
~(PGES)(CODE)

ATNR) (CATEGORY)

II1TERMETRI ES

N4ATIOA EHIA

FOATON SERVICESpigilV.22151

Final Report

Multiprocessor Computer System Study

By

James S. Miller, Daniel J. Lickly,

Alex L. Kosmala, and Joseph A. Saponaro

March 1970

Prepared under Contract NAS 9-9763-by

INTERMETRICS, INC.

380 Green Street

Cambridge, Massachusetts 02139

The publication of this report does not

constitute approval by the NASA of the

findings or the conclusions contained

herein. It is published for the exchange

and stimulation of ideas.

FOREWORD

This document is the final report of an engineering study

of Multiprocessor Computer Systems, and the development of

multiprocessor theory and problems related to the proposed

space station and space base data management systems. This

research was sponsored by the National Aeronautics and Space

Administration Manned Spacecraft Center, under contract NAS 9-9763,

and performed by Intermetrics, Inc., Cambridge, Massachusetts.

Dr. James S. Miller was the Technical Director of the effort.

The study program covered the period from June 27, 1969

through March 27, 1970. Mr. James P. Ledet (EB6) of the Manned

Spacecraft Center, was Technical Monitor

ii

Table of Contents

Chapter 1. 	Study Objectives and Terminology

1.0 Introduction 	 1

1.1 Background 	 1

1.2 Objectives of the Study 	 2

1.3 Introduction to Computer Architecture 3

Chapter 2. 	Survey of Multiprocessor and Multicomputer

Systems

2.0 	 Introduction 19

2.1 	 Burroughs D825 System 19

2.2 	 IBM Direct-Coupled System (DCS) and IBM 360

Attached Support Processor (ASP) 20

2.3 	 Control Data 6600 and 7600 21

2.4 Univac 	1108 22

2.5 	 IBM System/360 Model 65 Multiprocessor 24

2.6 	 IBM 9020 26

2.7 Univac 	AN/UYK-7 and 1832 28

2.8 	 General Electric 645 29

2.9 	 Honeywell Model 8200 31

2.10 	Burroughs 6500 32

2.11 	IBM System/360 Model 195 34

2.12 	Control Data STAR Computer 36

2.13 Hughes 	4400 37

2.14 	Safeguard Central Logic and Control Computer 38

2.15 	IBM 4-Pi Model CP-2 39

2.16 	IBM 4-Pi EP/MP Computer 40

2.17 Litton 	L304, 305, 3050, 3070 42

2.18 	ERC EXAM Computer .43

2.19 MIT/IL 	ACGN Computer 44

2.20 	ERC-Hamilton Standard Modular Computer 47

2.21 MIT/IL 	SIRU Computer 49

2.22 	JPL STAR Computer 51

2.23 	RCA 215 53

2.24 	Control Data ALPHA 55

2.25 Litton 	IRAD 56

2.26 	Burroughs Interpreter Computer 57

2.27 	U. S. Navy NAVAIR AADC 57

2.28 	SOLOMON 58

2.29 ILLIAC 	IV 59

Chapter 3. 	Design Considerations

3.0 Introduction 	 61

3.1 Configuration Considerations 	 61

3.2 Trade-off Considerations 	 66

3.3 System Organization for Reliability 	 70

iii

3.4 Elementary Reliability Based on Queueing Theory 74

3.5 Segmentation and Paging 	 85

3.6 Processor Interrupts 	 93

3.7 Stacks 	 95

3.8 Microprogramming 	 97

Chapter 4. 	System Design Guidelines and Constraints

4.0 Introduction 	 101

4.1 General Space Station Subsystem Requirements 101

4.2 Performance Requirements 	 102

4.3 Physical Requirements 	 105

4.4 Reliability 	 106

4.5 Information & Display 	 107

Chapter 5. 	Selected Multiprocessor Design

Configuration

5.0 Introduction 	 117

5.1 Configuration Summary 	 117

5.2 Buffer Memory 	 120

5.3 Processor 	 123

5.4 Segmentation, Paging, and Level-2 Memory 124

5.5 Level-3 Memory 	 126

5.6 Data Transmission 	 127

5.7 Error Detection 	 130

5.8 Operating System Philosophy 	 132

5.9 Word-length, Protection, and Flag Bits 134

5.10 I/O and Interrupt Structure 	 138

Chapter 6. 	Summary and Recommendations

6.0 Introduction 	 141

6.1 Technology Trends 	 141

6.2 Recommendations for Future Effort 	 144

6.3 Conclusion 	 147

Appendix A. 	Survey of Paging and Segmentation

Characteristics of Computer Systems

A.1 Control Data 3300 	 149

A.2 Control Data 3800 	 149

A.3 XDS Sigma 7 	 149

A.4 RCA Spectra 70/46 	 150

A.5 Burroughs 5000/5500 	 150

A.6 GE 645, and Multics 	 151

A.7 IBM System/360 Model 67 	 152

Appendix B. Physical Characteristics 	 153

Appendix C. Additional Bibliography 	 159

iv

Chapter 1

Study Objectives and Terminology

1.0 Introduction

Multiprocessor and multicomputer systems are being proposed

for advanced manned space applications, including the space

station and space base programs. Since the applications of

systems of this type are relatively recent and not uniformly

successful, the Manned Spacecraft Center has undertaken an

analysis and extension of this technology. This document contains

the results of a study of multiprocessor computer systems,

related theory, and potential problems associated with implemen
tation of such a system in a space station Data Management

System (DMS).

This report is presented in six chapters. This chapter

presents the background and objectives of the study, and a

review of terminology involved. Chapter 2 presents the relevant

results of a survey of existing multiprocessor flight and ground
based systems. Chapter 3 presents design considerations which

are relevant to the architectural configuration of the data

management computer system. Chapter 4 discusses the major design

guideline constraints and requirements applicable to the system.

Chapter 5 presents the architectural design of a multiprocessor

computer system capable of satisfying the requirements.

Chapter 6 presents recommendations for future work in the areas

of technology and design.

1.1 Background

Among the next generation of space vehicles are to be

craft which closely resemble earth-based scientific facilities.

Earth orbital spade stations and bases are being defined as

facilities which can support operational and experimental equip
ment on a long-term basis of about ten years. An earth-orbiting

space laboratory housing 12-50 men has been proposed by NASA

for implementation in the 1975-1980 period.

The space station and the subsequent space base program

will introduce a new, more routine mode of space operations than

has characterized past programs. The station will exploit

the unique features provided by its location in low earth orbit

(200-300 km; inclinations of 28.50 to 550) for rapid earth

viewing and unobstructed celestial viewing, and will allow

scientists and engineers
to pursue a wide variety of research

and application activities on board. It is also currently

envisioned that men and-equipment will be ferried between these

stations and the ground in a reusable Advanced Logistics System

(ALS) shuttle vehicle. Obviously, to achieve these goals, many

of the functions previously accomplished on the ground will be

1

performed on board the base, allowing it quite autonomous

operation.

Part of the on-board Data Management System will be a

computer system capable of supporting all required mission opera
tions. Existing space-qualified information processing equipment

lacks the capacity and flexibility to satisfy the diversified

space station/base data management requirements.(1) The current

inventory consists primarily of dedicated hardware designed for

specific applications. Various government and industry programs

are developing technology and hardware applicable to the space

station data management requirements. Anticipated advancements

in electronic technology indicate that much can be done over the

near future to improve reliability, weight, power, and volume

of flight hardware. Included within this scope are multicomputer

and multiprocessor computer systems, which are being proposed

as candidates for the space station/base DMS since they seem to

offer the reliability, expandability, and modular features

required.

