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FOREWORD

This document is the final report of an engineering study
of Multiprocessor Computer Systems, and the development of
multiprocessor theory and problems related to the proposed
space station and space base data management systems. This
research was sponsored by the National Aeronautics and Space
Administration Manned Spacecraft Center, under contract NAS 9-9763,
and performed by Intermetrics, Inc., Cambridge, Massachusetts.
Dr. James S. Miller was the Technical Director of the effort.

The study program covered the period from June 27, 1969

through March 27, 1970. Mr. James P. Ledet (EB6) of the Manned
Spacecraft Center, was Technical Monitor
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Chapter 1

Study Objectives and Terminology

1.0 Introduction

Multiprocessor and multicomputer systems are being proposed
for advanced manned space applications, including the space
station and space base programs. Since the applications of
systems of this type are relatively recent and not uniformly
successful, the Manned Spacecraft Center has undertaken an
analysis and extension of this technology. This document contains
the results of a study of multiprocessor computer systems,
related theory, and potential problems associated with implemen-
tation of such a system in a space station Data Management
System (DMS).

This report is presented in six chapters. This chapter
presents the background and objectives of the study, and a
review of terminology involved. Chapter 2 presents the relevant
results of a survey of existing multiprocessor flight and ground-
based systems. Chapter 3 presents design considerations which
are relevant to the architectural configuration of the data
management computer system. Chapter 4 discusses the major design
guideline constraints and requirements applicable to the system.
Chapter 5 presents the architectural design of a multiprocessor
computer system capable of satisfying the requirements.

Chapter 6 presents recommendations for future work in the areas
of technology and design.

1.1 Background

Among the next generation of space vehicles are to be
craft which closely resemble earth-based scientific facilities.
Earth orbital space stations and bases are being defined as
facilities which can support operational and experimental equip-
ment on a long-term basis of about ten years. An earth-orbiting
space laboratory housing 12-50 men has been proposed by NASA
for implementation in the 1975-1980 period.

The space station and the subsequent space base program
will introduce a new, more routine mode of space operations than
has characterized past programs. The station will exploit
the unique features provided by its location in low earth orbit
(200-300 km; inclinations of 28,5° to 55°) for rapid earth
viewing and unobstructed celestial viewing, and will allow
scientists and engineers to pursue a wide variety of research
and application activities on board. It is also currently ,
envisioned that men and- equipment will be ferried between these
stations and the ground in a reusable Advanced Logistics System
(ALS) shuttle vehicle. Obviously, to achieve these goals, many
of the functions previously accomplished on the ground will be



performed on board the base, allowing it guite autonomous
operation.

Part of the on-board Data Management System will be a
computer system capable of supporting all required mission opera-
tions. Existing space-qualified information processing equipment
lacks the capacity and flexibility to satisfy the diversified
space station/base data management requirements.(l) The current
inventory consists primarily of dedicated hardware designed for
specific applications. Various government and industry programs
are developing technology and hardware applicable to the space
station data management requirements. Anticipated advancements
in electronic technology indicate that much can be done over the
near future to improve reliability, weight, power, and volume
of flight hardware. Included within this scope are multicomputer
and multiprocessor computer systems, which are being proposed
as candidates for the space station/base DMS since they seem to
offer the reliability, expandability, and modular features
required.

1.2 Objectives of the Study

The principal objectives of this study were threefold:

a) Collect and analyze available existing knowledge concerning
actual and proposed multiprocessor system design, utilization
and communication technigues.

b) 1Incorporate this knowledge in a generalized multiprocessor
theory that establishes a baseline definition of the various
system conflguratlons and problems as defined to the present
date.

c) Expand multiprocessor computer system theory to include the
system and communication problems that would be encountered
in the DMS application.

The methoddlogy used to accomplish these objectives began
with a survey of the state of art of multiprocessor and multi-
computer systems. Twenty-nine ground based and airborne systems
were reviewed and information collected as to their current
status, architecture and organization, principal features of
hardware and software, problem areas, and applications. 1In
conjunction with this task, basic definitions and elementary
concepts in computer architecture and memory technologies were
documented.

Several basic multiprocessor configurations were analyzed
in terms of their applicability to the expected space station
reguirements, and in particular their reliability and expand-
ability. After a preliminary analysis of these approaches, a
parallel effort was established to examine some of the basic
design considerations and tradeoffs in multiprocessor systems.



This included an analysis of reliability, memory paging and
segmentation, interrupt schemes, display concepts, stack, micro-
programming, and storage protection.

To embody the knowledge gained from the survey, extension
of multiprocessor design, and projection of hardware capabilities,
a system design was prepared. While confined largely to the
organizational level, this design satisfies the requirements
presently envisioned for the orbiting laboratory program.

The text of this report generally refers to the space
station/base application as simply the space station, to eliminate
redundancy. However, it is believed that the computer systems
for both should differ in scale only, and therefore the material
presented herein is intended to be applicable to both.

1.3 Introduction to Computer Architecture

This section is included in this report to define some of
the language used in present-day descriptions of computation
systems. The vocabulary and usage described are intended to
represent a majority opinion from the computer industry. 1In
places where such a majority does not exist or is not very sub-
stantial, alternate descriptions are provided. This approach
tends to discourage any attempt at rigorous or strict treatment
of the subject; indeed, some areas have been left somewhat
imprecise. However, it is believed that the basic concepts can
be presented clearly and briefly by use of simple language and
examples.

1.3.1 Hardware Elements

Although most people have a fair idea of what a computer
is, there is no easy way to specify a set of criteria by which
one might satisfactorily decide whether a given collection of
equipment is or is not a computer. As far as the present discus-
sion is concerned, the only systems meant to be included are
those which are computers without doubt. Almost any such system
will contain one or more units of each of the following types,
plus the communication and data paths required to interconnect
them:

a) Memory

b) Processor

c) Input/Output Controller
d) Input/Output Device

Descriptions of each follow.



1.3.1.1 Memory

Often the largest and most expensive element of a computer
is its memory. Most computers have a number of different storage
media. Usually these are segregated into categories of high-speed
units and secondary storage units. The latter, which generally
involve mechanically moving parts and are accessible only via
I/0 instructions, are covered under the I/O Device category.

The remaining memory is almost always of the random-access
type; that is, the time required to obtain each word from a given
unit is the same. Examples of the kinds of unit which do not
have this characteristic are the delay-line memory and the Hughes
Dynabit memory; in both, values nearest the output end of the
unit are accessible most rapidly, and so on.

The two classes of random-access memory are read-only and
read-write. The read-only memories usually have their contents
manufactured into them; thus, changing the contents of a read
only memory requires physical modification of the device. Such
memories are generally less expensive than a read-write unit of
the same capacity and speed, and are used in applications where
the contents do not need to be, or are not allowed to be, changed.
Read-write memories, on the other hand, are designed so that
their contents are electrically alterable, although in some
instances R/W memories are utilized in a manner which causes them
to normally behave as read-only devices.

R/W memories may be classed as volatile or non-volatile
according to whether their contents remain intact when power
is removed. Core memories are non-volatile, since the medium
of storage, the polarity of residual magnetic flux in the
core, is self-sustained; flip-flop memories, on the other hand,
are volatile, since the state of the device is sustained only by
its energization.

Non-volatile memories may be further classified as destruc-
tive-read-out (DRO) or non-destructive-read-out (NDRO). Core
memories are DRO devices, since the contents of the selected cores
are sampled by driving the magnetization state of each to the
"zero" condition, which generates an induced voltage in the sense
lines of those cores which were in the "one" magnetic state. ‘This
action leaves all of the interrogated cores in the "zéro" state.
Thus, the information originally contained is instantaneously
erased from the cores, and must be rewritten if the same contents
are to be subsequently accessible. Plated-wire and flat-film
memories, however,may be non-destructively read. There are two
major advantages for NDRO memories: First, they are less vul-
nerable to power fluctuations or other interruptions of the read
process, since at no time during the reading operation is the
information cleared from the memory. Second, they can be made
to operate at a higher reading rate, since it is not necessary
to follow each read by a rewrite operation.




Many computers use several types of random—access memory.
For example, in the IBM 360/65, read-only and volatile read-
write memories are used in the processor, while DRO memories
of two speeds are available as main storage. The term main
storage, which is synonomous with main memory and, unfortunately,
processor storage, refers to that memory used for storage of
instructions and data of programs being executed. Blocks
labeled as memor¥ in diagrams of computer organizations will
nearly always refer to main-memory units.

To enhance the speed gains achievable from overlapped
computer and I/O operations and from multiprocessing (see below
for descriptions of these), memory interleaving is often used.
This technique consists of organization of the main memory into
independent modules capable of simultaneous operation, and the
distribution of memory addresses among them. For example, if
memory is divided into eight modules, locations 0, 8, 16, 24,
etc. would be physically located in the first module, locations
i, 9, 17, 25, etc. in the second, and so on. Based on the pre-
sumption that instructions and I/O transfers largely use sequen-
tial memory locations, this method of interleaving tends to
decrease the probability of memory—-access conflicts.

1.3.1.2 Processor

The processor units in a computer may be roughly
described as those units which decode and execute the non-I/0
instructions from the programs. I/O instruction execution in
many computers takes place in an I/0 processor to avoid interfer-
ence with the main or central processor. Configurations of
processors vary widely; in the most straightforward case, the
processor is essentially a single entity. 'At the other extreme,
however, processors are comprised of special-purpose execution
and decoding elements many of which may be (and hopefully are)
operating simultaneously. For example, the CDC 6600 main
processor contains a decoding unit and ten special-purpose execu-
tion units. Processors may be segmented for other reasons as
well. For example, the JPL STAR computer, designed for exception-
ally long life without maintenance, has a processor divided into
five parts, with spare copies of each, to enhance its relia-
bility; the ILLIAC IV computer separates instruction decoding
from execution, and incorporates 256 elements driven by a single
decoding unit.

1.3.1.3 I/0 Controller

Early computers were built without separate controls for
I/0 operations; as a consequence, program execution would proceed
at processor speed until an I/0 instruction was performed.
At that point, the processor became dedicated to the performance
of the I/0 operation. When that operation was completed, normal
instruction execution was resumed. The effect of treating I/0



instruction execution like other-instruction execution was to
reduce the effective speed of the processor towards that of the
I/0 devices used.

To eliminate this bottleneck, I/0 control hardware was
added to the system. In some current computers, it may be in
the processor unit, and in others it is a relatively more inde-
pendent component. In the IBM 360/65, as an example, the eguip-
ment is referred to as a channel; channels are placed into opera-
tion by execution of a start-instruction in the processor, and
thereafter operate by fetching the executing commands themselves
concurrently (overlapped) with processor operation. Many
channels may be in simultaneous operation, and one type of
channel, the multiplexor channel, ¢an control the concurrent
operation of a multiplicity of I/0 devices. 1In spite of this
high degree of overlap, it is sometimes true of large scale data
processing systems that the processor is idle a disappointingly
large fraction of the time, waiting for I/0 operations.

1.3.1.4 1I/0 Device

Into the category of I/0 devices fall the drum, disk,
and tape units, card readers, printers, and the like. In real-
time systems, transducers of wide variety are used. Additionally,
the I/0 mechanism may be used to control the operation of hardware
not usually considered to be I/0O devices, such as large-core-
memory (LCM) and even other computers. The advantage of such
operations is that the processor is freed from the speed constraints
imposed by these elements in a manner completely analogous to
that used with ordinary I/O devices. Again using the IBM 360/65
as an example, the LCM cycle time of 8 psec is substantially
slower than the main storage cycle of 0.76 usec; use of the
so-called storage-channel can therefore increase the overall
efficiency of data transfers between memories significantly.

1.3.2 Program Structure

A prerequisite to the understanding of the many configura-
tions of computer systems currently available is an understanding
of. program structural organization. Although what is to be des-
cribed is not universally recognized or even always relevant,
the trend is in that direction, for reasons which will become
clear as the discussion continues.

Again looking back to early computers, a program was simply
described as a group of instructions with an identified starting
location and one or more ending locations. A program was loaded
into the memory of a computer, and execution was begun and allowed
to continue non-stop to the end. This simple structure is quite
unsatisfactory from an efficiency point of view, and has gradually
been abandoned. 1In its place is a view of a program as a time-



varying group of associated processes or tasks whose constraints
on relative execution sequence are dictated Ey precedence rela-
tionships associated with each.

The development of monitors or operating systems (also
executives or supervisors) has stimulated the above view of
programs. At first, monitors were developed to automatically
load and execute jobs sequentially without manual intervention.
The conceptual generalization of this system led to execution of
more than one job concurrently, in the sense that while one job
awaits completion of an I/O operation, another job can be
partially executed by the processor which would otherwise be idle.
This is an elementary form of multiprogramming; the more general -
form presently used recognizes the possible separation of single
jobs into several tasks or processes which may themselves be
executed concurrently in the above sense. A second kind of
multiprogramming has been facilitated by the hardware of the
Honeywell 800, 1800, and 8200 computers. Referred to by Honeywell
as horizontal multiprogramming (as opposed to the vertical multi=--
rogramming described above), this form of processor-sharing
takes place on an instruction-by-instruction basis. The processor
of the H1800, for example, contains eight groups of the registers
used for program control (instruction counters, index registers,
etc.), and each set may be used independently to execute programs.
Because there is only a single instruction decoding and execu-
tion unit, only one instruction is executed at a time, but control
is freguently passed from one active group to the next. Groups
which are waiting for the I/0 are automatically bypassed, so that
those groups which can use the CPU are given access without soft-
ware intervention. -

Along with operating system development came the concept of
resource allocation which governs the assignment of core space,
tape drives, etc., and even units of data filed on gsecondary
storage, to requesting tasks; it was a natural extension of
resource allocation to consider processors themselves as resources
which could be requested and released by tasks as necessary.
Thus, the execution by a task of a pseudo-instruction which speci-
fies that the task cannot continue until a specified event has
occurred can be interpreted as the release of the processor by
that task; the occurrence of the awaited event then is noted as
a request by the waiting task for a processor. It is easy to
see how this organization of program lends itself to use in
systems which contain more than one processor (multi-processors).
-However, extension to more than one processor usually introduces
two classes of interlock problems whose solution is not neces-
sarily straight¥orward. The two classes of interlock problems
are: first, the incorporation of means to prevent simultaneous
operations on a single data base where this is not logically
permissible, and second, the prevention of system collapse
because of situations such as the one where two or more tasks
are stalled, each one of which is waiting for another stalled
task to perform some operation. The solution of the first inter-
lock problem has been greatly aided by the addition of a non~




interruptible test-and-then-set instruction to the hardware.
This kind of instruction causes the contents of a location in
memory to be tested and then altered in a single memory cycle,
so that there is no "gap"during which another process, processor,
or channel can gain access to the same location. If this loca-
tion is respected as a "lock" by the software, a process wishing
sole access to the protected data executes the test-and-set
instruction, which always leaves the lock locked. The process
then uses the result of the test to see whether the lock had
already been locked; if so, it must wait for the process which
locked it to finish its use of the data and unlock the lock.

Units of program which are subject to sharing in a multi-
programming or multiprocessing system must be treated in accord-
ance with their categorization as not-reusable, serially-reusable,
or reenterable.

Program units are not-reusable if they modify themselves
during execution in such a way that a second attempt at execution
will fail. A program which does not modify itself or which
re-initializes itself upon subsequent use is called serially
reusable if the same copy may be used repeatedly, but by only
one process at a time. Reenterable program units are those
which may be used concurrently or simultaneously by more than
one process.

Another classification of program units specifically refers
to whether they modify themselves or not. The term pure
procedure means that the program unit (procedure) does not modify
itself. Such units may or may not be reenterable, but they
are at least serially reusable. Obviously, programs intended
for execution from read-only memory must be "pure" in this sense.

1.3.3 System-Use Classification

Computer system use is commonly classified into three
categories. Smaller systems are often totally dedicated to a
single category, although increasing numbers of larger systems
are capable of performing two or three with reasonable success.
The first category to exist historically is batch-processing.

In current usage, the term refers to a mode of operation in
which programmers submit their job decks for computation expect-
ing an interval of hours or longer before their results are
returned. In batch-processing, no interaction is possible
between the programmer and his computation.

To remove the long delay between submission and computation,
time-sharing systems have been developed which allow many users,
from remote .terminals, to use the computer as though they were
each the only user. That is, commands issued from a terminal
are executed by the system immediately, and results are displayed
almost at once.



In real-time applications, even more immediacy is required,
since the computer is typically in a control-loop, and must issue
control signals promptly, as a function of the input values it
automatically receives from the controlled system.

1.3.4 cConfigurations

Figures 1.1-1.8 show a number of system configurations in
current use. The interconnections shown represent the primary
data and control paths, without respect to their mechanization,
which is the subject of the next section. Figure 1.l shows the
conventional single processor or uni-processor -system; the
processor is connected to the memofy and to the I/0 controller,
and the 1I/0 controller is also connected directly to the memory.
The connection of the I/O controllers to I/0 devices, and the
I/0 devices themselves, are not shown in the figures, but are
understood to be present.

In Figure 1.2, the organization of the CDC 6000 series
and the related CDC 7600 is shown. The peripheral processors
(PP), significantly smaller and less powerful than the main pro-
cessor, are used to perform the house-keeping functions involved
with job setup and control, and are responsible for execution
of I/0 operations. The I/O functions normally found in I/0
controllers in other computers exist largely in the PP's in this
series of systems. The main processor is spared responsibility
for the less taxing operations and therefore has a higher .avail=-
ability for execution of the meat of the problem programs. As
mentioned previously, the CDC 6600 (and 7600) main processors
internally embody some degree of multiprocessing to enhance
their speed.

A multicomputer system is shown in Figure 1.3, and represents
the IBM 704x/709x Direct-Coupled System (DCS) and the IBM 360

Attached Support Processor (ASP) system. Like the CDC 6000
series, the processors in the system are dissimilar, with the
less powerful one used for housekeeping and I/0 operations, in
an attempt to allow the more powerful one to concentrate on the
number-crunching kernels of each job. That this configuration
is described as a multicomputer rather than a multiprocessor
system stems from the fact that the processors do not share
memory; they communicate only via a direct processor-to~processor
link and via a channel-to-channel adapter which makes each
computer look like an I/0 device to the other. The two systems
may also share I/O devices, such as disk storage.

The dual-computer system shown in Figure 1.4, the IBM 4 Pi
CP-2 configuration for the F-111 Mark II Avionics system, is
similar to the DCS or ASP since the processors communicate with
each other only directly or through the I/0 interface, but do not
share memory. The system is different, however, . in that the
processors are identical, and the hardware and software are
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designed so that the failure of one processor or memory can be
tolerated to the extent that the system can continue to perform
its major functions. This characteristic has led to the use of

the term federated dual-computer syistem.: ;

Figure 1.5 portrays a modular computer structure investigated
by the NASA Electronics Research Center. 1In this design, each
processor has bkeen split into control and arithmetic units for
reliability reasons. Not shown in the figure is a configuration
assignment unit (CAU) which is capable of changing the connection
paths between the other units. Again, in this configuration,
no memory may be shared, although more than one memory unit may -
be connected to a processor. Although these units typically
function as independent computers, a potential connection scheme
is to add voting logic at appropriate places and to cause all
units to execute identical programs. This provides a system of
high reliability for critical computations when insufficient
time exists to diagnose errors and reconfigure the system. During
less critical times, the units might perform independent calcu-
lations, or one or two could be idle as standbys in case of
failures in active units.

The MIT/IL computer designed for a high reliability appli-
cation is portrayed in Figure 1.6. Two copies of each module
are included in the design, although one processor is always
in a standby condition. This sywtem is therefore not really
either a multicomputer or multiprocessor system even though it
utilizes two processors, Both memories accept all write commands
from the active processor, although only the one ingtantaneously
designated "primary" responds to read requests. As a result,
both memories should contain idéntical contents, so that if an
error is detected in one, the designation of "primary" can be
switched to the other and the read request repeated. The JPL
STAR computer is similar, in that its operation is essentially
that of a uniprocessor even though multiple copies of modules
are present in the system. These two systems have been mentioned
to show the existence nf "gray areas" of system classification.

The most frequently utilized general architecture for a
multiprocessor configuration is shown in Figure 1.7. This
configuration is found in the IBM 360/65 multiprocessor, the
Burroughs D825, 5500, etc.,, Univac 1108 and AN/UYK~-7, IBM 4 Pi
EP for VS A-NEW, IBM 9020, Hughes 4400, ERC EXAM, MIT/IL ACGN
computer, and so on. The distinguishing characteristic of the
multiprocessor organization is the equal sharing of memory and
I/0 by each processor. Although the processors in this organiza-
tion are often alike, they need not be. When they are, the operat-
ing system software usually treats them interchangably, and
tasks may be assigned to any one when they become ready for
further execution.

The ILLIAC IV system shown in Figure 1.8 is called an
array processor, and differs markedly from the other systems

11
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described. BAssociated with each of the four instruction
decoding units are 64 execution units, each with its own memory.
Thus each instruction can be executed by up to 256 units each
addressing data in its own memory. The execution units are
arranged in a linear string but interconnected as though they
were laid out in four sgquare matrices; that is, processor i

can communicate with processor i+l, i-1, i+8, and i-8, with
end-around connections where necessary. This system is driven
by a Burroughs 6500.

1.3.5 Interconnections

Figures 1.9-1.11 illustrate three interconnection tech-
niques used to tie processors, memories, and I/O controllers
together. The scheme which is conceptually simplest is shown
in Figure 1.9, and consists of a common data bus to which all
modules are attached. This bus, which could be of word, byte,
or single-bit width, is time shared between pairs of units which
wish to communicate; only one message at a time is possible in
the simple system shown. This restriction has advantages as
well as disadvantages. The most pronounced disadvantage is the
bottleneck imposed by the one-at-a-time communication limitation,
since as processors and memories are added to expand the system
capacity, waiting times for bus-access grow and reduce the
per-unit effectiveness of the system. The advantage of the
single bus lies in its conceptual simplicity; conceivably,
it could be a single wire with only one connection point per
module, although practicality requires considerable logic in -each
unit. Also, the single bus permits implementation of certain
data-interlocking requirements by simple brief monopolizations
of the bus by the processor involved, without the need of any
explicit software or hardware locking machinery. Finally, the
simplicity of the data bus provides the minimum difficulty in
adding a unit to the system: it is simply attached to the bus.

Figures 1.10 and 1.11 illustrate two versions of an
essentially similar interconnection technique. In the scheme
shown in Figure 1.10, units called multiport memories permit
multiple connections to each memory module. A conflict-
resolving switch in each memory awards access to one requesting-
unit at a time, but when several units simultaneously request
access to different modules, all of these accesses may be con-
currently granted., As in the common data bus scheme, data path
width in these busses may be of any convenient size. However,
the number of ports on each memory unit is decided when the
unit is built, and if all ports are used in a given system,
addition of a processor or I/O controller is impossible.

A crossbar style of interconnection is shown in Figure
1.11. This scheme is similar to that of Figure 1.10 in that
simultaneous communications are possible, but it differs since
. the memories are single port devices and the switching is
accomplished in an external unit. That this mechanism can grow
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to be quite complex is illustrated by the fact that the maximum
configuration of the Hughes 4400 multiprocessor switch has a
component count equivalent to 2.5 processors. Since the switch
is external to the other units, it is possible to design it to
be modular and therefore expandable, to avoid the capacity
limitation imposed by multiport memories. A modular switch of
this kind has been under development at the NASA ERC.
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PRECEDING PAGE BLANK NOT FILMED.
Chapter 2

survey of Multiprocessor and Multicomputer Systems

2.0 Introduction

This chapter presents +he resulis of a survey of existing
and proposed designs for multicomputer and multiprocessor archi-
tecture. ‘The survey has inciuded reviews of vendors sales and
technical material, articles from technical journals, and dis-
cussion by telephone and in person with vendors and academic
computer personnel. Material from these sources has been com-
bined with the technical experience of the authors and summarized
in the following pages. Although a common general format has
been used, the information given, and in fact the information
which exists, varies considerably among the summaries. For the
most part, this is a result of our attempt to include only in-
formation which is fundamental to the individual system o¥
which is believed relevant to considerations of the design of
a computer organization suitable to meet the projected regquire-
ments of a space station mission.

Although only relevant material is documented in this
section, the survey-taking process gathered other information
which provides the bulk of survey material that is described
eisewhere. Computer design examples are presented in Appendix
A, which reviews in detail the segmentation and paging mechan-
isms that are currently used. In addition, sections on micro-
programming (3.8) and stack usage (3.7} discuss specific com~
puter configurations.

2.1 Burroughs D825 Systen

classification: Multiprocessor; ground-based militaxry
data—processing/real~time system

Operational Btatus: Operational

pescription:

The hardware complement of the D825 may include from one
to four processors, one to sixteen memory modules of 4096 48-bit
words, and up to twenty I1/0 controllers. The modular organiza-
tion of the system has been designed to achieve extremely re-
liable operation. Additional modules of each type may be added
to provide redundancy: these elements do not remain idle, but
share the processing load auring hormal operation. Burroughs
claims that availability in excess of 99.99% can be achieved in
this manner.

communication between major elements flows through a dis-
tributed switching interlock of the cross-bar type. The switch
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is designed so that no single failure can affect the operation
of modules other than the one in which the failure is located.
Memory modules may be used concurrently by all processor and 1/0
buses. Should two to more buses simultaneously attempt to access
the same memory module, the switch resolves the conflict acecord-
ing to priority, and queues the lower priority requests,

The instruction set of the D825 contains instructions whose
lengths vary from one to seven 1l2-bit syllables; Zero=-, one-,
two-, and three-address formats are provided. Address modifica-
tion may include infinite-level indirect addressing followed by
indexing using one, two, or three index registers. A four-level
thin-film operand stack i1s provided to reduce access time for
repeatedly~used operands.

Software Characteristics:

The D825 Automatic Operating and Scheduling Program (AOSP)
has three primary functions: it provides operational modularity
to modular hardware, it provides system unity for real-time re-
sponse, and it coordinates modules without the vulnerability
associated with systems in which coordination is performed by a
unit of hardware. A revealing statement is made in the second
reference: "It is clear, however, that the D825 system would
have fallen far short of the goals set for it if only the -harde
ware had been considered. The AOSP is as much a part of the
D825 system structure as is the actual hardware.®

References:

1) "Dp825 Modular Data Processing System,” Burroughs Corporation,
Paoli, Pa., undated.

2) "D-825~A Multiple-Computer System for Command and Control",
Proc. FJCC, 1962, vol. 22, Spartan Books, Washington, D.C.

2.2 IBM Direct-Coupled System (DCS) and IBM 360 Attached
Support Processor System (ASP)

Classification: Dual computer system for ground-based
general purpose data processing

Operational Status: Operational

Description:

The ASP and DCS systems are essentially similar; ASP utilizes
two system/360 machines such as 65/40 or 65/50, while DCS typi-
cally consists of a 7044 and a 7094. The intention of the com-
bination is to use the more powerful computer for the execution
of the processor-limited part of each job, and to use the smaller
for management of the I/0 for each job and for job scheduling.
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Communication between the computers is through I/O channels
of each, which are connected by a channel-to-channel adapter,
having the effect of causing each computer to look like an I/O
device to the other. No sharing of core memory is utilized,
although it is convenient to utilize secondary storage devices
attached to both systems by means of two-channel switches.

Reference:

Rosin, R.F., 'Superviseory and Monitor Systems", Computing
Surveys, vol. 1, no. 1, March 1969.

2.3 Control Data 6600 and 7600

Classification: ° Multiprocessor; large scale ground-based
general purpose data processing system

Operational Status: Operational

Description:

a) Central processor, plus peripheral processors (PPU).
b) Shared main memory. ’

c) Communication between processors via main memory and control
}  instructions.

The CDC 6600 and 7600 are similarly organized, although the
7600 is a considerably higher-performance system. Each consists
of a central processor and a group of smaller peripheral pro-
cessors. The peripheral processors each possess private memory,
but can address the system main memory as well. The intention
embodied in the design of the system is that the central processor
be devoted to the meat of the data processing job, while the
peripheral units handle the I/O operations and clerical aspects.
Thus, while the central processor is executing a program resident
in main memory, one or more PPU's may be setting up another job
in main memory for subseguent execution.

The central processor is itself designed to exploit some
inherent parallelism in the sequence of instructions being
executed: the functional execution elements are capable of in-
dependent and concurrent operations if operands are available
and the logical constraints of the program allow.

To indicate the level of potential system performance, the
following data is presented for the 7600: Cycle time for the
65K-word main memory is 275 ns; this memory is organized in 32
banks, which permits delivery of words at a rate of up to one
per minor cycle of 27.5 ns. A 512K-word secondary core memory
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is standard equipment, and is capable of delivering information
at the same rate through use of an 8-word data path and 8-bank
organization, even though its cycle time is 1760 ns.

