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A PROBABILITY DENSITY FUNCTION FOR REFLECTED BEAM MOLECULES

SUMMARY

A speculative probability density function is constructed on the
basis of what would he reasonably expected of the probabilities for the
thermal speed components of molecules that are ejected from an elemental
surface struck by a molecular beam. It contains five free parameters.
Three combinations of them occur in the general distribution function
derivable for molecules moving in the plane of incidence and render
the law more adaptable than Nocilla's earlier version which provides
only two. A proper choice of the parameter combinations will usually
cause it to agree with measured distributions. Pertinent methods are

developed, and four sample adaptations are described in some detail.
To determine the five probability parameters themselves the number
distribution in a second plane must be available and, in addition, the

heat flux to the surface must be measured. Also one has to stipulate
that all the incoming molecules and no others are ejectea from the
elemental surface. The pressure on it and the shear stress in it can

then be numerically computed, so that the aerodynamic force acting on
it is known insofar as it originates with the reflection process.

I. INTRODUCTION

A plentiful supply of documentation on the intensity flux measured

in locally reflected molecule ensembles has long revealed the fact that
the number of beam molecules returned in the several directions cannot

always be described, as a simplest approach recommends, by a sphere
touching the elemental surface im pacted, when it w,)uld be proportional
to the cosine of Lne angle made by an outgoing direction and the sur-
face normal. The speeds of such molecules rarely obey a Maxwellian
equilibrium distribution with perfect accommodation to the surface tem-
perature (completely diffuse reflection' ` ). Experimental work usually
operates with a molecular heam generated in a high vacuum chamber and
often counts only those molecules which leave in the plane of incidence.

The evidence for largely specular reflection seems more scanty still,
if net virtually absent.



If the numbers observed in selected directions are graphically repre-

sented by proportionate lengths of radius vectors drawn from the point
of impact (origin), the vector tips occasionally trace out a nearly
circular curve. In the great majority of cases they point to a roughly
elliptical ("lobular") sha p e which is often tilted toward the surface.
The particular form suggested by a data set depends on the impacting
material and on that impacted, on the surface structure and contamina-
tion, on the angle of incidence, and on the energy in the incident
stream. A rather bewildering variety of forms ensues from these
concurring conditions.

A molecular beam will be acting on a surface element when it is

moving through a rarefied gas. The experimental evidence then indicates
that the cosine law of reflection is not in g.neral applicable in free
flight and should not be employed as a matter of course in calculating
the aerodynamic force attacking a vehicle in the uppermost reaches of
the a tm-)sphere.

Since in a beam every molecule possesses, in addition to its random
speed components, a directed ("macroscopic" or "mass") velocity, it

seems natural to conjecture that a similar mass velocity may also be
present after reflection, In reference 1 Nocilla, who introduced that
idea, was indeed able to approximate, in a satisfactory manner, many
(but not all) of the experimental point arrays obtained by Hurlbut [2].
However, he was forced in several instances to postulate the reflected
mass flow as approaching the surface element, instead of leaving it

as would seem appropriate. This queer circumstance is apt to throw some
doubt on the actual existence of a superimposed directed velocity after
reflection.

A probability density function for reflected molecules, without

leaning on that notion and yet without giving up Nocilla's accomplish-
ments, can be constructed on the strength of two broad assumptions
regarding the proba'-ilities for the occurrence of the thermal (,random)
speed components E l , P, E 3 . Whether or not the function generated in
this manner is a solution of Boltzmann's equation is left an open
question; very likely it is r"iOt. But if it can reproduce many experi-
mental point groupings, especially those not amenable to the interpre-
tation of rcf2rence 1, as in fact it can, one may live with it. It
may then be considered a bona fide semi-empirical approximation to a
rigorous solution.

2



II. CONSTRUCTION OF IRE FUNCTION

Since Nocilla was able to accommodate a number of experimental

patterns, it stands to reason that the general form of his approximating
expression is suitably chosen for obtai^ing closed curves such as are
indicated by the observations. It seems therefore advisable to start

out, as tie does, with Maxwell's distribution function excluding, however,
the mass flow terms. The probability of finding, in any given volume of
physical space, a thermal velocity in the differential range

<t i , ^ i+d^ i >	 (i = 1,2,3)

may then be written as

Ae-K2(^1+t 2+t2) d ^1d ^:,d E3i	 (1)

where A is a constant of proportionality, and

K2= 2 1	 (2)

(R = specific gas constant; T = gas temperature) . With completely dif-
fuse reflection the molecular velocities are assumed to have adapted to
the surface ("wall") temperature: T = Tw . Expressions (1) and (2) then
lead to the cosine law which cannot adequately describe the ansr• ilar dis-
tribution of re-emitted beam molecules.

More specifically, the probability of finding a molecule with the
^ 1-component of the thermal velocity between a fixed value E 1 and ^ 1 + HE,
emerges as

2 2	 _ 2 2
Ae-K ^1 d ^1	 e K ^2 d^

- CO

+00
2 2	 _ ) 12 t2

fr 
e-K ^3 d ^3 = A 7 e /` ^1 d^j.

