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Frontispiece--Forester inspecting portion of broken stump that has been
 
disintegrated by Poria weirii root rot disease. This disease destroys
 
annually about 170 million board feet of valuable Douglas-fir. As dis­
ease advances upward into tree t r unk no economic salvage is possible.
 
Airborne techniques for early detection of distressed timber would
 
minimize such losses.
 



ABSTRACT
 

Remote sensing research to identify parameters that best discriminate
 

healthy Douglas-fir trees from those infected with Poria weirii root-rot
 

was continued in 1969. Biophysiological investigations were emphasized
 

to gather data on emitted radiation from the two types of tree crowns
 

(healthy and diseased).
 

Remote sensing in the thermal infrared region shows great promise
 

for the early detection of root-rot infected trees. More substantiating
 

data are needed, however, on the period of the day and season of the year
 

for using thermal infrared to detect such trees.
 

An aerial tramway system was designed and installed for use as a
 

remote sensing platform from which to record continuous data. Two trams
 

were needed because of the difficulties involved in aligning trees in the
 

natural second-growth stand over which environmental data would be taken.
 

The design and installation procedures for establishing the tramway system
 

and the wide array of instrumentation needed in this phase of the study
 

are described and illustrated.
 

A secondary phase of the study was to determine possible effects
 

of helicopter rotor wash on surface temperatures at various elevations above
 

water surfaces. Techniques for determining "ground truth" temperatures of
 

leaf surfaces in coniferous forest canopies are being investigated.
 

A major objective of this remote sensing research is to investigate
 

the possibilities of detecting stress trees on satellite imagery. Such a
 

study was conducted with Apollo 9 photography and is described in this
 

report.
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THE DEVELOPMENT OF SPECTRO-SIGNATURE INDICATORS OF
 

ROOT DISEASE ON LARGE FOREST AREAS
 

by
 

John F. Wear
 
F. P. Weber
 

INTRODUCTION
 

Investigations were continued to determine the extent to which multi­

spectral remote sensing techniques can provide information on certain criti­

cal forestry problems that have a serious impact on our world timber supply.
 

Forest diseases reduce tree growth and each year destroy or degrade millions
 

of board feet of valuable timber. In the United States each year approxi­

mately 170 million board feet of valuable timber are destroyed by the root
 

rot disease, Poria weiril (Murr.). Extensive stands of Douglas-fir
 

(Pseudotsuga menziesii (Mirb.) Franco), a major commercial timber species
 

of the Pacific Northwest, suffer heavy losses because of this disease (see
 

frontispiece). Disintegration of a tree's root system subjects the tree 

to both "rot throw" and "wind throw" (Fig. I). 

Spectral signature indicators of tree-killing diseases may help
 

identify and locate centers of distressed timber that need to be salvaged
 

promptly. If the timber in such a center is not removed quickly the size
 

of the infested area will continue to expand and the economic loss will soon
 

be tremendous. New remote sensing survey techniques may permit forest
 

managers to protect forest resources more effectively and maximize the
 

use of diseased timber. The research program conducted this year and des­

cribed herein is a continuation and expansion of research started under NASA
 

contract R-09-038-002 and reported under NASA-CR-78-781. By locating the
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many root-rot centers that occur sporadically'over extensive areas, forest
 

managers would be able to develop logging plans to economically remove all
 

stages of diseased timber and minimize spread of the disease.
 

The value of developing a satisfactory remote sensing survey tech­

nique to replace laborious and costly ground survey methods has been rec­

ognized since the beginning of this research. With an adequate remote
 

sensing survey technique for root-rot disease a 640-acre forested area
 

could be surveyed by one man in less than an hour compared with 40 days of
 

effort by a 2-man ground crew. The principal objective of this 
research
 

is to develop more efficient survey methods for locating and evaluating
 

the incidence of root-rot disease centers in forested areas 
by exploiting
 

new remote sensing technology.
 

During this report period remote sensing research on Poria weirii
 

root-rot disease was continued in the visible, reflective infrared and
 

thermal infrared spectral zones of the electromagnetic spectrum. Major
 

consideration was given to the biophysical assessment of trees under stress
 

from root-rot disease compared with healthy trees to establish whether
 

thermal differences exist between these two condition classes. 
A three­

tower (100') aerial tramway system was installed in the second-growth
 

Douglas-fir plot at Wind River, Washington, to provide data on various
 

biophysical parameters of both healthy and diseased trees. 
 We wanted to
 

know if, as environmental stress increases during the summer months,
 

significant physiological differences occur between healthy and diseased
 

trees. Overflights were made by The University of Michigan 19-channel
 

multispectral aircraft (under contract to NASA) in mid-July and again 
in
 

September. Intensive effort was made to collate airborne data with
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"ground truth'' at the Wind River test site.
 

Limited helicopter operations were conducted with the integrated
 

videoscan-infrared heat sensing system to determine the effect of rotor
 

"downwash" on the surface temperatures of water at various hovering al­

titudes and on the response time of the thermal radiometer to the video
 

tape readout. Thermal infrared-readings were also made of test trees on
 

the Wind River test site.
 

The Wind River, Washington test site obviously was too far north
 

to be photographed by Apollo spacecraft. However, satellite photography
 

from Apollo 9 covering areas of lower latitude was interpreted and ana­

lyzed for timber under stress. One test site near Ruidoso, New Mexico,
 

revealed considerable group mortality. Extensive cloud cover along the
 

Apollo 9 flightpath negated several potential sites for analyzing tree
 

mortality from satellite photography.
 

LITERATURE REVIEW
 

A search of the literature on Poria weirii root rot revealed no
 

pertinent basic research data that would improve our remote sensing re­

search effort. With more emphasis on biophysiological parameters of dis­

tressed trees, several additional references are cited in Literature
 

Citations.
 

JUSTIFICATION
 

More forest resources are destroyed each year by forest diseases
 

than by any other damaging agents. Forty-five percent of the total growth
 

loss in forested areas of the United States is also caused by tree diseases.
 

In one recent year, 300 million board feet of sawtimber were lost to root
 

diseases alone in the United States. Losses of this magnitude create a
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serious impact on our decreasing supply of timber and are of great concern
 

to forest managers and earth resource analysts.
 

This research is needed to develop remote sensing techniques that
 

can rapidly detect and locate disease centers which cause such tremendous
 

worldwide damage to forests. Foresters and land managers must have adequate
 

detection techniques to minimize the impact of tree diseases and to maintain
 

healthy forests.
 

