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ABSTRACT
 

The nature of multiple solutions'to a.general Problem of
 

Bolza in the calculus of variations is investigated. Thebe
 

multiple stationary solutions are of several distinct types,
 

each of which is briefly discussed.
 

Multiple stationary solutions often arise when only first
 

order necessary conditions have been applied. A second order
 

, 	test to eliminate some multiple solutions of this type is developed.'
 

It is shown that second order tests can be broken down into path
 

tests and endpoint tests and that once the first order necessary
 

conditions of the calculus of variations have been applied, the
 

second order path test and the endpoint test can be applied
 

independently.
 

Only the second order endpoint test is investigated. Direct
 

application of this condition requires the-analytical integration
 

of a set of nonlinear differential equations subject to mixed
 

boundary conditions. Since this is often difficult or impossible,
 

an algorithm is developed for numerically implementing the second
 

order endpoint condition. A geodetics problem is solved analytically
 

to illustrate the theory and demonstrates that the second order condition
 

is an effective computational tool, by eliminating certain classes of
 

non-optimal solutions from consideration.
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INTRODUCTION­

1.1 The Problem of Bolza
 

Since much of what is to follow depends upon an understanding
 

of the -Problem of Bolza as formulated in-control notation (Vincent
 

and Brusch, 1966, pp. 4-5), a brief statement of the problem in its
 

simplest form is appropriate.
 

Among the set of all continuous state functions,
 

Yi(t) i = 1, 2, ... , n; t t tf (1.1.1)o 


and continuous control variable functions
 

uk(t) k = l, 2, ...,'m < n (1.1.2)
 

satisfying differential equations and end-conditions of the form
 

Yi = fi(Yj, Uk t) = 1, 2, ... , n (1.1.3) 

'-,oYif'-to' tf) .0 *g=.),,2,..., p _2r o (1.1.4)
 

find the set which will minimize a sum of the form:
 

it = g(Yiol Yif, to, tf) + tfL(Yi(t), Uk(t), t) dt .(1.1.5)
 
t
 

0 

2Here it is assumed that the functions f., L, g, and VI'are of class C 

In the above and throughout this presentation, a dot above a variable 

will be used to represent the derivative of the variable with respect 

to t, the independent variable. Likewise the subscripts o and f will 

indicate the evaluation of the variable or expression at the initial 



and final value of t, respectively. For the sake of brevity, the
 

range of subscripts i, j, k, and I will be as given above and will
 

not be repeated in what follows.
 

Following the conventional method of Lagrange multipliers
 

(Bryson-and Ho, 1969), minimization of the augmented function
 

J = g + P1.e+ f [L-Xifi + "iYiI dt .(1.1.6)
t
 

-0
 

is considered. In the above equation and throughout this report,
 

repeated subscripts iill be used to signify sumation. Equation (1.1.6)
 

was obtained by adjoining equations (1.1.3) and (1.1.4) to relation
 

(1.1.5) as follows: 

(a) multiplying telations (I.l.3)by the variables Xi(t),
 

respectively, integrating from t to tf and by adding the 

sum of the integrals to expression (1.1.5), 

(b) multiplying equations (1.1.4) by the parameters p and
 

adding the sum of the products to express-on (1.1.5).
 

It is convenient to define the following functions: 

G(yio' Yif, to, if)- g + A (ltl.A 

HYi(t) ,i(t),uk(t), t] kfi.-L(1.1.8), X= 


The function.H is often referred to as the Hamiltonian. With these 

definitions, equation (1.1.6) may.'be written as 

J= G + [-H + X ] dt (1.1.9) 

t 
0 

By considering small variations in the path and eidpoints about a
 

nominal path, it can be shown that if the functions uk(t) and y.(t)
 



are a solution to the Problem of Boiza, then they must satisfy th
 

following necessary conditions (Hestenes, 1966, pp. 346-351):
 

Condition I.- There exist continuous multipliers X;(t) and
 

Hamiltonian function as defined by equation (1.1.8) such that:
 

(1) the Euler-Lagrange equations,
 

H 
 (1.1.10)

byi
 

bH = o (1.1.11) 

buk 

are satisfied at every point along the path and,
 

(2) the transversality conditions
 

bG +Ho = 0 (a.i. 12) 

bt 0 
0 

=0o (1.1.13) 

by 0 

bG H 0 (i: )
btf
 

bG 0 (1.1.15)byif + if
 

are satisfied by the endpoints.
 

Condition II. The inequality
 

H[Y(t), ?i(t), no(t), tI HE[y.i(t), X(t), ) ](1 . 



must be satisfied for all t 
Of 
t 5 tf and for all non-optimal 

n
control functions u o (Weierstrass Condition).
 

Condition III.- The k by k matrix
 

,s=l,2, ... , k 
'2 
b H . Ub~t(1.1.17 

must be negative semi-definite for a minimum (Legendre-Clebsch
 

condition)..
 

Condition IV. A fourth necessary condition is discussed by
 

Bliss (1946, pp. 226-228) in classical dependent variable notation.
 

He proves that the, second order variation of a sum similar to J
 

must be non-negative along a stationary arc, if that arc minimizes J
 

Hestenes (1966, pp. 283-286) verifies this conclusion in modern
 

control notation for the Problem of Bolza with fixed endpoints. As
 

developed by Hestenes, the fourth necessary condition-represents
 

a necessary condition on the path alone; variations in the endpoints.
 

are not considered. If Condition III is satisfied, Condition IV is
 

usually referred to as the Jacobi Condition. A further geometric
 

interpretation of this condition is presented in the following
 

section.
 

1.2 The Nature of Multiple Stationary Solutions
 

It is helpful in understanding the nature of multiple stationary
 

solutions to classify them by the circumstances pertinent to thdir
 

occurrence.
 

4+ 
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Fixed Endooint Problems - Multiple stationary solutions are 

often obtained for problems with fixed endpoints, because only the 

first three necessary conditions have been applied. Bliss (1946, 

p. 235) has shown in dependent variable notation that the fourth 

necessary condition of Jacobi, taken together with the first three 

necessary conditions, suitably strengthened forms a sufficient set 

of conditions for the Problem of Bolza. 

Although analytically complex the Jacobi condition has a
 

simple geometric interpretation for-problems with one state variable. 

In this case the set of all solutions forms a one dimensional family 

of extremal arcs, y = y(t, c), which all pass through the initial 

point as shown in Figure (1.1). With each arc is associated a 

particular value of c. If arcs y(t, c) and y(t, c + ) ntersect in 

the limit as e goes to 0, the point of intersection is called a
 

conjugate point. The locus of such intersections is called the
 

discriminant locus, also shown in Figure (1.1) 

y 

DISCRIMINANT
SLOCUS 

FAMILY OF EXTRETLS 

Fig. 1.1 A Family of Extremals and the Discriminant Locus 

0 
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In terms of this geometry, the Jacobi condition requires that
 

an optimal trajectory contain no conjugate point. Alternatively,
 

the condition requires that an optimal solution may not touch the
 

discriminant locus.' Figure (1.1) shows that there are two solutions
 

joining points 0 and A, one of which touches the discriminant locus
 

and is therefore non-optimal. If the fourth necessary condition
 

of Jacobi is applied in such cases of multiple stationary solutions,
 

usually all but one of the trajectories will be shown to contain a
 

point conjugate to the initial point, thus rendering them non-optimal.
 

- Examples of this occurrence are many: The Brachistochrone 

problem with fixed endpoints graphically illustrates the idea. 

Consider the problem of a bead sliding down a wire under the 

- influence of gravity alone. What should the shape of the wire be 

in order to minimize the time of transit between two points in a 

vertical plane? It is well known that the solution curves are 

cycloids. However, as shown in Figure (1.2), there are several 

different cycloids which satisfy the-necessary conditions of the 

DISCRIMINANT LOCUS
 

2 

373 

Fig. 1.2 Multiple Stationary Solutions for the Brachistochrone Problem
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calculus of variations. It can be seen that the x-axis forms the 

discriminant locus and that the points where solutions 1 and 2 touch
 

the discriminant locus are conjugate-points. Since solutions 1 and 2
 

violate the Jacobi condition, it is evident that solution 3 is the* 

true optimum. 