J
-00
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The analogous probabilities for fixed components E 2 and F:, are

2n	 K2 92 	 r — K V3A	 e	 d t 2̂, 
A K^ 

With equal values of F 1 , F,;,, Fs, these probabilities are equal, a fact
that characterizes purely diffuse reflection ,!here K 2 is a common con-
stant. Clearly, one must relinquish this equality in beam reflection
processes or, phrased differently, adaptation to wall temperature should
no longer be upheld. Preserving the form of Maxwell's expression as far
as possible one may define a probability density function as

Ac- (<1S1+K2S2+

giving, for fixed values of

2 2
A	

71
	 K 1F 1 d

^1'	
A n

K2K3	 K3K1

<3t3)	
(3)

F1+ Us F3, the probabilities

e - KA2 
d F2,	 A 

n 
e <353 d3	

F31	 (4)
K1K;

which, if the Ki differ, are evidently not equal for equal values of the
components.

For a still closer look at the reflection process we first intro-
duce three physical axes x 1 , x ` , x ]5 parallel to the axes F 1 , f, _ , F3 in
velocity space and, following reference 1, define the beam as arriving
in the (x j ,x l)-plane, striking the elemental (x l ,x ,,)- . irface at the
origin. Any thermal speed component, F2, of the reflected molecules
is normal to that plane and may be expected to be quite as probable as

its negative counterpart, so that the second of the expressions (4)
seems adequate. Not the same can be said a priori of the components
F1 and F,,. On the contrary, since some of the incoming molecules
certainly will not dive into the surface, being repelled by the very
first surface molecule they encounter, an initial irregularity !it
distribution of these components arises which is likel y to persist even
if there are subsequent collisions among the reflected molecules.'`

In such wall reflection modes, F2 and -F ` still may be considered
equally likely to occur.

4



Obvicusly, this irregularity is brought about by something akin to
specular reflection experienced by a certain fraction of the incoming
molecules, To account for it and to achieve a difference required by
it in the probabilities of oppositely equal components, two more prob-
ability parameters, ' 1 and n3 , may he employed by writing, in analogy
to the Maxwellian mass flow terms, (k 1-A j ) 2 and (E 3-A3 )" for t2and t3
in the first and third of the expressions (4). * As a consequence,
E, 1 - ?^ 1 and t3 - 1, 3 rather than E 1 - 0 and E 3 - Q are the most probable
values of these components in the reflected gas.

The modified expression (4) can be set into still another form.
The probability for a molecule to have any thermal speed iQ uni ry and
can most readily be computed from the second formula (4):

+00

tt	 3/2
T1	 - KA 2	 -1= A 

KIK1	
e	 d	 A K1K2K3

-00

In rcmovi.ng the constant A from the set (4) we may write its modified
form as

K1 
e Kl(;1 'NO, 

d^l 	 K2 a-K2E2 
d^ 2 	

K3 e- K3( ^3-N3)2 d
	 (b)

v n	 tir n

It is useful to notice that

K  > 0,	 (7)

as probabilities are positive quantities. With the method of reference 1
where

1	 1
A	 Ki =

(2,rRTr	2 RT

relation (5) is identically satisfied.

With surfaces far from smooth, one may be forced also to alter
52 into Q2-^\2)2.

(5)

P
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The final expression for the density function proposed becomes

K1K2K3 c.- [KY( ^ 1 -A 1)2+K	 +K2I23(^3 -A3) ^ ^

The probabilities (6) can be derived from it. With K l = K2 = ` 3 the
function (8) assumes the form ado p ted in reference (1) where the quanti-
ties h l and A3 are indeed seers as the components of a reflected mebn
veloc it . lying in the (x ;,x 1 )-plane. The physical oddity occas iona'.ly
encountered with thiF view did not appear when the angular distri.butiun
law derivable from the function (8) was applied to four data plots
selected more or less at randnm: the mass flow was always directed away
from the elemental surface, even in two cases where it .,.ras approaching it
in reference 1. Taking this as a general rule, one may at last interpret
the modifiers ^1 and ^3 both ways: either as probability parameters or
as mass f' jw ec^inponents .

.L__ ANGULAR DISTRIBUTION OF REFLECTED MOLECULES

'In deriving the reflection law it is advisable to use spt rical
coc,,. 1{nates in the vctocity space with the point of impact at tie cr.igin
and the Qj , t,))-plane coinciding with that of the elemental. surface, i. e, ,
with the (x l ,x,,)-plane. The azimuthal angle, or longitude, jo, is counted
from the positive t 1-axis, running from zero to 27t. The co-latitude, 0,
counted from the positive ^-^-axi , varies between 0 and n/2 in reflection
processes, from 0 to n in the reflected gas outside the surface. If v
denotes the magnitude of the thermal speed,

E, = v cos 0 sin ()

E2 = v sin 0 sin 0

S3 - V COS 0

where v goes from zero to infinity. The exponential bracket in expres-
sion (8) assumes the form

a`V2 - 2bv ♦ C 2 = (av - Q) 2 ♦ C 2 _ Q2

with

(8)
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a' - (Kl cos- ,O + K` sin	 s in20 + K3 Cos 20

b - KjA j cos 0 sin 0 + K3\3 COS e

(9)
:2 - K 1A +l	 K3^3

Q - a

If dS denotes the area of the elemental surface ai,J nr is the number
density in the reflected gas, there will be

nr dS v cos 0 dt

molecules of a given speed component 53 returned by the surface during
the time differentibl dt,

The volume element in sp,terical coordinates being

v`dvsin 0 do dO =- V2 dv dQ,

the total number of molecules reflected in dt seconds in the direction
of thu solid angle dQ is then indicated by the expression

