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ABSTRACT
 

An extensive 'investiga ion of the orientation of crystallites in 

molded, artificial graphites has been-performed. It has been found 

that the crystallites in molded graphites are usually - but not always ­

distributed symmetrically about some axis. The symmetry axis has been 

found to differ frequently from the molding axis, contrary to what has 

generally been assumed. Furthermore, the direction of the symmetry 

axis and the degree of orientation have been found to vary somewhat 

within a ,given graphite block. 

An equation, originally proposed by Pappis et al., has been found 

to be suitable for describing the distribution of crystallites about 

the symmetry axis. The equation involves two unspecified parameters. 

Specification of the direction of the symmetry axis involves two
 

additional parameters. A technique for evaluating these parameters
 

obtained by the Bacon method is presented.from experimental data 

Also presented are recommendations for future research.
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THE ORIENTATION OF -CR'STALLITES IN MOIDED GRAPHTES
 



INTRODUCTION 

Virtually all nonpyrolytic artificia.l- graphites are polycrystalline 

and most have their crystallites preferentially oriented in some fashion.
 

Because many of the properties of graphite crystallites are anisotropic
 

(i.e.,, directionally dependent), preferential i'rystallite orientation
 

results in anisotropy of the properties of most bilk graphites. The
 

degree of anisot'ropy of a graphite determines its suitability for-many 

applications. For example," a bpacecraft heat shield,, ideally, should 

have a high termal conductivity parallel to the surface in order to 

distribute the heat load over its, entire area, but a low thermal 

conductivity perpendicular to the surface to insulate the spacecraft.
 

Thus, a graphite intended for use as a heat shield should be highly 

anisotropic. On the other hand .such a graphite might be unsuitable as 

a moderator in a nuclear reactor because of mechanical problems associ­

ated with non-uniform expansion due to neutron irradiation. The degree
 

of anisotropy of a given property is related to the degree of crystal­

lite orientation of the graphite (see ref. 2) and, consequently, the 

degree of orientation is, itself, an important property. Unfortunately, 

no simple method for describing, completely and unambiguously, the degree 

of orientation of a graphite is presently available. The purpose of 

this study was to develop such a method. 

Crystallite orientation in artificial graphites results from an 

interaction between the structure of the crystallites and the methods 
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by which graphite bodies are genetijsly manufactured. An extensive 

treatment ,of graphite structure an& manufacture is -given by Nightingalell 

Harris, Miller, and Craik9 discuss the effect of these factors on 

crystallite orientation. A brief discussion of these factors will be 

given here. 

Artificial graphites are generally manufactured from a mixture of 

a granulated,' carbonized filler - such as petroleum coke or lampblack ­

and a viscous binder with a high carbon-to-hydrogen ratio - such as 

coal tar pitch. The binder-filler mixture is formed under pressure 

into billets either by molding into a form or by extrusion through a 

die. The raw'billets are then converted to graphite by heating. 

Each grain of filler material contains many regions of partial 

atomic ordering - incipient crystallites - which, after graphitization, 

become true crystallites.9 A graphite crystallite is made up of layers, 

or "basal planes," each of which constitutes, in essence, a single 

large aromatic molecule.19 (See fig. 1.) Bonding within each basal 

plane is covalent with a bond energy of 150 kcal per mole; bonding 

between-basal planes is due to van der Maals forces and the bond energy­

is only 1.3 kcal per mole. It is obviously much easier to break bonds 

between basal planes than within them. Consequently, when filler
 

material is granulated, the grains tend to form in elongated shapes
 

with their major faces parallel to the basal planes of their surface
 

crystallites.9 In general, the smaller ,agrain is the more likely it
 

is that most of its crystallites will have similar orientations,
 

http:molecule.19


Figure 1.- Crystal structure of graphite.
 



although the degree to which this is true depends upon the nature and
 

of the filler material.91source 

When the filler-binder mixture is formed into billets under 

pressure, the oblong filler grains experience torques which tend to 

orient them preferentially with respect to -thedirection of applied 

force. When the forming process is molding, the most stable orienta­

tion of the grains - and, hence, of the basal planes of their consti­

tuent crystallites - is perpendicular to the molding direction; in 'the 

case of ,extrusion,the preferred orientation is parallel to the 

11
 
extrusion direction. 

The alignment of the crystallites within each -grain'and of the 

grains within a graphite body is never perfect,, and thus, although one 

direction is preferred, many crystallites may'be found -in other 

directions.a Therefore, a complete and unambiguous description of the 

degree of orientation of a given graphite must include the specifica­

tion of the relative numberb of crystallites in every direction. 

Crystallite orientation is generally determined experimentally by
 

means of X-ray diffraction. The principle underlydh'g all X-ray studies
 

aThe orientation of a crystallite is usually expressed in terms of'
 

an imaginary ray normal to the basal planes of the crystallite rather 
than in terms of the basal planes themselves, as was done above. This 
convention will be used henceforth throughout this thesis.
 

bThe relative number of crystallites in any direction is the 

actual mumber in that direction divided by the number in some reference
 
direction.
 

http:material.91


of orientation is that the intensity of diffraction from the basal
 

a
-planes oriented in a given direction is proportional to the number
 

of'such planes and, therefore, to the relative number of crystallites 

in that direction. A number of X-ray techniques have been pro­

posed. 1 - 4 7,13, 1 4 The principal technique utilized in this study 

is that of Bacon,2 but'some dat? were obtained by the method of Ali,
 

Fitzer, and Ragoss.
1
 

For convenience, this study was limited to molded'graphites, but 

the method of describing orientation which is developed should be 

applicable to extruded graphites as well. 

aThe basal planes of graphite are frequently designated in X-ray 

diffraction work as (002) planes, the numbers in parentheses being
 
Miller indices. Both designations are used interchangeably in this
 
thesis. The diffraction of X-rays from the basal planes is commonly
 
referred to (002) reflection, although this-use of the term "reflection"
 
is not rigorously correct-.
 



SURVEY OF PREVIOUS WORK 

earliest systematic study of the orientation of crystallitesThe 

Bacon. 2 The experimental arrangementin graphite was reported by G. E. 

for the method of Bacon is illustrated in figure 2. The incident X-ray 

beam, x, is horizontal; the X-rays are unfiltered CuK radiation. The 

graphite specimens are thin flat plates approximately 2 x 1 x 0.1 cm,
 

cut with their 1 cm edges parallel to the molding axis, P. Each
 

specimen is aligned so that its 2 cm edges are horizontal and perpen­

dicular to the incident X-ray beam, and its 1 cm edges are tilted from
 

the vertical; z, by 13o.a
 

The graphite specimens are thin enough to allow transmission of 'a 

significant fraction of both the diffracted and undiffracted components 

of the X-ray beam. The diffracted X-rays form a cone with a half-angle 

of 260 which is twice the Bragg angle for the ('002) reflection using CuK 

When the diffracted X-rays strike the photographic film ­radiation. 


thus, to thewhich is perpendicular to the undiffracted X-ray beam and, 

axis of the cone - they form a circular image of varying density on the 

film. The density of the image at any angle, 9, is proportional to the 

specimen.number of crystallites at some related orientation within the 


a micro-
The film density is determined at each angle of interest with 

densitpmeter.
 

aThis tilt is necessary so that crystallites with orientations of 
can be detected. A00 to 130 with respect to the forming axis, 

theoretical discussion of this point fs presented in the section,
 

"Theoretical Analysis."
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The main theoretical problem of the Bacon method is the determina­

tion of the' relationship between angles on the film image and the 

orientation of crystallites within the graphite specimen. Bacon 

assumed that the crystallites in artificial graphites are symmetrically 

distributed about the forming axis. Such a distribution would mean 

that the only parameter essential to.a description of the orientation
 

of the crystallites is -the angle, 0, which their normals make with 

the forming,axis. Based on this assumption, Bacon derived the follow­

ing equation relating and t: 

cos =cos2 770 -'sin 2 779 sin (1)
 

For convenience in expressing the angular distribution of crystal­

lites, Bacon defined an orientation function I(0) equal to the 

relative number of crystallites per unit solid angle about the inclina­

tion angle (. is so that I.(0,) = 1 when(0) usually normalized 

= . In practice, i(0) is taken as the relative diffraction intensity 

which, in the case of the Bacon ,method, is assumed to be equal to 

D($)-/D(O), where D() and D(O) are the'film densities at $ and 00, 

respectively. 

The Bacon method of determining crystallite orientation has the
 

advantage that with one specimen and one exposure it furnishes- a con­

tinuous, quantitative mapping of i(0). The principal disadvantage of 

the method is that it does not yield diffraction intensities directly
 

and immediately, but requires the intermediate steps of film processing
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and microdensitometry. These steps are not only inconvenient, but also
 

constitute possible sources of error.
 

Ali, Fitzery and RagossI contend that a plot of I(0) versus $ in 

polar coordinates will always be elliptical within experimental error. 

Based on this contention, they have proposed that intensity measurements 

need be made at only two angles, 00 and 90 , since"the value of INO) 

for any intermediate angle can be calculated from the polar equation 

)f an ellipse
 

= I(O)I(90) (2) 

+ i(90).2 os02] 1/2
[1(0)2 sin2 


The experimental procedure proposed by Ali, et al., is as follows:
 

Two flat plates; or discs, are cut so that one is parallel and one is
 

perpendicular to the forming axis of the graphite to be'studied. Each
 

specimen is mounted in the flat specimen holder of an X-ray diffracto­

meter and, using a counter-goniometer, the (002) peak of each is
 

determined and recorded on a strip chart'recorder. The vaiue of 1(90)
 

is taken as the peak height of the'specimen whose face is parallel to
 

the forming axis (o= 900) divided by'the peak height of thb perpendici­

lar specimen ($ = 0),. The value of I(o) .is taken as one. If 

intermediate angles are to be ihvestigated, a separate specimen must l
 

cut for each.
 

The method of Ali,, et al., is quite simple'if only two specimens
 

need be cut and studied. However, this will be the case only if the
 

distribution of crystallites in the graphite to be studied is, in fact,
 



both symmetrical and elliptical about the forming axis.' Unfortunately, 

Ali, et al., present only limited experimental substantiation of their 

assumption and they give no quantitative results. 

Harris, Miller, and Craik9 presefit 'polar, plots f IN) versus 

for four graphites, and in no case is the distribution elliptical. How­

ever, all four graphites were extruded rather than molded and three of 

them were specially prepared in the laboratory rather than commercially 

manufactured. These results, therefore, do not rule out the possibility 

that molded commercial graphites possess elliptical distributions. It 

should be noted that if Ali's assumption of a symmetrical, elliptical 

distribution is correct, then the normalized value of I(90) constitutes 

a single parameter which, in conjunction with equation (2), provides a 

complete specification of the spatial distribution of graphite crystal­

lites.
 

An alternative one-parameter equation that has been proposed by 

several investigators is
2 7,8,i8a
 

'()=cosM$ (3) 

This equation works fairly well with pyrolytic graphites, but it
 

usually does not work well with molded graphites because they generally
 

have some crystallites with their normals at 90 to the molding axis.
 