In this cabe ±u uas uten pussiuwe uo -lflSTngUllsnl e True 

optimum from the candidates by applying a sufficiency condition 

pertaining to the field of extremal paths. 

Variable Endooint Problems - Problems with variable endpoints 

r6quire that the endpoints of the trajectories, as well as the path,
 

be selected in an optimum fashion. Consider the geodesics problem­

of trying to find the minimum distance from the origin to a given
 

parabola as shown in Figure (1.3). It will be shown in Chapter 2
 

that two stationery solutions exist, viz., OA and 0B. Once an
 

endpoint has been selected, the problem becomes one of fixed endpoints,
 

A A 

T.B
 

Fig. 1.3 Multiple Stationary Solutions to a Geodetics Problem
 



and the path sufficiency conditions previously discussed can then
 

be applied. In this case, with the endpoint, A or B, thought of
 

as being fixed, it can be shown that both solutions satisfy the 

Jacobi sufficiency condition (Boiza, 1961, pp., 84-86).- The 

endpoints shown satisfy first order necessary conditions only, it 

is apparent that a second order endpoint condition may be useful 

in distinguishing the true optimal. A second order condition will 

be derived in Chapter 2. While the second order condition obtained 

is akin to the classical focal point condition (Bolza, 1961, pp. 104-10), 

the result is new in form and is directly applicable to the optimal 

control problem. 

-Problems-RequiringFirst and Second Order Conditions - In the
 

last two sections, the necessity of using fixed endpoint path­

sufficiency conditions and second order endpoint conditions was
 

illustrated separately. It is not unusual, however, to encounter
 

problems requiring the application of both the Jacobi condition and
 

second order endpoint conditions to distinguish the true optimum
 

from the set-of multiple stationary solutions. To illustrate this
 

situation, reconsider the Brachistrochrone problem where the
 

final endpoint, instead of being fixed, is required to be on curve-E
 

as shown in Figure (1.4). Both trajectories OAB and OD satisfy
 

second order endpoint conditions; that is, both solutions would
 

represent a local minimum with respect to small variations of the
 

endpoint along endpoint manifold E. As discussed before, point A
 

is a conjugate point, thus violating the Jacobi condition. Trajectory OC
 

violates a second order endpoint condition; it is in fact a local
 

maximum with respect to small variations of the endpoint along E.
 



0 A 

B 

C.
 

Fig. 1.4. A rroblem Requiring Second Order Conditions
 

Thus through the use of both the Jacobi condition and a second order
 

endpoint condition, OB is selected as-the optimal candidate..
 

Problems with Periodic Solutions - Consider a system of equations 

(1.1.3) which exhibit periodic oscillati6is when no 6ontrol effort
 

is applied. -It is not unusual for the optimal controls and adjoint
 

variables of such . system to also demonstrate periodic motion with
 

'the same period, especially if the magnitude of the control is small. 

The criterion by which "the solution is terminated is also often 

-periodic for problems exhibiting periodic oscillations. The terminating 

or cutoff condition is obtained from the transversality conditions 

(1.1.12)- .(1.1.15) by eliminating the P parameters, to form a 

single relationship among the state and adjoint variables. The­

zeros of the cutoff function then represent the terminating condition.
 

As an example, consider the problem of getting the mass of a thrusting
 

the integral-harmonic oscillator to a specified height while minimizing 


of the thrust with respect to time. A mass is connected in a parallel
 

by a spring and dashpot to an inertial reference. The mass is capable
 



of generating a bounded thrust in the upward direction. For simplicity 

it is assumed that the mass is constant. For small damping factors 

and null thrust, the state variables, position and velocity the
 

adjoint variables, and the cutoff function all exhibit damped.
 

periodic oscillations. As shown in Figure (1.5) the cutoff condition
 

is satisfied during each period. For sufficiently small thrnst
 

amplitudes the cutoff function will deviate only slightly from that
 

generated for null thrust, and will be satisfied at several points.
 

POSSIBLE FINAL TIMES 

z 
0 

TIME 

Fig. 1.5 Multiple Solutions Due to a Periodic Cutoff Function
 

Each" thne the cutoff condition is satisfied, a potential
 

optimal endpoint and a corresponding stationary solution is obtained.
 

Thus in periodic systems with weak bounded control, multiple
 

stationary solutions may be encountered.
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Problems with Singular Control - In cases where the Hamiltonian
 

is linear in a bounded control variable, the control cannot be
 

determined from the Euler-Lagrange equation (1.1.11). In this case
 

the Hamiltonian can be written as
 

H = S(yi, Xi, t)u + Q(yi Xi, t) (1.2.1) 

for scalar control. S is referred to as the switching function.
 

The well-known Maximum Principle for problems with bounded control 

developed by Pontryagin et al. (1962) requires that
 

u = u when S > 0
 
max
 

(1.2.2)
 

U = U. when S < 0 

However, for the case when S = 0 over a non-vanishing time interval, 

the Maximum Principle is indeterminant, and u may take on intermediate 

values. This is the case of singular control. Leitmann (1966, pp. 57-58) 

has pointed out that,. "While it is possible in a particular problem.... 

to rule out the p6ssibility of [singular control], this cannot be done 

in general." 

To demonstrate the existence of multiple stationary solutions in 

the case of singular control; examine the problem of minimizing 

2 dt1 (1.2.3) 

subject to the constraints:
 

l= x2 + u xl(0) = Xl0 x() = 0 (1.2.) 

= ( 0) =x 20 x2 () = 0 

Jul g1 



This problem was first discussed by Johnson and Gibson (1963).
 

The Hamiltonian is 

H = .(X-X2 )u + Xx - x,2 /2 (1.2.5)2 


In this case S = X1 - X2 . If S is identically zero for a non­

vanishing time interval, the possibility of singular control exists;
 

By taking a suitable number of time derivatives, it can be shown
 

that the singular control is given by u = -Xl-x2 , and that the
 

singular arcs are two lines xl(t) = 0 and sl(t) + 2x2(t) = 0.
 

Figure (1.6) shows two possible stationarysolutions to the
 

problem starting at point A, one of which has a singular subarc.
 

The first arc AB is the same for both solutions. In both solutions
 

u = -1 along arc BC and then follow arc CO to the origin with
 

u = +1. This is the so-called "bang-bang" solution. Alternately, 

at point B one may elect singular control, n = x2 , and proceed 

to the origin directly along arc BC. 

BANG-BANG SOLUTION
 

SINGULAR ARC x, 0
 

OPTIMAL B 

SOLUTION 0 

2 

-2 2 SINGULAR ARC 
x I + 2x2 = 0 

Fig. 1.6 Multiple Solutions Arising from Singular Control
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Unfortunately, there is no guarantee that the solution with
 

singular control is minimizing or that it will always enter the
 

optimal solution, even if the possibility of singular solutions
 

-does exist. In th s case the olution with ban.rbang cdntrol,
 

arc ABCO,.has -an index-.of performance almost 12 per cent larger 

than-for the true optimal control which uses the singular control
 

arc B0; 

Recently, Kelly, Kopp and Moyer (1967) and Robbins (1965) have 

- developed a new necessary condition-'for testing the optimality of ­

-singular subarcs. 

13 
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A SECOND ORDER ENDPOINT CONDITION
 

In this section a second order condition is developed for
 

variational problems with-variable endpoints. Among the multiple
 

stationary solutions that may exist,. the conrditioh provides atest
 

for distinguishing those stationary solutionts which are local miniuns 

with-respeqt to endpoint variations along the prescribed terminal
 

manifold. The second order endpoint condition is related to
 

sufficiency conditions of the classical calculus of variations in
 

section 2.4. In section 2.5 the second order condition is illustrated
 

with- an example problem. Finally, a numerical algorithm is developed 

f 6 r applying the endpoint sufficiency condition to problems with-no 

analytic solution.
 