1.2 Objectives of the Study

The principal objectives of this study were threefold:

a) 	Collect and analyze available existing knowledge concerning

actual and proposed multiprocessor system design, utilization

and communication techniques.

b) 	Incorporate this knowledge in a generalized multiprocessor

theory that establishes a baseline definition of the various

system configurations and problems as defined to the present

date.

c) 	Expand multiprocessor computer system theory to include the

system and communication problems that would be encountered

in the DMS application.

The methodology used to accomplish these objectives began

with a survey of the state of art of multiprocessor and multi
computer systems. Twenty-nine ground based and airborne systems

were reviewed and information collected as to their current

status, architecture and organization, principal features of

hardware and software, problem areas, and applications. In

conjunction with this task, basic definitions and elementary

concepts in computer architecture and memory technologies were

documented.

Several basic multiprocessor configurations were analyzed

in terms of their applicability to the expected space station

requirements, and in particular their reliability and expand
ability. After a preliminary analysis of these approaches, a

parallel effort was established to examine some of the basic

design considerations and tradeoffs in multiprocessor systems.

2

This included an analysis of reliability, memory paging and

segmentation, interrupt schemes, display concepts, stack, micro
programming, and storage protection.

To embody the knowledge gained from the survey, extension

of multiprocessor design, and projection of hardware capabilities,

a system design was prepared. While confined largely to the

organizational level, this design satisfies the requirements

presently envisioned for the orbiting laboratory program.

The text of this report generally refers to the space

station/base application as simply the space station,, to eliminate

redundancy. However, it is believed that the computer systems

for both should differ in scale only, and therefore the material

presented herein is intended to be applicable to both.

1.3 Introduction to Computer Architecture

This section is included in this report to define some of

the language used in present-day descriptions of computation

systems. The vocabulary and usage described are intended to

represent a majority opinion from the computer industry. In

places where such a majority does not exist or is not very sub
stantial, alternate descriptions are provided. This approach

tends to discourage any attempt at rigorous or strict treatment

of the subject; indeed, some areas have been left somewhat

imprecise. However, it is believed that the basic concepts can

be presented clearly and briefly by use of simple language and

examples.

1.3.1 Hardware Elements

Although most people have a fair idea of what a computer

is, there is no easy way to specify a set of criteria by which

one might satisfactorily decide whether a given collection of

equipment is or is not a computer. As far as the present discus
sion is concerned, the only systems meant to be included are

those which are computers without doubt. Almost any such system

will contain one or more units of each of the following types,

plus the communication and data paths required to interconnect

them:

a) Memory

b) Processor

c) Input/Output Controller

d) Input/Output Device

Descriptions of each follow.

3

1.3.1.1 Memory

Often the largest and most expensive element of a computer

is its memory. Most computers have a number of different storage

media. Usually these are segregated into categoiries of high-speed

units and secondary storage units. The latter, which generally

involve mechanically moving parts and are accessible only via

I/O instructions, are covered under the I/O Device category.

The remaining memory is almost always of the random-access

type; that is, the time required to obtain each word from a given

unit is the same. Examples of the kinds of unit which do not

have this characteristic are the delay-line memory and the Hughes

Dynabit memory; in both, values nearest the output end of the

unit are accessible most rapidly, and so on.

The two classes of random-access memory are read-only and

read-write. The read-only memories usually have their contents

manufactured into them; thus, changing the contents of a read

only memory requires physical modification of the device. Such

memories are generally less expensive than a read-write unit of

the same capacity and speed, and are used in applications where

the contents do not need to be, or are not allowed to be, changed.

Read-write memories, on the other hand, are designed so that

their contents are electrically alterable, although in some

instances R/W memories are utilized in a manner which causes them

to normally behave as read-only devices.

R/W memories may be classed as volatile or non-volatile

according to whether their contents remain intact when power

is removed. Core memories are non-volatile, since the medium

of storage, the polarity of residual magnetic flux in the

core, is self-sustained; flip-flop memories, on the other hand,

are volatile, since the state of the device is sustained only by

its energization.

Non-volatile memories may be further classified as destruc
tive-read-out (DRO) or non-destructive-read-out (NDRO). Core

memories are DRO devices, since the contents of the selected cores

are sampled by driving the magnetization state of each to the

"zero" condition, which generates an induced voltage in the sense

lines of those cores which were in the "one" magnetic state. This

action leaves all of the interrogated cores in the "zero" state.

Thus, the information originally contained is instantaneously

erased from the cores, and must be rewritten if the same contents

are to be subsequently accessible. Plated-wire and flat-film

memories, however,may be non-destructively read. There are two

major advantages for NDRO memories: First, they are less vul
nerable to power fluctuations or other interruptions of the read

process, since at no time during the reading operation is the

information cleared from the memory. Second, they can be made

to operate at a higher reading rate, since it is not necessary

to follow each read by a rewrite operation.

4

Many computers use several types of random-access memory.

For example, in the IBM 360/65, read-only and volatile read
write memories are used in the processor, while DRO memories

of two speeds are available as main storage. The term main

storage, which is synonomous with main memory and, unfortunately,

processor storage, refers to that memory used for storage of

instructions and data of programs being executed. Blocks

labeled as meoy in diagrams of computer organizations will

nearly always refer to main-memory units.

To enhance the speed gains achievable from overlapped

computer and I/O operations and from multiprocessing (see below

for descriptions of these), memory interleaving is often used.

This technique consists of organization of the main memory into

independent modules capable of'simultaneous operation, and the

distribution of memory addresses among them. For example, if

memory is divided into eight modules, locations 0, 8, 16, 24,

etc. would be physically located in the first module, locations

1, 9, 17, 25, etc. in the second, and so on. Based on the pre
sumption that instructions and I/O transfers largely use sequen
tial memory locations, this method of interleaving tends to

decrease the probability of memory-access conflicts.

1.3.1.2 Processor

The processor units in a computer may be roughly

described as those units which decode and execute the non-I/O

instructions from the programs. I/O instruction execution in

many computers takes place in an I/O processor to avoid interfer
ence with the main or central processor. Configurations of

processors vary widely; in the most straightforward case, the

processor is essentially a single entity. At the other extreme,

however, processors are comprised of special-purpose execution

and decoding elements many of which may be (and hopefully are)

operating simultaneously. For example, the CDC 6600 main

processor contains a decoding unit and ten special-purpose execu
tion units. Processors may be segmented for other reasons as

well. For example, the JPL STAR computer, designed for exception
ally long life without maintenance, has a processor divided into

five parts, with spare copies of each, to enhance its relia
bility; the ILLIAC IV computer separates instruction decoding

from execution, and incorporates 256 elements driven by a single

decoding unit.

1.3.1.3 I/O Controller

Early computers were built without separate controls for

I/O operations; as a consequence, program execution would proceed

at processor speed until an I/O instruction was performed.

At that point, the processor became dedicated to the performance

of the I/O operation. When that operation was completed, normal

instruction execution was resumed. The effect of treating I/O

5

instruction execution like other-instruction execution was to

reduce the effective speed of the processor towards that of the

I/O devices used.

To eliminate this bottleneck, I/O control hardware was

added to the system. In some current computers, it may be in

the processor unit, and in others it is a relatively more inde
pendent component. In the IBM 360/65, as an example, the equip
ment is referred to as a channel; channels are placed into opera
tion by execution of a strt-nstruction in the processor, and

thereafter operate by fetching the executing commands themselves

concurrently (overlapped) with processor operation. Many

channels may be in simultaneous operation, and one type of

channel, the multiplexor channel, can control the concurrent

operation of a multiplicity of I/O devices. In spite of this

high degree of overlap, it is sometimes true of large scale data

processing systems that the processor is idle a disappointingly

large fraction of the time, waiting for I/O operations.

