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ABSTRACT

The nature of muitiple solutions o a. general Problem of
Bolza in the caleculus of variations is investigated. These
multiple stationary solutions are of several distinet types,
each of_whiéh is brigﬁly discussed.

Multipie stationary sclutions often arise when only first
order necessary conditions have been app}ied. A second order
_test to eliminate some multiplg solutions of tQis type ig developed. -
It is shown that.gecopd order tests can be broken down into path
tests and endpoint tests and that once the first order necessary
conditions of the calculus of variabions have been applied, tﬁe
second order path test and the endpoint tesgt céﬁ be applied
independently.

Only the second order endpoint test is investigated. Direct
application of this condition reguires the'aﬁalytiéal integration
of a_set of nonlinear differential equations subject to mixed
boundary conditions. Sincé this is often difficult or iﬁpossible,
- an algorithm is developed for mumerically implementing the second -
order eﬁdpbint condition. A geodetics problem is solved analytically
to illustrate the theory and demonstrates that the second order condition
is an effective computational tool, by eliminating certain classes of

non-optimal solutions from consideration.

vi



IWNTRODUCTION:

1.1 The Problem of Bolzs

Since much of what is to follow depends upon an understanding
of the Problem of Bolza as formulated in. control notation (Vincent
and Brusch, 1966, pp. 4-5), a brief statement of the problem in its
_ simplest form is apprbpriate.

Among the set of all continuous state functions,

yi(t) i=1,2, oo m5 b =t =t,

and continuous control varisble functions
uk(t) k=1; 2; ...,-m <n

satisfying differential équations and end-conditions of the form

yi=fi(ng ukg t) ) jzlg 23 s e n'

‘D”e gyiol- Yif:,:tos tf) =0 ’ .E‘z.l, _2, very» P §2r‘ + 2
find the set which will minimize a sum of the form:

+
T
! . .
T = ey Vips By b * jt L(y,(t) w (%), ©) at .
o

(1.1.1)

(1.1.2)

(1.1.3)

C(1.1.1)

(1.1.5)

Here it is assumed that the funciions fj, L, g, and ¢£ are of class 02.

In the above and throughout this presentation, a dot sbove a variable
will be used to represent the derivative of the variable with respect

to t, the independent variable. Likewise the subscripts o and f will

indicate the evaluation of the variable or expression at the initial



and final value of t, respectively. TFor the sake of brevity, the
range of subscripts i, j, k, anq £ will be as given above and will

not be repeated in what follows.
Foliowing the conventional method of Lagrange multipliers

(Bryson -and Ho, 1969), minimization of the augmented function

3 _K thhf ry.] at (1.1.6)
"g+”z”z+»rt[“ii+iyi‘ : 1.6) -
[o]

is considered. In the above eguation and throughout this report,
repeatéd subscripts Will be used to signify sunmation. 'Equation (1.1.6)
was obtained by adjoining eguations (1.1.3) and (1.1.L4) to relation -
(1.1.5) as follows:
(a) multiplying relations (1.1.3).by the variables Ki(t),
respectively, integrating from to to tf and by adding the
sun of the integrﬁls to expression (1.1.5),
() ﬁultiplying equations (1.1.4) by the parameters pﬂ'and
‘addiné the sum of the products to expression (1.1.5).
It is convenient o define the following functions:

. _ ' . )
G(yioJ Yif: tOD tf) =g + u'ﬂuﬁ (l‘l"?)

Hly. (%), Ay ()5 v (8), £] = ATy =D (1.1.8)

The funcﬁion.H is often referred to as the Hamiltonian. With these

definitions, equation {(1.1.6) may.be written as

t

T =G+ f T [-H + hi&i] at (1.1.9)

t
o]

By considering small variations in the path and endpoints about a

nominal path, it can be shown that if the functions W (t) and y.(t)
oL



are a solution to the Problem of Bolza, then they must satisfy th

following necessary conditions (Hestenes, 1966, pp. 346-351):

Condition I.- There éxist confinupus multipliers ki(t) and
Hamiltonian function as defined by equation (1.1.8) such that:

(1) the Euler-Lagrange equations,

li = =- P....I-_I._

+ in
BH_ =0
oy

are sabisfied at every point slong the path and,

(2) the transversality conditions

o

o't} g =0
ot + o
o

oG

are satisfied by the endpoints.

Condition II. The inequality

no

Hly,(t), 3;(6), wo(t), ¢] = Hly (8), A,(), u (t), ]

(1.1.10)

(1.1.11)

(1.1.12)

{1.1.13)

(1.1.14)

(1.1.15)

(1.1.16)

L



must be satisfied for 211 t =t =% £ and for all non-optimal
o

control functions W' (Weierstrass Condition).

Condition III. -  The k by k matrix

S=l, 2’ -o-,k.

du_ou Sl
t=13 2_1 c--gk

must be negative semi-definite for a minimum (Legendre-Clebsch

condition). -

Condition IV. A fourth necessary condition is discussed by
Bliss (1946, pp. 2%6-228) in classical dependent variable notation.
He préves that fhe‘second or&er variation of g éum'similar to i*
must be non-negative along a stationary arc, if that arc minimizes J*

HEstenés (1966, pp. 283-286) verifies this conclusion in modern
control notation for the Problem of Bolza with fixed endpoints. As
developed bj~Hestenes, the fourth necessary cbﬁditionvrepresents
a necessary condition on the path alone; variations in the endpoints.
are mot considered. Tf Condition ITT is satisfied, Condition IV is
usually referred to as the Jacobl Condition. A further geometric
interpretation of this condition is presen%ed in the following

section.

1.2 The WNature of Multiple Stationary Solutions

It is helpful in understanding the nature of multiple stationary

solutions to classify them by the circumstances pertinent to their

Qccurrence.
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Fixed Engdooint Problems - Multiple stationsry solubions are

often obtagined for problems with fixed endpoints, becauss; only the
first “E;hree necessary conditions have been spplied. Bliss (19k6,
p. 235) has shown in dependent variable noz;tion'that the fourth
n@::ess’ary C;Qndition qf Jacobl, taken together with the first three
necesgary conditions, suitably strengthened; forms a sufficient set
of conditions for the Problem of Bolza.

Although an&lg;'i‘siéally complex, the Jacobi condition has a
simple geozz;etric interpretation for problems with one state variable.
Tn this case the set of all solutions forms a one dimensional family
of extremal arcs, v = y(t, ¢), which all pass through the initial °

point as shown in Figure (1.1). With each arc is associated a
p-a,r‘[;icular value of ©. If ares y(t, vc) -an‘d y(t, e + ) j:n%ersec’c‘ in
the 1imit as ¢ goes to 0, the point of intersection is called a
cong}ugéte é}éint. The lécz;.s- of such in‘terset;%iozls is ::_alléé 't}:;;a

discriminant locus, also shown in Figure {1.1)

DISCRIMINANT

FAMILY OF EXTREMALS

Fig. 1.1 A Family of Exbtremals and the Discriminant Locus



In terms of this geometry, the Jacobil cgndition requires that
an optimal traject;ry contain no conjugate point. Alternatively,
the condition regquires thét an optimal solution may not touch ?he‘
discriminant locus. Figure (1.1) shows that there are two solutioms
joining-ﬁoints O-and A, bﬁe gf ﬁhich-toucﬁes the discriminaﬁt locus
and is therefore non-optimgl. If'the fourth necessary condition
of Jacobi is applied in such cases of multiple stationary soiutions,
usually all but one qf the trajectories will be shown to contain a
point qonjuéate to the initial point, thué rendering them non-optimal.

Examples of tﬁis occurreﬁce are many. The Brachigtochroﬁe
p;dblem with fixed endpoints graphically illustrates the idea.
Consider the problem of a bead sliding down a wire under the
. influence of gravity alone. .What_should the shape of the wire be-
in order‘to minimize %he time of transit between two points in a
vertical plane? Tt is well known that the solution curves are
cycloids. However, as shdwn in Figure (1.2), there are several

different cycloids which satisfy the necessary conditions of the

ﬁ,-DISCRIMINANT LOCUS

Fig, 1.2 Multiple Sitationary Solutions for the Brachistochrone Problem



calculus of variations. It can be seen that the x-axis forms the
Gdiscriminant locus and that the points where solutions 1 and 2 touch
the disérﬁminant locus_are conjugate points. Since soluﬁ10£s 1 and 2
violate the Jacobi condition, it is evident that solution 3 is the’
true optimum.