2.1 Functional Relationships ror the Problem of Bolza 

Arguments used in Section 1 have implied that the conditions 

for the Problem of Bolza fall into two classes: those pertaining to 

the path and those pertaining to the endpoints. -It has been 

further argued that conditions pertaining to the endpoints can be 

considered independently from those pertaining to path. Consider 

the Problem of Bolza as expressed in Section 1.1, equations (1.1.1) 

(1.1.5). In this formulation, and for the remainder of this section, 

the controls "k are assumed to be unbounded functions of time. In 



addition, it is now assumed that the Jacobian is not equal to zero
 

,ulbu2 , "-"
 / 0 (2.1.1).
 

b (ul u2 , A" , 

for all points (Ul, u2 , Uk) in the control space. ThE 

function H has been-previously defined in equation (1.i.8). If
 

equation (2.1.1) is valid,-the implicit function theorem (Buck,
 

1965, pp. 283-286) assures the existence of the k functional
 

relations
 

Uk= uk[Yi(t), Xi(t)J (2.1.2)
 

-from the k control variable Euler-Lagrange equations (i.!.11). 

Condition (2.1.1) specifically eliminates from consideration those­

-systems in which any state variable derivative, y as defined in ­

equation (1.1.3), is a linear function of any of the control variables. 

A solution to the Problem of Bolza is specified by solutions 

for the state variables y., as well as the control variables uK as, 

functions of time. A selection of the initial time and the final
 

time completes the solution. To obtain these solutions, the control
 

variable Euler-Lagrange equations are first'solved.for the control
 

variables uk as functions of the state variables y1 and the adjoint
 

variables X.. The functions f. (1.1.3) and the L function (1.1.5) are
1 1 

now explicitly dependent only on the state variables, the adjoint
 

variables, and time.
 

f i = fi[y(t); uk(y (t)) X.(t)); t] (2.1.3)
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L L[yj(t); uk(yj(t), Xj(t)); tJ (2.1.4)
 

Similarly the H function bedcmes an explicit function of the 

state variables, the adjoint xariables, the adjoint variables, 

and time, alone: 

H0 = H[yi(t); i(t); Uk(Yi(tj; x.(t))y;'t] (2-1.5) 

Finally, it is evident that a similar functionalrelationship exists
 

for the time derivatives of adjoint variables,
 

=
X. P[yi(t), i(t), tj (2.1.6) 

In summary, once the optimal control is selected, the state
 

variable differential equations (1.1.3) and the adjoint variable
 

differential-equations (1.1.10) comprise a set of 2n first order
 

nonlinear differential equations in the 2n state and adjoint variables
 

and time. This set of differential equations can be integrated in
 

theory, yielding
 

Y= Y(t, c ) r = 1, 2, ... , 2n (2.1.7Y 

Xi =-Xi(t' c). (2.1.8) 

where.the cr'S are constants of integration. The p end conditions
 

(1.1.4) and the 2n + 2 equations representing the transversality 

necessary conditions (1.1.12) - (1.1.15) comprise a set of (2n + p + 2) 

non-linear algebraic equations in the 2n constants c the p para­

meters ut the initial time t, and the final time t 

The initial values (yio, Xif, tf) are specified. Hence, the 

Cr's may be determined as a function of these initial and/or final 

16 



values by evaluating equations (2.1.7) and (2.1.8) at either the 

initial or final point. For example, a solution for the cr's 

would be-specified by the set (yio xio' t0, tf the set 

(yi-, Xif, tf, to)"or the set (yio, Y if t0, tf). While it is 

difficult to attach any physical meaning to the initial or final 

values of the Lagrange multipliers, the initial and final values of 

the state variables have an immediate physical significance. For 

this reason, the state variable endpoints have been selected to 

functionally represent.the cr constants of integration for the 

rest of this section. Thus equations (.1.7) and (2.1.8) will be 

written as 

y = yj(t, Yio, Yif, to, tf) (2.1.9) 

and 

aYio Yifl tol f) 

t0 t tf 

(2.1.10) 

By substituting the functional relationships exhibited in 

equations (2.1.9) and (2.1.10) into relations (2.1'.2) - (2.1.6), it 

can be seen that the functions uk, L, fiH°, and Pi can'all be 

written as explicit functions of the set (t, yio' Yif, to, tY. 

These functional relations, together with that for the function G 

from equation (1.1.7) are summarized for reference below: 

uk = u (t, Yio' Yif to' tf)(..) 

L = L (t, y io, Yif, to, tf) (2.1.12) 

yj = f(t, Yio' Yif to tf) (21.13) 

X = (t, Yiol Yif, to, tf (2.1.14) 

17 



H° [y (t , Yio' Yif' to, tf); ?,(t, Yio' Yif, to, tf 

uk(t, Yio' Yif' to'-tf); t] (2.1.15) 

G =G(A, Yiol Yif' to" f) (2.1.16) 

So that there will be no confusion as to the meaning oi 

note that 

Yjo 

zne subscripts, 

(2117) 

o - (2.1.18) 

Yjf YJt.tf (2.1.19) 

Xf 

Sf 

(2.1.20) 

Using the functional relationships summarized above form the 

augmented function J = J + P i where 

J(Yio' Yif' to' tf) --g(Yio'-Yi' to, if) (2.1.2.1) 

+- [-H°(t, Yio' Yif' to0 tf)
ft -

0 

+ X(t, Y .ioyift tf) Y(t, Yio' Yif' to' tf)] dt 

By requiring the trajectory to satisfy certain necessary conditions 

regarding path, equations (1.1.10) and (1.1.11), the Problem of Bolza 

has been reduced to the problem of minimizing J, a function of end­

points, subject to the v' algebraic constraints on the endpoints. 

18 



Before proceeding with the minimization of J,'it is appropriate
 

to consider a graphical interpretation of the functional relationship
 

for the state variables expressed in equation (2.1.9). Figure 2.1
 

shows a general state function yi(t, Yiol Yf, to, tf) as a function
 

of time. From the figure it can be-seen that a change in the final
 

state AYif while holding all of the other endpoints fixed causes
 

a change in yi for all values of t. Likewise a change in the
 

final time At while holding all of the other endpoints fixed causes
 
f
 

a change in the state yi for all-values of t.
 

Formalizing this graphical interpretation in terms of differentials
 

yields results which will be of value in the following sections. Using
 

equation (2.1.9), the 	differential of the state variables may be
 

written as,
 

dyi(t Yjo ' o 	 f) yi -dt + -Yidto + y-i dtf 2.1.'22 

- bt bt0_ btf' 

by. by.

+
+ 	 dy. - dy
 

by.o -jobyi f i
 

Evaluating this expression.at t tf gives
 

dYi(tf' yj, Yjf.'to'-tf) = dyif = bv dtf 	 (2.1.23)
 

dt +fy 	 ~ 

+ lit 
 bi tf by. I 30L byi. 3ybt 0o btf 	 f byjo jo ffby 


The sum represented by the last term in the above equation can be
 

separated into those products for which i / j and that for which 

i = j. Transposing dyif to the right hand side, equation (2.1.23)
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Y 

Yif + nYif 

L ff 

Yif f 

II 

II 
II 

"J.1 

*1 
Yio I *1 

I I 
I I 
III 
I II 

Fig. 2.1 A -RersnainoI 
t o 

saFnto fyi n t 

Fig. 2.1 A Representation of y. as a Function of Yfand tf
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becomes
 

i if yf 1 t + 1Yj dYT°bYiobt by
-bt 


(2.1.24)
+ o 1. dy i +4[i 1} dYjf 
+yjf f " yjf i=j 

.Inthe above'equation the repeated subscripts on.the last term 

do not imply summation. Since t, to tf' yi, and yifhave been 

assumed to be independent, equation (2.1.24) implies that
 

by ! by. (2.1.25) 

bt f btf
 

1 0Yi (2.1.26)
 

bt
0
 

by, =0 (2.1.27)
 

by. O 
i
 

byi 0 (2.1.28)
 

by
.
 

i~j
 

. = 1 (2.1.29) 

byJf f 

i=j
 

By evaluating equation (2.1.22) at t t and following arguments
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similar to the ones above, it can be shown that
 

byi 0 byf" I 0(2.1.30)
 

bt o2-.o
 

Syif
 

by..
 
(2.1.3 )


.bto o 

f 0
 

by i_ = 0 
 (912.32) 
byjf o 

(2.1.34) 
byjo
 

i=j
 

These identities will be useful in the proofs of necessary and
 

sufficient conditions in the next section.
 

2.2 Derivation of Transversality Conditions
 

In determining the functional relationships in the last section,
 

it was assumed that the control end adjoint variables were chosen so
 

as to satisfy the Euler-Lagrange Equations (1.1.10) and (1.1.11).
 