Poria weirii root rot is by far the most destructive disease of
 

Douglas-fir in Washington and Oregon (Fig. 1). Douglas-fir is the most
 

important timber species in the Pacific Northwest, representing 57 percent
 

of the total sawtimber volume in that region. An adequate root rot disease
 

survey technique would provide tangible benefits to the forest economy of
 

the United States.
 

METHODS AND PROCEDURES
 

The aerial remote sensing techniques initiated during the past few
 

years have indicated great promise for use of the thermal infrared portion
 

of the electromagnetic spectrum in certain kinds of earth resource surveys
 

including the early detection of plant stress. In addition, the visible
 

and near infrared portions of the spectrum are continuing to be investigated
 

in various modes in an effort to learn whether multispectral analysis will
 

enhance the recognition of specific characteristics of healthy and diseased
 

trees. Much basic tree physiology data must be collected, as was done in
 

the Black Hills, to understand which specific parameters are meaningful
 

in detecting stressed trees with airborne sensors.
 

The remote sensing research covered in this progress report concerns
 

the testing and developing of airborne sensors that might be effective in
 

discriminating root rot infected trees from healthy trees, and the developing
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of a "ground truth" system to analyze the biophysiological responses of
 

trees under stress. Data from the multichannel sensors flown by The
 

University of Michigan DC-3 aircraft will not be available for inclusion
 

in this report, a-lthough arrangements have just been completed for obtain­

ing such data in the near future. Major emphasis of this report will be
 

on the systems development for obtaining reliable "ground truth" data
 

with appropriate illustrations and preliminary results of various physio­

logical measurements.
 

DEVELOPMENT OF "GROUND TRUTH" SYSTEMS
 

The feasibility of applying remote sensing techniques to assess
 

root rot infection centers in forest areas from orbital or suborbital al­

titudes is largely dependent upon the ability to discriminate differences
 

between healthy and diseased trees. Except in the most advanced stages of
 

decline, trees infected with root rot do not generally show visual symptoms
 

or tone signatures significantly different from healthy trees. Interpre­

tation of photography with color and false color films (Ektachrome and
 

Ektachrome IR) has not been effective in discriminating healthy Douglas­

fir trees from those recently infested with root rot. More intensive and
 

comprehensive "ground truth" is required, therefore, to determine whether,
 

in the absence of reflectance differences,'detectable thermal differences
 

occur.
 

The biophysio.logical parameters and internal physiological processes
 

of Douglas-fir trees and the influence of forest pests on tree growth and
 

tree "decline need to be ascertained. This is a prerequisite for deter­

mining the ideal airborne remote sensor(s).
 

Significant temperature differences between healthy and root rot
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infected Douglas-fir trees were first discovered in our 1967 studies(3) which
 

employed helicopter overflights with a PRT-5 thermal radiometer. These
 

differences occurred in all age classes of Douglas-fir (young growth,
 

second growth and old growth) at certain times of the day and periods of
 

the year in 1967. Evidence of these thermal differences was not as clear­

cut in 1968(4). Measurement of physiological factors affecting tree tem­

peratures was therefore considered important. Biophysical research was
 

oriented to measuring energy balance of the forest canopy,, leaf moisture
 

I/

tensiorr- foliage temperatures, soil moisture tension, rate of sap flow,
 

and various types of meterological data (wind speed, relative humidity,
 

ambient air temperatures, vapor pressure deficit and rainfal1.)
 

Aerial tramway system
 

To gather data continuously from above the forest canopy for a long
 

period of time, we decided to establish an aerial tramway system that
 

would permit remote sensing devices to be suspended above both healthy and
 

root rot-infected trees. Factors of logistics and administration were
 

considered first.- A young-growth stand located near Eatonville, Washington,
 

on the University of Washington's Pack Forest was first considered because
 

of available electric power and other research activity in progress. Tree
 

mortality and Poria weirii root rot infection centers were so extensive,
 

however, that only a few healthy trees could be found. Also in this area, the
 

cloud cover could be expected to prevail during two-thirds of the summer
 

days, thereby seriously interfering with data collection. The second-growth
 

stand of Douglas-fir on the Wind River test site proved more acceptable
 

1/ It is currently agued that a hydrostatic pressure bomb actually measures
 
xylem sap pressure rather than leaf moisture tension in softwoods. For now,
 
we consider the terms to be synonymous.
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because of (1) a better distribution of healthy and diseased trees for a
 

tramway system, (2) closer proximity to research headquarters at Portland
 

for travel and maintenance, and (3) more favorable weather for sensing be-.
 

cause this area is located on the east crest of the Cascades where only
 

one-fourth of the days would normally be cloudy. Electrical power could
 

be provided from a 1500 foot distance.
 

A dual tower system to include both diseased and healthy trees was
 

abandoned because of the distance involved (over 250 feet), and the lack of
 

sufficient numbers of desired trees located in a straight line. The tri­

tower system evolved with the central tower serving as the focal point for
 

two tramways (Fig. 2). One tramway operated over healthy trees, the second
 

over diseased trees. Towers were located approximately 120 feet apart to
 

equalize travel time for each tram and to have an adequate number of tree
 

crowns exactly in line. Extensive scouting and field engineering were
 

required to align the tram over tree tops in the natural stand. Three trees
 

in each condition class were finally selected in respective lines for bio­

physical analysis. Two of the selected trees are part of the previously
 

established second-growth study trees on the Wind River test site.
 

Increment borings were made on four sides of approximately 35 trees
 

to determine the presence or absence of Poria weirii root rot. Pathological
 

cultures of each selected boring proved the presence or absence of Poria
 

weirii.
 

Tower Construction
 

Many problems can be expected in erecting towers under forest condi­

tions especially when natural vegetation is to remain relatively undisturbed.
 

The logistics of working through heavy vegetative cover, over downed logs
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Figure 2--Diagram of dual aerial tramway system needed to estimate solar
 
and emitted energy budgets from healthy end diseased Douglas-fir trees.
 
This automated system provides important data for biophysical analysis of
 
several forest parameters. These data can be collected continually and
 
are essential to identify thermal differences for separating healthy from
 
diseased trees at different times of the day and seasons of the year. In­
formation of this type is essential to scheduling of suborbital overflights
 
and providing accurate "ground truth".
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and uneven terrain, across soft spots, and manipulating cables through
 

trees with dead branches in the lower two-thirds of the crown were prob­

lems solved in sequence.
 