In this case +uv nas veen possiokle TO QLSTLRgULSA The True
op%imum from the candidates by applying a sufficiency condition

pertaining to the field of extremal paths.

Variable Endpoint Problems - Problems with va&iable endpoints
réquire that the endpoints of the trajectories, as well as the path,
be selected in an optimum fashion. qusider the geodesics problem-
of trying to find the minimunm ﬁisﬁénce from the origin to a éiven
parabola as shown in Figure (1.3). It will be shown in Chapter 2
_That two statioﬁdry solutions exist, viz., OA and OB. Once an

endpoint has been selected, the problem becomes one of fixed endpoints,

Fig. 1.3 Multiple Stationary Solutions to a Geodetics Problem



and the path sufficiency conditions previocusly discussed can then

be applied. In this case, with the endpoint, A or B, thought of

as beipg fixed, it can be shown that both solutions satisfy the

Jacobi sufficiency conditisﬁ (Bolza, 1961, pp. 84-86)." The

endpoints shown satisfy first order necessary conditions only, it

is apparent that a second order endpoint condition may be useful

in distinguishing the true optimal. A second order conditioh will

be derived in Chapter 2. While the second order condition cbbtained

is akin to the classical focsal point condition (Bolza, 1961, pp. 104-10),
the result is new in form and is directly applicable to the optimal

conbrol problem.

-Problems Requiring First and Second Order Conditions - In the

last two sections, the necessity of using fixed endpoint path
sufficiency conditions and second order endpoint conditions was
illustrated separaﬁel&l Tt is not unusual, hdwever, to encounter
problems requiring the application of both thg Jacpbi condition and
second order endpoint conditions to distinguish the true optimum
from the set of multiple stationary solutions. To illustrate this
situétion, reconsider the Brachistrochrone problem where the

final endpofht, énstead of bg;ng fixed, is required %o be on curve E
as shown in Figure (1.%). Both trajectories 0AB and OD satisfy
second order endpoint conditions; that is, both solutions would
represent a local minimwm with respect to smell variagbions of the
endpoint along endpoint manifold E. As discussed before, point A

is a conjugate point, thus violating the Jacobi condition. Trajectory OC
violates a second order endpoint condition; it is in faclt a local

maximum with respect to small variations of the endpoint along E.



Fig. 1.4. A Problem Requiring Second,Qrder‘Conditisns

Thus through the use of both the Jacobi condition and a second order

endpoint condition, OB is selected as-the optimal candidate.

Problems with Periodic Solutions - Consider a system of equations

(l 1. 3) vhich exhlbﬂt perlodﬁc os0111at10ns when no control effort
is applied. - It is not unusual for the optunal controls and adjoint
‘vafiables of such & system to also demsnstrate periodic motion Wiﬁh
‘the ssme perlod, espec iglly if the magnltude of the control is small.

‘ The crlterlsn by which the solution is termlnaﬁed is also often
. periodic for problems exhibifing periodic oscillations. The terminating
or cubtoff condition is obtained from the transversality conditions .
(1.1.12) - (1.1.15) by eliminating the b parsmeters, to form a
single relaéionsﬁip smoné the state and adjoint wvariables. The-
zeros of the cutoff function then represent the terminating condition.
As an example, consider the problem of getting the mass of a thrusting
Jharmonic oscillator to a specified height while minimizing the integral
of the thrust with respect to time. A mass is connected in a parallel

by a spring and dashpot to an inertial reference. The mass is capable
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CUTOFF FUNCTION

of generating a bounded thrust in the upward direction; For simplicity
it is assumed that the mass is constant. For small demping factors
and null tﬁrust, the staté variables, pésitién and veiociﬁy; the
sdjoint variables, and the cutoff function all exﬁiﬁit dampedi

periodic oscil;aticn§. As shown in Figure {1.5} the cutoff condition
is sabisfied during each period. For suffiéieﬁtly amall thrist
amyiitudes the_cuﬁofg-fun;@ion will §ev§ate onty slightly from that

generated for null thrust, and will be satisfied at several points.

POSSIBLE FINAL TIMES

TTME

_Fig. 1.5 Multiple Selutions Due to a Periodic Cuboff Function

. Bach time the cutoff condition is satisfied, a potential
opbimal endpoint and a corresponding stabionary sclution is cbtained.
Thus in periodic sysgbams with wesk bounded control, multiple

stétionary solutions may be encountered.



Problems with Singular Control -~ In cases where the Hsmiltonian

is linear in a bounded control variable, the control cannot be
determined from the Euler-Lagrange equation (1.1.,11). In this case

the Hamiltonian can be .written as

H=S(y,> Ao Blu + Qygs As ) (1.2.1)

for scalar conbtrol. S is referred to as the switching function.
The well-known Maximum Principle for problems with bounded control

developed by Pontryagin et al. (1962) requires that

u = uﬁax when 5 >0
(1.2.2)
u=1u . when S < O
- min

However, ?or the case when S = 0 over a non-vanishing tﬁme interval,
the Maximom Principle is indeterminant, and u may take on intermediste
values. This is the case of singular control. Leitmann (1966, pp. 57-59)
has pointed out that, "While it is possible in a particular problem.... .
to rule out the possibility of [singular control], this camot be done
in general."”

To demonstrate the existence of multiple stationary solutions in

the case of singular control; examine the problem of minimizing

1p° 2
J=3 fo X at (1.2.3)

subject to the constraints:

qemrr x50 =x,  xle)=0 (1.2.1)
i? = - Xé(O) = X5 Xé(w) =0
2] =2

11
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This problem was FTirst discussed by Johnson and Gibson (1963).

The Hamiltonian iz

H ='(l - A Ju + A x - %) /2

1

In this case S ll ~ A,. If 8 is identically zero for a non-

2

vanishing time interval, the possibiliﬁy of sineular control exists.

By taking a suitable nuﬁbér of time derivaﬁives, it can be shown
that the smngular control is given by u= -x - Xé’ and that the
singular arcs are two llnes xl(t) -0 and s (t) + 2x, (t) = 0.
Figure {1.6) shows two possible statiomary-solutions to the
p?oblem starting at point A, one of which has a singular subarc.

The first arc AB is the same for both solutions. In both solutions

u = -1 along arc BC and then follow arc €O to the origin w1th

u

I

+1. This is the so-called "pang-bang” solution. Alternauely,
&t point B one may elect singular control, u = xé, and proceed

to the origiﬁ directly along arc BO.

BANG-BANG SOLUTION

SINGULAR ARC x. = 0

L“//”ﬁ ) 1
. \\Qk\‘ i I
-2 -1 N ! 2 SINGULAR ARC

x. + 2%. =0

AY L

Fig. 1.6 Multiple Solutions Arising from Singular Control

(1.2.5)



Unfortunately, there is no guarantee that the solution with
singular combrol is minimizing or that it will always enter the
optimal solution, even if the possibility of singular solutions
does exist. In this case the solution with bang-bang control,
arc ABCO,.has -an index of performance almost 12 per cent larger
 than -for the true qptimai control which uses the singular céntrol

narq BO:

Recently, Kelly, Kopp and Moyer (1.967) and Robbins (1965)_ have

- developed a new necessary condition for "be.stin';g the 'op;cjmal':'."by of -

_ singular subares.

13
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A SECOND ORDER ENDPOINT CONDITION

In this section a second order condition is developed for
variational prgble@s Wiﬁh*va;;able gﬂﬁpoints. Among the multiple
stationary solutions that may exist,.the conditioh provides a test
fbr diétinguishing those stationary éoiutioﬁs vhich are loegl wmininiums
with respect to endpoint variations along the prescribed texminal
manifold, The second order endpoint condition is relabed %o
sufficiency conditions of the claésical caloulus of varistions in
section 2.4, In seétion 2.5 the”sgcondiorder conﬂitiog‘ié‘éllustrated
with an example p:pblém. Finéély, a numerical élgerithm is'ééveiopéd
for apﬁlying'the endpoint sufficiency.condition to proﬂlems with-no

analytic solution.

2.l Funetional Relgbionships ror‘the Problem of Bolza

Argiments used in Section 1 have implied that the conditions
for the Problem of Bolza fall into two classes: those pertaining fo
the ééth and those pertaining to the endpoints. - It has been
further argued that conditions pertaining to the endpoints can be
considered independently from those pertaining to path. Consider
the Problem of Bolza as expressed in Section 1.1, eguabions {1.1.1)
{1.,1.5). In this formulation, and for the remainder of this section,

the controls uk are assumed to he unbounded functions of time. In



addition, it is now assumed that the Jacobian is not equal to zero

ng M- M
2 P
bul bua’ f buk

2
- # 0 (2.1.1).