1.3.1.4 I/O Device

Into the category of I/O devices fall the drum, disk,

and tape units, card readers, printers, and the like. In real
time systems, transducers of wide variety are used. Additionally,

the I/O mechanism may be used to control the operation of hardware

not usually considered to be I/O devices, such as large-core
memory (LCM) and even other computers. The advantage of such

operations is that the processor is freed from the speed constraints

imposed by these elements in a manner completely analogous to

that used with ordinary I/O devices. Again using the IBM 360/65

as an example, the LCM cycle time of 8 Vsec is substantially

slower than the main storage cycle of 0.76 psec; use of the

so-called storage-channel can therefore increase the overall

efficiency of data transfers between memories significantly.

1.3.2 Program Structure

A prerequisite to the understanding of the many configura
tions of computer systems currently available is an understanding

of.program structural organization. Although what is to be des
cribed is not universally recognized or even always relevant,

the trend is in that direction, for reasons which will become

clear as the discussion continues.

Again looking back to early computers, a program was simply

described as a group of instructions with an identified starting

location and one or more ending locations. A program was loaded

into the memory of a computer, and execution was begun and allowed

to continue non-stop to the end. This simple structure is quite

unsatisfactory from an efficiency point of view, and has gradually

been abandoned. In its place is a view of a program as a time

6

varying group of associated procses or tasks whose constraints

on relative execution sequence are ictatedby precedence rela
tionships associated with each.

The development of monitors or operating systems (also

executives or supervisors) has stimulate the above view of

programs. At first, monitors were developed to automatically

load and execute jobs sequentially without manual intervention.

The conceptual generalization of this system led to execution of

more than one job concurrently, in the sense that while one job

awaits completion of an I/O operation, another job can be

partially executed by the processor which would otherwise be idle.

This is an elementary form of multiprogrammin ; the more general

form presently used recognizes the possible separation of single

jobs into several tasks or processes which may themselves be

executed concurrently in the above sense. A second kind of
multiprogramming has been facilitated by the hardware of the
Honeywell 800, 1800, and 8200 computers. Referred to-by Honeywell
as horizontal multi ro ramming (as opposed to the vertical multi
programming described above , this form of processo arin
takes place on an instruction-by-instruction basis. The processor

of the H1800, for example, contains eight groups of the registers

used for program control (instruction counters, index registers,

etc.), and each set may be used independently to execute programs.

Because there is only a single instruction decoding and execu
tion unit, only one instruction is executed at a time, but control

is frequently passed from one active group to the next.
Groups

which are waiting for the I/O are automatically bypassed, so that
those groups which can use the CPU are given access without soft
ware intervention.

Along with operating system development came the concept of

resource allocation which governs the assignment of core space,

tape drives, etc., and even units of data filed on secondary

storage, to requesting tasks; it was a natural extension of

resource allocation to consider processors themselves as resources

which could be requested and released by tasks as necessary.

Thus, the execution by a task of a pseudo-instruction which speci
fies that the task cannot continue until a specified event has

occurred can be interpreted as the release of the processor by

that task; the occurrence of the awaited event then is noted as

a request by the waiting task for a processor. It is easy to

see how this organization of program lends itself to use in

systems which contain more than one processor (multi-processors).

However, extension to more than one processor usually introduces

two classes of interlock problems whose solution is not neces
sarily straightforward. The two classes of interlock problems

are: first, the incorporation of means to prevent simultaneous

operations on a single data base where this is not logically

permissible, and second, the prevention of system collapse

because of situations such as the one where two or more tasks

are stalled, each one of which is waiting for another stalled

task to perform some operation. The solution of the first inter
lock problem has been greatly aided by the addition of a non

7

interruptible test-and-then-set instruction to the hardware.

This kind of instruction causes the contents of a location in

memory to be tested and then altered in a single memory cycle,

so that there is no "gap"during which another process, processor,

or channel can gain access to the same location. If this loca
tion is respected as a "lock" by the software, a process wishing

sole access to the protected data executes the test-and-set

The process
instruction, which always leaves the lock locked.

then uses the result of the test to see whether the lock had

already been locked; if so, it must wait for the process which

locked it to finish its use of the data and unlock the lock.

Units of program which are subject to sharing in a multi

programming or multiprocessing system must be treated in accord
ance with their categorization as not-reusable, serially-reusable,

or reenterable.

Program units are not-reusable if they modify themselves

during execution in such a way that a second attempt at execution

will fail. A program which does not modify itself or which

re-initializes itself upon subsequent use is called serially

reusable if the same copy may be used repeatedly, but by only

one process at a time. Reenterable program units are those

which may be used concurrently or simultaneously by more than

one process.

Another classification of program units specifically refers

to whether they modify themselves or not. The term pure

procedure means that the program unit (procedure) does not modify

itself. Such units may or may not be reenterable, but they

are at least serially reusable. Obviously, programs intended

for execution from read-only memory must be "pure" in this sense.

1.3.3 System-Use Classification

Computer system use is commonly classified into three

categories. Smaller systems are often totally dedicated to a

single category, although increasing numbers of larger systems

are capable of performing two or three with reasonable success.

The first category to exist historically is batch-processing.

In current usage, the term refers to a mode of operation in

which programmers submit their job decks for computation expect
ing an interval of hours or longer before their results are

returned. In batch-processing, no interaction is possible

between the programmer and his computation.

To remove the long delay between submission and computation,

time-sharing systems have been developed which allow many users,

from remote terminals, to use the computer as though they were

each the only user. That is, commands issued from a terminal

are executed by the system immediately, and results are displayed

almost at once.

8

In real- ime applications, even more immediacy is required,

since the computer is typically in a control-loop, and must issue

control signals promptly, as a function of the input values it

automatically receives from the controlled system.

1.3.4 Configurations

Figures 1.1-1.8 show a number of system configurations in
 current use. The interconnections shown represent the primary

data and control paths, without respect to their mechanization,

which is the subject of the next section. Figure 1.1 shows the

conventional single
rocessor or uni-processor-system; the

processor is connectd
to the memory and to the I/O controller,

and the I/O controller is also connected directly to the memory.

The connection of the I/O controllers to I/O devices, and the

I/O devices themselves,
are not shown in the figures, but are

understood to be present.

In Figure 1.2, the organization of the CDC 6000 series

and the related CDC 7600 is shown. The peripheral processors

(PP), significantly smaller and less powerful than the main pro
cessor, are used to perform the house-keeping functions involved
with job setup and control, and are responsible for execution

of I/O operations. The I/O functions normally found in I/O

controllers in other computers exist largely in the PP's in this

series of systems.
The main processor is spared responsibility

for the less taxing operations and therefore has a higher avail
ability for execution of the meat of the problem programs. As

mentioned previously, the CDC 6600
(and 7600) main processors

internally embody some degree of multiprocessing to enhance

their speed.

A multicomputer system is shown in Figure 1.3, and represents

the IBM 704x/709x Direct-Coupled System (DCS) and the IBM 360

Attached Support Processor (ASP) system. Like the CDC 6000

series, the processors in the system are dissimilar, with the

less powerful one used for housekeeping and I/O operations, in

an attempt to allow the more powerful one to concentrate on the

number-crunching kernels of each job.
 That this configuration

is described as a multicomputer rather than a multiprocessor

system stems
from the fact that the processors do not share

memory; they communicate only via a direct processor-to-processor

link and via a channel-to-channel adapter which makes each

computer look like an I/O device to the other.
 The two systems

may also share I/O devices, such as disk storage.