00
2 	 2

nr 
K1K2K^ 

dS cos 0 dt do eQ -c	 e- (av-Q) v3dv	
(10)

n3/ 2 0

where the probability density functior. (d) has been employed. The
evaluation of the improper integral (and others of its kinu) can be
carried out with the aid of reference 3, where a list  of basic such
quadratures is supplied on p. 195/196. One finds its value as

2

	

a4 [ (1+Q`)e -Q + Q ti77 (2 + Q 2 ) (1 + erf Q) ] .	 (11)

The number (10) and therefore the intensity of the molecular flux in the
elemental solid angle dQ is thus proportional to

CU S70 [ 
( 1+Q 2 ) + Q	 (2 + Q2 ) (1 + erf Q)eQ2 ]	 (12)

7



where

Q

er f Q = 2	 e XZ dx .
vr̂t o

2
Note that by the systc" (9) a" depends both on f an6 A while e ^ is a
constant which may be taken into the factor of proportionality.

In order to examine the relationship of expressions (10) and (12)
with the corresponding results of reference 1, we remark at firit that
there we have

K1	 K2 e K3 = K2 4 I
2R'1'

r

It follows tha t

a`' = K2 	 b` - K 4 (A l cos 0 ain e + A3 cos 0)1

h
Q = — _ (A, cos k' sin 0 + Aj cos 0).a

Formulas (13) and (16) of reference 1 show that Q is identical wit: ► the
quantity X r which, by the further expressions (14) and (2), is defined as

X r = s (sin 0 cos 10 sin 0 + cos A cos 0)r	 r	 r

wILth

U r
S	 = KU

r	 2 KT	
z .

r

8
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Thus

I^l	 U r s in er	
(14)

^3 = Ur cos 
Or

so that A l and nJ indeed emerge as the comronents of the postulated mass
velocity U r . Furthermore,

C 2 - K2 ^\l + K2 A2 = K2 (^l + A3) - K`U2 = S'
r	 r'
	 (15)

By this relation and our formula	
-sr

(10) the factor a	 enters Nocilla's

expression (13) for the intensity flux. The presence there of the
denominator nX(o r ) can also be derived from the result (10). 'To show
this is somewhat laborious and may be left to the reader if so minded.

The deviations from the relations of reference (1) center about the
qua ►itity a which is no longer a constant, but has become a variable
incorporated, e.g., in expression (12), both explicitly and implicitly
(by way of Q' ). Experimental evidence is as a rule established in the
plane of incidence where = 0 (the incoming beam being located in the
(x-,x l)-plane). A simplification ensues:

a' = Kl sin 20 + K32

(16)

K 1 ,' 1 sin 0 + K3^3 cos 0

N K i s in-0 + K3 cos 20

The probability parameter K^ is absent now in a''; it has no bearing on
the return in the plane of incidence. The four remaining parameters can
be reduced to essentiall y three:

K2
s=^- 1

K3

µl - K3A1(b + 1)	 (17)

µ_' = K3^\3

9



which transform the set (16) into

a` = K30 + 5 Cos`c^)

(lg)

Q	 ii l cos r; + 43 sin r

\ 1 + ^_ cos 2q

where at the same time the co-latitude t has been replaced by the polar
angle

rt
q= 2 - e 	 (19)

in the (x.,x 1 )-plane. The second coordinate in this plane, i.e., the
radius vector, when ascribed a length proportional to the number of

molecules returned in given directions, will enter into a relationship
with q, which, on the strength of expressions (12) and (18), may be
written as

_
(1 + b cos^c^ 2 [ (1+Q^) + QT. 	 C (1 4- Q 2 ) (1 + erf Q)eQL )	 (20)

where Q is given in the set (18) and the constant 11K 4 has been absorbed
in the factor, 0, of proportionality. The latter's magnitude is essen-
tially determined by the scale chosen for plotting the measured flux
data.

The function L(q,) represents a general angular distribution law
for molecules reflected in the plane of incidence. It is more flexible
than the law proposed in reference 1 where the parameter ^ always has
the value zero. This can be seen by relations (13) and (17).

Similar but somewhat more complex laws can be written clown when
measurements are to be interpreted, made in planes	 _ Oc # 0, or, for
that matter, in planes of constant co-latitude (0 = ed where the longi-
tude	 is variable rather than 0. A plane of the latter kind is con-
sidered in section V.

10
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IV. CURVE AUAP"TATTON

To fit the curve L(4,) to a plotted point set, suitable values must
be found for the parameters ;i, t, 	 ^1 j of which the last three are
intimately interlocked in expression (20). As a consequence, the normal
equations arising with the least square approach are unwieldy to a degree
rendering the solution for the four parameters all but forbidding except
perhaps with the use of high - speed computers (which was counter indicated
for a number of reasons). Less precise, but better manageable, means were
substituted for Gauss' method. Thu adaptations are therefore not the
best obtainable. It is hoped, notwithstanding, that the four cases
reported on later do suggest sufficient flexibility of the function L(tP)
in general, so that the probability density function from which it is
derived recommends itself as a workable proposition.