) (ul, u, > e s U

for all points_(ui, Uys wee uk) in the control space. The
function H has been previously defined in equation (1.X.8). If
equation (2.1.1) is wvalid,.the implicit function theorem (Buck,

1965, pp..283-286) assures the existence of the k functional .

relations

vy = Ly (8)5 4,(8)] (2.1.2)

‘from the k control variable Euler-Lagrange egusations (l.l:ll).'
Céﬁdition (E.i.l) spegificéily eliminatgs frop consideration those-
-systems in which any state variable derivative, v as defined in -
eguation (1.1.3), is a linear function of any of the control variables.
A solution to the Problem of Bolza is Sﬁécified by solutions
for the state variableg ¥ as well as the control variables W, as
functions of time. A selection of the initial time and the final
tiﬁe completes the éolution. TS obtain these solutions, the control
varizble Euler-Lagrange agquations are first'soivéd.for the controi
variables uk as functions of the stabe variables Vi and the adjoint
variables A,. The functions £, (1.1.3) and the I function (1.1.5) are
now'expliéitly dependent only on the state variables, the adjoint

variables, and time,

f, = fi[yj(t)s uk(yj(t)> lj(t)); t] (2.1.3)

15
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L =Ly (t)s wlyy(8)s 2,(8));5 ] (2.1.1)

Similarly the H function beéomes an explicit function of the

-statie variables, the adjoint wvariables, .the adjoint variables,

and bime, alone:
B = By, (8); 4,(6)5 w (v, (85 A,(8))3 4] (2.1.5)

Pinglly, it is eviﬁent“téaﬁ a similaxr functional"relationship exists

for the time &erivatives.of adjoint vafiables,

A = Rly (8), A (8), t] = - 22 (2.1.6)

Oy .

1
In summary, once the optimal control is selected, the state

variable differential eguations (1.1.3) and the adjoint variable

'*differential-equations (2.1.10) comprise a set of 2n first order

nonlinear differential equations in the 2n state and adjoint variables
and time. This set of differential equations can be integrated in

theory, yielding

= y,(ts c) r=1,2, ..., 2n {e.1.7)

o
I

it

Ay = aglts e ). (2.1.8)

i
where.the‘cr's are constants of integration. The p end conditions
(1.1.4) and the 2n + 2 equations representing the transversality
necessary éonditions (1.l.lé) - (1.1.15) comprise a set of (2n + p + 2)
non-linear algebraic equation; in the 2n constants c,. the p para-
meters ug, the initial time to, and the final time ﬁf.

The initizl values (yic, Kif’ tf) are specified, Hence, the

e, 's may be determined as a function of these initial and/or final



values by evaluating equations (2.1.7)-and (2.1.8) at either the
initial or final point. For example, a solution for the cr’s
would be specified by the set (V509 Ajor bo2 Bp)» the set
'(yif,'lif, tos to)'or the set (yio’ Yig? t > tf). While it is
difficult to attach any physical meaning to the initial or final
values of'the Lagrange multipliers, the initiai and Tinal values of
the state variables have an immediate physical significance. For
this reason, the staté variable endpoints have been selected to
functlonally represent The cr constants of integration for the

rest of this sectlon Thus equations {.1.7) and (2.1.8) will be

written as

<
1l

yj(t: Vio? Vipr Bos tp) (2.1.9)

<< <
and. t, <t <t

o
I

- 1
lj(t,.yios Tipr oo e (2.1.10)

By-substituting the functional relationships exhibited in
“equations (2.1.9) and (2.1.10) into relations (2.1.2) - (2.1.6), it
can be seen that the functions uk, L, f s H R and P can all be
ertten as expllclt functions of the set (t, Vig? Yipe t s T )
These functional relations, together with that for the function G

from egquation (1.1.7) are swmarized for reference below:

oy = 0 (85 ¥i00 Tip0 bo g (2.1.11)
L =L (t,'yio, Vips By t.) (2.1.12)
ﬁj = 2,08, ¥i00 Vi By Bp) (2.1.13)
7LJ' B Pj(t’ Vio? Yip? o2 tf) (2.1.1h4)

17
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(8] O
H =H [Yj(ts Yios yif’ to: tf): Kj(ts yio’ yif’ toa tf)’

w (s 705 Vipo B0 tp)5 t] (2.1.15)

G = G(uﬂ, Yio? Tip> To? tf) (2.1.16)

So that there will be no confusion as to the meaning ot the subscripts,

note that
v o= v. | (2.1.17)
J° o leit
- o
A, = A, (2.1.18)
J° I o=t
. = . 2.1.1
ip V5], ( 9)
pif
A = A ]- 2.1.20
e = Nl (2.1.20)
- .t
Using the functional relationships sumarized above form the
% .
augmented function J = J + uz ﬁﬂ where
HTs00 Typo Bgo ) = 8(yy00 ¥ips b5 Tp) (2.1.21)

tf - .
* _J; [—H-(t’ Yie? Yig? B2 tf)
o]
l -
+ j(t, Yioa Yif: toﬂ tf) Yj(t: Yio: Yif: tO’ tf)] dt

By requiring the trajectory to satisfy certain necessary conditions
regarding path, equations (1.1.10) and {1.1.11), the Problem of Bolza
has been reduced to the problem of minimizing J, a function of end-

points, subject to the &ﬂ algebraic constraints on the endpoints.



Before proceeding with the minimization of J, it is appropriate

to consider a graphical interpretation of the functional relationship

for the state variables expresséd in equation (2.1.9). Figure 2.1
shows a general state tunction yi(t, Vior Vip0 B2 tf) as a function
of time. From the figure it can be-seen that a change in the final
state Ayif whilé holding all of the other endpoints fixed causes

a change in v; for all values of t. Likewise a change in the

Tinal time Atf while holding all of the other endpoints Tixed causes

a change in the state vs for all values of t.

Formalizing this graphical interpretation in terms of differentials

yields results which will be of value in the following sections.

equation (2.1.9), the differential of the state variables may be

written as,

O gt + i at + Vi

dyi(t’ Y302 yjf’ %o tf) = " o T —=
- e Dt - ¥t t

o .

N7
byjo-ao by"jf jf

Evaluating this expression.at © = tf gives

(¢ t ,-t.) = dy.. = %3 at
Wiltes Vo0 VyprborBp) = Wi = 7 . o
+ —-byi at -—-byi at. + -—*byi + =
ot ot ot g Tio ¥ .
° lp £ £ Jo | - it

The sum represented by the last term in the above equation can be
separated into those products for which i % j and that for which

i=Jj. Transposing dyif to the right hand side, equation (2.1.23)

b

£

Using

(2.1.22)

(2.1.23)

19
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Yigt Oy

Yif

io,

s wirrs ovrrs e e S s SO v i e ALY WS e e Smee e

|
|
l
l
i
t

t t_ 4+ At

o
Hy
Hh
Fh

Fig. 2.1 A Representation of y; as a Funetion of Ve and tf,

20



becomes

Lot ot
R
w5 dy.. + '[
+ o if o
by
Hifd

In the above equation the repeated subscripts on.the laéf term
do not imély summation.,  Since t, to’ tf, Y302 and Vie have been

assumed 0 be independent, equation (2.1.24) implies that

i = _abyl
[419 bt
f T _f
.byi = 0
e
T
oy = 0
By,
Jo s
byi - 0o
Oy .
SRS
i#J
Oy ; I
oV .
it e
'i=j

By evaluating equation

HYi

db,. + dy.
f o}
. . byjo J

b 1] ey,
Wi |, i=]

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)

(2.1.28)

(2.1.29)

(2.1.22) at t = to and following arguments
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similar to the ones above, it can be shown that

Bt N R f
ot o O | o
byi_ Y
. Bt
]

- = 0
sz | o
A - 0
Gyjo o
£
Oy L
Oy .

i=j

These identities will be useful in the proof§ of necessary and

sufficient conditions in fthe next section.

2.2 Derivation of Transversality Conditions

In debtermining the functional relationships in the last section,
it was assumed that the control and adjoint variables were chosen so
as to satisfy the Euler-Lagrange Equations (1.1.10) and (1.1.11).
Bguations (1.1.10) and (1.1.11) are referred to as the first path
necessary conditions. In this section the endpoint necessary
conditions (transversality conditiong) are derived assuming that

the first necessary conditions for path are satisfied.