Construction of the three towers and securing the guy wires were
 

carried out according to the tower manufacturer's instructions. Each tower
 

was built separately and guyed as the tower was erected. Turnbuckles for
 

the four guys on each side of a tower (Fig. 3) were attached to the long
 

anchor rods. Tower sections were hoisted into position (Fig. 4) using a
 

pole erector attached to the last tower section. Each section was bolted
 

in place (Fig. 5) before adding the next section. Guys were strung and
 

secured at 25-foot intervals up the tower. A light rope with a heavy flag
 

hoist hitch on the end was first thrown from the tower toward an anchor
 

base. The ground crew attached the 3/8" guy cable to the rope and the
 

tower climber attached the cable to the tower. The guy cable was tight­

ened at the turnbuckle using a cable puller on a block and tackle. Final
 

adjustments for plumbing the tower and obtaining adequate tension were made
 

with the turnbuckles at the three anchor points. A plumb bob on a string
 

attached to the top of each 25-foot tower section provided the vertical
 

orientation for the tower. Small adjustments were made during the field
 

season. Figure 6 is a ground view of the central 100-foot tower.
 

Tramway Construction
 

Thb tram lihes were attached to heavy backing boards by eye bolts
 

with turnbuckles. Each backing board (two laminated pieces of 3/4" ex­

terior grade plywood) was bolted to the top of a tower by 4 U-bolts. Steel
 

aircraft cable (3/32") was used for all running and standing rigging. 
 Lines
 

were started across the 120-foot distance between towers using a bow and
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 Figure k--Tower Sections are hoisted into 
position using a portable tower
 

pole erector pole, pully and rope. The erector pole is clamped to the top
 

of the highest section.
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Figure 5--Each additional section is 
bolted 

inch bolts per 

in place with two one-fourth
leg. Note safety belt being 
worn as required while operator
 

works on the 
tower,
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Figure 6--Upward view from base of 1O0-foot tower showing four guys on three
 
sides. Dynamic strength of tower is ample to support 300-pound load at top
 
of tower in 100 mph wind. Counterweights (visible to left of tower) offset
 
weight of multistrand electrical wires leading from instruments on tramway
 
to the central tower.
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arrow (attached to monofilament line on a fishing spinning reel). The steel
 

cable was then pulled across and secured to the backing boards. The two
 

tram lines were secured to turnbuckles using thimbles and cable clamps.
 

Sag deflection in these lines is minimal.
 

The instrument tram is constructed of exterior plywood, aluminum
 

strips and 4 aircraft pulleys. Pegs in the aluminum strips (under the
 

pulleys) prevent tram wires from slipping out. Pulleys ride above the
 

tram platform (Fig. 2).
 

The operating cable is attached to both ends of the tram and feeds
 

through fiber pulleys (two at the top of each tower) and the main 6-inch
 

drive pulley (double wrapped to prevent slipping) at the power switching
 

position (base of central tower).
 

Tramway Control System
 

A control system was needed that could operate the tramway in dif­

ferent modes as necessary to collect short-term or long-term data, either
 

manually or automatically, and by continuous line scan or stationary read­

ings over selected trees. An electronic system of relays, reversing mech­

anisms, and micro limit-switches to control the geared motor of each tram­

way was designed and engineered by electronic specialists of United Radio
 

Co., and the U. S. Forest Service. The electronics unit (Fig. 7) was
 

mounted in a waterproof box.
 

When the tramway control system is being operated, microswitches to
 

reverse polarity and direction of travel are tripped by cable clamps on the
 

running cable. The clamps are located at appropriate distances to control
 

the total travel of the instrumented tram between towers. A double micro­

switch system is installed at both ends of the cable to prevent overrun of
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Figure 7--The electronic switching system (A) controls the automatic opera­
tion of each tramway. The integrated drive components consist of: (a) geared
 
motor with 12 rpm output, (b) chain drive (sprocket ratio 1:4) which turns
 
6-inch pulley (moves tramway both ways), (c) microswitch system which re­
verses geared motor, and (d) hand crank for manual operation of tramway sys­
tem, the chain drive being easily disengaged from the pulley.
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the tram in case of microswitch malfunction. The rate of instrument tram
 

travel is about 6 feet per minute with the present gear ratio (12 rpm
 

gear motor reduced I to 4 rpm with sprocketed chain drive to 91 pulley). 

Rate of tram travel can be controlled by changing sprocketed gear ratios. 

Manual operation of the 6' pulley to move the instrumented tram is
 

achieved by disengaging the sprocketed gear from the pulley shaft and turn­

ing the handcrank. The control system for each tramway is mounted on 3/'
 

waterproof plywood. The two control systems are U-bolted to the central
 

tower for easy maintenance and operation. A rain shield covers the motor
 

and chain to minimize corrosion. In normal use, data can be collected
 

automatically.
 

The problem of keeping the bundle of electrical instrument wires
 

free and clear of the tree tops as the tram travels back and forth is solved
 

by a weighted pulley system. A 6-foot accessory yardarm is attached to the
 

top of the tower from which the electrical wire from the tram is fed down­

ward over a pulley in a looping manner. A 6-pound weight on a pulley in
 

this loop takes the slack out of the bundle of wires so that the tram
 

can move freely in either direction. (If undue slippage occurs, a similar
 

counterweight system can be installed on the opposite tower).
 

The density of the forest canopy in the 50-year old Douglas-fir
 

stand on the Wind River site is shown in Figure 8. The relative positions
 

of the three 100-foot towers can be observed in the oblique view.
 

Biophysiological Data Collection
 

It is essential to understand the differential tree responses to
 

environmental and induced stresses caused by such things as Poria weirli
 

root rot in Douglas-fir or moisture stress from drought. Only by knowing
 

the effect of these stresses on the plant community compared with a healthy
 

17
 



p.
U 
I 
I 
U 
U 
I 
I 
I 
U 
I 
I 
I 
I 
I 
I Figure 8--Aerial view of 100-foot towers above forest canopy. 

between the two towers may be visible in foreground. 
Tramway wires 

I 
I 
3 18 



or normal situation is it possible to develop satisfactory techniques for
 

maximizing these differences. Remote sensing techniques have been tested
 

with encouraging results for discriminating healthy from root rot diseased
 

Douglas-fir trees. However, more definitive answers are needed to es­

tablish "ground truth" and remote sensing research confidence levels for
 

applying airborne sensors.
 

Several meteorological instruments were installed at the Wind River
 

study site to gather data on the environmental and tree physiological pro­

cesses. From these data, tree response differences between healthy and
 

diseased trees can be accurately ascertained for specific periods of time.
 