The dual-computer system shown in Figure 1.4, the IBM 4 Pi

CP-2 configuration for the F-ll
Mark II Avionics system, is

similar to the DCS
or ASP since the processors communicate with

each other only directly or through the I/O interface, but do not

share memory.
The system is different, hawewer-*at-t the

processors are identical, and the hardware and software are

9

M 110

Figure 1.1 Uniprocessor Configuration

_-m

CDC 6000 Series
Figure 12

& ASP
Figure 1.3 IBM DCS

0

designed so that the failure of one processor or memory can be

tolerated to the extent that the system can continue to perform

its major functions. This characteristic has led to the use of

et*rthe term ete aed au~l systesm.

Figure 1.5 portrays a modular computer structure investigated

by the NASA Electronics Research Center. In this design, each

processor has been split into control and arithmetic units for

reliability reasons.
Not shown in the figure is a configuration

assignment unit
(CAU) which is capable of changing the connection

paths between the other units. Again, in this configuration,

no memory may be shared, although more than one memory unit may

be connected to a processor. Although these units typically

function as independent computers, a potential connection scheme

is to add voting logic at appropriate places and to cause all

units to execute identical programs. This provides a system of

high reliability for critical computations when insufficient

time exists to diagnose errors and reconfigure the system. During

less critical times, the units might perform independent calcu
lations, or one or two could be idle as standbys in case of

failures in active units.

The MIT/IL computer designed for a high reliability appli
cation is portrayed in Figure 1.6. Two copies of each module

are included in the design, although one processor is always

in a standby condition. This sywtem is therefore not really

either a multicomputer or multiprocessor system even though it

utilizes two processors. Both memories accept all write commands

from the active processor, although only the one instantaneously

designated "primary" responds to read requests.
 As a result,

both memories should contain identical contents, so that if an

error is detected in one, the designation of "primary" can be

switched to the other and the read request repeated. The JPL

STAR computer is similar, in that its operation is essentially

that of a uniprocessor even though multiple copies of modules

are present in the system. These two systems have been mentioned

to show the existence of "gray areas" of system classification.

The most frequently utilized general architecture for a

multiprocessor configuration is shown in Figure 1.7.
 This

configuration is found in the IBM 360/65 multiprocessor, the

Burroughs D825, 5500, etc., Univac 1108
 and AN/UYK-7, IBM 4 Pi

EP for VS A-NEW, IBM 9020, Hughes 4400, ERC EXAM, MIT/IL ACGN

computer, and so on. The distinguishing characteristic of the

multiprocessor organization is the equal sharing of memory and

I/O by each processor. Although the processors in this organiza
tion are often alike, they need not be. When they are, the operat
ing system software usually treats them interchangably, and

tasks may be assigned to any one when they become ready for

further execution.

The ILLIAC IV system shown in Figure 1.8 is called an

array processor, and differs markedly from the other systems

11

PP]

M M

I/0

Figure 1.4 IBM Mark II Avionics Computer

110 1/0 .1/0

M M M

C C C

A AA

Figure 1.5

NASA/ERC Modular Computer

12

Figure 1.6 MIT/IL SIRU Computer

I/OI

Figure 1.7 General Multiprocessor

13

described. Associated with each of the four instruction

decoding units are 64 execution units, each with its own memory.

Thus each instruction can be executed by up to 256 units each

addressing data in its own memory. The execution units are

arranged in a linear string but interconnected as though they

were laid out in four square matrices; that is, processor i

can communicate with processor i+l, i-l, i+8, and i-B, with

end-around connections where necessary. This system is driven

by a Burroughs 6500.

1.3.5 Interconnections

Figures 1.9-1.11 illustrate three interconnection tech
niques used to tie processors, memories, and I/O controllers

together. The scheme which is conceptually simplest is shown

in Figure 1.9, and consists of a common data bus to which all

modules are attached. This bus, which could be of word, byte,

or single-bit width, is time shared between pairs of units which

wish to communicate; only one message at a time is possible in

the simple system shown. This restriction has advantages as

well as disadvantages. The most pronounced disadvantage is the

bottleneck imposed by the one-at-a-time communication limitation,

since as processors and memories are added to expand the system

capacity, waiting times for bus-access grow and reduce the

per-unit effectiveness of the system. The advantage of the

single bus lies in its conceptual simplicity; conceivably,

it could be a single wire with only one connection point per

module, although practicality requires considerable logic in-each

unit. Also, the single bus permits implementation of certain

data-interlocking requirements by simple brief monopolizations

of the bus by the processor involved, without the need of any

explicit software or hardware locking machinery. Finally, the

simplicity of the data bus provides the minimum difficulty in

adding a unit to the system: it is simply attached to the bus.

Figures 1.10 and 1.11 illustrate two versions of an

essentially similar interconnection technique. In the scheme

shown in Figure 1.10, units called multiport memories permit

multiple connections to each memory nodu e. A con ict
resolving switch in each memory awards access to one requesting
unit at a time, but when several units simultaneously request

access to different modules, all of these accesses may be con
currently granted. As in the common data bus scheme, data path

width in these busses may be of any convenient size. However,

the number of ports on each memory unit is decided when the

unit is built, and if all ports are used in a given system,

addition of a processor or I/O controller is impossible.

A crossbar style of interconnection is shown in Figure

1.11. Thisscheme is similar to that of Figure 1.10 in that

simultaneous communications are possible, but it differs since

.the 	memories are single port devices and the switching is

accomplished in an external unit. That this mechanism can grow

14

http:1.9-1.11

C

i"8 I- i i +1 1+8

Figure 1.8 ILLIAC I'%Com-ut-r

(SP - supervisory processor, C - control processor,
E - execution processor)

Figure 1.9 Cormon Data Bus Connection

15

M M

Figure 1.10 Multiport Memory Connection

NI N M M

El-YYY
El-

Figure 1.11 Crossbar Connection

16

to be quite complex is illustrated by the fact that the maximum

configuration of the Hughes 4400 multiprocessor switch has a

component count equivalent to 2.5 processors. Since the switch

is external to the other units, it is possible to design it to

be modular and therefore expandable, to avoid the capacity

limitation imposed by multiport memories. A modular switch of

this kind has been under development at the NASA ERC.

17

BLANK NOT FitMED.PRECEDiNG PAGE

Chapter 2

Survey of Multiprocessor and Multicomputer
Systems

2.0 Introduction

This chapter presents the results
of a survey of existing

and proposed designs for multicomputer
and multiprocessor archi-

The survey has included reviews
of vendors sales and

tecture.

technical material, articles from

technical journals, and dis

cussion by telephone and in person
with vendors and academic

computer personnel. Material from these sources has
been com

bined with the technical experience
of the authors and summarized

in the following pages. Although a common general format
has

been used, the information given,
and in fact the information

For the

which exists, varies considerably

among the summaries.

most part, this is a result of
our attempt to include only in

formation which is fundamental
to the individual system or

which is believed relevant to
considerations of the design

of

a computer organization suitable
to meet the projected require

ments of a space station mission.

Although only relevant material
is documented in this

section, the survey-taking process
gathered other information

which provides the bulk of survey
material that is described

Computer design examples are
presented in Appendix

elsewhere.

A, which reviews in detail

the segmentation and paging
mechan-

In addition, sections on micro
isms that are currently used.

programming (3.8) and stack
usage (3.7) discuss specific

com

puter configurations.

2.1 Burroughs D825 System

Classification: Multiprocessor; ground-based
military

data-processing/real-time system

Operational Status: Operational

Description:

The hardware complement of
the D825 may include from one

to four processors, one to
sixteen memory modules of 4096

48-bit

The modular organiza
words, and up to twenty I/O

controllers.

tion of the system has been
designed to achieve extremely

re

liable operation. Additional modules of each
type may be added

to provide redundancy; these
elements do not remain idle,

but

Burroughs

share the processing load during
tormal operation.

can be achieved in

claims that availability in

excess of 99.99%

this manner.

communication between major
elements flows through a dis-

The switch

tributed switching interlock

of the cross-bar type.