Equations (1.1.10) and (1.1.11) are referred to as the first path
 

necessary conditions. In this section the endpoint necessary
 

conditions (transversality conditions) are derived assuming that
 

the first necessary conditions for path are satisfied.
 

22 
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The 	solution to the path necessary conditions determines one
 

or more trajectories (see section 1.3), any of which may be-expressed 

functionally as a set [y (t, Yio Yif, to, tf), X.(t, Yio, Yif, to,-tf)! 

uk(t, 10o Yif, to, tf)] as shown in section 2.1. Once the functions 

representing one of these trajectories is substituted into the integral 

-in equation-(2.1.21-), the integration can te performed. It is there­

fore 	clear that once .the trajectory is specified, J is a function of
 

only 	the p~rameters-yio' Y t d tf.
hif Specifying the path reduces
 

the problem of minimizing J to the well-known problem -of finding the
 

minimum of a function of several variables subject to algebraic
 

equations of constraint (Bryson and Ho-, 1969).
 

It is shown in Appendix A that if the arguments of J in equation
 

(2.1.21) are to satisfy the constraints and minimize J, then it is 

necessary that the partial derivatives of the auxiliaiy function, 

shown below, with respect to yio, Yif' to, and tf'all be .equalto 

zero. 

The J function is defined by J = J + 1 l where J is given 

by equation (2.1.21). Using the definition of the function G from
 

equation (1.2.8), J may be functionally represented as
 

J [Yio Y if to , tf ] = G[yio Yif, to, tf, ] 

tf 	 byi
 

+ 	 [- (y:, X, 0 b ] dt (2.2.1-) 

to1 1 

In the above equation it is understood that yi, X., and uk are all­

functions of the set (t, yio) yif' to, tf). In writing the functional
 

relationship shown above, it has been assumed that the controls uk have
 

been chosen in an optimal fashion in accordance with the control variable
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Euler-Lagrange Equation (1.1.11). This is indicated by the super­

script o on uk and on H. . The partial .derivative of J with respec, 

to yio can now be written: 

bJ 

by
byjo= 

bo 

by 
t F-bu 

t0 [+f 0yjL jo 
o-o 

bX1 
bybyjo 

by. 
btb 

y 
Xi byiibjh ] dt (2.2.2) 

Here Leibnitz Rule (Hildebrand, 1948, p. 360) has been used for 

differentiation of an integral with respect to a parameter. Using 

the identity 

[Xx i I 
dt byjo 

and expanding H 
byjo 

by bXi byi
= X. 1 

I byjobt bt byjo 

, equation (2.2.2) may be written as 

(2.2.3) 

bi by. bG + .f-b -y bH b~i -_.6H _bu 
byo yo fto by. -by. bX1 by. 7u ; by. 

b+ i 

byjo 

bYi 

bt 

b-- i 

bt 

by 

Yjo 

] dt + i 

byjo 

fi 

t 

(2.2.4) 

Terms under the integral sign may be combined to give 

bi ._bG + ?'i by i X. i "bYi I 

byjo byjo itf by j o it . byjo. 

tf+ P'[-( bH 
K 

by bX i- 1T. 
X.bt .by. 

bH-y-o-y­
by. 

bXi byi 

bty 

(2.2.5) 

bH bu, 
+ o dt 
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Note from equations (2.1.9) and (2.1.10) that once the optimal
 

endpoints have been selected,
 

1yi 1 and
dyi i 
 dki
 

bt dt bt dt
 

The integral ,termvanishes, since equations (1.1.3), (1.1.10) and
 

(1.1.11) were used to generate the functional relations (2.1.9) and 

(2 a .*.io) 


Using equations (2.1.27), (2.1.33) and (2.1.34), it can be 

concluded that the sums represented by the two remaining terms not 

containing G in equation (2.2.5) reduce to a single term, - Xj 
10
 

With these considerations, equation (2.2.5) reduces to
 

b* W
 -x. I = 0 (2.2.6) 
by. by ­jo o to
 

By taking the derivative of J with respect to yjf and using arguments
 

similar to those just presented (in this cas& equations (2.1.32),
 

(2.1.28) and (2.1.29) must be taken into account), it can be shown
 

that
 

: - + X. 0 (2.2.7) 
byjf -byjf f 

Two more necessary conditions remain to be derived. These result
 

from taking the partial derivatives of J with respect to the remaining 

two variables, t and tf. Performing.the first of these operations 

yields 
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* 	 tf + by-


+4 +r--Oi1 + b__ at
 
bto t 	 bt bt bt i btbt ­o . 0 	 00 (2.2.8) 

-[-H+ X. b:]
bt 
 t,
 

-Here again Leibnitz Rule has been- used; this time- the limits of ­

integration are functions of the differentiating variable. Using
 

'the identity
 

d byi by, bX. by. 	 9
S_ i bt " t. 	 22-.9 

0 	 0 O" 

and expanding , equation (2.2.8) may be written as 
bt
 

0 

6J 	 bE by.1G bf bXi1 bH 

0t[ bi 6t b . bt buk bt
 
bt°. "" by,o l by o
 

+ bb--by. dt Xi 7K 	 (2.2.10)i ] + 

bt0 bt bt 0 

4-~ i b. -i] 
0 

Terms outside the integral may be evaluated at the endpoints
 

indicated and terms under the integral sign combined to give
 

bJ* -G H i f by X y.
26 t
 o
 

-- = + 	 bt +~ tf-~ . - aito O-b 	 (2.2 .11)
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The integral again vanishes identically for optimal paths. Using
 

equations (2.1.26) and (2.1.30), the three terms outside the integral
 

representing summations can also be equated to zero. With these
 

observations, equation (2.2.11) reduces to
 

bJ-	NT - bG "+ H I = 00(22.2 "(2.2.12) 

o o 

By taking the derivative of J with respect to t,, following a 

line of-reasoning similar to that just given, and using equations 

(2.1.31) and (2.1.25), it can be shown that 

= 	 (2.2-13)btf = btf H t f 0 

These results are summarized in the following statement:
 

Transversality Necessary Condition for Endpoints - If a trajectory
 

satisfies the Euler-Lagrange and state variable differential equations,
 

equations (1.1.10), (1.1.11), and (1.1.3), and if the set E = [yio yif,
 

to, tf, P satisfies endpoint equations of constraint (1.1.4) and
 

provides a local minimum of J with respect to small allowable variations 

in the endpoints, then the set E must satisfy equations (2.2.6),
 

(2.2.7), (2.2.12) and (2.2.13). 

These latter equations are referred to as the endpoint necessary
 

conditions or, classically, as the transversality necessary conditions.
 

2.3 Derivation of Second Order EndDoint Conditions
 

In the last section the function J was shown to be a function of
 

the endpoint variables yio, Yif to , and tf when evaluated along an
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optimal path. The function J is constrained, however, through the 

p equations of constraint 4 of equation (1.1,4). Second order 

conditions for determining the minimumn- of a function whose arguments 

must satisfy algebraic equations of constraint has recently been
 

discussed by Vincent and Cliff (1970, pp. 171-173). Their methods
 

will be used here. For reference, a detailed discussion of the
 

minimization of a function of several variables is included in
 

Appendix A.
 

Before presenting a statement of the second order condition, a
 

brief discussion and definition of notation are in order. Since the
 

algebraic equations of constraint for the Problem of Bolza'define
 

relationships among the endpoint variables, the endpoint variables are
 

not all independent. Since there are p equations of constraint and
 

(2n + 2) endpoint variables, there are only (2n - p + 2) independent 

endpoint variables. The p dependent -variables are determined by 

the p-equations of constraint. Any p of the variables can be con­

sidered to be-the dependent variables. The choice is one of convenience 

Let the p dependent variables be denoted by the column vector w and 

the remaining (2n - p + 2) independent variables be denoted by the 

column vector v . Let the vector * represent a vector whose elements 

are the u constraint functions. Equation (2.3.1) summarizes these 

relations. 

YEw, v) Wl Vl
 

2 -v) w2 Y2
 

* w = v (2.3.1) 

413(O, ) p Vq 

q = 2n - p + 2 



The identification of the elements of v and the elements of w 

with the endpoints yio, yif, to , and tf is arbitrary except that 

the set of i4 equations must contain every element of w and, in 

addition, every 1Y equation must contain at least one element of 

w. It is convenient to define an additional column vector r, whose
 

first elements are the dependent variables and last elements the
 

independent variables:
 

wl 

w 
r P (2.3.2) 

v,
 

V,
 
q
 

* 

With these vectors define [ i ] as a (2n + 2) by (2n + 2) matrix
?r br
 

* 

with elements a.. = . Let the matrix - be defined by'3 br.br.
 