Software Characteristics:

The 7600 will be available with an operating system to
sustain the user in the remote batch, the time-sharing, and the
real-time command and control environments.

Miscellaneous:

The attempt made in the CDC 6600 to exploit local opportu-
nities for parallelism in the sequence of instructions being
executed apparently was not as successful as the designers anti-
cipated. This is indicated by two considerations: £first, the
CDC 6400 was designed to be like the 6600 except that instead
of a concurrently-executing central processor composed of ten
separate functional units, the 6400 had all functions combined
into a single execution unit. The performance difference on
typical benchmark problems was only a factor of two, however,
showing that the achieved concurrency in the 6600 was markedly
less than the possible concurrency. Second, the arrangement
of function units in the 7600 has been significantly altered
from that in the 6600, indicating that Contral Data believes
that a better allocation of functions would improve the system
performance. These considerations are mentioned here only
to highlight the problems apparently inherent in exploiting,
in hardware, parallelism which has not explicitly been identified
in the program.

2.4 Univac 1108

Classification: Multiprocessor; large scale ground-
based data processing system.

Operational Status: Operational
Description:

a) One to three processors (typical).

b) One or two I/0O controllers (typical).

¢) Up to four processors or I/O controllers may be attached to
each I/O control unit. .

Each processor can address all of main memory (which can be
up to 262,144 36-bit words). Memory cycle time is 750 ns. Up
to four logical banks for instruction/data fetch overlapping
provide an effective cycle time of 375 ns., under control of
the processor; up to eight-way interleaving is available to
minimize conflicts.
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Error detection in the hardware is limited to parity check-
ing; each 36-bit word is provided with two parity bits. No
arithmetic checking is performed. Storage protection is pro-
vided by means of a storage limits register which imposes strict
boundaries on the areas of memory which may be accessed for
instructions and data. A privileged mode exists where the
limits are enforced only relative to writes, and an open mode
provides free use of all memory.

Software Characteristics:

Exec-8 operational, but considerably behind schedule.
Multiprocessor 1108 acceptance at Marshall Space Flight Center
was delayed for two years due to software performance problems.

Miscellaneous:

Univac has prepared a formula for use in evaluating the
performance improvement realizable from addition of processors
to a system, and supplied numbers for the 1108 system. The
formula is: ’

N = P x 106
C+Q+ D+ E

where N is the instruction rate, P is the number of processors,
C is the memory cycle time, Q is delay due to gueues at memory
units, D is the delay due to hardware (multiple module adapters,
etc.), and E is the time added due to extended .seqguence in=-
structions.

For one processor,
1 x 10°

— _ 6
N = o7 = 1.33 x 10
With extended instructions,
- 1l x 10 _ 6
N =575 F0.305 - 0-95x 10
For two processors,
6 .
N = 2 x 10 = 1.63 x 10°

0.75 + 0.05 + 0.125 + 0.30
Thus, the gain for the second processor is

1.63 - 0.95
T~ 0.95

= 0.71
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References:

1) Univac 1108 Multiprocessor System Description, Univac Data
Processing Division, undated.

2) Stanga, D.C., "Univac 1108 Multiprocessor System", Proc.
sJcc 1967, vol. 30, Thompson Books, Washington, D.C.

2.5 1IBM System/360 Model 65 Multiprocessor

Classification: Multiprocessor; ground-based general-
purpose data processing system.

Operational Status: Hardware and software operational
Description:

a) Dual processor system.

b) Shared main memory.

¢) Shared I/O.

d) Direct communication between processors.

Each CPU can address all of the locations in main storage;
each .CPU has its own 4K byte interrupt area in main storage; each
CPU can address any secondary storage device through alternate
path I/0O control; each CPU can reset, interrupt, or start the
other CPU with a "Direct Control" signal or a "Malfunction Alert"
signal through a direct hardware connection. The system can be
reconfigured according to the availability of components. Op-
tionally, the system can be run in the dual processor mode with
main storage and I/0 devices apportioned to the two processors.

BError detection in the hardware is the same as for the
standard Model 65, and includes checking of arithmetic and
logical operations as well as parity checking of information
transfers. A group of "recovery management" programs attempt
to recover from a machine malfunction by retrying the failing
operation. If the operation cannot be retried, they assess
program damage and either repair the effects of the failure cxr
attempt to restrict the effects of the failure to a single job
step. If the damage is unrecoverable, the job step is terminated.
If the supervisor program is damaged, the system must be re-
started. When "hard" errors occur, the operator is notified so
that necessary reconfiguration may be accomplished. The operator
may add or delete I/0 devices, channels, CPUs, and blocks of
main storage. However, at no time can any storage area contain-
ing a part of the supervisor be removed from the system.
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Software Characteristics:

A generalization of the standard 0S/360 MVT is used. The
fundamental unit of processing is referred to as a task; tasks
are selected for execution by the supervisor routine, which
searches a task control block (TCB) queue for the ready task
with the highest priority. When a CPU discontinues execution
of a task, the“status of the task is recorded in the TCB. Task
switching can take place as a result of a CPU interruption.

If a CPU receives an interruption indicating that it should
switch tasks, it does so. If the interruption indicates that
the other CPU should switch tasks, it signifies this through a
direct control signal which causes an external interruption in
that CPU.

Miscellaneous:

Because of the design of the 360 I/O control units, connec-
tion to more than two processors is not feasible. Also, because
of thé nature of the direct control feature for communication
between processors, the system is limited to two processors.
Thus, the system is restricted by its hardware design from ex-
pansion beyond a two-CPU configuration, although the principles
upon which the system is based are not so restricted.

References:

1) IBM Systems Reference Library, IBM System/360 Operating
System, Model 65, Shared Main Storage Multiprocessing,
Preliminary Description, Form C28-6671-0, Jan. 1968.

2) Witt, B.I., "M65: An Experiment in 0S/360 Multiprocessing",
presented at Information Systems Symposium, Sept. 4-6,
1968, Washington, D.C.

2.6 IBM 39020

Classification: Ground-based multiprocessor with
graceful degradation capability, in
a real-time application.

Operational Status: Operational
Description:

The IBM 9020 was built to meet the needs of the FAA's
National Airspace System for air traffic control operations.
One of the important requirements which the system was designed
to meet was that of twenty-four hour fail-safe performance.

To achieve this goal, a redundant group of substantially modi-
fied elements of System/360 Model 50 computers (later versions
use 67 components) has been put together with a control program
which is capable of directing error recovery in the event of a
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subsystem failure. The resulting system embodies redundant
capacity for all major elements, automatic error detection and
dynamic system recovery capabilities, restart techniques for
intermittent failures, and rescheduling of application functions
when necessitated by solid failures. In the presence of a
solid failure, the system can operate in a fail-safe mode by
calling upon a redundant element; no functions are discontinued,
nor are other aspects of system performance changed.

Should the number of available components fall below the
number required to maintain complete performance, the system
can ‘continue in a fail-soft mode, with degraded performance,
as long as at least one of each major element is operational.

The major components of the 9020 system are its memories,
processors, and I/0 control units. Six-port memories are used,
connected to three processors and three I/0 control units. Three
tape controls are used, each of which is connected to two I/0
controllers. Additionally, three peripheral adapter units are
used as interfaces with external equipment. System units are
classified operationally as active if they are involved in air
traffic control operations, Yedundant when not so employed but
available within a 30 second recovery period, or inactive if not
in operational use nor available within 30 seconds. Redundant
units may be used to expedite the repair of a malfunctioning
unit, although they may have to be released to become active
units in the event of another failure.

The configuration of the system is under program control;
-each of the five types of components mentioned above contain
configuration registers whose contents may be set only by a
privileged instruction, and only by certain processors, under
control of the contents of the register itself.

Interlocking of common data in shared memory is accomplished
by the standard 360 Test and Set instruction; however, a non-
standard instruction has been added to allow a processor to
delay a short time (for example, if it finds a desired memory
area locked by another processor) without making further refer-
ences to memory and possibly causing unnecessary conflicts.

Certain other non-standard instructions have been added to
the 39020 system to enable a processor to identify itself and
to set the location in memory of a preferential storage area
itself. Others allow control of address translation which
relates logical and physical storage locations in the system.

Software Characteristics:

The general control of program execution in the 9020 is
quite similar to that of 0S8/360 MVT (multiprogramming with a
variable member of tasks). Programs are divided into units,
called tasks, which are scheduled for execution by priority.
Single~level interruption is utilized; that is, when an inter-
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ruption has control of a processor, further interruptions of
that processor are inhibited. Continued processing of an
interrupted task may be performed by another processor if one
is available. .

A problem encountered in both multiprogrammed and multi-
processing systems is that of avoiding mutual lockout because
of the sequence and strategy for resource allocation. 1In the
9020, this problem potentially occurs with respect to allocation
of main storage. It is avoided by defining a functional hier-
archy for storage usage, and enforcing rules (in the control
program) for storage assignment. The rules are that: 1) a
task must request storage of different classifications in the
order defined by the functional hierarchy; and 2) no storage
of a given category may be requested by a task which has
already been allocated, but not released or unlocked, storage -
of -that category. Execution of a task which violates these
rules is terminated by the control program. A task which re-
quests storage not immediately available is suspended until
the requirements can be satisfied.

Reference:

Entire issue, IBM Systems Journal, vol. 6, no. 2, 1967.

2.7 Univac AN/UYK-7 and 1832

Classification: Multiprocessor, real-time control
computer., UYK-7 is primarily for
Navy surface ships; 1832 is a new,
faster, miniature version for the
Navy ASW program, the S3A aircraft.

Operational Status: UYK-7 is operational; 1832 is in
design phase.

Description:
a) 1 to 3 CPU's.
b) 1 or 2 I/0 controllers, direct to memory independent of CPU.

c) Completely shared memory from 1 to 16 modules of 16 K words
of 32 bits (max. size = 262,144 words).

d) 1 to 4 independent power supply modules.

e) CPU characteristics:
1) 16 and 32 bit instructions.

2) pata word size = 8, 16, and 32 bits (64 DP fixed-point).
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3) Multiple accumulators with separate ones for
executive mode.

4) cCascaded indirect and dual base and index addressing.

5) Instructions for 48 bit floating ?oint data - 32 bit
mantissa and 16 bit exponent. (232768),

6) Memory lockout registers for memory protection.

7) vVariable length character-handling instructions.

This computer is a large, flexible system. The instruction
set is very extensive including immediate or literal and sub-
stitute types. The computer is reminiscent of an 1108 with a
48 bit floating point format.

No particular attention seems to have been given to
failure detection and isolation or recovery procedures.

The multiprocessor software does not seem to exist but
will have to be developed for the S3A program., The degree of
difficulty should be approximately the same as for the 1108;
in fact, the experience on that may be applicable. The progress
of the S3A program should reveal the multiprocessing potentials
of this design. The effort seems to address itself to the
question, "Can a good, powerful, flexible, but conventional
computer design lend itself to an efficient multiprocessor
computer configuration without special M/P software-oriented
hardware features?"

References:

1) Computer Data, AN/UYK-7, SB-12292, UNIVAC, December 5,
1968.

2) AN/UYK~7 (V) brochure, #PX 4758-A, UNIVAC Federal Systems
Division, April 1968.

2.8 General Electric 645

Classification: Non-product-line time-sharing multi-
processor

Operational Status: Operational

Description:

The GE-645 is an extension of the 635, a product-line system.
It was designed jointly by GE and MIT's Project MAC, a research
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program sponsored by ARPA. The objective of the design was

to produce a system which could run the Multics operating system,
a comprehensive, general-purpose software research project in-
tended to be capable of meeting the requirements of a large
computer utility. The 645 differs from the 635 in the areas

of the I/0 controller, the interrupt structure, and most im-
portant, the addressing logic, which was the first to incorpo-
rate both segmentation and paging.

The system on the air at MIT is a two-processor configura-
tion with 384K 36-bit words of memory. The novelty of the
addressing is described further in Appendix A, but the part
played by the processor will be briefly outlined here. Unlike
more conventional processors, the 645 forms "two-dimensional®
addresses by providing a base register which contains the number
of an entry in a segment table, and computing separately the
address of the word within that segment. The "procedure base
register" holds the segment number for the procedure being
executed; the "instruction counter" holds the offset. The
"descriptor-segment base register" contains the address of the
descriptor-segment or segment table; this address is added to
the segment number to obtain the location of the appropriate
entry. A register is provided to hold the segment number of
the operand of the. instruction, and four pairs of address base
registers are used to hold addresses of argument lists, linkage
segments, and stack segments. Eight index registers are in-
cluded, and sixteen words of associative memory are used to
contain recently-used segment and page table entries.

A special form of indirect addressing is implemented,
which permits the generation of an interrupt (fault) when it
is invoked; Multics utilizes this to provide a dynamic-
linking facility in which linkages are completed as execution
proceeds. This is useful in three ways, although it entails
considerable overhead. First, it eliminates the necessity
for a "link-edit" process prior to execution; second, it elimi-
nates the linking of segments whose linkages are not used during
a given instance of execution; third, it circumvents the pro-
blems caused by the fact that segment numbers are assigned during
execution, not at compile time, and therefore cannot be placed
into external addresses.

References:

1) Corbato, F.J., Vyssotsky, V.A., "Introduction and Overview
of the Multics System", Proc. FJCC, 1965.

2) Glaser,.E.L., Cbuleur, J.F., Oliver, G.A., "System Design of
a Computer for Time-Sharing Applications", Proc. FJCC, 1965.

3) Organick, E.I., "A Guide to Multics for Subsystem Writers",
MIT Project MAC Memos M0086, Nov. 1967; M0087, Feb. 1968;
M0090, Feb. 1968; M0106, Jan. 1969; M0107, Feb. 1969; M0108,
Mar. 1969; MO11l5, Aug. 1969.
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4) GE-625-635 System Manual, Jan. 1965.

2.9 Honeywell Model 8200 (information mostly applicable also
to HB800 and HI1800)

Classification: Two~-processor ground-based data pro-
cessing system, with hardware to per-
mit concurrent multiprogramming.

Operational Status: H800, H1800 and H8200 operational.
Description:

Although the H8200 is a two-processor system (one word-
oriented, and one character-oriented) with shared memory, the
system is included in this summary because of the unique nature
of its word-oriented processor, which is essentially the same
as the H1800 and H800. Only the characteristics of this unit
will be described.

Because of the unusual way the processor is organized,
a brief discussion of two types of multiprogramming will be
given. In a conventional multiprogramming system, a list of
tasks is maintained, often ordered by priority. Normally,
the processor is controlled so that the highest-priority
"ready" task is being executed. When the task cannot proceed,
for example because it is awaiting the completion of an I/0
operation, it is removed from “"ready"status and control is
given to another task. L When the operation-completion is sig-
naled, the waiting task is placed in the "ready" condition
again and execution resumes when its priority is the highest.
Honeywell refers to this kind of processor-sharing as "vertical
multiprogramming".

Another type of sharing, referred to by Honeywell as
"horizontal multiprogramming" is implemented in the hardware
of the H1800. A three-address instruction format is used,
so that results are not normally left in the accumulator of
the CPU between instructions. Although there is only a single
copy of the arithmetic unit in the CPU, the program control
registers (instruction counters, index registers, etc.) are
replicated 8 times (9 in the H8200) so that up to 8 tasks can
sequentially time-share the CPU on an instruction-by-instruction
bases. A program control group which has been allocated to a
task for execution is called an active group; the CPU scans for
the next active group while it executes an instruction from an
active group. When any task is awaiting completion of an I/0
operation, a bit is set for that group in the hardware which
causes it to be bypassed by the scanning process. Completion
of the I/0O operation causes this bit to be reset. When a group
is not active or when it is stalled, as above, time slices which
would have been used by that group are available for use by
active groups. ’
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The main advantages claimed by Honeywell for horizontal
multiprogramming are that task switching is accomplished by
hardware with zero time overhead, and combinations of programs
that make heavy use of peripheral devices tend to obtain better
overall throughput than under vertical multiprogramming.

Software Characteristics:

The characteristics described here are those of the
Honeywell Mod 8 Operating System, written for the 8200. The
8200 has a ninth program control group, the Master Group, and
a character-oriented processor (similar to the H4200 CPU), and
thus this operating system is applicable bnly to the 8200, and
not -to the 800 or 1800.

Each job is assigned a priority by the user; the operating
system selects jobs for execution based on their priority and
their profitability. A job is considered "profitable" to run
immediately if it requires the use of currently unused resources
and does not also require the use of a currently busy resource
that cannot be shared efficiently. Protection of programs
from one another is accomplished largely in hardware; facilities
employed for this purpose include memory protection, a peripheral
protection/reassignment table, a privileged instruction set,
and a watchdog timer to protect against endless interruptible
loops. These features are augmented by software facilities
which take cognizance of the detailed resource assignments.

References:

1) Hatch, T.F., Jr., Geyer, J.B., "Hardware/Software Interaction
on the Honeywell Model 8200", Proc. FJCC 1968, Thompson
Book Co., Washington, D.C.

2) Honeywell 1800 Programmers' PReference Manual, Honeywell

Inc. Electronics Data Processing Division, Wellesley Hills,
Mass., 1964.

2.10 Burroughs B6500

Classification: Ground-base commercial general
purpose data processing system with
multiprocessor capability.

Operational Status: Deliveries began in 1969. Software
not complete.

Description:
a) 1 or 2 CPU's.

b) 1 or 2 I/0 multiplexors.
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c) Completely shared memory of up to 32 modules of 16K 48 bit
data words plus 3. tag bits and 1 parity.

Burroughs commercial machines have for many years been
unique. They have a radically different architecture and
philosophy concerning the place of software. The 65300 merely
continues these thoughts from their expression in the B5500.

The B5500 has had an unusual reception among users. It has been

a "later bloomer" in that demand has been increasing during

each year of its existence, rather than being the largest

when the machine was brand new. This has been true quite recently,
even though the hardware was old and slow by comparison with

newer designs. This growing group of enthusiastic users is quite
a tribute to its unusual design concepts.

The B6500 is an attempt to provide up-to-date hardware to
stay competitive and to increase the fold of satisfied customers.
Rather than malntalnlng machine compatibility, they increased
its capabilities in many areas such as memory capacity and I/O
flexibility, while sticking to the basic philésophy that they
have espoused before. The basic tenet seems to be, "Thou shalt
not program in machine language". In fact, Burroughs does not
even supply as assembly language,

They expect that all the programming will be done in a
hlgher level programming language. The ones that they plan
to give the chief support on the 6500 are:

1) ALGOL: Burroughs has used this extensively for many years.
2) FORTRAN, most widely used scientific language.

3) COBOL, most widely used business language.

4) PL/I, newer, but growing set of users.

Other features of the B6500 include:

1) Processor hardware design to implement higher level languages
and run them under a comprehensive operating system called
Master Control Program (MCP).

2) Multiprogramming is considered the normal mode of operation,
and is recognized in the design.

3) * 3 extra control bits (tag bits) in each word are used for
flagging special characteristics.

4) A hardware stack mechanism is provided to automatically

handle operand storage and other temporary data in a manner
that makes it easy for compilers.
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5) Polish notation type of instructions with variable number
of syllables of 8 bits each.

6) Programs cannot be modified while in core. This produces
- re-entrant and even recursive subroutines as well as per-
mitting automatic overlay with little special effort by
the MCP.

7) * Actual addressing is relative and/or indirect which makes
it easy to relocate. .

8) Memory protect includes upper and lower bound on arrays
and descriptors for segmentation.
References:

1) Burroughs B6500/7500 Characteristics Manual, Burroughs Corp.,
Sept. 1968.

2) Burroughs B6500/7500 Electronic Data Processing System,
July, 1968.

3) Hillegass, John B., "Burroughs Dares to Differ", Data Pro-
cessing Magazine, July 1968.

4) Hauch, E.A., and Deut, B.A. ,"Burrough B6500/7500 Stack
Mechanism", Proc. SJCC, 1968, vol. 32.

2.11 IBM System/360 Model 195 (information below mostly applicable
to Models 91 and 95 also)

classification: Single processor system embodying
internal parallelism; very large
ground-based general-purpose data
processing system.

Operational Status: Partially complete prototype
operational; first delivery scheduled
for 1971. Software operational.
Models 91 and 95 operational.

Description: Single processor system with extensive
overlapping and "pipelining" of
operations.

Although the M195 has only one processor, its unique degree
of internal parallelism causes it to desexve consideration here.
Five separate units may be operating concurrently; main memory,
storage control unit and buffer storage, instruction processor,
fixed-point/variable-field-length/decimal processor, and floating-
point processor. Furthermore, each of these units may be per-
forming several functions at one time. For example, as many as

\
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three floating-point operations may be taking place concurrently.

A high speed buffer memory is used to partially mask the
access time to main storage (810 ns). Additionally, an
instruction look-ahead buffer is used to reduce conflicts be-
tween instruction and data word fetches, and to eliminate in-
struction fetching altogether for certain small program loops.
Each of the two execution elements is provided with stacks
to enhance pipeline operation. The floating-point add unit
can deliver two 64-bit sums as often as every 162 ns; the
multipy/divide unit can form a 64-bit product in 162 ns.

A pronounced degree of "real time" seeking of implicit
parallelism is performed by the machine. That is, each
instruction, after being decoded in sequence, is sent to an
execution element where its further processing occurs se-
quentially only when expeditious or logically necessary. The
use of buffer registers and other buffering techniques often
makes out-of-sequence execution of instructions efficient.

This philosophy is pursued to the extent that instruction
decoding continues even in the interval between the point that
a conditional branch has been decoded and the point that exe-
cution of the instruction which sets the condition code is
completed. Of course, if the assumption made by the processor
about whether the branch will or will not be taken proves false,
the partially processed instructions must be canceled. However,
as a hedge against this contingency, the instruction fetching
mechanism fetches several instructions down the alternate path
at the same time the conditional processing is taking place,

so that regardless of the outcome of the condition test when

it finally occurs, some progress has been made beyond that
point in the program.

Software Characteristics:

A somewhat modified version of 0S/360 is used in the M195.
One of the consequences of the out-of-sequence instruction
execution in the M195 is that certain interrupts are triggered
after the location of the responsible instruction has been lost.
The result is an uncertainty, for example, as to which instruc-
tion caused a storage-protection violation, overflow, etc.,
on some occasions. An instruction, otherwise a no-op, has
been implemented in such a way in the M195 that no further
instruction- decoding takes place until the execution pipelines
have been emptied. Although use of this instruction can prevent
the uncertainty mentioned above, performance of the system is
degraded since a great deal of the capacity of the processor
is inherently disabled temporarily.

The design of the M195 clearly indicates an attempt to
exploit parallelism implicit in ordinary coding prepared in the
customary ways for a serial processor. However, the variation
in performance between two versions of a problem coded with
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and without M195 considerations can be quite dramatic.
Exceptional Characteristicse

Monolithic circuitry is used in the M195; basic stage delay
time is less than 5 ns. Two boards of 8 x 12 inches hold plug-
gable cards which contain a floating-point add execution unit
for 64 bits in which both preshifting and postshifting are
accomplished. The high-speed buffer memory of 32K bytes is
packaged on pluggable cards held by two 10 x 12 inch boards.

The speed of the M195 clearly requires small physical size;

its complexity, also required for high performance, tends to
significantly add to the component count. Further increases in
system performance will require comparable reductions in physical
size, or more dependence on multiple processing, or both.

Reference:

IBM System Reference Library, IBM System/360 Model 195 Functional
Characteristics, Form A22-6943-0, August 1969.

2.12 Ccontrol Data STAR Computer (String Array Processor)

Classification: Commercial data processing computer
Operational Status: Design Phase
Description:

This is a large 4th generation general purpose machine which
is being designed for ground-based real-time applications in-
cluding time-sharing. It is not a multiprocessor. It is being
designed by a different team and is a complete departure from
the architecture of the 6000 and 7600 series. General character-
istics include:

1) Variable word length: 2-1024 bytes
2) Vector processors
3) 32 or 64 bit instructions
4) 32 banks of 16K 64-bit words
5) 32 and 64 bit floating point’
6) 1000 data channels
The precise details of the computer are still somewhat

tentative; it is anticipated that more information will become
available when the design is frozen.
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2.13 Hughes H4400

Classification: Specifically a real-time multiproces-
sor development primarily aimed at
military command and control

Operational Status: Prototype hardware being built and
software written by company funds.
If funded, it could be a flight
and/or a ground computer.

Description:

a) Up to 8 CPU's or I/0 units total

b) Up to 16 banks of 16K 32 bit words

¢) Central "cross-bar" switch that communicates and controls

d) Multiple usage registers for accumulators, index, and
base registers

e) Various options allow capabilities to increase in the
following order:

1) 16 bit simplex, sequential machine

2) 32 bit multiple memory, multiprocessor
3) bit/string instructions

4) floating point, SP/DP

5) hardware macros, microprogrammed sequences (51ne,
arctan, etc.)

£) Hardware, interlqcked multiprocessing executive
g) Memory protect but no memory paging

h) Special instruction for multiprocessing, e.g., interrupt
assignment between processors

This is a computer development project to produce an ex-
pandable family of multiprocessors to meet various real-time
computer needs. To do so, a multiprocessor hardware-software
concept must be developed. They are proceeding along conven-
tional lines with the addition of extra features to aid the
multiprocessor executive problem.

Hughes has given a good deal of thought to the failure

detection and isolation problem. They estimate that 90% of
the failures can be diagnosed down to the "card level®". ‘They
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also have devised a system of switching in and out various CPU's
and memory units after the failure detection. This is done by
hardware in an extensive switching unit. A system has been
devised to provide for failure of all modules including an
executive processor or memory. The only function not neatly
handled is the manner in which the programs are resumed via a
"roll-back". . They consider this to be "an applications pro-
gramming problem“ This leaves it up to the software to do it
which may prove quite difficult.

Although the computer is still in the prototype stage of
construction, extensive software is being developed. This
includes:

1) A meta-assembler to attempt to allow for compatibility
between configurations.

2) A simulator to run on the Control Data 6600.
3) A JOVIAL compiler.

4) A run time package that includes a real-time multlprocessor
operating system and library and utility routines.

2,14 safeguard Central Logic and Control Computer (CLC)

Classification: Ground-based multiprocessor
Operational Status: Two development models in operation
Description:

The design of this machine began in 1964 for the Nike-X
system; it has also been through the Sentinel phase on the
way to becoming the Safeguard Computer. Designed by Univac and
built by Western Electric, the system can have up to 10 pro-
cessors and 16 "program" and 16 "variable" memories of 16K
64-bit (plus 4 parity bits) words. Program memories, which
originally were planned to be ROM's, now are similar to the
variable memories except that they may be written into by I/0
but not processors, and they have two access units per module
rather than one. Sixteen I/O channels are used to communicate
with standard peripherals plus the two radars and mission-oriented
command and control equipment.

The system functions as a special-purpose controller much
like a missile computer; little use is made of interrupts, and
a fixed pattern of computing is performed, with the major
cycle determined by the characteristics of the phased-array
radars. (Radar beam-steering is performed in special computers
located at the radars, and not by the CLC.) One spare copy of
each type is maintained on-line to serve as a replacement in
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the event of failure. Parity checking, but no arithmetic check-
ing, is performed. Each target is computed by a seven-element
Kalman filter; the seventh is the ballistic coefficient. If
track is lost or memory errors occur, the filter calculations
can be started over, making recovery from failures rather easy.
Missile guidance computations apparently can similarly be re-
- started. R

To reduce the frequency of memory conflicts, some units
of program are replicated in other modules. The speed of the
memory is 0.5 Hs; however, cable length is substantial, causing
propagation delays to be appreciable. Examples of register~
register operations speeds are: add, 0.2 us; multiply, 0.53 us;
divide, 5.9 us. Approximately 1.5 million instructions per
second are performed.

An advanced design being considered includes the addition
of two array processors to the system. One would be used for
the tracking function, and one for guidance, with a processing
element assigned to each individual target or missile.

2.15 1IBM 4-Pi Model CP-2

Classification: Airborne real-time flight computer

Operational Status: cp-2 is fully operational with flying
hardware and software.

Description:

a) One CPU

b) MTwo I/0 channels tied to CPU
c) 8K to 32K 32-bit words
d) CPU characteristics:
1) 16~ and 32-bit instructions
2) 16~ and 32-bit data words
3) Single accumulator with extension register
4) Three index registers. One is hard wired, £wo in memory
5) Eight interrupts on two different levels
This is an older computer and not as advanced in features

as some of the others, but it has benefited from the wealth of .
experience gathered through its widespread use. The hardware
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is readily available and there is a great deal of good support
software.

