ar a 2 + a7

Y a Y 
2	 + a	 .2

y

_
+	 ^ r 2 (ay /	 + a	

)
a 	2 (	 Y / 2+	 d^

( ;7y

U a 	 a4,	 a2 r a r 	 a& a 2 U	 a^) a^_1

+	 2 (
a 2
o r a;f ay ay + d r aN a y 	 ay + a jj d k a y ay

9
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ay	 aU a 2 r	 du a 2 4,	 aU a 2 N
;T z—	 %I rr .i y GTIT %i--y7-z ` XT, ri y^z

a 2 Il dr. %/r	 () 2 U aq, d 4 ,	 a2 U a ,̂ a,\

+ ar2 )y ri z ` del	 {

a 2 U 	 a4	 dr a^^, 	 a2 U sir ak	 dr RXl
` or dp 

( dr
9y d z	 r3z ay l i sir T (y 7z + az	 /

	

a 2 
U (^Y

ao aX aV) a-1
4d".	 az +azay^

aU d 2 r	 aU a 2 /j	 a U a 2	 a2U 
I
/dr\

I
2 	a2 U (ii 	 2	 a2U 

I
/ a?, 2

az - %i r az 2 +	 a z 2 {	 az2 { a r 2 \az / + a ^ 2 Oz	 + a&2 \T/

a 2 U ar a^	 a 2 U a  d,^	 a2 U aq, a,\ 1
+ ^\, a ra,V a Z az + a ril& az Tz + 7TrK 7—Zrz

We need the expression for the double gradient of U given by

0 2 U	 02U	 a2U
ard^	 ar a^ar2r

a	 dU	 (9U aU a2u	 a2 u	 a 2 U
V(^^)
	 ,	 ,

a^	 Car	 a^ a&^ a4 a r	 9^,2	 a^P a&
.

a2u	 a2 u	 a2u
a^ o r	ax a	 a^,2

We notice that the 3 x 3 matrix is symmetric and hence need only to compute

the elements on and above the principal diagonal. But we can also obtain one of

the elements on the principal diagonal from Laplace's Equation 3. This means

6
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that only a total of 5 partials are required in this matrix. The second partials

of U with respect to r, y,, and X are obtained by differentiating the expressions (5)

for the first partials and are given by

",a 2 U	 (IN 	 R 1 n	 n

ar e 	r3 
2^	 (r/ ( n +.)(n ► 1	 (Crm COS mk+S^ sinm^)P^

LLL^^^
n°2	 m-^

a 2 u	 GMN1 R rr	 n

r	 3	 (r / (r1+ 1) L(^.
nm COSm^ + S rmSlnmX)(Pn +l m tan ^ p

nm

)

iT r L

	

n-2	 m - n

a 2 U	 LAMN 
( R ) f' ( n + 1)	 r' m(S" COS njA, C' S1nn1M)Prmr L

n 2	 r -n

2	
"	 n	 n

a^ 2 	(	 L (rR—) L (C r ^' cos nv\

 
Lm __..nn

I S' sin m\) (tan  y'^P roi+1 + ^m sec 2 ^i- m tan 2 0- n"n + 1 )] Pr^M

	

N	 n
i)2U	 (	

)

	
(R)n	

m( S mCOSniX - C m sin mA)(P m+l _. m tan 4,P nap aA,	 r	 r	 n	 n	 n	 n

	

n= 2..22	 LLM= 00

N	 n

a^2	 (	 r /	
(R)
	 n12 (C nn'COS m& + S r m sin m\) Prm

L—j
n = 2	 m- 0

1

11
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We mentioned above that we needed only 5 partials. hence, we arbitrarily

chose to compute a 2 U/aq,2 from Laplace's Equation 3, i.e.,

a 2 u _	 av	 a2 v	 av	 1	 a2u
t: l I 1 41	 i	 r 2	 + 2r T—a^2	 ^	 are	 dr	 cos2IP aXI

The second partial derivatives of r, q), and X with respect to x, y, and z can

be represented in the symmetric matrix form

a 2 r a2 r a2 r

aX2 aXay

a 2 r a2 r a2 r
d -(Tx a	 2 a^ Z

y

a 2 r	 a2 r	 a2 r
az ax 	 azdy	 az2

where the elements of the r matrix are given by

()2 r	 1	 x 2	 a2 r	 y 2 	 a2 r	 1	 z 2

ax 2	r	 r3	 ay 	 r3	 a z 2	 r	 r3

a 2 r _ 0 2 r	 xy	 a2 r	 82 r	 xz	 a2 r	 2 r

ax ay	 ayox	 r3 '	 ax a 	 azoX	 r3 '	 ay T z	 zay
yz
r 3 .

