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LOW-SPEED WIND-TUNNEL INVESTIGATION OF ALL-FLEXIBLE
TWIN-KEEL TENSION-STRUCTURE PARAWINGS

By Paul G. Fournier
Langley Research Center

SUMMARY

Low-speed wind-tunnel studies were made to obtain the static aerodynamic charac-
teristics of several tension-structure, all-flexible, twin-keel parawings. These all-
flexible parawings were made of nonporous fabric and were attached to a mounting bar by
means of multiple suspension lines.

The basic parawing had parallel keels (0° keel cant angle), 45° leading-edge sweep
of the flat planform, nose cutoff at 20 percent keel length aft of the theoretical leading-
edge apex and contoured, and a center-panel width of 40 percent keel length. Planform
variations investigated included keel cant angles of 00, 50, 10°, 15°, and 20°, center-
panel width, details of nose tie lines for a parawing with 15° cant angle, and added air
scoop and ram-air-inflated fabric tubes on the keels. Tests were also made with several
keel-payload separation distances.

Relatively small changes in maximum resultant-force coefficient accompanied an
increase in keel cant angle from 0° to 15°. Increasing the cant angle to 200, however,
decreased the maximum resultant-force coefficient.

An investigation of the effects of center-panel width for the model with 15° canted
keels indicated that both increasing or decreasing the width caused a reduction in maxi-
mum lift-drag ratio from the value for the basic center-panel width. Maximum resultant-
force coefficients were highest for the smallest center-panel width investigated and
decreased with increasing width.

There was no appreciable benefit to maximum lift-drag ratio from the addition of a
lower surface scoop on the parawing center panel or the addition of upper surface ram-
air-inflated tubes at the keels of the basic parallel twin-keel model.

For a keel-payload separation distance of approximately 1.00 keel length, values of
maximum lift-drag ratio increased from 2.78 to 3.27 as the keel cant angle was varied
from 0° to 15°. Values of maximum lift-drag ratio decreased when the cant angle of the
keels was increased from 15° to 20°. Increasing the keel-payload separation to 1.25 keel
length increased the maximum lift-drag ratio of the model with 15° cant angle to a value
of 3.41. A modification to the line attachment at the formed nose on the center panel of
this parawing increased the maximum lift-drag ratio to 3.48.



INTRODUCTION

Many research investigations of parawings have been conducted by the National
Aeronautics and Space Administration in the past several years. This work has been
concerned primarily with rigid frame paragliders having widely varying geometric,
structural, and aerodynamic characteristics. (See refs. 1 to 4.) - Recent parawing
research has concentrated on all-fabric lifting surfaces having no structural members
or stiffness. (See refs. 5to 9.) These all-flexible parawings are capable of providing
gliding, controllable flight by proper rigging of multiple suspension lines which connect
the parawing to the payload. This type of parawing shows considerable promise for use
in applications where compact storage and weight requirements dictate the use of a
parachute-like tension structure and where significant glide capability is necessary.

Investigations of all-flexible parawings have shown that twin-keel (three lobes)
configurations have higher lift-drag ratios than the single-keel (two lobes) configurations
because the twin-keel parawings are able to operate at lower angles of attack. The twin-
keel parawing is a refined version of the earlier all-flexible single-keel parawing. The
refinements included the addition of a rectangular center panel to increase the aspect
ratio of the basic single-keel configuration and the contouring of the nose portion of the
center panel to produce an airfoil -like leading edge.

The present investigation was conducted for the purpose of determining the aero-
dynamic characteristics and rigging for an advanced series of twin-keel, all-flexible
parawings. These tests were a continuation of the series of twin-keel parawings
reported in references 8 and 9 and were an attempt to improve the performance of these
types of parawings. The parawings in this paper have identification numbers that are a
continuation of the numbering system of models presented in reference 8.

The basic twin-keel parawing configuration had parallel keels (0° keel cant angle),
459 leading-edge sweep of the flat planform, nose cutoff at 20 percent keel length aft of
the theoretical leading-edge apex and contoured, and a center-panel width of 40 percent
keel length. Planform variations investigated included keel cant angles of OO, 50, 100,
150, and 200, center-panel width, details of nose tie lines for a wing with 15° cant-angle,
and added air scoop and ram-air-inflated fabric tubes on the keels. The models with the
various keel cant angles were tested at several keel-payload separation distances.