(2.1.30)

(2.1.31)

(2}1.32)

(2.1.33)

{2.1.3k)


http:0(2.1.30

The solution to the path necessary conditions determines one

or more trajectories (see section 1.3), any of Which may be. expressed
functlonallyasaset{y(t,y ,yf,t,t),l(t,y ,yf,t,t),
uk(t, Vio? Vip> T t )] as shown in section 2.1. Once the functions .
represgnﬁing one qf thesg trajecto;ies is substitute@ intoﬂt@e 1nFegra}
-iﬁ equation:(E.;.El), the integration cen be performed. It is there-
fore clear that once the trajectory is specifiled, 4 is a function of
only the pdfam@ters.yié, yif,'to aﬁd tfl
the problem of minimizing J to the well-known problem-éf'findiﬁg the

Specifying the path reduces

minimum of a function of several variables subject to algebraic
equations of constraint (Bryson and Ho, 1969).

It is shown in Appendix A that if the arguments of J in equation
(2.1.21) are to satisfy the comstraints and minimize J, then it is
necessary that the partlal derlvatlves of the auxiliary function,
shovmn below, with respect to Vio? Ysp2 t s> and t ;all be equal to
Zero.

The J function is Qefinéd by J* =dJd + ﬂ; wg Vhere T is givgp
by eguation (2.1.21). Using tﬁe definition of the function G from .

*
equation (1.2.8), J mey be functionally represented as

*
J ['.Yioa Yifa tob tf) p’z] = G[Yioz Yif: toﬂ tf} _l-l"e:'
bp o o byi
ft [-H (yi', -;\i, W t) + xi vy ] at (2.2.1)
o .

In the above equatioﬁ it is understood that‘yi, hi, and w_ are all.
functions of the set (%, Vig? Vig? to’ tf). In writing the functional
relationship shown above, it has been assumed that the controls uk have

been chosen in an optimal fashion in accordance with the control variable

23



Euler-Lagrange Eguation (1.1.11). This is indicated by the super-

*
script o on W and on H.. The partial .derivative of J with respec’

to ¥;, can now be written:

_ o
* t [0): 1 oA . 0y,
] %6 j £ I i 0y, I3 ] &

. . L A
byJo byap to—' byjo byjo ot i byjoht_

Here Leibnitz Rule (Hildebrand, 1948, p. 360) has been used for
differentiation of an integral with respect to a paremeter. Using

_ the identity

2
0 : OA: Oy,
.g'_.... r}\. byi _} - A yi + L yl
dt i - i
byjo ; byjobt ot byjo
and expanding —CB. , equation (2.2.2) may be written as
¥ . o
jo
t

. N . )
gg 2; “ [ {__bﬁ Dyy O oBA; O om
jo jo 5, oy byjo [or 9 byjo ou, byjo

T
+ o R bh Vs 1 at + [ oy ] :
byjo ot bt b byjo to

Terms under the integral sign may be combined to give

o . % \ ov; Y s
.y, i oY . i Oy .
Wio Fo b, o It b, Vo [t
[tf ¥ -y, \ O\, S T ) oy,
= [ - (
Y on; | Ob o, oy, - ot % 4,
dH
e ] at
buk byjo

ol

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)



Note Trom egquations (2.1.9) and (2.1.10) that once the optimal

endpoints have been selected,

byi e ffi and EEE - _Eii

b at Ot at

The integral term vanishes, since eguations (1.1.3), (1.1.10) and

(1.1.11) were used to generate the Ffunctional relations (2.1.9) and

(2.1.10).

Using equations (2.1.27), (2.1.33) and (2.1L.3L), it can be
concluded that the sums repreéénﬁed by the two remaining terms not

containing G in equation (2.2.5) reduce to a single term, - lj

With these considerabions, equation (2.2.5) reduces to

27 ¢ - ~
Do Wi %,

*
By taking the derivative of J with respect Ho yjf and using argments
similar to those just presented (in this casé equations (2.1.32),

{2.1.28) and (2.1.29) must be taken into account), it can be shown

that

SR

Two more necessary conditions remain to he derived.
.*.
from taking the partial derivsbives of J with respect to the remaining

two variables, to and tf. Performing the first of these operations

yields

These result

(2.2.6)

(2.2.7)
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- [ s N da,_
¥ f: - (Z;I %) bt: i (Sil S ?ei - (5 S%;—i at

* + .
a %, J‘f[_bﬂ I N L S
6, Oty ot Ob ot i ptot_ -
"o -0 © (2.2.8)
- - E e s 1.
ot to

-Here agaiﬁ Leibnitz Rule has been.used; this time the limits of -

inteération are functions of the dif‘ferentiating varisble. TUsing

‘the identity

Llad] e, ks ot 215.9)
at L 1ot i otdt ot . ot ‘
- o] o o]
. . OH
and expanding %o eduation (2.2.8) may be written as
o
*_
o w ftf [_bH byi“bH mi_b}z ou,
bto bto to ‘byi bto . bhi bto ‘buk bto
Dhs By,  OA; Oy “dy.Cr
PR S T S ] at + [Ai - (2.2.10)
ot ot ot 0% ot %
o o o
Oy,
- |-H+ ?Li 'S_E}-
t
o
Terms outside the integral may be evaluated at the endpoints
indicated and terms under the integral sign combined to give
S T T N O AN . O IR .1
= - A . . 5
bto bto tO 1 'bo ot ,to 1 tf bto tf i to ’60 to
(2.2.11)

o



The integral again vanishes identically for optimal paths. Using
equations (2.1.26) and (2.1.30), the three terms outside the integral
representing summations can also be eguated to zero. With these

observations, equation (2.2.11) reduces to .

[s3) M- .

—_— = U = 2.12

Ot . g 9. (2 )
o} [s] O

T *
By taking the derivative of J with respect to tf, following a
line of reasoning similar to that just éiven, and.using equationé

(2.1.31) and (2.1.25), it can be shown that

*
%%— = -%%— - H - 0 (2.2.13)
£ £ e

These results are summarized in the following sitatement:

Transvérsality Necessary Condition for Endpoints - If a trajectory

satisfies‘the Buler-Lagrange and state variable differential equations,
equations (}.1.10), (1.1.21), and (1.1.3), and if the set E = [yio, Yips
tos s uz] satisfies endpoint equations of constraint (1.1.4) and
provides a local minimum of J with respect to small allowable variations .
in the endpoints, then the set E must satisfly equations (2.2.6),
(2.2.7), (2.2.12) and (2.2.13).

These latter equations are referred to as the endpoint necessary

conditions or, classically, as the transversality necessary conditions.

2.3 Derivation of Second Order Endpoint Conditions

In the last section the function J was shown to be a function of

i i : 1
the endpoint variables Vio? Vip2 to’ and tf when evagluated along an
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optimal path. The function J is constrained, however, through the
p equations of constraint $£ of equabion (1.1.4). Second order
conditions for determining the.minimumvof a fﬁnetioﬁ Whoéé éréumepts
must satisfy algebraic equations of constraint has recently_been
discussed by Vincent and Cliff (1970, pp. 171-173). Their methods
will be used here. For reference, a detgiléd discﬁssion of thé-
minﬂmization of a fugction of several variables is included in
Appendix A,