Among the instruments installed at the Wind River study site in
 

the summer of 1969 were three types of radiant energy measuring instruments,
 

four types of weather data collecting instruments, a soil moisture measur­

ing instrument, needle temperature measuring devices, a leaf water potential
 

device, and several sap flow measuring instruments. A special instrument
 

to record emitted radiant energy of healthy and diseased trees was not
 

available for this field season. A description of the various instru­

ments and their application for collecting environmental and physiological
 

tree data follows:
 

Environmental Factors
 

1. Solar Radiation (0.35 to 4.0 microns). The total incoming solar
 

radiation was obtained from a Star pyranometer stationed at the top of the
 

center 30.5 m instrument tower. This Eppley type instrument had an elec-


II -
trical output calibration of 4.43 mv ly , which was recorded in analog
 

form on a multi-point recorder which sampled incoming energy four times each
 

minute.
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2. Reflected Radiation (0.35 to 4.0 microns). The reflective short­

wave radiation component was measured for both healthy and diseased trees
 

using two inverted Star pyranometers. These instruments traveled inde­

pendently on separate tramway systems which positioned one pyranometer
 

directly over three separate healthy fir trees and the other over three
 

disease infected firs. These instruments had electrical output calibrations
 

"1

of 8.00 mv ly- and 5.75 my ly respectively. Their continuous output was
 

recorded on an analog point recorder once each minute.
 

3. Net All-Wave Radiation. Net radiation was measured for both
 

healthy and diseased trees using two high-output all-wave net radiometers.
 

These two instruments were placed on the tram system running over the tops
 

of the healthy and the diseased trees. Each tram, which carried a pyranome­

ter and a net radiometer, was in effect a vehicle for positioning trans­

ducers over the tops of the tree crowns to be able to record an energy
 

exchange profile for healthy and diseased trees within the study area.
 

The continuous output of the net radiometers was recorded on a strip-chart
 

recorder (Fig. 11).
 

4. Wind Speed. Air movement within the study area was recorded
 

from an anemometer located at the top of one of the instrument towers.
 

This light-chopping type instrument has an accurate starting speed of
I -I
 
0.23 m sec . The wind velocity transmitter input was wired to a stand­

ard strip-chart recorder which ran during two 15-minute periods each hour
 

during the day and one 15-minute period each hour at night.
 

5. Air Temperature. Ambient air temperatures were measured with
 

shielded thermocouples located 3.7 m below the top and above the base of
 

the center instrument tower. All thermocouple data were recorded on a
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Figure 9--Instrumented trailer 
in timber close to the towers provides all­
weather protection for a series of recording instruments. Space inside
 
trailer adequate for small workshop needed 
in equipment maintenance. Note
 
"1miles of wire feeding into trailer fro. tramway instruments and var ious
 
parts of study trees.
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figure iu--interior or trailer snowsmtwoiiioneyweti-urown "tiectronmw'
 
analog recorders, a third Honeywell muitpo int recorder(under fluores­
cent light), and a cabinet of 8 Rustrak recorders. Details of these re­

corders are shown in Figures 11, 12 and 13. Not shown is an Esterline
 
angus m illivolt recorder that records weather data.
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Figure ]]--Honeywell analog recorder collecting data from net radiometers 
on a continuous basis from each of the tramways. Note profile over various
 
types of vegetative materials.
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multiple point temperature recorder (Fig. 12). An additional set of tem­

perature data was collected continuously in a thermograph situated 1.3 m
 

above the base of one of the outside instrument towers.
 

6. Humidity. Relative humidity was recorded on a standard clock­

driven hygrograph. One such device was located near the ground and a
 

second instrument was situated within the crown level of the study trees.
 

The recorded relative humidity values were used to calculate actual vapor
 

pressure and vapor pressure deficits.
 

7. Precipitation. Precipitation data were taken from an official
 

ESSA Weather Bureau site located at the Wind River Ranger Station, less
 

than one-fourth mile from the study area. Because of the general nature
 

of rainfall distribution in the area, there seemed no reason to question
 

the validity of the precipitation data even though not collected within
 

the study area.
 

8. Soil Water. Soil water content and soil water potential were
 

used as measures of the availability of soil water to the study trees.
 

A reliable measure of soil water was important to understanding differen­

tial thermal responses of foliage to other environmental variables. It
 

was of further interest to relate soil water to relative transpiration
 

rates and to leaf water potentials.
 

Soil moisture was routinely measured with a P-19 neutron probe
 

(Fig. 13). At the beginning of the field season, four sets of access tubes
 

were placed at the base of study trees in the soil profile to monitor soil
 

moisture vertically through the entire root horizon. Two sets of eight
 

access tubes were placed around healthy trees and the same number were
 

located around the diseased study trees.
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Figure 12--Soil moisture at various levels is determined by use of a Nuclear
 

Chicago gauge scaler and neutron probe. Timed differences between neutrons
 
emitted and those recovered indicate the soil moisture availability. Elec­
tronic readings of neutron inputs are recorded for intervals of two minutes.
 

Neutron probe is in foreground in shielded case. Separate readings are made
 
into the ground at 6-inch intervals to bedrock.
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Tree Physiological Factors
 

1. Needle Temperature Measurements. Trees are exposed to radiant
 

energy from the sun, from surrounding surfaces and from the atmosphere.
 

Leaf temperature is an important indicator of the response of the tree
 

to environmental factors such as solar and thermal radiation, air temper­

ature, vapor pressure deficit, wind movement and soil water availability.
 

The temperature of a leaf (e.g., a Douglas-fir needle) is an indication
 

of its response and adjustment to the heat load imposed upon it by the
 

surrounding environment.
 

Foliage temperatures were measured by inserting microthermocouples
 

of copper constantan into living cell tissue of individual needles.
 

Foliage temperatures were sampled at two locations within the upper crown
 

of three healthy and three diseased trees. Copper constantan transmission
 

wires joined the thermocouples to a recording station on the ground where
 

the needle temperatures were recorded on the multipoint recorder shown
 

in Figure 13. Foliage temperatures were recorded during two 15-minute
 

intervals each hour during the day and one 15-minute interval at night.
 

2. Apparent Emitted Temperature Measurements. The crown of a
 

Douglas-fir tree, like other natural objects on the surface of the earth,
 

radiates thermal energy according to the fourth power of its absolute
 

temperature, and the efficiency with which it radiates is determined by
 

its surface characteristics defined by an emissivity constant. The primary
 

emphasis for this phase of the biophysical study is to determine con­

clusively whether or not diseased firs emit energy at specific times,
 

that is measurably different from that emitted by healthy firs.
 

The research plan required the measurement of apparent temperatures
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by two different techniques, one direct and the other inferred. A special
 

and unique black body radiometric plate was designed within the body of
 

a Kahl net radiometer. The temperature of the upper and lower radiometric
 

plates was measured with a microthermocouple of copper constantan. The
 

upper plate in effect measured the hemispherical incoming longwave in­

frared radiation and the lower plate measured the apparent emission
 

temperature of objects below. The downward facing surface of the radi­

ometer housing is fitted with cones of various sizes which effectively
 

narrow the field of view of the instrument. It was unfortunate that these
 

instruments were not delivered until the end of the field season. They
 

are now being thoroughly tested and calibrated for the next field season.
 

