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ABSTRACT

. . oo
An extensive investigation of the orientation of crystallites in
‘ 1 4
¥ o -

»
L3

molded, éftificiai graphites has been-performéd. It has been found

H » -

that the crystalliteé in molded gréphites-ane usually - but not always
distributed symmetricelly about séme axis. The symmetry axis has been
‘foun&‘to-differ freéuenﬁly from the molding axis, contrary to what has
generally been assumed. Furthermore, the direction of the symmetry
axis and the degree of orientation have been found to vary somewhat
within a given graphite block.

An equation, originally proposed by Pappis et al., has been Tound
+o be suitable for describing the distribution of crystallites sbout
‘the syﬁmetry axis. The equation involves two unépecified\parameters.
Specification of the direcfiog of the symmetry axis involves two
additional paramebers. A technigue for evalvating these parameters
from experimental date obtained by the Bacon method is presented.

Also presented are recommendations for future research.

vii



THE ORIENTATION OF -CRYSTATLITES IN MOLDED GRAPHTTES



TNTROTUCTION

Virtually all nonpyrolytic artificial graphites are polycrystalline
and most have their céystallifés preferentially‘ériented in some fashion.
Because many of fhe properties of graphite crystallites are anisotropic
(i.e., directionally ﬁepen@en%); prefefentiél éfystallite orientation
results in anisotropy of" the pr;perties of most builk graphites. The
degree of anisotbagy of a gréphitgidetqrﬁines its sqitability for many
applications. Fof éﬁémple; a sPace;raft‘héa% sh?eld} idéally, should
have a high termal coﬁductivity'pa¥allellt&'ﬁhe surface in order to
distribute the heat load over iﬁs.entire‘area, but a low thermal
conductivity perpendiculear to tﬁé surface t& in;ulate the spacécraft.
Thus, a graphite intended for use as a heat'sﬁield should be highly
anisotropic. On the other hand, such a graphite might be unsuitable as
g moderagtor in a nuclear rgaétor because of mechanical problems associ-
ated with non-uniform expansion due to neutron irradiation. The degree
of anisotropy of a given property is related to the degreenoffcrystal-
lite orientation of the graphite (see ref. 2) and, consequently, the
degree of orientation is, itself, an dmportant property. Unfortunately,
no .simple method for describing, completely and unambiguously, the degree
of orientation of a graphite is presently available. The purpose of
this study was to develop such a method.

Crystallite orientation in artificial graphites results from an

interaction between the structure of the crystallites and the methods



by which graphite bodies are generally mar}u;‘actured, An extehsive
treatment .of graphite structure and manu,fe.zctqre i‘s-egjj:ve;fby Nightingalej.'l
Harris, Miller, and Craik9 é.:i.-scuss the éffect of these factors on
crystallite orientation. A brief discussion of these factors will be
given here.

Artificial graphites are generally manufactured from a mixture of
a granulated, carbonized filler - such as petroleum coke or lampblack -
and a vilscous binder with a high carbon-to-hydrogen ratio - such as
coal tar pitch. The binder-filler mixture is formed under pressure
into “billets either by molding into a form or by extrusion through a
die. The raw billets are then converted to graphite by heating.

Each grain of filler material contains meny regions of partial
gtomic ordering - incipient crystallites - which, after graphitizatiori,
become true crystallites.? & graphite crystallite is made up of layers,
or "basal planes,"” each of which -.constitutes, in essence, a single
large aromatic molecule.l9 {See fig. 1.) Bonding within each basal
plane is covalent with a bond energy of 150 k‘cal per mole; bonding
between basal planes is due to van der Waasls forces and the bond energy -
is only 1.3 kcal p‘er mo:i.e.'l:L Tt is obviously much easier to bresk bonds
between basal planes than w;i'thin them. LConsequently, when filler
material is granulated, the grains tend to form in elongated shapes
with their major faces parallel to the basal planes of their surface
cx:y's*i:.sa,ll:i."c,es.9 In general, the smaller a grain is the more likely it

is that most of its crystallites will have similar orientations,
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Figure l.- Crystal structure of graphité.




although the degree to vwhich this is true depends upon the nature and
source of the filler material.9

When the filler-binder wmixture is formed into billets under
pressure, the dblong_fillerlgra;ns experience torques Which.tend to
orient them preferentially with respect to the direction of applied
Porce. When the forming process is molding, the most stable orienta-
tioﬁ of the grains - and, hence, of the basal planes of their consti-
tuen% crystallites -~ is perpendicularftp*the molding direction; in the
case of extrusion, the preferred oriéntation is parallel to the
extrusion direction.ll

The alignment of the crystallites within each -grain and oﬁ the
grains within a g?aphite body is never peffept,;and thus, althougﬁ oﬁe
direction is preferred;'many cfystéllitesﬁmay’be found .in other
directions.® Theréfore, a completé and wnambiguous déscription of the
degree of orientation oﬁia given?g;aphige must igclﬁ@e the specifica-

tion of the relative mumber?, of crysta;li%es in every direction.

) . :
Crystallite orientation is generally determined experimentally by

means of X-ray diffraction. The principle underlying all X-ray studies

%The orientation of a crystallite is usually expressed in terms of
an imaginary ray normal to the basal planes of the crystallite rather
than in terms of the basal planes themselves, as was done above. This
convention will be used henceforth throughoubt this thesis.

bThe relative number of crystallites in any direction is the
actual nunber in that direction divided by the number in some reference
direction.
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of orientation is that the intensity of diffraction from the basal

a

‘planes™ oriented in a given direction is proportional to the number

of such planes and, therefore, to the relative number of erystallites
in that direction. A number of X-ray technigues have been pro-

1-k,7,13,1%

b *

posed. The principal téchnigue ﬁpilized'in this study

is that of Bacon,2 but ‘some data were dbtained.by.the:method of Ali,
Fitzer, and Ragoss;l
For convenience, this study was limited to molded’ graphites, but

the method of describiﬁg orientation which is QEveIopéd showld be

4 . i
applicable to extruded graphites as 'well.

&The basal planes of graphite are frequently designated in X-ray
diffraction work as (002) planes, the numbers in parentheses being
Miller indices. Both designations are used interchangeably in this
thesig. The diffraction of X-rays from the basal planes is commonly
referred to (002) reflection, although this use of the term "reflection"
is not rigorously correct.



SURVEY OF PREVIOUS WORK

The earliest systematic study of the orientation of crystallites

in graphite was reported by G. E. Bacon.2

The experimental arrangement
for the method of Bacon is illustrated in figure 2. The incident X-ray
beam, Xx, islﬁorizontal; fﬁe X-rays are unfiltered CuK radiation. The
graphite specimens are thin Tlat plates approximately 2 X 1 X 0.1 cm,
éut with their 1 cm edges parallel to the molding axis, P. Fach
specimen is aligned so that its 2 cm edges are horizontal and perpen-
dicular to the incident X-rsy besm, and its 1 cm edges are tilted from
the vertical;, =z, by 130.3

The graphite specimens sre thin enough to allow transmission of =&
significaent fraction of both the diffracted and undiffracted components
of the X-ray beam. The diffracted X-rays form a cone with a half-angle
of 26° which is twice the Bragg engle for the (002) reflection using Cuk
radiation. When the diffracted X-rays strike the photographic film -
which is perpendicular to the undiffracted X-ray beam and, thus, to the
axis of the cone - they form a circular image oOf varying density on the
film. The density of the image at any angle, £, is proportional to the
number of crystallites at -some related orientation within the specimen.
The film density is determined at each angle of interest with a micro-

densitometer.

2Mhis tilt is necessary so that crystallites with orientations -of
0° to 13°, with respect to the forming axis, can be detected. A
theoretical discussion of this point is presented in the section,
"heoretical Analysis."
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The main'ﬁheoretical'prpblem of tHe Bacon method is the determine-
tion of the'relationshiﬁ between angles on the £ilm image and the -
orientation of crystélliﬁes Within_the'graphite specimen. Bacon
assumed that the=crystallites in artificial graphites are symmetrically
distributed about the forming axis. Such a aistribution would mean
that the only parameter essential to a descriﬁtion oﬁ the orientatibn
of the crystallites is.the angle, ¢, which their normals meke with
the forming axis. Based on this assumption, Bacon derived the follow-

ing equation relating ¢ and &:
cos § = cos® T7° - sin® 77° sin & (1)

For convenience gn expressing the angular distribution of crystal-
lites,. Baéon defined an orienmtation function 1(¢) equel to the
relative number gf crystallites per unit solid angle sbout the incline-
tion angle ¢. I{¢) is usually normalized so thab I{@) = 1 when
¢ = 0. In practice, I{@) is teken as the relative diffraction intensity
which, in the case of the Bacon method, is assumed to be equal to\

(@) /D(0), where D(¢) and D(O) are the film densities abt ¢ and 0°,
respectiﬁely.

The Bacon method of determining crystallite orientation has the
advantage that withnene specimen and one exposure it furnishes a con-
timuous, quantitative mepping of I(¢@). The principal disadvantage of
the method is that it does not yield diffraction intensities directly

and immediately, bub requires the intermediste steps of film processing



and microdensitometry. These steps are not only inconvenient, but also
congtitute possible sources of error.

Ali, Fitzer, and Ragossl contend that a plot of I(¢) versus ¢ in
polar coordinates will alwaeys be elliptical within experimental error.
Based on thié contention, they have propbged that intensity mea surements
need be made at only two angles, 0° and 90°, since the value of I(¢) ”
for any intermediateyaﬁgle can be calculated from the polar equation

»x an ellipse

1(d) - 1(0)1(90) (2)

F(0)? sn’f + 1(50)2 cosPf ] M2

The experimenyal procedure proposed by Ali, et al., is as follows:
Two flat plates, or discs, are cut so %hat one is parallel and one is
perpendicular to the forming axis of’ the graphlte to be- studled Each
specimen Is mounted in the flat speclmen holder of an X-ray diffracto-
. eter and, using a coanter-gonlometer, the (002) pesk of each is
determined and recorded on a strip chart recorder The value of 1(90)
is taken as the peak height of the spec1men who;e face is paraliel to
the forming axis (@ = 90°) lelded by’ the peak height of thé perpendlcu—
lar specimen (¢ = 0°). The value of I(0) . 1is taﬁen ag one.‘ If
intermediate angles are to be iﬁvesfigated, 8 separate'specimen mist’ 1
cut for each.

The method of Ali, et al., is quite simplé'if only two spécimens

need be cut and studied. However, this will be the case only if the

distribution of crystallites in the graphite to be studied is, in fact,

10



both symmgtrical'énd elliptical about the forming axis.}'Uhfortﬁnately,
Ali, et al., present only limiﬁg@ égperiméntal‘éubsééﬁti;tion o%'their
assumption and they give no qﬁan%ipative re;ults.,

Harris, Miller, and Craikg'prégéﬁt éélar,élgfs of (%) versus g
for four graphites, and in no case ié'the‘diséributioﬂ elliptical. How-
ever, all four grasphites were extruded'fatheg than qolded‘agd Fhree of
them were specially prepared-in the laboratory rather than commercially
ménufactured. These‘results, therefore, do not rule out the possibility
that molded commercial graphites possess elliptical distributions. It
should be noted that if Ali's assumption of = syﬁmetrical, elliptical
distribution is correct, then the normalized value of I(90) constitutes
a single parameter which, in conjunctioﬁ with equation (2), provides a
complete specification of” the spatial distribution of graphite crystal-
lites.