The four specimens dealt with here, and many more of measureLl point
arrays, permit us to locate, with some certainty, that particular point
of the otherwise still unknown curve fit which is farthest away from the
origin. Quantities related to that maximum of L(q,; &re denoted by an
asterisk. The condition

d 1:) L	 = 0

	

dcp	
I 

takes Lhe explicit form

(1 + 3 S in`'C^) W'` i- µ3G'` 3 in (^*	 W'` - (Q*G"+4) s in `CQ = 0	 (21)

where, for any value of cp,

+5 Cos 2CP

Q (S + 2Q') + ^' n [2 + Q`(6 + 2Q 2 ) ] (1 + erf Q)eQ^
G =	 3	 (22)

	

(1 + Q 2 ) + Q 	 (2 + Q 2") (1 +erf Q)eQ^

11
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The function G depends on	 through the variable Q and has the form of a

logarithmic differential quotient (tile ni ►meratot being the Q-derivative
of the denominator* ). It grows beyond all bounds when Q --+oo, belt as can
be shown with the use of the asymptotic expansion ** of i - erf x, tends
to zero when Q -^-^. Its values around Q = 0 are moderately large as
appears from the following table.

TABLE I

The Function G in I Q I - 1

'Q -.8 -.3 0-.1-1.0 -.9 -.7 -.6 -.;	 -.4 -.2

F.2- 1.897 1.959 2.024 2.092 2.163 2.23'	 2.314 2.395 2.479 2.567,2.6 59

7	 .8	 .9	 1, 0

X82 3.523 3.467 3.775

0	 .1	 .2	 .3	 4	 .5	 .6

G 2.659_2.75412.853 2.955 3.061 3,17113.285 3.

The second differences being nearly equal in this row of G-values, the
function can be approximated by the quadratic expression

G ^ 2.659 + 0.937 + 0.177 Q'

which in fact is not bad even somewhat beyond 1Q1 = I.

One observes that, curiously enough, the denominator itself, which is

the bracket in expression (20), may be written as

,7 d	 2

8 dQ '
(1 + erf Q)eQ

Which advantages (if any) might be gained from this fact has not been
explored yet.

" See, for example, reference 4, p. 24.

12



Suitable measures of r;* and L'` can be read off the given point plot.
If in addition tentative values are placed both on 11 3 and Q * , the positive
solution W'` of equation (21) defines the three parameters

W' ` 	- 1
^ cos (1,^

„_	 clW* 	c,- 43 sin	 and. l -	 cos r4>* 	 (L3)

sin c 	 1 + 
Q*- + Q ::	 (2 + Q :: ) (1 + erf Q;:)aQ :

A table of the error function is supplied in reference 4, p. 24. The
validity of the two guesses crust be checked with further information to
be drawn from the experimental evidence. After selecting two more
points (c,,L), preferably far away from the curve's tip on both sides of
it, one computes the two theoretical values (20) of L from cp and the

above three parameters (µ? has been chosen beforehand). If they don't
agree with the experiment,' lengths, one has to resort to different
guesses. By diligently operating in this manner one should be able as

a rule to reach satisfactory agreement. This trial and error procedure
has been employed with the last two of our four examples (figures 3 and 4).
It is surprising and gratifying that, merely using the maximum condition,
the maximum length, and two further points, one is able to construct a
rather well adapted curvE, a fact that speaks for the suitability of the
expression L.

The adaptation in figures 1 and 2 was attained ir, a somewhat differ-
ent manner. The given points here permit an estimate of what the rlope
of the curves should be when they intersect with the vertical axis
(w = n/2) . Since

µ3 - Q(2),

quantities related to that point will be identified by the subscript 3,
so that, e.g., Q(rt/2) = Qom. One finds by straightforward differentiation
cha t

tan X3 = - d1aL	 - µ1G3

r	 cP	 2

13



Measurement

3ef. 1

Dresent
approach

x 

i

x3

6

Measurement

Ref. 1

present
%pproach

x 

FIG. 1.	 NITROGEN REFLECTED FROM A CLEAVED

LITHIUM FLUORIDE CRYSTAL.	 9i : - 79.90
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FIG. 2.	 NITROGEN REFLECTED FROM A CLEAVED

LITHIUM FLUORIDE CRYSTAL.	 9j = — 850

14



o Measurement

Approximating
Curve

ei = — 5a°

I

c

x3

6

x 

u rem ent

oximating
e
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FIG. 4.	 ARGON SCATTERED FROM SILVER.
INCIDENT ENERGY = 4.35 eV
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where X. is the angle of inclination at q) - n/2. Thus a relation between
parameters is established by the prescribed value of tan X 3 . Only one
additional point is therefore needed for the checking of guesses; it
seems natural to decide for the point (rt /2, L 3 ) at which the curve ought
to intersect with the vertical axis. (This choice perhaps should not
have been made in the case of figure 2 where the left end, although the
approximation is considerably better than by the model of reference 1,
still is not wholly satisfactory. A point read off nearer to the left
end might have produced a better result.)

The importance of equation (21) is evident from the foregoing. Its
use, however, is precluded when the experimental points do not clearly
define a maximum distance or when they are arranged symmetrically about
the x,.-axis ("upright curves"). In the latter case, µ l = 0'` is required
to ensure equal radius vector lengths L, at d• and it - q, so that

- µ< si.n cp

	

Q	 W

Since the maximum distance here is attained at q = r t/2 where W = 1, the
value of Q related to it becomes Q'` - 43 . Equation (21) then reduces to
the identity 0 = 0 and is rendered useless.