12
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The partial derivatives of q with respect to x, y, and z can be represented by

r
the symmetric matrix

i
• (I 2 q, rj 2	 ^/l a 2 l/1

ax e
dxay

• a 2i^ a2 i^ a2 f,

d Y (7x ay2 Tr y-y r z

a 2	 / a)2 4i
-

a 2 ^
rz C x a z d y n

where the elements of the 4 matrix are given by

a2 qj

a x2

z
r4 ( x 2 + y 2 [ 2x2 ` x23	 z } y2 ^ - r2 Y2 J

a 2 q, ^^ 2 qj x y z
[3 ( x2	 +	 lZ2 1

32	 Y2)aX ay ayaX r4 ( x 2 { y 2
J	

J

a 2 ^,	 a2 	 x
axaz - azax	 r4 ( x 2 i v 2 1/2 

[l2 - 
(x2 +Y2)J

a2 

^Jz	 [ ?y2 
(x2 } 

Y2)	 r2 x21a y 	 r4 ( x 2 4. y 2\3 2	 J

a2 ^' 	 a2q 	 Y	
[Z2-(x2+Y2)Jdy^z	 azay	 r4 / x 2 Y2)1/2

a 2	 24 
(x2 + y 2)1 2

az
2	 r

IF

13
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The partial derivatives of k with resheet to x, y, and z can be represented

bN' the symmetric matrix

--d2I^ 2

^ X 2 X oJ ox 

a 2  a 2^. a2 ^
;lY;OX

d Y 2 Y 

a 2  a2 ;, a2 
)zax az ay az2

where the elements of the X matrix are given by

a2 	 a2 	 2xy	 a2 	 92k	 I	 (	 )
aX2	 ay2	 (X2 + y 212	 r7y _

	
(x	 (x2 + y 212 \ Y2 _ X2)

a 2 , 	 a2^	 a2^	 2

aT 2 	 d z	 ri^z x	 ^)yc17_	 az r!y	 o

The higher accuracy that is required in computing accelerations is not

needed in the calculation of the position partials so that fewer terms are in-

eluded in the geopotential.

HARMONIC COEFFICIENT PARTIALS

The equations for computing partial derivatives of acceleration  with respect

to harnionic coefficients Cn or S teM obtained by explicit differentiation of the

r

14
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equations for the accelerations (4) are given by

J X rl a U a r r) aU 2± d a U a,\

f)C 
m

(()Cm x )C m R I J d X r)C m x
n n r r,

aX ,^ au ;
mil d

a^-U\
d

Ip
a ;)U dam,

r	 m
Sn

n\rl S o r ^1 X	 , m4 S O r/ ) '1 X	 ; mri 5 (77 / X
n n n

,) y a
i) U-

rl r i^ ^
^ 
U I^ ^) ,

+
)
^-
U
^

a

dc aC m I	 r l^/ ilC m Tj 17y ; ;)C m ^7^ Y
n n n n

a y r) d U ar a aU U a^

ils m as m 7 rly

()S""
^ r y i i^S n' rTln ) ^y

n n n

r)
a^U-

o r a
^a—U-

ari r d 
UU

a x
dc m a C m ry r r) i + r•I C m r	 11 ;!	 ^	 +

_

t) C n,

4? 
7 .l z

n n n n

d 7 ^•0 r
-+
a
i

0 U r
te' 

^ a it 
UU

x-it)

mit S n
ma S n

d u)

f r Cl z	 r 1 i) S m
\

rl'/' rl Z	 + a S m
S 17)

. rl Z

n n

where

;l rr)U 1	
1 ( GMa^ 	r	 r / \ f	 ( n + 1 ^ cos m^^ Pn°

C m 
n

a (
`^
	 GM 1 (R)" 

cos MX ( P r,n 1 _ m tan ^^ P^
4	

dCn	 J

r)Cm (oU1	 _ (GM)(R)"
  m sin m^Pr^m

n

E	 a(dUn _ 1 	 ) (R 1
S m r r	 r	 r	 r	

n+ 1 sin m,N Pin

n

15
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•

d	 tau

,^ S m \	 /
n

d	 (au 1

14 S m `` (1V

( GM) 'Kr 	 l r Sin m' (P r m `1 rn tnn ,, P.')