The computer does not lend itself to a multiprocessor
configuration, because it is not possible to share memory.
However, it has been used in a federated dual computer mode
in the P-111 Mark II Aviconics Computer System. This uses
two parallel computers with separate memories, but with the
ability to send data back and forth to one another. One
computer is the general navigation computer and the other is a
weapons delivery computer. Key variables when computed by
either are transmitted to the other one. Programming was done
in such a way that if either computer failed, the other would
be able to carry on alone and execute the important jobs with
degraded performance.

References:

1) System 4-Pi CP-2 Technical Description, IBM Electronic
Systems Center, Owego, N.Y., Revised May 1969.

2) System 4-Pi Model CP-2 Support Software, IBM Electronic
Systems Center, Owego, N.Y., Revised August 1968.

3) Daggett, E.H. and Lee, R.Q.,"The F-111D Computer Complex",

General bynamics Corp., Fort Worth, Texas, AIAA Paper No.
68-837, August 1968.

2.16 IBM 4-Pi EP/MP Computer

Classification: Airborne real-time computer,
multiprocessor configuration

Operational Status: Hardware is operational. Computers
were delivered for MOL but project
was cancelled. Multiprocessor con-
figuration developed for VS A-NEW,
the Navy ASW research project at
Johnsville, Pa. Software is now being
being prepared.

Description:
a) One or two CPU's (three CPU's are possible)

b) Two HIMAC (high speed multiplexer and control units), the
main I/0 controllers

c) Up to eight modules of 16K 32-bit words with four ports,
one for each of the CPU's and HIMACs

d) CPU characteristics:

40



1) 360-compatible instruction set (16, 32, and 48 bit
instructions) with the addition of special micropro-
grammed instructions - 'sine, cosine, arc tangent, and
square root. Floating-point instructions are an op-
tional extra.

2) 32, 16, 8 bit data words

3) 16 registers employable as accumulators or index
registers

4) Extensive instruction set including execute, move,
and binary-to-decimal conversion

This is the only computer in the 4-Pi set that is compatible
with the ground-based 360 series. By using the same 360 pro-
gramming architecture for a f£flight computer, it is presumably
possible to do a detailed check-out and simulation on ground
equipment that will verify the programs to be used in the
£flight computer.

The emulator system allows one to run EP programs under
Operating System/360 in either a direct or interpretive mode.
The interpreter mode simulates the instruction and permits
detailed evaluation via full traces, snapshots, and detailed
timing information on an instruction-by-instruction basis.
This presents a full history of the operation for debugging
purposes., The direct mode of the emulator system simulates
the execution of the EP by executing the EP program directly
on the system 360 in so far as possible. Only the instructions
unique to an EP are executed interpretively. This produces
a very fast simulation, but loses the capability of tracing
and. detailed timing information.

The VS A-NEW project is developing a dual-processor
multiprocessing system consisting of two EPs., Dual-processoxr
operation proven on the System/360 Model 65 shared storage
multiprocessor system has been incorporated into the VS A-NEW
software. It includes a floating executive that can be run
on either processor. Not only can the two processors work
independently on separate problems, but it is hoped that they
can work cooperatively on the single problem that requires
extra high-speed processing.

Reference:

VS A~NEW Brochure, IBM Federal Systems Division, Owego, N.Y.,
Brochure #69-825-1A,
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2.17 Litton L-304, 305, 3050, ‘3070

Classification: Multiprocessor, real-time control
flight computer family

Operational Status: Dual processors used in E-2B and
E-2C, Navy Airborne Warning System.

Hardware is operational. Single
3070 proposed for AWACS

Description:

a) 1 or 2 CPU's

b) Up to 8 I/0 stations and up to 64 channels to transfer
data simultaneously

c) Shared memory of up to 16 blocks of 8192 words of 32 bits
(max. size of 131,072 words)

d) CPU characteristics:
1) 32 bit instructions
2) 16 or 32 bit data
3) 64 program levels with automatic priority queueing and
4) 8 multipurpose registers for each level.
5) Variety of addressing modes
6) Many real-time clocks with interrupt for each
7) Comprehensive instruction set including MOVE, EXECUTE,

EXCHANGE, and good literal handling, but no floating
point

This computer has a large capability and seems to be a well
thought-out design. Its unique aspects are centered around the
64 different program levels and built-in hardware type of exe-
cutive, and the tie-in of interrupt structure to this executive.

Some thought has been given to failure detection. In
particular, a system has been designed that allows one pro-
cessor to run as a back-up to another with automatic switch
over in case of failure.

The E-2C has two processors working on different dedicated
job streams with the capability of either doing the important
tasks in case of failure. The software has not been fully
worked out.
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For AWACS, the initial proposal was for three L-3050's -~
two working steadily and one on standby or assigned to low-
priority tasks. But the multiprocessing problems appeared
complex enough to tip the scales in favor of a newer, faster
version (L-3070) to do the job in a simplex mode of operation.
The conclusion may be drawn that, in spite of the fact that
the machine was designed for multiprocessing, the problems
of producing a large-scale cooperative multiprocessing system
(in particular, the software) are severe enough that a reason-
able alternative is preferred. This is undoubtedly an over-
simplification and may exaggerate the situation, but Litton's belief
seems clear.

Additional characteristics of the larger machines in the
family (L-3050, 3070) are:

1) Memory paging and memory protect features

2) More powerful instructions includiné floating point
options, substitute, test and insert/skip

3) 16 registers per program level

4) Special linkage and level registers

Reference:

Litton L-304 System Application, Litton Data Systems Division,
Van Nuys, California, July 17, 1967.

2.18 ERC EXAM Computer

Classification: Flight multiprocessor

Operational Status: Early design, in hardware development
stage

Description:

The chief area of this effort at ERC has been in ‘the design
of the modular cross-bar switching network, which connects the
individual memory modules to the various processors. The logic
is such that while one processor is connected to particular
memory module, other processors may be simultaneously communicat-
ing with other memory units. When a processor needs to access
memory, its request is sent to the appropriate memory module.

If the memory is not busy servicing another processor, it will
grant a request for a new memory access. Simultaneous requests
from different processors to the same memory unit would be re-
solved on-the basis of priority. The big advantage of the cross-
bar scheme is the possibility of simultaneous data communication
between two or more processors and memory at the same time. A
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much higher theoretical data transfer rate is possible. This
cross~bar is modular to allow expansion of more memory or more
processor units. Also proposed is a floating executive control.

References:

1) Wang, Gary Y., "An In-house Experimental Air Space Multi-~
processor - EXAM", ERC Memo #KC-T-031, September 20, 1967.

2) Wood, Paul E., Jr., "Interconnection of Processors and
Memory in the Multiprocessor System", ERC Memo #KC-T-041,
February 5, 1968.

3). Wood, Paul E., Jr., "Input/Output System for An Aerospace
Multiprocessor“, ERC Memo #RC-T-062, May 19, 1969.

2.19 MIT/IL ACGN Computer

Classification: Aerospace multiprocessor designed
for graceful degradation

Operational Status: Paper design only

Despription:

This computer is a multiprocessor design based on the
anticipated requirements of a control, guidance, and navigation
job which is™advanced" relative to the Apollo missidn. Several
types of experience on Apollo have contributed to the system:
I1/0 rates involved; reliability; processing speed; programming
ease; expandability.

The design of the system was not completed because of
exhaustion of contract funds. As a result, a number of loose
ends exist; however, most of the architectural considerations
were specified. A three-bus system was chosen: one bus connects
the processors and program memory, one connects the processors,
I/0 controller and data memory, and one connects I/0 devices
and I/0 controller. A serial data bus was chosen because of
its conceptual simplicity and consequent reliability, and be-
cause of the apparent difficulty in designing a gracefully
expandable crossbar array. The serial bus technique offered
the expansion potential of simply attaching additional modules
of the desired type to the bus; so long as the bus capacity is
sufficient, the system may continue to grow.

The concept of graceful degradation was realized by planning
the use of more processors than required to accomplish the com-
putational functions, in conjunction with a software system
which could recover from the loss of a processor at any time.
Memory failures were to be masked by creating extra copies, in
separate modules, of critical data, so that no failure of any
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module was capable of preventing recovery of such information.
Obviously, in such a system, combined consideration of hardware
and software aspects was required to achieve a viable design.

The desire for continued operation in the presence of
failures necessitated certain design characteristics with re-
spect to error handling.

1) All components of the system are to be infallible under
error detection; that is, the probability of the occurrence
of an undetected failure must be negligible.

2) Certain components of the system are to be infallible
under error correction; so that the probability of a
non-masked error in such components is at least as small as
the probability of an undetected error in a fallible com-
ponent. Components required to be infallible in this way
include the buses and their associated logic, program memory,
and the I/0 control unit.

3) Pages in data memory may fail in a detectable manner;
however, since critical data may be replicated in more
than one memory module, data may be considered to be in-
fallible even though individual memory modules are not.

4) Fallible components which have failed must be capable
of being isolated from the system.

Software Characteristics:

Executive control of tasks in the system is of course a
key function. Because of the high traffic which might be anti-
cipated in the executive process, two parallel approaches were
followed by MIT; selection of one over the other did not take
place, and might, in fact, depend upon the particular applica-
tion of the system. In one approach, a special purpose system
module was provided to perform the executive function. This
module, attached to the system data bus, would contain process-
ing elements and memory intended to remove most of the executive
data flow from the data bus. In the alternate approach, the
executive function was performed entirely in software, avoiding
the need for a special module with its replications to assure
infallibility. In both approaches, the functions performed
would be similar; the design proposed for the software execu-
tive will be briefly described here.

Executive control is centralized around several lists of
data and a multipurpose special register located in the I/O
control unit. Only two of the lists will be mentioned here:
the dispatch 1list and the wait list. The dispatch list contains
all active requests for processing, ordered by priority and age.
The wait list contains pending requests for processing which
are to be issued at specified times. The special register
contains both the location in the dispatch list of the next
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process request to be honored, and a group of bits whose

purpose is to indicate the ,occurrence of certain external events
which in some systems mlght trigger interruptions. It was be-
lieved in the ACGN computer design, however, that computations
would be divided into several-millisecond sections, referred

to as jobs, and that this level of division would be the one

at which competition for processors took place. Thus, in many

a processor system, the average interval between a given instant
and the time at which some processor next completed a job would
be small. Thus, interrupts and their associated overhead could
be avoided by having each processor check for the presence of

an unserviced external event prior to taking the next active

job from the dispatch list. If one or more such bits were
present, the required functions would be performed by the dis-
covering processor.

Provision of a compiler for the system was planned. Not
only was this approach felt to be important from the ease and
speed of programming point of view, but the use of the compiler
as a program-convention enforcer seemed equally desirable. Be-
cause of the constant problem of multiprocess interference
when common data is involved, some kind of interlocking is
necessary. To reduce the number of ways or occasions when it
would be possible for a programmer to inadvertently misuse the
protection mechanism, the compiler could be equipped to do
virtually all of the interlock administration.

Reference:
"Control, Guidance, and Navigation for Advanced Manned Missions"

MIT Instrumentation Laboratory Report R-600., Vol. 2, Cambridge,
Mass., January 1968.

2.20 ERC-Hamilton Standard Modular Computer

Classification: Replaceable modular flight computer
(MFC)
Operational Status: Prototype hardware version completed

and delivered to ERC
‘Description:

A computer consists of one of four types of units. They
are a MU (memory unit), CU {(control unit), AU (arithmetic unit),
and an IU (I/0 unit). Supplied are several of each type of
unit and a master switching unit that selects the modules that
are active. This is called the CAU (configuration assignment
unit) and is responsible for maintaining a set of operational
modules.

Diagnostic programs are used to detect and isolate mal-
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functions in the units. TFault detection circuits can initiate
the diagnostics. They will categorize the failure and ask for
new units from the CAU if the failure is not a transient one.

The distinguishing feature is that this is not a multi-
. processor configuration, but two or three separate computers.
Possible modes of operation include the following:

1) Three computers working on the same problem and voting
on their results during a high reliability period such
as boost.

2) Three computers working on indépendent problems.

3) A method to keep several computers on-line with a minimum
of spares.

The system has possibilities but is complex because of
the amount of switching hardware needed. It also necessitates
an infallible CAU to achieve the reliability goals. It seems
of dubious value compared to an equivalent multiprocessor.

For another approach towards the same goals, see the JPL STAR
computer.

2.21 MIT/IL SIRU Computer

Classification: Simplex computer with spare units
for automatic backup

Operational Status: Breadboard under development

Description:

This computer has been designed by the MIT Instrumentation
Laboratory as part of the Strapped-down Inertial Reference Unit
{SIRU) system. The major function performed by this machine
is the maintenance of the guantities which describe the inertial
attitude of the inertial subsystem via measurements incorporated
every ten milliseconds. Additionally, the computer calculates
velocity from accelerometer measurements, and has several milli-
seconds left over to devote to other jobs.

The computer contains two. processors and two memories. One
processor is kept in a standby condition while the other operates.
Error detection features throughout the processor are provided
to signal the occurrence of single errors. If an error is de-
tected, the active processor will initiate turn-on of the stand-
by processor and concurrently attempt a re-try of the current
instruction. If the re-try is successful, however, the turn-on
of the standby.unit is terminated.
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Operation of the memories is somewhat different: all
data written into memory is written into both, so that normally
both units contain identical data. Data read from memory,
however, comes only from the unit currently designated as
the active one of the pair. Should an error be detected in the
active unit, the memories exchange roles and operation continues.
Operation of a duplexed I/O system follows a similar pattern.

Exceptional Characteristics:

Each memory unit in the SIRU computer contains a high-
speed scratchpad and working-register storage section. Exe-
cution of instructions in the processor has been separated
into two distinct parts: first, the computation is performed
and the results stored in dedicated area of high-speed memory;
second, these results are moved from their temporary locations
to their final destinations. The advantage of this technique
is that each part of the execution of an instruction may be
safely re-initiated after partial completion since neither of
the two parts stores any results in locations occupied by the
operands for that part. Since the working registers for the
processors appear in both memories, any instruction execution
which suffers a fault in either working register or processor
may be completed or redone using either the alternate memory
or the alternate processor, or both.

This inherent ability of the hardware to perform success-
ful error recovery in a manner totally transparent to the
software causes some sacrifice in processor speed. However, it
eliminates both the necessity for faillure recovery software and
the historically knotty and costly effort required to verify
the adequacy and accuracy of such coding. This is felt to be
an extremely significant step in coordinated hardware/software
design.

Reference:
Crisp, R., Gilmore, J.P., and Hopkins, A.L., Jr., "SIRU - A
New Inertial System Concept for Inflight Reliability and

Maintainability", MIT Instrumentation ILaboratory Report E-2407,
May 1969.

2.22 JPL STAR Computer

Classification: Experimental aerospace computer
with built-in automatic maintenance
features. Not a multiprocessor.

Operational Status: Experimental prototype under aevelop—

ment; several subsystems have been
completed and tested.
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Descriptions

The JPL STAR (self-testing and repairing) computer has

been designed as an attempt to provide an error-free, unattended
computer system which could operate for several years during the
unmanned exploration of the solar .system. The principal system
features used to diagnose and recover from errors are:

a) Use of error-detecting codes to allow fault identification
concurrently with program execution.

b) Subdivision of the computer into a number of replaceable
functional units.

c) Fault recovery carried out under the control of special-
purpose hardware; consists of program repetition or re-
placement of faulty units.

d) Unit replacement accomplished by power switching; informa-

tion lines of all units are permanently connected to the
busses through isolating c1rcu1ts' unpowered units produce
only "zero" outputs.

The functions often implemented in the CPU of a computer have

been split into five subunits: the main arithmetic processor,
the logic processor, the control processor, the timing processor,
and the interrupt processor. Except for the logic processor,
which runs with two copies operational, for checking, only one
copy of each unit is powered, and sevéral unpowered backup
copies are provided. Upon sensing of an error, the test-and-
repair-processor (TARP), a processor- unigue to the STAR computer,
directs the recovery operations. Because of the key role played

the TARP in error recovery, three powered copies of the TARP
are run concurrently, with outputs determined by voting logic.

If a powered TARP disagrees with a voted output, it is
immediately returned to the standby condition and power is
applied to one of the other standby units.

Software Characteristics:

The software design for the STAR computer is only partially

complete. A key aspect of this software is the ability to per-

form a "rollback" to a previous point in the program as part

of the error recovery process. Although an instruction has been
provided which stores a "rollback" address in the TARP for this

purpose, it appears that any attempt to incorporate multipro-
gramming into the system will necessitate use of a group of
such addresses (viz., one for each active or scheduled task)

plus other information for rollback purposes. Although multiple
copies of this data would be necessary as a protection against
memory loss, the current configuration of the system requires
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storage of this data outside the TARP.
Miscellaneous:

Because error detection is such a crucial component of
the system, a brief description is included here. Operand
words consist of eight 4-bit bytes, one of which is a check-
byte whose value is 15 minus the modulo-15 residue of the
value of the other seven bytes. The checking algorithm com-
putes the modulo-15 residue of the entire operand word; a
nonzero residue indicates a fault.

An instruction word consists of a three-~byte operation
code and a four-byte address. The eighth byte is used as a
modulo-15 check on the four address bytes; checking of the
op-code consists of verifying that exactly two bits of each
byte are ones. In some cases it is necessary to perform both
checks for validity on a given word and rule it fault-free if
it passes either one.

Residue bytes are processed independently in the arithmetic
processor to provide a check on the arithmetic processing it-
self., Because the residue byte propagation in logical opera-
tions is difficult to compute, however, two copies of the
logic processor are operated concurrently, and the outputs are
compared to verify accuracy.

References:

1) Avizienis, Algirdas, "Design of Fault-Tolerant Computers"
Proc. FJCC, 1967, vol. 31, Thompson Books, Washington, D.C.

2) Avizienis, A., Mathur, F.P., Rennels, D.A., "Automatic
Maintenance of Aerospace Computers and Spacecraft Infor-
mation and Control Systems", AIAA Paper No. 69-966,

ATAA Aerospace Computer Systems Conference, Los Angeles,
California, Scept. 1969.

2.23 RCA 215

Classification: Airborne real-time multiprocessor
Operational Status: Under development
Description:

a) 1 or 2 CPU's
b) 1 or 2 I/O units

c) Main memory of 2 to 8 modules of 16K 32-bit (plus 4 pdrity)
words (64K bytes/module)
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d) Expanded version offers up to 4 CPU; 4 I/O units, and 16
memory modules (1 megabyte maximum)

e) CPU characteristics

1) Instruction set is fully compatible with the Spectra 70
and the non-privileged ones of the IBM 360.

2) Scratchpad storage consists of 64 words of 36 bits each
with 300 ns cycle time.

3) 1024 64-bit words of ROM used for microprogram storage.
Cycle time is 300 ns.

4) Automatic fault diagnosis and error recovery.

5) 4 processor states with special registers for each.
32 priority levels of interrupt use three of these
states.

This recently announced airborne computer system is another
one that offers compatibility as one of its chief virtues. As’
its manufacturer states, in order to supply the extensive and
complex functional programs and support software that is needed,
it is desirable to capture the work done on existing commercial
software systems. To attempt to develop a complete software
package for a special military application is extremely costly,
in both time and money. The solution according to RCA is to
rigorously produce a flight counterpart to a commercial computer.
It is not sufficient to imitate a ground computer by implementa-
tion of only a subset of the instructions or generating results
which are "nearly the same". The flight computer must duplicate
the ground-~based version on a bit-by-bit basis including non-
instructional features. As a bonus, the ground twin can be used
for support for compilation and checkout.

With this aim, RCA has produced a computer that contains
the entire instruction set of Spectra 70 series of computers
(35,45,55) including the privileged instructions. It also dup-
licates the four program states, the I/0 channel control, the
interrupt management scheme,and other features of the Spectra 70.
As a result, any user program compiled and tested on a Spectra 70
will run without alteration on the 215. The 215 has added in-
structions used by the executive for control of multiprocessing
and error recovery. This same instruction repertoire (as in
the Spectra 70} is fully compatible with the non-privileged mode
of the IBM System 360. This opens the door to a vast collection
of existing programs that would operate on the 215.

Another area that has been emphasized is that of fault
tolerance and error recovery. RCA has conscientiously striven
for a fail-soft computer complex. They have made a rigorous
attempt to avoid “"single-thread" hardware and attain the capa-
bility for "graceful degradation" while running programs written
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for a different family of computers. Towards this end, hard-
ware checking and other features have been incorporated as well
as extensive software routines in the executive including items
such as a "recovery nucleus” in a separate memory module. The
degree of success of these measures is not easy to ascertain,
but the underlying motives should be highly praised.

References:

1) Dieterich, E.J. and Raye, C.C., "A Compatible Airborne
Multiprocessor”, FJCC, 1969, vol. 35, pp. 347-357.

2) "Introducing the RCA 215 Military Computer", RCA Aerospace
Systems, DEP/SCN 101-69.

2.24 Control Data ALPHA

Classification: Airborne computer

Operational Status: Operating prototype has been
demonstrated

Description:

This is a proposed LSI implementation computer. Features
include the following:

a) Up to 4 CPU's or I/0 units total
b) Up to 8 banks of 16K 32 bit words
c) CPU characteristics:
1) 16 and 32 bit instructions
2) 16 registers for accumulators and index registers
3) Floating point instructions, SP and DP
4) 32, 16, 8 bit operand instructions

5) Special trig function instructions - sin/cos, vector
rotation, square root, rectangular to polar conversion

6) String and search instructions

Reference:

Control Data Brochure, "ALPHA Computer Family", #100, 644B.
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2.25 Litton IRAD

Classification: Multiprocessor
Operational Status: 1975 target date
Description:

This system is at present a paper design of a computer
organization suitable for use as either a flight or ground com-
puter. It is a company-funded effort, with three major goals:

1) Efficient multiprocessor structure
2) All TSI, for reliability and size

3) The instruction set is to efficiently use memory

Litton has strongly attacked the third of these, in the
belief that the extra cost of logic required to implement power-
ful instructions will be significantly less than the cost saving
achieved through improvement in memory utilization. The in-
struction set design at this time is claimed to require only
40% of the number of instructions used to code a similar problem
mix for the Litton 3050, and only 49% of the bits.

The instruction set differs from conventional sets in that
it is strongly oriented to the processing of bit fields, rather
than bytes or words. The arithmetic or general purpose registers
of the machine have ‘been designed to reflect these considerations.
Data in registers is held in a floating-point format, with a 40-
bit mantissa and an 8-bit "power". The mantissa is not usually
normalized; a type of “"significant digit" arithmetic is perform-
ed which preserves available accuracy but requires less time to
execute. When bit-fields are fetched from memory.to registers,
the "power" field is specified in the instruction, rather than
by the data itself. Similarly, the scaling for a store order is
also contained in the instruction. Because of use of push-down
mechanism for register addressing and elimination of the index~
ing field when not needed, Litton claims that the average in-
struction length is about normal, even though field and power
‘data is included when needed.

The implementation of multiprocessing is accomplished using
an adaptation of the 64-level program hierarchy introduced in
the L304. Major changes include modifications to the reserved-
memory area to reduce the number of unused locations, addition
of storage interlocking machinery, and extension of the program-
level switching logic to facilitate multiprocessing. A four-
tier storage hierarchy is used: program, local, compool, and
"multi~level" data areas are recognized.

This machine embodies some of the most novel ideas we have
encountered.
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2.26 Burroughs Interpreter Computer

Classification: Airborne multiprocessor
Operational Status: In preliminary design phase
Description:

Unique features include:
1) Two levels of microprogramming - referred to as micro and
nano programming (one level wired in, the other loadable
from memory) .

2) This allows the flight computer to look like any computer
that might be desirable, e.g. an IBM 360 or a B5500.

Reference:

Advanced Multiprocessor Computer Development, Burroughs
Corporation, OS SSG, August 5, 1968.

2,27 U.S. Navy NAVAIR AADC (Advanced Avionics Digital Computer)

Classification: Generalized family of real-time
£flight computers

Operational Status: Paper computer - preliminary design
phase

Description:

The AADC program is attempting to develop a general purpose
modular set of digital computers to meet the Naval Airborne Com-
puter requirements for the 1975-85 time frame, using the build-
ing block approach. The fundamental goal is the feasibility of
the design of a spectrum of computers from the same basic func-
tional and byte-~functional elements. This will hopefully allow
the reduction of the development cycle time from years to a
matter of weeks. The building blocks take advantage of LSI and
MSI technologies. The availability of these building block
modules will permit the rapid configuration of an airborne digi-
tal computer system to meet a given set of specific operational
requirements. A big problem is determining a modular organiza-
tion of the computer. The organization must be general and
powerful enough to satisfy the most exhausting performance
requirements that can be projected. At the same time it must
be divisible into smaller units needed to handle less demanding
tasks in a cost-effective manner.
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It is expected that the computer will be microprogrammed
to provide an AADC with a variable instruction repert01re as
well as the capability to emulate computers already in the
Navy inventory. The heart of the AADC approach is the byte-
functional module. This is proposed for its flexibility.
It allows variation in the specific computer organization and
permits the computer word length to be chosen for a particular
application to meet the specific requirements. Because each
specific computer developed from these building blocks might
be substantially different in its structure, the AADC program
has proposed a meta-compiler to accompany this set of computers.
This compiler could be adjusted to suit each unique hardware
organization and instruction set. The alternatives of identical
computers for all applications or the creation of a new compiler
for each hardware design are considered too restrictive.

The Navy also envisions the establishment of a data bank
for "best case" computer algorithms for solution of many of the
common computational problems.

Reference:
"Advanced Avionics Digital Computer Base-Line Definition",

Report #AIR-53333Fa, Naval Air Systems Command, Washlngton,
D.C., 23 July 1969.

2.28 SOLOMON

Classification: Parallel network computer (experi-
mental)

Operational Status: Unknown

Description:

SOLOMON consists of a 32 x 32 array of processing elements
(PE's) under control of a central control processor. The central
control unit contains program storage, has the means to retrieve
and interpret the stored instruction, and has the capability,
subject to multimodal logic, to cause execution of those in-
structions within the array. Thus, at any given instant, each
processing element in the system is capable of performing the
same operation on the operands stored in the same memory location
of each PE. Because each PE is provided with its own core
storage unit, these operands may all be different.

Each processing element may communicate with its four
adjacent "neighbors". The "edge" elements., which do not
possess a full set of neighbors, use their free connections
for 1/0. Additionally, the central control may broadcast con-
stants for use by all members of the array.
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Each PE in the array has a mode register; commands from
the central control to the PE are executed by the PE only
when the mode signals from the controller match the mode stored
in the PE.

Reference:

.Slotnick, D.L., Borck, W.C., and McReynolds, R.C., "The
SOLOMON Computer", Proc. FJCC, 1962, Spartan Books, Washington,
D.C.

2.29 ILLIAC IV

Classification: Parallel-array computer; contains
256 processing elements (experimental)

Operational Status: Under development; target is late
1970. .

Description:

The ILLIAC IV structure consists of 256 processing elements
(PE's) arranged in four arrays of 64 processors each. A thin-
film memory of 2048 words is provided with each processor. A
common control unit for each array decodes the instructions and
generates control signals for all processing elements in that
array. A central index register group is included in the con-
trol processor, and an index register and address adder is
provided in each processor for independence of operand address-
ing. Each processor has an enable flip-flop whose setting
controls that unit's instruction execution. This bit is part
of a test-result register in each PE which holds the results
of tests on local data.

Data routing the processors is provided by connections to
units i+1, i-1, i+8, and i~-8 from each unit i; end-around con-
nections are provided for "edge" processors. {(See Fig. 1.8)

The four arrays may be operated independently, in pairs,
or all together., The end-around data routing connections are
modified when the array configuration is changed. The system
program resides in a Burroughs 6500 general-purpose computer,
which supervises program loading, array configuration changes,
and I/O operations internal to the ILLIAC IV system and to the
external world. A large disk storage system is directly coupled
to the arrays, and there is also a provision for real-time data
connections to the arrays.

Instructions belong to one of two classes: control unit

(CU) instructions and PE instructions. The former control the
addressing and sequencing in the CU, while the latter are de-

59



coded in the CU and then transmitted to all the PE's,
Software Characteristics:

The ILLIAC IV operating system resides in the B6500, and
uses the standard B6500 master control program (MCP) for pro-
cessing of most tasks.

The system designers have decided that for effective use
of the parallel array elements, it is essential that all
possible parallelism be detected in those algorithms which
are to be executed. They have further concluded that the
difficulty of achieving this if the algorithms are specified
in languages such as FORTRAN or ALGOL is prohibitive. Thus
they have designed a language, TRANQUIL, which is intended to
allow the user to express array-type computational processes
in terms of arrays and parallel operations. A key feature of
the language is its mapping function, used to map arrays to
optimize data transfers between primary and secondary memory,
to minimize unfilled areas of primary memory, and to optimize
the use of the PE's.

References:
1) Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick,

D.L., and Stokes, R.A., "The ILLIAC IV Computer"”, IEEE
Trans. on Computers, vol. C-17, No. 8, August 1968, p. 746.