These wind-tunnel tests were conducted with the tethered method of testing in which
the confluence of lines was attached to the tunnel sting-support system and the model
flown in tethered flight as described in reference 8. It is believed that this method of
testing does simulate, as near as possible, free flight. The attitude of the parawing was
varied during the tests by shortening of the control lines. The investigation was made
in the 17-foot (5.18 meters) test section of the Langley 300-MPH 7- by 10-foot tunnel.



SYMBOLS

The data presented are referred to the stability axes. The positive direction of
forces, moment, and angle are shown in figure 1. The moment reference location was at
the confluence of lines and is shown in figure 2.

A aspect ratio, bg/ S
by span of parawing flat planform, inches (centimeters)
c reference chord for pitching moments, l), minus Nose cutoff, inches
(centimeters)
Cp drag coefficient, %g
CL lift coefficient, Lift
C resultant-force coefficient C2 + C2
R ’ L D
Cm pitching-moment coefficient, Pitchin;glsréloment
L/D lift-drag ratio, Cpy, /CD
q free-stream dynamic pressure, pounds per foot? (newtons per meterz)
S area of parawing-canopy flat planform, feet? (metersz)
Se area of center panel, feet? (meters?2)
X linear dimensions
4 length of keel of theoretical parawing-canopy flat planform (keel position for

each model is shown in fig. 3 and detailed drawings preceding data figures),
inches (centimeters)

e 1 actual length of keel of parawing-canopy flat planform (see fig. 3 and detailed
’ drawings preceding data figures), inches (centimeters)



x/ I 1 line attachment point along actual parawing keel or leading edge
?

l/lk nondimensional length of keel and leading-edge suspension lines measured
from parawing to attachment points shown in figure 2

parawing angle measured from vertical normal to wind stream to a specified

" keel suspension line (eighth keel line was used to measure parawing angle
and is indicated in the detailed drawing preceding data figures for each
model), degrees

AZ/ U incremental nondimensional shortening of length of control lines

Ay angle of sweepback of leading edge of wing canopy flat planform, degrees
N keel-cant angle, degrees

Subscripts:

max maximum

le leading edge

DESCRIPTION OF MODELS

Flat planform drawings of the nine models tested are shown in figure 4. Detailed
drawings giving pertinent dimensions immediately precede the data for each model and
the planform geometric characteristics of all models are summarized in table I. The
models were all of sewed construction and were made in accordance with the construc-
tion details of figure 3. The canopy material was 0.75 oz/yd2 (25.4 g¢/m2) resin-
impregnated rip-stop nylon which had essentially zero porosity. All models were rigged
with 130-1b (578 N) test dacron line. This type of line was used because of its low stretch
characteristics. Minimizing the line stretch eliminated or reduced the required changes
in line length to correct for elongation during the test runs and reduced the time needed
to make accurate measurements of line lengths after the tests. The model-support fix-
ture is shown in figure 2. All suspension lines were held by the clamping block except
the aft keel lines and the wing tip lines, which were attached to a central eyebolt and out-
board eyebolts on the cross bar, respectively. The aft keel lines and wing tip lines were
used for control. The line lengths for each test are presented in table II.



All models tested had evenly spaced line attachment points along the keel and
leading edge, and the distance to these attachment points is given in percent of the actual
keel length [, ;. All models had a contoured nose (fig. 5@)).

’

Photographs of the models tested are presented in figure 6. The basic twin-keel
parawing configuration, model 5 (fig. 6(a)), had parallel keels (0° keel cant angle),
45° leading-edge sweep of the flat planform, nose cutoff at 20 percent keel length aft of
the theoretical leading-edge apex and contoured, and a center panel width of 40 percent
keel length. The first series of parawings tested (models 17 and 18) had the same basic
planform as the basic twin-keel model 5, which was also tested in reference 8. These
parawings had parallel keels. Model 17 had a ram-air-inflated triangular scoop on the
undersurface of the parawing (fig. 6(c)) and model 18 had a ram-air-inflated tube on the
upper surface of the parawing at each keel (fig. 6(d)).