Before presenting a statement of the second order condition., a
b;ief discussion and definition of notation are in order. Since the
algebraic eguations of constraint for the Problem of Bolza define
relationships among the endpoint variables, the endpoint variables are
not all independent. °Since there are p equations of constraint and
(2n + 2) endpoint Variables, there are only (2n - p + 2) independent
endpoint variables. The p dependent‘variabiés are determined by .
the p-equations of constraint. Any p of the variables can be con-
sidered.%o be- the dependent variables. The éhgice is.one of convénience
Let the p depéndent variables be denoted by the column vector w and
the remaining (2n - p + 2) independent variables be denoted by the
column vector v . Let‘the vector ¥ represent a vector whose elements

are the wg constraint functions. Equation (2.3.1) summarizes these

relations.
¥, (s ¥) Wy e
y - .
UE(E, E) w, . A
1 = : W o= v o= (2.3.1)
‘ ‘33(}_{, V) wp vq

g=2n-p +2



The identification of the elements of v and the elements of w
with the endpoints Vio® Vipo :to’ and t £ is arbitrary except that
the set of 1}!£ equa‘&ions must contain every element of w and, in
addition, evez:y \!r’g equabion must contain at least one element of
w. Tt is convenient to define an additional c_olumn vector r, whose
first e]:emer‘lt_s,‘ are the dependent variables and last elements the

independent variables:

ki1
W
r = P (2.3.2)
Vi
v.
q
. bJ* o .
With these vectors define ]:-6-—-0— _l as a (2n + 2) by (on + 2) matrix
ror
2T '
with elements a,. = ——— Let the matrix 8 be defined by
1 dr. dr,
i3
- -1
s = - | 2 ] 2 ] (2.3.3)
o oy
]» ob 4 L ol 5
where | E‘_;_ _! is a p by p matrix with elements a‘ij = E;; and
- 0¥ y . ol
— i b tri ith el t L. = T, t i
[by_ _l S a P by q matrix wi eemensala bvj- It is

shown in Appendix A that the & mabtrix is the linear transformation

vhich transforms differential changes in the independent variables



into differential changes in the dependent variables. The % matrix
has p rows and g columns. Finally, define the (2n + 2) by q parti-

tioned matrix Q as-

o - [-%-‘] (2.3.14)

where T represents a2 g by q identity mabrix.
With these definitions the second order endpoint condition may

now be stated:

Second Order Endpoint Condition. If E represents a set of endpoints

and multipliers [yio’ Yipo to’ tf, uz] which gatigfy the transversality
necessary condition for endpoints, and if the set E represents a local
interior minimum of the function J with respect to =small zllowable

varigtions in the endpoints then the quadratic form

*
dETQT[w 1 Q  dv (2.3.5)7
ordr -

in the differentials dv is positive semi-definite when evaluated at

the stationary point E.

To implement this test, it is necessary to evaluate the elements

of the matrix ¢ and the elements of the matrix [ Zj:r 1 . Evaluation
of elements of @ represents no problem since the faﬁztional form of
the constraihts is specified in the prohlem statement. However, the
anzlytic evaluation of the second pa%tial derivatives of J* with

respect to the endpoints is not so simplé‘

*
The second paritial derivatives of J can be obtalned by taking the

T Conversely if the transversality conditions hold and if (2.3.5) is

positive definite then the set E is a local interior minimum (sufficiency).



partial derivatives of the transversaliby necessary conditions with

respect to. the endpoints ri;

LD s 20
5 & e <?~;-_tj (e.3.1)
iri ( giz) ariiiio o (H_to> (2.3.8)
_g?;(%z) - brithf - £5. (H}ﬁf) " (2.3.9)

where in the above equations i =1, 2, ..., 20 + 2. The functional
form of G as a function of'the endpoints is specified by the statement
of the probiam. .However; the functions Ké and H are pot knovn functions
of the endpoints until the state variable and @ulgr-Lagrange differen~
‘tial equations have been integrated analytically.
Since analytzcal 1ntegrat10n is often difficult or 1my0331b1e,
it would be desirable to evaluale the partlal derivatives of h and H
with respect to the endpoints in terms of functional forms specified
in the statement of the problem. A complete set of relationships of
this type were not found. Unless future investigation egbablishes
such relationships. analytie application of the second order condition
requires an analytic solution of the state variable and Buler-Lagrange
differential equations.
Some interesting relations of this type are easily obtained however.

Bach of the elements of the mabrix [‘EE%; ] is composed of a sum of
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a- second term.

two matrices,

The matrix can therefore.be expressed as the sum of

T

ooy

]

I

ke, ] + A

oror

(2.3.10)

where the matrix A is determined from egquations (2.3.6) - (2.3.9)

" ‘*‘ - N . . - P £
Since J and G are of class C2 by hypothesis, both §J and G must

be symmetric about their major diagonals. The obvious coneclusion

is that matrix A must also by symmetric.

By equating symmetric elements

of A, the following identities can be established:

In addition, the following relations can

oy

io

oA
~io

ot
.o

oA

btf

io

Do
osp

Ohsp

Olp

05

OH
e}

the functiénal relaticnships exhibited in sectiom 2.1.

OH o)z
...b_.g = _____-]-
te ot
OHp Ohip
osp o,

b)\. if
btf

DA s
Erif (2.3.11)
Jif
ol -(2.3.12)
b
OA.
S (2.3.13)
ol
o]
bHO ( )
g 2.3.1
ot
be established by considering
(2.3.15)
(2.3.16)


http:therefore.be

Similar equetions exist for the initial point.

Unfortunately, a sufficient number of t@ese relationships have
not been found to determine the eléments of A in terms of known
funbﬁiong in the probleﬁ statement. The debtermination of further
relatianships and ths ultimate determingtion of the elements of A
'Without resort to analytical integration of the state variable and
Euler-Lagrange equat;pns poses an interesting problem for future

investigations.

2.4 Relation to Classical Theory

Bolza (1961, pp. 102-103) gives an excellent summar& of the
various classical approaches to the development of necessary and
sufficient. conditions for wvariable endpoint.problems. .- Because of
the pertinence of his remarks to this presentation, his historical
synopsis is quoted in detail:-

Three essentially different metheds have ﬁeenﬁproPosed

for the discussion of problems with variable endpoints:

1. The method of the Calculus of Variations proper:f

It consists in compubting 6J and 62J either by means of
Taylor's formula or by the method of differentiation with
respect 0 , ...and discussing the conditions 8J=0 82J20 ...

2. The metind of Differential Calculus: This method
is explained in genersl way in Dienger's Grundriss des
Variationsrechnung (1867). It decomposes the problem into
two problems by first considering variations which leave
the endpoints fixed, and then variations which vary the end-
points, the neighboring curves considered being themselves
extremals, . The second part.of the problem reduces to a .
problem of the theory of ordinary maxima and minima. This
method has been used by A. Mayer in an earlier paper on
the second varialions in tThe case of varisble endpoints
for the general type of integrals mentioned above (Leipziger
Berichte (188l), page 99).

T . The first and second order variation of the integral are writien as
8Jd and 52J, respectively. Variations in the endpoints and in the

path are considered simullbaneously in this method. 33
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It is superior to the first method not only on account of
its greater simplicity and its more elementary character,-
but because by utilizing the well-known sufficient condi-
tions for ordinary maxima and minima it leads, in a certain
senge, to sufficient conditions it combined with Weier-
_strauss's sufficient conditions for the case of fixed end-
points.... ’

3. Kneser's method: This method, which has been
developed by Kneser in his Lehrbuch?, is based upon an
extengion of certain well-known theorems on geodesics. .
It leads in the simplest way to- sufficient conditioms,
but must be supplemented by one of the two preceding
methods. for an exhaustive treatment of the necessary
conditions...

While Bolza (1961, pp. 10L4-109) used method 2 for investigating
the simplest classical problem with variable endpoints, and léier
Bliss (1932, pp. 261-266) used tﬁe'same method for the classical
problem of Bolza, more recent work, e.g. [Householder (1937,
pp. 485-5026), Bliss (pp. 147-184), and Hestenes (1966, pp. 296-351)]
have utilized the first method quoted from Bolza.

Suffiéieﬁcy‘conaitions for the prﬁblem'of ﬁolza can be obtaiﬁed
by employing either method. However, the typg of normality assumptions
used differ from one method to the other, and the first approach

apprently gained favor because it requires less stringent normal ity

conditions. [As opposed 4o the second approach without modification,

see for example, Bliss and Hestenes (1933, pp. 305-326) for a modi-
fication of method 2].

In this presentation, the second method was employed because
of its simplicity. We were not seeking a sufficiency condition for
the problem of Bolza in control notation per se., Instead a less

ambitious project was investigated. We sought coanditions to be

T Lehrbuch der Variationsrechnung Braunschwelg {1900).




satigfied for a given extremal to be a local minimum with respect to

endpoint variations along a prescribed endpoint manifold.

2.5 Geodebic Example

As an example of the application of the second order condition for
endpoints, consider-the problem of determining the minimum distance
from the origin to any point on a parabola of the Form

¥y = X2+b

Tn control notation the problem may be formulated as follows:

Mininize

subject to the state wvariable differential constraints,.

= = cos

ds - g:
¥ - s

as = S11 g

and endpoint constraints,

Yo = 0,
XO = O,
SO = O;

2
Vp - %p - b o.

The angle g is the angle between the positive x axis and a tangent

(2.5.1)

(2.5.2)

(2.5.3)

(2.5.k)

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)
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to the curve. Here x and y are the state variables, g is the control
variable, and s is the independent variable analogous to t in the

formulation of earlier sections.