2) Kuck, D.J., "ILLIAC IV Software and Application Programming",

ibid, p. 758.

3) Northcote, R.S., "Software Development for the Array Computer

ILLIAC IV", Department of Computer Science, University of
Illinois at Urbana-Champaign, Report No. 313, March 1969.
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Chapter 3
Design Considerations

3.0 Introduction

The purpose of this chapter is to present the spectrum
of design considerations which are relevant to the architectural
configuration of the Data Management computer system. Addition-
ally, material of tutorial content is included in order to
soundly establish an information base against which the design
proposed in Chapter 5 may be viewed. Necessarily, more questions
‘are raised than are answered, since many design details fall
beyond the scope of the current contract.

3.1 cConfiguration Considerations

The advantages and disadvantages of a number of possible
system configurations will now be_discussed. First to be
considered is the conventional uniprocessor computer shown in

"Figure 3.1. Although this configuration is used in the vast
majority of computers, it fails to meet the requirements for
the space station on a number of different counts. First, in
its simple form, the system is incapable of degrading grace-
fully since there is only one copy of each unit. Redundancy
might be added so that components could fail in the processor
without degradation; however, similar techniques fail to
protect against loss of data from a failed memory. Both the
memory and the seriés of I/O devices may be augmented within
limits to increase capacity. However, the processor is not
similarly expandable. Finally, since there is only one copy
of each element, the system cannot be repaired without inter-
rupting its operation.

To meet graceful degradation and failure tolerance ob-
jectives, it iIs beneficial to configure a system with multiple
copies of each of the important units. Figures 3.2 through
3.5 show four possible configurations. Figure 3.2 represents
perhaps the most conventional form of multiprocessor computers,
characterized by the use of multi-port memory. The system
shown uses four-port memories. Each of the ports is connected
to a separate data bus which in turn is connected to one of
the four driving units in the system, two processors and two
I/0 controllers. Since the switch components are distributed
among the modules, it is straightforward to confine the effects
of a switch failure to the locality of the containing module.
If the number of memories in the system is at least one greater
than the number required to contain all of the necessary in-
formation, then this system is capable of graceful degradation.
If through software techniques a sequence of snapshots of
memory contents is taken to provide recovery from memory failure,
and if a time history of input and output messages were main-
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Figure 3.1 Simplex Configuration
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Figure 3.2 Multiprocessor with Multi-port Memories
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Figure 3.3 Multiprocessor with Crossbar Switch
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tained, a software package could be prepared through which
memory failures might be tolerated. Should a processor fail,
its loss does not disable the other processor nor either of

the memories from continued operation. Should an I/0 con-
troller fail, it similarly does not prevent operation-of the
other. The system is modularly expandable or contractable to
an extent. That is, more memories can be added with connections
for each of the devices present in the system. The addition

of processors or I/0 controllers, however, requires additional
ports on each memory. To enable expansion, the small version
of the system could be configured with a number of excess
memory ports, sufficient to contain connections for the largest
version of the system desired. Such a system would then be
expandable, with the upper-limit determined by the number of
ports on the memory.

The system shown in Figure 3.3 is quite similar in con-
figuration to that of Figure 3.2. The essential difference
between the two configurations is that the switching between
paths to memory is done in a switch, rather than being built
into the memory as in the Figure 3.2 configuration. This system
has essentially the same characteristics as the previous one,
since memories and processors may be added. It does not have
the limitation, however, imposed by a fixed number of ports
on a memory. Rather, the limitation comes in the mechanization
of the crossbar switch itself. If the switch were built in
a modular style, so that additional components of the switch
required to support additional elements could be added at
the time the extra units were added, then the system would be
as expandable as desired. Attainment of necessary reliability
in the crossbar switch itself is one of the most difficult
design jobs in this system.

The configuration shown in Figure 3.4 differs from those
of Figures 3.2 and 3.3 in that communication between memories
and processors takes place over common data buses. Since each
unit connected to a bus contains logic for recognizing commands
to itself, in principle the system can be expanded by merely
attaching additional modules to the bus. However, the capacity
of the bus itself is the dominant potential bottleneck in this
configuration, since the bus can carry no more than one message
at any time. However, if this bus is a partially parallel bus
(for example, one byte wide) and if sufficiently sophisticated
technology is used to allow a high bit rate, then the bus may
be made sufficiently powerful to permit substantial system
growth. One further distinction is shown in Figure 3.4 which
is not necessarily peculiar to this configuration; namely,
the use of separate memories for program and data. It is per-
haps most appropriate in Figure 3.4, since the bus traffic
capacity potentially represents the upper limit on system
capacity. If, as in many machines, execution of each instruc-
tion requires one instruction fetch and one data fetch, then
the provision of a second bus either doubles the system capacity
or halves the bit rate requirement for each bus. This system
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is gracefully degradable, since memories and processors may
fail without causing the system to be down so long as they do
not in any way tie up the bus. However, the bus itself must
be infallible since no other communication path is provided.

The configuration shown in Figure 3.5 represents a com-
promise between a multiprocessor configuration and a multicom-
puter configuration. This system resembles Figure 3.4 in
that a common data bus allows any processor to communicate
with any memory. However, the system also represents Figure
3.2 since multi-port memories are used. In this system the
number of ports on the memory is exactly two, giving each
memory a preferred access path from one processor. Trade-
offs are p0551b1e in this configuration between providing
small memories attached to processors or relatively larger
ones. A small memory would be used as a scratch-pad, whereas
a larger memory could contain a substantial fraction of the
total system memory and would contain resident programs and
data. This system degrades as gracefully as Figure 3.4, since
no program's execution depends upon availability of the pre-
ferred path between the processor and the memory. However,
the existence of this path is intended to greatly reduce the
traffic load on the common data bus, which enables the system
to grow to a substantially larger configuration before reach-
ing the upper limit of bus capacity.

In each of the systems it must be emphasized that a
requirement exists to prevent loss of information. No system
can be gracefully degradable if required information is destroy-
ed or lost because of memory failure. The implication of this
requirement is that either the memories must be composed of
multiple units within each module so that there is a sufficiently
high probability that not both copies will fail at once and
therefore no information will be lost, or that the system’ soft-
ware provides snapshots of data so that loss of memory does
not cause loss of data. 1In the latter case it is necessary
to supply an extra copy of memory which is not otherwise used
until a failure occurs. After a failure, data present in the
failed memory at the last snapshot is loaded into the fresh
copy. The implementation of such a recovery technique would
impose serious complexity on the operating system and applica-
tions programs, since it would be necessary to update the
data from the failed memory to the time-state which existed
at the time of failure. This complexity is a strong stimulus
for rendering data-loss extremely improbable, by using multiple
copies of memory within each memory module, or other satisfac-
tory means.
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3.2

Trade-off Considerations

Once the configuration has been selected, or in connection

with the selection, it will be necessary to make a number of
decisions with respect to the major components. The following
discussion is intended to illuminate some of the trade-offs.

3.2,

a)

b)

1l Processors

Should the processors all be alike? Clearly, if an early
decision is made to include provisions for unlike processors,
the system should operate well even if only like processors
are used. Perhaps the converse is true as well, but it
seems desirable to consider whether the system requirements
tend to indicate that a mixture of processor-types would

be advantageous. Several types of processors that might

be considered are: .

1) "Standard" units with conventional general-purpose
instruction sets;

2) units which perform floating~point arithmetic sub-
stantially more efficiently than the standard units;

3) units which perform bit-manipulation operations more
efficiently; -

4) units especially suited for list~processing operations;

5) special-purpose units for performing executive or other
high-duty~cycle operations;

6) array processors.

The advantages of unlike processors are apparent; an off-
setting disadvantage is the departure from uniformity,
which complicates the graceful degradation property, the
repair and spare requirements, and the scheduling software.
One approach which appears feasible is the use of alterable
microprogram memories 'in the processors, so that processors
could assume any of the identities described above (except,
perhaps, the last) by loading the appropriate microprogram.

How should processor error~detection be implemented? On

one side of the trade-off is the conceptually simple and
fool-proof checking scheme in which two or more copies of
the processor unit perform identical programs simultaneously
and compare their outputs. If it can be assumed that no
event which causes an error affects more than one copy,

this technique will catch every error. Further, since the
processor and its checker are identical, the same spare

can be used for both. The alternative is the incorporation
of checking circuitry within the processor. Although this

66



is a substantial complication to the design of the unit, it
presumably requires less logical components than does an
additional copy of the unit. However, parity or residue
checking within the unit cannot detect every error, and a
study of the expected probabilities of error-causing events
will be necessary in order to determine whether internal
checking and the inherent reliability of the unit are suffi-
ciently trustworthy. An additional consideration regarding
internal checking is that new module failure modes are intro-
duced: namely, failures in the checking components themselves.
The failure mode which causes continuous indication of no
error is particularly insidious. -

¢) Should "scratchpad"” or other memory which is locally access-
ible to the processor be provided? The use of scratchpad
storage can be beneficial both as a means of reducing access
time to data used in computations, and in removal of traffic
from the main communication lines in the system. The latter
point is especially significant if a configuration like
Figure 3.4 or 3.5 is used. Consider Figure 3.5: if the
size of local memory is larger than necessary for the data
of the task currently being processed, it becomes possIble
to use the additional space for the current program, or to
assign data or programs to be resident (permanently located)
there., If data or program for a task were resident in some
memory unit, it would clearly be desirable to execute that
task in the associated processor, although that assignment
would only increase efficiency, and not be mandatory. How-
ever, there would be additional executive overhead introduced
as a result of the processor-preference criterion for schedu-
ling; for example, the executive must prevent the occurrence
of a queue of tasks waiting for a preferred processor when
other processors are idle. Furthermore, whether or not the
loss of equality between units by virtue of resident-assign-
ments is favorable or unfavorable to the reliability and
recovery strategy requires careful consideration.

3.2.2 Memories

a) Should memory for program and data be separate? Typically,
execution of an average instruction requires one instruction
fetch and one operand fetch. Separate program and data
memories lend themselves to separate bussing, as shown in
Figure 3.4, which reduces congestion. Additionally, the
fetching of programs from secondary storage, if required,
may be done without adding traffic to either bus if an
appropriate channel is provided. However, such savings are
achieved only by addition of hardware. ILoss of flexibility
should be avoided by allowing program and data to be in the
opposite memory type when convenient.

b) Should memory be paged? While certainly no substitute for

adequate memory capacity, paging can be used to increase
the effectiveness of the physical memory present. However,
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c)

a)

e)

£)

additional software and hardware are required to implement
such a system. Even so, use of some form of core-multiplex-
ing appears desirable at this time, in view of the extent

to which the computational load predicted for the system re-
sembles the time-sharing load of present commercial systems.
Implementation questions such as page or fragment size,
number and type of associative registers for rapid access,
and software strategy are of immediate significance.

How should storage protection be implemented? The wide
variety of program and data sources, the desire for on-board
program preparation and checkout, and the requirements for
high system reliability make storage protection appear manda-
tory. To some extent, paging would provide such protection,
since contents of pages not assigned to a task are not even
addressable by the task.

Still further protection is desired, however. No task should
be allowed to modify its own instructions by writing into

its own program area; further, it would be beneficial to
implement array-limit protection, so that no writing address-
ed to an array would be beyond that array's bounds. Addi-
tionally, some subset of the storage protection mechanism
should be available to tasks for their own use.

Should memory addresses be interleaved among modules? Inter-
leaving is frequently used to permit concurrent multiple
memory accesses, to reduce the number of memory conflicts
between processors and I1/0 controllers. In a multiprocessor
configuration, concurrent execution of the same program by
two processors when no interleaving is provided might cause
each to take twice as long to finish as the no-conflict case
would have taken. Two-way interleaving would alleviate this
problem. However, if one of the two halves failed, every-
thing in memory would be affected. Because recovery from
loss of data is so difficult, the design of the memory must
make any such loss extremely improbable. If that objective
is achieved, interleaving appears desirable.

Should certain instructions be physically implemented in the
memory rather than the processor? The goal of this would be
to reduce the traffic in the communication system of the com-
puter. List-search instructions, for example, might be con-
ducted wholly within a memory module with virtually no use

of a data bus. The same is true of the intra-module multiple-
word transfers. However, the limited use of such instruc-
tions, compared with the estimated cost of the implementa-
tion, including logic to deal with encountering a module-
boundary, seems to indicate that it would be undesirable. If
memory interleaving were used, that would cinch it.

How can content-reliability best be achieved? This is a

three~fold question; it involves how to make the loss of con-
tents from a given unit improbable, how to detect it if it
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should happen, and what to do about it when it is detected.
The first is a design-for-reliability gquestion beyond the
scope of the architectural consideration. The second and
third may or may not be connected, depending on whether,
for example, redundant copies of memory are operated to pro-
vide error detection and data~backup. Many types of check-
ing codes are capable of error detection in memory opera-
tions and are readily implemented. Error correction can
also be achieved, although at the expense of additional
check-bits and logic. However, address selection errors
such as no-word, wrong-word, or multiple-word are not cor-
rectible by such means, and unless these can be made suf-
ficiently unlikely, use of extra copies may be the only
choice.

g) How much read-only memory should be included in the system?
The Apollo on-board computer method of placing all programs
in fixed memory is clearly not feasible for the next genera-
tion of long-lifetime applications. This is true for two
reasons: first, too much on-line memory would be required,
and second, ROM is too inflexible (it was in Apollo, too).
However, read-only microprograms are frequently used, as
are system bootstrap memories for initial loading. The
priority of this question is probably rather low. :

3.2.3 Communication Paths

a) How many paths should there ‘be? The figures and preceding
text have portrayed these tradeoffs.

b) What should each path's width be? Obviously, the path
width should be related to the traffic expected, to prevent
log jams. The expected traffic is a function of processor
and memory capabilities, problem characteristics, and pro-
blem mix. The latter two must be expected to still be
fairly uncertain at the time this decision must be made,
and an approach must be adopted which is quite conservative.
The history of the growth of planned function and the ex-
tension of the 1life of the system must be taken fully into
consideration.

c) Should control and addressing signals have separate paths
or be multiplexed with data? This is both a traffic and a
reliability question. That separation of control and data
signals reduces traffic on the data bus is obvious; whether
it is advantageous to have a separate path to control or be
controlled by switching in the event of failures must be
investigated.

d) How can communication reliability best be achieved? Ques-
tions discussed previously regarding redundancy and check~
ing also apply to the communication net. So-called "trans-
mission" coding can be used to check for and even correct
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errors. However, since a viable communications net must
always exist even if processor and memory modules fail, the
problem is a severe one.

3.3 System Organization for Reliability

3.3.1 Introduction

Reliability, failure tolerance, and graceful degradation
are related requirements which must be considered in combination.
Reliability is concerned with the probability of failure in the
system equipment. It is associated with a time interval, and is
either estimated theoretically using a mathematical model, or
determined empirically by observation. Failure tolerance is the
capability of the system to continue operation after a failure
has occurred, whereas graceful degradation implies a gradual
reduction of system capability when failures occur. Ideally
the system design should:

a) Minimize the probability of equipment failures.

b) Continue full operation even if failures do occur.

Because current technology does not permit simplex con-
struction of a computer having the required life without mainte-
nance, some form of repair or replacement is mandatory. The
next subsections describe systems which obtain actual or effec-
tive replacements from fixed and open-ended spare pools.

3.3.1.1 Closed System

Consider M to be the number of modules of a given type
in the system, and I to be the number of those which must be
active to provide adequate capacity. In a closed system, failed
modules are not replaced, and M must be about four times I to
achieve a .99 reliability over five years, given -a failure rate
of .0002 per hour per unit{10), In such a system,- an estimate
of system reliability can be obtained by forming the product of
the reliabilities of all modules, with the switching functions
allocated to other modules, or to a hypothetical switch module,
as appropriate. Each factor is a function of the number of gates,
the failure rate of gates per unit time, and time. Using the
data provided in reference 10, and considering an example of a
processor of 10,000 gates with the failure rate of 10-8 per hour,
it is clear that to achieve a reliability of .9 or greater over
five years in a closed system requires either a significant de-
crease in failure rates, or redundancy. However, a triply-re-
dundant system is less reliable than a single unit after 7/10 of
the mean life of an individual unit. Thus, there are substantial
reasons why a closed system will not provide a ten year life with
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currently available gate reliability.

3.3.1.2 Open System

The space system will be an open system, in which failed
modules are replaced. In this case, the overall reliability of
the system involves the probability of the occurrence of a second
failure before the first is repaired. In this sense, reliability
encompasses more than equipment reliability. In an open system,
the probability of mission success (PMS) is a measure of adequacy
which is somewhat less dependent on reliability than it is in
the closed system. This is because the PMS is defined as the
probability that the computer system will perform at or above
specified operational levels, which are time-dependent. Thus, a
dip in performance capability may be harmless to mission success
if the performance required during the dip happens to be low.

The PMS is a function of the time to repair and replace modules
as well as the reliability of the modules. A reliability model
which includes repair statistics will be generated for purposes
of analysis. However, it is intuitively evident that lower
module MTBF's can be tolerated in an open system for a given
reliability than in a closed system.

3.3.2 Graceful Degradation

The term "graceful degradation" refers to the diminished
relative operational capabilities of the system after one or
more permanent failures have occurred. The ability of the
system to continue its function after a failure has occurred
in an element or module is nsually achieved by using either
redundant_on=line miodules or off-line modules which can be con-
nected to the system after the error has been identified.

Assuming that there are "critical" functions being perform-
ed by the DMCS and that it must be operational for ten years,
there are two basic approaches:

3.3.2.1 Standby/Active Approach

Given that L active modules of a given type are required
for processing, and that M of these are provided in the systenm,
then (M~L) of them may be kept on standby status, awaiting acti-
vation after failures among the L modules. Thus, the system can
survive (M~L) failures without any degradation of system per-
formance. In order that certain functions of the system may be
continued when more than (M-1L) modules have failed, levels of
operational priority must be established, since less processing
can be done by the system as more modules fail. Figure 3.6
shows an example.

In this case, we see that the system continues to perform
100% of its functions as long as L modules are available. When
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less than L modules are available, selected functions are elimi-
nated. When all but one module has failed, the system continues
to perform only those functions considered essential, and ignores
others. The number of levels selected and the functions asso-
ciated with each are arbitrary and will define the degraded modes
of the system. Probabilities can be predicted using the model
for each level. The overall goal for system reliability is crit-
ical to the selection of the number of modules. For example,

if 1L were the maximum number of modules simultaneously required,
then it is probable that less than this number will suffice for
much of the time. If this were taken into account in the pro-
bability model, then M could be smaller, since the joint pro-
bability of the occurrence of the (M-L+l)st failure at a time
when L modules are actually required is less than the probability
of that failure alone.

3.3.2.2 Pull Redundancy Approach

In a full redundancy approach, the system has only
one level of operational degradation; it will either be opera-
tional with 100% capability, or inoperative. For example, a
triply-redundant system will provide 100% processing capability
until the second failure occurs, at which point it must stop.
This mechanization may be adequate in an open system. If the
probability of the occurrence of a second failure before the first
module has been repaired is sufficiently small that the PMS goal
is achieved, then this approach is adequate. Note that a multi-
mode redundant system with voting could be used to increase ‘the
number of successive failures that the system could tolerate
prior to repair.

3.3.2.3 Comment on Approaches

a) In both approaches, the system design must provide a "fail
safe" mode if there is any appreciable probability that the
set of failures which have occurred prevents the system from
continuing. When this occurs:

1) It must recognize the situation, and communicate it to
the crew and other computers.

2) All non-critical functions must be terminated, and the
system automatically put into a dormant mode, receptive
to direction from the operator. Perhaps hardware func-.
tions will be required which automatically set status
and control bits, so that the system is left in a truly
safe configuration. Apollo G&N computer experience has
shown that this simple-sounding procedure can in fact be
extraordinarily difficult to implement because of the
time-varying nature of what "safe" really implies.
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b) other factors for consideration with respect to these ap~
proaches are complexity of software, error detection capabil-
ity, etc.

¢) It may also be consistent to require configuration of either
type mode as a function of mission phase. That is, during
critical phases, the system might operate in a redundant
mode, but in the active/standby mode otherwise.

3.4 Elementary Reliability Based on Queueing Theory

3.4.1 Introduction

The purpose of this section is to illuminate some of the
trade-offs which must be resolved in designing a configuration
intended to allow "graceful degradation" by inclusion of more
than one unit of each kind. It is not claimed that the curves
included in this document have direct applicability to any parti-
cular design; rather, they are intended to be roughly character-
istic of several different design-concepts, and provide an in-
tuitive feeling for the relative benefits provided by the concept
itself and by varying the redundancy within-a given concept.

Throughout this section, failures are assumed to be random,
with exponential distribution. This assumption is made because
it is expected to be roughly correct, but also because it is
mathematically easy to use. It is realized, of course, that non-
random failures and random failures of other characteristics may
be of significance. However, they are completely ignored herein.

3.4.2 Review of Basic Theory

If we denote the probability of survival (continued suc~-
cessful operation) of an element at time t by s, (t), the ex-
ponential distribution assumption may be portrayed as

sy(t) = et

where X is the failure rate, or average number of failures of
that kind of component per unit of time. Another way of describ-
ing this failure characteristic is to say that the probability
that a unit which is operational at time t will fail by the time
t+dt is Adt, and therefore independent of t itself.

Consider now a system repair station or maintenance man .
which is capable of working on a single problem at a time, and
whose probability of completion of a repair which is in process
at time t by time t+dt is A'dt. If the population of units po-
tentially requiring repair is large, the probabilities that none,
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one, two (and.so on) units are failed and not yet repaired are
described respectively, by

dPg

a:—= =A P0+SP1

e,

at— = A PO - (S+A) P; + 8 P2

dPi
.d?. A Pi—l - (S+A) Pi + 5 Pi+1

where i > 1, and A and S represent the rates of arrival (failure)
and service (repair) which characterize the system and the repair
facility. The assumed initial conditions for this set is that
all units are initially working: PO(O) = 1, and P;(0) = 0 for
iz1l.

Given values for A and S, these equations could be integrated
numerically to obtain at least the P;'s for small i's. However,
we postpone discussion of time—depenéent solutions temporarily,
and instead consider the steady state solution. In the steady

state, all the dP;j/dt are zero, and the solutions may be obtained
step~by~-step in terms of Py by starting at the top.

P; = pg (ass)t i20

Since the P;'s are mutually exclusive and cover all cases, P
may be found from

Ipy=1

Thus, PD =1 -~ A/S, and

;= (L-as8 /st izo0

Under these conditions, the average number of units not opera-
tional may be readily computed from

m = I i P; = B/ (5-3)
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Several cases are illustrated below:

A/S: 0.1 0.5 0.9
Py: 0.9 0.5 0.1
Py 0.09 0.25 .09
Pyt 0.009 0.125 0.81
mz 0.111 1.0 9.0

Notice that as the average failure rate approaches the average
repair rate capacity, the number of units awaiting repair grows
quite rapidly.

3.4.3 Application to a Finite Population

In the preceding analysis, the assumption of a large
population permitted treatment of A and 8 as constants which
were independent of the state of the system. Consider now a
small population representative, say, of the number of processor
elements in a multiprocessor computer system. If we ignore the
possibility that the pressure of a long waiting line at the
repair facility will have an effect on the repair rate (one way
or the other), S may still be considered constant. However,
the probability that one of the operational units fails in a
specified interval is strongly dependent on the number which are
already in the failed state: indeed, if none are working, the
probability that one more fails is zero. Thus,

a‘g— = - Ry Py + 8 Pi

dpPs

'd'::—=Ai—lpi—l—(Ai+s)Pi+SPi+l 1 <i<N
aPy

rranii Ay-1 PN-1 -5 Py

where A; is the system failure rate when i units are already in
the repair queue.

If A is defined to be the failure rate of an individual unit

{previously, A was the collective failure rate of a large ensemble
of units), then Ay = (N - 1)A and
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dp,
—_— = -NAa PO + S P

dt 1
dap;
T - (N-i+1)A Pj.7 - [(N-i)A + S]P; + S Pyj,y 1< i <N
dPy .
_— = AP -SSP
dat N-1 N
The steady-state solution of this set is given by
N . S |
Py ={ & N (ass)*
i=0 (N-i) ¢
P; = N! i :
i =T Py (a/8) 1 <i<N

A few illustrative plots of the solutions of the differential
equations are shown in.Figure 3.8. The scales are non-dimension-
al; time is expressed in units of At, and the repair rate in
terms of S/A. The curves indicate what might be expected in-
tuitively, in that as time increases, the system quickly leaves
the initial all-operational state Pg = 1, while the probabilities
of n units in the repair queue increase. The P's for larger

n's increase more slowly than for smaller n's, since the first
transitions into the n state come from ‘the n-1 state.

Figure 3.9 shows a plot of the steady-state solution for
a number of cases, but presented in a different light. Again
with S/A as a parameter, the probability that all units are in
the failed state is plotted against number of Units in the
system. Notice that the probability scale is logarithmic, to
allow display of the wide range of values involved.

Figures 3.10 and 3.11 display the probabilities that less
than 3 and less than 5 units are operational in the steady state,
as a function of number of units in the system. The motivation
for this form of display is that the situation whose probability
is plotted is the one in which a system requiring at least 3 or
5 units for full performance of its functions is below that level.
Again, several intuitive expectations are borne out. First,
notice the curvature of the plots for lower values of S/A, which
represent cases where the average unit repair rate is little
greater than the unit failure rate. This curvature represents
a tendency towards a horizontal asymptote, and reflects the
fact that when the repair facility is slow, addition of units
causes little reliability improvement. This is because the
failed units wait in the repair gqueue so long, that the added
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units are very likely to fail themselves before the others get
fixed.

The second intuitive belief is that the number of spares,
on a per-required-unit basis, should diminish as the number of
required units increases. That is, if a given reliability is
achieved when three units are required and five units (1.67 x 3)
are provided, then better reliability should result if five
units are required and 1.67 x 5 or 8.33 units are provided. For
example, in Figure 3.10 it is seen that the probability that less
than three units are operational when five are in the system and
S/A = 100 is 0.00006; however, Figure 3.1l shows that for the
same S/A, the chances that less than five of 8.33 are operational
are about ten times lower. Unfortunately, some of the happiness
that this brings to the system designer is lost when the diffi-
culties of adding a third,of a unit to the system are considered.

3.4.4 WNo On-board Repairs

Finally, an alternate concept for system maintenance is
considered. Suppose.that all the units of a type are either
hooked into the system or that on-board spares can be swapped
with failed units so quickly that it is as though they had been
in the system. Further suppose that failed units are not re-
paired on board, but rather the replacements are brought up
for those units on the next periodic shuttle flight. Then, if
the shuttle flight period is T, the state of the system tends
to diminish with time over the interval, but is restored to
perfect condition every T units of time. The differential equa-
tions for one interval of this case are simply ’

aey
at

= =By P

ary
— = Aj) Pi-1 ~ 3§ Pj 1<i<N

dt
EEE By P.
at N-1 "N-1

for 0 < t < T, with PO(O) =1, and P;(0) =0 when 1 £ i £ N.

If we change.variables so that henceforth t represents what was
t/T before, and if the former relation A; = (N-i)A is substitut-
ed, the equations become
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at = [-N Pyl AT
ary .
Fra [(N-i+1) P;_; - (N-i)Pjl AT 1<ic<N
ap

N
x [Py_1] AT

for 0 £ £t < 1. This system never really reaches a steady state
in the zero derivative sense, but to avoid the nuisance of the
time dependence, Figure 3.12 has been constructed from the aver-
age values of the P's over an interval, with 1/AT as the para-
meter.

3.4.5 Conclusion

The figures in this section seem to show that reliabili-
ties of multi-unit systems which require only a fraction of the
total number of units to be working can be made quite high. How-
ever, it must be stressed that these results are based on models
of the failure process. It is important for the reader to real-
ize, as he probably has already, that no accounting has been
made for the fact that to increase the number of units in a
system requires more than just more units; unfortunately, more
connections, switches, and other components must be added as
well, and often it is the unreliability of these that dominates
the system performance.

Another oversimplified consideration is that the failure
rates of units are independent of each other and of the level of
their own activity. It is well known that failure rates of many
kinds of electronics increase with temperature, and decrease
vwhen power is off. Failures-induced by power switching have also
been ignored, but are potentially significant.

The basic conclusion, however, seems clear: if a means
can be found for constructing a system so that redundant units
can be utilized without introducing appreciable unreliability
via their own inclusion, the system reliability can be made
almost arbitrarily high. The design proposed in Chapter 5 is
believed to possess these attributes.
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3.5 Segmentation and Paging

3.5.1 History

The handling of the problem of allocation of memory in
computers has evolved over the years in response to the changing
usage of the computer as a system. 1In the early systems, only
one job ran at a time, and the entire computer resources were
available for use by that job. Core allocation as such did not
exist; the individual programmer was simply responsible for in-
suring that his program would fit in the storage available. If
this was insufficient, he was required to break his program up
into pieces whicéh Would fit, and to plan their sequential exe-
cution. This process is referred to as overlaying.