In such circumstances it may be feasible to operate with the loca-
L) of a vertical tangent's point of contact. The general condi-tion (4;,

tion for infinite slope,

d to L = tan
	d4 	 I ;_

leads to the explicit relation

(1 + 2 s in- -)W^ + µ3^ s in	 W - (Q G + 4) s in 2^ = 0	 (25)

which then can substitute for the offices of equation (21). If especially
the data points group symmetrically about the surface normal, the depend-

ence of Q on cos q, must be dropped (µ l = 0), so that the solution V of

By expressions (17) and (14) this is equivalent to o r = 0 in refer-

ence 1.

V

9	 16
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c•quation (25) is the same whether the angle	 is used or its supplement
n - ~. It should indeed make no difference which one of the two vertical
tangents one chooses to consider.

With upright curves there are but three unknown probability param-
eters (F), µ 3 , ti).	 It is tempting to try 8 - 0 first (Nocilla's approach).
With this provision,

= µ 3 s in

and relation (25) reduces to the equation

2 s in2c^ - 1
µ3^ =	 ti TSill ( cos q)

which can be solved directly for µl7 because (^ depends on (T alone. The
last remaining parameter, ^3, may be computed, e.g., from the axis length
L'` associated with 4'` - r,12:

(l + 43 ) + 43 ,t (2 + 43 ) (1 + erf 43)e43

as Q" _ 11 with a symmetric setup. If the numerical values of 43 and (3
lead to the proper length L, the assumption b = 0 is justified. Other-
wise,the more cumbersome trial and error procedure involving equation (25)
must be initiated.

A spot check of equation (26) was made with the "upright" figure 13
of reference 1 which is characterized here by O r = 0, S r = 1/2. As
Al = 0 here, formulas (15) and (17) give

2 2
r	

-
s = K3^3 — µ3 ,

so that µ3 = 1/2.  The above equation is then sa t is f ic y? with "CP  = 56.5'.
The top d-1-stance of the figure, L" = 3 cm, gives f3 = 0.701 and L = 1.92 cm.
Inspection shows that the pair, q), L very nearly defines a point of infinite
slope. As a consequence, curve (13) in reference 1 should be closely
reproduced by the expression*

No such representations are given in the referenced article.
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1, - 0. 701 s in q : + Q" + Q^— (2 + Q-') (1 + erf Q)J) l .

where

Q = 2 sin c,.

All those curves of reference 1 that provide a satisfactory fit
can he represented in a similar manner.' ` Our concern is with figures
(17) ano (18) where Hurlbut's [2j measurements are rather poorly approxi-
mated. ** The results when applying the second method outlined above are
depicted 1n our figures 1 and 2. Major assumptions and the four
probability para..eters are given in Table II.

I'ABLF II

Significant Quantities for Figures 1 and 2

tan X. L	 g G1l !13

Fib;.	 1

Fig.	 2
1

27'50'

27'50'

7,4 cm

7.4	 cm.

0,85

0,724

2.3 cm0,398 -0,605

2,5	 cm I 0.51	 -0,605 1 0,243
1	

1	
,

0.280 0.373

0.324

The values in the last four columns specify the expressions (20)
and (18) for L and Q so that the pertaining curves can be plotted.

Several entries are equal, reflecting a general resemblance of the
measured point arrays which are both obtained by shooting a molecular
beam on cleaved lithium flucri.de crystals. Merely the beam angles are
somewhat different ((, i = -79.9° and ei = -85', respectively). The
almost glancing incidence is perhaps responsible for the strong inclina-
tion of the data "axis." As broadly indicated by the values of tan X25,
it is even larger in the second case than in the f irs t.

'fhe not quite commendable adaptations in figures (15) and (16) are
likely to improve with 5 # 0.

One will notice that Nocilla's curve fits generally deteriorate with
increasing "major axis" inclination which is particularly large in
these two figures. From this observation it was inferred earlier
that ` = 0 might be a good guess with upright configurations.

18



sy the value ut b we have

K2
-^A = b + 1 = 0.395
2

K3

and the result (7) show
o reference 1'`, the mass
their components (14),

to be an acute angle

so that K 1 < K3 . Furthermore, expressions (17)
that /\ 1 and A3 are both positive. As opposed t
velocity, if one chooses to interpret the A as

is directed away from the surface, since Or has
(tan jr -- 1.9, or or ^ 62.3° in both figures).

For further examination of the method two angular distributions were
selected given in figures 4 and 5 of reference 5 (where the y point connec-
tions shown no doubt have been drawn in with the use of french curves).
Both depict argon scattering from silver. 	 Since q value of the angle
X, cannot be ascertained here, one has to employ the first of the methods

sketched above. The results are given by our figures 3 and 4. The
approximations are virtually as good as those by the empirical curves
excepting two deviating points in the second example which could not

be reproduced. The abrupt change in curvature they indicate is, however,
a quite unusual feature attributable perhaps to some freakish surface
peculiarity. Underlying numerical values are given in Table III.

F
TABLE III

Significant Quantities Related to Figures 3 and 4

L  1 L 1 w2 L b 41 43

Fig.	 3

Fig.	 4

50°

38 0

8.3 cm

8.2 cm

30°

20°

6.0 cm 70 0

4.0 cm^60°

5.8 cm

3.4 cm

0.362

0.003128

2.13

0

2.5597

1.7268

0

1.03833

Isere, n  is given as 120° in both cases.