(GM)  )"In
  ( • os mM Ptefn

TIMING ESTIMATES

Several runs were made on the IBM 350 model 91 which uses the OS MVT

multiprogramming system. Some estimates of running time were obtained by a

pair of routines called ETIMIN, ETIMOT (TIMNN, TIMOUT). The first routine

reads the system clock but returns no output and the second routine returns the

time elapsed since the first routine was called. This actual elapsed time may

include other users' time as well. Consequently, the estimates do vary some-

what and are usually greater than they should be.

The program was called upon repeatedly for 10,000 cases to simulate the

calculations required for the same number of time points I.L. Some timing estimates

are presented for accelerations plus position partials, and position partials only

in 'fables 1 and 3. The number of "significant" digits indicated in Tables 2 and

4 represents the number of digits agreeing «rith the standard case (degree = 15,

order = 15). The first and second columns in each table show the order and de-

gree of the harmonic coefficients respectively for the computation of accelera-

tions. In addition the third column provides the degree of the 9xpansion used in

computing the position partials.

16
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Order
Degree

Degree

(Position

Running Time in Seconds

Accelerations Plus
(accelerations) Accelerations

partials) Position Partials

15 15 2 57.0 59.9

I
15 15 4 57.0 60.9

15 15 6 57.0 62.0

15 15 8 57.0 63.3

15 15 10 57.1 64.1

15 15 12 57.1 64.7

15 15 15 57.2 65.5

10 10 10 32.3 38.2

5 5 5 11.7 14.5

2 2 2 :3.4 4.7

m

'rable 1

Time Fistimates

6

TETR-C DATA

x	 -0.197 171 190 (06) Meters

k'
	 Y = -0.646 084 338 (07) Meters
S 

z = +0.250 067 586 (07) Meters

17
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Table 2

Significant Digits

Order
Degree

Degree

U)osition

No. of Significant Digits
—

Accelerations Plus
(accelerations) Accelerations

Ixirtials) Position Partials

15 15 2 16 3

15 15 4 16 3

15 15 6 16 4

15 15 8 16 4

15 15 10 16 5

15 15 12 16 5

15 15 15 16 16

lU lU 10 6 f	 5

5 5 5 4 3

2 2 2 4 3

TETR-C DATA

x = -0.197 171 190 (06) Meters

y - -0.646 084 338 (07) Meters

z = +0.250 067 586 (07) Meters

18
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Table 3

Time Estimates

6

Order
Degree

Degree

(position

Running Time in Seconds

Accelerations Plus Position
(accelerations) Accelerations

partials) Position Partials Partials

15	 i 15 2 45.5 48.4 46.6

15 15 4 45.5 48.9 48.0

15 15 6 45.5 51.5 48.4

15 15 8 45.5 54.5 49.5

15 15 10 45.5 56.3 49.9

15 15 12 45.5 55.3 50.4

15 15 15 45.5 53.1 52.7

10 10 10 26.2 32.8 31.1

5 5 5 — 12.9 12.3

2 2 2 — 4.6 4.4

.#

GEOS DATA

x	 +0.569 053 863 879 2412 (07) Meters

y	 +0.147 453 452 873 1973 (07) Meters

v	 1	 +0.601 344 521 360 5027 (07) Meters



Table 4

Significant Digits

(>rclei•
Degree

Degrec

(position

No. of Significant Digits

Accelerations Plus
(accelerations) Accelerations

partials) Position Partials

15 15 2 16 4

15 15 4 ?3 5

15 15 6 16 5

15 15 8 16 .;

15 15 10 16 5

15 15 12 16 6

15 15 15 16 16

10 10 10 6 5

5 5 5 6 5

2 2 2 5 4
It

GEOS DATA

x = +0 569 053 863 879 2412 (07) Meters

y = +0.147 4.1-3 452 873 1973 (07) Meters

z = +0,601 344 521 366 5027 (07) Meters

a
20



i
6

Hence, it is possible to compute position partials of the same or lower order

than the accelerations. This option is available when position partials need not

be computed as accurately as the accelerations.
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