An alternative cne-parameter equatién that hes been proposed by

. a
several investigators 152’7’8’18

1() = cod (3)

This equation works fairly well with pyrolytic graphites, but it
usually does not work well with molded graphites because they generally
have some crystallites with their normals at 90O to the molding axis.

Equation (3) assumes that I(90) = 0.

aActually, Bacon proposed the form I(¢) = siﬁM¢ which was intended
to be applicable to extruded graphites. The direction of maximum
orientation of molded and extruded grephites differs by 90°.
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Pappis, et al.,l3 have proposed a variation of equation (3) that

overcomes this problem.

(@) = A codlg + B (%)

Uhfortungtely,-these investigators also fail to present any quantifative:
substantiation of their equation with experimental data. The equation
is still of considerable interest, however, and should be compared with
the ellipse proposed by Ali, et al., to see if either is clearly superior
to the 6ther. Equation (4) can be regarded as a two-parasmeter equation '
since, by proper normalization of I(¢)3 we nmgy let A+ B = 1.

Several investigatorsi’g’10’12’15 have proposed Orientation param-
eters which at%empt to specify the degree of orientation of a graphite
with a single nuwber. Such numbers, although useful for some purposes,.
do not describe the spatial distribution of" crystallltes Therefore,
they will not be dlscussed further here.’

The assumption of a symmetrical distribution of crystallites aboub
the forming axis haé been meﬁtio;eé repeétedly‘in ﬁﬁis éection and in
the Introductlon, and it is elther stated ér 1mp11ed11n most papers omn
graphite orientabion. 1’2 9’10’12 13’15’16 Cavin, lO however, has

{

"recently veported experlmental results Wthh contradlct thls assumptlon
; ;l"r

i ’

In his investigation, Cav1n‘observed | shlft of the symmetry axis from
the forming axis by as much as 129, The experlmental technlque used by

Cavin was a form of a pole® figure technlque employlng & Schultz

& "pole" is an imaginary normal to a crystallographlc plane; a
(002) pole is thus identical to the basal plane "normel" utilized
throughout this thesis.
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preferred-orientation apparatus.l'? ' ‘The basgis of this, d'az‘ld' -all' pole
figure technigues, is the d.eterminafio’n of jj;he diffracfj;én intensity not
only as a function of the angle of inclinat:'-.on,, Qf,‘ .'Wi‘bh regard to
some reference axis‘a but a.il:so' as a function of the axiwuthal angle,

b The methods

1, lyiné in a plane perpendicular to the reference axis.
by which pole figures are obtained and interpreted are considersbly
more complex than the methods px:oposed by Bacon and Ali, et al.
Wevertheless, if the‘.methods of Bacon and: Ali are inadeq_ua:be_ to
determine completely cxystallité distributions, the use of a pole
figure technique may be necessary. One purpose of this study was to
determine ‘whether the Bacon or Ali techniques can be modified so as
to detect and account for possible -shifts in the symmwetry axis and,

thus, to yield a complete description of the distribution ofAcrys:hal-'

lites in molded graphites.

E"In Cavin's study, the referér;ce axis was the forming axis.
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EXPERTMENTAL TECHNIQUES

The methods of Bac:on2 and All, Fitzer, and Ra,g;oss:L were employed
exclusively in this study. The vast majority of the data were %taken
using the Bacon method, but a few checks were made with the Ali method
because of its simplicity. Each -of these methods is outlined in the
previous section. This section will present details of the methods as
employed in this study.

The X-rey instrument utilized for both the Bacon and Ali methods
was & General Blectrie Co. ¥RD-5 with various accessories. The X-rays
were nickel-filtered CuKa radiation. The pga.k tube voltage was 50 KV.

The experimental apparatus used for® the Bacon method was a trans-

PR Y
L

mission Taue camera with Q.QEO—{;'.nch-:di:ameterfpinhol‘e‘ col];imato:; and
a k- by 5-inch film cassette. | Te'r; grades of graphite we-;re investigated
by the Bacon method. Three speci;ner}s o%f’e'ach grade were stu!died.a
The grades studied ave listed in E;a,b;{_a 1 along ith certain of their
properties.

The specimens, which were 2.5 X 1L X 0.1 cm, were mounted in a
specially constructed holder Tfk%iéh pemi-t‘ted: them }to be oscillé.ﬁed
horizontally in a plane normsl to the incident X-ray beam. The

oscillation increased the number of grains' :T:I;radiated:. The period of

oscillation was 1 minute and the amplitude was 0.75 inch. The speed

%Oonly two specimens each of grades ATJ and 2D8D were available.

1k



TABLE 1

SOME PROFERTTES OF GRAPHTITE GRADES STUDLED

8Gas purified.

bpetroleum coke.

Clampblack.

Graée Filler -:Density, gm'cgfsj lMﬂiiﬁg? %;ain
AT pcP 1.7k 0.15°
AT (G.2.)% | PC 1.72 0.15.
| 2mm ¢ 140 0.15'
9RL PC 1.68 0.08
34995 PC 1.63 : 0.08
k007 PC 1. 70~ 0.20
131 1BC 1.66 0.15
1 2p8p LB 1.k0 0.18
CDG " PC and IB 1.49 0.4
CMB - PC and IB ' 0.08

1.79

15



16

of oscilletion was kept constant so that a}l grains irradiated were
exposed for' the same length of time. . Tﬁe expéspre E;méfwas 1 hqﬁr.
Specimens of grade CDG, which is éome%ha% coarse graiged, were exﬁosed
in two steps of 1/2 hour eachl After the fifs% 172 hour, the specimens
were raised in the holder so that more gralns would be exposed

The film used was Kodak Type M 1ndustr1al X ray fllm. The Tilms
_ were individually processed with Kodak Liqui% X-ray Developer and
Replenisher and Kodak Ligquid X-ray Fixer and Replenisher. The
manufacturer's processing instructions were followed throughout.

The density of the processed film was de@erminéd with a Joyce Loebl
dual-béam.microdensitometeru The films were mounted on a special
rotary stage with angular markings to 0.1°. The stage was then rotated
to each desired value of £ and radial scans of the cireulsr diffrac-
tién image were made. The result of each such scan was a trace, on
ruled paper, of the density versus tan 0g, 2 Typical traces are shown
in flgure 3.

Bacon stated in his paper that the integrated density - the area
under the diffraction pesks - is proportional to I(¢). Ali, et al.,
and Guentert contend that the peak height and pesk area are proportional
to each other and to I(¢) and that the height is preferable to the
area since it is easier to measure. Actually, the height and area are
not always proportional to each other as is shown in table 2 iﬁ which

the ratio of the normalized pesk heights and peak areas is listed Tor

%9 'is defined as the angle between the incident X-ray beam and the
basal planes of the diffracting crystallites. The angle between  the
diffracted and undiffracted components of the X-rays is 26.



‘Optical
Density

Optical
Density

Figure 3.~ Typical X—ray‘diffractibn ﬁeaks.

Tan 26_

17



18

TABLE 2 -

RATIO OF NORMALIZED PEAK AREAS TO PEAK HEIGHTS

TOR -GRADE ATJ
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the two specimens of gréde ATJ; It can be seen that the ratlo is not
unity and, in fact, is not even constant. The wvariations are too
large and systemmatic to be due entire1y1to experimental error.

The problem of ascertaining the best measure of I(@) is compli-
cated by the following facts: (1) The size and shape of a diffraction
peak are influenced by other factors in addition to the number of
crystallites causing diffractien (see, for example, ref. 5). (2) A
molded artificial grephite is not a homogeneous materisl. Tt has at
least two phases - binder and filler - and more than two phases if two
or more fillers are used. The overall diffraction peaks oﬁtained are
the sums'of the peaks of the individual phases. This problem is treated
in some detail by Noda and Inagaki.l2 (3) The abscissa of the "
diffraction peaks obtained from Bacon films is +an 26 rather‘tham
2.

The resolutioﬁ of this problem was beyond the scope of this study.
Furthermore, it was felt that a comparison of the resuits obtained
using peak height and peak area data would be of interest. Therefore,
both were measured in .This investigation.

The 28 films cbtained from the 19 grgdes of.gréphite studied were
scamed in 10° increments of ¢ from O° through 5500} In addition,
one g;ade - ZBE -~ was reresd évgry'2.5° of‘ug. Thg heights of the
diffraction curves were cbtained by‘subtraéﬁing the_averagé'backg&ound

height from the average height of the pe%k c}ests, both of which were

.
read directly from the ruled paper.



Three grades of graphite - ATJ, 208D, and CMB - were investigated
by the Ali technique. The ‘approximate dimensions of the specimens used
were 2-3/% x 1 x 5/16 inch. For each specimen, the value of 26 was

. . s a
varied contimuously over about a 59 range encompassing the Bregg value.

‘The variztion was extensive enough to encompass the entire peak as well
as some background on either side. The peak area was determined with a
planimeter and the height was taken as the peak deflection minus the
average of the background deflections.

The peak heights measured in this study have an uncertainty of
1 to 2 percentb except when a dust speck or filﬁ blemish caused a
spurious deflection at or near the peak crest. In such cases the
uncertainty is estimated to be about *5 percent. . The uncertainty in
peak areas is considered to be greater than in peak heights because of
the increased effect of uncertainties in the baseline. Errors in
determining the baseline have a linear effect on the uncertainty of the
peak heights but a much greater effe;t on the uncertainty of the peak
areas because of the divergence of the diffraction peak at its base
(see fig. 3). Dust specks and film blemishes are also troublesome when

areas are being determined. ALY such spurious deflections were faired

&The goniometer dial of a diffractometer generally reads values of
28 rgther than ©. The Bragg velue of 2@ for graphite with Cukm
radigtion is about 26.50; the value varies somewhat with crystallite
size and degree of graphitization.

bThe packground and peak crests could each be measured to within
about half of a line on the ruled paper. Most of the peak heights
obtained lie in the range 50 to 160 lihes.



21

through before the areas were determined, but some additional pncertainty
was introduced. Overall, the planimeter integrations are~esfim§ted to
be uncertain to gbout 2 to 3 pércgnt.