Apparent emitted temperatures, however, can be inferred from other
 

data. This requires solution of the radiation flux density formula using
 

foliage temperature values and a constant emissivity of 0.93. Atmospheric
 

attenuation of emitted energy is assumed to be zero because of the small
 

distance to the sensing instrument. Strong indications of emitted energy
 

levels will be determined from analysis of these data.
 

3. Leaf Water Potential. Water potential of the foliage on study 

trees is a variable measured to assess the internal water relations of
 

trees under different environmental conditions. The technique, first
 

reported over fifty years ago and in wide use with biological material
 

the last five years, derives a measure of a leaf's water potential with
 

a hydrostatic pressure chamber (Fig. 14).
 

Leaf water potential values were recorded within one-half hour after
 

branch samples were taken from the study trees. An effort was made to
 

obtain water potential data at least once each week, weather permitting.
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Figure 14--The needle moisture tension (or the hydrostatic pressure re­

quired to transpire moisture to the atmosphere) is measured through the
 
hydrostatic bomb. Nitrogen pressure is applied against the inverted
 
twiglet inside the bomb until moisture exudes from the cut surface of
 
the twiglet. This pressure is related to amount of available moisture,
 
weather factors, and demands of the tree at various times of the day
 
and seasons of the year.
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Figure 15--Sap flow detector attached to tree consists of two thermistors
 

and a heat impulse needle. Timed thermal differences after heat impulse
 
indicate rate of sap flow.
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Collection and measurement usually lasted throughout the day and provided
 

data for evaluating the effect of daily variations due to radiation load,
 

soil moisture tension, rate of water transport in the main stem and rela­

tive state of tree vigor.
 

4. Sap Flow Determination. The rate of sap flow is one of the
 

important parameters providing data on the translocation of available
 

moisture from the tree's root system to the canopy. A special sap flow
 

detector, consisting of two thermistors and a heat impulse probe, have
 

been designed by Weber to determine flow rates (Fig. 15). The heat impulse
 

is imparted in the xylem through a No. 16 hypo needle that is attached to
 

nichrome wire from the electrical heat source. The timed differential
 

travel of the sap sensed by the thermistors following heat impulse is an
 

indicator of sap flow rates. Two detectors are attached at d.b.h. on each
 

study tree. These data were to be recorded on the 8 Rustrak recorders
 

(Fig. 16) that are located in the trailer.
 

AERIAL PROCEDURES
 

Multispectral Imagery
 

NASA made available the University of Michigan's Infrared and Optics
 

Laboratory (IROL) airborne multispectral scanner system twice during the
 

field season. The IROL system incorporates two highly modified AAS/5
 

optical-mechanical scanners. One of the scanners has a unique 12-channel
 

spectrometer as one-half the collecting optics. The spectrometer has real­

time registration for each of 12 discrete bandwidth samples between 0.40
 

and 1.00 micron. In addition, the thermal infrared channels on the second
 

scanner have internal thermal calibration of gray-scale density. The
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The upper and lower limits of gray-scale,density can be controlled by a
 

hot and cold plate thermal reference.
 

Seventeen flight passes were made over the study site with the IROL
 

multispectral system during a two-day period, July 14 and 15, and eleven
 

more were made on September 26. Diurnal spacing of the flights enabled
 

collection of information at the following time periods: (1) early morning,
 

(2) midmorning, (3) midday, and (4) midafternoon. Although the system has
 

a potential capability of 19 data channels, only 15 will be utilized for
 

this research (Table 1).
 

An intensive program for analysis of these multispectral data i-s
 

underway at the University of Michigan. Analyses will be grouped into
 

two categories, thermal processing and multispectral processing. Applica­

tion will be made of the image interpretation techniques developed under
 

the Black Hills study for the purpose of defining target signatures for
 

healthy and disease-infected firs. The necessary manipulation of back­

ground signatures will also be covered. Previous data seem to resolve
 

this research problem to one of thermal detection; consequently, great
 

use will be made of several applicable thermal processing techniques.
 

Thermal slicing with amplitude gating and thermal contouring will likely
 

provide the most useful information for thermal discrimination of tree vigor.
 

AERIAL THERMAL INFRARED TESTS
 

Considerable concern has been expressed by remote sensing technicians
 

that the rotor blast from a hovering helicopter could materially alter the
 

temperature of any surface affected by such breezes.
 

The thermal infrared video scanning system, developed this past year
 

to provide in-place information and thermal profiles over forested areas,
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Table I. Michigan multispectral scanner system--wavelengths sampled.
 

Scanner Detector 
No. Location 

I End A 

1 End B 

2 End A 

2 End A 

2 End A 

2 End A 

2 End A 

2 End A 

2 End A 

2 End A 

2 End A 

2 End A 

2 End B 

2 End B 

2 End B 

Wavelength 

Band 


8.0-13.5 


4.5-5.5 


.80-I.00 


.72-.80 


.66-,72 


.62-.66 


.58-.62 


.55-.58 


.52-.55 


.50-.52 


.46-.48 


.40-.44 


2.0-2.6 


1.5-1.8 


1.0-1.4 


Spectral Tape 
Response Channel 

Far Infrared 6 

Far Infrared 5 

Photo Infrared 14 

Photo Infrared 13 

Deep Red 12 

Light Red II 

Yellow Red 10 

Yellow 9 

Yellow Green 8 

Green 6 

Blue 4 

Violet 2 

Middle Infrared 5 

Middle Infrared 3 

Near Infrared I 



was mounted in a Hiller SL-4 to conduct calibration tests for the PRT-5
 

video scaninterface. Three swimming pools located at motels in the
 

Portland area were selected and approved by FAA for conducting limited
 

low-altitude tests. Tests were flown at noon under full 
sunlight. A
 

video technician from Oregon Audio Video Systems Co., manipulated the gear
 

in the helicopter while the principal investigator gathered "ground truth"
 

at each pool. A thermometer on a semifloating platform served to record
 

surface temperatures of the water during the overflight.
 

Results of these and other tests previously described are reported
 

in the next section.
 

RESULTS
 

ENVIRONMENTAL EFFECTS VERSUS PHYSIOLOGIC VARIABLES
 

Even without the added influence of Poria weirii infection, external
 

environmental factors affect the vigor and well-being of Douglas-fir trees.
 