Equation (3) assumes that 1(90) =0 

aActually, Bacon proposed the form 1(0) = sinM which was intended
 
to be applicable to extruded graphites. The direction of maximum
 
orientation of molded and extruded graphites differs by 900.
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Pappis, et al.,13 have proposed a variation of equation (3)thal
 

overcomes this problem.
 

1(0) = A cosW + B (4) 

Unfortunately,-these investigators also fail to present any quantitative'
 

substantiation of their equation with experimental data. The equation
 

is still of considerable interest, however, and should be compared with
 

the ellipse proposed by Ali, et at., to see if either is clearly superior
 

to the other. Equation (4) can be regarded as a two-parameter equation
 

since, by proper normalization of I(0), we may let A + B = 1. 

Several investigatorsl'2'10'12'15 have proposed brientation param­

eters which attempt to specify the degree of orientation of a graphite 

with a single number. Such numbers, although useful for some purposes,, 

do not describe the spatial distribution of crystallites. Therefore, 

they will not be discussed furth6r here.-

The assumption of a symmetrical distribution of crystallites about 

the forming axis has been mentioned repeatedly in this section and in
 

the Introduction, and it is either stated or impliedin most papers on
 

12,9, 10,12P, 13) 15,116 10avn'graphite orientation. 1 ' 2 ' 0,'however, hjas 

recently reported experimenthA results which'cohtradict this assumption.
 

In his investigation, Cavin observed .a shift' of the symmetry axis from 

the forming axis by as much as ,20'., The experimental technique used by 

Cavin was a form of a polea figure technique employing a Schultz 

aA "pole" is an imaginary normal to a crystallographic plane; a 

(002) pole is thus identical to the basal plane "normal" utilized
 
throughout this thesis.
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preferred-orientation apparatus.17 The basis' of this, an& all pole 

figure techniques, is the determination of the diffraction intensity not 

only as a function of the angle of inclination, $, with regard to 

some reference axisa but also'as a function of the aximuthal angle, 

I, lying in a plane perpendicular to the reference axis. The methods 

by which pole figures are obtained and interpreted are considerably 

more complex than the methods proposed by Bacon and Ali, et al.
 

Nevertheless, if the ,methods of Bacon and,Ali are inadequate to
 

determine completely crystallite distributions, the use of a pole
 

figure technique may be necessary. One purpose of this study was to
 

so asdetermine-vhether the Bacon or Ali techniques can be modified 

to detect and account for possible shifts in the symmetry axis and, 

thus, to yield a complete descrttion of the distribution of.crystal­

lites in molded graphites. 

aIn Cavin's study, the reference axis was the forming axis.
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EXPERIMENTAL TECNIMQUES 

The methods of Bacon2 and Ali, Fitzer, 'and RagossI were employed
 

exclusively in this study. The vast majority of the data were taken
 

using the Bacon method, but a few checks were made with the Ali method 

because of its simplicity. Each ,of these methods is outlined in the
 

previous section. This section will present details of the methods as
 

employed in this study.
 

The X-ray instrument utilized for both the Bacon and Ali methods 

was a General Electric Co. XRD-5 with various accessories. The X-rays 

were nickel-filtered CuK radiation. The peak tube voltage was 50 kV. 

The experimental apparatus used for"the Bacon method was a trans­
4' 

mission Lane camera with 0.020-inch-diameter pinhole collimator and 

a 4- by 5-inch film cassette,, Ten grades of graphite were investigated 

by the Bacon method. Three specimens of each grade were studied.
 

The grades studied are listed in table 1 along iith certain pf their 

properties.
 

The specimens, which were 2.5 x 1 Xa.)1 cm, were mountea in a 

specially constructed holder which permitted them to be oscillated 

horizontally in a plane normal to the incident X-ray beam. The 

oscillation increased the number of grains' irradiated. The period of 

oscillation was 1 minute and the amplitude was '0.75 inch. The speed 

aOnly two specimens each 6f grades ATJ and 2D8D were available.
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TABLE 1
 

SOME PROPERTIES OF GRAPHITE GRADE STUDIED
 

Grade Filler I Density, gm em-5  Maximum grain 
-Isize, mm 

ATJ PCb 74 .15
 

ATJ (G P.)a PC .1.72 0.15
 

2BE PC .AO 0.15
 

9RL PC i.68
 

3499S PC 1.6 0.08
 

*oo PC 1. 70 0.20 

L31 LB 1.66 0.15 

2D8D LB 1.4o o.18 

CDG PC and LB 1.149 'O.41 

CMB PC and LB 1.79 0.08
 

aGas purified.
 
bpetroleum coke.
 
CLampblack. 
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of oscillation was kept constant so that all grains irradiated were
 

exposed for the same length of time. The exposure time was 1 hour.
 

Specimens of grade CDG which is somewhat coarse grained, were exposed
 

in two steps of 1/2 hour each.. After the first 2/2 hour, the specimens
 

were raised in the holder so that more grains wquld be exposed.
 

The film used was Kodak Type M industrial X-ray film. The films
 

were individually processed with Kodak Liquid X-ray JDeveloper and
 

Replenisher and Kodak Liquid X-ray Fixer and Replenisher. The
 

manufacturer's processing instructions were followed throughout.
 

The density of the processed film was determined with a Joyce Loebl
 

dual-beam microdensitometer-. The films were mounted on a special
 

'rotary stage with angular markings to 0.10. The stage was then rotated
 

to each desired value of and radial scans of the circular diffrac­

tion image were made. The resitt of each such scan was a trace,'on
 

ruled paper, of the density versus tan 26.a Typical traces are shown
 

in figure 3.
 

Bacon stated in his paper that the integrated density - the area 

under the diffraction peaks - is proportional to I($). Ali, et al., 

and Guentert contend that the peak height and peak area are proportional 

to each other and to I(0) and that the height is preferable to the 

area since it is easier to measure. Actually, the height and area are 

not always proportional to each other as is shown in table 2 in which 

the ratio of the normalized peak heights and peak areas is listed for 

ae 
'is defined as the angle between the incident X-ray beam and the
 
basal planes of the diffracting crystallites. The angle between the
 
diffracted and undiffracted components of the X-rays is 20.
 



17 Figure 3.- Typical X-ray diffraction ,eaks. 
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TABLE 2
 

RATIO' OF NORMALIZED PEAK AREAS TO PEAK IHEIGHTS
 

FOR GRADE ATJ
 

'{, deg 

Spec. No. 1 Spec. No. 2 

0 i.o6 1.05 
10 1.02 1-03
 
20 1.02 1.02
 
30 0.99 0.99 
4o 0.98 0.96 
50 o•.92 0.92 
6o 0.93 o.87 
70 o.86 o.86 
80 o.88 o.8& 
90 o.88 o.88 

100 o.89 o.88 
110 0.91 0.87 
120 0.92 0.90
 
130 o.96 0.93
 
14o 0.99 o.94
 
150 ' 1.02 0.99
 
16o 1.09 i.o4
 
170 1.09 1.f01
 
180 - 1.11 0.99
 
190 1.09 1.00
 
200 1.07 i.o4
 
210 1.01 1.02
 
220 1.01 0.99
 
230 1.00 o.96
 
240 o.96 0.98
 
250 1.00 o.94
 
260 0.98 0.95
 
270 o.96 0.95
 
280 0-99 o.94
 
290 0.97 o.96
 
300 Loo 0.98
 
310 1.01 0.97
 
320 1.05 i.o4
 
330 1.05 i.04
 
34o 1.1i0 
 1.
 
350 1.10 t.o6
 

10.
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the two specimens of grade ATJ. It can be seen that the ratio is not
 

unity and, in fact, is not even constant. The variations are too
 

large and systemmatic to be due entirely to experimental error.
 

The problem of ascertaining the best measure of 1(0) is compli­

cated by the following facts: (1) The size and shape of a diffraction
 

peak are influenced by other factors in addition to the number of
 

crystallites causing diffraction (see, for example, ref. 5). (2) A
 

molded artificial graphite is not a homogeneous material. It has at
 

least two phases - binder and filler - and more than two phases if two
 

or more fillers are used. The overall diffraction peaks obtained are 

the sums of the peaks of the individual phases. This problem is treated 

in some detail by Noda and Inagaki. (3) The abscissa of the 

diffraction peaks obtained from Bacon films is tan 20 rather than 

2e. 

The resolution of this problem was beyond the scope of this study. 

Furthermore, it was felt that a comparison of the results obtained 

using peak height and peak area data would be of interest. Therefore, 

both were measured in -this investigation. 

The 28 films obtained from the 10 grades of graphite -studied were 

scanned in 10 increments of g from 00 through 3500 In addition, 

one grade - 2BE - was reread every 2.50 of . The heights of the 

diffraction curves were obtained by subtracting the averager background 

height from the average height of the peak crests, both of which were
 

read directly from the ruled paper.
 



Three grades of graphite ATJ, 2D8D, and CMB - were investigated 

by the Ali technique. Thelapproximate dimensions of the specimens used 

were 2-3/4 x 1 x 5/16 inch. For each specimen, the value of 20 was 

varied continuously over about a 5O range encompassing the Bragg value.
a 

-The variation was extensive enough to encompass the entire peak as well 

as some background on either side. The peak area was determined with a 

planimeter and the height was taken as the peak deflection minus the 

average of the background deflections. 

The peak heights measured in this study have an uncertainty of 

±1 to 2 percentb except when a dust speck or film blemish caused a
 

spurious deflection at or near the peak crest. In such cases the
 

uncertainty is estimated to be about ±5 percent.- The uncertainty in
 

peak areas is considered to be greater than in peak heights because of 

the increased effect of uncertainties in the baseline. Errors in
 

determining the baseline have a linear effect on the uncertainty of the
 

peak heights but a much greater effect on the uncertainty of'the peak
 

areas because of the divergence of the diffraction peak at its base
 

,(see fig. 3). Dust specks and film blemishes are also troublesome when 

areas are being determined. All such spurious deflections were faired
 

aThe goniometer dial of a diffractometer generally reads values of
 

20 rather than 0. The Bragg value of 20 for graphite with CuKa 
radiation is about 26.50; the va-lue varies somewhat with crystallite 
size and degree of graphitization.
 

bThe background and peak crests could each be measured to within
 

about half of a line on the ruled paper. Most of the peak heights
 
obtained lie in the range 50 to 100 lihes.
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through before the areas were determined, but some additional uncertainty
 

was introduced. Overall, the planimeter integrations are estimated to
 

be uncertain to about 2 to 3 percent.
 

Many factors contribute to the uncertainty in the angular orienta­

,tion of the specimens, but the major source of uncertainty unquestionably
 

was the cutting process. The Bacon specimens were cut in two steps:
 

-First,1-inch cubes were sawed from the billets as received at this
 

laboratory. The cubes were cut with an angular accuracy of about 20
 

or better and the pressing direction was clearly marked. The specimens
 

were then cut from the cubes by the Speer Carbon Company under.contract
 

to NASA. No estimate of angular uncertainty was furnished by Speer. A 

value of 2 percent will be assumed since the final cutting of the speci­

mens should not have been ,anymore inaccurate than the sawing of the
 

'
cubes. All other sources of error contributed less than 1 . Thus, the
 

total angular error in the Bacon specimens should be less than 50. The
 

Ali specimens were cut in one step at this laboratory; their total
 

angular uncertainty is no more than 20.
 