Many factors éontribute to the uncertainty in the anguler orienta-
‘tion of the specimens, but the major source of uncertainty unguestionably
was the cutting process. The Bacon specimens were cut in two steps:
‘First, l-inch cubes were sawed from the biligts as received g£ this
leboratory. The cubes were cubt with an angular accuracy of about 20
or better and the pressing direction was clearly maﬁked; The specimens
were then cut from the cubes by the Speer Carbon Company under_qpntract
to NASA. No estimate of angular uncertainty was furnisﬁed by Speer. A
value of 2 percent will be assumed since the final cutting of the speci-
mens should not have been any more inaccurate than the sawing of the
cubes. All other sources qf error contributed less than 1%, Thus, the
total angular error in the Bacon specimens should be less than 5@. ‘The
Ali specimens were cubt in one step at this laboratory; their total

angular uncertainty is mo more than 2°.



THEORETICAL ANATYSIS -

In this section we will consider the-impxiéatiphs'bf assuming that
the distribution of crystallites in molded graphiteg is symmetrical
about some axis which is not necessarily coincident with the molding
axis. We Wi}l then at%empt to devise a tecﬁnique by which (1) the
gpatial distribution of crystallites in a given graphite can be
completely determined from a properly obtained Bacon film imesge, and
(2) the disbribution so determined can be expressed, completely and
unambiguously, with a minimum nuwber of parameters,

Assume that the graphite specimen shown in figure 2 possesses &
symuetry axis having some unspecified direction. Let S be a unit
vector co;ncident with the symmetry axis. In the coordinate system

shown in figure 2

s
il

cos gsg 4+ COB 583 + cos 7S£

Zsi + ms,j + nsk (5)

where ag, Pfg, and 7Yg are tThe angles which the symuetry axis makes
with the x, y, and z coordinates axes and IS, Ty and ng are the
corresponding direction cbsiﬁes.

Let ﬁ be a unit vector normal to the basal planes of some cxrysbal-
lite of interest. TIn terms of the direction angles Ctygs ‘BN, and TN

and the direction cosines ZNf mN’ and: hN



=0
H]

LAl ~ T L % My
cos ol + cos Pyj + cos Yk

ZNE + mN3 + an,; (6)

The scalar product of the unit vectors ﬁ and § is s by defini-
tion, equal to the cosine of the angle between them. But the angle

between N and § is the orientation angle ¢ Thus,

N+ 8 = Iylg + myng + nyng -
IT
= cos ¢
From the properties of direction cosines, we know that
o 4my” + oyt = 1 (8)
2 2 2
17 + mg + ng =1 ) (9)
If we solve e;;uation (8) for my and equation (9) for ng, we get
\ T2
1:11N=i\/l-lNe-nN (10)
_ o+ 2 2 :
nS-—Vl-?.S - mg (11)

We may edopt the convention that. the vector g always has an upward
component so that equation (11) becomes positive only.

The condition for (002) diffraction to occur is that the angle
between the basal planes and the ilncdiden!t X-ray,beam must be the tBragg

angle for the radistion used. The Bragg angle for (002) diffraction

a5



using CuKe radiation is 13.25°, If the basal planes make an angle of
13.25° with the incident X-ray beam, their normel must mske an angle
.0of edither 76.750 or 105.250, depending on whether the kecomponent of
the normsl is positive or negative. If we require that it be pogitiye,

then

' o]

o = 76.75 (12)
Tt cen be shown from consideration of spherical coordinates that

ng = sin T6.75 sin § (1%)

Tf equations (10) through (13) are combined with equation (7Y, the’

following general equation relating @ and & is obtained:

cos.¢.= ES cos 76»750‘i mS 812.76-750’d:l - Sin2§

+ \[i - 152~- mse sin 76.750 sin & (1h)a

Note that egquation (L) CONTEINS THO UNKLUWL puraius v, g and

mg, the direction cosines of the symmetry exis with respect to the x-
. ]

and y-coordinate axes. Bacon, 1n.assum1ng that the symmetry axis is

The second term on the rlght-hand side of equatlon (14) is nege-
tive when 90° < & < 2700, otherwise it is positive. - This results from
the fact that for the diffracted beam t6 strike the left helf of the

£ilm, the y-component of the crystallite mormal vector must be negative.

ol



coincident with the forming axis,  in effect assumed that g = 103h25°
and BS = 900. This is equivalent to the assumption that

2
lq = -cos 76.75 and mg = On If these values of lg end mg are

inserted into equation (13), the result is
cos @ = ~cos= TT° + sin® T7° sin & (15)

Equation (15) is essentially the eguation derived by Bacon; it differs
from Bacon's- equation only in the sign of the terms on the right. Since
we are only concerned with values of ¢ petween 0° -and 90°, We mey

~

require cos ¢ to be posgitive and rewrite equatioﬁ (15) as
cos ¢ = |cos® T7° - sin® 77° sin & (16)

Equetion (16) results in all values of ¢ from ¢° to 90° being
represented on the £ilm image as is indiéated'schemapibally in figure
¥(a). Many values of ¢. are représented at severalfﬁointé'on the ~
£ilm. Figure ¥(b) is a schematic representation of the limiting value.
of ¢ and & if the specimens are aligned verticelly rather than
tilted by'lﬁo, as specified by Bacon. These values result from apply-
ing the condition that g
(14). Tt is obvious from figure M(b) that crystallites with orientation

= 900, and therefore, IS = 0 to equation

*angies between 0° and 130 would not be detected if the specimens were

aligned vertically.

%Bacgn took the Bragg angle to be 150, end thus Ig would be
- cos T[ . .

.25
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Figure 4.- Limiting values of £ and é.
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If Bacon's assumption of the coincidence of the symuetry and form-
ing axes.is incorrect, two difficulties arise: (1) the values of ;S
and mg are not known a priori, (2) not all inclinations, g, are

) R R .
necessarily represented on a given film iwmage. These.d;fflcultles car

be overcome, at least in principle, if a valid closed-form expression
.t

relating I and d is known and if sufficient experimental data are

‘ +

available. The procedure involved will be illustratedTbjicbnsi?ériﬁg

equation (%), which is TI(¢) = A cosMd + B. -Note that ¢ appedrs on

through its cosine. Equation (14) gives cos ¢ as a function of the ' .
- L ) '

parameters Io and m, and the veriable £. If equations (%) and (14)

are combined, we get

T - A(z;s cos T6.75° * mg sin 6.75 \[L - sin'§

+ \F_ 132 - mS2 sin T6.75° sin E)M + B (17

Equation (17) contains five unknown perameters - A, B, M ig
and mg - which can be determined, in principle, if five or more pairs
of experimental values of I end E are available.® Appendix A
describes a least squares method for solviﬁg nonlinear equations such
as equation (17). Appendix B gives a listing of a computer program and

related subpzégrams by means of which the solution can be carried -out.

This method and program were used in this investigation.

®The success of solutions of equation (17) and the subséquently
derived equation (19) is dependent on the number and accuracy of the
data points available.
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Equation (2) can also be combined with equation (14) td yield an
equation similar to equation (17). This can be seen more éasily by

rewriting egquation (2) as

T = =b : (18)~

[&2 + (p? -.ae)coseyb' ]l/2

This expression may be inserted into equation (14) to yield

ab

[a2 + ('be - a2)(282 cos 76.75°

£ mg sin 76.75° \JL - sint

: 1/2 '
+ \ﬁ - ZSE - mSE sin 76.75° sin g]i (19)

I=

Equation (19) can be solved by the same least squares method, applied to

ec‘luation (17) to yield the best values of a, D, lg, and mg. The

requisite computer progrems and subprograms are listed in appendix B.
Once the parameters in either equation (17) or equation (19) have

been determined, the value of I at any angle ¢ can be calculated

(using eq. (1¥) to relate ¢ and t). Thus, it is not necessary that

< -
The parameters I{0) and I(90) have been replaced by a eand b,
respectively, for the sake of generality. We have no Jus’clflcatlon for

attaching more weight to experimental values measured at 0° and 900 then'

to values measured at other angles.

28
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a particular angle be studied experimentally, or even that it be
represented on the film image.

The number of paramefers actuslly specified need be only four in
the case of equation (17) or three for equation (19), since, by proper
normalization, A+ B =1 and &a = 1. The necessary normalization is
performed in the- progrems listed in appendix B. Equa:binons (17) and (19)
can be compared by applying each to several sets of experimental data
and comparing their wvariances.

The angle by which the symmetry axis is displaced ‘from the molding
axis can be. obtained by first representing the molding axis by the unit

. ”~
vector P where

b

o o~
cos 105 i + cos 13 k,

>
il

—cos TT° T4+cos 1%k |  (20)

A

and then teking the scalar product of g and P

(9294
L]
. Hd>
I

—IS cos TTO + \ll - 182 ',mS2 cos 130

I

cos B ‘(21)

The arcosine of cos B is the desired displacement angle, o.



RESULTS AND DISCUSSION

The data from the 28 Bacon-method diffraction films were reduced
using equations [(17) and (19). The least-squares values of the various
- parameters contained in these equations vwere determined for each set of
data using the technique outlined in appendix A and the computer<programs
and subprograms listed in appendix B. fhe values of the parameters
which were computed are presented in table 3. Also presented in this
table are the values of &, the angle between the symmetry and reference
axes,b and 02, the variance of the data.-

Three important -observations can readily be made from the results
presented in table h: (l) the values of the parameters obtained using
peak heighbts to represent I(¢) generally do not agree with the values
based on peak areas, even within experimental uncertainty. (2). The
values of the parameters c?mputed using equation (1L7) frequently do nob
agree with the 'values obtained using equation'(l9)m (3) The values of
5, in many cases, are too large to be accounted for by experimentel
error. Fach of these pogete and.others related to them ﬁiii be discussed

in thig sectiocn.

aThe values of the parameters a and A are not presented in
tahle T since the data and results were normalized so that a =1 and
A =1 - B. Although equations (17).and (19) were solved in terms of
the directicn cosines %S and  mg, the direction angles ag and fg
are easier to visualize; therefore, these angles rather than the
dlrectlon c051nes are presented in ‘table T.

Y

bThe reference axis was the moldlng axis Wlthln the limits of

axperimental error



TABLE 3

LEAST SQUARES VALUES OF ORIENTATION PARAMETERS

(a) Equation (17) - Peak Area Data

Grade Sgiﬁ%lggn B M | ay, deg| By, deg | B, deg o x 10t
ATT 1 0.52 1 2.8 | 114 g1 11 2.1
ATT 2 0.52 | 2.6 | 122 92 19 1.1
atg (@.p.)? 1 o.b2 | 3.1 | 122 8¢9 19 2.2
ATT (G.P.) 2 0.4 | 2.9 | 128 90 15 2.7
AT (G.P.) 3 o.42 1 3.1 |11k 91 11 3.6
2BE 1 0.35 | 3.0 | 111 88 8 19.5
2FR 2 0.31 | 3.3 | 103 8L 6 1.7
2BE 3 0.33 [ 3.2 | 1lo1 9L 3 8.1
9RL 1 0.52 | 2.7 | 106 9L 3 2.
ORL 2 0.50 | 2.6 | 120 8o. 17 2.2

| ORI, 3 0.52 {2.5 | 122 87 19 2.0
3hkgog 1 0.59 | 2.3 | 117 87 15 2.6
3hogs 2 0.52 2.5 | 108 88 5 2.
34905 3 0.52 | 2.6 | 111 93 8 2.9
hoo7 1 0.50 {2.9 | 110 100 12 . 2.2
Loo7 2 0.51 | 2.5 | 116 78 19 3.0
Loo7 3 0.4z 2.8 | 112 90 9 2.7
131 1 N.8.P [ N.g. | w.s. .S. N.S. W%.S.