(2.3.3)
[ ~ILI, 

where [a] is a p by p matrix with elements a.j w and 

i -- . bD 

L -- ]is a p by q matrix with elements a It is 

shown in Appendix A that the a matrix is the linear transformation
 

which transforms differential changes in the independent variables
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into differential changes in the dependent variables. The 5 matrix 

has p rows and q columns. Finally, define the (2n + 2) by q parti­

tioned matrix 2 as 

= [A~](2.3.4) 

where I represents a q by q identity matrix.
 

With these definitions the second order endpoint condition may
 

now be stated:
 

Second Order Endpoint Condition. If E represents a set of endpoints 

and multipliers [yio, Yif, to, tf, ji I which satisfy the transversality 

necessary condition for endpoints, and if the set E represents a local 

interior minimum of the function J with respect to small allowable 

variations in the endpoints then the quadratic form 

dvT01 I u'] 0 dv(23. 

in 	 the differentials dv is positive semi-definite when evaluated at 

the stationary point E. 

To implement this test, it is necessary to evaluate the elements 

of the matrix and the elements of the matrix F J . Evaluation 
L 	 brbr 

of 	elements of @ represents no problem since the functional form of
 

the constraints is specified in the problem statement. However, the
 

analytic evaluation of the second partial derivatives of J with
 

respect to the endpoints is not so simple.
 

The second partial derivatives of J can be obtained by taking the 

t 	 Conversely if the transversality conditions hold and if (2.3.5) is 

positive definite then the set E is a local interior minimum (sufficiency). 



partial derivatives of the transversality necessary conditions with
 

respect to the endpoints ri.
 

b - (J-) (2.3.6) 
br. by br by. br. t

I jo i jo i o 

b -r Zf (',x ) (2.3.7) 
br. i y br.by. i tf 

- i bG +i " o = r Ito (23.8)Sr -- bto
 

-b_ bG (t '(2.3.9) 

1- f i f 1 

where in the above equations i = 1, 2, ..., 2n + 2. The functional 

form of G as a function of the endpoints is specified bi the statement 

of the problem. However, the functions X. and H are not known functions3 

of the endpoints until the state variable and Euler-Lagrange differen­

tial equations have been integrated analytically. 

Since analytical integration is often difficult 6r impossible, 

it would be desirable to evaluate the partial derivatives of X. and H 

with respect to the endpoints in terms of functional forms specified 

in the statement of the problem. A complete set of relationships of 

this type were not found. Unless future investigation establishes 

such relationships, analytic application of the second order condition 

requires an analytic solution of the state variable and Euler-Lagrange 

differential equations.
 

Some interesting relations of this type are easily obtained however.
 

Each of the elements of the matrix I I is composed of a sum of
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a-second term. The matrix can therefore.be expressed as the sum of
 

two matrices,
 

E[' + A (2.3.10)
b_ I brbr ­

where the matrix A is determined from equations (2.3.6) _'(2.3.9)
 

I .- 2-
Since J and G are of class C by hypothesis, both J and Gmust
 

be symmetric about their major diagonals. The obvious conclusion
 

is that matrix A must also by symmetric. By equating symmetric elements
 

of A, the following identities can be established:
 

bxi bxj bX'i bX.io _o if (2.3.11) 
byjo byio byjf bYif 

bH U. bHf bkif° 
-0 .t10 - i = - -(2.3.12) 

bHf bkio 6H°0 Wif (..3
 
bYio btf byif bt
o
 

if "bjo iHf bH
 
10 fo (2.3.14) 

by.o byi bt0 - btf 

In addition, the .following relations can be established by considering 

the functional relationships exhibited in section 2.1.
 

6Hf bH Ukif
 
_- ++ fjf. bt (2.3"15) 

btf bt ­

bH f b 'f + f (2.3.16) 
-- + f
 

byif btf jf by..
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Similar equations exist for the initial point.
 

Unfortunately, a sufficient number of these relationships have
 

not been found to determine the elements of A in terms of known 

functions in the problem statement. The determination of further 

relationsbips and the ultimate determination of the elements of A 

without resort to analytical integration of the state variable and 

Euler-Lagrange equations poses an interesting problem for future 

investigations.
 

2.4 Relation to Classical Theory
 

Bolza (1961, pp. 102-103) gives an excellent summary of the
 

various classical approaches to the development of necessary and
 

sufficient-conditions for variable endpoint problems. Because of
 

the pertinence of his remarks to this presentation, his historical
 

synopsis is quoted in detail:
 

Three essentially different methods have been proposed
 
for the discussion of problems with variable endpoints:
 

t
 
The method of the Calculus of Variations proper:
1. 


It consists in computing 8J and 82J either by means of 
Taylor's formula or by the method of differentiation with
 
respect to , ...and discussing the conditions 8j=0 62j=0 ... 

2. The method of Differential Calculus: This method 
is explained in general way in Dienger's Grundriss des 
Variationsrechnung (1867). It decomposes the problem into 
two problems by first considering variations which leave 
the endpoints fixed, and then variations which vary the end­
points, the neighboring curves considered being themselves 
extremals. - The second part. of the problem reduces to a 
problem of the theory of ordinary maxima and minima. This 
method has been used by A. Mayer in an earlier paper on 
the second variations in the case of variable endpoints 
for the general type of integrals mentioned above (Leirziger 
Berichte (1884), page 99). 

t. The first and second order variation of the integral are written as
 

8J and 82j, respectively. Variations in the endpoints and in the
 

path are considered simultaneously in this method.
 



it is superior to the first method not only on account of
 
its greater simplicity and its more elementary character,­

but because by utilizing the well-known sufficient condi­

tions for ordinary maxima and minima it leads, in a certain
 

sense, to sufficient conditions it combined with Weier­

.strauss's sufficient.conditions for the case of fixed end­

points....
 

3. Kneser's method: This method, which has been
 

developed byKneser in his Lehrbucht, is based upon an
 

extension of certain well-known theorems on geodesics.
 

It leads in the simplest way to-sufficient conditions,
 

but must be supplemented by one of the two preceding
 
methods-for an exhaustive treatment of the necessary
 

conditions...
 

While Bolza (1961, pp. 104-109) used method 2 for investigating
 

the simplest classical problem with variable endpoints, and later
 

Bliss (1932, pp. 261-266) used the same method for the classical
 

problem of Bolza, more recent work, e.g. [Householder (1937,
 

pp. 485-526),-Bliss (pp. 147-184), and Hestenes (1966,,pp. 296-351)]
 

have utilized the first method quoted from Bolza.
 

Sufficiency conditions for the problem of Bolza can be obtained
 

by employing either method. However, the type of normality assumptions
 

used differ from one method to the other, and the first approach
 

apprently gained favor because it requires less stringent normality
 

conditions. [As opposed to the second approach without modification,
 

see for example, Bliss and Hestenes (1933, pp. 305-326) for a modi­

fication of method 21.
 

In this presentation, the second method was employed because
 

of its simplicity. We were not seeking a sufficiency condition for
 

the problem of Bolza in control notation per se. Instead a less
 

ambitious project was investigated. We sought conditions to be
 

tLehrbuch der Variationsrechnung Braunschweig (1900).
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satisfied for a given extremal to be a local minimum with respect to
 

endpoint variations along a prescribed endpoint manifold.
 

2.5 Geodetic Examole 

As an example of the application of the second order condition for
 

endpoints, consider-the problem of determining the minimum distance
 

from the origin to any point on a parabola of the form
 

2 (2.5.1) 

In control notation the problem may be formulated as follows:
 

Minimize sf 

J J ds (2.5.2) 
s 
0
 

subject to the state-variable differential constraints,­

dx (2.5.3) 

sin g, (2.5.4) 

and endpoint constraints, 

-s 


Yo = o, (2.5.5) 

x0 0, (2.5.6) 

so = , (2.5.7) 

b 0.y - 2 0 (2.5.8) 

The angle g is the angle between the positive x axis and a tangent 
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to the curve. Here x and y are the state variables, g is the control
 

variable, and s is the independent variable analogous to t in the 

formulation of earlier sections. 