TBOEICIAL ANlALYSIS 

In this section we will consider the. impltcations' of assuming that
 

the distribution of crystallites in molded graphites is symmetrical
 

about some axis which is not necessarily coincident with the molding
 

axis. We will then attempt to devise a technique by which (1) the
 

spatial distribution of crystallites in a given graphite can be
 

completely determined from a properly obtained Bacon film image, and
 

(2) the distribution .so determined can be expressed, completely and
 

unambiguously, with a minimum number of parameters
 

Assume that the graphite specimen shown in figure 2 possesses a 

symmetry axis having some unspecified direction., 'Let S be a unit 

vector coincident with the symmetry axis. In the coordinate system
 

shown in figure 2 

A% 	 A .4 

S 	 = cos asi + cos PSj + cos 7sk 

= Zsi + m + nsk (5) 

where a5, 13S and YS Are the angles which the symmetry axis makes 

with the x, y, and z coordinates axes and ZS ms,y and n. are the 

corresponding direction cosines.
 

Let N be a unit vector normal to the basal planes of some crystal­

lite of interest. In terms of the direction angles aN, 'PN, and YN 

and the direction cosines 2N,! mN, and n
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00	os= + COs + Cos YSk 

Ni + mNj + (6) 

The scalar product of the unit vectors N and S is, by defini­

tion, equal to the cosine of the angle between them. But the angle 

between N and S is the orientation angle . Thus, 

N.S = NZS + mmS + nNns 
cos)


--- COS 

From the properties of direction cosines, we know that
 

Z2+MJ2 + n 2 	 (8) 

z2 2 2i 	 (9) 

if we solve equation (8) for mN and equation ('9) for ns, we get
 

= 2 - nN2 	 (10) 

n, - iS2'- 2 	 (n) 

We may adopt the convention that,the vector S always has an upward
 

component so that equation (11) becomes positive only.
 

The condition for (002) diffraction to occur is that the angle
 

between the basal planes and the incident X-raybeam must be the Bragg
 

angle for the radiation used. 'TheBragg angle for (002) diffraction
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using CuKc radiation is 13.250. If the basal planes make an angle of 

13.250 with the incident X-ray beam, their normal must make an angle 

of either 76.750 or 103.250, depending on whether the x~component of 

the normal is positive or negative. If we require that it be positive,
 

then
 

= 76.750 (12) 

It can be shown from consideration of spherical coordinates that 

n. = sin 76.750 sin 9 (13)
 

If equations (10) through (13) are combined with,equation (7), thep
 

following general equation relating 0 and. is obtained:
 

cosa = 8 cos 76.750 +-ms sin 76.75o " 1 - 2 

a(,,),
2sin 76.750 sin + # ­

lS
conTains wu 


mS, the direction cosines of the .symmetry, axis with respect to the'x­

axis is
 

Note that equation kL4) vwpLu is and 

and y-coordinate axes. Bacon, in assuming that the symmetry 

a
The second term on the right-hand side of equation (14) is nega­

,<.2700, otherwise it is positive. This results from
tive when 900 < 
the fact that for the diffracted beak t strike the left half of the 

must be negative.film, the y-component of the crystallite -normal vector 



•25
 

as 103.250
 
coincident with the forming axis, in.effect 

assumed that 


and p. = 90. This is equivalent to the assumption that 

IS = -cos 76.75a and MS = 0. If these values of . and i S are 

inserted into equation (13), the result is 

cos = -cos 2 77 + sin 2 770 sin 9 (15) 

Equation (15) is essentially the equation derived by Bacon; it differs
 

Since
from Bacon's.equation only in the sign of the terms on the -right. 

we are only ,concernedwith values of 'etween 00 -and900, ie may 

require cos $ to be positive and rewrite equation (15) as 

(
(16)cos = ]cos2 779 - sin2 770 sin 

from 69 to 900 being
Equation (16) results in all values of 

represented on the film image as is indicated schematically in figure 

4,(a). Many values of V. are represented at several points on the'' 

Figure 4(b) is a schematic representation of the limiting valuc_film. 


of 0 and if the specimens are aligned vertically rather than
 

tilted by 130, as specified by Bacon. These values result from.apply­

ing the condition that a. = 900, and therefore, is = 0 to equation
 

(14). It is obvious from figure 4(b) that crystallites with orientation 

angles between 00 and 130 would not be detected if the specimens were
 

aligned vertically.
 

and thus would be ..Bacon took the Bragg angle to be 130, Is 
.
 

- cos 770
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Figure 4.- Limiting values of 

S= 260 

and 4. 

= 
= 

1770 
900 

30' 
90q.' 

(a) cos = 

= 2700 
= 00 

Jcos2 7,70 -­sin2 sin 

900 
== 

' 
00 
90 

= 2700 

=' 130 

(b) cos lsinJ 770 sin Cl 
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If Bacon's assumption of the coincidence of the ymmetry and form­

ing axes .is incorrect, two difficulties arise: () the values of 2'S 

and mS are ndt known a priori, (2) not all inclinations, , are 

necessarily represented on a given film image. Thes& difficulties caa 

be overcome, at least in principle, if a valid closed-form expression 

and 0 is known and if sufficient experimental data arerelating I 

available. The procedure involved will be illustrated by considering 

A cosMW + B. -Note that $ appears onequation (V), which is I(0) = 

through its cosine. Equation (14) gives cos 0 as a function of the 

. If equation's (4) and (14)'parameters IS and m8 and the variable 


are combined, we get
 

T = Akis Cos 76.75 ± ms sin 76.75° ql - sin 

+ I- - mS2 sin 76.750 sin )M + B (17) 

Equation (17) contains five unknown parameters - A, B, M, Zs
 

and mS - which can be determined, in principle, if five or more pairs
 

of experimental values of 'Iand are available.a Appendix A
 

describes a least squares method for solving nonlinear equations such
 

as equation (17). Appendix B gives a listing of a computer program and
 

related subprograms by means of which the solution can be carried out.
 

This method and program were used in this investigation.
 

aThe success of solutions of equation (17) and the subsequently
 

derived equation (19) is dependent on the number and accuracy of the
 
data points available.
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Equation (2) can also be combined with equation (14) td yield an
 

equation similar to equation (17). This can be seen more easily by
 

rewriting equation (2) as
 

ab (18)a 

[a2 + .(b2 -. a2 ) cos 2 ]1/2 

This expression may be inserted into equation (14) to yield
 

I= ab
 

2 2)(2S 2 cos 76.750
[a2 + (b - a


+msin 76.750 - sin22 


±m/2 

+ -z2 -s2 sin 76.75° sin 2(19)
 

Equation (19) can be solved by the same least squares method applied to
 

equation (17) to yield the best values of a, b, Z., and m,. The
 

requisite computer programs and subprograms are listed in appendix B.
 

Once the parameters in either equation (17) or equation (19) have 

been determined, the value of I at any angle $ can be calculated 

(using eq. (1k) to relate 0 and ). Thus, it is not necessary that 

aThe parameters 
1(0) and 1(90) have been replaced by a and b,
 
respectively, for the sake of generality. We have no justification for
 
attaching more weight to experimental values measured at 00 and 90 than
 
to values measured at other angles.
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a particular angle be studied experimentally, or even that it be 

represented on the film image. 

The number of parameters actually specified need be only four in 

the case of equation (17) or three,for equation (19)., since, by proper 

A + B = 1 and a = 1. The necessary normalization isnormalization, 

the programs listed in appendix B. Equations (17) and (19)performed in 

can be compared by applying each to several sets of experimental data 

and comparing their variances.
 

The angle by which the symmetry axis is displaced from the molding 

axis can be. obtained by first representing the molding axis by the unit 

vector P where
 

P= 
A 

cos103° + cos 13
0A 
k, 

= -cos 77 1 + cos 13 k (20) 

and then taking the scalar product of S and P 

" P- -IS Cos o + -13 Cos °
 
cos l3
 s-m 


'(21)
= cos 

The arcosine of cos 8 is the desired displacement angle, 6. 



RESULTS ANfD DISCUSSION
 

The data from the 28 Bacon-method diffraction films were reduced 

using equatiohs (17) and (19). The least-squares values of the various 

parameters contained in these equations were determined for each set of 

data using the technique outlined in appendix A and the computer programs 

and subprograms listed in appendix B. The values of the parameters 

which were computed are presented in table 3. Also presented in this 

table are the values of 5, the angle between the symmetry and reference 

b o2 
axes, and o2 the variance of the data.-

Three important ,observations can readily be made from the results 

presented in table 4: (1) the values of the parameters obtained using 

peak heights to represent 1(0) generally do not agree with the values 

based on peak areas, even within experimental uncertainty. (2). The 

values of the parameters computed using equation (17) frequently do not 

agree with the'values obtained using equation (19). (3)The values of 

in many cases, are too large to be accounted for by experimental5, 

Each,of these points and others related to them will be discussed
error. 


in this section.
 

aThelvalues of the parameters a and A are not presented in
 

table I since the data and results were normalized so that a = 1 and
 

A = 1 - B. Although equations (17).and (19) were solved in terms of
 

the direction cosines, Is and ms, the direction angles mS and P8S
 

are easier to visualize; therefore, these-angles rather than the
 

direction cosinesare presented in table I.
 

bThe'reference axis was the molding axi's within the limits of
 

experimental error.
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TABLE 3 

LEAST SQUARES VALUES OF ORIENTATION PARAMETERS 

(a) Equation (17) - Peak Area Data 

Grade Specimen B M as, deg fs, deg 6, deg a2 x 104
 
number
 

ATJ 1 0..52 2.8 l14 91 11 2.1 
ATJ 2 0.52 2.6 122 92 19 1.1 
ATJ (G.P.)a 1 o.42 3.1 122 89 19 2.2 
ATJ (G.P.) 2 o.44 2.9 118 9o 15 2.7 
ATJ (o.P.) 3 0.42 3.1 i4 91 11 3.6 
2BE 1 0.35 3.0 111 88 8 19.5 
2BE 2 0.31 3.3 103 84 6 1.7 
2BE 3 0.33 3.2 101 91 3 8.1 
9RL 1 0.52 27 106 91 3 2.4 
9RL 2 0.50 2.6 120 89, 17 2.2 
9EL 3 0.52 2.5 122 87 19 2.0 
3499S 1 0.59 2.3 117 87 15 2.6 
34995 2 0.52 2.5 108 88 5 2.4 
34995 3 0.52 2.6 il. 93 8 2.9 
4007 1 0.50 2.9 110 100 12 2.2 
4007 2 0.51 2.5 116 7 19 3.0 
4007 3 0.43 2.8 112 90 9 2.7 
L51 1 N.S.b N.S. N.S. N.S. N.S. N.S. 
L31 2 o.81 2.6 149 95 46 1.9 
L31 3 N.S. N.S. N.S. N.S. N.S. N.S. 
2D8D 1 N.S. N.S. N.S. N.S. N.S. N.S. 
2D8D 2 N.S. N.S. N.S. N.S. N.S. N.S. 
CDG I o.61 3.0 107 78 '13 3.1 
CDG 2 o.6& 2.5 107 102 12 2.7 
CDG 3 0.59 2.6 128 87 25 2.6 
CMB 1 o.66 2.2 124 94 22 3.,6
CMB 2 o.67 2.1 120 88 17 6.3 
COM 3 o.65 2.3 117 90 14 9.4 

aGas purified. 
bNo solution. 
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TABLE 3.- CONTINUED
 