Since the angle of incidence is the same (50°), they demonstrate,
incidentally, that the shape of the reflected curve depends on the

incident energy (0.064 eV and 4.35 eV, respectively.) Unfortunately,
free flight energies have not yet been realized experimentally. It
is most desirable that future efforts correct for this deficiency.
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The two zero values had suggested themselves in the course of r h-

	

trial-and-error calculations.	 The first one en tai Is that X.3 - 0 %':hile

1	 ,(	 + 1 )

remains a positive quantity, because 3 > 0 by the result (7). Thus,
the numerator of the Q-expression contains the cosine term only. Its
presence causes the shape to be tilted.

The second zero ( = U) ineans that	 1 = o^ J and sho^•;s that Noci1la's
approach would do nicely with the distribution of figure 4. Since i;l
and µ, are both positive, the reflected mass flow again would turn away

from the elemental surface. From the formulas (17) one sees that

	

= =̀1	 tan D ,
A3	 X13	 r

so that, with the last two figures in the lower row of Table III, the
angle or would be 59" equivalent to q'r - 31°, while c, * = 38°. Further-
more, relation (15) shows that, when	 = 0,

S' 	 K3(A1 + 
A

-1 	 111 + µ3 = 4.0b.

Owing perhaps to the slenderness of figure 4, the directed speed of the
returned molecules thus is surprisingly high; it comes out more than

twice as large as their most probable thermal speed, whereas in refer-
ence 1 the ratio was at most unity.

The above two methods proved to be the relatively most pliable of
the many one can think of. All of them require four bits of information
furnished by the raw data. For instance, one may consider the horizontal
tangent, its point of contact and two more points, or, with tilted curves,
two vertical tatig,,nts and their points of contact, or simply four points.
Whenever possible, it seems advisable to include L* and the maximum condi-
tion (21).

20



V.	 THE PROBABILITY PARAMETERS

The function (20) can be expected to be adaptable to a large number
of experimental point sets including all that can be handled by the
method of reference 1. However, the numerical values it yields in a
given case are too few to completely characterize the probability
behavior (8) in the reflected gas.

In the first place, the three parameters ( 17) that can be elicited
from rata measured in the plane (2f =  0 evidently do not suffice for the
determination of K 1 , K 3 , ^\ l , A3 . A hope to improve on the situation by
additional observation in a vertical plane 0 _ Ac # 0* or in a horizontal
plane o	 ec was found abortive. To illustrate this point let us look
into the second case (where for good resolution we might choose

K2

E ^	 (27)- 11
the first and last of the expressions ( 9) may be written as

a ^' _ J [ (b + 1) (1 + c s in 2^A) s in2 pc + COS 2 0 C

Ti i cos ^ sin (,c + 4 . cos Oc
(28)

Q=

(b + 1) (1 + E s in to) sin :-1 6c + cos 2ec

One gathers from the Q-formula where the parameter combinations µl and
µ ,are already known that an approximation of the "horizontal" plot by
L(.') will not grant more than a value for (1 + ) which like (1 + f,) is
a ratio, to be sure, this time involving the parameter K` for which so
far no information was available. * *

The symmetry existing about 	 = 0 with the random speed components
^ L, and -	 taken as equally probable should lead to the same results
when obser - -ng in y' = -0c. Otherwise, one would have to introduce
the probability parameter `,; see footnote on p. 5.

If a satisfactory value of t cannot be determined, the E2-probabilities
ire not equal on both sides of the plane of inciuence and one must
resort to A2 # 0. The set (9) then becomes more complicated.

I

1
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When measurements in a plane 0 - Oc are evaluated, the expression
for Q also exhibits but one additional parameter configuration includ-
ing K L,. An analogous difficulty evolves with the approach of refer-
ence 1, in which	 t - 0 so that the expression (28) for Q is useless
for parameter identification and the set (17) reduces to 41 = KAj,
43 = <A_j leaving the three quantities ,c, .,1, A3 indeterminate.

To overcome the impasse we will first assume that all the gas
molecules striking the elemental surface in (It seconds are re-emitted
and that no others leave the surface. Let us further stipulate that

the incoming gas obeys Maxwell's velocity distribution law with the
superimposed macroscopic velocity components

V 1 = V i s in gi

V 3 = V i cos )i*

the number density, we have the familiar expression

X2jtS2_
NidtdS = n i dtds [e 3 + fn S 3 (1 + erf S," ]

where N i is the number of molecules striking per unit time and area,
is the gas temperature, and

V -,
S -	 J

2RT.
1

With the aid of the probaoility function (8) the corresponding number,
Nr, of molecules reflected per unit time and area becc-nes

2	 ^2
e-K 

	 d e-K2t2d^^ -" 2^3e 3d ^3,

n2
1
	 [e - 43 + ,7 µ3 ( 1 + erf µ3 ) ] .

2 v n K3



Equating N i and N r yields the ratio

2
n 	 e-S3+ -^7 S (1 + erf S3)
_3	 ni 2RT

1
	2	 ("11)

L,`µ3 + ^^ 43(1 + erf 43)

which, nr being unknown, still does not specify a value for K 3 . A
further measurement obviously is called for. That of the heat flux

	

( i = e 	 - e 	 (32)

will be shown to supply the necessary information.