The second series of parawings (models 19, 20, 21, and 24), figure 6(e), had the
same outer panels and center-panel width at the nose as the basic parallel twin-keel
model 5, but each outer panel was canted outward from the nose 50, 100, 150, or 200,
respectively. The third series of parawings (models 22 and 23), figure 6(f), had the
same outer panels as model 21, 15° canted keel, but the center panels were narrowed or
widened one-third of the basic width. Details of the contoured nose construction, along
with modifications made to the basic line attachment at the nose along the keel, are pre-
sented in figure 5. The basic contoured nose was formed by turning the nose of the para-
wing flat planform under and tying the nose tie strings at the locations shown in fig-
ure 5(@). For the basic configuration, the nose of the canopy, at the keels, was tied to
the first keel suspension line as indicated in the upper left of figure 5(b). Modifications
to the nose contouring included moving the first keel line to the nose as shown in fig-
ure 6(b) and the upper right of figure 5(b), addition of a suspension line at the nose (lower
left of fig. 5(b)), and an increased length of the nose tie at the keel (lower right of fig. 5(b)).

EXPERIMENTAL PROCEDURE

Static wind-tunnel tests were conducted in the 17-ft (5.18 m) test section of the
Langley 300-MPH 7- by 10-foot tunnel. Tests were made at a dynamic pressure of
2.0 1b/ft2 (95.8 N/m?2).

Data were obtained by means of a six-component strain-gage balance. Measure-
ments of wing angle of attack were made visually by sighting the reference suspension
line through a window-mounted protractor. The data presented in this report are
referred to the stability-axis system shown in figure 1.



These wind-tunnel tests were conducted with the tethered method of testing in which
fhe confluence of lines was attached to the tunnel sting-support system and the model
flown in tethered flight. The models could not conveniently be tested in the wind tunnel
with a point suspension system as used in many free-gliding flight tests because of the
difficulty of maintaining a trim flying condition in the tunnel. The control lines (aft keel
and tip lines) were displaced from the confluence of lines to give the stability needed for
testing in the wind tunnel (fig. 2).

Tests were made with the model at several attitudes (ay,) relative to the sting sys-
tem by use of the aft keel control lines and/or the leading-edge tip control lines. Initially
the models were rigged so that the nose would be on the verge of collapse. Then the
attitude of the model was systematically increased by incremental shortening of the con-
trol lines until longitudinal and lateral oscillations prevented further testing.

CORRECTIONS

Jet-boundary corrections to angle of attack (model attitude, ay), drag coefficients,
and blockage corrections to dynamic pressure as determined from references 10 and 11
have been applied to the wind-tunnel results. The drag of the line attachment mount was
negligible and was not subtracted from the total drag.

PRESENTATION OF DATA

As mentioned previously, the data for each model are preceded by a detailed
drawing of the model. As a matter of convenience in locating the data source and model
definition for the various models, the following table is presented. The data consist of
basic longitudinal aerodynamic characteristics through a range of control-line settings
(parawing angle-of -attack variation). The data figure also presents variation of lift-drag
ratio with resultant-force coefficient. Comparison of performance, variation of L/D
with Cg, is an upper envelope of the results of the basic data obtained for the different

control settings.



Photo l Sketchw Basic data Geometric parameter data source
¥ T ¥ T T }
Scoop and ram-air- Keel cant Nose line attachments Center-panel . Payload

Model Configuration

Figures _ inflated tubes angle | and modification width , distance |
5 : Basic parawing ! 6@) | 17 8,9 ’ X : | 1.00z, ‘
Ay = 0° 10, 11 X 1.25 |
5 First keel line 6(b) 12 13, 14 X 1.001,k
moved to nose
17 Lower surface 6(c) 15 16, 17 X 1.00z;
scoop added
18 Ram-air-inflated 6(d) 18 19, 20 X 1.00Zk
tubes added ‘
19 A =5 6(e) 21 22, 23 X 1,005
20 A =10° 6e) 24 25, 26 X 1.007,
27, 28 X 1,25y,
—
21 A= 159 6(e) 29 30, 31 X 1.00z;,
32, 33 X 1.25;
21 Added keel line at  --- 34 35, 36 X 1.25lk
nose Ay = 15° 37,38 . X 1.500,
22 1/3 narrower 6(f) 39 40, 41 X 1.007,
center panel
0
Ay = 15
23 1/3 wider center 6(f) 42 43, 44 X 1003,
panel A = 15° 45, 46 X 1,250,
24 | A =20° 6(e) | 47 48, 49 X ‘ 1.25,
50, 51 X 1.500
Summary plots presented in figures . . . . . . .. 52 53 54 55 56, 57,
61 61 58, 59,
60