(b) Equation (17) - Peak Height Data
 

Grade Specimen
number 

B M as, deg Ps, deg 8, deg a2 x 104 

ATJ 1 o.48 2.6 103 90 1 1.1 
ATJ 2 0.51 2.7 109 91 6 0.7 
ATJ (G.P.)a 1 0.41 3.0 11 89 8 1.8 
ATJ (G.P.) 2 0.43 3.0 108 9o 5 2.6 
ATJ (G.P.) 3 0.38 3.0 107 90 4 1.6 
2BE 1 0.34 3.0 104 88 2 21.5 
2BE 2 0.29 3.4 98 84 8 2.0 
2BE 3 0.31 3.2 95 91 8 7.8 
9RL 1 0.48 2.6 97 90 6 1.5 
9RL 2 0.49 2.5 109 88 7 1.1 
9RL 3 0.51 2.6 lo8 87 7 1.1 
3499s 1 o.56 2.5 101 87 4 2.7 
3499S 2 0.50 2.7 97 87 7 1.7 
3499s 3 o.48 2.7 101 91 2 o.6 
4o07 1 o.146 3.0 102 98 8 1.8 
4007 2 o.48 2.6 ±o6 79 12 1.3 
4007 3 o.41 3-1 101 89 3 1.5 
L31 1 o.86 2.2 109 86 8 1.3 
L31 2 0.87 1.9 102 91 2 1.1 
L31 3 o.86 1.7 115 87 12 1.4 
2D8D 1 0.83 1.9 116 88 13 1.8 
2D8D 2 o.86 1.7 113 90 10 1.7 
CDG 1 0.57 2.5 99 8O 11 1.2 
CDG 2 0.57 2.9 96 100 12 1.1 
C0G 3 o.64 2.3 110 86 9 3.3 
CMB I o.67 2.4 i08 94 7 2.4 
CMB 
CMB 

2 
3 

l0.63 
0.62 

2.4 
2 .7 

107 
105 

88 
90 

4 
2 

1.4 
1.8 

aGas purified. 
bNo solution. 
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TABLE 3.- CONTINUED 

(c) Equation (19) - Peak Area Data
 

Grade Specimen, b Ms5 deg Ps: deg 8, deg a2 104 

ATJ 0.51 109 91 7 4.2 
ATJ 2 N.S.b N.S. N.S. N.S. N.S. 
MJ (G.P.)a 1 N.S. N.S. H.S. N.S. N.S. 
ATJ (G.P.) 2 N.S. N.S. H.S. N.S. H.S. 
ATJ (G.P.) 3 O.40 ±o8 91 7 17.1 
2BE 1 0.37 1o4 88 2 35.9 
2BE 2 0.31 96 84 9 21.6 
2BE 3 0.32 95 91 8 25.1 
9RL 1 0.51 101 91 2 6.o 
9RL 2 N.S. N.S. N.S. N.S. N.S. 
9RL 3 N.S. N.S. N.S. N.S. N.S. 
3499S 1 0.59 112 87 10 5.4 
3499s 2 0.52 102 88 2 6.8 
3499s 3 0.52 105 93 4 8.3 
4o07 1 0.50 105 100 11 6.7 
4o07 2 0.52 ll 77 16 7.0 
4007 3 o.44 105 90 2 12.1 
L31 1 N.S. N.S. N.S. N.S. N.S. 
L31 2 N.S. N.S. N.S. N.S. N.S. 
L31 3 N.S. N.S. N.ES. N.S. N.S. 

2D8D 1 N.S. N.S. N.S. N.S. N.S. 
2D8 2 N.S. H.S. N.S. N.S. N.S. 
CI o.6o 105 77 15 3.7 
COG 2 o.6o 103 102 12 4.6 
C00 3 N.S. N.S. N.S. N.S. N.S. 
CMB I N.S. N.S. N.S. N.S. N.S. 
CMB 2 0.67 115 87 13 6.7 
CMB 3 N.S. N.S. N.S. N.S. N.S. 

aGas purified. 
bNo solution. 
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TABLE 3.- CONCLUDED 

(d) Equation (19) - Peak Height Data 

Grade Specimen
number 

b a., deg Ps, deg 5, deg a2 x 104 

ATJ 1 o.48 98 90 5 8.1 
ATJ 2 0.51 1o4 91 1 5.6 
ATJ (G.P.)a 1 0.42 105 90 2 11.0 
ATJ (G.P.) 2 0.43 103 90 0 Io.6 
ATJ (G.P.) 3 0.39 100 91 3 15.6 
2BE 1 0.35 98 88 6 38.1 
2BE 2 0.28 94 83 11 21.6 
2BE 3 0.30 92 91 11 25.3 
9RL 1 O.47 94 90 9 8.6 
9RL 2 0.49 103 88 3 8.5 
9RL 3 0.51 103 87 4 6.4 
3499S 1 0.55 98 87 6 6.2 
3499s 2 o.49 94 87 9 6.2 
349gs 3 o.48 97 91 6 7.6 
4007 1 o.45 98 98 10 6.8 
4007 2 o.49 100 78 12 8.1 
4007 3 O940 96 88 7 11.4 
L31 1 o.86 108 86 7 1.3 
L31 2 0.87 101 91 2 1.1 
L31 3 o.87 ill 88 9 1.5 
2080 1 o.83 112 88 9 1.9 
2080 2 o.87 110 91 7 1.8 
CDG 1 o.56 96 79 13 4.5 
CDG 2 0.55 94 100 13 2.1 
COG 
CMB 

3 
1 

o.64 
0.67 

107 
105 

86 
94 

6 
5 

4.3 
2.8 

CMB 2 o.63 103 88 2 5.0 
CMB 3 o.61 102 90 1 2.7 

aGas purified. 
bNo solution. 



The fact that the peak height and peak area data generally do not 

yield the same values for the various orientation parameters conflicts
 

with the assumption of Ali, et al. , and Guentert7 that they are 

equivalent measures of I(0). Although this investigation did not 

attempt to resolve the question of which is, theoretically, the better
 

measure of I 0), the peak height data have been shown to be more
 

consistent. For example, every one of the 56 cases listed in table 3
 

which involve peak height data converged to a valid solution, whereas
 

17 of the 56 cases involving peak area data failed to converge. Also,
 

the average variance of the cases involving peak heights is less than
 

a 
the average for the cases involving areas by a factor of 0.81. 

Similar comparisons can be used to show that equation (17) yields
 

more consistent results than does equation (19). All but four cases
 

involving equation (17) converged, but 13 cases involving equation (19')
 

did not converge. The average variance using equation (17) is only
 

0.31 of the average variance using equation (19). Furthermore, the
 

individual variance for equation (17) is smaller in every case except
 

one, for which it is equal to that obtained with equation (19).
 

These results indicate that the form of equation proposed by Pappis,
 

et al.13, is better able to describe the spatial distribution of
 

graphite crystallites than is the elliptical form proposed by Ali,
 

.
et al.1
 

aThe average variances mentioned here and if,the next paragraph do 

not include the variances of specimens No. I and 2 of grade 2BE) which 

are believed to be atypical. This point will be discussed later in this 

section. 
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Perhaps the most significant observation to be made from table 3 

is that in well over half of the cases the value of 5 is greater than 

5 , which is the estimated maximum angular error. In several cases, 6 

is more than 100. Thus, significant angular differences between the 

pressing axis and the experimentally determined symmetry axis exist -in 

many of the specimens investigated. This corroborates the finding of 

Cavin 3 and contradicts the assumption of Bacon 2 and others.1 9­)1 0 1 2)13 ,l5 16 

The importance of experimentally determining the symmetry axis and 

using it, rather than the pressing axis, as the reference axis for 

specifying the orientation angle., 0 is illustrated by figure '5. In 

this figure the peak height data of film No. 201 are plotted in'the­

following two ways. In part (a), $ -is referred to the pressing axis;. 

in part (b), 0 is referred to the computed symmetry axis. It is 

obvious that the data points are much less scattered when 0 is 

referred to the symmetry axis. 

It is noteworthy that 8 is generally not constant among the three 

specimens of each grade of graphite. These variations in 8 are some­

what confused by the fact that for each specimen as many as four values, 

of 6 were obtained which generally differ among themselves.: 'Te most 

consistent values of the various parameters appear to be those obtained 

from equation (17) using peak heights. If this set of values of 8 is 

considered, angular differences of 5 or more exist among the specimens 

of 6 of the 10 grades studied. It appears that the symmetry axis of a 

graphite body does not necessarily have the same direction at all points 

within the body. Furthermore, the degree of orientation was also 
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Figure 5.- I vs. 4 for graphite grade CDG. 
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found- to vary throughout a graphite body since the parameters b, B, 

and M generally vary somewhat among the specimens within a given 

grade. It is not known why'the direction of the symmetry axis and the 

degree of orientation vary within a graphite body, but the answer 

probably involves an uneven distribution of forces within the body
 

during the forming process. Unfortunately, the positions of the 

specimens within the body were not noted and, thus, no patterns regarding
 

the variations can be ascertained.
 

Two of the specimens of grade 2BE behaved quite differently from
 

the other specimens tested in that the variances associated with them 

were abnormally high. Furthermore, the deviations between the experi­

mental and calculated values of I($) (based on the least-squares 

parameters) were not random. This is shown in table 4. The possibility 

was considered that perhaps the values of the orientation parameters
 

obtained were not the true least-squares values, but rather were
 

spurious values to which the solutions of equations (17) and (19) had
 

converged. Convergence to unreasonable solutions sometimes occurs
 

with the technique used if the initial values of the parameters chosen
 

are too far removed from the correct values. To check for this, the
 

initial values of the parameterswere systematically varied over a
 

wide range, but no solution other than that presented in table 4 was 

three films for this grade were then reread at intervals
obtained. The 

j to minimize the effects of errors in the individual dataof 2.50 in 


points. The data were reduced in toto and also using only every fourth
 

data point so that the increment of g was 10 Only equation (17)
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TABLE 4 

PERCENT DEVIATION OF PEAK HEIGHT DATA FOR 

GRADE 2BE 

- I(o).)a
l0 (I(O)CALC 


, deg I(0 )E
 
Spec. No. I Spec. No. 2 Spec. No. 