1 131 2 0.81 | 2.6 |1k 95 he 1.9
I3L 3 N.S. |¥N.S. | N.S. N.8. | ¥.s. N.S.
2p8p 1 N.S. |N.S.|N.S. N.s. |N.S. N.S.
208D 2 N.S. |WN.S. | H.S. N.S. |N.S. N.s.
G 1 0.61L {3%.0 }107 78 13 3.1
CDG 2 0.60 12.5 } 107 102 12 2.7
CDG 3 0.59 {2.6 |128 87 25 2.6
CMB 1 0.66 (2.2 |12k oh 22 3.6
CMB 2 0.67 2.1 | 120 88 17 6.3
CMB 3 0.65 {2.3 |117 90 1h 9.4

fG3as purified.

o solution.
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TABLE 3.~ CONTINUED

(b) Equation (17) - Peak Height Data

Grade Sﬁﬁ;ﬁgﬁn B M | ag, deg | Bg, deg | 5, deg | 02 x 10t
ATT 1 0.48 | 2.6 103 90 1 1.1
ATT 2 0.51 | 2.7 109 9l 6 0.7
AT (G.P.)E 1 0.41 | 3.0 111 | 89 8 1.8
ART {G.P.) 2 0.43 | 3.0 108 90 5 2.6
ATT (G.P.) 3 0.38 | 3.0 107 90 4 1.6
2BE 1 0.3% |} 3.0 10k 88 2 21.5
2BE 2 0.29 | 3.4 o8 8l 8 L2.0
2BE 3 0.31 | 3.2 95 91 8 7.8
9RT, 1 0.48 | 2.6 97 90 6 1.5
9RL 2 0.4k9 | 2.5 109 88 7 1.1
9RL 3 0.51 | 2.6 108 87 T 1.1
34995 1 |0.56 |2.5 101 87 b 2.7
34993 2 0.50 | 2.7 97 87 7 1.7
34993 3 0.48 la.7 101 91 2 0.6
hooT 1 0.4% | 3.0 102 98 8 1.8
k007 2 0.48 | 2.6 106 79 12 1.3
kooT 3 0.41 3.1 101 8o 3 1.5
I3L 1 0.86 2.2 109 86 8 1.3
131 2 0.87 {1.9 102 91 2 1.1
31 3 0.86 {1.7 115 87 12 1.4
2p8D 1 0.83 | 1.9 116 88 13 1.8
2D8D 2 0.86 1.7 113 90 | 10 1.7
cDG 1 0.57 {2.5 99 8 | 11 1.2
cog 2 0.57 {2.9 96 | 100 i2 1.1
CDG 3 0.64 | 2.3 110 86 9 3.3
CMB 1 0.67 |2.4 108 gl 7 2.
CMB 2 0.63 |2.h4 107 88 4 1.k
CMB 3 0.62 2.7 105 90 2 1.8

8Gas purified.
No solution.




TABLE 5.- CONTIWUED

{e) Equation (19) - Peak Areas Data

Grade Specimen b |a, deg |B_, deg |5, deg |02 % 10"
AT 0.5L 109 91 7 k.2
ATT 2 N.S. N.S. N.S. - W.8. N.S.
ADT (G.P.)E 1 N.S. N.8. N.S. N.S. N.S.
ATJ (G.P.) 2 N.S. N.S. N.S. N.S. N.S.
ATT (G.P.) 3 0.40 108 - 91 7 17.1
ORE 1 0.37 104 88 2 35.9
2BE 2 0.31 96 8h 9 21.6
2BE 3 0.32 95 91 8 25.1
9RL 1 0.51 101 g1 2 . 6.0
9RL 2 N.S. ¥.S. N.S. N.S. N.S.
ORL 3 N.S. N.S. N.S. N.S. N.S.
3499g 1 0.59 112 87 10 5.1
34905 2 0.52 102 88 2 6.8
34903 3 0.52 105 93 L 8.3
hooT 1 0.50 105 100 11 6.7
koot 2 0.52 111 77 16 7.0
hoot 3 0.4k 105 90 2 12.1
L31 1 N.S. N.g. N.S. N.S. N.S.
L3l 2 N.S. N.S. N.S. N.S. N.S
131 3 N.S. N.S. N.S. N.S. N.S.
208D 1 N.S. N.S. N.S. N.S. N.S.
208D 2 N.S. N.S. N.S. N.S. N.S.
cDG 1 0.60 105 T7 13 3.7
DG 2 0.60 103 102 12 k.6
CDG 3 N.S. N.S. N.s. N.S. .S,
CMB 1 N.S. N.S. N.S. N.S. N.S.
CMB 2 0.67 115 87 13 6.7
CMB 3 N.S. N.S. N.S. N.S. N.8.

8Gas purified.
bNb solution.
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TABIE 3.- CONCLUDED

(d) Equation (19) - Peak Height Data

Sﬁﬁ;@gﬁ“ ag, deg | By, deg | B, deg |a® x 10*
1 0.48 o8 90 5 8.1
2 0.51 10k o1 1. 5.6
1 0.h2 105 90 2 11.0
2 0.43 103 90 0 10.6
3 0.39 100 9L 3 15.6
1 0.35 o8 88 6 38.1
2 0.28 ol 83 11 21.6
3 0.30 92 91 11 25.3%
1 0.47 9l 90 9 8.6
2 0.49 103 88 3 8.5
% 0.5L 103 87 % 6.4
1 0.55 98 87 6 6.2
2 0.49 oL 87 9 6.2
3 0.48 o7 91, 6 7.6
1 0.45 98 98 10 6.8
2 0.49 100 78 12 8.1
3 0.40 96 88 7 11k
1 0.86 108 86 T 1.3
2 0.87 101 91 2 1.1
3 0.87 111 88 9 1.5
1 0.83 112 88 9 1.9
2 0.87 110 g1 7 1.8
1 0.56 96 9 13 L.5
2 0.55 ob 100 13 2.1
3 0.64 107 86 6 4.3
1 | 0.67 105 oL 5 2.8
2 0.63 103 88 2 3.0
3 0.61 102 90 1 2.7

8@as purified.
o solution.




The Tact that the peak height and peak area data generally do not
yield the same values for the various orientation parameters conflicts
with the assumption of Ali, et al.l, and Guen.tert7 that they -are
equivalent measures of I(¢). Although this investigation did not
attempt to resolve the guestion of which is, theovetically, the betber
measure of I{{), the peak height data have been shown to be more
consistent. For example, every one of the 56 cases listed in table 3
which involve pesgk height data coﬁverged to a valid solution, whereas
17 of the 56 cases involwving peak areé data failed %o converge. Also,
the average variance of the cases involving peak helghts is less than
the average for the cases involving areas by a factor of 0.8L.2

Similex comparisons can be used to show that eguation (17) yields
more consistent results than does equation {19). All but four cases
involving equation (17) converged, but 13 cases involving egquation (19)
did not converge. The average varismce using -equation (17) is only
0.3l of the average variance using equation (19). Furthermore, the
individual variance for equation (17) is smaller in every case except
one, for which it is equel to that obtained with equastion (19).

These results indicate that the form of equation proposed by Pappis,
et al.lB, is better able to describe the spatial distribution of
graphite crystallites than is the elliptical form pfop?sed by A};,

et al.l.

8The average variasnces mentioned here and in the next paragfap? do
not include the variances of specimens No. I and 2 of grade ZBE, vhlch.
are believed to be atypical. This point will be discussed later in this

secktion.



Perhaps the most significant observation to he made from table 3
is that in well over half of the cases the value of & i1s greater than
50, which is the estimated meximum angular error. In several cases, ©§
is more than 10°. Thus, significant angular differences between the
pressing axis and the expe;imentally determined symmetry axis exist -in
many of the specimens investigated. This éonrdboxates the finding of

3and.contradicts the assumption of Bacon2 and, others.1’9310312’15’15’16

Cavin

The importance of experimentally determining the symmetry axis and
using it, rather than the pressing axis, as the reference axis for
specifying the orientation angle, ¢, is illustrated by figure 5. In
this figure the peak height data of £ilm No. 201 are plotted in' the-
following two ways. In part (a), @ -is referred to the pressiné axig;'
in part (b); ¢ is referred to- the cpmputed symmetr§ axis. it is
obvious that the data points ére much less scattered wﬁén~ ¢ is
refgrred to the symmetry axis.

It is noteworthy that & dis generally not pqnstantsamong ‘the three

specimens of each grade of graphite. These variations in & are some-

what confused by the fact that for each specimen as many as four vélues~

: : ~

of © were obtained which generally differ awong thémselves.:'ﬁﬁb most

consistent values of the warious parameters appear to be those‘dbtainei

vy

from equation (17) using peak heights. If this set of values of ,é is
considered, angular differences of 50 or more exlst among the specimens
of 6 of the 10 grades studied. It appears that the symmetry axis of a
graphite body does not necessarily have the same direction at all points

within the body. PFurthermore, the degree of orientation was also
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Figure 5.- I$¢ wvs. ¢ for graphite grade CDG.
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found to vary throughout a'graphite bédf'since the parameters b, é;
and M generally vary some%hat among éhe spe;imens with;ﬁ a given
grade. It is not known why the direction of éhe Symmetry axis and the
degree of orientation vary within a graphite bédy, but the anéwer '
probably involves an uneven distribution of forces within the body
during the forming process. Unfortunately, the positions of the
specimens within the body were not noted and, thus, no patterns regarding
the variations can be,;scertained.

Two of the specimens of grade ZBE behaved quite differently from
the other specimens tested in that the variances assoeclated with them
were abnormally high. Furthermore, the deviations between the experi-
mental and calculated values of I(@) (based on the least-squares
parameters) were not random. This is shown in table 4. The possibilit&
was considered that perhaﬁs tpe'values of the orientation parameters
obtained were not the true least-squares values, but rather were
spurious values to which the solutions of equations (17) and (19) had
converged. Convergence to unreasonable'solutioﬁs sometimeé occurs |
with the technique used if the initial values of the parameters cﬁosen
are too Tar removed Trom the correct values. To check for this, the
initial values of the parameters were systematically varied over a
wide range, bubt ne solution other than that presented in table 4 was
obtained. The three films for this grade were then reread at intervals
of 2J5° in ¢ +to minimize the effects of errors in‘the individual data
points. The data were reduced in foto and also using only -every fourth

data point so that the increment of & was 10 . Only equation (17)
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TABLE L4

FPERCENT DEVIATION OF ¥PEAK HEIGHT DATA FOR

GRADE ZBE
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*Yalues of I(¢)CALC are based on equation (17).
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wag. used. The results are presented in table 5. It can be seen that

no significant improvement in the variance isLobtaihéd‘by considering
the additional data points.® Apparently, the distribution- of
crystallites in specimens No. 1 and 2 of grade ZBE is not truly‘symmetrl-
cal about any axis. Specimen No. 2 from the same block Qf graphgte does,
however, exhibit a symmetry axis. The céuse of this behavior is
probably related to the cause of the variation of the airec@ion of

the symmetry axis but is not presently known. In any evént, it aﬁpears
that the resu%ts Por a sample taken at .one location in a %1ock of
commercial graphite do not, necessarily, apply at other %oéations Withi£
the block.