19

is designed so that no single failure can affect the operation

of modules other than the one in which the failure is located.

Memory modules may be used concurrently by all processor and I/O

buses. Should two to more buses simultaneously attempt to access

the same memory module, the switch resolves the conflict accord
ing 	to priority, and queues the lower priority requests.

The instruction set of the D825 contains instructions whose

lengths vary from one to seven 12-bit syllables; zero-, one-,

two-, and three-address formats are provided.
Address modifica
tion may include infinite-level indirect addressing followed by

indexing using one, two, or three index registers. A four-level

thin-film operand stack is provided to reduce access time for

repeatedly-used operands.

Software Characteristics:

The D825 Automatic Operating and Scheduling Program (AOSP)

has three primary functions: it provides operational modularity

to modular hardware, it provides system unity for real-time re
sponse, and it coordinates modules without the vulnerability

associated with systems in which coordination is performed by a

unit of hardware. A revealing statement is made in the second

reference: "It is clear, however, that the D825 system would

have fallen far short of the goals set for it if only the hard
ware had been considered. The AOSP is as much a part of the

D825 system structure as is the actual hardware."

References:

1)
"D825 Modular Data Processing System," Burroughs Corporation,

Paoli, Pa., undated.

2) 	"D-825-A Multiple-Computer System for Command and Control",

Proc. FJCC, 1962, vol. 22, Spartan Books, Washington, D.C.

2.2 IBM Direct-Coupled System (DCS) and IBM 360 Attached
Support Processor System (ASP)

Classification:
 Dual computer system for ground-based

general purpose data processing

Operational Status: Operational

Description:

The 	ASP and DCS systems are essentially similar; ASP utilizes

two 	system/360 machines such as 65/40 or 65/5D, while DCS typi
cally consists of a 7044 and a 7094. The intention of the com
bination is to use the more powerful computer for the execution

of the processor-limited part of each job, and to use the smaller

for management of the I/O for each job and for job scheduling.

20

Communication between the computers is through I/O channels

of each, which are connected by a channel-to-channel adapter,

having the effect of causing each computer to look like an I/O

device to the other. No sharing of core memory is utilized,

although it is convenient to utilize secondary storage devices

attached to both systems by means of two-channel switches.

Reference:

1
Rosin, R.F.,)"Supervisory and Monitor Systems , Computing

Surveys, vol. 1, no. 1, March 1969.

2.3 Control Data 6600 and 7600

Classification: Multiprocessor; large scale ground-based
general purpose data processing system

Operational Status: Operational

Description:

a) 	Central processor, plus peripheral processors (PPU).

b) 	Shared main memory.

c) 	Communication between processors via main memory and control

instructions.

The 	CDC 6600 and 7600 are similarly organized, although the

7600 is a considerably higher-performance system. Each consists

of a central processor and a group of smaller peripheral pro
cessors. The peripheral processors each possess private memory,

but can address the system main memory as well. The intention

embodied in the design of the system is that the central processor

be devoted to the meat of the data processing job, while the

peripheral units handle the I/O operations and clerical aspects.

Thus, while the central processor is executing a program resident

in main memory, one or more PPU's may be setting up another job

in main memory for subsequent execution.

The central processor is itself designed to exploit some

inherent parallelism in the sequence of instructions being

executed: the functional execution elements are capable of in
dependent and concurrent operations if operands are available

and the logical constraints of the program allow.

To indicate the level of potential system performance, the

following data is presented for the 7600: Cycle time for the

65K-word main memory is 275 ns; this memory is organized in 32

banks, which permits delivery of words at a rate of up to one

per minor cycle of 27.5 ns. A 512K-word secondary core memory

21

is standard equipment, and is capable of delivering information

at the same rate through use of an 8-word data path and 8-bank

organization, even though its cycle time is 1760 ns.

Software Characteristics:

The 7600 will be available with an operating system to

sustain the user in the remote batch, the time-sharing, and the

real-time command and control environments.

Miscellaneous:

The attempt made in the CDC 6600 to exploit local opportu
nities for parallelism in the sequence of instructions being

executed apparently was not as successful as the designers anti
cipated. This is indicated by two considerations: first, the

CDC 6400 was designed to be like the 6600 except that instead

of a concurrently-executing central processor composed of ten

separate functional units, the 6400 had all functions combined

into a single execution unit. The performance difference on

typical benchmark problems was only a factor of two, however,

showing that the achieved concurrency in the 6600 was markedly

less than the possible concurrency. Second, the arrangement

of function units in the 7600 has been significantly altered

from that in the 6600, indicating that Contral Data believes

that a better allocation of functions would improve the system

performance. These considerations are mentioned here only

to highlight the problems apparently inherent in exploiting,

in hardware, parallelism which has not explicitly been identified

in the program.

2.4 Univac 1108

Classification: Multiprocessor; large scale ground

based data processing system.

Operational Status: Operational

Description:

a) 	One to three processors (typical).

b) 	One or two I/O controllers (typical).

c) 	Up to four processors or I/O controllers may be attached to

each I/O control unit.

Each processor can address all of main memory (which can be

up to 262,144 36-bit words). Memory cycle time is 750 ns. Up

to four logical banks for instruction/data fetch overlapping

provide an effective cycle time of 375 ns., under control of

the processor; up to eight-way interleaving is available to

minimize conflicts.

22

Error detection in the hardware is limited to parity check
ing; each 36-bit word is provided with two parity bits. No

arithmetic checking is performed. Storage protection is pro
vided by means of a storage limits register which imposes strict

boundaries on the areas of memory which may be accessed for

instructions and data. A privileged mode exists where the

limits are enforced only relative to writes, and an open mode

provides free use of all memory.

Software Characteristics:

Exec-8 operational, but considerably behind schedule.

Multiprocessor 1108 acceptance at Marshall Space Flight Center

was delayed for two years due to software performance problems.

Miscellaneous:

Univac has prepared a formula for use in evaluating the

performance improvement realizable from addition of processors

to a system, and supplied numbers for the 1108 system. The

formula is:

P x 106

NC+Q+D+E

where N is the instruction rate, P is the number of processors,

C is the memory cycle time, Q is delay due to queues at memory

units, D is the delay due to hardware (multiple module adapters,

etc.), and E is the time added due to extended-sequence in
structions.

For one processor,

N l
1x 106

= 1.33 x 106
N
 0.75

With extended instructions,

106 0.95 x 106
N 1 x
0.75 + 0.30

For two processors,

N = 2 x 106 1.63 x 106

0.75 + 0.05 + 0.125 + 0.30

Thus, the gain for the second processor is

1.63 - 0.95 = 0.71
0.95

23

References:

1) 	Univac 1108 Multiprocessor System Description, Univac Data

Processing Division, undated.

2) 	Stanga, D.C., "Univac 1108 Multiprocessor System", Proc.

SJCC 1967, vol. 30, Thompson Books, Washington, D.C.

2.5 IBM System/360 Model 65 Multiprocessor

Classification: Multiprocessor; ground-based general
purpose data processing system.

Operational Status: Hardware and software operational

Description:

a) 	Dual processor system.

b) 	Shared main memory.

c) 	Shared I/O.

d) 	Direct communication between processors.