DISCUSSION

The twin-keel parawing is a refined version of the earlier all-flexible single-keel
parawing as discussed previously in detail. The refinements included the addition of a
rectangular center panel and the contouring of the nose portion of the center panel to pro-
duce an airfoil-like leading edge. The basic twin-keel parawing of this investigation had
parallel keels (0° keel cant angle), 45° leading-edge sweep of the flat planform, nose cut-
off at 20 percent keel length aft of the theoretical leading-edge apex and contoured, and
a center-panel width of 40 percent keel length.

Added Structure

Effect of scoop and ram-air-inflated tubes.- An attempt to increase the performance
of the basic parallel twin-keel parawing was investigated by adding a triangular scoop on
the lower surface of the center panel, model 17 (fig. 15), or by adding ram-air -inflated
tubes on the upper surface of the parawing along the keels, model 18 (fig. 18). Similar to
the approach taken in reference 5, these additions were an attempt to make the parawing
more rigid and to prevent the wing from collapsing at the lower wing angle a,, so that
higher lift-drag ratios may be obtained. A comparison showing the effect of these addi-
tions on the variation of L/D with CR for a keel-payload separation distance of 1.007)

is given in figure 52.
In general, the addition of either the scoop or the ram-air-inflated tubes did not

improve maximum L/D for these wings. Comparison of figures 8, 16, and 19 show
that the basic parawing model 5 had the lowest values of Cy, available.

Planform Variations

Effect of keel cant angle.- Variations in parawing keel cant angle of 50, 100, 150,
and 20° from the basic parallel (00 keel cant angle) twin-keel parawing were investigated.
The nose width of the center panel was kept the same as the outer panels were canted out-
ward to increase the wing aspect ratio. Envelopes of the variation of L/D with Cr
are presented in figure 53 for keel-payload separation distances of 1.00 and 1.251;.. The
results of figure 53(a) for 1/l = 1.00 show a significant increase of maximum lift-drag
ratio when keel cant angle is increased from 0° to 5°. Increasing the cant angle to 10°
and 15° provided higher maximum lift-drag ratios and somewhat lower values of maximum
resultant-force coefficient than obtained with the 5° cant angle.

Effects of keel-cant angle for a keel-payload separation [/f; of 1.25, presented in
figure 53(b), show the same trends as for 1/l = 1.00; however, increasing the cant angle
from 15° to 20° reduced the maximum lift-drag ratio. A summary of effects of keel cant
angle is presented in figure 61, which also includes data for cant angles of 15° and 20° for

8



a keel-payload distance 1/l of 1.50. All data for 20° cant angle show lower values of
maximum lift-drag ratio and maximum resultant-force coefficient than for 15° cant angle.
It is apparent, therefore, that the 20° cant angle was excessive, and a desirable cant angle
for application to design would be about 15°.

Several modifications and adjustments were made to the details of the formed nose
of the wing center panel, as shown in figure 5, in attempts to improve the nose shape and
parawing performance. Most of these adjustments produced little or no change in aero-
dynamic characteristics. Two examples are presented in figures 13 and 14 and 35 to 38.
The added nose line to the 15° canted keel parawing with l/lk = 1.25 increased maximum
lift-drag ratio from 3.41 to 3.48. (See figs. 35 to 38.)

Effect of center-panel width.- Parawings with center panels one-third narrower and
one-third wider than the width of the basic center panel of twin-keel parawing model 21
(15° keel cant angle) were investigated. A comparison showing the effect of center-panel

width on the upper envelope of the variation of L/D with CR for a keel-payload sepa-
ration distance of 1.007; is given in figure 55, and a summary of results is given in fig-
ure 61. The results of figure 61 show that either an increase or a decrease in the center-
panel width from the basic width caused a loss in maximum lift-drag ratio. Maximum
resultant-force coefficients were highest for the smallest center-panel width investigated
and decreased with increasing width of the center panel.