Tt should be clear from the sbove discussion that the Ali method
cannot be expected to give more than a rough approximation of
crystallite orientation, since fﬁis method involves two fairly large
éamples which must, n;cessarily, be cut from different locations, and
also since the method»aepends upon the assumption of an elliptical
disfributioﬁ of crystallites, which has been found not to be correct.

A comparison of Ali measurements of I(90)/I(0) on grades ATJ, 2D8D,

and CMB with the values of Bb for these grades is given in table 6.

As expected, the results do nobt agree very well.

aNote, also, that the values of the various orientation parameters
are not significantly changed by considering the additional daba. points.
Comparison of the values in this table with those in table 2(b)
illustrate the reproducibility of the technigue used.

The orientation parameters b and B are essentially least-
squares estimates of the true value of I(90)/1(0).



TABLE 5

ORIENTATTON PARAMETERS FOR GRADE 2BE USING

PEAK HETGHT DATA AND EQUATTON (17)

‘éﬁsﬁﬁgsn AE, deg B M |ag, deg: Bg, deg 'é, deg )02 X lOLL
1 2.5 |0.34 2.9 105 87 3 18.6
1 10.0 | 0.3k | 2.9 105 88 3 20.7
2 2.5 [0.29 | 3.4 97 8k 8 2.0
o 10.0 |0.30 [ 3.4 97 . 8h -8 2.1
3 2.5 1031 3.2 95 90 8 6.2
3 10.0 10.31 3.2/ 95 90 8 T4

k1



TABIE 6
COMPARTSON OF RESULTS OF ALL AND BACON-METHODS

(a) Peak Ares Pata

Grade 1(90)/1(0), Ali | B, Bacon®

| amy 0.56 0.52
208p | 0.96 1 ws.P
L aB 0.68 | .66

(v) Peek Height Data’

| Grade | T(90)/T(0), Al%: . | B, Bacon®
ATT ‘ 0.57 " 0.50
op8p | 0.99 ' 0.85
(MB ~ 0.52 0.64

a8pverage least squares solution to equation (17)
for all specimens of the grade.

bNb solution.



CONCLUSTIONS AND RECOMMENDATTIONS

The results of this invéstigation lead to the following conclusion

1. Most molded, artificial graphites possess an axis sbout which
their crystallites are symmetrically oriented. However, there does not
have 4o be .a symmetry axis in all such graphites as indicated in this
investigation by grade ZBE.

2. The symmetry akis of a molded graphite .does not necessarily
correspond to the forming axis and, in fact, frequently does not.

%. The deéree of erystallite orientation, the direction of the
symmetry axis, and, in fact, vhether or no%.a symetry axis even exists,
can vary from one location to another within a graphite body.

4. The equation I = A cos' + B is cepable of describing the
angular distfibutién of crystallites about the symmetry axis within the
limits of experimental error. This equatioﬁ s more precise than the
polar elliptical equation proposed by Ali, Fitzer, and Ragoss.

5. The angle, £, on a Bacon diffraction film is relatéd to the

orientation angle, ¢, throaugh the equation
cos § = 1g cos 76.75 % mgy sin 76.75° \‘/1 - sin°t

+- \_/1 - 132— msg sin 76.75 sin &

’

where 1g and mg are the direction cosines of the symmetry axis To

which ¢ is referred.
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6. The parsmeters . B, M, lg, and mg constitubte the minimum
set of parameters necessary to specify completely the orientation of
crystallites in molded, artificisl graphites.

T- The height of a diffraction peak is not necessarily proportional
to the area under the peak. Consequently, values of the orientation
parameters based on peak height data frequently do not agree with the
values obtained using peak area data. The precision of pesk heigﬂt
data is generally greater than that of peak area data with the techniques
employed in this study.

The following recommendations are made for future work:

1. The accuracy with which the direction of the symmetry éxis can
be determined by the technigue proposed in this thesis should be
checked. One possible method would involwve a specimen holder with two
degrees of rotation. First, a specimen would be alignedvas specified
by Bacon, and the diréction of the symmetiry ax¥s wauld.he determined as
described herein. Then<the spécimen would be. rotated s; that the‘
sympetry axis replaced the pressing axié. A secdqd‘Xﬂray fiim would be
exposed and & would be determined.‘ If -the theoretical method
presented herein is valid; 3] should;be quite‘éméli.

2. A comprehensive study/of the factors affegting crystallite
orientation should be undertsken with the twin goélé off(é)'understand-
ing the orientation characteristics of’éxistiné éraphites and (b) -
making possible the manufacture of futwre graphit;s‘wﬁfh a wide range of

orientation properties which are consistent throughout the graphite hody.
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3. A reliable measure of I{{f) should be determingd.
h The prec1szon of the Bacon method should be 1ncreased either

by using a very fine grain film, such a§ Kodak Type R or«by using a

*

moving counter, rather than film, ag the detector. A countéf'deﬁeétor

would eliminate the delay and error caused by F114n prbc“essi"ng and
f A
microdensitometry. An experimental arrangement 1nvolv1ng a counter,

detector which is adeptable to the Bacon method is descrlbed in refer-

ence Ih.



APPENDIX A

Consider a variable, v, which is an explicit function of some

other variable, +, and of wu coefficients, 3

r = I‘(cl,‘ Coy «ves G ) (A1)

If equation (Al) is linear with respect to the coefficients it may be

rewritten as

1
= A
T Z cJ7\J( ) ‘ (a2)
J=1
If v pairs of values of r and +t are known they may be
substituted into- equation (A2) to yield the family of equations
u Fl
T =Z cj7\j’(,ti) i=1,2, ..., v (A3)
J=1 ‘
The v eguations represented by (A3) may be written as the matrix

equation
b= AC (Ak)

vhere R = .[ri], C = [cj], and A =E\ij:| =-E\j(1§i')]
If v =u, equations (A3) or equation. (Ak) can be solved’ uniquely

for the values of cj by Cramer's Rule®, However, if v >u the

determination of the coefficients is overspecified, that is, various’
. A !

@Provided that |A| #0 where |A| 15 the determinant of “the matrix A

v 1
1
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combinations of u of the equations (A3) can be solved .and each will
yield a different set of falues for the coefficients. No one set of
such solutions is preférable to any other set. However, a statistically
preferred set of values can be obtained by‘applying the method of least-
squaresa. Using this method it can be showngo that the best solution
for the coefficients, cj, are the elements'of the matrix C ‘given by

the equaticn
C = (aTa)-1 ATm (A5)

The coefficients in equation (Al) can-be determined even if the
equation is nonlinear By linearizing it as its Taylor series expansion,

truncating all terms higher than first order.

u /30
pex ) (.._) e (46)
de;
3=l
0

where Ar =r - v and Acy = cy - 3.

J

coefficients refer to approximate values about which the .expansion i

3 The supérscripts on the '

performed. Superscripts on the dependent variable and its partial

derivatives indicate evaluation using the approximate.éoefficieﬁts.’
If v pairs of values of r and t are known, equation (A6)

generates the family of equations

u 0
’Ari =Z (ﬂ) e, =21, 2, cae, TV (A7)
Ve, ¢
j=l1. J i

8The method of least-squares yields the "best! statisbical solution
that can be inferred from a set of data providing the errors in the data
are assumed to be normally distributed.



AR = AA AC '(Lixa)_

Equation (A8) is equivalent to equation (A4) and, thus, the

equivalent least-squares solution is

= (AAT 'AA)"l Al AR (49)

The values of ej are obtained from the elements of Al by means of

the relationship

. =N, + cf
e AcJ c (A10)

Since the higher order terms of the Taylor series expension of =r
were dropped in linearizing equation {(Al) the values of cj obtained
from eqpations (A9) and (Al0) are not the exact least-squares values.
The exact values can be gpproached as closely as desired, however, by
repeated solutions of ‘equations (AQ) and (ALO) using each set of values
of C3 " obtained as ap improved epproximation for the next iéerationa.
The mathematical procedure just described is essentially that

“outlined in reference 20. Tt is the basis of the Fortran subroutine

FITAELlB which was used in thls study for the solutlon of equations (17)

and (19). FITALL requires a sultably constructed main program to supply

aThis statement is correct prov1ded +the solution converges proPerly
This will generally be the case if (1) the form of equation (Al)
correctly describes the data (2) the data are not too badly scattered
and (3) the first approximations of the parameters -to be determined
are reasonably good.

13
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the necessary input, output,vand‘control steps. FITALL also reguires

c
a subroutine to supply the values of rg and (3§¥> and the matrix

inversion subroutine MATRYI. v

A listing of the various programs and subprograms used in this -
study is given in appendix B. DRS1 is the main program for eguation (17)
and COSN is the corresponding subroubine. DIRS2 and ELLIPSE are the

main program and subroutine, respectively, for equation {19). AMAX is

a function subprogram requifed in normalizing the raw data.



PROGRAM DRS1 (INPUTqOUTPUToTAPES=INPUT|TAPE6=OUTPU?)_
DIMENSION DATA(14443)vP(20)1+DP{20)+RES{144)+C1(144)14X1(144)
2 PHI(I44)¢I(144)QRSIG(144)vARRAY(ﬁOS)&CNAME(ia)gRESPCT(144)oL(4)|
3 ISTORE{(144)

REAL @4+ IMAX+1ZERO.ISTORE

EQUIVALENCE (XI+DATA (141114 (1+DATA{L142))+(RSIGJDATA(14+3))
EXTERNAL COSN

LOGICAL TESTI-TESTE«TESTB‘

COMMON /1, TEST3

COMMON COSGAMqCOSPH!(144L-CI

NAMEL IST/LDATAAT 4 XTI +NDATA

NAMEL EST/PARAM/P s NP
CarvaesP{1)=AP(2)=B+P(3)=M,P(4)=COSIALPHA+S) P (S)=COS{BETA+S)
PRINT 10

0 FORMAT (1H1ls Z21HI = A¥COS(PHII*®*M + B)
Cssse s READ AND PRINT CASE IDENTIFICATION
2 READ (S+ 100) CNAME
100 FORMAT (12461}
IF (EOF15) 998,999
999 PRINT 101+ CNAME '
101 FORMAT (1H1l. 12A86//)
Cases s READ AND PRINT FIRST APPROXIMATION OF COEFFICIENT

READ (5.PARAM)
PRINT 200, (PN} N=1NP) ) ‘.