0 16.6 5.6 13.2 
10 13.0 2.3 lo.4 
20 10.1 -1.0 5.1
 
30 9.2 -0.7 5.2 
4o 12.2 1.5 3.7 
50 12.2 4.o 7.1 
6o 9.9 1.2 5.2
 
70 8.9 -0.5 5.0
 
8o 5.3 0.2 2.5 
90 -0.3 -o.4 -1.0
 

100 -5.2 1.0 -2.2 
110 -7.2 -1.6 -3.6 
120 -10.1 -1.1 -4.4
1-30 -i-o. 8 -3-3.6 
i40 -11.4 -6.2 -4.4 
150 -11.8 -5.3 -9-3 
±6o -11.7 2.5 -7.0 
170 -7.3 6.9 -1.8 
-80 -5.4 1.9 0.1 
190 -9.9 -1.3 -6.2 
200 -8.7 -5.0 -10.9 
210 -10.3 -2.6 --0.5
 
220 -6.4 -0.9 -6.1 
230 -4.2 0.2 -4.4 
240 -3.9 1.8 -1.3, 
250 -3.7 -1.3 -2.0 
260 -2.5 -1.9 -1.4 
270 -1.0 -1.5 -0.12 
280 2.3 1.0 0.5 
290 4.5 3.7 -O,1 
300 7.0 4.3 6.5 
310 8.8 0.0 7.7 
320, 8.9 -3.3 5.6­
330 8.7 -2.5 1.9 
34o 8.2 2.9 5.9 
350 ±4.1 3.0 6.8 

a(r)CALC onaValues of ae based equatioh (17)* 

3
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was used. The results are presented in table 5. It can be seen that 

no significant improvement in the variance is obtained by consideriig
 

the additional data points.a Apparently, the distribution-of
 

crystallites in specimens No. 1 and 2 of grade 2BE is not truy symmetri­

cal about any axis. Specimen No. 2 from the same block of graphite does, 

however, exhibit a symmetry axis. The chuse of this behavior is 

probably related to the cause of the variation of the direction of
 

the symmetry axis but is not presently known. In any evenj, it appears 

that the results for a sample taken at one location in a block of
 

commercial graphite do not, necessarily, apply at 6ther locations withir 

the block. 

It should be clear from the above discussion that the Ali method 

cannot be expected to give more than a rough approximation of 

crystallite orientation, since this method involves two fairly large 

samples which must,, necessarily, be cut from different locations, and
 

also since the method depends upon the assumption of an elliptical
 

distribution of crystallites, which has been found not to be correct.
 

A comparison of Ali measurements of I(90)/I(O) on grades ATJ, 2D8D, 

and M with the values of Bb for these grades is given in table, 6. 

As expected, the results do not agree very well. 

aNote, also, that the values of the various orientation parameters 
are not significantly changed by considering the additional data points. 
Comparison of the values in this table with those in table 2(b) 
illustrate the reproducibility of the technique used.
 

bThe orientation parameters b and B are essentially least­
squares estimates of the true value of 1(90)/i(0). 
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TABLE 5 

ORIENTATION PARAMETERS FOR GRADE 2BE USING 

PEAK HEIGHT DATA AND EQUATION (17) 

Specimen Ag, deg B M cts,m,degdeg 8, deg a2 x 104
 
number ____ 

1 2.5 o.34 2.9 105 87 3 18.6 

1 10.0 0.34 2.9 io5 88 3 20.7 

2 2.5 0.29 3.4 97 84 8 2.0
 

2' 10.0 0'.30 3.4 97 84 8 2.1
 

3 '25 '0.31 3.2 95 9o, 8 6.2
 

3 10.0 0.31 3.2 95 90 8 7.4 



TABLE 6 

COMPARISON OF RESULTS OF ALI AND'BACON-METHODS 

(a), Peak Area Data 

Grade I(90.)/I(O), Ali B, Bacona
 

ATJ o.56 0.52 

N. b0.96
2D80 

CMB, o.68 o.66 

(b) Peak Height Data' 

Grade. I(90)./.i(0)) Ali B, Bacona 

ATJ 0.57 0.50
 

2D8D 0.99 O.85 

cmB o.52 o.64
 

aAverage least squares solution to equation (17)
 
for all specimens of the grade.
 

bNo solution.
 



CONCLUSIONS AND RECOMMENDATIONS 

The results of this investigation lead to the following conclusion
 

1. Most molded, artificial graphites possess an axis about which
 

their crystallites are symmetrically oriented. However, there does not
 

have to be -asymmetry axis in all such graphites as indicated in this
 

investigation by grade 2BE.
 

2. The symmetry axis of a molded graphite does not necessarily
 

correspond to the forming axis and, in fact, frequently does not.
 

3. The degree of crystallite orientation, the direction of the
 

symmetry axis, and, in fact, whether or not a symmetry axis even exists,
 

can vary from one location to another within a graphite body.
 

4. The equation I = A cosM + B is capable of describing the 

angular distribution of crystallites about the symmetry axis within the 

limits of experimental error. This equation -ismore precise than the 

polar elliptical equation proposed by Ali, Fitzer, and Bagoss. 

5. The angle, , on a Bacon diffraction film is related to the 

orientation angle, , throngh the equation 

o 2
 cos o = S cos 76.750 ± sin 76.75 41 sin 

+ 1 - 2 _ M sin 76.75 sin t 

where ZS and mS are the direction cosines of the symmetry axisto 

which $ is referred. 

43
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6. The parameters. B, M, ZS, and constitute the minimum
mS 


set of parameters necessary to specify completely the orientation of
 

crystallites in molded, artificial graphites.
 

7. The height of a diffraction peak is not necessarily proportional
 

to the area under the peak. Consequently, values of the orientation
 

parameters based on peak height data frequently do not agree with the
 

values obtained using peak area data. The precision of peak height
 

data is generally greater than that of peak area data with the techniques 

employed in this study.
 

The following recommendations are made for future work: 

1. The accuracy with which the direction of the symmetry axis can 

be determined by the technique propoSed in this thesis should be
 

checked. One possible method would involve a specimen holder with two
 

degrees of rotation. First,, a specimen would be aligned a-s specified
 

by Badon, and the dir~ction of the symmetry axis would be determined as 

described herein. Then the specimen would be.rotated so that the
 

symmetry, axis replaced the pressing axis. A sec6td X~ray film would be 

exposed and 8 would be determined. If -the theoretical method
 

presented herein is valid, 8 should be qtite small. 

2. A comprehensive study of the factors affecting crystallite 

orientation should be undertaken with the twin goals of (a) understand­

ing the orientation characteristics of existing graphites and (b) ­

making possible the manufacture of futre graphites'with a wide range of 

orientation properties which are consistent throughout the graphite body.
 



3. A reliable measure of i(0) bhould be, determined. 

4. The precision of the Bacon method should be increasdd either 

by using a very fine grain film, such as Kodak Type R or by using a 

moving counter, rather than film, ab the detector. A counter detector 

would eliminate the delay -and error, cause d by fili.processing and 

microdensitometry. An experimental arrangement involving a counte#, 

detector which is adaptable to the Bacon method is described in refer­

ence 14. 



APPENDIX A
 

Consider a variable, r, which is an explicit function of some
 

other variable, t, and of u coefficients, cj
 

r = r(cl, c2, ..., c,C,t) (Al)
 

If equation (Al) is linear with respect to the coefficients it may be
 

rewritten as
 

U 

r =X ejAj(t) (A2) 
j=l
 

If v pairs of values of r and t are known they may be 

substituted into equation (A2) to yield the family of equations 

u 

r i =. cj(ti) i = 1, 2, .., v (A3) 

j =1 

The v equations represented by (A3) may be written as the matrix
 

equation 

AC (A4) 

where R = [ri], C = [cj], and' A =LAij] ='% (ti')] 

If v = u, equations (A) or equation, (Al)can be sol'red . uniquely 

for the values of c3 by Cramer's Rulea. However, if v > u the 

determination of the coefficients is overspecified, that is, various 

aprovided that JAI / 0 where JAI is the determinant of'the'matrix :A. 
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combinations of u of the equations (A3) can be solved and each will
 

yield a different set of values for the coefficients. No one set of
 

such solutions is preferable to any other set. However, a statistically
 

preferred set of values can be obtained by applying the method of least­

a 20
squares . Using this method it can be shown that the best solution
 

for the coefficients, ca., are the elements of the matrix C given by
 

the equation
 

=,(ATA)-l ATR (A5)
 

The coefficients in equation (Al) can be determined even if the
 

equation is nonlinear by linearizing it as its Taylor series expansion,
 

truncating all terms higher than first order.
 

u 

r
Arf Acj (A6) 

j=l 

0 0where Ar = r- r, and Acj = cj - cj. The superscripts on the' 

coefficients refer to approximate values about which the expansion I 

performed. Superscripts on the dependent variable and its partial 

derivatives indicate evaluation using the approximate coefficients.' 

If -v pairs of values of r and t are known, equation (A6) 

generates the family of equations 

u 0 

6ri =X (jc i=l,2, ... ,v '(A7) 
j=l 

aThe method ,of least-squares yields the 'test," statistical solution
 
that can be inferred from a set of data providing the errors in the data
 
are assumed to be normally distributed.
 



AM AA AZ AQ 

Equation (A8) is equivalent to equation (A4) and, thus, the 

equivalent least-squares solution is 

c(A )MAA (A9)
 

The values of cj are obtained from the elements of Z by means of
 

the relationship 

c =Ac. + c9 (AlO) 

Since the higher order terms of the Taylor series expansion of r 

were dropped in linearizing equation (Al) the values of c. obtained
a 

from equations (A9) and (AlO) are not the exact least-squares values.
 

The exact values can be approached as closely as desired, however, by 

repeated solutions of ,equations (A9) and (Al0) using each set of values 

of cj obtained as an improved approximation for the next iteration
a 

The mathematical procedure just described is essentially that
 

outlined in reference; 20. it is the basis of the Fortran subroutine
 

FITALL18 which was used in this study for the solution of equations (17)
 

and (19). FITALL requires a suitably constructed main program to supply
 

aThis statement is correct provided the solution converges properly. 
This will generally be the case if (1) the form of equation (Al) 
correctly describes the data (2) the data are not too badly scattered
 
and (3,) the first approximations of the parameters -to be determined
 
are reasonably good.
 



the necessary input, output, and control steps. FITALL also requires
 

9
a subroutine to supply the values of r and / )r and the matrix 

inversion subroutine MATRXI. 

A listing of the various programs and subprograms used in this 

study is given in appendix B. DES1 is the main program for equation (17) 

and COSN is the corresponding subroutine. DRS2 and ELLIPSE are the 

main program and subroutine, respectively, for equation (19). AMAX is 

a function subprogram required in normalizing the raw data. 
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PROGRAM DPSI (INPUTOUTPUTTAPES=INPUTTAPE6=OUTPUT)
 
DIMENSION DATA(144.3),P(2O) DP(20).RES(144),CI (144),XI(144),
 

2 PHI(144),I (144)'.RSIG(144),ARRAY(403),CNAME(12),RESPCT('144),L(4).,
 
3 ISTORE(144)
 

REAL I,IMAX,'IZEROISTORE
 
EQUIVALENCE (XI,DATA(I,1 ))(IDATA(12), (RSIGDATA(I,3))
 
EXTERNAL COSN
 
LOGICAL TESTI,,TEST2-,TEST3-

COMMON /I/ TEST3
 
COMMON COSGAMCOSPHI(144),CI
 
NAMELIST/LDATA/IiXINDATA
 
NAMEL rST/PARAM/P,NP
 

C.....P(I)=AP(2)=BP(3)=M.P(4)=COS(ALPHAS),P(51)=COS(BETA.S)
 
PRINT 10
 

1O FORMAT (IHI. 2'IHI = A*COS(PHI)**M + B)
 
C.....READ AND PRINT CASE IDENTIFICATI'ON
 

2 READ (5, 1OOJ CNAME
 
10 FORMAT (12A6)
 

I'F (EOF,5) 998,999
 
999 PRINT 101, CNAME
 
101 FORMAT (IHI. 12A6//)
 

C.....READ AND PRINT FIRST APPROXIMATION OF COEFFICIENT
 
READ(5.PARAM)
 
PRINT 200, (PI(N), NI=.NP)
 

200 FORMAT (IX, **A,(O) , F9.6, 4X. *8(0-) *, F9.6, 4X. *M(O) =* 
2 F9.6, 4X, *COS(ALPHA.Sl(O) = *,q F8'.5 4X, *COS(BETAS).(O) =** 
S F8.5//) -

C.....READ AND NORMALIZE DATA--SET WEIGHTING FACTOR, RSIG. TO' UNITY 
READ ('5,LDATA) 

IMAX=AMAX(I,NDATA) 

DO 84 K=I ,NDATA 
ISTORE(K)=I (K) 
I(K)=I (K)/IMAX 

84 PSIG(K)=I. 
C.....INITIALIZE PROGRAM PARAMETERS 

VAP=O 
J=j
 

TESTI=.FALSE.
 