The internal portions of the energy fluxes follow from the internal
energy associated with a single molecule which in reference 6, pp, 189/
191 is given as*

1 5 - 32 
mRT

2 y-1

where y is the ratio of specific heats in the gas. While the incident
temperature, T i , can be taken as known, the temperature, T r , in the
ref'.ected gas must be calculated from the mean translational energy in
it:

- 1K1Q1-A1)2+K2t2+K3Q3-^3)2 1̂2 1'<2K_5
	 1+ 2+ 3) e 	 d^1d^2dE3

^3^ 2

M ( I +
 12 

+ 
12 

+ ^ 1 + ^2) .
2	 2K1	 2K2	 2K3

" It is written there as 3 mRT5, where	 5	 3'
2	 3(y-1)

(33)
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The sum of the first three terms here is equal to the mean value of the
squared random velocity, 3R'r r , so that

RT	 (1 + K1 + K 1 	 2 + b + (1 + ^)'1r = 6Ki
	

6K	 ( 34 )

The internal portion of the reflected flux thew becomes

m	 5 - 3z 2 + 6 + (1 + ^)'1( e r) int.	 12 N i y- 1	 K`l	
(35)

since the assumption Nr = Ni was made. Everything is known at right
excepting the quantity K". Experimentation in a plane 0 = 6c is needed
to obtain a value for t.

T'-e translational energy flux of the re-emitted molecules follows
from the integral expression

+W	 00

m1K2K3

j

, 
I
I
r	 2 2 -lK2(^1',^1)^'^KGF2♦K3(3- ^3)2)

(er) tr. = 2 Ilr	 -5/ 2  	 ,J	
_^ ^3(^1+^2'fE3)e	 1

n
-00 t3=0

d^ld^2dt3•

After some lengthy evaluation this becomes

(e r ) tr. =	

m nr

nr	 (2 ^ + 21's + 2	 + ^1 + ^3) [e µ3 + n µ3 (l + erf µJ)
4 it K_3 	1	 2	 3

2
1 e" { ^3
^K

3

Since by the formulas (17)

-2	 2
2	 2	 µ1	 µ3

^1 ♦ ^3 = K3 (S ♦ 1)2 + 7
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the expression may be set into the form

n
_ m	 r

(e r ) tr. 	 KKK P(g^E^µi+µ3)i where
 

It
4

(36)
-2

P = 
4+3b+(1 +^ )- ` + µl + ( g+1 )µ3 [e µ3 +	 µ3(l+erf µ3)) _ g+l e-µ3.

L	 2	 g+1	 2

Again K1 is the only unknown parameter, as nr /h3 is available through
relation (31). Thus, we may write

(e )
	 = m	 N 5 _ 3y 2 + ^, + (1 + ^)'- + 1 n r P^

r tot. 47	 i	 -1	 S	 "-- K	 J
 1	 ♦ n 3

By the quantity (33) and the known expression for the translational
energy flux of the incident molecules, the total flux of incident energy
becomes

(ei)tot	

N2	

_ l y mRr i + mN i RT i [ (2+S 2 )e
-S3 + ^ S3 (2 + S 2 )(1 + erf S3 ) ]

Y

where

V.

S = 1 —
ti2

is the molecular speed ratio.

With the use of the measured heat (32; being transferred in unit
•	 time to the unit area, it follows that

1 5-3y 2+g+(1+c)-1 
+ P[e 43 +

1	 2	 1	 3
g43(1 +erf 43)]-1

y- 
Ki	 2RT. 15-3^	 -S`	 5i 2	 11 + (2+S2)e 3	 )-L+	 S3(2 + S`') (1 +erf S 3 ) - q (mNiRTiY - 1
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In cancelling N i the aggregate

n 	 1

Kj Ni

has been computed here from expressions (31) and (29). The first terms

in the numerator and denominator vanish for monatomic gases (which have
no internal degrees of freedom). The quantity '2 has a definite value
even when q = 0, or is put equal to zero, as one might be tempted to do
in default of a measurement.

The numerical values of the remaining four probability parameters
are found from the definitions (19) and (27):

u
K2 = Ki	 ♦ E)	 ^l s	 1

1 ^1 + c;

(38)

K2 K2 1 + &) -	 µ3 ti 1 + b
3 s 1(	 1	 3'	 K1

If one measures the molecular fluxes in a plane k" = ,-c # 0 rather
than in a plane 0 = ec in order to arrive at an expression for K, some
quantity ^' will have to be defined instead of c and the result (37)
will assume a different form.

In concluding we recall that the energy accommodation coefficient

qa= e i - C 

can be determined from the measured value for q, provided that, when
operating with polyatomic gases, the wall temperature, Tw , is known
which enters through the quantity (33).

R
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VI. RE-EMISSION STRESSES

To calculate the force vector issuing from the action of re-emitted
molecules on the elemental surface let us first introduce the unit vectors
i, J, k in direction of the axes x i , x:>, x 3 . The momentum of a single
molecule,

m(1 k1 + IE2 + kt3),

leads to the sum total of the momenta carried away from the unit surface
in unit time:

+CO	 00

mnr M`iKGK3 ^^ ^ ^3( iF, +i^.+k t_3 ) e- (K1(^1-A1)2+K2t2+K3(^3-N3)' IdPld^:)dt3•
n3^2	 —

00	
3

=0	
(39)

Its negative value gives the stresses acting on the surface.