Each CPU can address all of the locations in main storage;

each CPU has its own 4K byte interrupt area in main storage; each

CPU can address any secondary storage device through alternate

path I/O control; each CPU can reset, interrupt, or start the

other CPU with a "Direct Control" signal or a "Malfunction Alert"

signal through a direct hardware connection. The system can be

reconfigured according to the availability of components. Op
tionally, the system can be run in the dual processor mode with

main storage and I/O devices apportioned to the two processors.

Error detection in the hardware is the same as for the

standard Model 65, and includes checking of arithmetic and

logical operations as well as parity checking of information

transfers. A group of "recovery management" programs attempt

to recover from a machine malfunction by retrying the failing

operation. If the operation cannot be retried, they assess

program damage and either repair the effects of the failure or

attempt to restrict the effects of the failure to a single job

step. If the damage is unrecoverable, the job step is terminated.

If the supervisor program is damaged, the system must be re
started. When "hard" errors occur, the operator is notified so

that necessary reconfiguration may be accomplished. The operator

may add or delete I/O devices, channels, CPUs, and blocks of

main storage. However, at no time can any storage area contain
ing a part of the supervisor be removed from the system.

24

ITI

. ..

Figure 2.1 IBM 360/65 Multiprocessor

25

Software Characteristics:

A generalization of the standard 0S/360 MVT is used. The

fundamental unit of processing is referred to as a task; tasks

are selected for execution by the supervisor routine, -wich

searches a task control block (TCB) queue for the ready task

with the highest priority. When a CPU discontinues execution

of a task, the"btatus of the task is recorded in the TCB. Task

switching can take place as a result of a CPU interruption.

If a CPU receives an interruption indicating that it should

switch tasks, it does so. If the interruption indicates that

the other CPU should switch tasks, it signifies this through a

direct control signal which causes an external interruption in

that CPU.

Miscellaneous:

Because of the design of the 360 I/O control units, connec
tion to more than two processors is not feasible. Also, because

of the nature of the direct control feature for communication

between processors, the system is limited to two processors.

Thus, the system is restricted by its hardware design from ex
pansion beyond a two-CPU configuration, although the principles

upon which the system is based are not so restricted.

References:

1) IBM Systems Reference Library, IBM System/360 Operating

System, Model 65, Shared Main Storage Multiprocessing,

Preliminary Description, Form C28-6671-0, Jan. 1968.

2) Witt, B.I., "M65: An Experiment in OS/360 Multiprocessing",

presented at Information Systems Symposium, Sept. 4-6,

1968, Washington, D.C.

2.6 IBM 9020

Classification: Ground-based multiprocessor with
graceful degradation capability, in
a real-time application.

Operational Status: Operational

Description:

The IBM 9020 was built to meet the needs of the FAA's

National Airspace System for air traffic control operations.

One of the important requirements which the.system was designed

to meet was that of twenty-four hour fail-safe performance.

To achieve this goal, a redundant group of substantially modi
fied elements of System/360 Model 50 computers (later versions

use 67 components) has been put together with a control program

which is capable of directing error recovery in the event of a

26

subsystem failure. The resulting system embodies redundant

capacity for all major elements, automatic error detection and

dynamic system recovery capabilities, restart techniques for

intermittent failures, and rescheduling of application functions

when necessitated by solid failures. In the presence of a

solid failure, the system can operate in a fail-safe mode by

calling upon a redundant element; no functions are discontinued,

nor are other aspects of system performance changed.

Should the number of available components fall below the

number required to maintain complete performance, the system

can 'continue in a fail-soft mode, with degraded performance,

as long as at least one of each major element is operational.

The major components of the 9020 system are its memories,

processors, and I/O control units. Six-port memories are used,

connected to three processors and three I/O control units. Three

tape controls are used, each of which is connected to two I/O

controllers. Additionally, three peripheral adapter units are

used as interfaces with external equipment. System units are

classified operationally as active if they are involved in air

traffic control operations, redu-ndant when not so employed but

available within a 30 second recovery period, or inactive if not

in operational use nor available within 30 seconds. Redundant

units may be used to expedite the repair of a malfunctioning

unit, although they may have to be released to become active

units in the event of another failure.

The configuration of the system is under program control;

each of the five types of components mentioned above contain

configuration registers whose contents may be set only by a

privileged instruction, and only by certain processors, under

control of the contents of the register itself.

Interlocking of common data in shared memory is accomplished

by the standard 360 Test and Set instruction; however, a non
standard instruction has been added to allow a processor to

delay a short time (for example, if it finds a desired memory

area locked by another processor) without making further refer
ences to memory and possibly causing unnecessary conflicts.

Certain other non-standard instructions have been added to

the 9020 system to enable a processor to identify itself and

to set the location in memory of a preferential storage area

itself. Others allow control of address translation which

relates logical and physical storage locations in the system.

Software Characteristics:

The general control of program execution in the 9020 is

quite similar to that of OS/360 MVT (multiprogrammingwith a

variable member of tasks). Programs are divided into units,

called tasks, which are scheduled for execution by priority.

Single-level interruption is utilized; that is, when an inter

27

ruption has control of a processor, further interruptions of

that processor are inhibited. Continued processing of an

interrupted task may be performed by another processor if one

is available.

A problem encountered in both multiprogrammed and multi
processing systems is that of avoiding mutual lockout because

of the sequence and strategy for resource allocation. In the

9020, this problem potentially occurs with respect to allocation

of main storage. It is avoided by defining a functional hier
archy for storage usage, and enforcing rules (in the control

program) for storage assignment. The rules are that: 1) a

task must request storage of different classifications in the

order defined by the functional hierarchy; and 2) no storage

of a given category may be requested by a task which has

already been allocated, but not released or unlocked, storage

of -that category. Execution of a task which violates these

rules is terminated by the control program. A task which re
quests storage not immediately available is suspended until

the requirements can be satisfied.

Reference:

Entire issue, IBM Systems Journal, vol. 6, no. 2, 1967.

2.7 Univac AN/UYK-7 and 1832

Classification: 	 Multiprocessor, real-time controi

computer. UYK-7 is primarily for

Navy surface ships; 1832 is 	a new,

faster, miniature version for the

Navy ASW program, the S3A aircraft.

Operational Status: 	 UYK-7 is operational; 1832 is in

design phase.

Description:

a) 	1 to 3 CPU's.

b) 	1 or 2 I/O controllers, direct to memory independent of CPU.

c) 	Completely shared memory from 1 to 16 modules of 16 K words

of 32 bits (max. size = 262,144 words).

d) 	1 to 4 independent power supply modules.

e) 	CPU characteristics:

1) 16 and 32 bit instructions.

2) Data word size = 8, 16, and 32 bits (64 DP fixed-point).

28

3) Multiple accumulators with separate ones for

executive mode.

4) Cascaded indirect and dual base and index addressing.

5) Instructions for 48 bit floating point data - 32 bit

mantissa and 16 bit exponent (232768).

6) Memory lockout registers for memory protection.

7) Variable length character-handling instructions.

This computer is a large, flexible system. The instruction

set is very extensive including immediate or literal and sub
stitute types. The computer is reminiscent of an 1108 with a

48 bit floating point format.

No particular attention seems to have been given to

failure detection and isolation or recovery procedures.

The multiprocessor software does not seem to exist but

will have to be developed for the S3A program. The degree of

difficulty should be approximately the same as for the 1108;

in fact, the experience on that may be applicable. The progress

of the S3A program should reveal the multiprocessing potentials

of this design. The effort seems to address itself to the

question, "Can a good, powerful, flexible, but conventional

computer design lend itself to an efficient multiprocessor

computer configuration without special M/P software-oriented

hardware features?"

References:

1) 	Computer Data, AN/UYK-7, SB-12292, UNIVAC-, December 5,

1968.