TRS2=.FALSE.
 
TEST3=.FALSE.
 
L(I)=NDATA
 
L(2.)=NP
 
L(3)=200'
 
L(4)=O
 



C ..... SOLVE EQUATION(17) FOR 'LEAST-SQUARES VALUES OF COEFFICIENTS
 
'CALL FITALL(.COSNDATA, 144.P.DP,20,OL,ARRAY,400')
 

C,...TEST SOLUTION AND PRINT APPROPR'IATE ERROR MESSAGE IF NECESSARY
 
IF (.NOT. TEST3) GO TO IO
 
PRINT 190, L,(D(N), N=I,NP).(DP'(N). N=I.NP),COSGAM.COSPHI(J)
 

190 FORMAT (L-X, *UNREASONABLE SOLUTION IN PROGRESS.*// IX, *LIST 
= 
2 414// IX, *P = *. 5F16.6// IX. *DP = *, 5E16.6// IX,
3 *COS(GAMMA,S) = *, E16.6, 4X, *COS(PHI) = *. E16.6) 
GO TO 2
 

180 'IF (L(4')-LE.3-) GO To 22
 
PRINT 21, L 

21 FORMAT (IX, *TROUBLE IN FITALL. LIST = *, 414) 
'GO TO 2 

22 IF (L(4) *LE.,I) GO TO 30 
PRINT 23 

23 FORMAT (IX, *CONVERGENCE CRITERION NOT SATISFIED, FOLLOW-ING RESULT
 
2S USE BEST AVAILABLE PARAMETERS.*/"
 

C.....PERFORM FINAL NORMAL.IZATION
 
30 IZERO=P(I )+P(2)
 

P-(l)=P(I)/IZERO
 
P(2)=P(2)/IZERO
 

DO 51 J=INDATA
 
I (J)=i(J)/rZERO
 
CI (J)=CI (J)/'IZERO
 
RES(J)=CI(J)-I(J)
 
RESPCT(J)=RES(J)*I00.,/I(J)
 

VAR=VAP+RES(J)**2/(NATA-NP)
 
C..... TEST COS(PHI) FOR UNREASONABLE VALUE AND PRINT VALUE AND ERROR
 
C.....MESSAGE IF FOUND
 

'IF (COSPHI(J).,LE. 1.0, GO TO 160
 
PHI(JV'=COSPHI(J)
 

TEST1=.TRUE.
 
GO TO 51
 

160 PHI(J)=S7.2958*ACOS(COSP,,,d l
 
51 CONTINUE
 

IF (TES.Tl PRINT 170'
 
170 FORMAT (IX, *ERROR--COS(PHI) GREATER THAN ONE.*-)
 

C... TEST DIRECTION COSINES FOR UNREASONABLE VALUES AND PRINT
 
C,.....APPROPRIATE ERROR MESSAGE 
IF NECESSARY
 

SUMSO=P(4)**2+PI,5)**
 2
 
rF (SUMSO *LE., 1.0) GO TO-90 
PRINT '110, SUMSQ 

1,10 FORMAT (IX, 42HERROR--COS(ALPHAS,)**2 + COS(BETA.S)**2 = . FB.S//) 
90 IF (-ABS'(P(4)) .GT. 1.0) TES-T2.-TRUE.
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IF CABS(P(5)) *GT. 1.0) TEST2=TRUE.
 
IF (ABS(COSGAM), .GT. 1.0) TEST2=.TPUE.
 

IF (.NOT. TEST2') GO TO 120
 
PRINT 130
 

130 FORMAT (IX, *ERROR--DIRECTION COSINE GREATER THAN ONE.*//)
 
GO TO 140
 

C..CALCULATE ALPHA(S), RETA(S), GAMMA(S). AND DELTA
 
120 COSDEL=-COS(77.*1.7493E-2)*P(4)+COS(13.*1.7453E-2)*COSGAM
 

DELTA=S7.2958*ACOS(ARS(COSDEL))
 
IF (COSDEL.LT.0) DELTA=180.-DELTA
 
ALPHA=57.2958*ACOS(ARS(P(4)))
 
IF (P(A),LT.O) ALPHA=18O.-ALPHA 
BETA=57.2958*ACOS(ABS(P(5))) 
IF (P(5).LT.O) BETA=180.-BETA 
SGAMMA=57.2958*ACOS(COSGAM) 

C.....PRINT PROGRAM TEST PARAMETER. LIST 
1'40 PRINT 20, L 
20 FORMAT (IX. *L-IST = *. 414//) 

C.....PRINT RESULTS
 
PRINT 40, VAR 

40 FORMAT (IX,. *VARIANCF = . El.6//) 
PRINT 50, P(l),P(2).P(3) 

50 FORMAT (IX,*A = 4, F9.6. 4X, *8 = 4 F9.6, 4X, *M = *F9.6//) 

PRINT 60, P(4).P(5),COSGAM 
60 FORMAT (IX, *COS(ALFHAS-) = * F8.5. 4X. *COS(BETAS) = . FS.5. 

2 4X, *COS(GAMMA.'S) = *. F8.5/i) 
IF (TESTS) GO TO 150 
PRINT 70. ALPHA.BETASGAMMADELTA 

70 FORMAT (IX, *ALPHA(S) = *4 F9.4'. 4X. *BETA(S) = F.F9.49 4X. 
2*GAMMAC(S) = *, F9'.4 4X, *DELTA = *, F9.4//), 

150 PRINT 80, (PHI(.J),XI(J),ISTOPE(J),I(J)'.CI(J.),RES(J),RESPCT(J). 

2 J=1INDATA) 
80 FORMAT -(37X, *NORMALIZED*/ 5X, *PHI*, 6X, *XI*, BX. *I(EXP)*,
 

2 SX, *I(EXP)*, 4X, *I(CALC)*, 4X. *RES*. 4X. *RES(PCT)*/
 
3 (2F10.4. F12.6.. 4F10.6))
 
GO TO 2
 

998 STOP
 
END 
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SUBROUTINE COSN(RES.DATA,NDMAXP.DP.V,NP.J)
 
REAL I
 
DIMENSION DATA(NDMAX,3)-,P(20),DP(20)
 
LOGICAL TEST3,TEST4
 
COMMON /I/ TEST3
 
COMMON COSGAM.COSPHI(144).CI'(144)
 

TEST4=.FALSE.
 
XLIM=I.OE-IO0
 

C...TEST COEFFICIENTS FOR UNREASONABLE VALUE AND SET INDICATOR IF FOUND
 
IF (ABS(P(I')) .GT; 2.0) GO TO 20
 
IF (ABS(P(2')) GT. 2.0) GO TO 20
 
IF (ABS(P(3)) *GT. 10.0) GO TO 20.
 
IF (ABS(P(41) *GT. 1.0) GO TO 20
 
LF (ABS(P(5)) .GT. 1.0) GO TO 20
 

C. ... CONVERT XI TO RADIANS
 

XL=DATA(J.1
 
RXI'=XI*1.7453E-2
 
I=DATA(J2)
 
V=DATA(J.3)
 

C .. CALCULATE COS(BETA,N.)
 
ARG1=SIN(76.75*I.7453E-2)**2*(I.-SIN(RXI)**2)
 

IF (ARGI *GT. XLIM) GO TO 60
 
COSBETA=O.O
 
GO TO 70
 

60 COSBETA=SQRT(ARGI)
 
C.1...SET SIGN OF COS(BETA.,N)
 

IF' (XI .GT. 90. ,AND. XI .LT. 270.) COSBETA=-COSBETA
 
C....CALCULATE COS(GAMMA.S)
 

70 ARG2=ABS(I.-P(4)**2-p(S)**2)
 
IF (ARG2 .LTe XLIM,) GO TO 20
 
COSGAM=SQPT(ARG2)
 
IF'-(CO-SGAM *GT. 1.0-) GO TO 20
 

C .....CALCULATE COS'(ALPHAN)
 
COSALPH=COS(76.75*1.7453E-2)
 

C....CALCULATE COSiPHI)
 
COSPHI(.J)=COSALPH*P('4 )+COSBETA*P(5)+COS(13.25*1.'7453E-2)*COSGAM'
 

2 *SIN(PXI)
 
C....TEST COS(PHI) FOR UNREASONABLE VALUE AND SET INDICATOR IF FOUND
 

IF (ABS(COSPHI(J)) .GT. 1.0) GO TO 20
 
C. TAKE ABSOLUTE VALUE OF COS(PHI) AND SET INDICATOR FOR'CORRECT"
 
C. .SIGN OF DERIVATIVES
 

IF (COSPHI(J)y .GE. 0) GO TO 10
 
COSPI (.J)=-COSPHI(J)
 
TEST4=.TRUE.
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1'0 CONTINUE
 
C.. CALCULATE PARTIAL DERIVATIVES OF I(PHI) WIT RESPECT TO COEFFICIENTS-AND
 
C.....SET CORRECT SIGN
 

DP(I)=COSPHI (J)**P(3)
 
IF ('ABS(DP(1)) .LT. XLIM) DP(2)=O.O
 
DP(2)=I.
 
IF (ABS(COSPHI(J)) *GT. XLIM) GO TO 30
 
COSPHI(J)=O.O
 

DP(3)=OO
 
GO TO 40
 

30 DP(3)=P(I)*COSPHIC(J)**P(3)*ALOG(COSPHI(J)
 
40 DP(4)-P(I)*P(3)*COSPHI(J)**(P(3)-I.-*CCOSALPH-(p(4)/COSGAM)*
 

2 COS(13.25*I.7453E-2)*SIN(RXI))
 
IF (ABS(DP(4)) .LT. XLI-M) DP'(4)=O.O
 
IF (TEST4) DP(4)=-D(4)
 
DP(EI)=P(1 )*P(3)*COSPHI(J)**(P(3)-I-')*(COSSETA-(P(5)/COSGAM )*
 

2 COS(13.25*I.745"E-2)*SIN(RXI))
 
IF (ABSDP(5)) -LT. XLIM-] OP(5)=O.O
 
IF (TEST4) DP(5)=-DP(5)-


C...CALCULATE I(PHI)(O)
 
CI (J)=P(1),*COSPHI (J**P(3)+P(2)
 

C....CALCULATE RESIDUAL OF I(PHI)
 
RES=CI(J)-I
 

C...TEST RESIDUAL FOR UNREASONABLE VALUE AND SET INDICATOR IF FOUND
 
IF {ABS(RES) .GT. 1.0) GO TO 20,
 
'IF (ABS(RES) *LT. XLIMI RES=0.O
 
GO TO 50
 

20 TEST3=.TRUE.
 
50 	RETURN
 

END
 



PROGRAM DRS2 (INPUT.OUTPUT.TAPES=INPUT.TAPE6=OUTPUT)
 
DIMENSION'DATA(40,3),P(20),DP20OfL(4,RES(40)OC I(40),XI(40).
 