Evaluation of the i-component yields the shear stress in xi-direction:

mn 	 _ 2

ii r	 _	 r	
[e 43 + %J n 43 (1 + erf 43) ] ,

'	 2 v n K3

which, by virtue of relation (31), may be written as

	

LT  S2	 A lI	 -^\1 mni
	 2n 

[e 3 + y n S 3 (1 + erf S 3 ) ] _ - V1 T i	 (40)

where Ti is the incident stress.

There is no component in the x 2-direction (the integral vanishes):

T	 = 0.	 (41)
2, r

W

a
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This is a consequence of the assumption that t. and 	 are equally
likely to occur which precludes the introduction of a probability
parameter A2 # 0.

It was pointed out earlier that, with an "upright" data plot, the
quantity µ l , and therefore T, 1 , must be taken as zero. In such an event,
reflection does not generate a shear stress at all. Nor does incidence
as a rule, because it should have to be vertical (V 1 = 0) for a sym-
metrical ejection pattern to appear.

Expression (40) is the total shear stress, T , when ^. = 0. It
has been derived with the use of the probability 5ensity fullCtion (8)
and permits the computation of the accommodation coefficient

1 - I
	 T

r = 1 + 1	 (42)r i	 V1

The numerical value of \ 1 is available from the set (38); by the result
(7) it is positive with the parameter µ, (which was found so in the
four cases dealt with herd and altogether might never turn out negative).
The incident motion (assigned to the quadrant where x . > 0 9 x i < 0)
defines Gi and V 1 = Vi sin	 as negative. The coefficient a will then
be smaller than unity.

The k-component of the integral (39) determines the pressure

	

n	 _

Pr = - to	 r ( µ3e 43 +	 4 + 4' ) ( 1 + erf µ^) l	 (43)
2 J n K3

which, being negative, is directed toward the backside of the elemental
surface. By the ratio (31) and the set (38)

2

1	 nr _ 1 +	 n	 RTi e-S3 + ^T[ S 3 (1 + erf 5-^)	
43a

3	 1	 e - 43 + g 43 (l + erf 43)

where r; l (> 0) can be found from expression (37).
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The pressure accommodation coefficient

Pr
o - _

1'w

which is sometimes recommended for use can be calculated when the wall
temperature is known. The representation in terms of speeds, tempera-
tures, and probability parameters is rather lengthy and is not set down
here.

The aerodynamic force exerted by reflected molecules on the sur-
face element,

fr = ( it r + kp r ) dS,	 (44)

can be resolved into lift and drag components (which refer to a system
of coordinates usually different from that affixed to the element). In

using expression (44), it should be kept in mind, however, that outgassirg

V	 or ingassing must be held negligible * on account of the condition N r = Ni
which was a mainstay in deriving major relations, and, secondly, that
the basic observations were made with reflected molecules hardly subject
to collisions with incoming molecules and not at all with those reflected
by adjacent surface elements. The application therefore is restricted
to free-molecule or nearly free-molecule flow until the probability param-
eters can be obtained in some manner not relying on such observations.
Even if efforts in this direction should meet with insurmountable diffi-
culties and must be given up as hopeless, free-molecule reflection, at
any rate, is better described on the basis of the function (20) and proper
experimental evidence than by the cosine law.

VII. CONCLUDING REMARKS

The tentative probability density function (8) gives rise to the

angular number distribution law (20) whose analytic form is rather

involved, so that the trial and error processes proposed for curve
fitting purposes require lengthy computations often to be repeated
many times. One may expect to end up with a somewhat more easily tract-
able expression of the law when the plane jo = 0 in which most observations

There is an opinion that in free flight they would be so.

1
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are made is considered the fundamental plane in a cylindrical (;,r,y)-
s ystem into which the ftinction (8) would have to be transformed. Carry-
ing through that idea one indeed arrives at the slightly simpler
representation

L =	 c3' sin a — I ? Q + ( 1 + 2Q`)(1 + erf Q)eQ ^^	 (45)
(1 + S cus 2( ' /2 L

where fi and Q again have the meanings (17) and (18). There is a certain
connection to expression (20) in that the bracket there is the %n/4

multiple of the Q-derivative of the bracket here which, incidentally,
may be written as

1 d
2 dQ (1 + erf Q)eQ .

The former bracket is essentially the third-order derivative as mentioned
in the footnote on page 12. It is perhaps worthwhile to inquire more
deeply into all these relationships; time did not permit doing this here.

Almost certainly the distribution law (45) will lead to satisfactory
approximations of measurements performed in the planes of incidence to
which it is Reared. A spot check was made with the data presenLed in
figure 13 of reference 1 which, as was explained to section IV, require

b = 0, j = 0, and 413 = 112. A close fit then ensues with G3' = 0.85.
The different analytic forms notwithstanding, both the laws (20) and
(45) describe the measured angular distribution adequately with the use
of the same probability parameters. They ought to do so, since they
claim to interpret the behavior of the same reflected gas. The formal
differences are probably brought about by the imprecise Handling of

infinitesimal volumes usually tolerated in dealing with molecular
ensembles.

For a complete (and desirable) determination of all the probability
parameters a survey in a second plane is needed. Moreover, the law (45)
does not lend itself to an easy comparison with the theoretical results
in Nocilla's paper which uses spherical coordinates. For these reasons,
although set tip first, it was abandoned in favor of the law (20).
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A PROBABILITY DENSITY FUNCTTON FOR REFLECTED BEAM MOLECULES
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