Keel -Payload Distance

Keel-payload distance was taken as the length of the suspension line that was used
for the reference wing angle a,;, - that is, the eighth keel line. The keel-payload dis-
tances were approximately 1.007y, 1.257;, and 1.50]. In general, an increase in keel -
payload distance increased the values of L/D at a given value of Cgr (figs. 56 to 60)
and agree with results of references 1 and 3. With regard to maximum lift-drag ratio
(fig. 61), the largest separation distance 1/l of 1.50 was not as desirable as the inter-
mediate value of Z/lk = 1.25. It can be reasoned, therefore, that increasing the line
lengths from the shortest lengths tested to the intermediate length allowed a favorable
change in canopy shape. TFurther increases in line length from the intermediate length
failed to provide improvements in canopy shape sufficient to overcome the added drag of
the additional line length.

CONCLUDING REMARKS

Low-speed wind-tunnel tests were made to determine the static aerodynamic char-
acteristics of several tension-structure all-flexible twin-keel parawings. The addition to



the basic parallel keel model of either a lower surface scoop or upper surface ram-air-
inflated tubes at the keels did not improve the overall performance of these wings over
the original basic twin-keel parawing. Of the configurations tested, those having 59 to
15° canted keels showed higher values of lift-drag ratio throughout most of the resultant-
force range, especially at the higher values of resultant-force coefficient. In general,
there was no great change in the value of lift-drag ratio for a given resultant-force coef-
ficient between the model with the narrow center panel and the basic width center panel;
whereas, the model with the widened center panel indicated somewhat lower lift-drag
ratio and less usable range of resultant-force coefficient. An increase in the keel-to-
payload distance from 1.00 keel length to 1.25 keel length indicated an improvement in
performance; however, a further increase to 1.50 keel length did not increase maximum
lift-drag ratio but did give an increase at a given resultant-force coefficient over most
of the test range.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., June 3, 1970.
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODELS
[zk 1 =60.00 in. (152.40 cm) for all models]

12

Model |2k “ ° %o ; S 3’
deg| in. cm | in. cm in. cm £t2 m2 | £t2 m2 bo/S

5,17,18( 0 {75.00(190.50|60.00(152.40114.83|291.67|30.173|2.803|12.500/1.161| 3.04
19 5 172.36(183.79|59.77|151.82{121.92|309.68)32.302/ 3.001 (14.624 |1.359| 3.20
20 10 (69.59]176.76|59.09(150.09)128.50|326.39{34.261{3.183 |16.584 {1.540]| 3.35
21 15 166.62 |169.22(57.95|147.19/133.92|340.16(36.001|3.345(18.32311.702| 3.46
22 15 {63.73|161.87(57.95(147.19|123.92314.76/31.976|2.97114.298 (1.329] 3.34
23 15 169.51|176.56 |57.95147.19|143.92}365.56(40.026| 3.719 |22.347 2.076| 3.59
24 20 {63.37]160.96 {56.38143.20|139.76(352.44|37.454|3.480(19.779{1.838} 3.57