2 PHI('40),.I(40),RSIG 40),ARRAY(4O3),CNAME(I2),RESPCT(40),
 

3 TSTOREC40)
 
REAL IIMAXIZERO,ISTORE
 
EQUIVALENCE (XIDATA(l,1)).(IDATA(I'.2)).(RSIG.DATA(I.3))
 
EXTERNAL ELLIPSE
 
LOGICAL TESTITEST2,TEST3
 
COMMON /I/ TEST3
 
COMMON COSGAMCOSPHI (40)'.CI
 
NAMELI'ST/LDATA/I,-XINDATA
 
NAMELIST/PARAM/P,NP
 

C..P(1)=AP(2,)=B,P(3)=COS(ALPHA,S').P(4)=COS(BETAS)
 

PRINT 10
 
10 FORMAT ('IHI. 46HI = A*B/SORT(A**2 + (B**2 - A**2)*COS(PHI)**2))
 

C....READ AND PRINT CASE IDENTIFICATION
 
2 READ (5. lO0-) CNAME
 

100 FORMAT (12A6)
 

IF (EOF.S) 998.999
 
999 PRINT 101, CNAME
 
101 FORMAT ('fHI, 1.2A6//)
 

C ...	 READ AND PRINT FIRST APPROXIMATION OF COEFFICIENTS
 
READ(5PARAM)
 
P(I)=I.OO 
NP=4 
PRINT 200, (P(N). N=1*NP) 

200 FORMAT (IX. *A(O) = *. F9.6. 4X. *B(O) = *. P9.6. 4X. 
2 *COS(ALPHAS) (0)' = * F8.5, 4X. *COS(BETAS)CO) = *, FS.5//) 

C .. READ AND NORMALIZE DATA--SET WEIGHTING FACTOR, RSIG- TO UNITY 
READ (5,LDATA)
 
IMAX=AMAX(I,NDATA)
 
DO 84 K 1,NDATA
 
ISTORE(K'=I(K)
 
I(Kh=I (K)/IMAX
 

84 RSIG(K)=I.
 
C...INITIALIZE PROGRAM PARAMETERS
 

VAR=O
 
J=l ­
TESTI1.FALSE.'
 
TEST2=.FALSE.
 
TEST3=.FALSE.
 
'L(I)=NDATA
 
L(2)=NP
 
L(3)=200'
 

http:P(I)=I.OO
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L(4)=O
 
C.....SOLVE EQUATION(19) FOR LEAST-SQUARES VALUES OF COEFFICIENTS
 

CALL FITALLCELLIPSE,DATA,40,P.DP.20,QLARRAY,400)
 
C.T.EST 'SOLUT'ION AND PRINT APPROPRIATE ERROR MESSAGE IF NECESSARY
 

IF (.NOT. TEST.S) GO TO 180
 
PRINT 190, LU-(P(N), N=I.NP).(DP(N), N=I,NP),COSGAMCOSPHI(J)
 

190 FORMAT (IX, *UNREASONABLE SOLUTION IN PROGRESS*// IX, *LIST = 
2 414// IX, 4P = * 4E18.'6// IX, *OP = *. 4E16.6// IX. 
3 *COS(GAMMA.S) = , E16.6, 4X. *COS(PHI) = *, E16.6) 

GO TO 2 
18O IF (L(4)-.LE.3) GO TO'22 

I PRINT 21. L 
21 FORMAT (IX, *TROUBLE IN FITALL. LIST = * 414) 

GO TO 2 
22 IF (L(4) *LE.1) GO TO 30 

PRINT 23 
23 FORMAT (IX, *CONVERGENCE CRITERION NOT SATISFIED, FOLLOWING RESULT 

2S USE BEST AVAILABLE PARAMETERS.*//) 
C..... PERFORM FINAL NORMALIZATION
 

30 	IZFPO=P(I)
 
P(I)=P(1)/IZERO
 
P(2)=P(2)/IZERO
 

DO 51 J= ,NDATA
 
I(J)=I(J)/IZERO
 
C'I(J)CI(J)/IZERO
 

RES(J)=C(J)-I(J)
 
RESPCT(J)=RES(J)*1O0./I(J)
 
VAR=VAR+RES(J)**2/iNDATA-NP)
 

C ... TEST COS(PHI) FOR UNREASONABLE VALUE AND PRINT VALUE AND ERROR
 
C.,,.MESSAGE IF FOUND*
 

I.F (COSPHI(J) ,LE. 1.0) GO TO 160
 
PHI(J)=COSPHI (j)
 
TESTI=,TRUE.
 

GO TO 51
 
160 PHI(J)=57.2958*ACOS(COSPHI(J))
 
51 CONTINUE
 

IF (TESTI) PRINT 170
 
170 FORMAT (IX, *ERROR---COS(PHI) GREATER THAN ONE.*)
 

C...nTEST DIRECTION COSINES FOR UNREASONABLE VALUES AND PRINT
 
C,,.°APPROPRIATE ERROR MESSAGE IF'NECESSARY
 

SUMSQ=P(3)**2+P(4 )**
 
IF (SUMSO, LE. 1.0) GO TO 90
 
PRINT 110. SUMSQ
 

1'10 FORMAT (IX. 42HERROR--COS(ALPHAS)*i2 + COS(BETAS)**2 = ,FB.// 
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90 IF (ADS(P(3)) *GT. 1.0) TEST2=.TRUE. 
IF (/ABS(P(4)) .GT. 1.0) TEST'2=.TRUE. 
IF (ABS(COSGAM) .GT. 1.0) TEST2=.TRUE. 
IF (.NOT. TEST2) GO TO 120 
PRINt r30 

130 FORMAT (IX. *ERROR--DIRECTION COSINE GREATER'THAN ONE.*//) 
GO TO 140 

*.....CALCULATE ALPHA(S). BETA(S), GAMMA(S), AND DELTA 
120 COSDEL=-COS(77..*I.7453E-2)*P(3)+COS(13.*I.7453E-2')*COSGAM 

DELTA=57.2958*ACOS(APS.(.COSDEL)) 

IF (COSDEL.LT.O') DELTA=IO.-DELTA 
ALPHA=57.2958*ACOSIARS(P(3))-) 
IF (P(3) aLT. 0) ALPHA=180.-ALPHA 
8ETA=57.2958*ACOSABS,(P(4))) -
IF (P(4) *LT. 0) BETA=180.-BETA,"." 
SGAMMA=57.2958*ACOS(COSGAM) 

......PRINT PROGRAM TEST PARAMETER. LIST 
140 PRINT 20, L 
20 FORMAT (IX, *LIST = *, 414//) 

.....PRINT RESULTS 
PRINT 40. VAR
 

40 FORMAT (tX, *VARIANCF = *9 E14.6//)
 
PR'INT 50, PCIA).'P(2)
 

F0
50 FORMAT ('IX, *A = *. .6. 4X. '*B = , 9.6/dy) 
PRINT 60, P('3),P(4),COSGAM 

60 FORMAT (lX, *COS(ALPHAS) = * F8.5. 4X, *COS(BETAS) = *, F8.5, 
,2 4X, *COS(GAMMAS) = *, FB.5//) 
IF (TEST2) GO TO 150 
PRINT 70. ALPHA,SETA,,SGAMMA,DELTA 

70 'FORMAT (IX, *ALPHA(S) = *. F9.-4, 4X. *BETA(S) = * F9.4, 4X, 
2*GAMMA(S) = *9 F9.4. 4X, *DELTA ',* F9.4//) 

150 PRINT 80, (PHI(J)fXI (J).ISTORE(J)I(J),CI(J).RES(J),RESPCT(J)' 
2 J=INDATA') 

80 FORMAT (37Xv *NORMALI.ZED*/ 5X', *PHI*, 6X, *XI* BX, *I(EXP)*, 
2 5X. *I(EXP)*. 4X. *1(*CALC)*. 4X. *RES*, 4X. *RES(PCT)*/ 
3 '(2F10.4. F12.6, 4F10.6)) 
GO TO 2 

998 	STOP
 
END
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SUBROUTINE ELLIPSE(RES,DATA,NDMA ,PDP.'V.NP,J)
 
REAL I
 
DIMENSION DATA(NDMAX,3-),P(.2O).DP(20)
 
LOGICAL TEST3
 
COMMON /I/ TEST3
 
COMMON COSGAM.COSPH! c40)-CI(40)
 
XLIMI.OE-IO0
 

C. T.. INDICATOR IF FOUND
EST COEFFICIENTSFOR UNREASONABLE VALUE.AND SET 

IF CABS(P(I)) *GT. 2.Oi GO TO 20
 

IF (ABS(P(2)) .GT. 2.0) GO TO 20
 
IF (ABS(P(3.)) GT. 1.0) GO TO 20
 
IF (ABS(P(4)) *GT. 1.0) GO Td 20
 

C....CONVERT XI TO RADIANS
 
XI=DATA(J,1)
 

RXI:XI*l.7453E-2
 
I=DATACJ.2)
 
V=DATA(J.3)
 

C.....CALCULATE COS(BETAN)
 
ARGI-=SIN(76.75*1.7453E-2)**2*(I.-SINCRXI)**2)
 
IF (ARGi ,LT. XLIM)' GO TO 20
 
COSBETA=SQRT(ARGI)
 

C .. SET SIGN OF COS.(BETA,N)
 
IF (XI *GT. 90. *AND. XI *LT. 270.) COSBETA=--ZOSBETA
 

C.....CALCULATE COS(GAMMA,S).
 