200 FORMAT (1Xs -%¥A(0Q) = %y FGubs 4Xe #BL0) '= *, F9eby 4Xs EMIO) = ¥y
2 FPe64 44Xy *COS(ALPHALS)(0) = ¥ F8s5y 4Xas *COS(BETASI(Q) =" %,
3 FBeH/Y) : . .

Ceeess READ AND NORMAL IZE DATA—-SET wEIGHTING FACTOR 4 RSIG- TO UNITY
READ (SsLDATA} '
IMAX=AMAX (I +NDATA)

DO 84 K=1,NDATA

ISTORE(K)=1(K}

T(KY=] (K}/IMAX
Ba RSIGIK)I=1.

Conses INITIALIZE PROGRAM PARAMETERS
VAR=0 .

J=1

" TEST1=.FALSE.
TF.'ST‘.E: «FALSE .
TEST3= «FALSE
L{1)=NDATA

L {2)=NP
L{3)=200
L{4)=0



Ce-s0ee3S0LVE EQUATION

(17) FOR "LEAST~SQUARES VALUES OF COEFFICIENTS

CALL FITALL (COSNsDATAY144,PDP220+QsL 1 ARRAY + 4001
Cosee s TEST SOLUTION AND PRINT APPROPRIATE ERROR MESSAGE IF NECESSARY
IF (4NOTe TEST3) GO 70 180
PRINT 190, Lo (P(N)y N=1+NP 3+ (DP(N), Nz=14NP)¢COSGAM«COSPHI (J}
190 FORMAT {1X+ *UNREASONABLE SOLUTION IN PROGRESS*// 1Xs #LIST = %,
2 814/7 Xy %P = ¥4 SFIB.6// 1Xa #DP = #4 SE1646// 1Xs

3 *COS(GAMMALS}
GO TO 2
180 'IF (L. (4)«LEs39
PRINT 214 L
21 FORMAT (1Xs *T
‘GO TO 2
22 IF (L{4) «LEs.l
PRINT 23
23 FORMAT {1X, *C
25 USE BEST AvA
Caves s PERFORM FINAL
30 1ZERO=P(1)4P ({2
PL1Y=P({1)}/1ZER
P(2)=P(2)1/1ZER
DO 51 J=1.+NDAT
1{HN=1({J}/TZER
Cr(Jy=CIl(uYy12
RES(JI=CI (J)—I
RESPCT(J)=RES(
VAR=VAR+RES (J)
Censes TEST COSIPHI)
Coes e s MESSAGE IF FOU
1F (COSPHI¢J):
PHI(JY=COSPHI (
T_ESTI = TRUE «
GO TO 61

= ¥y El6e6Hs 4X: *COS(PHI) = %, E1646)
GO TO 22
ROUBLE IN FITALLe LIST = %, 414}

Yy GO TO 30

ONVERGENCE CRITERION NOT SATISFIEDs FOLLOWING RESULT

ILABLE PARAMETERS«%r~*
NORMAL IZATION

)

o]

0

A

o

ERGC

(J3

JIR100, /100

#%#2/ (NDATA=NP ).

FOR UNREASONABLE VALUE AND PRINT VALUE AND ERROR
ND

«LEs 1,05 GO TO 160

J)

160 PHI(J)}=57.2958%AC0S (COSPHT ¢ 11y

51 CONTINUE
IF (TEST1Y PRI

NT 170

170 FORMAT (1%s+ *ERROR--COS(PHI) GREATER THAN ONE »%
CeeeeoeTEST DIRECTION COSINES FOR UNREASONABLE VALUES AND PRINT
Cees e s APPROPRIATE ERROR MESSAGE IF NECESSARY oo

SUMSQ= P(4)**2+P05)**2

I'F (SUMSG «L.E..

1.0) 760 TO 90 |

. PRINT 110, SUMSQ '
110 FORMAT (1Xs» 42HERROR-— COS(ALPHA;SJ**E + COS(BETA+S)I*¥%2 = § FBW45//)

30 IF CABS(P(4))

«GTe 140} TESTE #RUE. i

51



IF (ABS(P(5)) «GTe 140} TESTZ2=+TRUE
IF (ABS(COSGAM) «GTe 1e0) TEST2=+TRUES
IF («NQOTe TESTZ2) GO TO 120
PRINT 130
130 FORMAT (1X+ ¥ERROR--DIRECTION COSINE GREATER THAN ONE.*//)
GO TO 14¢
CeveaeCALCULATE ALPHA(S)y RETA(S), GAMMA(S)s AND DELTA
120" COSDEL=—COS(77+%1 « T453E=2)%P (4 )+COS(1.3e%1 +7T453E-2 ) ¥COSCAM
DEL.TA=S7 « 2958%ACOS(ARS{COSDEL )Y
IF (COSDEL+LT«0) DELTA=180+-DELTA
ALPHA=ST7..2958%ACOS(ARS(P{41))
IF (P(4)elL,Te0) ALPHA=180¢~ALPHA
BETA=ST7«2958¥ACOS(ABS(P(5)))
IF (P(5)sLT+0) BETA=180.-BETA
SGAMMA=57 (2958*ACOS{ Z0SGAM)
Cesee s PRINT PROGRAM TEST PARAMETER. LIST
1'40 PRINT 20+ L
20 FORMAT (1Xe ¥LIST = % 4lar//)
Cesss e PRINT RESULTS .
PRINT 404 VAR
40 FORMAT (1Xs IVARIANCE = %, El&«6//)
PRINT S0+ PL1)sP(2)sP(3)
S50 FORMAT (I1Xa#A = ¥+ FGebs 4Xy ¥B = %4 FGeby 4% *M = %y FPeb//)
PRINT 60+ P{4)+P(5).CO5CAM
60 FORMAT {(1Xs ¥COS{ALPHA+S5) = ¥y F8e854¢ 44X+ HCOS{BETAS) = ¥4 FBaSe
2 4%+ *COS(GAMMAYS) = ¥, FB45/7)
IF (TEST2) GO TO 150
PRINT 70+ ALPHA+BETASGAMMA,DELTA
70 FORMAT (1Xs ¥ALPHA(S) = ¥, FQeds 4%+ ¥BETA(S) = ¥4 F9Oeb4,4 44X
2XGAMMA(S) = ¥4 F9ele 4Xy *DELTA = %4 FQedrs /)
150 PRINT 80y (PHI(J) e XI{JI G ISTORE(I) 3T (JY4CI{ L) 2RES(JI+RESPCT(J)
2 J=1.NDATA} . !
80 FORMAT 37X+ *NORMAL I-ZED¥/ 55X« #PHI¥,2 66X #XI¥s BXe« *[(EXP}¥*,
2 5Xe *FI(EXPI¥. 4Xs #I(CALCY*y 4Xe« ¥RES¥s 44Xy ¥RES(PCTI¥/
3 (2F10+44 F12:64 4F10e6))
GO TO 2
998 STOP
END
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SUBRCOUTINE COSN(RES«DATAWNDMAX P DR «VINPoJ)
REAL 1
DIMENSION DATA(NDMAX 3 )P (20)+DP (20}
LOGICAL TEST3+TEST4
COMMON /1 / TEST3
COMMON COSGAM.COSPHI(144)4C1(144)
TESTA=«FALSES
XLIM=1.0E~100 .
Ceeees TEST COEFFICIENTS FOR UNREASONABLE VALUE AND SET INDICATOR IF FOUND
IF (ABS(P (1)) «GTe 2,0) GO TO 20
IF (ABS{P(27) «GTs 2,0) GO TO 20
IF (ABS{P(3)) «GTs 100} GO TO 20
IF (ABS{P(41) «GTe 1,0) GO TO 20
IF (ABSI{P(S5)) «GTs 1409 GO TO 20
Cesee s CONVERT X1 TO RADIANSG
XI=DATA(UJs1}
RXI=sXI#1.7453E-2
I=DATA(J+2)
V=DATA.(J+3)
Creee o CALCULATE COS(BETAWNY
ARGI=SIN(75.75%] s 7T453E- 2)**2*(1-"SIN[RXI)**2)
IF (ARG! «GTs XLIM) GO TO &0
COSBETA=0.0
GO TO 70
60 COSBETA=SQRT(ARG!)
CoasessSET SIGN 'OF COS(BETAWN?
IF- (X1 «GTe 90+ «AND, X! +LTs 270+) COSBETA=-COSBETA
Coeee s CALCULATE COS(GAMMALS)
T0 ARG2=ABS(1+~P(4)¥%2-pD(5)%%2)
IF (ARGZ «LTes XLIMY GO TO 20
COSGAM=S0RT (ARG2)
IF (COSGAM +GTe 140 GO TO 20
Coesns s CALCULATE COS(ALPHA M)
COSALPH=COS( 76+ 75%1 . 7453E=2)
Ceves s CALCULATE COS{PHI
COSPHI {J)= COSALPH*P(4)+COSBETA*9K5)+COS(13.25*1-7453E -2 )¥COSGAM
2 *¥SIN(RXTY 7 fo
CoereasTEST COSIPHI) FOR UNREASONABLE VALUE AND SET INDICATOR IF FOUND
IF (ABS{COSPH!(J})) «GTe 140) GO TO 20
Ceseee TAKE ABSOLUTE VALUE OF COS(PHIY AND SET IN")‘ICATOR FOR" CORRECT
CeseavsSIGN OF DERIVATIVES .
IF (COSPHI(J) «GE+ C)y GO TO 10
COSPHI ¢J)=~COSPHI (J) '
TESTA4=e TRUE «