€1

TABLE II.- LINE LOCATIONS AND LENGTHS

1/l for model (figure) —

Line x/ly 1 57 5 5 ~ 17 18 19 20 20 21 21 21 21 22 \ 23 23 24 24
(8,9) | (10,11) | (13,14) | (16,17) | (19,20) |(22,23) |(25,26) |(27,28) | (30,31) | (32,33) | (35,36) | (37,38) | (40,41) | (43,44) | (45,46) | (48,49) | (50,51)
Keel )
0 o0 - e 7 L UV
1 .083 0.973 1.203 ---- 0.951 0.972 1.074 1.078 1.328 1.158 1.451 1.451 1.733 1,087 1.068 1.308 1.508 1.758
2 .167 .974 1.220 .998  .969  .984 1.072 1.102 1.352 1.153 1.447 1.447 1.729 1.104 1.108 1.348 1.493 1.750
3 .250 .980 1.229 1.002  .969  .986 1.058 1.092 1.342 1.148 1.444 1444 1721 1.101 1.104 1.343 1.490 1.744
4 333 .972 1.226  .993  .956  .979 1.060 1.084 1.334 1.134 1.428 1.428 1.710 1.089 1.095 1.334 1.473 1.726
5 417 .976 1.222  .995  .947 979 1.056 1.076 1.326 1.128 1.420 1.420 1700 1.082 1.084 1.323 1.462 1.715
6 .500 .974 1.224  .997 946  .978 1.051 1.066 1.316 1.119 1.413 1.413 1695 1.074 1.075 1.314 1.454 1.707
7 .583 .981 1.227  .995  .947  .980 1.051 1.061 1.311 1.111 1.407 1.407 1.688 1.067 1.066 1.306 1.437 A 1.688
'8 .667 .974)1.224 © 976 932 975 1.039 1.054 1.304 1.102 1.396 1.396 1.673 1.058 1.058 1.298 K 1.420 | 1.674
9 .750 .966° 1.214  .967  .926  .967 1.029 | 1.028 1.278 1.077 1.372 1.372 | 1.653 1.035 , 1.046 1.286 | 1.393 | 1.647
10 .833| .958 1.207 = .959  .914 , .957  1.015 | 1.015 | 1.265 | 1.059 , 1.353 1.353 | 1.634 | 1.016 | 1.026 | 1.265 | 1.357 | 1.612
11 | .17 .933|1.180 | .932 , .891 | .933 | .992 | .989 | 1.239 | 1.016 | 1.310 | 1.310 | 1.590 | .975 | .984 | 1.223 | 1.325 | 1.577
12 l 1.000 .865‘ 1.101 | .865 ' 818 | .867 | .941 | .922 | 1.172 | .950 1 1.258 | 1.258 | 1.506 | .913 | .888 | 1.121 | 1.261 | 1.518
Leading edge
1 0.67 0928 1.182 0.951 0913 0952 1.037 1.052 1.302 ' 1.112 1.404 1.404 1.683 1.069 1.068 1.307 1.490 1.743
2 .333 .907 1.159  .908  .878  .903 1.013 1.008 1.259 1.075 1.368 1.368 1.647 1.03¢ 1.033 1.273 1.452 1.709
3 .500 .888,1.141  .904  .853  .890  .983  .973 . 1.223 1.027 1.319 1.319 1.599  .988  .988 1.228 1.382 1.638
4 677 .843|1.093 .844 805 | .844 | .936 , .910 | 1.169 | .962 , 1.255 = 1.265 | 1.534 | .924 | .925 | 1.164 | 1.306 | 1.560
5 .833| .778|1.019 | 779 | .743 | 778 | .859 | .840 | 1.090 | .868 | 1.161 | 1.161 | 1.442 | .835 | .822 | 1.062 | 1.196 | 1.450
6 ' 1.000 | .637| .887 | .630 | .562 | .629 | .706 | .665 | .915 | .683 | .983 | .983 | 1.260 | .659 | .647 | .886 | .977 | 1.259
*a, reference line.
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Figure 1.- Sketch showing positive direction of forces, moment, and angle used in the presentation of the data.
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Figure 2.- Parawing line attachments to the balance used for tethered method of testing.
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Figure 3.- Typical construction details shown for the parallel twin-keel model 5. Sewed construction,
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(a) Parallel keel configurations.

Figure 4.- Planform of models,
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Figure 4.- Concluded.
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Model 5
[, =75.00 in
{(190.50 cm)

00
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.050
.100
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.032
.021
.025
.082
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.029
.033
.103
.182
.082
.082

tapered fold

Model 17
| =T75.00 in.
{(190.50 cm)

0o

0.129
.050
.100
.082
.032
.020
.025
.086
.183
.029
.033
.092
182
.082
.082

Tie strings

i L/ A —e—H —
e | %] o [
[ $ 1 K ¥
D N o
Q Iy _LL
ke £ —
I M

//:;7
3

Tie stringattachments

T e T \\_/—-/_//

Dimensions in fraction of actual keel length, Ty )

Model 18
1 =75.00 in.
(190.50 cm)

00

0.129
.050
.100
.082
.032
.020
.025
.086
.183
.029
.033
.103
.182
.082
.082

Model 19
L=12.36 in.
(183.79 cm)

50

0.129
.050
.100
.082
.032
.020
.025
.086
.183
.029
.033
.103
.183
.082
.082

Model 20
1,=69.59 in.
(176.76 cm)

100

0.129
.050
.100
.082
.032
.020
.025
.086
.183
.029
.033
113
.194
.082
.082

(a) Dimensions of darts and ties.

Model 21
1,=66.62 in.
(169.21 cm)

150

0.129
.050
.100
.082
.032
.020
.025
.086
.183
.029
.033
103
182
.082
.082

Figure 5.- Details of contoured nose of twin-keel parawing.