The next significant change to storage management occurred
when multi-programming was introduced. In this case, more than
one job could simultaneously be active in the system, and a
‘decision had to be made regarding allocation of space to each.
Time-shared systems introduced an even greater dimension, since
response-time seen by the user at a terminal became an important
parameter in the system operation. The first concept introduced
to solve the storage allocation problem was known as relocation.
At the time when a segment of a program was to be executed, it
was preprocessed by a program called a relocating loader which
would customize the program for that instance of execution by
changing the addresses in the program to correspond to the
physical memory locations from which the program would be exe-
cuted. Subsequently, hardware was added to the processor to
aid this problem,, typically in the form of relocation reglsters.
This removes some of the problem of relocation, since it was
performed dynamically in the hardware. However, the binding
of several program segments together to run was still required
since each of the segments was written as though it was to be
executed in the low numbered addresses of memory. As the number
of users occupying resources of the computer at a given time has
grown, the responsibility for core allocation among them has
been awarded to a supervisory program. As time-response has
become as important as processor efficiency, more exotic address
mapping hardware has been added to the processor.

The manifestation of the fundamental storage allocation
problem is storage fragmentation, or fractionation of free
storage into multiple, relatively small, pieces. This phencme-
non is partially caused by the general inability to anticipate
storage requirements even over seemingly short time intervals,
but it is somewhat unavoidable without hardware aid. An illus-
tration-may prove helpful: suppose there are ten units of
storage, numbered 0-9. Suppose also that the allocation algo-
rithm awards the lowest-numbered smallest piece of available
space which is big enough to satisfy the request. Consider the
following sequence, where the number is the space involved,
and R or F indicate whether the transaction is a request or
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finish (return of space): 2R, 5R, 2F, 4R. It is seen that the
4R request cannot be satisfied even though five units are avail-
able, because of the fragmentation of free space.

Two methods used to circumvent this problem are described
in the following sections; a survey of systems using these
methods is given in Appendix A.

3.5.2 Paging

Paging is a form of address mapping which was first utilized
in the Ferranti Atlas Computer. It was introduced to help solve
two problems which are an inherent part of time-shared computer
usage:

1) It is desirable to execute programs which are not wholly
loaded into memory or which will not even fit in the avail=-
able memory space.

2) It is necessary to remove programs from memory and replace
them with ones more currently required, and later to restore
them, without substantial storage allocation overhead.

The notion of paging is simple enough: a level of indirect
addressing is added to cause logical addresses issued by a pro-
gram to be translated into physical addresses corresponding to
the current location of the block of the users program or data
referred to. The list which describes the translation is re-
ferred to as a page table, and is addressed implicitly by the
processor when needed.

Paging has permitted the user to write his program as though
it were to- execute in a large virtual memory, the correspondence
between the virtual address space of his program and the physical
address space computer being accomplished at execution time. In
execution, the reference by a program to a page not currently
in memory causes a missing-page interruption. The supervisory
program then initiates a fetch of the desired page, meanwhile
giving control to another process awaiting execution. This
strategy is referred to as demand-paging. The combination of
poor strategy for selecting pages to be replaced in core plus
overambitious attempts to crowd too many users into a given
memory have caused some notable performance disasters when paged
systems have become overloaded.

One of the important characteristics of paging is that it

is invisible to the programmer. This means the programmer need
not be aware of the fact that he has other than the virtual memory
which he envisions when his program is prepared. This can be an
advantage since it frees him from problems of storage allocation.
It, however, can also be a disadvantage, since it prevents him
from being able to influence memory allocation. Since pages are
usually fixed length blocks, it is difficult for him to arrange
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the contents of the blocks so that the pages are meaningful
logical units of program or data. As a result, sometimes large
fractions of pages are filled with information not immediately
relevant to that which is being currently used.

Hardware aid to the paging process takes several forms.
First, the processor may incorporate high speed memory for stor-
age of part or all of the translation address words, to reduce
the time penalty caused by the extra indirection in addressing.
Second, the hardware can control the settings of bits to indicate
those pages which have been referred to and those pages which
have been written into since a given time, in order that the
page switching software can determine whether it is necessary
to write a page out to secondary storage when its space is pre-
empted to make room for another page. If the page has not been
modified, it need not be written out, since a copy already exists
on the secondary storage device. Third, the hardware might (but
normally does not) keep an ordered list of page references so
that the software could determine with a minimum of overhead
which page was least recently used when space for a new page was
required. Fourth, the hardware can readily implement storage
protection by providing bits in the translation address word
which indicate the page is a read-only page, an execute-only
page, or a free read and write page. It should be noted that
pages not known to a process by virtue of being included in its
page table are protected automatically, since they are simply
not addressable by the process and therefore, are completely
safe from over-writing.

That paging is an effective means of memory allocation
depends upon a characteristic of programs in execution for short
periods of time: namely, that the accessing of words in program
and data is not uniformly random, but rather is confined to a
small subset with high probablllty( ), Thus, if the period of
execution of a program is brief, for example, one time slice,
much of the program and data will not be referred to during the
interval, and therefore need.not occupy space in memory. The
extent to which this hypothesis is true in a given application
can profoundly affect the success or performance of a given
implementation. As a result, many articles have appeared in the
literature describing dlfferent paging measurements and strate-
gies.

3.5.3 Segmentation

Segmentation is a generalization of the virtual memory
concept through the provision of a series of independent virtual
memories. Each one of the virtual memories may be considered to
contain exactly one segment, so that any segment may grow or
shrink without affecting other segments. Further, segments not
in use during execution of a program need not be physically pre-
sent in memory. That is, segments need be loaded only when re-
ferred to. This is useful since the largest unit of program
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which must be bound together, as described previously, is the
segment. Since the virtual addressing within each segment may
begin at location zero, and since these addresses are dynamically,
not physically, relocated during execution, segments may readily
be shared between processes without elaborate additional mechanism.

It is seen that some of the characteristics of segmentation
overlap those of paging. Indeed, if the typical size of a seg-
ment was of the order of the size of the page, paging as such
would not be useful as an additional characteristic of the hard-
ware. On the other hand, if segments are often substantially
larger than the page size, paging is useful.

The use of segmentation is often referred to as two-dimen-—
sional addressing, since the address of an item in a segment is
specified by a segment number and a relative location within the
segment. Therefore, unlike paging, segmentation is a logical
division of address space which is completely visible to the pro-
grammer, and need not be inherently related to the problem of
memory allocation.

T™wo of the most recent systems to be based on segmentation
are the MIT Multics system using the G.E. 645 computer and
the Burroughs 6500/7500 computer system(3). In Multics, both
segmentation and paging are provided. In the Burroughs system,
only higher order language is used for program preparation, and
the structure of these languages is used to inherently define
rather small segments. Thus, paging is not required, except
for large data arrays. In both systems, segmentation is used to
segregate read-only procedures or programs from alterable data.
Additionally, both systems rely on segmentation to achieve order-
ly sharing of programs and data among processes. In both, seg-
ment descriptor words are used for location translation of seg-
ment addresses. Segment length information is also contained in
the descriptor word, and is used to validate addresses as they
are issued. Burroughs uses this feature to the extent that each
array is defined to be a segment, so that illegal subscripting
can be discovered by hardware, eliminating software overhead for
this.

3.5.4 Paging Studies

3.5.4.1 Theoretical Consideration of Paging

The material presented in this section is based on ﬁhe
content of reference 7.

Let m be the probability that a page-fetch is demanded by a
particular program. This is a function of the size of the pro-
gram, the number of programs resident in memory, and the memory
size. Let T be the traverse time of a page-fetch, which is the
sum of T,, the access time of the page on the secondary storage
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device, and T,, the time to transfer the block of words com-
prising the page. Let time be measured in microseconds, making
the time-unit roughly comparable to the instruction execution
time of the processor. If a page is defined to be 1000 words,
the following table indicates typical speeds:

Device Ta Te T
IC or film .1 102 102
Core 1.0 103 103
Bulk Core 10 104 10
Fast Drum 104 103 104
Moving-arm Disc 103 103 105

Suppose a job is running for an interval of time over which
the missing page probability, m, is approximately constant. We
wish to compute the paging efficiency, which is defined to be:

RT

e(m) = RT + Page wailt time

Page wait time = m x RT x T

RT - 1

e =~y mRrT - TFAT

Figure 3.13 is a plot of e versus m for various values of T. It
illustrates dramatically the need for small values of the product
m T,

At first glance, it appears that a low paging efficiency
for one job could be compensated for by running enough jobs
simultaneously to keep the processor occupied. This falls short
on two grounds:

1) The objective of paging (neglecting interactive users’'
response times) is to multiplex core to keep the processor
efficiently loaded. But if each job has only a low duty
cycle, then more core will be needed, not less.

2) The paging device, often a drum, will saturate and become
the limiting item. In running a set of 10% efficiency jobs,
the drum may continually be fetching pages, and the pro-
cessor will be idle while all jobs are waiting for pages.

The only real answer lies in providing enough pages so
that each job can run with a reasonably high efficiency.
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3.5.4.2 Experimental Studies

Results of several studies are presented without ex-
tensive comment. ¥First are some measurements by Varian and
Coffman(4). Pigure 3.14 is a plot of what is called "page
residence time" distribution. Actually, it is the distribution
of the time intervals between consecutive page faults for a
particular problem under differing allocations of number of
pages. The test problem is a SNOBOL compiler for the IBM 360,
which consisted of 15 instruction pages and 22 data pages, each
of 4096 bytes. The results for data and instruction pages are
given separately. The guantity labeled p is the mean time
between page faults; k is the number of pages allocated. As
can be seen, for 8 out of 15 instruction pages, the mean time
between page faults is only 300 instructions; for 8 out of
22 data pages, the mean is 120 instructions.

Figure 3.15 shows the overall picture for the same problem.
The ordinate, labeled "normalized page faulting®, is the number
of page faults divided by the total number of instructions that
were executed. The abscissa, labeled k, is again the maximum
number of pages that this problem was allowed. As mentioned
above, the size of the problem was 37 pages. The scaling is
not good atlarge k's, but even for a k of 24 to 30 the amount of
paging is not negligible. (LRU = Least Recently Used, BOR =
Belady Optimum Replacement, two strategies for page replacement.)

?other study was done at the IBM Thomas J. Watson Research
Center , using a specially modified 7044. 1In these cases,
core size was varied, and the actual time to complete the pro-
blem was measured. The secondary storage device had a traverse
time that was 25,000 times the core memory cycle tlme. Three
jobs were selected to be run.

1) A FORTRAN job that inverts a 100 by 100 matrix.

2) A FORTRAN job that does data correlation using a fair quan-
tity of input information.

3) A sorting job that sorted 10,000 10-word items.

Figure 3.16 shows the run time as a function of the alloted
core space for the first job. The original problem is given
by the points marked by the circles. The triangles and square
represent versions of the program that were reprogrammed to re-
flect the paging environment.

Figure 3.17 illustrates the second problem results. This
time the triangles stand for the initial program and the circles
for the improved version.

Figure 3.18 gives the times for the sort problem. The
solid rectangle is the basic program and the others were succes=-
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sive improvements. The rather dramatic savings in core needed
were achieved by using the large file of data (100 pages) in
small sub-files at the cost of additional processor time. Less
processor time is required when the whole file can be randomly
addressed and a list threaded through it.

The ‘thrust of the conclusions was that acceptable perfor-
mance can be realized if programming techniques are used which
recognize the paging environment. If allowances are made by
the programmer for the need of the paging mechanism to shrink
the allotted size of memory available for his program, then it
is possible to produce programs that will run efficiently under
paging.

Two factors should be mentioned which might influence the
extrapolation of the results:

1) The compilers and programs were taken from an IBM 7044, a
second generation computer. Techniques and program layout
methods have changed since then: re-entrant code, pure
procedures, involved interaction with large operating systems,
etc.

2) The jobs all had one characteristic in common: they were
larger than 32K in their natural form, and had all been
reworked to make them fit into a 32K configuration by over-
lay techniques. (Perhaps the breaks in the run-time of
the FORTRAN jobs near 32K are no coincidence.)

3.6 Processor Interrupts

3.6.1 Introduction

The purpose of processor interruption is to alert a
processor to the occurrence of an event, while eliminating the
necessity for -repetitive testing under program control. Each
interruption causes that processor to record sufficient infor-
mation to resume the interrupted process at a later time, and
then to begin execution of instructions at a location correspond-
ing to the particular interruption. Hardware interrupt features
are an integral part of the design of most computer systems.
Their implementation, coupled with the executive scheduling and
dispatch functions in the software, provide the overall control
structure for the configuration.

Multiprocessing systems introduce an extra dimension for
design consideration. Such questions as "which processor should
be interrupted" or "should one processor service all interruots"
appear in addition to the questions in simple processor system
design such as "should there be a priority structure for inter-
rupts", “"what are the hardware functions for interrupts®, and
"what software control of interruption-disabling is possible".
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The purpose of this section is to review interrupt features
of several existing systems.

3.6.2 History and Background

Historically, the early computers operated in a serial
manner, in that initiation of each action had to await comple-
tion of the previous action. It was frequently necessary to
afford careful consideration to execution timing in order to
synchronize data transfers between memory and the peripheral
devices.

Later, computers such as the IBM 709 enabled interleaved
instruction execution and I/0O operation. These systems included
one or more input/output channels capable of executing sequences
of I/O commands themselves without the participation of the
processor. When processor aid did become necessary, the channel
was able to trigger an interruption. This system had the ad-
vantage of permitting program execution and I/0 to operate con-
currently. The interruption of the running program upon com-
pletion of an I/0 operation was accomplished by causing an in-
voluntary transfer of control to a predetermined memory location,
at which an interrupt service routine began. Multiple and time-~
shared I/0 channels were subsequently introduced, which increased
the possibile multlpllclty of the I/0 operations and the complex-
ity of the interrupt serv1c1ng.

3.6.3 Single-Level Interrupt

In a single-level interrupt structure, the processor is in
one of two modes, the "normal" mode or the "interrupt" mode.
When the processor is operatlng in the normal mode and a condition
aoccurs which, by design, requires an interrupt, the processor is
placed in the interrupt mode, and control is transferred to a
predetermlned location in memory. The concept of single level
is simply that while the processor is in the interrupt mode, it
may not agaln be interrupted. That is, recognition of further
interrupts is postponed until the processor leaves the interrupt
mode. This inhibiting of interrupts requires the hardware to
be designed such that no data or interrupts are lost.

When the 1nterrupt occurs, certain information must be pre-
served so that the interrupted program may later be resumed.
This information includes the processor state, plus the set of
machine registers which could be over-written during the execu-
tion of the interrupt servieing routine.

3.6.4 Multi~-Level Interrupt

The multi-level 1nterrupt structure typically assigns each
interrupt or class of interrupts to a “prlorlty level". The
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hardware is designed to allow interrupts assigned to a given
level to interrupt those of a lower level. Otherwise, the
basic concepts are similar to the single-level interrupt struc-
ture.

An unusual system of this type, the Litton 304, uses 64
levels, and delegates a significant amount of the executive
control to this hardware. Each process (or program) as well
as each interrupt is assigned a level, and the system essentially
never leaves the interrupt mode.

3.7 Stacks

3.7.1 General Description

A stack, according to Knuth(ll), "is a linear 1list for
which all insertions and deletions (usually all accesses) are
made at one end of the list". Stacks, which have proved to
be important in many computer applications, especially recur-
sive procedures, have been called by many other names. Among
them are "push down lists", "last in, first out (LIFO) lists",
"cellars", "nesting stores"”, and even “yoyo lists".

When an item is put onto the top of the stack the process
is called “pushing down"; to take an item off the top is to
"pop up". The bottom of the stack is the oldest word in it,
and hence the least accessible item. When a stack is pushed
down to accept an additional item, the words in the stack in
memory are not physically moved from one location to the next.
Instead, a variable, called the stack pointer, contains the ad-
dress of thé location ih memory of the top of the stack, and is
merely incremented when an item is added to the stack. Thus the
items in the stack appear to be pushed down because their loca-
tion is farther away from the location pointed at by the stack
pointer. :

Usually there are limits or bounds on the memory space that

the stack may occupy. If the stack size violates these bounds,
the condition is called stack "overflow" or "underflow”.

3.7.2 Examples of Stack Implementations

A stack system has been implemented strictly through soft-
ware for many computers. However, several computer manufacturers
have recognized the utility of stacks, and have implemented hard-
ware and instructions which facilitate stacking mechanisms. Some
of the computers which have implemented stacks are the following:

1) SDS Sigma 7¢14)., The Sigma 7 resembles the IBM 360 in its
data format and special registers. It includes byte, half-
word, word, and double-word data handling instructions. How-
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2)

3)

4)

ever, its instruction set is quite different, and it has a
stack capability. The instructions are as follows: Push
word, Pull word, Push multiple word, and Modify stack
pointer. The effective address portion of each of these
instructions points at a location which contains the "stack
pointer double word" (SPD). The operation can be seen by
consideration of the "Push word" instruction which increments
the stack pointer, and then takes a word from an accumulator
and stores it in the location pointed at by the new contents
of the stack pointer. Stack limit data in the SPD is used
to validate the operation before it is actually performed.

pEC ppp-10(8). The stacking capabilities of the PDP-10

are similar to the Sigma 7. The two common instructions are
PUSH and POP. The PUSH instruction is like that of the Sigma
7, except that the sources of data and stack pointer are
reversed; i.e., an accumulator contains the stack pointer,
and the effective address specifies the location of the data
to be transferred to the stack.

Two more instructions that are useful are PUSHJ, which causes
a transfer to the addressed subroutine, leaving return infor-
mation in the stack, and a return counterpart, POPJ. In
detail, PUSHJ increments the stack pointer accumulator,
pushes the program counter and flag information into the
stack, and jumps to the location specified by the effective
address. POPJ provides the means to return. This pair of
instructions is a-useful mechanism for handling nested or
recursive subroutines.

Burroughs 5500, 6500 and 7500¢2/3) | The Burroughs imple-
mentation of the stack 1S no half-way measure. Rather than
offering a stack as an optional feature which may or may

not be used by the programmer, Burroughs has incorporated the
stack into the fundamental architecture of their computer.
The pair of registers that are sources for operands and
destinations for results (effectively, the accumulators) are
logically 'considered by the hardware to be the top of a
stack. Arithmetic operations such as ADD take their inputs
from the top of the stack and leave their results on the

top of the stack. Other instructions are provided to move
operands from memory to the top of the stack, or store data

‘from the stack to memory. The top of the. stack, then, is

the heart of all calculations and the stack itself shrinks

or grows as the computational sequence indicates. This utter
dependence upon a stack rather than multipurpose accumulators
seems to be unigue to Burroughs.

DEC ppP-11(9), The PDP-11 contains eight "general registers",
tWo OF which are dedicated to specific functions and are im-
plicitly addressed by certain operations. One of these is

the program counter; the other is the stack pointer (SP).
The addressing modes of the machine autoincrementing (incre-
ment register after use) and autodecrementing (decrement
register before use) which facilitate the use of other re-

96



gisters as stack pointers also. The interrupt sequence in
the processor and the subroutine call and return instructions
store appropriate information in the stack by use of SP, so
that priority interrupt and nested or recursive subroutine
implementation is quite direct. Hardware-aided checks on
stack limits are almost non-existent; a single fixed address
in memory is treated as the stack upper limit, and a trap
occurs if a stack controlled by SP exceed this boundary.

3.8 Microprogramming

The term microprogramming was introduced in a paper by
Wilkes in 1951(15). The intént was to introduce "a systematic
alternative to the usual somewhat ad hoc procedure of designing
digital computers". The traditional technique was to specify
only the inputs and the outcome of each individual instruction
and leave the details of the implementation to the logic designer.
Wilkes pointed out that the execution of an instruction involved
a sequence of information transfers, and compared these individ-
ual steps to the execution of individual instructions in a pro-
gram. Each step can be considered a microinstruction; the
complete set then constitutes a microprogram.

Microprograms usually reside in a device distinct from the
users' memory, called the control storage. Although control
stores have generally been read-only memories, several computers
have recently been developed with read-write control stores.

This opens the door to intriguing possibilities, such as dynamic
variation of the instruction set the particular computer might
possess. Use has been made of this capability to build emulators
for existing computers and to write diagnostic routines which
perform machine checks at a more basic level than could be accom-
plished with ordinary instructions.

The significant advantage that microprogramming offers can
be described by one keyword: flexibility. Profitable uses of
this flexibility include the following:

1) Many times it becomes apparent during the software-writing
effort that certain additional instructions would make them
more useful, but it is too late in the design cycle to in-
corporate these changes. Microprogramming allows the re-
design of an instruction set (within limits) long after the
basic hardware intself has been frozen. This situation arose
in 1968, when IBM redefined the floating point arithmetic
on all 360 models. For the most part, this change was ac-
complished by merely rewriting and debugging the appropriate
microprograms. To have made a corresponding change at the
hardware level would have been enormously more expensive(13).

2) similarly, microprogramming offers the opportunity to provide
instructions and special features tailor-made to a customer's
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unigue needs long after the system has been specified, with

no hardware modifications. The addition of special purpose

hardware and peripherals, not supported in the original de-

sign, to an already designed system has historically been

an awkward and expensive task. Microprogramming offers real
potential for solutions to this-problem.

3) As an extension to the capability to emulate older computers,
microprogramming may prove quite valuable as a test-bed for
the development of future computers. Emulators may be writ=
ten for proposed machines and measurements conducted to offer
empirical evidence of the design efficiency.

Examples of contemporary microprogrammed computers include
the following(13):

1) 1IBM 360/25. The 25 has a writable control store for which
Toad decks that make it look like either a 360 or a 1400
series computer are supplied. Since the control store is
generally writable, other emulators could be produced for the

2) IBM 360/85. The 85 has two microprogram control stores.
One is read-only, and contains the 360 emulator. The other
is generally writable, and supports the 7094 emulator as
well as basic machine diagnostic routines.

3) Standard Computer Corporation's IC Series. Standard has
Introduced a whole series of computers which are micropro-
grammed. The earlier ones were designed especially to simu-
late the IBM 7090/7094 and 7040/7044. Newer machines in the
Standard-line offer the possibility of emulating & number of
different common computers of several manufacturers. The
IC7000 is particularly slanted towards the time-sharing mar-
ket.

Enthusiasts have raved over the possibilities and seemingly
unlimited potentials of general microprogramming. They envision
the ability to manufacture a computer that could emulate the
characteristics of every commonly used computer. By the relative-
ly minor amount of programming necessary to construct the micro-
programs (1800 instructions in the Standard Model 9) (12), they
can cash in on the huge investment in time and money already
spent to produce operating software. The technique would all
but eliminate the gigantic reprogramming costs of switching over
to a new generation computer. The following quotes illustrate
some of the claims that one proponent of microprogramming is
zealously putting forth: The "life of existing program libraries
will be extended to infinity". "Vintage software, massaged and
made workable through frequent use and long study, can now be
employed as required without locking the user in or out." "We are
rapidly approaching the time when all programs will run on all
machines."{(12) -
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PRECEDING PAGE BLANK NOT FILMED,
Chapter 4

System Design Guidelines and Constraints

4.0 ZIntroduction

This chapter presents the major guidelines and constraints
influencing the architecture of the computer for the space
station data management system. The scope of this contract did
not include any detailed analysis or generation of system design
requirements; however, it is a meaningless exercise to attempt
to configure a large-scale. system without at least order-of-
magnitude estimates of requirements. Therefore, this chapter is
intended to summarize existing space station DMS guidelines,
and preliminary DMS design requirements being developed by the
Space Station Phase B contractors.

We observe that at present, neither the design criteria
for the computer system nor the operational and performance
requirements it must satisfy are weil defined. Terms such as
high reliability, on-line reconfiguration, graceful degradation,
and configuration flexibility are being used rather loosely
as characteristics of the computer system. These terms all
have broad scope in meaning, and their exact interpretation
with respect to the space station has a direct effect on the
architecture of the computer system. In addition, the processing
requirements of the on-board computer system in terms of "what
it must do" have so far only been grossly estimated, based upon
preliminary functional analyses. These obviously are not
adequate to finalize performance requirements or sizing of the
computer system.

However, these requirements, guidelines and constraints
have been used in planning and designing the organization of the
computer system presented in Chapter 5. It is therefore useful
to restate them, and to interpret them where necessary. The
information is presented in the following sections: General
Space Station Subsystem Requirements, Performance Requirements,
Physical Requirements and Reliability.

4.1 General Space Station Subsystem Requirements

With reference to the "Statement of Work Space Station
Program Definition (Phase B)", 14 April 1969, the space station
will be designed for a minimum of ten years of operational life,
and each of the subsystems will be designed with large margins
and provisions for in-flight maintenance, repair, and replace~
ment. In addition, the station will be designed to take advan-
tage of technological advances in subsystems which occur after
it becomes operational.
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a)

b)

c)

d)

e)

£)

g)

The Intermetrics interpretation of this follows:

The data management computer system (DMCS) should be
designed to have an operational life of at least ten
years.

The DMCS should be designéd assuming that in-flight repair
or replacement of failed modules will be performed, and
that the supply of spares may be replenished via the shuttle.

The DMCS should be designed to take advantage of technolo-
gical advances which occur during its life. This implies

that the initial system is not a "closed system", or one

in which all equipment is available from the beginning, within
the initial configuration.

It should be noted that expansion of requirements over the
operational life of a system has always been underestimated.
It therefore appears reasonable to establish a guideline
that the computer system be designed with an expansion
safety factor of about four. That is, the capacity of the
design, if not the initial implementation, will accommodate
a guadrupling of requirements over the life of the system.

It is assumed that the software will be .expanded and other-
wise modified during the life of the system. It is also
assumed that on-board software generation capability is to
be provided, plus provision for testing and introducing of
new program modules created on~board or on the ground.

The system must detect all permanent and transient failures
which result in errors. In addition, it must distinguish

between permanent and transient errors, identify the modules
which contain permanent failures, and recover automatically.

The power supply shall be decentralized, and implemented
so that no power failure at a modular level can disrupt
system operation.

The interface of the DMCS with other systems shall be
designed with a capacity in excess of the predicted traffic,
by about a factor of four.

4.2 Performance Requirements

The major contributions to the load on the data management

computer system is estimated to be the processing and control of
experiments. Approximately 70-90% of the storage requirements
and 50-70% of the speed are expected to be absorbed by programs
and data for scheduling, initializing, and controlling experi-
ments, plus data collection and computational services(2).
Therefore, a careful examination of these requirements is-
necessary to ultimately size the system.
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Prior to discussing the storage and processing requirements,
a brief overview of the anticipated operational functions is
provided.

4,2,1 Functions of the DMCS

At the current stage of the space station program, the
design of the major operational functions is not complete to
the level of detail necessary to assess their full impact on the
computer's sizing. Further, it is our estimate that this will
not be fully resolved during phase B of the program.

In general, the DMS ‘computer system will be interfaced with
a number of subsystems -on board, and will serve as the primary
computation facility. Some of its principal interfaces with
on-board sensors and subsystems are: Control and Display Sub-
system (probably CRT-like devices), an Inertial Subsystem, Digital
Communications Subsystem, Rendezvous and Docking Radar Subsystem
and other Docking Sensors, Surveillance Radar, Reaction Control
Subsystem, Primary Propulsion System, Balancing Subsystem, Power
System, Experiment Equipment Interfaces Environment, Thermal
Control, and Biomedical Subsystem. It is assumed that the DMCS
will send and receive information over the external data bus,
and provide the control and processing required by these subsystems.

The following major operational functions will be supported
by the DMCS:

a) Primary and Command and Control

One of the prime functions of the DMCS is to drive the
displays for command of the space station. The computer
will assist the crew in planning and execution of maneuvers,
flight decisions, and trajectory control, and will provide
other data for flight control of the space station during
its mission. This will include functions such as rendezvous
and docking.

b) On-Board Checkout

Another function of the DMCS is the periodic checkout of the
on~board subsystems to determine whether or not they are
operating in an acceptable manner. There are several

aspects to on-board checkout: status monitoring, in which
test points are checked to determine if any gross faults
exist; trend analysis, forpredicting faults; and diagnosticsto
determine malfunction location to provide a basis for
reconfiguration actions. In addition, some form of failure
correction, calibration, and record keeping are part of

these functiomns.
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c)

d)

e)

£)

Mission Planning and Operations Scheduling

The computer will assist the crew in performing mission
analysis and assessment, and in daily crew scheduling and
logistics inventory control.