Necessary Path Conditions -~ The H and G functions are

H

lx cos g + ly gin g - 1

[}
i

2
by (FpXp -b) + BpX, + HoX + WS,

The adjoint-variable Euler-Lagrange equabions are

A =0
¥

A, = O
X .

and the control-variable Euler-lLagrange equation is
- hx sin g + hy cos g = 0

Equations (2.5.11) and (2.5.12) imply that A, end xy are constants.

‘Solving equation (2.5.13) for the control

A
tan g = L - constant
- lx .
which implies N
sin g = —
2

N/ Ay  F ly

Ay

cos g =

(2.5.9)

(2.5.10)

(2.5.11)

(2.5.12)

(2.5.13)

(2.5.1k)

(2.5.15)

(2.5.16)



The positive sign on the radical is a consequence of the Legendre-

Clebsh necessary condition (1.2.17).

Functional Relations - Integrating the state variable equations

(2.5.3) and (2.5.4) with the optimal constant control g between the
general initial point (Xb’ V> Sb) and general. final point (xf, Ve sf)

results in

Xo - X = (sf - sd) cos g
Vo=, = (sp-5) sing

Solving for the control

o ¢ = £ %0
& - Xp = %

Squaring both sides of equations (2.5.17) and (2.5.18) and adding

yields the identity

(s, - 502 = (x,-x)% + (v, -v)°

Solving equations (2.5.17) and (2.5.18) for the controls gives

cos g = £ 2
S~ 8
and
Yo = ¥y
sing =
Sp = 5%

Since the control is constant, the control is not a function of the
independent variable in this cgse. For other problems the control may
be a function of the independent variable as well as the endpoints.

Integrating the state variable eguations again between the general

- (2.5.17)

(2.5.18)

(2.5.19)

(2.5.20)

{2.5.21)

(2.5.22)
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initial point (xo, Yy so) and general intermediate point (x, ¥, s)
snd substituting the optimal control from eguations (2.5.21) and

(2.5.22), and rearranging yields

X, - X

X = XO +‘-;£—:-'-E":'O- '(S - SO) (2-5.23)
o .
Yo - ¥
y o=y, + —= (s-5) (2.5.2L)
Sp - 8, o .

It is seen from the above eguations that the state vari&ble§ are clearly
functions of coordinates of the initial and final state variables and
of the initial and finsl values of the dependent variable.

The first integral of the Euler-Lagrange equations is
A COs g Tt h_y sing -1 = O (2.5.25)

Solving this équation with equation (2.5.13) for Ay and'Xy and
observing equations (2.5.21) and (2.5.22) gives

X - X X, - X
N SR LA (2.5.26)

P9 s - 3
2 2
J e )2+ (ypey,)

f o

yf"'y lV'f"YO

Ay, S TTs T , (2.5.27)
N N s

Two forms are given above for the Lagrange multipliers as functions of

*
endpoints; either is correct. If the second set is used, the J Tunction
will be independent of So and S In either case it is clear that the

Lagrenge multipliers can be written as explieit functions of the coordinates



of the initial and final values of the dependent variables. Equations
(2.5.19), (2.5.23), (2.5.2&)3 (2.5.26), and (2.5.27) bear out the
functionél_aépendencies hypothesized for control, state, and-adjoint
variables in section 2.1. Note that in deriving these equations,

only path necessary conditions have been used. The transversalitly

necessary conditions for endpoints have not been used.

Necessary Endpoint Conditions - The transversality conditions,

(2.2.6), (2.2.7), (2.1.12), and (2.2.13) yield the following equations

bJ*
—— = . - A = 0
QYO 2 yO

¥*
S _uw _2x =0
O 3 X0

o)

*
qpi_:u’-}--l-HO = 0
bso

*
—b-i—zu'-l-l = 0

*

oF | _ -

e Eule + Kxf = 0
f

o

—— T —)\ i _

. ka cos ga - sin g, + 1 0
f

Since the initial point is fixed, the initial point transversality
equations give no useful information.
To find the optimal endpoints, eliminate ul between equations

(2.5.31) and (2.5.32), yielding

(2.5.28)

(2.5.29)

(2.5.30)

(2.5.3.)

(2.5.32)

(2.5.33)
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]\Xf + EAnyf = 0

Substituting A_, and hyf from equations (2.5.26) and (2.5.27) into.

equation (2.5.3k) yields

Xp - X Bﬁyf - yQ) X,

= 0

\2 2 - ,J 2 2
,J (xpmx )" + (yp¥,) (xp-%,)° + (34v,)
Finally, multiplying through by the radical and imposing endpoint
constraints (2.5.5) and (2.5.6) gives
xf(l + 2yf) = 0

The necessary conditions are satisfied if either term in the above
equation is equal to zero. Solving equation (2.5.36) and equation

(2.5.8) simultaneously gives the two solutions

1 1
e+ [ .= _ = .= :
Xp N/ 5 b Ve 5 ( solution A)
and
xp = 0 g = ( solubion B)

These endpoints and the corresponding multiple solutions for

b <- % are shown in Figure 1.3 on page 11. From the symmetry of

the parabola, it is expected that either the plus or the minus sign

in equation (2.5.37) will determine a solubion giving the same value

of distance. TFor this reason a distinction has not been made between

the two. The necessary conditions used so far have provided no

(2.5.3l)

(2.5.35)

(2.5.36)

(2.5.37)

means for determining under what circumstances solution A (or solution B)

is the optimma. In this case of multiple stationary solutions, the

endpoint second order condition will provide a means for determining



the true optimum.
Before examining the second order conditions, the paramenter ul
will be evaluated in terms of the general endpoints for fubure

reference. From equations (2.5.27) and (2.5.31) it is observed that

Yp -~ Yo

fj (xf-xb)z + (yf-yb)z

Second Order Endpoint Condition - To evaluate the endpoint

sufficiency conditions, it is instructive to first determine the

s and q matrices of equations (2.3.3) and (2.3.h). The constraints
are

1IIl: Vo T 0

$2: ¥ 7 ©

ﬁ3: S, = 0

¢h Ve = % - b = 0

Since there are four equations and six endpoints, there are two
. a ] ) .

degrees of freedom. For conveniency let x. and s, be the independent

£ T

varigbles and Vo2 Xo2 52 and Ve be the dependent variables. Then in

the notation of section 2.3

Yo
X y
v o] 0
Xf © s X
X o [»)
l?'- = g 3 E = O » _I;‘. = 3 l,l]_ - S
T 5 Ve o
o © X 2
I Sf Ve~ %p D
i

(2.5.38)

(2.5.39)
(2.5.40)
(2.5.41)

(2.5.42)

(2.5.43)

hl
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Evaluating the matrix of partial derivatives of U with respect %o

the independent wariables gives

[

g R4
| S
i
o O O O©

Bvalvating the matrix -of partial derivatives of ¥ with respect to

the dependent variables gives just the identity matrix

of
ow

-OOOI—'
OO MO
ol CHoNe
O OO

The inverse of this matrix is obviously the identity matrix. From

equations (2.5.44) and (2.54.45) the & matrix can be computed

N OOOo

-1 O
NONE
W AN %,

OCOoO0

The Q matrix is formed by adjoining the & an identity matrix with the
dimensions equal to the number of independent variables. 1In this case

there are two independent variables. The Q matrix is

O PDOCO

O OOO0OO0O

*
With the [ bb‘; not yet evaluated, the endpoint sufficiency condition
r .

(2.5.4h)

(2.5.45)

(2.5.46)

(2.5.47)



reduces to the condition that

o % 2 %
hxf2 0 Iy o+ ox, SI__ Jb +
Oye _byf Sg
L beJ* ng*
Ko + —_—
dx_Og
0y £0%.0 £of
b?J*
2
bxf dxf
[dxf dsf] .
S r
2xf g +
s 2
S T
2
D J* bsfe (2.5.48)
bquxf

must be positive definite.

If J* can be written so that is is not a fumetion of 80 ‘the
sufficiency condition will be reduced to a simple inequality involving
dx, only. From the transversality equations (2.5.31) - (2.5.33) and ‘
‘the functional relations for Ay and ly, equations (2.5.26) and (2.5.27);
it is seen that this can be done. .