Thus, it seems especially important to identify these influences concur­

rent with the seasonal development of infection in study trees. From
 

the large array of data that were collected at Wind River during the
 

summer of 1969, two sample periods (July and September) were chosen to
 

show the interaction of physical environmental factors, and particularly
 

how seasonal relationships change during the course of a buildup of water
 

deficits in the attacked trees. 
 The sample periods chosen coincide with
 

airborne miss-ions and serve to illustrate "ground truth" conditions at the
 

time of sampling.
 

Environmental conditions were generally ideal for thermal remote
 

sensing through mid-September,1969. The main soil water storage at the
 

Wind River study site was at 78 percent of field capacity on the first
 

day of the July mu'ltispectral flight. Tree water status data indicated
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moderate (but consistent) daytime differences in both the leaf water poten­

tial and the relative rates of evapotranspiration between healthy and dis­

eased trees. Both the vapor pressure defici.t data (Fig. 17) and the poten­

tial evaporation data indicated that conditions were nominal for high rates
 

of transpiration in healthy trees with the high level of incident energy.
 

Mean net radiation data for healthy versus diseased trees on July 14 (Fig.
 

17) indicate that infected trees exhibited slightly higher apparent tempera­

tures than healthy trees. Accumulated energy for the entire day, consider­

ing the reflected and emitted component together, was 16 percent higher for
 

the diseased trees.
 

"Net energy" data is interpreted as follows: low net energy (as
 

measured with a net radiometer) results from higher reflective and emis­

sive components which are subtracted from the incident energy component.
 

Leaf radiant flux density (Fig. 18) is a measure of the true leaf tempera­

ture corrected for emissivity, and is the energy level measured by a ther­

mal airborne detector. Although leaf radiant flux density differences are
 

small, midday is indicated as the best time to measure thermal differences
 

between healthy and infected trees. The same basic environmental relation­

ships held for the July 15 airborne sampling as prevailed the previous day.
 

Energy levels were slightly higher (Fig. 19 and 20). Vapor pressure deficit
 

and potential evaporation data suggest higher rates of evaportanspiration
 

which tend to increase the energy differential between the healthy and dis­

eased trees. Leaf radiant flux density differences occurred between 1000
 

and 1500 hours suggesting higher thermal emission (and the possibility of
 

thermal airborne discrimination) for the Poria weirii infected firs.
 

The University of Michigan's multispectral mission over the Wind River
 

study site in September was accompanied by generally poorer environmental
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Figure 17--Total net radiation from healthy trees (39/t+ lys) is greeter then 
radliation from diseased trees (332 lys). Maximum net radietion from both 
conditions classes is at middaly. 
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Figure 18--Leaf radiant flux density (likely to be indicative of leaf
 

stress) is higher throughout the afternoon for diseased trees, and is
 

lower during most of the morning.
 

37
 



so
 

40 
I Total 658 yso o~ 

S40 

z 80 
I II 

i 

0-. o 

5 40 

I I I Tota 4 

zas 

28 

T
 
= I I21I I
 

4.0 

2.0 

0 I I I I I 
Mt 0300 0800 0900 1200 1500 1800 2100 Mt 

15 JULY 1969 

Figure 19--Total radiation from healthy trees (425 lys) is greeter then
 

radiation from diseased trees (332 lys). The relationship to Solar
 

Radiation and Vapor Pressure Deficit can be seen.
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conditions prior to and following the mission in terms of optimum thermal
 

remote sensing. This was unfortunate because measured soil moisture de­

ficiencies were at a level which generally leads to large thermal dif­

ferences between healthy and infected trees when other environmental
 

conditions are optimal. Incident energy level (Fig. 21) was somewhat
 

below the ideal level, primarily due to the time of year rather than at­

mospheric interference. Net energy data showed an accumulated difference
 

between healthy and infected trees but incremental differences were small.
 

These are the differences we must deal with when using an airborne scan­

ner. Leaf radiant flux density differences (Fig. 22) showed that the
 

healthy trees were actually exhibiting an aggregate of higher emission
 

rates during the 24-hour period. Higher emission rates around midday
 

were shown by the diseased trees.
 

During the summer field season the regime of leaf radiant flux
 

density values was identified. It is unfortunate that all tram-mounted
 

radiometric instruments were not available this summer to record emission
 

temperature differences directly for correlation with airborne thermal
 

data. These instruments will be the primary feature of future field
 

data collection systems.
 

CALIBRATION OF PRT-5 VIDEO SCAN SYSTEM
 

Temperatures at each swimming pool were recorded during helicopter
 

hoverings at 100', 150' and 200'. Although each pool was of a different
 

temperature, ranging from 710 to 830, the electronic output from the PRT-5
 

infrared radiometer indicated only a fraction of a degree difference at
 

the various heights above the water body at each pool. At 200' the rotor
 

blast was sufficient to ripple the water, at 150' the water was streaked
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Figure 20--Leaf radiant flux density follows the pattern of LFD of
 

14 July, higher in the afternoon and lower in the morning.
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Figure 22--Leaf radiant flux density at midday is higher for diseased than
 
healthy trees. On the previous two dates (14 and 15 July) the LFD for dis­
eased trees remained higher than that for healthy trees throughout the
 
afternoon. The difference on 26 September, possibly can be attributed to
 
high stress of healthy trees due to low moisture conditions.
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with wind vectors and one/half inch wavelets, but at 100' the water was
 

rough with three-inch high choppiness. Wind velocity at 1001, due to
 

the helicopter's rotor blast, was estimated at about 30 mph. Because
 

of the downdraft from the rotor blades, heat measurements of a tree
 

canopy made beneath a helicopter hovering at very low altitude are likely
 

to be unreliable. However, no significant temperature differences could
 

be noted on any of the pools of water at the three flying heights. The
 

helicopter-hovered at each altitude for approximately two minutes.
 

In addition to the thermal infrared test over the swimming pools,
 

a flight was made over all the test trees on the Wind River test site ,
 

Plot #1 at approximately 1330 hours on May 22. Electronic readout from
 

the PRT-5 radiometer on each of the second-growth Douglas-fir trees w;ith
 

a hovering time of one minute at 150' above the tree gave the following:
 

Healthy Trees Diseased With no Visible Diseased With Visible
 
Crown Symptoms Crown Symptoms
 

.42 .44 .44 

.43 .43 .44 

.43 .46 .45 

.45 .44 .45 

.46 .45 .46 

Average .438 26.5 
0
C .440 26.60c .446 26.80c 

It was not possible to establish exact tree temperature readings
 

for tree crowns at this particular point in time with any installed in­

strumentation systems. It is quite probable that the system of taking
 

needle temperature readings in the upper tree crown of the study trees
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this summer will provide a reasonable technique for checking the accuracy
 

of temperature readings recorded by the PRT-5 radiometer.and video scan
 

system from a helicopter. Only then will we know for sure the effect of
 

rotorblade downwash on temperatures of forest trees.
 