Necessary Path Conditions - The H and G functions are 

H = Xx cos g + X y sin g - 1 (2.5.9) 

G = 
2

Il(yf-xf -b) + P2x + P3x0 + NSo (2.5.10) 

The adjoint-variable Euler-Lagrange equations are 

k =0 (2.5.11) 

x - 0 (2.5.12) 

and the control-variable Euler-Lagrange equation is 

- X sin g + X cos g = 0x y 

Equations (2.5.11) and (2.5.12) imply that X and X x y 

'Solving equation (2.5.13) for the control 

X 

tan g - - constant 
Xx 

which implies 
X 

sin g -

24 + 2 

are constants. 

(2.5.13) 

(2.5.14) 

(2.5.15) 

COS g 3 

x 

(2516) 
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The positive sign on the radical is a consequence of the Legendre-


Clebsh necessary condition (1.2.17).
 

Functional Relations - Integrating the state variable equations
 

(2.5.3) and (2.5.4) with the optimal constant control g between the
 

general initial-point (xo, yo, s-) and general final point (xf, yf s.f)
 

results in
 

Xf - x = (sf - so) cos g -(2.5.17)
 

Yf - y = (sf - so ) sin g (2.5.18) 

Solving for the control
 

° Yf - Yo
 

tan g = - (2.5.19) 

Squaring both sides of equations (2.5.17) and (2.5.18) and adding
 

yields the identity
 

y yo)2
(sf - So)2 = (xf - 0)2 + ) (2.5.20)
 

Solving equations (2.5.17) and (2.5.18) for the controls gives
 

xf -x O
 
cosfg 0 
 (2.5.21)


sf ­ o 
and 

yf - Y 

sin g - f o (2.5.22)sf - s
o
 

Since the control is constant, the control is not a function of the
 

independent variable in this case. For other problems the control may
 

be a function of the independent variable as well as the endpoints.
 

Integrating the state variable equations again between the general
 

37 



initial point (x0 , y0, So) and general intermediate point (x, y, s) 

and substituting the optimal control from equations (2.5.21) and 

(2.5.22), and rearranging yieils 

° x o x x 

= +(s sf - s o 
- s ) (2.5.23) 

Yf - o 

y = Yo + f (s-s) (2.5.24)

sf - so 0
 

It is seen from the above equations that the state variables are clearly
 

functions of coordinates of the initial and final state variables and 

of the initial and final values of the dependent variable.
 

The first integral of the Euler-Lagrange equations is
 

Ax cos g Xy gin g - 1= 0 (2.5.25) 

Solving this quatioh with equation (2.5.13) for X and" Xy and 

observing equations (2.5.21) and (2.5.22) gives
 

x f 0 Xf -X (2.5.26)sf - (xf'xo0)2 + (yf-Yo)2
 

Yf -Yo Yf - YO (2.5.27) 

f- so (xf-x 0) + (yf-yo) 2 

Two forms are given above for the Lagrange multipliers as functions of
 

endpoints; either is correct. If the second set is used, the J function
 

will be independent of sf and so. In either case it is clear that the
 

Lagrange multipliers can be written as explicit functions of the coordinates 



of the initial and final values of the dependent variables. Equations
 

(2.5.19), (2.5.23), (2.5.24), (2.5.26), and (2.5.27) bear out the
 

functional dependencies hypothesized for control, state, and adjoint
 

variables in section 2.1. Note that in deriving these equations,
 

only path necessary conditions have been used. The transversality
 

necessary conditions for endpoints have not been used.
 

Necessary Endpoint Conditions - The transversality conditions,
 

(2.2.6), (2.2.7), (2.1.12), and (2.2.13) yield the following equations
 

b 2 -2yo 0--- =o= (2.5.28) 

= - X 0 (2.5.29) 
bx 3 xO 
0
 

= +
bj*

4 = 0 (2.5.30) 
o 

byf 1 yf= 1--
+ 

= 0 (2.5.3.) 

(2.5.32)

bJ = _ 2lxlf + Xxf =0 

b = _ X 
gf 

sin gf + 1 = 0 (2.5-33) 
bsf xf g yf 

Since the initial point is fixed, the initial point transversality
 

equations give no useful information.
 

To find the optimal endpoints, eliminate 1 between equations
 

(2.5.31) and (2.5.32), yielding
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)xf 2Ayfxf = 0 (2.5.34) 

Substituting Xxf and Xyf from equations (2.5.26) and (2.5.27) into.
 

equation (2.5..34) yields
 

xf - xo 2(yf - yO) Xf 
+ o = 0 (2.5.35)

j(xf-x )2+ (yfy)2
j(xf.-x0)2 + (yf-y) 2 

Finally, multiplying through by the radical and imposing endpoint
 

constraints (2.5.5) and (2.5.6) gives
 

(2.5.36)
xf(1 + 2yf) = 0 

The necessary conditions are satisfied if either term in'the above
 

equation is equal to zero. Solving equation (2.5.36) and equation
 

(2.5.8) simultaneously gives the two solutions
 

'1 1
 
x - yf -- (solution A)
 

and (2.5.37)
 

xf = 0 yf = b (solution B)
 

These endpoints and the corresponding multiple solutions for 

b < - 1 are shown in'Figure 1.3 on page 11. From the symmetry of 
2
 

the parabola, it is expected that either the plus or the minus sign
 

in equation (2.5.37) will determine a solution giving the same value
 

of distance. For this reason a distinction has not been made between
 

the two. The necessary conditions used so far have provided no
 

means for determining under what circumstances solution A (or solution B)
 

is the optimm. In this case of multiple stationary solutions, the
 

endpoint second order condition will provide a means for determining
 



the true optimum.
 

Before examining the second order conditions, the paramenter P1 

will be evaluated in terms of the general endpoints for future
 

reference. From equations (2.5.27) and (2.5.31) it is observed that
 

PYf " o (2.5.38) 

(x0-x) 2 + (yf-y)2 

Second Order Endpoint Condition - To evaluate the endpoint
 

sufficiency conditions, it is instructive to first determine the
 

6 and 0 matrices of equations (2.3.3) and (2.3.4). The constraints
 

are
 

i: YO = 0 	 (2.5.39)
 

x = 0 	 (2.5.4o)
2: 	 a
 

3 s = 0 	 (2.5.41)3: 	 o
 

Yf-x2h -b 0
= 	 (2.5.42)
 

Since there are four equations and six endpoints, there are two­

degrees of freedom. For conveniency let xf and sf be the independent
 

variables and yo, x0, so, and Yf be the dependent variables. Then in
 

the notation 	of section 2.3
 
yo
 

x 
 YO
 

x0 0 

xCo , 0o (2.5.43)
sf 	 so 
 Yf 	 so 

x 	 2
 
xf -b
Yf 	 ff 


Sf 
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Evaluating the matrix of partial derivatives of yl with respect to 

the independent variables gives
 

0 0 

0 0 

0 0 (2.5.44) 

- -2xf 0 

Evaluating the matrix-of partial derivatives of v with respect to
 

the dependent variables gives just the identity matrix
 

6* 1 0 0 0 
0 1 0 0 2.5.45) 

1 0
0 
0 0 0 1 
0 


The inverse of this matrix is obviously the identity matrix. From
 

equations (2.5.44) and (2.4.45) the 6 matrix can be computed
 

0. - 0 

0l 0 (2.5.46) 

- 2xf 0 

The 0 matrix is formed by adjoining the - an identity matrix with the
 

dimensions equal to the number of independent variables. In this case
 

there are two independent variables. The 0 matrix is
 

o 0 
0 00 0l 

0 51 2xf00 (2.5.47) 
11 0 

0 1 

With the I not yet evaluated, the endpoint sufficiency condition
 
brbr
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reduces to the condition that
 

x2 2* 2* 
4 2 + 2xf + 

f7 byfbsf 
byf 

hxf bJ +byfbxf 
bxfbsf 

e2i* 

[dxf dsf] ds 

2xf + 
2*bsfbf 


b2 f 

bs bxf 

must be positive definite.
 