Therefore, the sufficiency condition reduces to the condition that

2 % 2

2 %
r,..2 oJ T > 7 2 .
L bx £ mﬂébyf + hx 2 byfbxf + bxf2 ] dx.” > 0 (2.5.49)

This result iz idembical to the resuli that would have been-
obtained if the fixed endpoint coordinates, Vo2 Xo» and So had been
excluded from the G function. This situation is similar to the trans-

versality necessary conditions in that the initisl points yield no

k3
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information. From this example and previous experience with endpoint
conditions, the following conclusion is drawn: No useful information

concerning. either necessary or sufficient conditions results from

including in G constraints which merely fix a given endpoint coordinate.

Substituting the functional forms for Kxf and A__, not involving

v
sp fran equations (2.5.26) and (2.5.27). into the first partial

*
derivatives of J with respect to Ve and Xo in equations (2.5.81) and

(2.5.32) gives

)

a7 ' e = Y,
= W
J (o2 ) + (vm7)

* Xa. - X
LS A £~ %o .
g SR I
' £ %o T 96

Forming the required partial derivatives results in

- 2 2
5 _ (xp=x,)" + (yp7,)" - xplzpmx)
w2 o et

Xf D

2 x - -

0T _ (p-x) (v-v,)
R - D

2% (xex )P 4 (y,7)7 - volvemy)
DI V% Yo Yelle ¥y
—5 =

e D

G?J* _ (yf_yo) (Xf*xb)
Ok O © D '

where
D= [l )2 + (v, )02
fo Ve Yo .

(2.5.51)

(2.5.52)

(2.5.53)

(2.5.0%)

(9.5.55)

(2.5.56)

(2.5.57)



Comparing equations (2.5.54) and (2.5.56) verifies the symmetry of the

[ b b J matrix.
1O

Evalvating these derivatives using initial point counstrainit

eguations (2.5.5) and (2.5.6) and u, from equation (2.5.38) and

1

substituting them into the endpoint sufficiency condition, equation

(2.5.50) gives

b k X :
£ - { by
3/ T r 3/2]
(Xf +y~) (xf +yf)
e
+ o2 (2.5.58)
2 e
Vxe ¥
- 2
i
+ > 0
3/2
(xf +yf)
for solution B (Xf = 0,5, = b) this condition reduces to
L >
$+2 >0 (2.5.59)

From the geometry in Figure 1.3, it can be seen that b is negative.

The condition therefore requires that
1
0 >bv > -3 (2.5.60)

Then solution B as shown in Figure 1.3 is optimum.

. P o1
For solution A (xf = *J 1 > Ve 5 )

the end sufficiency condition (2.5.58) becomes

45
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Combining terms - yields

hbe + 3 +

o

(- - b

In order for the denominator to be real
'b<—1-l_-
Under thisg condition inequality (2.5.62) is satisfied only if

1
< _ =
b 2

Therefore solution A shown in Figure 1.3 is optimum for b less than

The optimal solubtion is summarized below.

E'
x. =0 - b 051 > =
=V Yy T 2
-+ 1 : " < o2
£ ~5-b > Ve3P 2

This simple example has been analyzed in great detail to emphasize
the concepts developed in earlier sections and te reinforce and illus-

trate the notation.

2.6 A Numerical Algorithm

~In order to apply the second order endpoint condition, the matrix of

*
second partial derivatives of J with respect to its arguments must be

(2.5.61)

(2.5.62)

(2.5.63)

(2.5.64)

(2.5.65)

(2.5.66)



determined. From eguations (2.3.6) - (2.3.9) it is seen that each of
these second partial derivatives is composed of éwo terms. The first
termg, in 8ll cases, is a second partigl derivative of the function G.
This derivative can be computed amalytically from information given
in the statement of the problem. The second term of each second

%
partial derivative of J can be written in one of the following

forms:
"
[t=tp
Or.
10
Y
e
Q
b >
Tif
dﬁ' _
b=ty
or: e
or
oM
t=t
0
3
or.
10

where M represents any of the quantities H, Kl, ke, s Kn and r

represents any of the state variables y; or the independent variadle t.

These derivatives cannot be evaluated analytically without
obtaining an analytic solution to the set of state variable and

Ruler-Lagrange differential equations. For most problems of practical

(2.6.1)

(2.6.2)

(2.6.3)

(2.6.14)
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interest in the calculus of variations, the set of nonlinear state
variable and Euler-Lagrange differential equations cannot be inte-
grated analytically. Therefore, the implementation of the endpoint
sufficiency- condition in most cases reguires the mmerical computation
of partial derivatives of the forms expressed in equations (2.6.1) -
(2.6.4).

Fortunately, this is not conceptually difficult for most problems
in engineerﬁng whigh have separated end constraints. End consgtraints
are sepaxgted if none of the endpoint constraints involves both
initial values and final values; the constraints always related initial
values to other initial values, or final values to other final values.

The function M evaluated at t = to will be indicated by a subscripé o:
MO = Mb(y-ioﬂ'yif, toﬁ tf) (2'6'5) -

The function M evaluated at t = tf will be indicated by a subscript I:

Mo o= M(y;0 ¥ipo oo be)

Before the second order condition test is applied, the problem is

first solved using the necessary conditions yielding nominal endpoints

* * * *

* *
- » v ?\. .
Vig? Y59 2 to’ and tf and nominal Lagrange multipliers o and lif

* ) * *®
For brevi?y, let z, represent a vector with elements (ylo’ Vo> =+

* * *

.x.
represent a vector with elements (ylf’ Yogs «o+> Y s

r
O ana r ni

no £

% *
tf), and M be a function evaluated with the nominal endpoints.
Numerically the derivative (2.6.1) can be approximated as

0 1 * * * A *) M*
£ MelTior Tpor 0 Tio T %0 rb Ael T Ty (2.6.7)

io A




where A is a small change in the nominal initial varisble rio. If

the state variable and Euler-Lagrange equations are then numerically
integrated forward with the nominal Lagrange multipliers, the final
nominal endpoint will not be reached. The n initial Lagrange multi-
pliers must be adjusted in order to obtain the final nominagl endpoint
again. Since the n initial Lagrange multipliers give only n degrees

of freedom, the nominal endpoint can be reached only if M is a function
of n or less then n indegendent final values. This will be true if
there is at least one equation of constraint involving the final velues.
With thesé new multipliers, the differential equations are integrated
forward to the final point 5:. M_ is then evaluated from the resulting

bl

*
Tinal Tagrange multipliers and Lo With Mf evaluated, the desired

partial derivative can be evaluated using equation (2.6.7).

The derivative (2.6.2) can be approximatéd numerically’ as

- M ( * % * R A ) M#
o o\Eo> Tip2 Tppr cve3 Typ T By ev) 7 M
S = (2.6.8)
“ir A
In the above eguation, MO is evaluated by making a small change in
* ) .
Tsp while leaving all the other values unchanged. A set of final
Lagrange multipliers is then determined so that a backward numerical
'X'
integration in time will yield the nominal initial values ot The
quantity Mb is evaluated using the resulting initial Lagrange multi-
. .
pliers and L With Mb computed in this manner, the desired partial
derivative can be evaluated using equation (2.6.8).
The derivative (2.7.3) can be approximated numerically as
oM M_( * * ST ) M
£ _ rEod Tagd Topr vvo Tip ’ T (2.6.9)
o5 e A
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Here, Mf is evaluated by making a small change in the nominal final
*
point coordinate rif’ while leaving all of the other final coordinates
. . % .
and the initial point T unchanged. A set of initial Lagrarge

multipliers is then determined so that a forward integration from the

% *
nominal initial point will yield the varied Ffinal point (rlf’ Tops vves
* )
rif + Ay, ...). The forward integration is then performed to the

varied final point, and Mf is evaluated using the resulting final
Lagrange multipliers and the ccordinates of the varied final point.

The finel derivative (2.6.4) can be approximated numerically as

* * * + A *) M*
a3 LECIE . | I‘. 3 ---_; 3: -
= 20 10 i [e] (2.6.10)

jo A

Here, Mb is evaluated by maXing a small change in the nominal initial

. -

point Tio? while leaving all of the other initial coordinates and the
*

final point Lo unchanged. A set of final Lagrange multipliers is then

determined so that a backward integration in time from the nominal

R 5 * *
final point will yield the varied initial point (rlo, Thg? rres Tig
+ A, ...). The backward integration is then performed to the varied

initial point, and Mo is evaluated usiné the resulﬁing initial Légrange
multipliers and the coordinates of the varied initial point.