Guidance, Navigation, and Control

The computer will, using its sensor subsystems, maintain
knowledge of position and velocity of the station. It will
also perform the artificial G stabilization, and attitude
control for pointing of earth survey instrumentation.

Experiment Command, Control and Data Processing

As stated above, one of the largest tasks of the DMCS

is predicted to be the processing of data from various
experiment modules. Some of these functions include experi-
ment scheduling, experiment command and control, data collec-
tion, data formatting and storage, data reduction and pro-
cessing, and .display interfaces..

There are many experiments planned for the space station
over its life, Four of these experiments predicted to
have the largest impact on data input to the computer system
are:

Advanced Stellar Astronomy

Plasma Physics - Subsatellite

Earth' Surveys

Remote Maneuvering Satellite
Software Support System
This portion of the DMCS includes the software operating
system., For purposes of this organization of functions,

it includes utility software required to support other
aspects of the computer system.

4.2.2 Summary of Phase B Preliminary Sizing Estimates

4.2.2.1 gStorage

Preliminary estimates of the size of and storage

requirements for the space station computer system have been
made by M-D/IBM, the MSFC Phase B contractor, to be about
300-500K words of operating main storage and 7 x 106 - 4 x 107
words of bulk storage (36 bit words). Supporting assumptions
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for these estimates are included in reference 2.

4.2.2.2 Processing

IBM has estimated the speed required of the computer
to be not more than 106 equivalent add operations/sec{2), This
is currently above the speed of presently available airborne
computer systems; however, we believe this estimate to be low.
Data processing centers, in many ways comparable to the DMCS,
operate in excess of this figure. In fact, some contemporary
ground-based systems are achieving more than 107 ops/sec.
However, to estimate the speed requirement accurately requires
deeper resolution of the functional requirements, which is not
possible at this time.

4.2.3 Digital Input Data Rates(s)

A preliminary estimate by NAR of the total input data
rate to the DMCS from all experiments suggests that 310 x 102
bits/day is the upper limit. However, with scheduling of the
larger data-gathering experiments as proposed by NAR, 90%
of all experiment requirements can be achieved within a limit
of 180 x 109 bits/day. The computer system will process and
compress this data so that only a small percentage of it need
be maintained in the files or sent to the ground.

4.3 Physical Requirements

There are no currently existing physical requirements such
as power, weight, and size for the DMS computer system. Some
figures, however, for existing airborne systems are presented
in Appendix A of this report.

4.3.1 Modularity

Another constraint on the system is that it be modular.
We have interpreted the meaning of modularity, and present
the following general requirements: the system will be composed
of a number of modules best defined by their physical charac-
teristics. Each module will be a subunit which is physically
self-contained, and which can be replaced without a major
disagsembly of the entire system. Each is connected to the system
at a number of points for power, information (I/0), thermal
control, and physical support. Memory, processor, and I/O units
are examples of modules.

a) If a module fails permanently, it will be replaced. Each

module will be constructed to maximize its reliability,
and will include internal redundancy if appropriate.
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b) The number of different types of modules in the system w1ll
be minimized, to facilitate maintenance and testing.

¢) The electrical interface for each module will be simple,
with the minimum number of pins necessary to satisfy
performance requirements with reliable technology.

d) The interface for each module will be standardized to
facilitate expansion, testing, etc.

e) Fach module will be designed so that it can be removed and
replaced on line without shutting the system down.

f) - Togical connection of modules to the system must be under
both program and operator control,

4.4 Reliability

Two of the most important factors in the trade-off
considerations of the configuration design are flexibility
(or expandability) and reliability. To date no complete gquanti-
tative statement of a reliability requirement exists.

One important assumption which we have made with respect
to reliability is that the computer system is performing some
number of “critical" functions, those which directly effect crew
safety, during the mission. It is considered that these func-
tions must be performed 100% of the time, with interruptions
of no longer than milliseconds for recovery from failures.

4,4,1 Failure Tolerance

Reference 4 defines a failure tolerance requirement for
the system which allows no performance degradation after one
failure, performance at a reduced level with two failures, and
fail safe after the third. This requirement is quoted below:

a) Capability shall be provided for performing critical
functions at a nominal level (performance of operations
for which the system was designed) with any single component
failed or with any portion of the subsystem inactive for
maintenance.

b) Capability shall be provided for performing critical
functions at a reduced level with any credible combination
of two component failures or with any credible combination
of a portion of a subsystem inactive for maintenance and
failure of a component in the remaining subsystem.

c) Capability shall be provided for performing critical

functions at an emergency level (sufficient for survival
only) until the affected function can be restored or the

106



crew returned to earth.

Although the above failure tolerance criteria are
frequently referred to as reliability specifications, brief
consideration shows that they are not. In colloguial language,
the "real" reliability requirement is the attainment of a
specified probability that the DMCS will be able to perform
needed functions at the time they are needed. Clearly, this
involves a combination of failure rate, failure tolerance,
and repair rate which provides the specified probability that
needed performance capability exists. In particular, if the
time to repair a failure is substantially smaller than the time
to the next failure, tolerance of more than one failure seems
unnecessary. On the other hand, less favorable combinations
of failure and repair rates can conceivably require tolerance
of more failures in order to meet the goal.

Because of the large cost of the DMCS, and the sensitivity
of the cost to redundancy and other "reliability"-aids, a much
more carefully thought-out specification for reliability and
availability is needed for the DMCS than has historically been
put together for airborne and space systems. Only when this
specification has been created can relevant decisions be made
with respect to failure tolerance, error detection, and recovery
characteristics of the computer system.

4.5 Information & Display

4.5,1 General

The design of information and display techniques for
the space station DMS must provide a sufficient interface for
the crew to operate, control, and communicate with on-board
subsystems to accomplish mission objectives. Currently, manned
spacecraft are filled with many gauges, meters, controls, and
computer—-generated data displays which permit significant
interaction with the pilot. The concept for future advanced
spacecraft will include not only more sophisticated subsystems
with more automatic processes, but more autonomous operational
tasks, and a wide spectrum of scientific experimentation and
research over longer mission intervals.

The on~board display and controls provided must therefore
emphasize flexibility for multipurpose use and high reliability,
but remain a simple, efficient, man/machine interface. The
purpose of this section is to supply an overview of the general
information and display concepts, discuss control of a multi-
processor computer system which is performing a number of
independent tasks, and related problems.
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4.5.2 Space Station Information & Displaj Requirements

It is helpful here to review some of the basic assumptions
envisioned for the space station, to serve as a background for
discussion of the display interfaces with the multiprocessor
system.

4.5.2.1 Displays’

A general ground rule will be that electromechanical
display devices(3) are to be eliminated. These will be replaced
by more flexible electronic displays, such as CRT's or other
two~dimensional devices. The state-of-the~art in input and
output devices for computer systems will certainly change and
improve over the next decade.

4,5.2.2 Interactive System Terminal Developments

Most interactive system terminals today use typewriter-
like devices. Their prime advantages are their relatively low
price and the use of the hard copy medium, which automatically
provides a record of all input and output. Cathode ray tube
devices avoid some of the problems of typewriters; they can
operate rapidly, and are considerably more flexible in format
and editing control. CRT's are gradually becoming more widely
available as terminal devices, and over the next few years should
be increasingly competitive with typewriter devices. Obstacles
to their acceptance include high cost for terminals, lack of hard
copy, and communications limitations, which make the rapid data
rate necessary to remotely maintain distant displays prohibi-~
tively expensive. Prices are coming down slowly, and the
continuing influx of reasonably inexpensive keyboard-plus-CRT
alphanumeric terminals has accelerated the trend away from paper
output devices.

Other techniques are being investigated which will facilitate
new methods of dialogue with computers in the future. These
include direct use of handwritten input via devices such as the
Rand Tablet or Grafacon, and even voice input and output through
a set of software and hardware constructions. Interesting
demonstrations and papers are being presented on on-line, hand-
written input.

Some research work is underway into audio-input systems.
LISPER is a limited sgeech recognition system developed by Bolt,
Beranek, and Newman. (1), LISPER operates within certain limita-
tions. First, there are a hundred items in its vocabulary.
Second, the number of speakers is limited, and each must first
be trained by the system in closed-loop fashion so that the
system recognizes him. Nevertheless, it has been successfully
demonstrated.
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Audio output is also available today on some g?ound-based
systems, and may have application in the space station program.

Another approach to computer input which has been'tried
is a so-called "list selection technique". This technlqug
involves lists which are displayed either on a CRT or optical
screen, and which may be changed rapidly under computer control.
The user composes input into the system by select}ng wor@s and
phrases from the list. This can be done either w1t§ a light .
pen, or in the case of the CDC Digiscribe, by touching elegtrl—
cally conductive regions on the face of the CRT with the f}nger.
As the user selects phrases from the list, new lists are displayed
as required. This approach.to computer input takes advantage of
the wide bandwidth of this class of displays, and of the human
eye, to rapidly convey information to the user. He may then
respond manually at a low rate. It is particularly useful for
users who are not good typists. '

4.5.2.3 Space Station Terminal Complement

However attractive some of the developmental technigues
appear, we propose to limit present consideration to equipment
which is certain to be available in time. The initial display
equipment needs are assumed to be:

a) A computer controlled, multi-purpose display and control
unit to be used as the pPrimary man/machine interface. It
will consist of:

1) A CRT-like display console with state~of~the-art refresh
rates, illumination, resolution, and buffer memory.

2) Keyboard input device with alphanumeric and special
character keys.

3) General purpose function keyboard for single action
responses, with flexibility to redesignate function/key
assignments dynamically.

4) Light pen or similar device.

b) Hardcopy device such as a line printer.

c) Microfilm viewer with programmed, retrieval capability; to
contain schematic and other reference or library data.

d) Closed circuit TV monitoring system,
e) Status and control panels.

f) Direct "joy stick" controls.
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The design of these sSubsystems must conform to space
station guidelines of low power consumption, high reliability,
long life, compact packaging, and modular construction.

The remainder of this section is desvoted to a discussion

of Item a. (Control and Display Unit) and the associated design
problems.

4.5.2.4 Preview of Manned Operations Aboard Space Station

As presently conceived, the space station will have
‘a central command center similar to the bridge or combat infor-
mation center of a ship. The command center will be manned
on a 24-hour basis, and will contain all controls necessary for
operation of the station. An experiment control center, not
necessarily co-located with the primary command center, will
contain displays and controls necessary to operate and monitor
the experiments and other functions of the station.

Functions of the command center include:

1) Flight operations scheduling and control of mission
events,

2) Vehicle operation; all operations performed with
the vehicle: rendezvous, docking, orbit determination,
attitude control, etc.

3) Subsystem status, monitoring, control, and configuration
control.

4) Operation and control of the DMS computer.

5) Crew scheduling and training.

6) Communications. l

Functions of the Experiment Control Center include:
1) Experiment control and planning.

2) Data collection and compression

3} Ground interface

4) Data analysis

Internal communications and procedures will be established
for overlap in control of the base with respect to experiments.
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4.5.2.5 Dpisplay and Control Information Required On-Board

The information required by the crew to control and
operate the space station has a variety of characteristics.
Alphanumeric data, graphs, and pictorial data (static or even
moving) may all be required. Further analysis is required to
resolve the optimum level of information to be presented to the
operator with respect to each operatlonal function requlrlng
an interface. To resolve this issue requires an interactive
process in which automatic and non-automatic computer functions,
and crew interfaces required to best perform mission tasks are
evaluated. Hardware/software complexity, availability, and
cost will constrain the degree of automation and types of
displays made available, whereas crew safety and the complexity
of the crew's role may require more advanced display techniques.

Since it is premature to identify all displays, some
examples are offered of the types of functions to be performed
to indicate the scope of display data requirements. 2As a
general observation, the display and control capabilities will
include: alphanumeric and graphic outputs from the computer and
alphanumeric, special function key, and light pen inputs.

Examples of functions which involve displays are:

a) Control and operation-of,the DMS system.

b) Control, selection, and data input/output from operational
software (rendezvous tracking, maneuvers, docking, instru-
ment pointing, etc.).

c) Station position and situation displays (orbital position
and velocity indications, attitude, rotation rates, thrust

controls, extra-vehicular module position, communication
coverage, mission events and schedule).

d) System and subsystem situation and status displays (confi~
guration of system, health of subsystems, equipment modes).

e) Interactive data requests (file management, data retrieval,
graphs) .

f) Experiments displays/control (experiments equipment status,
data displays, controls).

4.5.3 Preliminary Information and Display Concepts

The on-board computer system, coupled with its software
and multipurpose display and control unit, are the basis for
the overall man/machine interface in the space station. Although
it is premature to attempt a detailed design of the display
system required for all DMS subsystems, some general concepts and
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problems for that design are identified.

4.5.3.1 Software Environment

One view of the computer system for the space station
is that it is a real-time process control system, providing
remote time-sharing services to both batch entry and interactive
users. It is unique in this sense. A hypothetical example for
comparison purposes might be some large time-sharing service
(like Multics) which is also operating a power plant and a
surveillance radar. The many varied users of this system establish
a need for varied types of displays.

To expand on the requirements for displays for the system,
a brief organization of the software environment during system
operation reveals four types of software:

a) System Control Supervisor

This class of processing is continuously operating, control-
ling the resources of the system.

b) Continuous Automatic Sequences’

This class of processing includes the functions critical

to operation of the space base, and operates automatically
and continuously. Examples are attitude control, environ-
ment control, system failure detection, and status monitoxr-
ing and recording.

c) Periodic Operating Processing

This class includes processes which are not in continuous
operation, but are of greater importance than some other
functions when operating. For example, rendezvous operations,
fault isolation, maneuvers, control of external crafts,

and some experiment control.

d) Batch-type Data

This class of processing includes utilization of the computer
by various subsystems on an as-required basis. This includes
scientific experiments, data processing, bio~medical process-
ing, data reduction, preventive maintenance, data retrieval,
etc,

These classes of programs involve varied display require-
ments; however, common to all is the operator's ability to
initiate programs, provide data input, receive outputs, and
generally to control the operation of the system.
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4.5.3.2 Control of the Multiprocessor

4.5.3.2.1 Job Control. The operator must be provided the
capability to initiate various sequences or programs to perform
specific mission functions. This may be accomplished by a job
control language, which should be generalized for all types of
job requests and execution. The periodic operational programs
and terminal-submitted software require this feature.

The job control language would be the primary interface
between the user (or operator) and the operating system. The
commands given via this language would be interpreted and result
in gqueues set up for processing by the executive. There are
at least two types of users:

a) The remote job entry, whereby a user enters jobs at a
terminal and expects them to be executed at some future
time.

b) The on-line user who needs to interact with the computer to
accomplish this job.

On-line users must be provided with other features which
enable easy rapid access to selected programs. Minimum actions
should be required to select and operate frequently used programs.
For example, the method of selecting programs may be via a light
pen action. Program names would be presented on the CRT, and
the operator would activate a program by pointing with the
light pen. Other data required at program selection time could
be entered via the keyboard.

4.5.3.2.2 Protection Philosophy. Input or job requests from
terminals should generally be accepted by the system only when
the system verifies that the user has appropriate access and
execution privileges for the requested job. This may be imple-
mented in the system in many ways: through hardware, software,
or both. The degree of built-in interlocks for job requests or
file-access depends on the criticality of the damage that can be
done and the system implementation and overhead cost.

4.5.3.2.3 Data Output and Display Format. Programs must be cap-
able of requesting action from the operator, such as data entry
or verification. Again a language must be defined for use with
a CRT display which is generalized for many functions. The
Apollo G&N System uses a VERB and NOUN &pproach to identify
actions and data between the operator and computer. With its
limited DSKY, it provided much flexibility.

Generally, attempts should be made to minimize the amount
of coded output. With an alphanumeric display, direct language
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communication should be provided. Coded information requires
training or memorizing of codes which at best is error prone.

The Apollo DSKY is designed to transmit commands and requests
made up of a limited vocabulary of 399 nouns and 99 verbs. To
command the computer, the astronaut depresses the verb (operator)
key followed by two decimal digits, and enters a noun (operand)
in a similar fashion. The enter key is then depressed, and the
computer acts on the request. As an example, Verb 16 Noun 20
means display and monitor spacecraft attitude. Verb 16 means
"display and monitor" (continuously update); Noun 20 identifies
what to display, in this case "spacecraft attitude".

Features such as: DISPLAY (VARIABLE), DISPLAY VARIABLE
EVERY N SECS, DISPLAY VARIABLE IF (CONDITION), PLOT (VARIABLE)
VS VARIABLE, etc., are all desirable components of an operator's
input language.

Data output from the computer to the operator must
optionally include the variable name, value, and units (unless
standard units are used throughout). The vocabulary of the
computer to the operator requesting action must be simplified.
The format of the output frame should be standardized. The
conversational vocabulary should be easily identified, perhaps
by its location on the CRT, or by size or illumination. Variable
names and data should be distinctly set off from this vocabulary
to eliminate confusion.: A standard header should exist at the
tope or bottom of the display and include pertinent data about
the console's use, time of day, etc.

4.5.3.2.4 Display Routing. A number of display and control
consoles, manned by different personnel performing varied func-
tions (some of which overlap), requires a technique for establish-
ing "who gets what displayed". Furthermore, the command console
must be identified to the system as such, since it may be the
only console allowed to direct certain critical functions.

From a software point of view, the system is communicating
with a number of consoles, not people. When a periodic opera-
tional software program is requested, the question of where
the output should be sent is fairly straighforward: namely,
to the console requesting the job. However, when an alarm is
detected by one of the automatic or continuous programs, it
may be desirable to output this to a number of consoles. Two
solutions to this are (1) dedicate consoles physically to receive
such data, or (2) provide a technigue for assigning displays
to consoles. The latter appears distinctly superior.

4.5.3.3 Parallel Processing with Serial Output

"A conflict arises when more than one task operating
in the computer requires communication with the same operator.
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This problem is not unique to multiprocessor systems, but also
exists in multiprogrammed systems.

This problem occurred in theé Apollo G&N system when a
"background" type program, such as rendezvous tracking, detected
an alarm condition while the astronaut was using the DSKY to
operate a "foreground" program, such as rendezvous targeting.
The design of that system (which is probably unacceptable for
the space base) was to bring up automatically a priority display
over-~riding the existing DSKY display, whether the astronaut
wanted to see it immediately or not. Furthermore, he had to
respond to it before he could continue with the targeting
program operation. Fortunately, this did not occcur often, but
it caused crew dissatisfaction, and in some cases special excep-
tions had to be implemented via software to work around this
problem,

One possible solution to this problem for the space station
is to utilize a portion of the CRT screen (or possibly a
separate panel) to advise the operator of waiting displays.
This portion could be divided into a number of subsections, each.
with a sufficient area to display meaningful identification
information for a waiting display. The content of the information
in this subsection could range from simply a presence-indicator
for a waiting display with no identification, to a short identi-
fying message which could include its. priority, coded content
clue, origin of job, and level of importance.

In any event, the operator would be given the choice of
(1) ignoring the waiting request, or (2) selecting a particular
waiting display using light pen or keyboard. In the latter
case, the system might put the previous display and job into a
wait state. This would imply that the old dlsplay would be
placed on the waiting display queue.

4.5.4 Conclusion

The foregoing description of aspects of the information-
handling operations required on the space station indicates that
a great deal will be demanded of the terminal equipment and the
operating system and terminal-support software. Command and
control, real-time monitoring, program preparation, data-process-
ing, automatic checkout, and information retrieval operations
are readily foreseen. Furthermore, control of several indepen-
dent processes from the same terminal is likely to be the rule
rather than the exception. This combination of anticipated
complexity, plus the additional operations which must be expected
to develop over the life of the mission, results in a clear
requirement for a thoroughly thought-out, generalized terminal
and operating-system philosophy and implementation.
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Chapter 5

Selected Multiprocessor Design Configuration

5.0 Introduction

The preceding chapters have presented considerations, alter-
natives, trade-offs, and requirements which influence the design
of the system for the space station. With that material as
background, it is the purpose of this chapter to present the
design created by Intermetrics. This design is the primary
result of the study effort.

There are three major factors which tend to cause considera-
tion of a multiprocessor or multicomputer configuration, rather
than a simplex system, for an application:

a) The computing capacity required exceeds that attainable
from a single processor.

b) . The reliability or availability required exceeds that
attainable from a single processor.

¢) It is desired to be able to incrementally expand the system
without overhauling it.

In the space station application, it is clear that the
latter two apply, whether or not the first does. Therefore,
the design considerations were concentrated on creating a sound
multiprocessor or multicomputer configuration.

At the present stage of the space station and space base
programs, both the performance and reliability requirements are
incompletely formulated. The forecast of performance expansion
required over. the five or ten year life of the mission is parti-
cularly cloudy, and may, in fact, ultimately be based on the
capability of the computer configuration adopted, rather than
the other way around. It would be foolish to ignore these un-
certainties in formulating a design; instead, Intermetrics has
developed an architectural organization which allows implementa-
tion of a series of compatible configurations with a strikingly
wide range of performance.

.. 5.1 configuration Summary

The basic organization selected is shown in Flgure 5.1.
The fundamental characteristic of this configuration is its use
of a common internal bus, which eliminates the requirement for
multiple buses and switching networks. The simplicity of this
organization is most attractive; the threat of a potential
bottleneck imposed by the common internal bus is its outstanding
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drawback. To avoid congestion which would be caused by heavy
bus traffic, each processor is provided with a local memory
whose architectural characteristics depend on the required per-
formance. At the low-performance end of the spectrum, this
memory is used to contain a push-down stack for storage of
temporary results. At the high-performance end, the local
memory contains a stack, but also acts as a high-speed buffer
store similar_ to_the "cache" of the IBM System/360 Models 85
and 195(5,10,11,12)

The bus recommended for each of the configurations is the
same. Although this bus is capable of sustaining the processing
level of the maximum system, its capability, which is not ex-
pensive, is used effectively in the lower performance models.
The manner in which this is achieved is clear if one views the
Ml memory as a device for reducing the per-instruction bus-use
frequency for its processor. At lower performance, M1 contains
only a stack, and perhaps a few words of instruction buffering.
If the processor speed were increased without modifying M1,
the frequency of bus-accesses would increase proportionately.
However, the introduction of a cache would effect a traffic
reduction. By adjusting the size of the cache (buffer) memory,
the average bus~-use per instruction can be controlled, so
that bus—-use per processor can be made fairly uniform, indepen-
dent of processor speed. ’

The above considerations reveal that processors of differ-
ing performance may be attached to the bus, since they are
compatible in every way except performance. (That this is
true depends upon the fact that the buffer operation is in-
visible to the software; this is explained in section 5.2.1
below.) As a result, performance of the system can be changed
over a very wide range after it is in operation, merely by
adding, removing, or replacing one Or more processors.

Two other levels of memory are provided in the organization.
The second level, shown as M2 in the figure, assumes the roles
played by both high speed main memory and drum storage in most
commercial time-sharing or data-processing systems, since it
is both sufficiently fast and large. Finally, because the
subset of programs at any given time represents only a fraction
of the total, a third level (M3) of memory is included for
bulk storage. Of course, the amount of M2 and M3 memory in the
configuration is incrementally variable, and may be selected
or varied to meet system operating requirements.

The system shown in Figure 5.1 represents the Intermetrics
belief that a multiprocessor configuration can best meet the
requirements of the application. However, the proposed organi-
zation is also excellent for a single-~processor configuration,
should one be required for the mission or for decentralized
subsystem testing.
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5.2 Buffer Memory

Because of the key role played by the buffer memory in
the operation ‘of the high-performance system, it is described
first.

5.2.1 Design Rationale

The access time seen by a processor attempting to fetch
instructions and data directly influences the maximum operating
speed. For a processor to be capable of operation in the 1 to
10 million instructions per second (mips) range, this access
time must be from 0.1 to 1 usec. Additionally, to sustain such
a rate, the volume of agcessible data must be large, since a
sequential series of 10° executed instructions normally spans
a considerable number of program and data words. The two re-
guirements of speed and capacity conflict, however, since in-
creased capacity at a given speed leads to increased physical
size, with attendant signal propagation delay increases (not
to mention the cost penalties). Fortunately, it is character-
istic of typical programs(lr6) that the accesses to instructions
and data tend to be localized, over short time intervals. As
a result, a split-level memory can be used to great advantage
to provide, at one level, a very high-speed modestly-sized
store, and at the other level, large capacity at readily attain-
able speed. .

In operation, the processor issues fetch requests to the
buffer memory. If the addressed word is currently contained
in the buffer, it is sent to the processor without requiring

a fetch from the M2 memory. Otherwise, the buffer initiates

a fetch of a group of words from M2, and retains the group for
future use.

To avoid performance degradation that would be caused by
software overhead, control of the contents of the buffer memory
is implemented wholly in the hardware. This results in the
desirable characteristic that the presence of the buffer is
entirely invisible to both the application programs and the
operating system. The relative performance is then a function
only of the speed ratio between the average access times for
the two memories and the probability that a given access finds
the word is not in the buffer. For if there are n accesses
in time T, if the average access times seen by the processor are
tm and tp for main and buffer memories, and if the probability
that the accessed word is not in the buffer is p, the word
rate W is given by

=3 = 1
T ptnm + iI—p;tb
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Let tn/th = R
_ 1
then Wty = TF (&=Dp

where W t,, is the normalized word rate. For R = 10, W tp as
a function of p is shown by

p: 0.9 0.5 0.1 0.05 0.01
W ty: 0.11 0.18 0.53 0.69 0.92

Thus, if a value of 10 can be maintained for R, and if p
can be made as small as 5%, the system will perform at about
70% of the speed of one whose entire memory was as fast as the
buffer. Studies performed in connection with the conflguratlon

design of the 360/85(12) concluded that a 16 kilobyte buffer is
adequate to attain an average miss percentage of 3.2% in the
absence of task switching. The main memory of the 85 is 0.5

to 4 megabytes in size, so that buffer capacity represents from
3% to 0.4% of the main memory. IBM estimated that multiprogram-
ming would degrade the miss frequency to about the 5% level.

The Model 195 whose buffer memory (cache) is dlfferentl¥ organ-
ized, and larger, is reported to achieve a 1% miss-rate(7

5.2.2 Operation Detaills

With respect to buffer operations, the main or M2 memory
may be considered to be composed of a large group of small
blocks of, say, eight words. As described above, fetch requests
issued by the processor for words currently contained in the
buffer cause no M2 memory operation. However, when the addressed
word is not currently resident in the buffer, the buffer issues
a block-fetch request to M2 over the internal bus. M2 responds
by returning the group of eight words, which are retained in the
buffer in a location chosen automatically by the hardware, based
on a least-recently-used strategy. The word originally requested
is forwarded to the processor as soon as it arrives at the buffer.
The main memory address of the fetched block is stored in the
buffer with the data, to allow the buffer to recognize subsequent
fetches from the same block.

Three types of store operations are separately considered.
Normal stores will always cause main memory to be updated; if
the addressed word is in the buffer of the processor performing
the operation, it too will be modified. If not, the buffer
content will be left alone. Each other buffer unit which con-
tains the same block will respond to the store message on the
bus by marking its corresponding block invalid. Should its pro-
cessor subsequently address that block, it will experience a
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normal buffer-~miss condition. The immediate updating of
main memory eliminates the need to copy modified blocks from
the buffer back to main memory when their space in the buffer
is pre-empted, and also means that processes running on other
processors, and I/0 operations, use current data.

The second type of store occurs when data is placed into
main memory by an I/O controller. In this case, since the
chances of that data residing in any buffer are small, each
buffer will respond to such a message on the bus by simply
marking its corresponding block, if any, invalid. Again,
should its processor subsequently address that block, it will
experience a normal buffer-miss condition.

The third type of store operation may be generically termed
multi-process-critical stores. The non-interruptible test-and-
then-set instruction mentioned in Chapter 1 is perhaps the best
example of this class of operations. There, the explicit in-
tention of the instruction is to provide the mechanism for
air-tight interlocking between processes. If this instruction
were to follow the operational sequences outlined above,
integrity of execution could only occur if access by any other
unit to the addressed location in M2 was inhibited until the
fetch from M2, testing by the processor, and restoring into
M2, was complete. This is readily implemented, since all affect~
ed units are linked by the common bus.

Perhaps it is appropriate to mention here that the test-
and-then-set instruction is troublesome in another way: a
processor encountering a locked lock must either execute a
loop, which includes the test, until the test is satisfied,
or delay further operation until it receives a signal that the
lock has been unlocked. The former places a potentially heavy
load on the common bus, which will degrade the speed of the
very operations whose completion is awaited; the latter requires
provision of a specific lock-clearing instruction whose exe-
cution additionally causes delaying processors to re-test the
locks they are waiting for. The second approach is superior,
and readily implemented.