Sk

1'0 CONTINUE
CeseeeCALCULATE PARTIAL DERIVATIVES OF I(PHI) wITH RESPECT TO COEFFICIENTS AND
CereeeSET CORRECT SIGN

DP{1)=COSPHI (J) ¥*¥P (3}
IF (ABS{DP(1)) «LTe XLIM) DP({(1)}=0.0
DP(2)=1.
IF (ABS{COSPHI(J)) +GTFe XLIM) GO TO 30
COSPHI{J)=040 :
DP(3)=0.0
GO TO 40
30 DP(3)1=P{1)#COSPHI (J)**¥P (3 )*ALOG(COSPHI (J})
40 DP(4)=P(1)¥P(3)*%COSPHI (JI)¥%¥ (P(3)~1 4 )% (COSALPH~ (P (4)/COSGAM} ¥
2 COS(13+25%1«7453E~2y#SIN(RXI))
IF (ABS(DP(4)) «LTe XLIM)} DP(4)=0.,0
IF (TEST4) DP(4)=~DP(4)
DP(S)=P (1 1%¥P (3)¥COSPHI (J) X% (P({3)~14)% (COSBETA~ (P (5)/COSGAMIX
"2 COS(13.25%1+7453E-2)¥FSIN(RXI) ) .
. IF (ABS(DP{5}}) «LTe XLIM) DP(51=0.0
L IF (TEST4) DP(S)=-DP(5)
Cooes s CALCULATE T{PHIY (O}
CI(J)=P(1)*COSPHI {(J)X%¥P{3)+P(2)
Cosaes CALCULATE RESIDUAL OF I({PHI1)
RES=Cl (J)~I S
Ceeee e TEST RESIDUAL FOR UNREASONABLE VALUE AND SET INDICATOR IF FOUND
IF (ABS(RES) «GTe 1.0) GO TO 20. ’
1F (ABS(RES) «L.Te XLIM)} RES=0.0
G50 TO 50
20 TEST3=+TRUE.
50 RETURN
END
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PROGRAM DRSZ (INPUT.QUTPUT«TAPES=INPUT«TAPES=0UTRUT)
DIMENSION DATA(4013) 4P (20)+DP(20) L (4)+RES(40)1+CI (401X T (800
2 PHI(40)4+1(40)4+RSIG40)+ARRAY(403)4CNAME(12)+RESPCT(40)
3 TSTORE.(40)
REAL 1+IMAX+IZERO.!STORE
EQUIVALENCE (XI+DATA(141))+(I4DATA(I42)1)+ (RSIG+DATAIL143))
EXTERNAL ELL IPSE
LOGICAL TEST1+TEST2.TEST3
COMMCN /s TEST3
COMMON COSGAMWCOSPHI (40)CI
NAMEL I'ST/LDATA/] + XTI «NDATA
NAMEL I ST/PARAM/P NP .
CaoeseP(11=A4P(2)=B4+P(3)=COS(ALPHA 43" +P (4 }1=COS(BETA+S5}
PRINT 10
10 FORMAT (1H1s 46HT = AXB/SQRT(A¥¥2 & (B¥*¥*¥2 ~ A%%2)*¥COS(PHI)¥¥21)
CeveseREAD AND PRINT CASE TDENTIFICATION
2 READ (5. 100) CNAME
100 FORMAT (12A6)
IF (EOF+5) 9984999
999 PRINT 101+ CNAME
101 FORMAT (THls+ 1.2A6//)
CaeeeeREAD AND PRINT FIRST APPROXIMATION OF COEFFICIENTS
READ(5+PARAM)

P{1)=1+00
NRP=4
PRINT 200+ {(P{N)+ N=1«NP}
200 FORMAT (1Xs *A(0) = #4 FOs6+ 4Xa %¥B{0) = #¢ FFebHs 4Xs
2 ¥COS(ALPHA+S) (O') = %4y FBeSs 4Xs X*COS(BETAWSI(0) = %4 F8e5//)

CeeesoeREAD -AND NORMAL IZE DATA-—SET WEIGHTING FACTCRs RSIG. TO UNITY
READ (5+LDATA)
IMAX=AMAX (T« NDATA}

DO 84 K=1.NDATA

ISTORE(K)=1({K)

I{K)=1(K})/IMAX
B4 RSIGIK)I=1,

Ceoeee INITIALIZE PROGRAM PARAMETERS
VAR=0
J=1 .

TEST1=eFALSEs "
TESTZ2=eFALSEs
TEST3=«FALSE S
‘L{1)=NDATA
L{Z2)=NP

L (3y=200


http:P(I)=I.OO

56

L{43y=0
Ceeee o SOLVE EQUATION({19) FOR LEAST-SQUARES VALUES OF COEFFICIENTS
CALL FITALL(ELLIPSEsDATA40+P+DP+20+G+L+ARRAY +400)
Ceaoees TEST 'SOLUTION AND PRINT APPROPRIATE ERROR MESSAGE IF NECESSARY
IF («NOTe TEST3) GO TO 180
PRINT 190s Le{(P{N}y N=1aNP)« (DP{N)s N=1+NP)+sCOSGAM+COSPHI (J)
190 FORMAT (1Xs ¥UNREASONABLE SOLUTION IN PROGRESS#®#// 1Xs #LIST = #,.
2 41477 1Xe ¥P = ¥, 4E1‘60‘6// IX? ¥DP = ¥4 4E1G6e6// 1Xs
3 X¥COS(GAMMAS) = %4 F16u6e 4Xs ¥COS(PHI} = %4 ElGeb)
GO TO 2
180 IF (L(43eLE«3) GO TO 22
. PRINT 214 L
21 FORMAT (1Xs» *TROUBLE IN FITALL. LIST = %4 414
« GO TO 2
22 IF (L{4) +LE«1) GO TO 30
PRINT 23 .
23 FORMAT (1Xs *CONVERGENCE CRITERION NOT SATISFIED, FOLLOWING RESULT
25 USE BEST AVAILABLE PARAMETERS.%//)
Ceoee s PERFORM FIMNAL NORMAL1L.ZATION
30 I1ZERQO=P (1)
P{13)y=P(1)/1ZERO
P{2)y=P(2)/1ZERO -
DO 51 J=1.NDATA
ItN=I(JY/IZERD
CI{J¥=CI(JY/1ZERO
RES{JI=CTI{II-1(J}
RESPCT(J)I=RES(J1*100./1(J)
VAR=VARTIRES (J)*¥%2 /(NDATA-NP)
Coeee e TEST COS{(PHI) FOR UNREASONABLE VALUE AND PRINT VALUE AND ERROR
Cevees e MESSAGE IF FOUND
IF (COSPHI(J) «LEs 14,0) GO TO 160
PHI¢(J)Y=COSPHI (1)
TESTI= e TRUE .
GO TO 51
160 PHI(J)I=572958%ACOS{COSPHI(J))
51 CONTINUE
IF (TEST1})} PRINT 170
170 FORMAT (1Xs ¥ERROR~-COS(PH1) GREATER THAN ONE«*)
Coaees s TEST DIRECTION COSINES FOR UNREASOMNABLE VALUES AND PRINT
Coee e s APPROPRIATE ERROR MESSAGE [F ‘NECESSARY )
SUMSQ=P (3 )#%¥2+P (4 )%¥%p .
IF (SUMSQ «LEa le0D) GO TO 90
PRINT 1104+ SUMSQ
110 FORMAT (1X4+ 42HERROR.=COS(ALPHAS)I*%2 + COS(BETAWS)IH#%X2 = o FB«S//)



90 IF (ABS(P(3)) «GTs 1,0} TESTZ2=+TRUE
IF (/BS(P(4)) «GTe 140) TESTZ2+TRUE.
IF (ABSTCOSGAM) «GTe 10} TESTZZ e TRUE
IF (+NOT« TEST2) GO TO 120
PRINT 130
130 FORMAT (1Xs+ *ERROR-~DIRECTION COSINE GREATER' THAN ONE.%//)
GO TO 140
evee s CALCULATE ALPHA(S)s BETA(S})y GAMMA(S}s AND ODELTA
120 COSDEL==COS(77e%] a7453E-2)%¥P (33 )4+COS(13¢%1 4 7453E-2I #¥COSGAM
DELTA=ST7+2958%AC0S ( ARSLCOSDEL S )
IF (COSDEL+LT+0) DELTA=180.-DELTA
ALPHA=S7.2958%ACOS(ABS(P{(3)})
IF (P(3) «LTs 0) ALPHA=180.=ALPHA
BETA=S7.29SB¥ACOS (ABS(P(43) ) -
IF (P{4) +LTes D) BETA=180.-BETA - -
SGAMMA=57,2958%ACOS (COSGAM} ‘
sene e PRINT PROGQAM TEST PARAMETERs LIST
140 PRINT 20 L
20 FORMAT (1Xe %LIST = %+ 4las7)
+eeeePRINT RESULTS
PRINT 40+ VAR
40 FORMAT (1Xs ¥VARIANCE = %, El1446//)
PRINT 50y P(1)¢P(2) ' ’
50 FORMAT (1X4 ¥A = ¥, FD464 4%y ¥B = %: FO.647)
PRINT 60+ P(2).4P(4)+COSGAM
60 FORMAT (1X+ ¥#COS(ALPHALS) = %4 FBe5s 4%+ HCOS(BETAS) = %, FB8.5,
2 4%y ¥COS(GAMMA4S) = *, FBas5//) :
I¥ (TEST29 GO TO 150
PRINT 7.0+ ALPHA+BETA,SGAMMAH DELTA
70 FORMAT {(1Xs ¥ALPHA(S) = %. FOebs 4Xe *¥BETAIS) = %4y FOuds 4Xa
2XGAMMA(S) = ¥, FQeds 44Xy %#DELTA = %, F9e4.,/) ’
150 PRINT 80y (PHItJI s XI(J)+ISTORE(JIT(IIaCT(UNRES (J)+RESPCT(J )
2 J=1+NDATAY
80 FORMAT (37Xs *NORMAL LZED*/ SX4 *PHI%s 6Xs *#X1%y BXe ¥T(EXP)%*s
2 SXe FI(EXPY%, 4%+ %1 (CCALCI®, 4X, ¥RESH, 4Xe ¥RES(PCTI*/
3 (2F 1044y FlZ2e6s EF10eHB)) .
GO TO 2
998 STOP
END
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SUBROUTINE ELLIPSE(RES+DATAsNDMAX-+P+DP VNP +J)
REAL 1
DIMENSION DATA (NDMAX,31sP(L20)+0DP(20)
LLOGICAL TEST3
COMMOM /1/ TEST3
COMMON COSGAMCOSPHI (40)4CI (40)
XL_IM=1 ¢ OE~100
CaseesTEST COEFFICIENTS FOR UNREASONABLE VALUE, AND SET INDICATOR IF FOUND
IF CABS(P(1}) +GTe 2,0) GO TO 20 ‘
IF (ABS{P(2)) “GTe 2.0} GO TO 20
IF (ABS(P(3})) +GTes 1.,0) GO TO 20
IF (ABS(P{4)) +GTe 1,0} GO TO 20
Cesee s CONVERT X1 TO RADIANS
XI=DATA(Js 1)
RXI=XT#] + 7453E-2
I=DATA(J2)
V=DATA (Je3)
CensesCALCULATE COS(BETA«N)
ARGL—SIN(?G.?S*I.7453E-2)**2*(1-—SIN(RXI)**2)
IF (ARG! «LTe XLIMY @O TO 20
COSBETA=SART (ARG )
CeseseSET SIGN OF COSJ(BETA,N) .o
IF (XI «GTs 90+ «AND, XI +LTs 2704} COSBETA=-COSBETA
Caees s CALCULATE COS(GAMMA,.S).
ARG2=ABS5(1e=P (3)%%2~p (4 )%%2)
IF (ARGZ2 -oLTe XLIM) GO TO 20
COSBAM=SGRT (ARGZ )
IF (COSGAM «GT. 1e0) GO TO 20
_CeeessCALCULATE COS(ALPHAWN)
'COSALPH=COS 76 ¢ 75%1 + 7453E-2)
Coses e CALCULATE COS(PHI}
COSPHI(J)=COSALPH*P(3)+C058ETA*P(4}+COS(13.25*1-7453E 2)%COSGAM
2 %¥SIN(RXI)Y
CesessTEST COS(PHI) FOR UNREASONABLE VALUE AND SET INDIGATOR IF FOUND
IF (ABS(COSPHI(J)) +GTas 1.0) GO TO 20
CoseesCALCULATE INTERMEDIATE FUNCTIONS TO BE USED BELOW
SINSO=(1+—COSPHI ( J)%%2)
ARG3=P-{1 ) ¥%2+ (P (2 )% %¥2—P (1 }¥¥2 ) ¥COSPHI (J)¥¥#2
IF {ARG3 LLTs Oe) GO TO 20
VAL1=SQRT (ARG3)
IF (VAL1 +LTe XLIM) GO TO 20
VAL2=~P (1 1¥P (2} (P {2 ) ¥%¥2~P (1 ) %¥2 ) *COSPHI (J)
VAL3=COS(13+25%1+7453E-2 1 %SIN(RXI ) /COSGAM
CessseCALCULATE PARTIAL DERIVATIVES OF I[(PH1) WITH RESPECT TO COEFFICIENTS