Mode| 22
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Model 23 Model 24
1=69.51 in.|1=63.37 in.
(176.56 cm) | (160.92 cm)

15° 20°
0.162 0.129
.050 .050
100 100
.082 .082
.032 .032
.020 .021
.025 .025
181 .087
-—-- .185
.029 .033
.033 .033
179 .100
- 175
.082 .066
-—-- .066
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Y
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Model 5 with modified /ine
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(kee! line | moved to nose)

Y

1625in (413cm)

(W}
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,"\/— Line al nose

3
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\
1

Nose tie

\
A
1l
'

Mode! 2! with modified line
arrangement of the nose

1625in (4/3¢cm)
(Added nose /ine)

Model |7

(b) Chordwise section view through the keel at the nose during flight shaped conditions.

Figure 5.- Concluded.



(a) Model 5, basic parallel keel (0% keel cant angle), with standard rigging.

Figure 6.~ Twin-keel parawings.

L-70-1676
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(b) Model 5 with first keel line moved to nose.

Figure 6.- Continued.

L-70-1677




(c) Model 17, lower surface scoop added.

Figure 6.- Continued.

L-70-1678
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(d) Model 18, upper surface ram-air-inflated tubes added.

Figure 6.~ Continued.

L-70-1679



Model 19 , 5° Canted keels Model! 20 ,/0° Canted keels

(e} Canted keel configurations.

L-70-1681
Figure 6.- Continued.
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Model 21 ,

/15° Canted keels Model 24 , 20° Canted keels

{e) Concluded.
L-70-1680

Figure 6.- Continued.
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Model 23 ,15° Canted keels with widened center panel

(f) Modified center panel.

Figure 6.- Concluded.
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Figure 7.- Flat planform details of twin-keel parawing model 5.
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Shortening of aft keel control line, A 1///r

Figure 8.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 5
Keel-to-payload separation distance = 1.001.
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Figure 9.~ Variation of L/D with CR for same configuration as that used for figure 8.
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Figure 10.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 5.
Keel-to-payload separation distance ~ 1.251;.



[43

SEtERldssissty
H

Shortening of wing tip o
control lines,AY/],
o) o

o .0/29
O 0257

92 96 100 104 108 112 116 120 124 128 132 136 190
Cr

Figure 11,- Variation of L/D with CR for same configuration as that used for figure 10.



s/ N Moved /ine

Figure 12.- Flat planform details of twin-keel parawing model 5, showing modified line arrangement at the nose. First keel line moved to nose.
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Shortening of wing tip
control //nes,Al/(k
0 0
a .0/29
O 0257

16

o/ 02 03 04 .05 06 o7 0 01 02 03 04 05 06
Shortening of aft keel control line, A J/J/(

Figure 13.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 5 with modified line arrangement at the
Keel-to-payload separation distance ~ 1.004.
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Figure 14.- Variation of L/D with Cp for same configuration as that used for figure 13,
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{a) Planform.
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Figure 15.- Flat planform details of twin-keel parawing model 17, with ram-air-inflated scoop on lower surface of center panel.
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Figure 15.- Concluded.
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Figure 16.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 17 with lower surface
triangular scoop. Keel-to-payload separation distance = l.OOlk.
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Figure 17.- Variation of L/D with CR for same configuration as that used for figure 16.
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Figure 18.- Flat planform details of twin-keel parawing model 18, with ram-air-inflated tubes on upper surface of wing.
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Figure 19.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 18. Parallel keels with twin upper surface
ram-air-inflated tubes. Keel-to-payload separation distance = 1.00%,.
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Figure 20.- Variation of L/D with Cgr for same configuration as that used for figure 19.
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Figure 21.- Flat planform details of twin-keel parawing model 19.
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Figure 22.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-kee! model

19, 59 canted keels.
Keel-to-payload separation distance = 1.007.
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Figure 23.- Variation of L/D with CR for same configuration as that used for figure 22.
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Figure 24.- Flat planform details of twin-keel parawing model 20.
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Figure 25.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-kee! model 20, 10° canted keels,
Keel-to-payload separation distance ~ 1.007,.
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Figure 26.- Variation of L/D with Cr for same configuration as that used for figure 25.
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Figure 27.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 20, 100 canted keels.
Keel-to-payload separation distance = 1.25,.
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Figure 28,- Variation of L/D with CR for same configuration as that used for figure 27.
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Figure 29.- Flat planform details of twin-keel parawing mode! 21.
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Figure 30.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 21, 159 canted keels.
Keel-to-payload separation distance = 1.00,.
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Figure 31.- Variation of L/D with CR for same configuration as that used for figure 30,
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Figure 32.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 21, 15° canted keels.