2) 	AN/UYK-7 (V) brochure, #PX 4758-A, UNIVAC Federal Systems

Division, April 1968.

2.8 General Electric 645

Classification: Non-product-line time-sharing multi

processor

Operational Status: Operational

Description:

The GE-645 is an extension of the 635, a product-line system.

It was designed jointly by GE and MIT's Project MAC, a research

29

program sponsored by ARPA. The objective of the design was

to produce a system which could run the Multics operating system,

a comprehensive, general-purpose software research project in
tended to be capable of meeting the requirements of a large

computer utility. The 645 differs from the 635 in the areas

of the I/O controller, the interrupt structure, and most im
portant, the addressing logic, which was the first to incorpo
rate both segmentation and paging.

The system on the air at MIT is a two-processor configura
tion with 384K 36-bit words of memory. The novelty of the

addressing is described further in Appendix A, but the part

played by the processor will be briefly outlined here. Unlike

more conventional processors, the 645 forms "two-dimensional"

addresses by providing a base register which contains the number

of an entry in a segment table, and computing separately the

address of the word within that segment. The "procedure base

register" holds the segment number for the procedure being

executed; the "instruction counter" holds the offset. The

"descriptor-segment base register" contains the address of the

descriptor-segment or segment table; this address is added to

the segment number to obtain the location of the appropriate

entry. A register is provided to hold the segment number of

the operand of the,instruction, and four pairs of address base

registers are used to hold addresses of argument lists, linkage

segments, and stack segments. Eight index registers are in
cluded, and sixteen words of associative memory are used to

contain recently-used segment and page table entries.

A special form of indirect addressing is implemented,

which permits the generation of an interrupt (fault) when it

is invoked; Multics utilizes this to provide a dynamic
linking facility in which linkages are completed as execution

proceeds. This is useful in three ways, although it entails

considerable overhead. First, it eliminates the necessity

for a "link-edit" process prior to execution; second, it elimi
nates the linking of segments whose linkages are not used during

a given instance of execution; third, it circumvents the pro
blems caused by the fact that segment numbers are assigned during

execution, not at compile time, and therefore cannot be placed

into external addresses.

References:

1) 	Corbato, F.J., Vyssotsky, V.A., "Introduction and Overview

of the Multics System", Proc. FJCC, 1965.

2) 	Glaser, E.L., Couleur, J.F., Oliver, G.A., "System Design of

a Computer for Time-Sharing Applications", Proc. FJCC, 1965.

3) 	Organick, E.I., "A Guide to Multics for Subsystem Writers",

MIT Project MAC Memos M0086, Nov. 1967; M0087, Feb. 1968;

M0090, Feb. 1968; M0106, Jan. 1969; M0107, Feb. 1969; M0108,

Mar. 1969; M0115, Aug. 1969.

30

4) GE-625-635 System Manual, Jan. 1965.

2.9 Honeywell Model 8200
to H800 andse800)

(information mostly applicable also

Classification: Two-processor ground-based data pro
cessing system, with hardware to per
mit concurrent multiprogramming.

Operational Status: H800, H1800 and H8200 operational.

Description:

Although the H8200 is a two-processor system (one word
oriented, and one character-oriented) with shared memory, the

system is included in this summary because of the unique nature

of its word-oriented processor, which is essentially the same

as the H1800 and H800. Only the characteristics of this unit

will be described.

Because of the unusual way the processor is organized,

a brief discussion of two types of multiprogramming will be

given. In a conventional multiprogramming system, a list of

tasks is maintained, often ordered by priority. Normally,

the processor is controlled so that the highest-priority

"ready" task is being executed. When the task cannot proceed,

for example because it is awaiting the completion of an I/O

operation, it is removed from "ready"status and control is

given to another task. When the operation-completion is sig
naled, the waiting task is placed in the "ready" condition

again and execution resumes when its priority is the highest.

Honeywell refers to this kind of processor-sharing as "vertical

multiprogramming".

Another type of sharing, referred to by Honeywell as

"horizontal multiprogramming" is implemented in the hardware

of the H1800. A three-address instruction format is used,

so that results are not normally left in the accumulator of

the CPU between instructions. Although there is only a single

copy of the arithmetic unit in the CPU, the program control

registers (instruction counters, index registers, etc.) are

replicated 8 times (9 in the H8200) so that up to 8 tasks can

sequentially time-share the CPU on an instruction-by-instruction

bases. A program control group which has been allocated to a

task for execution is called an active group; the CPU scans for

the next active group while it executes an instruction from an

active group. When any task is awaiting completion of an I/O

operation, a bit is set for that group in the hardware which

causes it to be bypassed by the scanning process. Completion

of the I/O operation causes this bit to be reset. When a group

is not active or when it is stalled, as above, time slices which

would have been used by that group are available for use by

active groups.

31

The main advantages claimed-by Honeywell for horizontal

multiprogramming are that task switching is accomplished by

hardware with zero time overhead, and combinations of programs

that make heavy use of peripheral devices tend to obtain better

overall throughput than under vertical multiprogramming.

Software Characteristics:

The characteristics described here are those of the

Honeywell Mod 8 Operating System, written for the 8200. The

8200 has a ninth program control group, the Master Group, and

a character-oriented processor (similar to the H4200 CPU), and

thus this operating system is applicable Only to the 8200, and

not-to the 800 or 1800.

Each job is assigned a priority by the user; the operating

system selects jobs for execution based on their priority and

their profitability. A job is considered "profitable" to run

immediately if it requires the use of currently unused resources

and does not also require the, use of a currently busy resource

that cannot be shared efficiently. Protection of programs

from one another is accomplished largely in hardware; facilities

employed for this purpose include memory protection, a peripheral

protection/reassignment table, a privileged instruction set,

and a watchdog timer to protect against endless interruptible

loops. These features are augmented by software facilities

which take cognizance of the detailed resource assignments.

References:

1) 	Hatch, T.F., Jr., Geyer, J.B., "Hardware/Software Interaction

on the Honeywell Model 8200", Proc. FJCC 1968, Thompson

Book Co., Washington, D.C.

2) 	Honeywell 1800 Programmers' Reference Manual, Honeywell

Inc. Electronics Data Processing Division, Wellesley Hills,

Mass., 1964.

2.10 Burroughs B6500

Classification: 	 Ground-base commercial general

purpose data processing system with

multiprocessor capability.

Operational Status: 	 Deliveries began in 1969. Software

not complete.

Description:

a) 	1 or 2 CPU's.

b) 	1 or 2 I/O multiplexors.

32

c) 	Completely shared memory of up to 32 modules of 16K 48 bit

data words plus 3 tag bits and 1 parity.

Burroughs commercial machines have for many years been

unique. They have a radically different architecture and

philosophy concerning the place of software. The 6500 merely

continues these thoughts from their expression in the B5500.

The B5500 has had an unusual reception among users. It has been

a "later bloomer" in that demand has been increasing during

each year of its existence, rather than being the largest

when the machine was brand new. This has been true quite recently,

even though the hardware was old and slow by comparison with

newer designs. This growing group of enthusiastic users is quite

a tribute to its unusual design concepts.

The B6500 is an attempt to provide up-to-date hardware to

stay competitive and to increase the fold of satisfied customers.

Rather than maintaining machine compatibility, they increased

its capabilities in many areas such as memory capacity and I/O

flexibility, while sticking to the basic philosophy that they

have espoused before. The basic tenet seems to be, "Thou shalt

not program in machine language". In fact, Burroughs does not

even supply as assembly language.

They expect that all the programming will be done in a

higher level programming--language. The ones that they plan

to give the chief support on the 6500 are:

1) 	ALGOL: Burroughs has used this extensively for many years.