*E

:


http:ARG2'.LT

DR {1 1=P (23AVALL~Pf 1 ) #E2AD (2 I #SINSQ/ VAL I ¥%3
IF CABSIDP({13}) #LTe XLIM) DP{131=040
DR (2)=P (1) /VALI~P (1 }#P (2} R X2 ¥COSPHI (JI¥F2/VALL¥%3
IF (ABS(DP(23) «LTe XLIM) DP{(2120.0
DP (3} =VAL2/VAL I ¥%3% (COSALPH-VAL3¥D 1 1)
IF (ABS(DP(33) «LTe XLIM) DP{3)=0e0
DP (&)= VAL2/VALL#%3% ( COSBETA~VALIXR (2} }
1F (ABSIOP(4)) «LTe XLIMI DP{4)}=0,0
C-on-aC:ALCULATE: I(pHI)CO)
CIJI=P (] TEP(2)/VALL
Cuews s CALCULATE RESTDUAL OF I[{PMI)
RES=CI tJ)=~1 -
Cesev o TEST RESIDUAL FOR UNREASONMABLE VALUE AND SET INDICATOR IF FOUND
IF (ABS(RES) «GTe 1e0) 60 TO 20
1IF (ABS(RES) «LTas XLIM) RES=0.0
G0 TO S0
20 TEST3I=+TRUE. -
50 RETURN
END
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SUBROUTINE FITALL(RESIDsXsNDMAXsPADPsMAX +Q+LIST+HOLD sMMAX)
DIMENSION P(20)+DP(20)sLISTL4)A(20520)+5(400)HOLDAL4O3) +BH20 )
2 15(3) . -0 ',
EQUIVALENCE (IS(1)sKK)I+ (IS{2L+NFIX) s (IS(3)KSIGIv {S{I)sA(141))
DATA CONV/0.001/ : '
LOGICAL TEST3
COMMON /1/ TEST3
CavssaINITIALIZE
GI=LIST 1 )
KK=LIST(2),
LOOPS=LIST(3)
LIST(34=0
NFREE=JJ=KK s
IF (LOOPS.EQ«0)GO TO 1094
MOST=2%KK+
IF(KK+LTa1eOR«NFREESL.To0IGO TO 14
IF(KKeGTeMAX)IGO TO 1S5+
'ConesssBEGIN ITERATION LOOP
. 1 NFIX=KK+
PO 2 N=1+MAX
B{NY=0see .
DO 2 M=1+MAX .
2 A(MINI=0uy
DO &6 J=14JJ
CALL RESID(R«X«NDMAX P 4DP+VARIKKy
1F (TEST3) GO TO 29
IF{VARNE a0« 1GO TO 4,4
NFIX=NFIX+1s
IF(NFIXesGCT+MAXIGO TO 15,
IF{NFIXeGTeMOSTIGO TO 144
CeeeesCALCULATE FIX POINT FLEMENTS
BINFIX})=R
DO 3 M=14+KK
A (M NFIX)=DP (M)
3 A(NFIXWMI=DPIM)
GO TO &
Ceene s CALCULATE REGULAR POINT
4 DO 5 N=1WKK
BIN)=B(N)+R*DP (N) /VAR
DO 5 M=N+KK
S AMIWMNISAIMINIFDP (MYEDP (N) VAR,
6 CONTINUE
CessassFINISH OFF MATRIX
DO 7 N=1..KK
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DO. T M=N.KEK
7 A(NGMISACMaINDY
CesessINVERT MATRIX
KSI1G=0,
CALL IMATINV(AJMAX+NFIXsDET+KEIG)
IF(KSIGeEQs1 1ORKSIG.EQe2)GO TO 16,
IF (LOOPS«EQe~1)G0 TO 10+
Cessess CALCULATE NEW VALUES OF PARAMETERS
BIG=0s1 '
DO 9 M=1.KK -
SUM=0e
DO & N=1 . NFLX
8 SUM=SUM—A(MsN}*B(N) .
P(M}=P (M) +5UM+
9 BIG=DIG+AMAX1 (ABS (SUM) —CONV*ABS(PIM))10e )4
LISTE3)ISLIST(3)+1 4, . ’
IF(BIG.EQeQ«IGCO TO 10v.
IF(LIST(3)«GE«LOOPSIGO TO 17
Go TO t
Ceases CONVERGENCE ACHIEVED —— COMPUTE VARI
10 IF(LOOPS+EQ.1}GO TGO 184
Q=Oo!
SUM=04
DO 11 J=1wJduJe
CALL RESTD(R+X«NDMAX P «DP WWARIKK 4 J)
IF(VARWEQ.0 16O TO 114
SUM=SUM+R¥R/VAR
11 CONTINUE
Q=SORT (SUM/FLOAT (NFREE) } «
IF{KSIGeNE«QIGC TO 194
GO TO 50,
14 LIST(4)=LIST(4)+1
1S LIST(4r=LIST(4)+1,
16 LIST(4)1=LIST(4)+1
17 LISTA4)=LISTL4)+1
18 LIST(4)=LISTG4)+1,
19 LIST(4)1=LIST(4)+1 4
CoeeessENTRY FOR SAVING MATRIX
‘ENTRY FITSAV
50 DO 20 N=1MMAX
20 HOLD{N+3)=S (N}
DO 27 N=1.3
27 HOLD(NI=IS(N)

P~ i
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Ceee s oENTRY FOR RESTORING SAVED MATRIX
ENTRY FITBAK
DO 21 N=14MMAX
21 SINY=HOLD(IN+3)
DO 28 N=14+3
28 I1S{N)=HOLDI(N}
29 RETURN
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SUBROUTINE MATRXI(X.4MMAX MXDETIKSIG) - .
Ceeess SUBROUTINE FOR OBTAINING DETERMINANT OF INPUT MATRIX
DIMENSION, X (204203 Y (204120 +Z2(2+20+20})+K(20)
LOGICAL MATIN '
EQUIVALENCE (Y+2Z)
DOUBLE PRECISION A R,PRODyY
DATA DELT+EPSLO00PS/01e0001 41 aE—0..s
GO TO 711
CeseessMATRIX INVERSION BY GAUSS—-JORDAN ELIMINATION
ENTRY IMATINV ;
MATIN=ea TRUE +
GO TO 1
711 MATINS o FALSE
1 DO 405 I=142
DO 405 J=1.+20
DO 405 ICNT=1.20
Z(I+vJs ICNT ) =0
405 CONTINUE
Cossse INITIALIZE ROUTINE AND TEST MX (=0RDER OF MATRIX}
M=MX 4 :
IF (MaGT el e ANDaMsLE«MMAXIGO TO Sa
IF(MsEQe1)GO TO 24
KSIG=KSIG+14
RE TURN
2 PROD=X(14+11,
IF (PRODNE+ Qe IGO0 TO 49
3 KSIG=KSIG+2,
RETURN
4 X({1s13)214/PROD
GO TO 23
5 PROD=1u+»
MM=M~1 4.
DO 6 I=1+M
KCIY=1»
DO 6 J=1aMs )
& YUiIaJ)=X{Ted)s ;
CreseseBEGIN BY FINDING LARGEST PINOTAL ELEMENT
DO 11 T=14Ms
A=Ce s
DO 7 J=1aMs
TIF(DABS{Y(Js1)1LE+AYGO TO 7
A=DABS(Y(J11))
L=uJs
7 CONTINUE



IF(AsEQ+sD IGO0 TO 3,
Co e o0 e REARRANGE ROWS AND ORDER ARRAY
N=K (L}
KLY=K (]
KT )Y=N»
DO 8 J=14+Ms
A=Y (lsJd)e
Y{Ied)=YUeJd)
8 Y(L+J)=A,
Ceses s REDUCE PIVOTAL ROW
A=Y {Tsl)ds .
IF {+NOT« MATINIPROD=PROD*A
DO 9 J=1+MM,
S Y(Ioed)SY LT ad+1 ) A0
Y{TaMI=1larAn
Cas e e REDUCE REMAINING ROWS
DO 11 LL=14M,
IF(LEQeIIGD TO 11l
A=Y (Lasl})s
DO 10 N=1yMM,
YLeNISY(LaN+TL ) =A%XY (14N}
IF(DABS(Y(L+N)) oL T+ {DABSIY (L «N+1 ) I *¥EPS)IIYIL+N)I=0s
10 CONTINUE. )
Y(LeM)==AXY (T 4M}s
11 CONTINUE
Ceneoa e UNSCRAMBLE INVERTED MATRIX
DO 15 I=14+M,
IFIK{I)«EQe GO TO 15,
PROD=—PRODa
DO 12 J=14+Ms
IFIK(JISEQe11GO TO 1.3
12 CONTINUE s
GO TO 3
13 DO 14 L=14M,
A=Y (Ls1)s
YLal)=Y(LeJ) s
14 Y{l. e J)=Ay
K{JI=K (I}
15 CONTINUE
Coees s OBTAIN 'ERROR MATRIX
DC 20 N=1.L00PS,
TEST=0e+
DO 17 I=1+Ms
DO 17 J=1 M,

b4



R=0 e
DO 16 L=1+M»

16 R=R-Z{1+LasJ)EX(TaL)
IF(I«EQeaJIR=R+1 sy
ABSR=SNGL (DABS (R)}
TEST=AMAXI (TEST+ABSR)

17 ZIi2«1+J)=R+
DO 19 1=14M,.

DO 19 J=1 M
A=0un
DO 18 L=1+1M,

18 A=AFZ (1 el aLlL}%¥Z(24lad)
Z{la T e )=Z(1alaJ)FA

19 CONTINUE.,
TEATEST+LERELTIGO TO 21+

20 CONTINUE
KSIG=KSIGH+3 .

Cueesse TRANSFER FINAL INVERSE

21 DO 22 I=1.4M,

DO 22 J=1+4Ma
22 X{1+JY=Z(1alad)s
23 DET=PROD.

RETURN

END
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FUNCTION AMAX{AWN)
DIMENSION A(la4)
AMAX=A(1)

DO 70 M=2.+N
IF(A(MY=AMAX)YT0170+460
AMAX=A (M)

CONTINUE

RETURN

END
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