7/
5.2.3 Characteristics

Although more detailed examination of both the require-
ments and the interactions between the buffer and other elements
of the system is clearly necessary, the tentatlve capacity re-
quired in each buffer storage unit is in the 10 5.106 bit range,
with a cycle time of 100 ns. The relation between these numbers
and those of the other modules in the system will be developed
in the discussion below.
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5.3 Processor

To specify the power of a processor in terms of millions
of instructions per second (mips) inherently requires the exist-
ence of a standard for definition of the "instruction" itself.
Neither this standard nor the instruction set for this processor
have been developed. However, despite the ambiguity of the
measure, we will assume that processors should have a .5 to
5 mips capacity to meet the space station requirements. The
processor conflguratlon proposed by Intermetrics includes an
alterable microprogram, 'and is organized around a stack concept
resembling the Burroughs computer family, particularly the
6500/7500 processors (cf. Chapter 3, and Appendix 3).

5.3.1 Microprogram Characteristics

The 360/85 mlcroprogram consists of about 2500 108-bit
words, or 2.7 x 10° bits( The 360/25 has about half that
number, while the Standard IC-92000 offers up to 2 x 10 bits (14)
While the specification of the space station computer's mlcro—
program size must be postponed until a later desian phase6

is reasonable to assume that it will fall in the 105 - 10 bit
range, with access time on the order of 50 ns for the high-
performance version.

Part of this microprogram should be implemented in fixed
memory, the exact fraction to be determined later. However,
it is necessary at a minimum to include in the fixed part those
microinstructions required to load the variable part, plus
those to perform a "dead start". Further, certain diagnostic
functions should be included, such as ones required to isolate
a problem which prevents successful loading of other dlagnostlcs
into the variable part.

At least a part of the microprogram should be 1mplemented
in read-write storage, or be switchable extensions in read-
only memory, or both. 1In addition to the advantages of con-
ventional microprogramming mentioned in section 3.8, use of the
alterable or switchable portion allows the user to capitalize
on the dynamic modification of the apparent characteristics
of the processor. This would permit processes, for example,
to be executed on processors having high-efficiency floating
p01nt operations, character-string manipulations, list-process-
ing instructions, etc., at will. A further generalization would
allow the instruction set of a processor to be closely tuned
to the characteristics of each of a number of higher-order lan-
guages.

5.3.2 Stack

Because the stack plays such an important role in the re-
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duction of internal-bus traffic, it presumably would be im~-
plemented in the fixed part of the microprogram. Further, it
provides some of the primary guidelines for processor design.
The fundamental utility of the stack lies in its automatic
ability to dynamically allocate and deallocate storage locations
for temporary values from a pool provided for the purpdse.

This results in extensive time-sharing of these pool locations,
but without requiring explicit assignment action by programmers,
an error-prone activity. Since the result of this organization
is to produce intense load/store activity near the top of the
stack, the stack is unusually powerful in the proposed organiza-
tion, since the provision of a number of registers in the pro-
cessor, with an extension in a dedicated portion of the buffer,
keeps a high percentage of fetches and stores from using the
internal bus. A processor's use of the stack is an implicit
declaration that the quantities involved are local to the
process; there is thus no need to keep an M2-memory copy of
them for potential use by other processes.

The number of locations that this concept requires is an
undetermined design parameter at this time. The B6500 design
includes only two stack slots and a pointer in processor storage;
however, a larger total is obviously necessary, to achieve the
bus-traffic reduction sought. To allow maximum stack size to
be independent of the number of locations provided in the M1
memory, stack extension into M2 should be possible. Thus, M1
" would initiate stores to M2 when the area became filled or
when stack-switching occurred.

5.4 Segmentation, Paging, and Level-2 Memory

5.4.1 Segmentation and Paging Design

Section 3.5 described the storage fragmentation problem,
which has required increasing system-designer attention since
the one-job-at~a-time days of computer operation. The three
means currently most often used to either avoid or deal with
this condition are:

1) Use of relocation registers in the processor. Since only
these few relocation values (one or two per process) re-
present the translation between logical (virtual machine)
and physical storage addresses, it is relatively easy to
interrupt running processes long enough to "repack" core
to eliminate the fragments when necessary. Modification
of only the affected relocation values is sufficient to
complete the procedure.

2) Use of paging. This technique assures that the fragments

of free space and occupied space are of uniform size;
since address translation makes scattered pages look
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logically contiguous, the only unusable space which can
occur is that within partially empty pages.

3) Segmentation. Although segmentation can be considered
as a logically separate concept from paging, the success
of the Burroughs 5500 and 6500 systems.indicates that it
is not necessary to do so. Clearly, if the typical segment
size is a small fraction of the storage area from which its
space must be allocated, the amount of space lost to frag-
mentation will be acceptably small. Then segments (except
for very large ones) may be alternatively considered to be
variable~length pages, and treated as such by the hardware
and software alike.

It is the third of these approaches which has been selected
for the present design. Segmentation of program into relatively
small units will be automatlcally performed by the higher-order
language translators. There is overhead caused by the indirect
addressing requlred during execution (analogous to the segment-
table access in a segmented- and—paged system, but without the
"page" table access, except in a few cases); however, the high
speed and automatic loading characteristics of the buffer memory
promise to reduce the effective cost of this to guite an accept-
able level, since the indirect address words are likely to be
found in the high-speed buffer. As mentioned, this approach
does require treatment of exceptional cases: "paging" of very
large segments, and storage reassignment for unpaged segments
which outgrow their currently allocated storage. However,
because the number of segments large enough to require paging
and the number of segments of dynamically varying size are both
small, the system as a whole benefits from the more streamlined
design suited to the vast majority of cases.

5.4.2 Level-2 Memory

Section 3.5 presents in Figure 3.13, a graphic illustra-
tion of the ill-effects of high traverse time for a required
block of words from a lower—leXel store. For a typical T for
drum-core transfer of 1.5 x 10 and a missing page probability
of 0.003 (1 page fault per 300 1nstructions; cf. 3.5.4.2), the
paging efficiency, computed as in 3.5.4.1, is a skimpy 2.2%.

To achieve a considerable improvement of efficiency, within
an assumed groundrule prohibiting use of memory devices with
moving parts, it is proposed to 9rov1de a maximum level-2 memory
(M2) of 1 usec cycle time and 107 - 108 bits capaclty. This
memory will be used in the way both drum and main memory are
used in contemporary systems; programs will reside there when
required by one or more active processes, and will be executed
from there by running processes. Not only does this strategy
enormously improve the "paging" efficiency by making fetches
from M3 memory occur only once per process per segment, but
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it eliminates processor overhead experienced in the storage
allocation program associated with swapping. This overhead
averages 3 - 6 milliseconds per page fault in the current
Multics implementation(9,1

With respect to modularity and interleaving, one relia-
bility and two operational requirements dominate the design
decision. Modularity is necessary to allow for systematic
expandability. Interleaving is desired within the module to
allow reduction of the traverse time from M2 to M1 below the
one memory-cycle per "word" that otherwise would occur. The
level of interleaving proposed is that which allows a block
fetch by M1 to be answered by one module of M2 at the maximum
rate M1 can accept. This in turn depends on the number of bits
accessed per M2 sub-module fetch, a parameter not yet determined.

However, unless the contents of memory are adequately
protected against loss, n-fold interleaving magnifies the region
of a unit failure by the same n-factor. More is said of the
contents-loss problem in section 5.7.

5.5 Level-3 Memory

The level-3 or M3 memory in the proposed design consists
of two independent sections: read-only, and read-write. The
characteristics of the mass read-only memory required on the
space station are expected to depend primarily on the reference
requirements of the experiment packages. These requirements
are even more elusive to grasp at the current time than are
estimates of data processing needs, and therefore no attempt
will be made to size this memory. Two of its other design
features are more readily specified: first, the speed and ad-
dressing properties of the ROM should be about the same as
the read-write part of M3, for system compatibility. Second,
the ROM should permit introduction of new data loads in at
‘least a fraction of its address space. The characteristics
of this memory will be more extensively discussed in the report
of the Mass Memory Study which is part of the current contract.

The read-write part of M3 is analogous to the disk and
data-cell storage found on commercial computers. This memory
holds those programs and data files which are available for
use by system users. A block-oriented configuration would be
suitable for this level, if any advantage could be gained by
this approach. Contents will be located by means of a directory
hierarchy similar to that used in current systems, such as 0S/
360 or Multics. The maximum size of the M3 level of read-write
memory is estimated to be on the order of 109 - 1010 bits; its
speed should be such that the traverse time ratio for a block
of words into M2 falls in the 10 - 1000 range, but this parameter
is felt to be fairly unimportant.
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5.6 Data Transmission

5.6.1 Processor to ML

The architecture described in section 5.1 relies heavily
on the satisfactory communication of data between several hier-
archical levels of memory. A system processing potential of up
to 10/ instructions per second is proposed. This implies that
the processor must be able to access the M1 memory for data
within about 100 nanoseconds. This data path is a dedicated one;
it need not be shared by other processors or memories. It can -
therefore be designed without consideration for the flexibility
and expandability requirements of the system as a whole. The
physical distances over which the processor and M1 communicate
will be of the order of inches, rather than feet. This can be
achieved by carefully designed conventional wiring, and will
not necessitate exotic transmission line techniques. Depending
on the chosen "width" of the path, i.e., the number of separate
parallel lines constituting the bus, data and control pulses
of 10 to 100 ns duration will be involved, at frequencies between
10 and 100 MHz. The major problems are:

a) Maintaining the shape of a pulse as it traverse the inter-
face. This is a matter of matching the distributed capa-
citance and inductance of each line, and terminating each
in its characteristic impedance to avoid the reflections
which would otherwise degenerate the next pulse in sequence.

b) Malntalnlng equal transmission delays over the individual
lines of a parallel interface. This may involve the “loop-
ing" of connecting lines between terminals that are closer
together than others. Synchronization is important in
achieving high repetition rates in parallel data transfers.

c) Minimizing the effects of undesired coupling between adjacent
lines. A common measure is to surround each conductor with
a low impedance ground shield, or to sandwich it between
parallel grounded conductors. Unfortunately, this adds to
the capacitance in the system and therefore increases the
power required to drive the lines. For a specific design,
a compromise between physical topology, speed, and power
dissipation must be reached.

The design of the IBM 360/85 cache memory(2) illustrates
one current approach to some of these problems. This memory is
about one cubic foot in volume, and has interconnection distances
of a few inches.. It is organized into cards which carry the
storage, drive, and sense circuits. Each card is designed to
provide equal transmission delays for parallel data paths: delay
times to all storage elements are within 3 ns of each other.
Space on each card is devoted to termination resistances for
the X and Y drive lines. Although the individual circuits have
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characteristic delays of less than 10 ns, the delay per board
averages 25 ns due to the contribution from the equalized
wiring. The overall memory of 0.25 x 10° bits has 40 ns access
and 60 ns cycle times, which are comparable to those required
for the maximum computer configuration proposed in this report.
Developments in packaging density and circuit power requirements
can be expected to assist in the achievement of high performance
transmission paths between the memory and the processor.

5.6.2 The Internal Bus

The transmission of data between processor/memory pairs
and other elements of the system such as mass store, I/0 units,
etc., may involve physical distances of up to a few feet. A
data bus is proposed to link all these elements. Because
multiple data will pass along a common physical transmission
medium, a multiplexing approach is necessary. The data bus it-
self becomes a significant element in the computer and due
consideration must be-.given to its design.

The peak data rate requirement comes from traffic between
M1 and M2 memories. To support the proposed top processing
speed, information must be delivered from M2 at the rate of
a single word transfer in 100 ns. The bit rate capacity that
this requirement imposes on the bus is a complex question.
Some of the factors are enumerated here:

a) Message Structure. Since many types of data will be
transmitted on the bus, identification and control are
necessary. This implies either separate control lines,
complicating the bus structure, or addition of control
bits to the basic data word, thus increasing the required
bit freguency.

b) Bus-access Control. In time-division multiplexing (which
is the probable approach), only one message may appear on
the bus at a time. A technique must be devised to grant
bus-access to units seeking to transmit data. Conceptually,
perhaps the simplest way is to sample each unit at a rate
high enough to allow satisfactory dynamic operation, with
additional contingency for expansion. The direct effect
of this technique is to force the required bit rate up.
Other techniqgues, such as the request-and-grant approach,
ease the bit rate requirement, but impose further hardware
complexity. -

¢) Error Checking. Techniques for detecting and correcting
errors, e.g., Hamming or other transmission codes, add more
bits to the message. It may, however, be possible to com-
bine memory and bus error checking as a part of the bus
system, since they have certain similar characteristics.
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d) Reliability. The likelihood of failure is generally pro-
portional to system complexity, other things being equal.
A bus consisting of a single wire is inherently more reliable
than one comprising a hundred. For a given level of infor-
mation traffic, however, fewer lines demand a higher bit
rate capability.

e) Bus Interface Circuitry. The elements of the computer system
generally process data in a parallel, word- or byte-organized
fashion. (High speed linear~select memories handle especial-’
ly wide data structures, sometimes up to several hundred bits,
to minimize internal drive problems.) Serial/parallel con-
version is necessary for elements to interface with a bus
system that is narrower than the basic data. For very narrow
buses, very fast circuitry is necessary to perform the con-
version, with the attendant problems of layout, power
dissipation, etc.

The proposed computer design imposes a peak memory-to-memory
transfer load on the bus of about 40 information bits per 100 ns
interval. To this must be added a block transfer overhead of
about 20-30 bits of address information, up to 10 bits of message
check-coding, and, say, 20 bits of bus identification and control
overhead. For eight-word blocks, this may total 400 bits in an
800 ms interval. If a minimum pulse half-period of 10 ns is
postulated, this data rate can be accommodated on a 10-path
parallel data bus. Since about 2.2 Hz bandwidth is required per
pulse per second, the minimum bandwidth necessary to achieve
transmission of 10 ns pulses is approximated by 2.2/(10 x 10-9)
or 220 MHz. This is within the capability of miniature coaxial
cable, which can handle up to 500 MHz. More lines than 10 would
allow more straightforward wiring techniques to be considered
(dependent on length), but would increase the complexity and
interconnection problems, and decrease reliability.

Providing connections to transmission lines involves pro-
blems of impedance matching, attenuation, noise suppression, and
level conversion. A technique employed in the IBM 360/85, the
directional coupler (well known in microwave technology) has been
described. (3,

The directional coupler enables simple junctions to be made
to transmission lines without the usual line-to-line impedance
mismatch and its attendant restriction on the length of the
junction. It requires no DC connection, eliminating voltage
level and grounding problems. It inherently suppresses driver
noise and mismatch reflection by virtue of its directionality.
Its chief disadvantage is that its operation relies on the steep-
ness of the transmitted pulse, which must induce corresponding
voltage changes in a capacitatively coupled conductor. Both rise
and fall times must be in the subnanosecond region. This imposes
the usual layout and power dissipation problems on the drive
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circuitry. However, integrated circuit techniques beln? develop—
ed today are probing the fractional nanosecond region

by the time period projected for the operation of the proposed
computer, compact techniques for driving a line with sharp pulses
of sufficient energy are expected to have been developed.

5.7 BError Detection

The reliability concept for the space station DMCS includes
not only the conventional notion of low probability of component
failure, but additionally requires uninterrupted error-free per-
formance even when components ordinariy considered to be critical
have failed. It is inconceivable that techniques will be avail-~
able by the mid 70's for building a computer which can operate
for five to ten years without repair, even if massive redundancy
is used. Consequently, the reliability of the computer system
must be such that the number of failures which occur in the time
interval between the occurrence of the first failure and the
repair of the system does not exceed the failure tolerance capa-
bility built into the design. Because of space and weight
limitations in the space station, it may be impractical to pro-
vide on-board spare modules for each system. Thus, the relia-
bility and failure tolerance goals may need to be keyed to
shuttle flight schedules rather than derived from the expected
time to diagnose and repair a failed module.

The soundest approach to reliability in the technology of
the foreseeable future is to use simple, conservative circuit
design and the most reliable parts and fabrication techniques .
available. Only when this approach fails to yield the required
reliability should the designer resort to redundancy; the addi-
tion of redundant components introduces additional failure
possibilities which tend to offset their effectiveness. In
fact, attempts to achieve unrealistic reliability goals may
cause the product to contain such complexity that the failures
against which the design is meant to be protected occur in the
protection equipment itself with such high probability that only
the cost, and not the reliability, is found to have increased.
Therefore, any imposed requirements for multiple-failure toler-
ance should be reviewed in particular because of the impact
it has on the design.

Methods for detection of failures when they do occur may
vary con51derably between the types of units because of the
disparity in their functional characteristics. The buses, for
example, lend themselves to checklng by use of transmission
codes, of which a great deal is known. Many of these codes per-
mit errors to be corrected as well as detected, so that tran-
sient failures may be rather easily masked. Processors, however,
modify data they handle in so many ways that checking, though
possible, is more difficult. Recovery from transients is
straightforward if inputs to operations are retained, since the
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operation which failed may then be repeated. Memories have
some of the characteristics of buses, and transmission codes
may be used for detection and correction of certain errors.
However, other failure modes cause contents to be lost; when
data is destroyed, only reconstruction by some process can
permit full recovery.

The proposed multiprocessor configurations inherently are
tolerant of processor failures if four conditions are satisfied:

a) All processor-errors are detected, and the system advised.

b) A failed processor can be logically removed from operation,
and does not contaminate the system.

c) Sufficient processing capacity remains after the failed
units have become dormant.

d) The hardware/software combination can reconstitute the
process which was running on the processor at the instant
it committed the error.

Section 3.4 demonstrates the relative effect on availability
produced by the use of redundant elements.

Memory failures differ conceptually from processor failures,
since they represent a potential loss of information, rather than
a loss of capability. Memories tend to fail in four ways:

1) One or more words read have a bit in error;
2) when a word is addressed, no response occurs;

3) when a word is addressed, the superimposed contents of
several words are delivered;

4) when a word is addressed, the contents of the wrong
location are delivered.

The first of these may be handled by provision of a trans-
mission-type code such as parity or a cyclic block code. Such
codes are relatively easy to implement, and can provide both
detection and correction capability. If the all-zero bit com-
bination is an error code under the chosen method, the second
type of failure above is detected. The third is more difficult
to discern because of the possibility that superimposed words
may pass the checks. For simple parity, use of a word with
an even total number of bits and odd parity is the best solution.
However, if the memory fetches two words, the chance of this
error being detected is only 50%, which is clearly unsatis-
factory. More elaborate checking codes, such as Hamming codes,
detect superimposed words with higher probability. The fourth
type of failure cannot be detected by any of these methods,
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and protection against it involves further complexity, such
as storage of address bits along with data, for example. '

Thus, it presently appears desirable to operate multiple
copies of memory 51multaneously. All write commands would be
accepted by all functional copies, so that each contains
completely current contents. Each will respond to read re-
quests, and all outputs will be compared in an evaluation
circuit. Provision of checking codes permlts the detection of
the erroneous word in most cases. However, in the few instances
where this fails, the software is required to attempt recovery.
The overall result is the elimination of undetected errors
and the resulting propagation of bad data throughout the system.

If the redundant-memory-copy approach is adopted, some
cost saving may be realized by operatlng some modules of M2
in simplex mode. This is possible because all program segments
are pure procedures, and can thus be recopied from M3 if the
M2 area they occupy should fail. With this philosophy, it is
only necessary to detect errors in M2; correction within that
domain of M2 is unnecessary.

Ihtermetrics recognizes that there is a potential hardware/
software tradeoff in the attainment of reliability. The approach
outlined above reflects our strong belief that hardware failures
in the computer system must be rendered invisible to the appli-~
cations software whenever possible. As a result of comprehensive
experience in the development of the Apollo on-board G&N software,
we have found that trylng to achieve failure protection prlmarlly
by software techniques is incredibly expensive. Further, in
addition to the steeply increased software cost, there is in-
variably an associated software unreliability which remains
even after completion of extensive and ambitious testing, which
prevents attainment of the overall system reliability sought.

The redundant-copy approach outlined above reflects this ex-
perience. Nevertheless, we are aware of the cost, power, weight,
and volume penaltles which result from the prov151on of redundant
copies of units; we submit that this area must receive additional
study.

5.8 Operating System Philosophy

The computing system for the space station is required to
accomplish a spectrum of activities which includes real~time
control, general-purpose data processing, and interactive com-
puting directed from remote terminals. It must also allow users
to share programs and data. These requirements span virtually
the entire range of computing problem types, which usually are
performed in computers dedicated to a single one of these func-
tions. Consequently, the operating system must be a very broad
and general one, and yet must not cost the system an unreasonable
amount of overhead.

132



The general characteristics and philosophy of the

operating system are summarized below:

1)

2)

3)

4)

The operating system will contain the conventional
kernel of programs required to run the entire computing
system itself. This includes scheduling and dispatching
of tasks or processes, a dynamic relocation mechanism
for management of information transfer between the M2
and M3 memories, and a comprehensive file system. The
file system must be sufficiently general to allow data
sharlng and- data 1nterlock1ng among users, although it
is probably not appropriate to require the file system
itself to perform the 1nterlock1ng.

It should be the responsibility of those who prepare the
operating system to also prepare a comprehensive set of
system utilities for use by application programs. These
include display interface routines, language processors,.
and so on. It should be within the capabilities of the
protection mechanisms of the operating system to prevent
other than specified system routines from being -used, for
example, to command input/output devices or displays, to
prevent proliferation of interface programs, and also to
prevent misuse of the devices.

The system must provide the maximum achievable autonomy

for users. This is desirable both to allow decentralized
application-programming efforts, with local management,

and also to prevent a continuing requirement for augmenta-
tion of the operating system to meet new and changing
requirements. This autonomy does not preclude or even dis-
courage exercise of good management practices over the over-
all programming job. Specifically, it makes it a fairly
straightforward job to apply memory space and execution time
budgets to the decentralized autonomous functions.

In conjunction with the philosophy of decentralized program-
ming, the users themselves must be reqguired to provide the
software to handle their own eguipment on board the station.
That is, no specific I/0 routines for special-purpose user
equipment will be included in the central supervisor. How-
ever, it is desirable to make I/0 instructions "privileged",
so that the supervisor can validate them in order to control
accidental access to unauthorized devices or memory. Access
to programs and data should be granted by this operating
system on the basis of the identity of the individual user.
That is, each program and data file should have access rights
or access control information specifying who may, or who ’
may not, have read, write, or execution access. The identi-
ties used by the access controller should be functionally
oriented; that is, access privileges should be based on the
function being performed, rather than the identity of the
individual, assuming that the system has already verified the
particular individual's authority to perform the function.
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5) Any function required to effect recovery from computer system
hardware failures or errors, but which is not implemented in
the hardware itself, must be performed by the operating
system. In no case should any computer failure require
application-software recovery action. On the other hand,
failures of application-hardware are outside the operating
system domain.

5.9 Word-length, Protection, and Flag Bits

5.9.1 Word-length

At the very heart of any discussion of word-length lies
the question of what the function of a word is. Indeed, not
all computers are word-organized: .some computers are character-
oriented with variable length instructions; punctuation bits
associated with each character (word marks and item marks) denote
the end of data. (IBM 1400 series is an example.) Other com-
puters are byte~oriented, the term referring to the absence of
punctuation bits. But the word-oriented computer still finds
much favor. While the byte-oriented computer regards data as
strings of characters that can be manipulated as strings or
individual bytes, the word-oriented computer organizes the data
into fixed-length groups. Groups of words may make up an array.
Floating-point data fits neatly into words, as do fixed-point
and integer quantities. In fact, fast.arithmetic operations
are more directly implemented with word-parallel hardware; .
variable~length operands typically require digit-serial opera-
tions. Alphanumeric and string data are best suited to byte
or character representation. Of course, string data can be for-
matted on a word machine, and arithmetic data can be represented
on a character machine. The question is one of relative gains
and losses.

Recognizing the hazards of premature design decisions, but
also seeing the need for a design strawman, it is proposed that
this computer should be word-oriented.

Within a word there must be a smaller unit to represent
characters of information. Although it can be argued that eight
bits is wasteful, the eight-bit byte has received an acceptance
that is approaching universality in recent computer configura-
tions. Special cases and exception-handling seem particularly
inappropriate in communication equipment and transmission paths;
since these seem inevitable if shorter bytes are used, the 8
bit byte is chosen.

In selecting the word-length, it seems mandatory that it

be an exact multiple of the byte length, Reasonable arguments
can be generated that support a word length of 24, 32, 40, 48,
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or 64 bits. Actually, the field can be reduced to two funda-
mental choices, either 32 or 48 bits. From the point of view
of scientific computation, the scales are tipped in favor of

48 bits. Experience has shown that most floating-point problems
. can comfortably live within 48 bits with double-precision re-
quired only for rare exceptional cases. However, 32 bits is too
small for a large class of routine calculations required in
aerospace applications. Thus, a long version of 64 bits would
be often required. Occasionally, an exceptional case would
still arise which requires even longer precision.- Hence, at
least three different floating-point number representations are
needed.

Nevertheless, 32 bits has been selected for the word length.
Although it is convenient to have a word that contains a number
of bytes which is a power of two, this is not an over-riding
consideration. For the last five years, any computer introduced
that has a word length which is not multiple or submultiple of
32 bits (8, 16, 32, or 64 bits) appears eccentric. Thus, again
the decision is motivated by considerations of compatibility
and general standardization. This compatibility permits ease
of simulation on existing ground-based computers, and allows
a direct comparison of arithmetic results for both floating-
point and fixed-point calculations, assuming that the number
system, floating-point formats, and algorithms are similar.

5.9.2 Memory Protection

Memory protection can be achieved in a very rigorous,
yet flexible manner, through a combination of hardware mechanisms,
rooted in the basic structure of the computer, and software
capabilities exercisable only by the operating system. The
fundamental concept adopted by Intermetrics to protect one pro-
gram from undesired access by another is one of prevention
rather than detection. One process cannot adversely affect
another if there is no way for them to address each other. The
variables and information of one are simply placed outside the
scope of the others.

Some of the characteristics of the computer that produce
this environment include the following:

a) Absolute addressing may never be used by application programs.
All addressing is relative: relative to the base of the
procedure or subroutine segment, relative to the base of the
array or buffer areas, relative to the base of the stack or
the stack pointer. Thus, all addressing is oriented to key
items that have been assigned to the process by the super-
visor. As a bonus, this addressing is automatically relocat-
able.

b) Upper limits are imposed, as are lower limits or base values.
When the executive assigns an area for data or program or a
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process, it also places an upper bound on the segment,
thereby constraining the process to stay within its limits.
Hardware is provided that automatically detects attempts to
go beyond the allocated area, by incorrect indexing for
example, Thus, operating windows are established, and
programs are confined to remain within the windows.

c) The linkage words, indirect addresses, data and program
points, and supervisor calls cannot be modified in the pro-
blem state. The scope of knowledge of any operating process
is thus established by the executive, and fully controlled
by it. No individual program can escape its own region.

d) The links form a small and carefully controlled network of
interconnections between various programs and data. The
executive can remove or modify these links to adjust the
capabilities of individual tasks, or to restructure the
memory allocation. This gating of the interfacing between
program elements through limited connecting paths provides
a powerful means of regulation to prevent inadvertent ac-
cesses.

e) Finally, individual words are identified and protected by a
set of bits, called flag bits, which are described in detail
in the next section. It is these bits that protect the link
words from being overwritten by problem state programs.

5.9.3 ¥Flag Bits
Associated with every word of memory are several extra

bits that identify the type of word, and offer a means to prevent
it from being accidently modified or incorrectly used. Current
design thinking suggests the following developmental strawman:
a) Three flag bits will accompany each 64-bit double-word.

The three bits will be examined by the hardware whenever

the whole double-word or either single word is fetched or

stored.

b) The flag bits apply to both words, so that both must be
write-protected when one must be.

c) Functions performed include write-protection, trace mode,
and identification of variables, constants, program, inter-
lock words, and shared data base pointers.,

d) Proposed bit-pattern categories:

1) Writable variable

2) Trace-trap this variable

3) . Interlock word, used for shared-data handling
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4) - Instructions or constants

5) Trace-trap this instruction or constant

6) Special double-word: 1link word, pointer, etc.
¥lag sub~bits will further identify-.

The last three are write-protected.

The class of special double-words are useful in many ways.
Among other things, they offer a method to provide an indirect
address to data when data itself was expected, to produce a jump
to a closed subroutine when data or an address of data was
expected, or to cause an interrupt to the executive undex other
conditions; e.g., in order to allocate a data area in memory.
These special double-words are generally only created and up-
dated by the executive. However, certain types of them are
freely produced and altered by specific problem state instruc-
tions, such as subroutine call and return.