Keel-to-payload separation distance = 1.251.
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Figure 33.- Variation of L/D with CR for same configuration as that used for figure 32.
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Figure 34.- Flat planform details of twin-keel parawing model 21 showing modified line arrangement at the nose. Added nose line,
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Figure 35.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keet model 21, 159 canted keels, with modified line
arrangement at nose. Keel-to-payload separation distance = 1.25(;.
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Figure 37.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel madel 21, 15° canted keels, with modified line
arrangement at nose. Keel-to-payload separation distance = 1.501y.
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Figure 38.- Variation of L/D with Cp for same configuration as that used for figure 37.
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Figure 39.- Flat planform details of twin-keel parawing model 22, 159 canted keels with narrowed center panel.
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Figure 40.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 22, 15° canted keels with narrowed center panel.

Keel-to-payload separation distance ~ 1.001,.



— Shortening of wing tip i
control lines, PAVZ P
o} 0

o .0/5/
& .0302
A
N

0454 E—
0605 e

Caih i ; B O O A o e e e oofel A;:::. R e : Hit
9z 96 00 04 108 (12 /6 120 [24 28

.

Figure 41.- Variation of L/D with Cg for same configuration as that used for figure 40.
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Figure 42.- Flat planform details of twin-keel parawing model 23, 15% canted keels with widened center panel.
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Figure 43.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 23, 150 canted keels with widened center panel,
Keel-to-payload separation distance = 1.00t,.
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Figure 44.- Variation of L/D with Cp for same configuration as that used for figure 43.
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Figure 45.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-keel model 23, 15° canted keels with widened center panel,
Keel-to-payload separation distance = 1.25L,.
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Figure 46.- Variation of L/D with Cg for same configuration as that used for figure 45.
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Figure 48.- Effect of aft keel control Iine shortening on the longitudinal aerodynamic characteristics of twin-kee! mode! 24, 20° canted keels,
Keel-to-payload separation distance =~ 1.251,.



e .,(;;"'mif!ia‘uv AU
000 I A RN P BT PO PR I Vbt

| Shortening of wing tip |i

control lines, A’/Z/,

O o

o  oobz

S 0304

A 0457

80 .84 .88 .92 .96 100 104 108 112 116

Cr

Figure 49.- Variation of L/D with Cg for same configuration as that used for figure 48.
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Figure 50.- Effect of aft keel control line shortening on the longitudinal aerodynamic characteristics of twin-kee! model 24, 20° canted keels.
Keel-to-payload separation distance ~ 1.501.




N SN I A

J— : W

Ty =

e q\ I

—
/[ H

— I \m\f, - o

control lines, Al/zk

2
-~
™
B
N
———— 2 4 - — — —_————
-9 9 Q m
s S T o =
] Q . P
-3 T D d T -
5 oo | pd ©
3 pk \\c ............ —°
I _ T _ . Q ] b»\,! e
N K oy
Y //tf% o
1/AV e
N

.84

32
28

36
29

20
16
.80

Figure 51.- Variation of L/D with Cg for same configuration as that used for figure 50.
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Figure 52.- Effect of addition of a ram-air-inflated scoop on lower surface and ram-air-inflated tubes on upper surface at the keels on the
variation of L/D with Cp for a model having paralle! keels. Keel-to-payload separation distance = 1.00g.
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Figure 53.- Effect of keel cant angle on the variation of L/D with Cp for models having the same center-panel width at the nose.
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Figure 54.- Effect of nose line attachment modification for model 21, Keel-to-payload separation distance = 1.251.
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Figure 55.- Effect of center-panel width on the variation of L/D with Cp for models having 15° canted keels. Keel-to-payload separation distance = 1.00t,.
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Figure 57.- Effect of keel-to-payload separation distance on the variation of 1/D with Cp for model 20.
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Figure 58.- Effect of keel-to-payload separation distance on the variation of L/D with Cg for model 21.
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Figure 59.- Effect of keel-to-payload separation distance on the variation of L/D with Cp for model 23.
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