If J can be written so that is is not a function of sf, the
 

sufficiency condition will be reduced to a simple inequality involving
 

dxf only. From the transversality equations (2.5.31) - (2.5.33) and
 

the functional relations for X. and Xy, equations (2.5.26) and (2.5.27),
 

it is seen that this can be done.
 

Therefore, the sufficiency condition reduces to the condition that
 

Lf +Ivx + 7] dx. > 0 (25.49) 
Lbx f_Z1 byf.bxf, 

This result is identical to the result that would have been­

obtained if the fixed endpoint coordinates, y, x0 , and so had been
 

excluded from the G function. This situation is similar to the trans­

versality necessary conditions in that the initial points yield no
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information. From this example and previous experience with endpoint 

conditions, the following conclusion is drawn: No useful information 

concerning,either necessary or sufficient conaitions results from
 

including in G constraints which merely fix a given endpoint coordinate.
 

Substituting the functional forms for Xxf and X not involving 

sf fran equations (2.5.26) and (2.5.27) into the first partial 

derivatives of J with respect to yf and xf in equations (2.5.c31) and 

(2.5.32) gives
 

bi* -f -Y O
 

= l +byf (xf_0o)2 + (yf_yo)2 

* xf - x
J + o 
S = -2plxf + J (xf_x 0 )2+ (yf-yo) 2 

Forming the required partial derivatives results in 

621* (xfxo)2 + (yf_yo)2 _.xf(xf_ 0) 

--f 2 - 2p + f 

b2* (xf-x0 ) (yf-Yo)
 
byfbx f D.,
 

b2 * (x-x) 2 + (yf-yo)2 yf(yf-yo) 

yf2 D 

b21- (Yf- o) (Xf-%)
YO 0) 


bXf Jyf D
 

where
 

2 3
2D= [(x -xo) + (yf-yo) ]2 

44, 

(2.5.51)
 

(2.5.52) 

(2.5.53) 

(2.5.56)
 

(2.5.57)
 



Comparing equations (2.5.54) and (2.5.56) verifies the symmetry of the
 

[b.j_ ] matrix. 
brbr 

Evaluating these derivatives using initial point constraint
 

equations (2.5.5) and (2.5.6) and u from equation (2.5.38) and
 

substituting them into the endpoint sufficiency condition, equation
 

(2.5.50) gives
 

4xf 4 r xf1f 

L (xI2+2 + y2)3/2(x2+ Y2)3/2 

+ 2 Yf (2.5.58) 
Axf2 + y2
 

2 
Yf > 0
 

+ (x2+ yj )3/2 

for solution B (xf = 0, yf = b) this condition'reduces to 

+1 2 > 0 (2.5.59) 

From the geometry in Figure 1.3, it can be seen that b is negative.
 

The condition therefore requires that
 

0 > b > -1 (2.5.6o)2 

Then solution B as shown in Figure 1.3 is optimum.
 

For solution A (xf 1 =- -­

the end sufficiency condition (2.5.58) becomes
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4b2 + 2b + 1
bb 2 4 > 0 (2.5.61) 

Combining terms yields
 

4b2 + 3b +1
3/2 > 0 (2.5.62)
 

1 3/2
 

In order for the denominator to be real
 

b < (2.5.63) 

Under this condition inequality (2.5.62) is satisfied only if
 

b < --1 (2.5.6k)

2
 

Therefore solution A shown in Figure 1.3 is optimum for b less than 
1 

- - . The optimal solution is summarized below. 

xf = , yf = b > >- (25.65)
f 2 

1Yf - b < (2.5.66) 

This simple example has been analyzed in great detail to emphasize
 

the concepts developed in earlier sections and to reinforce and illus­

trate the notation.
 

2.6 A Nuerical Algorithm
 

In order to apply the second order endpoint condition, the matrix of
 

second partial derivatives of J with respect to its arguments must be
 



determined. From equations (2.3.6) - (2.3.9) it is seen that each of
 

these second partial derivatives is composed of two terms. The first 

terms, in all cases, is a second partial derivative of the function G. 

This derivative can be computed analytically from information given 

in the statement of the problem. The second term of each second 

partial derivative of J can be written in one of the following 

forms: 

fttf (2.6.1) 

10
 

t=to (2.6.2) 

brif 

f (2.6.3)
 

brif 

or
 

uIt=to (26.I)
 

where M represents any of the quantities H, Xl X2 ' Xn and r
 

represents any of the state variables yi or the independent variable t.
 

These derivatives cannot be evaluated analytically without
 

obtaining an analytic solution to the set of state variable and
 

Euler-Lagrange differential equations. For most problems of practical
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interest in the calculus of variations, the set of nonlinear state
 

variable and Euler-Lagraenge differential equations cannot be inte­

grated analytically. Therefore, the implementation of the endpoint
 

sufficiency-condition in most cases requires the numerical computation
 

of partial derivatives of the forms expressed in equations (2.6.1) ­

(2.6.4).
 

Fortunately, this is not conceptually difficult for most problems 

in engineering which have separated end constraints. End constraints 

are separated if none of the endpoint constraints involves both 

initial values and final values; the constraints always related initial 

values to other initial values, or final values to other final values. 

The function M evaluated at t = t will be indicated by a subscript 
O 

M = Mo(yio 'yif' to, t) 

The function M evaluated at t = tf will be indicated by a subscript f:
 

Mf = Mf(Yio Yif' to' tf) 

Before the second order condition test is applied, the problem is 

first solved using the necessary conditions yielding nominal endpoints 

y f to and t and nominal Lagrange multipliers X.and X..f 10 if 

For brevity, let r represent a vector with elements (ylo' Y20 

10 


--o 

-Yno' to), and rf represent a vector with elements (Ylf' Y2 f "' 

tf) and M be a function evaluated with the nominal endpoints.
 

Numerically the derivative (2.6.1) can be approximated as
 

*f(rlo .. A, ; -Mf M r2o + ... rf) Mf 
lo 

br .i
 

o: 

(2.6.5)
 

(2.6.7)
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* 

where A is a small change in the nominal initial variable rio. If 

the state variable and Euler-Lagrange equations are then nuerically
 

integrated forward with the nominal Lagrange multipliers, the final
 

nominal endpoint will not be reached. The n initial Lagrange multi­

pliers must be adjusted in order to obtain the final nominal endpoint
 

again. Since the n initial Lagrange multipliers give only n degrees
 

of freedom, the nominal endpoint can be reached only if M is a function
 

of n or less then n independent final values. This will be true if
 

there is at least one equation of constraint involving the final values.
 

With these new multipliers, the differential equations are integrated
 

forward to the final point rf. Mf is then evaluated from the resulting
 
* 

final Lagrange multipliers and rf. With Mf evaluated, the desired
 

partial derivative can be evaluated using equation (2.6.7).
 

The derivative (2.6.2) can be approximated numerically'as
 

+
o Mo(-o 
rlf' 2f "",rif (2.6.8)
 

brif 
 A
 

In the above equation, M° is evaluated by making a small change in
 
,0
 

rif, while leaving all the other values unchahged.. A set of final
 

Lagrange multipliers is then determined so that a backward numerical
 

integration in time will yield the nominal initial values r . The-o
 

quantity M is evaluated using the resulting initial Lagrange multi­
0 

pliers and r . With M computed in this manner, the desired partial
--O o
 

derivative can be evaluated using equation (2.6.8).
 

The derivative (2.7.3) can be approximated numerically as
 

U_ -0 ... ,r + A, ...f f ' lf, r2f' -- rif f- (2.6.9) 

rifA 



Here, Mf is evaluated by making a small change in the nominal final 

point coordinate rif, while leaving all of the other final coordinates 

and the initial point r unchanged. A set of initial Lagrange
-o 

multipliers is then determined so that a forward integration from the 

nominal initial point will yield the varied final point (rlf, r 2 f, ... , 

rf + A, ...). The forward integration is then performed to the
 

varied final point, and Mf is evaluated using the resulting final
 

Lagrange multipliers and the coordinates of the varied final point.
 

The final derivative (2.6.4) can be approximated numerically as
 

ti0 Mo(r1o, r2 , .. rio + A, ... I) - M(2.6.1)
 

io A
 

Here, M0 is evaluated by making a small change in the nominal initial
O 

point r., while leaving all of the other initial coordinates and the
 

final point r unchanged. A set of final Lagrange multipliers is then
 

determined so that a backward integration in time from the nominal
 

final point will yield the varied initial point (r10, r2o, -, rio
 

+ A, ...). The backward integration is then performed to the varied
 

initial point, and M0 is evaluated using the resulting initial Lagrange
o 

multipliers and the coordinates of the varied initial point.
 