Special double-words are used for:

a) Indirect addresses: expected pointers to data or program.
b) Unexpected pointers

1) Data pointers when data expected (indirect address)

2) Program pointers when data or data pointers expected.
¢) Interrupt calls

1) Missing data, program, or data area

2) Supervisor-calls, or entrance to executive routines

d) Special words
1) Stack markers
2) Link words
3) Poinéer-pointers: addresses in stack of executive-

generated pointers; e.g., subroutine return markers

The trace~trap condition causes a trap to trace routines
to indicate whenever an instruction or operand is executed or
referenced. This is an extremely useful debugging tool.

The interlock word indicates a type of word that is treated

by the hardware in a unigue fashion. It provides a mechanism to
accomplish interlocking that is done by the Test and Set instruc-
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tion on many computers. It is also designed to facilitate the
sharing of data. It operates as follows:

a) The interlock double-word serves as a pointer to a resource
whose usage needs to be regulated or interlocked. Users
are gated through this control or check-point.

b) A lock instruction examines the interlotk double-word, and
if the lock is free, it is locked by the placement of two
pieces of identification in the lock word. One is hardware-
determined; the other can be varied by the program for in-
ternal communication. If the lock is busy, the program
either loops or idles until the lock is free.

¢) An unlock instruction reverses the process; it frees the
lock and returns the word to the available state.

d) Wwhen the lock is busy, usage of the pointer to access the
interlocked resource is prohibited by hardware unless the
user's identification key matches to an acceptable degree
the lock value.

e) For simultaneous reading of shared data bases a special
halflock instruction is provided. This locks the resource
from store instructions (write-protect) but permits other
programs to read the data. Two or more users may make
successive halflock requests which are accepted. The sug-
gested procedure is to combine part of their lock ID's by
a simple process, say an exclusive OR operation. Then an
unlock or halfunlock could do another exclusive OR of the
ID of that process.

£) An instruction desiring to store into a shared area must be
preceded by a full lock instruction, which would stall un-
til all other users are through reading the shared data as
indicated by a free lock. Then it would lock it for its
exclusive use, and do the updating of the shared data. When
through, it would unlock it for others to use again.

Other uses of the interlocking mechanism will be uncovered
as the software system is developed. The synchronization and
control of concurrent processes is an immediate candidate.

5.10 I/0 and Interrupt Structure

Communication with its external environment is an essential
facet of the operation of the data management computer system.
Nevertheless, consideration of I/0 requirements and implementa-
tion formed a very minor part of this study. Only broad design
conclusions were reached; they are presented in the following
sections.
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5.10.1 I/0 Bus

It is postulated that the space station communications
with the DMCS take place over a limited number of lines, per-
haps as few as one. These system I/0 buses would be routed
throughout the spacecraft; units would communicate with the
bus through a standard interface element, which would provide
the necessary isolation in case of failure, and be capable of
sending and receiving messages in standard but variable-
length formats. A bit-rate capacity limit of 1-10 megabits
per second is visualized for the I/O buses to allow their
construction to be elementary and their reliability to be ex-
ceedingly high. Should a unit. be capable of overloading the
I/0 bus, either a special bus should be provided, or preferably,
data compression techniques be applied at the unit to lower the
actual bit rate. At the computer end of the bus, communication
takes place via one or more I/O controller units, described in
the following section.

5.10.2 I/O Controllers and Interrupts

Because of the variety of I/0 device types which can be
anticipated in an orbiting scientific facility, the I/0 con-
troller must be a generalized and multiplexed unit with a simple
communication interface. A typical I/0 operation is one in
which a processor issues a request to an I/0 controller for a
specified block of data from a device. This request, transmitted
to the IOC on the system internal bus, specifies the device, an
action code for the device, a word count for the data block, and
the address in M2 where the block is to be stored. An additional
bit is used to specify whether a completion-interrupt is to be
generated by the IOC.

Upon receipt of this request from the processor, the IOC
in turn issues a request to the device over the appropriate I/0
bus. The device, at its own response rate, replies with an
identifier and the block of data. The IOC directs this data to
M2, and when the transfer is complete, signals the requesting
processor via an interrupt message, if one was requested.
Multiplexing in the IOC permits many such operations to be in
various states of completion at the same time. Because the IOC
retains the identity of the requesting processor, any error sig-
nal which occurs may be transmitted in an interrupt message to
that processor for action.

To allow I/0 devices to volunteer data without being spe-
cifically requested to do so, it must be possible for a device
to initiate a request-interrupt, which would contain a code
indicating the action desired of the processor. Because this
interrupt is not a result of a processor-initiated operation, no
processor identity will be held in the IOC to be used as the tar-
get for the interrupt. The IOC can either select a processor at
random, or address the processor which last initiated a command
to the device.
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Chapter 6

Summary and Recommendations

6.0 Introduction

This chapter is included to summarize and comment on the
information collected and analyzed during the course of the
study, to discuss technology trends and their impact on the
computer, and to present areas in which it is recommended that
more study or design occur.

We believe that the overall objectives of this study have
been achieved. Existing knowledge concerning actual and proposed
multiprocessor systems has been collected and included in the
survey. General multiprocessor theory and a baseline definition
of various system configurations has been presented and analyzed
in Chapter 3, along with a discussion of the design considera-
tions and a review of the existing space station DMS require-
ments, An architectural design of a multiprocessor computer system
was presented as an extension of multiprocessor technology to
the space station DMS application.

6.1 Technology Trends

The computer design presented in Chapter 5 can be satis-
factorily implemented for a space base application only if
certain technological developments take place. A computer of
this design could certainly be built using current techniques,
but its probable volume, weight, power consumption, and environ-
mental requirements would be more comparable to a large data
processing facility, which it resembles in performance, than to
the small aerospace computers currently in operation. Without
considering the M3 memory, the physical characteristics of the
system might be: volume, 500-1000 cubic feet; weight, several
thousand pounds; and power, 50-100 kilowatts. Appendix B makes
a tenuous estimate of the physical characteristics of the
computer for a 1975 cut-off, based on a continuous development
of today's technology. Predicting what these developments
will be is a hazardous task. However, it is possible to discuss
trends that are vigible today and to identify areas of the
computer design that should receive the major emphasis for
improvement.

6.1.1 Memory

The greatest reward for the effort of development will
come in the area of memory, which is generally the bulkiest,
costliest, and slowest element of a computer. The ferrite core
has dominated the main high-speed memory (capacity up to 10
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bits) for so long since its first application in the mid-1950s
that "core" has become synonymous with "memory". Its "imminent
demise” at the hands of up and coming competitive techniques
(e.g., plated wire, film) has been heralded for ten years; core
technology has always responded by increasing its dominance

in this application., Early cores were large, 100 mil diameter,
and slow, 10 us switch time. Successive improvements have
occurred in both the geometry of the core, which is in commer-
¢cial production in a 12.5 mil 0.D., 7 mil I.D. size as the
element of a 375 ns cycle time memory(9),and in the organization
of the memory core arrays{2). These improvements have enabled
cores to at least keep up in performance while always maintain-
ing a steady lead in terms of cost.

Despite .its past success, the ferrite core is bound to
yield its position sooner or later. There are several reasons
for this view today: Firstly, the bit density of core arrays
will never match that obtainable by other techniques, such as
semiconductors. The high speed memory of Ref. 9, for example,
has an overall density of 4,000 bits/cu. in., which is 10 to
100 times less dense than current MOS techniques. Since memory
capacity requirements are expected to go up with time, this
factor will become increasingly important. Plated wire and thin
£film memories, although potentially an order of magnitude
faster than ferrite core, also suffer from a poor bit density:
1000 to 10,000 bits per cubic inch. In spite of a current
strong emphasis in developing plated wire, (4) it is our opinion
that this technique does not have the ultimate promise of semi-
conductors,

Secondly, the performance curve is beginning to f£latten
out at about 100-200 ns cycle time. Techniques such as even
smaller cores, partial switching, two cores per bit, or expensive
2-D configurations must be employed to get into this speed region;
these are all factors that diminish the ferrite core's advan-
tages of simplicity, manufacturing ease, and cheapness.

Thirdly, the competition is in a very healthy developmental
phase. Semiconductor memory arrays are currently the subiject of
intense commercial activity; this is always the portent of
general acceptance of a new technology. LSI arrays of bipolar
transistor flip-flop memory cells provide the capability of very
high speed (10 - 100 ns) local random access memories of limited
capacity (up to 102 bits). Currently, densities of about 100
bits per 100 x 100 mil chip with dissipations of about 10 mw
per bit are being achieved. MOS transistor arrays provide
denser packing at a lower speed (1000 bits per chip at 1 us)
and lower power dissipation (as low as 10 nw/bit for CMOS
logic), for implementation of the larger main memories. Other
technologies, such as the MNOS transistor (8) which has the
property of non-volatility and which requires only one active kl)
device per bit, and the magnetic domain "bubble" in orthoferrites,
promise very high densities, and are the subjects of current
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experimental investigations. The rate of development of semi-
conductor techniques, which promise orders of magnitude improve-
ments in speed and density, is accelerating, whereas current
memory technologies are reaching a developmental plateau. It
seems inevitable that the memory system of the next generation
of aerospace computers will be realized to a great extent with
semiconductor techniques.

6.1.2 Logic

Improvement in the logic areas of the computer system,
the processors, I/0 controllers, buses, etc., have until recently
been realized by increased speed in the logic and control cir-
cultry. However, the logic available today already operates
in the sub-nanosecond region(5), The problem now is the timel
communication of data at these hlgh speeds over physical paths¥3):
a pulse is delayed by about 2 ns for every foot of interconnection.
The reduction of physical dimension and the minimization of
interconnection paths becomes the route to increased circuit
performance. The p0551b111t1es offered by large scale semi-
conductor integration in pursuit of these ends are overwhelmlngly
attractive and consequently LSI has received a reat deal of
attention and publicity, some of it premature. In conjunc-
tion with increased circuit speeds, performance 1mprovements
will be achieved by tailoring the organization of the computer
to this end. The concept of the buffer memory proposed in
Chapter 5 is an example. It enables large programs stored in
the relatively slow M2 memory to be executed at a speed approach-
ing the capability of the much smaller high speed memory M1.
The use of parallel rather than serial processing is a path to
increased performance which has always exacted penalties of
increased complexity and cost. However, it is just these
factors that LST seems particularly suited to combat. With the
increased employment of LSI techniques, we would expect to see
highly parallel logical organization in the design of future
aerospace computers.

6.1.3 Summary and Recommendations

Technological improvements are most needed for the imple-
mentation of the proposed computer memory system. It is antici-
pated that LSI semiconductor techniques will be the main line
of attack. If improvements in LSI yield (cost), speed, power
dissipation, and density continue to accelerate, this technique
will be used in the majority of the logic and memory circuitry
in computers beyond 1975.

It is, however, a long road from the experimental demonstra-
tion of a promising technique to its application in a real opera-
tional environment. Although there is much activity, for
example, in semiconductor chip design for high yield, high
density and low dissipation, the problems of 1ntegrat1ng these
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chip elements into an operational unit such as a 108 bit memory
are not being as widely pursued. We would recommend that imple-
mentational problems associated with interconnecting a large
number of densely-packed elements be evaluated in a pilot

study. The construction of an operational memory should be
undertaken .with a view to identifying the construction technique
that achieved the best compromise between performance, cost,

and size. Recommendations as to the best technology and memory
size for the DMS computer will be made at the conclusion of the
mass memory study that is a part of- this contract.

A vital part of the proposed computer configuration is the
transmission of data between the various elements along a common
data bus. The many data types, resulting in complex bus message
structures, and the high speeds will make severe demands on the
implementational technology. The interfacing of the bus with
the processing elements will involve high speed, serial-parallel
data conversion, error detection and correction and signal
conditioning and re-formatting. We would recommend that the bus,
and its interfaces be the subject of separate study and experi-

‘ mental implementation.

These studies should precede detailed DMS computer design
work by 1-2 years in order to gain sufficient lead time to meet
a post-1975 operation.

.

6.2 Recommendations for Future Effort

The architectural design presented in Chapter 5 is a solid
base from which to proceed toward the goal of an operational
system. A group of next steps suggests itself; for the most part,
they represent continuing ‘design applicable to the technology

" of computation in general, and would be valuable whether or not
prototype development of the proposed configuration was planned.

As, mentioned in the previous chapter, the architecture
developed is well suited to both a family of multiprocessors of
varied performance capability, and to a single-processor confi-~
guration. Whichever approach might be currently believed most
promising, or indeed, if it was desired to postpone making a
choice, the efforts outlined in the following sections would
enable systematic progress to continue at modest cost.

6.2.1 Continuation of System Design

This study has provided a description of a basic computer
organization, founded solidly on its technological predecessors.
Certain areas have been identified as being of particular signi-
ficance.

a) Maintenance of reasonable levels of internal bus traffic
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through sizing of M1 and M2, and choice of an instruction
set which takes full advantage of the hardware stack.

b) Provision of generalized, yet efficient, communication
conventions for the I/0 bus and devices.

¢) Recognition of the failure recovery problem, and provision
of a systematic hardware and software recovery design.

d) Provision of general, yet simple, operating system and
file systems.

The following tasks are recommended.

6.2.1.1 Instruction Set

Design of the addressing structure, instruction formats,
and instruction set are required. This task will additionally
entail consideration of the register complement of the processor.
Verification of compatibility with the chosen word length of
32 bits is inherently a part of the task.

6.2.1.2 Stack

Related to the preceding task, consideration of details
of stack implementation in M1 will influence the instruction
set design, and the treatment of data items of length other than
one word. Stack interaction with M2 should be predicted on the
basis of stack size and estimates of stack-switching frequency.

6.?.1.3 Buffer Memory

Details of information-handling in the buffer memory
should be resolved. The influence of the instruction set,
stack, and buffer size on the bus traffic should be formulated.
Buffer sizing for constant bus traffic as a function of processor
speed should be studied.

6.2.1.4 Internal Bus

Message formats, bus-access control, traffic levels,.
and interfaces should be established, and the adequacy of the
bus-implementation technology proposed in Chapter 5 verified.
Particular attention must be paid to reliability and error
detection because of the central and solo nature of the bus.
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6.2.1.5 I/0 Controller

As the nature of the space station experiment packages
and control requirements become more clearly defined, it will
be possible to design the I/O controller in more detail. Message
formats, interrupt structure, command multiplexing, and error
handling are areas which require further design at the next stage
of development. The definition of the standard interface
element used by I/0 devices falls into this category.

6.2.2 Software Design

Perhaps the clearest single problem area in the history
of multiprocessor developments (and maybe computer systems
generally) is the development of software which can operate the
hardware at a satisfactory level of performance and reliability.
It is Intermetrics' strong conviction that the most fundamental
problems of this type can be avoided if the software development
is undertaken with the same vigor and at the same time as the
design of the hardware. If this is done, the two design efforts
can interact freely, and stimulate changes when changes are
least expensive. ' The following paragraphs contain specific
recommendations.

6.2.2.1 Operating System Design

The philosophy proposed by Intermetrics for the space
station operating system is presented in section 5.8. Implicit
in this philosophy is the need to orient the operating system
so that the overhead imposed is least when the frequency of use
is highest. Protection must be air-tight, yet the operating
system must be so direct that applications conceived years
after the system becomes frozen have a very high prohability
of being compatible. The OS must allow those users who require
it to benefit fully from the opportunities of extremely general
and flexible sharing of procedures and data made possible by the
multiprocessor type of organization.

6.2.2.2 Application Software Management

To assure compatability between the operating system
and the management procedures which can be applied to the
development of the vast quantity of semi-interdependent appli-
cation software, it is essential that a software configuration
management plan be prepared and employed for all software
development for the space station. It should provide a common
set of criteria and features for the software development,
and should be enforced.

It is Intermetrics' belief that the best means for imple-
mentation of software conventions is to incorporate them
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into the language translators used to prepare the executable
code. This clearly requires that suitable languages be

provided for the application software, and that their compilers
be prepared so that they are capable of more than simple language
translation.

Because of the length of the anticipated mission, software
testing takes on even more importance than it conventionally
has, since on-board testing should be provided to allow upgrading
of virtually any part of the software without fear of system
disruption.

6.3 Conclusion

We are aware .that the centralized multiprocessor computer
approach to the DMS application is not the only approach which
has been recommended. Although it is clearly not within the
scope of this study to analyze or perform a trade-off of
alternate candidates, nor have we done so, it is our conclusion
that a multiprocessor computer system can be desiqned developed,
and implemented to achieve the DMS functlons in a cost-effective
manner.

Even a cursory examination reveals several distinct advan-
tages of this approach over one in which distributed computers
are used:

a) Its cost should be lower, for a number of reasons. "Grosch's
law" is an empirical observation that the cost of a computer
is roughly proportional to the square root of its performance;
thus one system with n units of power should prove less expen-
sive than n systems each with one unit. Furthermore, the
aggregate power of a distributed system must necessarily
be greater than that of a central system, since each of
the distributed units must be sized for its peak require-
ment, even if its average requirements is substantially
lower. The peak load required of a central system is more
closely related to the root-sum-square of the peak indi-
vidual requirements than it is to their sum.

b) 1Its flexlblllty is greater, since it is inherently capable
of expansion, and because it deals with a wide variety
of applications via a simple, generalized interface.

¢) Its reliability should be easier to achieve, since it is
organized specifically for inherent failure-tolerance.

d) 1Its ability to implement communication among processes and
users is vastly superior, since all are directly attached
to the system and have access (when permitted) to common
information in the common memories.
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Other agencies are planning or using multiprocessing; the
Navy AADC, the ASW aircraft S3A, the IBM 9020 for the FAA, to
mention a few, plus the RCA-215, the Hughes 4400, CDC Alpha,
and so on, which have been developed for general applications.

Intermetrics strongly recommends the adoption of the multi-
processor .approach for the space station and space base Data
Management Systems, and believes the design presented in
Chapter 5 is an excellent candidate for these applications.
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Appendix A
Survey of Paging and Segmentation

Characteristics of Computer Systems

Many time-sharing systems have been implemented on computers
which do not utilize paging. Among them are the DEC PDP-10, the
Burroughs 5500 and 6500/7500, the Univac 1108, and the Control
Data 6000 series. Other manufacturers have elected to implement
paging; a number of these are reviewed below.

A.1 The Control Data 3300

The memory in the CDC 3300 is logically divided into pages
of 2048 48-bit words. A special fast core memory is used to
contain the physical addresses of pages in storage, indexed by
the upper bits of the logical address from the program. Pages
are further divided into guarters; storage may be allocated on
the basis of this smaller guantum. Two additional bits are
provided in each entry of the fast-core page table for quarter-
page addressing. These two bits are added to two bits of the
program-specified address with wrap-around, so that a three
quarter page requirement can be satisfied by a page with, say,
only quarters 3, 4 and 1 available.

A.2 The Control Data 3800

The 3800 paging mechanism uses an allocation memory (AM)
which contains 128 13-bit words. Three of the bits from each
entry are used for page access-protection, and to provide
write protection for the lower and upper halves of the page.
Seven to ten of the remaining bits are used for relocation,
depending on the page size. A four-position switch is used to
set the page size to 256, 512, 1024, or 2048 words, and to
control the selection of address bits used to index into the
AM. 1In all cases, seven bits are used to specify the location
in the AM, but the position in the logical address from which
they are taken is varied by the switch setting.

A.3 The XDS Sigma 7

Like the IBM 360, the Sigma 7 uses 8-bit bytes, 4-byte
words, etc. However, the addressing scheme is quite different.
The virtual memory addressed by the program is limited to 512K
bytes, which is 256 2048-byte pages. A high-speed 256-byte
memory map is provided to perform address translation; eight
bits of the virtual address select one of these bytes, whose
contents are substituted for the original eight bits of the
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virtual address to form the physical address.

Associated with each page is a two-bit access control code,
which is used to selectively inhibit non-executive programs
from reading, executing, or writing page contents. A 2-bit
lock and key protection feature is also provided; a program
‘can write into a given block if lock and key values match (the
Yock is associated with storage, the key with the process
being executed), or if either is zero.

A.4 The RCA Spectra 70/46

The Spectra 70/46 is basically a Spectra 70/45 with memory
address translation hardware added. The virtual memory and
paging facilities are achieved using a translation memory.
Control bits in each translation memory entry indicate whether |
the corresponding page has been written into or accessed. These
bits are set automatically by hardware. Each translation memory
entry also includes a "usable" bit, indicating whether the page
is in memory, and the physical address of that page in memory.

The translation memory has 512 entries, one for each 4K-
byte page; the limit of virtuagl wmemory is thus two million
bytes. Although the virtual address is broken down into what
are referred to as segment and page fields, addressing is one-
dimensional. The segment concept refers only to the Tact that
eighteen-bit address arithmetic is used. Specifically, nine
bits from the address are used to select entries from the 512-
halfword translation memory. Each entry, in turn, supplies
six bits which are combined with the 12-bit displacement in the
original address. Thus, no more than 64 pages (one "ségment")
can be contiguously addressed.

By convention, the first four segments, or 256 pages of
virtual memory, are available as users' virtual memory. The
other four segments are not available to users' programs, but
are used by the control program. This system virtual memory
is always allocated for system and shared code. Its mapping
is resident in the translation memory and need not be modified
as control is passed from one task to another, When a task
is to be given control of a processor, the necessary portion
of the first half of the TM entries (the size of its assigned
virtual memory) is loaded.

A.5 The Burroughs 5000/5500

The Burroughs 5000 was one of the first computers to use
the segment concept. The segments are variable in length, but
have a maximum size of 1024 words of 48 bits. Users of the
B5500 are not supplied with an assembler; thus, all programs
are expected to be written in compiler languages. The system
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programming was done in a language called Extended ALGOL. Pro-~
grams are segmented by compilers at the level of ALGOL .blocks or
COBOL paragraphs. Arrays are also compiled as separate segments.
The segment is used as the unit of memory allocation. Not all
segments have to be present in the core memory for the program
to begin running. When reference is first made to a segment,

the segment is fetched by the executive in response to an inter-
rupt.

Each program is assigned a program reference table (PRT),
pointed to by a special register in the CPU. Each segment of
the program is represented by a PRT entry, which contains the
base address, the length of the segment, the starting location
relative to the base, and an indication of whether the segment
is currently present in memory. The entries in the PRT are
called descriptors by Burroughs. Core selection strategy to
prevent fragmentation includes choosing the smallest available
block of sufficient size. Because of the way in which segments
are formed, the average segment size is on the order of one
or two hundred words.

A.6 The GE 645, and Multics

The Multics project at MIT was the innovator of two-
dimensional addressing with paging (cf. Chapter 2). The basic
motivation behind the combination was the desire to permit in-
formation sharing in a more automatic and general matter.
Consider, for example, the problems involved in a non-segmented
system when a file is to be shared: typically a copy of the
desired information is provided to each user in response to
I/0 requests he issues. Any modification or updating is done
on each copy, and is reflected in the original file only upon
completion of further I/O requests. Thus, logically acceptable
updates performed by different users at nearly the same time
can prove disastrous. In Multics, on the other hand, each
file is a segment. When a file is initially referred to by
a user, it becomes "active". Initial references by subsequent
users will find the segment active; only one page table will
ever exist for the file. If a user refers to a given address
in the file, the operating system automatically finds and fetches
the page into memory. Thus, the notion of copy is irrelevant;

a file page either is present in memory, or on secondary storage,
at the pleasure of the core-management routines. '

The implementation of this system is quite complex. An
address can be considered to comprise two major parts: segment
number, and the word offset within the segment. In operation,
each of these parts is further divided into page and page-offset
parts. A key processor register, the "descriptor-segment base
register" (dbr), contains a value unique to each process: the
address of the page-table for the "descriptor segment". This
segment contains a list of pointers to page-tables of seaments
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known to that process. In address decoding, the page number
part of the segment number is added to the pointer in the dbr
to select a word in the descriptor segment page table. This
word contains the address of the page of the descriptor segment;
the low-order part of the segment number is added to this
address to locate the entry which points to the page table

for the appropriate segment. This page table is unigue to

the segment regardless of the number of users to which the
segment is currently known.

In a similar manner, the upper half of the segment offset
is used to select an entry from the segment page table, which
points to the core location of the page; the lower half of
the segment offset is then used to finally address the word
wanted.

Prior to each lookup in a page-table, the hardware checks
the index to be used against a length-limit contained in the
pointer to the page-table; if the index is invalid, the operation
is trapped, and control is passed to the supervisor for process
termination. Each page-table entry contains a bit used to
alert the supervisor if the page is not physically in core,
by means of a page-fault. The supervisor responds by fetching
the page, and then returning control to the user. If a
selected segment descriptor word similarly indicates the
absence of the segment page table, this triggers a missing-
segment fault, which requires the supervisor to make the
segment “known".

The GE~-645 provides the means to use 1024 or 64 word pages,
and to use unpaged segments. Although the original Multics
implementation used both page sizes, the use of 64-word pages
was abandoned to enhance system performance. Unpaged segments
are used only in the part of the supervisor which is core-
resident. Sixteen associative registers are provided in the
processor to retain recently-used descriptor-segment and page
table entries, to speed subsequent references.

A.7 IBM System 360/Model 67

This system, which is generally compatible with the rest
of the 360 line, has additional features to enhance its time-
sharing utilization. Memory is divided into 4096-byte pages
(1024 32-bit words). The IBM operating system TSS/360 takes
up about 90 pages, so that a 512K machine has only about 40
pages left for user-multiplexing. As a result, performance of
systems with larger memory has been substantially better.

The addressing in the 67 is two dimensional; upper bits of
the address select a word in a segment table which points to the
page table for that segment. The remainder of the address speci-
fies a word in the segment by indicating a page table entxy and
an offset within the page. Although in the 360 line addresses
are 24 bits long, a 32-bit mode is optionally available on the 67
to increase the number of addressable segments from 16 to 4096.
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Appendix B
Physical Characteristics

The physical characteristics of a computer are strongly
influenced by the requirements imposed upon it by the operational
environment. Size and weight limitations are chronic problems
in space applications; they become the main forcing functions in
determining the ultimate physical characteristics. To these
may be added temperature, pressure, humidity, shock, vibration,
"g", and so on. The logistical requirements of modularity, stan-
dardization, maintenance, repair, etc., add further constraints.
Accommodating these constraints without compromising the required
performance is a burden that falls upon the technologies of
implementation and manufacture.

It is obviously impossible at this time to formulate a
realistic projection of the physical properties of the computer
proposed in this report without realistic estimates of its
expected environment, or of the performance requirements. This
study has concentrated on an evaluation of basic configurations.
The design presented in Chapter 5 has been chosen as the optimum
compromise of the conflicting factors discussed in other chapters.
The choice was made without specific assumptions about the imple-
mentation technology. However, it is the application of this
technology that will contribute substantially to the physical
characteristics of the computer. Over the next 5 to 10 years
this technology will experience periods of very rapid develop-
ment, so-called "breakthroughs", which will diminish the accuracy
of predictions based on current rates of development.

Nevertheless, the following heuristic approach to estimating
the proposed computer size and weight is presented to give at
least some idea of its scale. The weight, volume, power dissi-
pation and performance of a number of current aerospace computers
have been normalized to allow them to be compared and plotted
against time. The machines chosen are listed in Table B.1l.
Although some of them have more advanced features (e.g., floating
point arithmetic) than others, they are comparably organized,
and the memory cycle time is taken as an indication of processing
speed. The basic memory size is used in determining the perfor-
mance factor, even though the capability of many of these
computers can be extended considerably by adding more storage.

The performance is expressed by the factor K, where

Memory size (bits)/lo6

K = Memory cycle time (us)
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I.e., & 106 bit machine with a 1 us MCT has one unit of
performance capability.

Normaliéed weight, volume and power are calculated from:

M* = M/K
v* = V/K
W* = W/K

and are plotted in Figures B.l through B.3. The straight line
plots are intended to suggest trends and are not mathematically
derived.

The validity of an extrapolation to 1975, which must be
the cut-off point for designs that are to be operational 2-3
years later, is questionable because:

a) It is unlikely that the rate of development of the current
technologies common to all the plotted computers will be
maintained at a uniform rate for the next 5 years.

b) It is very likely (as mentioned above) that in a five year
period, quite novel techniques of -implementation will be
developed, to which these graphs may have no relation.

Nevertheless; if these factors are ignored, and if it
is assumed that K is linear for all values of memory size and
processing speed, the subject computer will, by 1975 standards,
possess .the following characteristics, per processor (assuming
M2 = 107 bits per processor, cycle time of 100 ns, and an
efficiency factor of 70% - see 5.2.1):

7 6
k=070 5 0.7=170
10
Weight = 700 1lbs.
Volume = 7 cu. ft.
Power = 700 watts
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Computer

IBM EP/MP
Nortronics 1051A
IBM TC-2
RCA-215
Univac AN/VYK
Burroughs

CDC ALPHA
AGC II

Litton 3050
IBM CP-2

DEC PDP-11

Table B.1
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Approximate Year
Of Operation

69
67
67
70
68
70
70
64
68
67
70
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