ESTIMATING TREE MORTALITY FROM APOLLO 9 IMAGERY-
/
 

The flight of Apollo 9 in March, 1969, was a major stepping stone
 

toward the Apollo 11 lunar landing. In addition, it made a major contri­

bu'tion to our earth resource scientists in providing an abundance of
 

basic and applied data on our natural and cultural resources. One of
 

the important objectives of the remote sensing imagery taken from an
 

orbiting satellite platform is to determine the feasibility of estimating
 

tree mortality in forested areas.
 

The early part of the Apollo 9 mission tested the capabilities of
 

the astronauts to maneuver space equipment outside the primary capsule,
 

to practice landing techniques with the "spider" module for a lunar ap­

proach on the Apollo 10 mission, and to practice "docking" or rejoining
 

the lunar orbiting satellite as did Apollo 10 and Apollo 11 on their re­

turn trips to earth.
 

The latter part of the Apollo 9 mission on March 8-12, 1969, was
 

devoted in part to taking multispectral space photography for earth re­

source analysis. This was a minor part of the overall Apollo 9 mission,
 

but one of extreme interest and value to use. There were problems with
 

this aspect of the mission which are considered in greater detail below.
 

A pod, of four Hasselblad cameras with 80mm lenses was loaded with
 

/ Based on a paper presented by John Wear at the Semi-Annual National
 
Meeting, American Society of Photogrammetry, Hilton Hotel, Portland,
 
Oregon, September 24, 1969.
 



Ektachrome IR (S0-180) with a 15 filter , black-and-white IR (SO-240) with
 

89B filter, Pan XX (3400) with 25A red filter, and Pan XX (3400) with 58
 

green filter. The pod was attached to the window frame of the hatch
 

door; the cameras were operated when the capsule was so oriented that the
 

optical axes of the cameras were pointed vertically downward.
 

The preplanned flight path of Apollo 9 was west to east across the
 

United States at about 320 latitude. A 75-mile wide photographic strip
 

was expected to start south of Los Angeles, cross north of El Paso, go
 

over Biloxi, Mississippi and finish over Cape Kennedy. It was realized
 

at the outset that no further multispectral remote sensing imagery was
 

likely to be forthcoming from the Apollo satellite series nor from other
 

satellites for at least 2 years. Therefore, every effort was exerted to
 

make the most of the opportunity.
 

The objectives of the forestry tests from Apollo 9 imagery included:
 

(a) identifying forest species and delineating major timber types, (b) de­

tecting forest stands under stress from disease, insects, or fire, and
 

(c) evaluating rangeland and wildland resources.
 

Because of my remote sensing research and aerial survey techniques
 

development for forest insects and diseases in western forests, I was
 

directed to select test sites along the Apollo 9 flight path that showed
 

heavy incidence of disease or insect activity. From current Regional
 

Forest insect and disease survey map data, and with the help of U. S. Forest
 

Service Regional entomologists and pathologists, I selected three test
 

sites--one in California, one in Arizona and one in New Mexico. One for­

ested area having significant disease stress characteristics is located
 

on the Cleveland National Forest about 30 miles northeast of San Diego,
 

where Elytroderma needlecast disease is epidemic in the ponderosa pine stands.
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The second site was about 10 miles northeast of Prescott, Arizona, where
 

both insects and disease are killing ponderosa pine trees. Ips beetles
 

are the primary tree killers there. The third site showed heavy Lopho­

dermium needlecast disease in fall, 1968. It lies on the Lincoln National
 

Forest, about 10 miles north of Tulorosa, New Mexico.
 

The two types of needle diseases and the Ips beetles all cause the
 

foliage of infested trees to range in color from yellow-orange to red and
 

such abnormalities are generally visible on suborbital color photography
 

most of the year. But environmental factors, such as winter storms, heavy
 

rain or hail, or new growth features, may affect the appearance of stressed
 

trees.
 

How much detail of these dead and dying trees and what size mortality
 

groups would be discernible on the satellite photography depends upon
 

several factors: the spatial resolution capabilities of the camera system,
 

the atmospheric and ground target conditions (appearance of foliage, snow
 

cover, etc) over the test site at the time of exposing the film, and the
 

stereoscopic parallax of the satellite photography. Good stereoscopic
 

parallax is extremely important for high quality and efficient interpre­

tation of tree mortality on remote sensing imagery:
 

During the Apollo 9 overflight, 'members of the U. S. Forest Service's
 

Remote Sensing Research team and other research teams from various universi­

ties were gathering "ground truth" data on various forestry, range, and
 

wildland test sites. Richard1riscoll, Range Resource Analyst from the
 

Rocky Mountain Forest agd Range Experiment Station, and I concentrated on
 

photographing forest and range test sites in New Mexico and Arizona. The
 

Arizona test site near Prescott was eliminated because snow covered the
 

ground and trees. Simultaneous 35mm oblique photography was taken of New
 



Mexico range and forestry test sites by using Ektachrome, Ektachrome IR
 

and Eastman SO 121 color films from a Cessna 182 at 500 to 1,000 feet
 

above terrain. Two Exakta cameras were mounted base-to-base and fired to­

gether at each target. A third camera was fired at almost the same point
 

in time. Navigation to successive range test site areas was done by follow­

ing vegetative range patterns on a color print from the Apollo 6 mission.
 

Ground analysis was scheduled to follow the aerial reconnaissance and
 

photography of each range test site. The 1:1,000 scale oblique photos of
 

forest test sites in New Mexico would be collated with the best available
 

suborbital photographs for-precise locations of tree mortality groups.
 

These photos in turn would be referenced to Apollo 9 imagery.
 

Robert C. Heler, in charge of remote sensing research at the Pacific
 

Southwest Forest and Range Experiment Station, and photographer Richard J.
 

Myhre flew the U.S.F.S. Aero Commander from Berkeley, California, to
 

photograph the disease test site in southern California -n the last day
 

of the Apollo 9 mission. Both 70mm and 35mm vertical photos were taken
 

of the disease area at 1:7,000 and 1:40,000 scales using Ektachrome IR,
 

Aero Neg Ektachrome and Eastman SO 121 films. Unfortunately, an unusual
 

and severe snow storm had hit the test site insouthern California several
 

days before, precluding satisfactory interpretation of stressed trees.
 