ARG2=ABS(I.-P(3)**2-P(4)**2)
 
IF (.ARG2'.LT. XLIW) GO TO 20
 
CdSGAM=SQRT(ARG2)
 
IF (COSGAM *GT; 1.0) GO'TO 20
 

C.....CALCULATE COS(ALPHAN)
 
.COSALPH=COS76.75E* .7453E-2)
 

C.....CALCULATE COS(PHI)
 

COSPHI(J)=COSALPH*P(3)+COSBETA*P(4)+COS'(13.25*1.7455E-2)*COSGAM'
 
2 *SIN(RX.I)
 

C.....TEST COS(PHI) FOR UNREASONABLE VALUE AND SET INDICATOR IF FOUND
 
IF (ABS(COSPHI(J)) *GT. 1.0) GO TO 20
 

C. .. CALCULATE INTERMEDIATE FUNCTIONS TO BE USED BELOW
 

SINSO=(1.-COSPHI(J)**2)
 
ARG3=P-(1)**2+(P(2)**2-P(1)**2)*COSPHI (3)*2
 
IF (ARG3 .LT. 0.) GO TO 20
 

VALI=SGRT(ARG3)
 
IF (VALI *LT. XLIM) GO TO 20"
 
VAL2=-P(I)*P(2)*-(P(2)**2-P(I)**2)*COSPHI(J)
 
VAL3=COS'(13.25*1.7453E-2)*SIN(RXI)/COSGAM
 

C....CALCULATEPARTIAL DERIVATIVES OF I(PHI) WITH RESPECT TO COEFFICIENTS
 

http:ARG2'.LT
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DP(I )=P(2)/VALI-P.(1)**2*P(2)*SINSO/VALI**3
 
IF (,ABSDP(l)) .LT. XL'IM) O(I)=O O
 
DP(2')=P(1)/VALI-P(1)*P(2)**2*COSPHI (J)**2/VALI**3
 
IF (ABS(DP(2,) eLT. XLIM) DP(2)=O.O
 
DP(3-"=VAL2/VALI**3*(COSALPH-VAL3*P(-I))
 
IF (ABS(DP(3)) *LT. XLIM) DP(3)=OO
 
DP(4}=VAL2/VALI**3*(COSBETA-VAL3*P(2)1
 

IF (ABS(DP(4)) .LT. XLIM) DP(4)=O,O
 
C,.CALCULATE I(PHI)(O)
 

CI(J)=P() *P-(2)/VALI
 
C....,CALCULATE RESrDUAL OF I(PHI)
 

RES=CT(,J)-I
 
C,.n.ITEST RESIDUAL FOR UNREASONABLE VALUE AND'SET INDICATOR IF FOUND
 

IF (ABS(RES) *GT. 1.-o,) GO TO 20
 
IF (ABS(RES) .LT. XLIM) RES=0.0
 
GO TO SO
 

20 TEST3=.TRUE.
 
50 RETURN
 

END
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SUBROUT-INE FITALL(RESIDX.NDMAX,R4DP.MAXQ.LISTHOLDMMAX)'
 
DIMENSION P(20).DP(2OI)LIST4).,A(20,2O),S(400).HOLD,(403).B(-20),
 

,2 IS(3) '"
 

EQUIVALENCE (I'S().KK),(IS('2).NFIX), (IS(- l,.KSI'G)(S(I ).A(I.1))
 
DATA CONV/O.O01/
 
LOGICAL TEST3
 
COMMON /I/ TEST3
 

'C.....INITIALIZE
 
JJ=LIST(I.)'.
 

KK=LIST(2),
 
LOOPS=LIST(3),
 
LIST(3,)=O
 
NFREE=JJ-KK.
 
TP(LOOPS.EO.O)GO TO 10.
 
MOST=2*KK.
 
IF(KK.LT.I.OR.NFREE.LT.O)GO TO 14
 
IF(KK.GT.MAX)GO TO 15.
 

'C.....BEGIN ITERATION LOOP
 
I NFIX=KK,
 

DO 2 N1IMAX.
 
B(N)=O.
 
DO 2 M=IMAX.
 

2 A(MN)=O.,
 
DO 6 J=1.JJ,
 
CALL RESID(RsXNDMAX.PDP.VARKK,
 

IF (TEST3) GO TO 29
 
IF(VAR.NE.O'.')GO TO 4.
 
NFIX=NFIX+.
 
IF(NFIXGT-.MAX)GO TO 15.
 
IF(NFIX.GT.MOST)GO TO 14,
 

C....CALCULATE FIX POINT FLEMENTS
 
ZB(NFIX)=R
 
DO 3 M=.KK
 
A'(MNFIXl)=DP(M)
 

3 A(NFIX,4),=DP;(M)
 
GO TO 6
 

C.....CALCULATE REGULAR POINT
 

4 	DO 5 N=IKK
 

B(N)=B(N)+R*DP(N)/VAR,
 
DO 5 M=NKK
 

5- A(MN)=A(M,N)+DP(,M)*DP(N)/VAR,
 
6 CONTINUE
 

C....FINISH OFF MATRIX
 
DO 7 N=1.KK
 



DO- 7 M:N,KK
 
7 A(N.M);A'(M.N).
 

C ... INVERT MATRIX
 

KSIG=O,
 
CALL IMATINV(AMAXNFI-XDET,KSIG)
 
IF(KSIG.EQ.I.OR.KSIG.EO.2)GO TO 16.
 
IF(LOOPS.EO.-1)GO TO D 0,
 

C.....CALCULATE NEW VALUES OF PARAMETERS
 
8IG=O.,
 
DO 9 M=IKK
 
SUM=O.,
 
DO 8 N1I,NFIX
 

* SUM=SUM-A'(MN)*B(N).
 
P(M}P(M)+SUM.
 

9 BIG=SIG+AMAXI(ABS(SUM)-CONV*ABS(P(M)),O.),
 
LIST () =LIST (,3)+, 
IF(BIG.EOgO.)GO TO 1'0,.
 

IF(LIST(3).GE.LOOPS)GO TO 17.
 
GO TO I
 

C....,.CONVERGENCE ACHIEVED -- COMPUTE VARI
 
10 	IF(LOOPS.EQ.I)GO TO 18,
 

0=0.,
 
SUM=O.,
 
DO 11 J1.JJ.
 
CALL RESID(PX.NDMAXPDP,.VAR.KKJ)
 
IF(VAR.EQ.O'.)GO TO I1I.
 
SUM=SUM+R*P/VAR,
 

11 	CONTINUE
 
Q=SQRT(SUM/FLOAT(NFREE)),
 
,IF(KSrG.NE.O)GO TO 19.
 
GO TO 50,
 

14 LIST,(4)=LIST(A)+I,
 
15 LIST(4)'=LIST(4)+I.
 
16 L-IST(4=LIST(4)+l,
 

17 	LISTA(4)=LIST-(4)+I.
 

18 LIST(4)=LIST4)+1,
 
19 LIST(4)LIST(4)+I,
 

C....ENTRY FOR SAVING MATRI.X
 

'ENTRY FITSAV
 
50 DO 20 N=,.MMAX
 
20 HOLD(N+3)=S(N-)
 

DO 27 N=1,3
 
27 HOLD(N)=IS(N)
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C.....ENTRY FOR RESTORING sAVED MATRIX
 
ENTRY FITBAK
 
DO 21 N=IMMAX
 

21 S(N)=HOLD(N+3)
 
DO 28 N=1.3
 

28 IS(N)=HOLD(N)
 
29 RETURN
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SUBROUTINE MATRXI(X.,MMAX.MXDET;KSIG-)
 
C.....SUBROUTINE FOR OBTA.INING DETERMINANT OF INPUT MATRI),
 

DIMENSION.X(2020.,Y(20,204 .Z(2,.20,20),K(20)
 
LOGICAL MATIN
 
EOUIVALENCE (Y,Z)
 
DOUBLE PRECISION A.P,PROD,Y,
 
DATA DELT,EPS,LOOPS/OOO0I.t.E--..,
 
GO TO 711
 

C.....MATRIX INVERSION BY GAUSS-JORDAN ELIMINATION
 

ENTRY IMATI'NV
 
MATIN=.TRUE.
 
GO TO I
 

711 MATIN=.FALSE.
 
I DO 405 1=1.2
 
DO 40 J=I,20
 
DO 405 ICNT=1,20
 
Z(IJ.ICNT)=O.
 

405 CONTINUE
 
C.....INITIALIZE ROUTINE AND TEST MX (=ORDER OF MATRIX)
 

M=MX4
 

IF(M.GT.I.AND.M.LE.MMAXIGO TO 5.
 
IF(M.EQ.1)GO TO 2,
 
KSIG=KSIG+1.
 
RETURN
 

2 PROD=X(1,I),
 
IF(PROD.NE.O.)GO TO 4.
 

3 KSIG=KSIG+2,
 
RETURN
 

4 	X(1,1)=I./PROD'
 
GO TO 23
 

5 	PROD=I..
 
MM=M-I,
 
DO 6 I1I.M',
 
K(1)-I,
 

DO 6 J=I.M,
 
6 Y(IJ)=X(I-.J),
 

C....,.BEGIN BY FINDING LARGEST PIVOTAL ELEMENT
 

DO 11' 1=1M.
 
A=O.s
 

DO 7 J=IM.
 
IF(DABS(Y(J.)).LE.A)GO TO ?
 
A=DABS(Y(J41)
 

L:J.
 
7 CONTINUE
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IF(A.EQ.'O.)GO TO 3,
 
C...,,,REARRANGE ROWS AND ORDER ARRAY
 

N=K(L,
 
K(L):K(I),
 

K(IWI:N,
 

DO 8 J=I,M
 
A=Y(I,J),
 
YIIJ)=Y(L.J).
 

8 Y(L,J)=A.
 
C....REDUCE PIVOTAL ROW
 

A=Y(I,1),
 
IF(.NOT.MAT'IN)PROD=DPOD*A
 

DO 9 J:I.MM.
 
9 Y(IJ)=YCI,J+I)eA,
 

Y(I.M)=I./A,
 
C.-,,REDUCE REMAINING ROWS
 

0 11 L1I,M,
 
IF(L.EO.I)GO TO 11,
 
A=YIL, I
 

DO 10 N=IV'MM,
 
Y(LN)=Y(L.N+I)-A*Y(I,N),
 
IF(DABS(Y(L.N)).LT.tDABSCY(L.N+In)*EPS))Y(L.N)=O.
 

10 CONTINUE,
 
YCL.M)=-A*Y(IM),
 

11 CONTINUE
 
C....UNSCRAMBLE INVERTED MATRIX
 

DO 15 I=,M,
 
IF(K(I),EQ.I)GO TO 15.
 
PROD=-PROD,
 

DO 12 J=IM
 
IF(K(J).EQ.I)GO TO 1.3,
 

12 CONTINUE.
 
GO TO 3
 

13 DO 14 L=I.M.
 
A=Y(LI),
 
Y(L, I)Y'(L,J')
 

14 Y(LJ):A,
 
K(J)=K(I),
 

15 CONTINUE
 
C.....OBTAIN ERROR MATRIX
 

DO 20 N'I,LOOPS,
 
TEST:O..
 
DO 17 I=I,M,
 
DO 17 J=.M,
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p=O.q
 

DO 	16 L=I,M,
 
16 R=P-Z(IL.J)X(IL),
 

IF(I.EQ.J)R=R+I,
 
ABSP=SNGL(DAAS(P))
 

TEST=ANAXI(TEST.ABSP)
 
17 	Z(2.1,J)=R,
 

DO 19 1=1,M,
 

DO 19 J=I.M,
 
A=O.4
 
DO 18 L=I,M,
 

18 A=A4Z(II.L)*Z(2,L,J),

Z(I.I.J)=Z(I.I,J)+Al
 

19 CONTINUE,
 
IF.(TEST.LE.DELT)GO TO 21,
 

20 CONTINUE
 
KSIG=KSIG+3,
 

C....TRANSFER FINAL INVERSE
 

21 DO 22 IlM,
 
DO 22 J=IM,
 

22 X(t.J):Z(1.I.J).
 
23 DET:PROD,
 

RETURN
 
END
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FUNCTION AMAX(A.N)
 
DIMENSION A(144)
 
AMAX=A(l)
 
DO 70 M=2,N
 
IF(ACM)-AMAX)70,70,60
 

60 AMAX=A(M)
 

70 CONTINUE
 
RETURN
 
END
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