Using the above techniques, the matrix of second partial derivatives
 

of J with respect to its arguments can be evaluated. Because of the
 

identities (2.3.11) - (2.3.14), there is some choice as to which of
 

the above derivatives is used to evaluate the sufficiency condition.
 

It is a simple matter to numerically evaluate the matrix 0 from the
 

nominal initial and final points and to test the matrix OT b!J * 

for positive-definiteness.
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CONCLUSIONS
 

It has been shown that once the first necessary path conditions
 

have been applied, a calculus of variations problem with variable
 

endpoints is reduced to a problem of the minimization of a function
 

of several variables.
 

Analytical application of the second order endpoint condition 

requires the analytical integration of the set of state variable and 

Euler-Lagrange differential equations. Since in most cases this is 

difficult or impossible, the algoritbm developed for the numerical 

implementation of the second order endpoint test should be an 

effective computational tool in complex applications. For example, 

through the use of the second order endpoint test, a complete class 

of nonoptimal solutions can be discarded immediately upon encounter. 

Without the aid of the second order endpoint test an investigator ­

would have no indication that solutions he is generating are non­

optimal whether he encounters multiple solutions or not. 

It could be argued, when multiple stationary solutions are obtained,
 

that a comparison of solutions would quickly yield which one was
 

optimal. However such a comparison technique fails if it is not known
 

apriori exactly how many multiple solutions exist. One has no criteria
 

in general' for determining in advance just how many multiple stationary 

solutions a problem may have, so that a direct comparison technique is
 

unreliable unless every multiple solution is somehow found. 
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APPENDIX A
 

INM4IZATION OF A FiUNCTION OF SEVERAL VARIABLES 

In the proof that follows, free use will be made of the notation
 

and conventions established at the beginning of section 2.3. Following
 

the methods of Vincent and Cliff (1970), consider the problem of
 

minimizing a function-of several variables
 

J = J(w, v) (A.1)
 

subject to the constraints
 

(A.2)
U,(w, _V) =0 


where both J and ulare functions of class C2 and the constraints are
 

such that the determinant of the Jacobian
 

L"I (A.3) 

is nonsingular. The dimension of i1and w is assumed to be p and the 

dimension of v is assumed to be q.
 

A.1 Method of Implicit Functions
 

Since ! is of C2 and condition (A.3) has been postulated, the
 

implicit function theorem (Buck, 1965, pp. 283-286) states that equation
 

(A.2) implicitly assures the existence of the vector function W explicitly
 

relating the dependent variables w to the independent variables v
 

w(X) 

w = W(v) = w2 (v) (A.4) 

W5(v) 
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By substituting (A.4) into (A.l), J becomes a function of v only
 

j =" j(W(v), v) (A.5) 

Define the general value of independent variables v in a small
 

0
 
neighborhood of an optional point v
 

v 0 + c (A.6) 

where c is a vector of arbitrarily chosen smallP,but non-zero,
 

constants and e is a scalar multiplier. Then, from (A.1) and (A.2)
 

3 J [W(O + C c), 7o + C c. (A.7) 

_ °
 
i [W(v 0+ e c),v +e0 ci 0 (A.8) 

Now J is a function of e only, and the necessary condition for 

an ordinary local extremum is 

(A.9)dJ -Z hT 
- Ide b 


bW.
 
where h is the vector with elements hi = e . The vector h 

represents changes in the dependent-variables wcorresponding to 

the changes c in the independent variables. Differentiating equation 

(A.8) with respect to e yields 

(A. 10)h ++- c= 0 

Solving for h yields
 

l [ C (A.11)
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Substituting (A.ll) into (A.9) and rearranging giver
 

dJ= [ E TbI]lb ] c = 0 	 (A.12) 

Since c is an arbitrary nonzero vector, each of the elements of the
 

vector in parenthesis must be equal to 0 at the optimal point.
 

bj Tp bj P±1=o 	 (A.13) 

If equation (A.13) is satisfied, then a further necessary condition
 

for a local interior minimum is that
 

d2 J 	 (A.l) * 

de 2 v ° 

must be positive semi-definite for arbitrary values of h and c
 

satisfying equation (A.11).
 

Before evaluating this expression, an identity for taking the
 

partial derivative of the inverse of a matrix must be developed.
 

Let A.. represent a general element of the matrix: 

e-1
 

aiJ wA ij	 (A.135) 

-	 Then in indicial notation the definition of inverse may be 

expressed as 
8qj - A 	 (A.16)
 

m 

t 	Equation (A.13) and (A.14) positive definite is sufficient for a
 

local interior minimum.
 



where qj is the Kroniker delta. Premultiplying by Aiq gives 

A.. A '-q A (A.i7)a iq w ma 
m 

Taking the partial derivative of both sides yields
 

(A..)= (Aq)8q + A q (q A
 

- n .n n 

(A.18)
 

+ 8 (A.) 

Since 6ij represents a constant, equation (A.18) reduces to 

b /biJ'q\
- (Aj) - (A.j) + A. _b .) (A+b) (A.19) 

nr brnbr ) Aq -- Amj + n 3­
n n nn i nl 

which gives the desired identity:
 

(A = -Ai A. (A.20) 

m , 

From this point-on results must ,beexpressed in indicial notation
 

since b q is a tensor. In indicial notation equation (A.12) 
n ra 

becomes 

dj [ bj -L b A.."' c (A.21)
de bvk bw, 1 'VJ k
 

Using equations (A.20) and (A.21) the second order condition (A.14)
 

becomes
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2 j ~ A li. c 	 A 

2 	 i
d - bwb % .i+ n 	 kkmn 

bJ e.	 ,bii 

+ rw-- Aiq bwn6vt Amj b k Ckhn 	 (A.22) 

k 	 nmk
 

1 m 	v m 


2

b2 b j 
bw Aij n k n 

The indieial notation representation of equation (A.11)
j v kmC

'e.2 

A 	 22, - (A.23) 

k ov
 

appears in four terms of equation (A.22). Regrouping te-rms, (A.23)
 

can be written 
2 

d2j 2j bi Ai__ 
eken 

(A.24)
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2
 

+ ( 22 A h.c(PQ bvQ. )IS bw S in (A.24)__j _ bJ A q ) 

+ ___ -_ A h.h. 

312 p I3 

Equation (A.24) and equation (A.13) provide a set of first and
 

second order conditions for J(w, v) to be minimumn subject to the
 

constraints Lit V) = 0. 

A.2 Method of Lagrange Multipliers
 

The first and second order conditions can be put in a form which
 

is more convenient to-use by defining the augmented function
 

J ( v , P) = J(w, v) + E i(w, V) (A.25) 

where P is a vector of constant multipliers called Lagrange multipliers.
 

If the Lagrange multipliers are given by the identity
 

= iA ij (A.26)
1 

or in matrix notation
 

jT L -i(A.27)
 

several observations can be made. Thus necessary conditions for J
 

to be a minimum (A.13) become
 

0 (A.28) 
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The second order conditions (A.24) may be written as
 

Jb21 + j . n b2 + P 2 ,' h-b22c.c + * ckh 

! .kn k bibk 1 iw k i 

21b2 V1-b2 1b2 (A29 
+\-n" + Pi hVb~ + h -i'j IC (2~ bib. + (A29

n k 

Define the vectors r and d as
 

w2 h
h2
 

r wp d = h (A.30) 

V,
 

v2 c2
 

v C 

The second order condition (A.29) may now be put in compact matrix
 

notation by using equation (A.25) and definitions (A.30):
 

AT[ b ljr] a (A.31) 

To guarantee that c and h in vector d satisfy equation (A.11), elements
 

of d may be expressed as functions of the independent constants c only.
 

In matrix notation this may be expressed as
 

d c = c (A.32)
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where 

and I is a q by q indentity matrix. The second order condition (A.32)
 

may then be written as
 

-C- ba 1 c (A.34) 

The advantage of the Lagrange multiplier technique is that the
 

first .and second order conditions can be expressed in a compact
 

matrix notation.
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