Clouds over the test site on March 12, followed by snow covering trees and
 

ground detail at the end of the mission, eliminated this disease test site
 

from the remote sensing research.
 

The Lophodermium needlecast area near Tulorosa, New Mexico, at the
 

time of the Apollo 9 overflight, had changed considerably since fall, 1968.
 

New spring foliage obscured what remained of older red needles not removed
 

by winter s'torms. Consequently, still another disease-mortality test site
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had to be scrubbed.
 

Aerial reconnaissance was started to find another suitable tree­

mortality site. No significant insect or disease mortality groups could
 

be located within a radius of 50 miles, but an excellent "proxy" type
 

bark beetle kill area of group mortality was located about 10 miles south
 

of Ruidoso, New Mexico. The orange-colored "faders" were part of a con­

trolled burning experiment on the Mescalero-Apache Indian Reservation and
 

involved scattered groups ranging in size from a few acres to more than
 

40 acres (Fig. 23, 24, 25). At first glance from 500 feet above ter­

rain and with -light snow on the ground, only faint indications of actual
 

fire kill could be discerned (apparently a controlled ground fire). At
 

higher altitudes, the dead and dying trees could be easily mistaken for
 

bark beetle-caused mortality. I considered this a reasonable example of
 

group mortality with fading trees representative of either bark beetles
 

or scattered spot fires. Thirty-five mm color photography was taken of
 

various "proxy" mortality groups at low altitude.
 

About 3 wbeks after splashdown, multispectral imagery from Apollo 9
 

was made avai'lable. The Apollo 9 flight path across the United States had
 

deviated almost I degree further north than anticipated and eliminated
 

many test sites where extensive "ground truth" had been completed. During
 

the first photographic overflight on March 12, considerable film had been
 

expended to provide 60% stereo overlap on all test sites. Unfortunately,
 

heavy cloud layers extended over much of the western United States during
 

the photo run. Consequently, the subsequent photo overflight several days
 

later under better atmospheric conditions had to stretch the available film
 

and resulted in photo coverage with only 15% overlap.
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Figure 23--An oblique aerial view of the ponderosa pine type south of


I Ruidoso, New Nexico showing "proxy" mortality caused by controlled burn-


I
 ing experiments. Original slide (35ssn)was taken on Ektachrome color.
 

I 49 



I.
 
I
U
I
I
U
I
I
I 

I
I
I
U
I
 

Figure 24--Ektachrome IR color of the same area as Figure 23 indicating
 
multispectral enhancement and delineation potentials. Burned areas are
 

quite readily discerned from unburned.
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I Figure 25a--Oblique close-up of "proxy" area of bark beetle type mortality 

on Ektachrome color with snow background. 
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£ Figure 25b--Close-up of the same area as Figure 25a using Ektachrome IR
 

color film. Low altitude obliques provide excellent "ground truth" for
 
small scale suborbital and orbital imagery.
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The color balance and resolution of individual satellite photos taken
 

126 miles above the earth are of excellent quality. Geomorphic and ter­

restrial features show clearly. Although I was interpreting from a third
 

generation 70mm color transparency with a 15X microscope, it was not dif­

ficult to pinpoint field locations in mountainous terrain. The scale of
 

photo AS9-26-3805 (Fig. 26) is about 1:2,549,500. This is 40 miles per
 

inch or 5 miles per 1/8 inch, which means that image quality must be ex­

ceptional to delineate small ground details and specific features such as
 

a group of dead trees.
 

Most noticeable on the photograph is the snow distribution pattern
 

along the mountains with the heaviest concentrations (solid white) at the
 

higher elevations and scattered fingers of snow along ridges several thou­

sand feet lower. Hydrologists will have an excellent opportunity to make
 

snow estimates and potential water resource analyses from this photography.
 

The black area that looks like two small lakes joined by a narrow channel
 

is actuallyajagged mass of lava. The white bull's eye near the reservoir
 

on the left edge of the photo is the site of the first atomic bomb ex­

plosion and is about 5 miles across. The tonal contrast between an image
 

and its background (determined by the hue, value and chroma of the image
 

itself) and the image sharpness (indicated by the distance on the photo­

graph between images of varying tonal contrast) are critical factors of
 

image quality. Thus in forested areas significant color contrast and image
 

sharpness are needed to separate bare ground, cutover land, or rocky out­

crops from groups of dead or dying trees.
 

Monoscopic interpretation under 15X magnification of AS9-26-3805
 

(Fig, 26) in the forested area south of Sierra Blanca Mountain along the
 

edge of the photo indicated several brownish spots in the vicinity of
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Figure 26--Enlargement (4X) of Apollo 9 imagery taken with 70mm Hasselblad
 
camera, having an 80mm focal length, from approximately 126 miles above the
 

earth. General land features are readily discernible. Snow predominates
 
above forested areas (blue green). Black lava flow in the center contrasts
 
sharply with surrounding desert shrub types. 15X magnification is needed
 
to delineate openings at 20 acres and larger on the 1:2,549,500 scale photos.
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Ruidoso, New Mexico. The general locations of some of the spots coincided
 

with the "proxy'' mortality sketch mapped during the previous aerial recon­

naissance to locate test sites. Several interpreters with forest insect
 

and disease background studied the area on the Apollo 9 imagery and con­

cluded that monoscopic viewing of vegetative details was insufficient to
 

identify positively only a few tree mortality groups. Their consensus was
 

that supplementary aerial reconnaissance in the area would be of considera­

ble value in establishing criteria for interpreting mortality groups by
 

monoscopic viewing. Seven suspect groups ranging in size from about 20
 

to 60 acres were selected for field checking. A subsequent low-altitude
 

flight over the area revealed that only two of the suspect areas were
 

actually tree mortality groups. The commission errors consisted of a rocky
 

outcrop, two cutover areas with light soils and bare brush, a.patch of
 

burned snags with light soils, and an opening with scattered brush. It is
 

easy to see how monoscopic interpretation leads to errors. Omission errors
 

were also made on the satellite photography. On the edge of the AS9 photo,
 

small areas (less than about 20 acres) on the mountain slopes were generally
 

overlooked.
 

The results of this study are not too encouraging, but I do not
 

believe this to be a fair test of the interpretation potentials from satel­

lite photo, and the lack of adequate stereo precluded adequate determina­

tions of vegetat.ive structure and height. Additional experience with satel­

lite imagery should greatly enhance the ability of interpreters to make
 

accurate evaluations of forest conditions.
 

Even with this limited experience with satelli-te imagery, I believe
 

that considerable use can be made of this remote sensing technique under good
 

conditions to identify trees under stress from insects, disease and fire.
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