Using the above technigques, the matrix of second partial derivatives
of J* with respect to its arguments can be evaluated. Because of the
identities (2.3.11) - (2.3.1k4), thére is some choice as to which of
the gbove derivatives is used to evaluste the sufficiency condition.

It is a simple matter to numerically evaluate the matrix 0 from the

nominal initisl and fingl points and to test the matrix QT

for positive-definiteness.



CONCLUSIONS

It has been shown that once the firsf necessary pafh conditions
have been applied, a calculus of variations problem with variable
endpoints is reduced to a problem of the minimization of a function
of several variables.

Analytical application of the second order endpoint condition
requires the analytical integration of the set of state variable and
Euler-Lagrange differential equations.' Since in most cases this is
difficult'or impossible, the algorithm developed for the numerical
implementation of the second order endpoint test should be an
effective computational tool in complex applications. For example,
through the use of the second order endpoint test, a complete élass
of nonoptimal solutions can be discarded immediately upon encounter.
Without the aid of the second order endpoint test an investigator
would have no indication that solutions he is generating are non-
opbimal whether he encounters multiple solutions or not.

It could be argued, when multiple stationary solutions are obtained,
that a comparison of solutions would quickly yield which one was
optimal. However such a compagison technique fails if it is not known
apriori exactly how many multiple solutions exist. One has no criteria
in generszl for determining in advance Jjust how many muitiple stationary
solutions a problem may have, so that a direct compdrison technique is

unreliable unless every multiple solution is somehow found.
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APPENDIX A

. MINIMIZATION OF A FUNCTION OF SEVERAL VARTABLES

In the proof that follows, free use will be made of the notation
and conventions established at the beginming of section 2.3. Following
the methods of Vincent and CLiff (1970), consider the problem of

minimizing a function of several variables

g = J(us v) (4.1)

subject to the constraints

_1?_ (E: X) = 0 (A-E)

where both J and ¥ are functions of class 02 and the constrainis are

such that the determinant of the Jacobian
2y
[ % ]
is nonsingular. The dimension of U and w is assumed to be p and the

_dimension of v is assumed to be ¢.

A1 Method of Tmplicit Functions

Since ¥ is of ® and condition (4.3) has been postulated, the

jmplicit function theorem (Buck, 1965, pp. 283-286) states that equation

(A.3)

(A.2) implicitly assures the existence of the vector function W explicitly

relating the dependent variables w to the independent variables ¥

W, (v)
I-Ie(y_)

WP ( x_r)

(4.1)



By substitubing (A.4) into (A.1), J becomes a function of v only

g = 3, v) (4.5)

Define the general value of independent variables v in a small

neighborhood of an optibna_l point _go

v = v + e c (A.6)

where ¢ is a vector of arbitrarily chosen small, bubt non-zero,

constants and ¢ is a scalar multiplier. Then, from (A.1) and (A.2)

o
]

T(° +ee) v +e gl (A.7)

=

" +ec), vV +eel = O (4.8)

Now J is a function of e only, and the necessary condition for

an ordinary local extremim is

T T
o _ ¥ oy o+ B =0 (A.9)
de ow v -
. oW,
where h is the vector with elements h, = —2x . The vector h
te

represents changes in the dependent variables w corresponding to
the changes ¢ in the independent variables. Differentiating equation

" (4.8) with respect to e yields

&l oL}

— h + r—-'= ] = 0 A.10
l: qg] R R (8.10)

Solving for h yields

h = -[-bii]-l [%_i] 55 (A.11)
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Substituting (A.11) into (A.9) and rearranging giver

y T

a o N al I:E_"jj :’ (A.12)

de ov p

Since ¢ is an arbitrary nonzero vector, each of the elements of the
vector in parenthesis must be equal to O at the optimal point.
T T
LI ) =] [Ei] - 0 (4.13)
o ow  Low w7
If equation (A.1l3) is satisfied, then a further necessary condition
for a local interior minimum is that
2
&2 (a.k) T
de v
o)
must be positive semi-definite for arbitrary values of h and ¢
satisfying equation (A.11).
Before evaluating this expression,; an identity for taking the
partial derivative of the inverse of a matrix must be developed.
- l __l
Let Aij represent a general element of the [E-E- :l matrix:
-1
[sl}
[ L ] (A.15)
oW i3
Then in indicial notation the definition of inverse may be
expressed as
ol
. = —3
8q5 = - A3 (4.16)
m

T Equation (4.13) and (A.1L) positive definite is sufficient for a
local interior minimum,



where 6qj is the Kroniker delta. Pramultiplying by Aiq gives
o
A, = A, —2 4.
i3 g mJ
m

Taking the partial derivative of both sides yields

(A.17)

(A.18)

(A.20)

|
o] e o) (qu
A = -2 (a. A, _._-—>A.
or ( 13) r ( 1q) qJ g ap mj
n n m
o}
+ 61m or (Amj)
n.
Since 6ij represents a constant, equation (4.18) reduces %o
o
: : (3)
—= (A .) = —— (A.. 2. A AL
- ( 13) - ( 13) Alq br As + o ( ) (4.19)
n n
vwhich gives the desired identity:
D o o¥
2 (a, ) = -A > Cl)A.
or (13) iq or (—-—— nj
n Uﬁn

From this point on results must be expressed in indicial notation

., O
since P ( = ) is a tensor. In indicial notation equation (4.12)

7

n

becomes

az [bJ_bJ A b‘*‘j]c

de 1 k

bvk ,bwi d bvk

Using equations (A.20) and (A.21) the second order condition (A.1h)

beccmes

(a.21)
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352 o, O, Cxi ov ov, KN
2 o 2 o
- b:: ‘;W By '"&@v b - bf: ‘;w Ay -——lbv ¢,
n i k a3 iy
o
: SR O
2, i I R
t o, i wow my dy. kn (4.22)
i n m k
2
[o%] (R Ol
L b5
Oy iq tr‘r&gi nj Tv. Ck°n
i n o k
o
23 0 ¥;
A e h
tw. | 1d  Bw _Ov k'p
i , Pk
o
21, SR .
- .. c
bwi ij bvnbvk k'n

" - (a.e3)

appears in four terms of equation (A.22). Regrouping terms, (A.23)

can be written

2
_cf_{_(beJ 2, b"")cc
2 - - i k
de bV'nbV‘k EIWi 1J bvnbvk, I
2
2 D
A c. h

(A.2h)



2 beﬂ:

d J o) q
* (bv e bw.) By (A.24)
ni D n i
' 2
2 O
+ (_ELL_ 2, _wu_%_) hoh.
Ow.Ow. ow P9 Ow.lw. 1]
3 1 D i 4d

Equation (A.24) and equation (A.13) provide a set of first and
second order conditions for J (_w_-r_ s y_) to be minimum suiaject to the

. j
constraints Y(w, v) = O.

A.2 Method of Lagrange Multipliers

The first and second order conditions can be put in a form which

is more convenient to.use by defining the augmented function
.x. )
J (1{: Vs E‘_) = J(H: _'Y__) + W }f'__(j‘b _Y_) . (A.25)

where P is a vector of comstent multipliers called Lagrange multipliers.

If the Lagrange multipliers are given by the identity

I <
by = o, A, . ‘ (A.26)

Bo= - ‘%—I{T [% ]-1 (A.27)

several observations can be made. Thus necessary conditions for J

to be a minimwm (A.13) become

= 0 (A.28)

212
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The second order conditions (A.24) may be written as

2
R, ”’) +(°J LAV
Uvnbvk d bv ?)’V' Ow ?JV' J bwr bv i
(A.29)
2 2
DL ———J—bw-) b (2L bu B
+ (Bv_oms + ¥3 o) Pita (bh.bh 2 o bw
n k n i 3
Define the vectors X and d as
vy by
W2 h
r = W, 4 = b (A.30)
vy e
o
v e
q ]

The second order condition (A.29) may now be put in compact matrix

notation by using equation (A.25) and definitions (A.30):

[ oror 4 (4.31)

To guarantee that ¢ and h in vector d satisfy equation (A.11), elements
of 4 may be expressed as functions of the independent constants ¢ only.

In matrix nobation this may be expressed as

4 = [-E-'IE = 0c¢ (4.32)



where
;= _[%]_1[%] (£.33)

and I is a g by g indentity matrix. The second order condition (A.32)

may then be written as

TT 625*
SO | wu |%c (4.3)

The advantage of the Lagrange multiplier technique is that the

first .and second order conditions can be expressed in a compact

matrix notation.
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