2) 	FORTRAN, most widely used scientific language.

3) 	COBOL, most widely used business language.

4) 	PL/I, newer, but growing set of users.

Other features of the B6500 include:

1) 	Processor hardware design to implement higher level languages

and run them under a comprehensive operating system called

Master Control Program (MCP).

2) 	Multiprogramming is considered the normal mode of operation,

and is recognized in the design.

"
3)	 3 extra control bits (tag bits) in each word are used for

flagging special characteristics.

4) 	A hardware stack mechanism is provided to automatically

handle operand storage and other temporary data in a manner

that makes it easy for compilers.

33

5) 	Polish notation type of instructions with variable number

of syllables of 8 bits each.

6) 	Programs cannot be modified while in core. This produces

re-entrant and even recursive subroutines as well as per
mitting automatic overlay with little special effort by

the MCP.

7) 	Actual addressing is relative and/or indirect which makes

it easy to relocate.

8) 	Memoryprotect includes upper and lower bound on arrays

and descriptors for segmentation.

References:

1) 	Burroughs B6500/7500 Characteristics Manual, Burroughs Corp.,

Sept. 1968.

2) 	Burroughs B6500/7500 Electronic Data Processing System,

July, 1968.

3) 	Hillegass, John B., "Burroughs Dares to Differ", Data Pro
cessing Magazine, July 1968.

4) 	Hauch, E.A., and Deut, B.A.,"Burrough B6500/7500 Stack

Mechanism", Proc. SJCC, 1968, vol. 32.

2.11 IBM System/360 Model 195 (information below mostly applicable

to Models 91 and 95 also)

Classification: Single processor system embodying
internal parallelism; very large
ground-based general-purpose data
processing system.

Operational Status: Partially complete prototype
operational; first delivery scheduled
for 1971. Software operational.
Models 91 and 95 operational.

Description: Single processor system with extensive
overlapping and "pipelining" of
operations.

Although the M195 has only one processor, its unique degree

of internal parallelism causes it to deserve consideration here.

Five separate units may be operating concurrently; main memory,

storage control unit and buffer storage, instruction processor,

fixed-point/variable-field-length/decimal processor, and floating
point processor. Furthermore, each of these units may be per
forming several functions at one time. For example, as many as

34

three floating-point operations may be taking place concurrently.

A high speed buffer memory is used to partially mask the

access time to main storage (810 ns). Additionally, an

instruction look-ahead buffer is used to reduce conflicts be
tween instruction and data word fetches, and to eliminate in
struction fetching altogether for certain small program loops.

Each of the two execution elements is provided with stacks

to enhance pipeline operation. The floating-point add unit

can deliver two 64-bit sums as often as every 162 ns; the

multipy/divide unit can form a 64-bit product in 162 ns.

A pronounced degree of "real time" seeking of implicit

parallelism is performed by the machine. That is, each

instruction, after being decoded in sequence, is sent to an

execution element where its further processing occurs se
quentially only when expeditious or logically necessary. The

use of buffer registers and other buffering techniques often

makes out-of-sequence execution of instructions efficient.

This philosophy is pursued to the extent that instruction

decoding continues even in the interval between the point that

a conditional branch has been decoded and the point that exe
cution of the instruction which sets the condition code is

completed. Of course, if the assumption made by the processor

about whether the branch will or will not be taken proves false,

the partially processed instructions must be canceled. However,

as a hedge against this contingency, the instruction fetching

mechanism fetches several instructions down the alternate path

at the same time the conditional processing is taking place,

so that regardless of the outcome of the condition test when

it finally occurs, some progress has been made beyond that

point in the program.

Software Characteristics:

A somewhat modified version of OS/360 is used in the M195.

One of the consequences of the out-of-sequence instruction

execution in the M195 is that certain interrupts are triggered

after the location of the responsible instruction has been lost.

The result is an uncertainty, for example, as to which instruc
tion caused a storage-protection violation, overflow, etc.,

on some occasions. An instruction, otherwise a no-op, has

been implemented in such a way in the M195 that no further

instruction'decoding takes place until the execution pipelines

have been emptied. Although use of this instruction can prevent

the uncertainty mentioned above, performance of the system is

degraded since a great deal of the capacity of the processor

is inherently disabled temporarily.

the design of the M195 clearly indicates an attempt to

exploit parallelism implicit in ordinary coding prepared in the

customary ways for a serial processor. However, the variation

in performance between two versions of a problem coded with

35

and without M195 considerations can be quite dramatic.

Exceptional Characteristics:,

Monolithic circuitry is used in the M195; basic stage delay

time is less than 5 ns. Two boards of 8 x 12 inches hold plug
gable cards which contain a floating-point add execution unit

for 64 bits in which both preshifting and postshifting are

accomplished. The high-speed buffer memory of 32K bytes is

packaged on pluggable cards held by two 10 x 12 inch boards.

The speed of the M195 clearly requires small physical size;

its complexity, also required for high performance, tends to

significantly add to the component count. Further increases in

system performance will require comparable reductions in physical

size, or more dependence on multiple processing, or both.

Reference:

IBM System Reference Library, IBM System/360 Model 195 Functional

Characteristics, Form A22-6943-0, August 1969.

2.12 Control Data STAR Computer (String Array Processor)

Classification: Commercial data processing computer

Operational Status: Design Phase

Description:

This is a large 4th generation general purpose machine which

is being designed for ground-based real-time applications in
cluding time-sharing. It is not a multiprocessor. It is being

designed by a different team and is a complete departure from

the architecture of the 6000 and 7600 series. General character
istics include:

1) Variable word length: 2-1024 bytes

2) Vector processors

3) 32 or 64 bit instructions

4) 32 banks of 16K 64-bit words

5) 32 and 64 bit floating point,

6) 1000 data channels

The precise details of the computer are still somewhat

tentative; it is anticipated that more information will become

available when the design is frozen.

36

2.13 Hughes H4400

Classification: 	 Specifically a real-time multiproces
sor development primarily aimed at

military command and control

Operational Status: 	 Prototype hardware being built and

software written by company 	funds.

If funded, it could be a flight

and/or a ground computer.

Description:

a) 	Up to 8 CPU's or I/O units total

b) 	Up to 16 banks of 16K 32-bit words

c) 	Central "cross-bar" switch that communicates and controls

d) 	Multiple usage registers for accumulators, index, and

base registers

e) 	Various options allow capabilities to increase in the

following order:

1) 	16 bit simplex, sequential machine

2) 32 bit multiple memory, 	multiprocessor

3) 	bit/string instructions

4) 	floating point, SP/DP

5) 	hardware macros, microprogrammed sequences (sine,

arctan, etc.)

f) 	Hardware, interlocked multiprocessing executive

g) 	Memory protect but no memory paging

h) 	Special instruction for multiprocessing, e.g., interrupt

assignment between processors

This is a computer development project to produce an ex
pandable family of multiprocessors to meet various real-time

computer needs. To do so, a multiprocessor hardware-software

concept must be developed. They are proceeding along conven
tional lines with the addition of extra features to aid the

multiprocessor executive problem.

Hughes has given a good deal of thought to the failure

detection and isolation problem. They estimate that 90% of

the failures can be diagnosed down to the "card level". They

37

also have devised a system of switching in and out various CPU's

and 	memory units after the failure detection. This is done by

hardware in an extensive switching unit. A system has been

devised to provide for failure of all modules including an

executive processor or memory. The only function not neatly

handled is the manner in which the programs are resumed via a

"roll-back". They consider this to be "an applications pro
gramming problem". This leaves it up to the software to do it

which may prove quite difficult.

Although the computer is still in the prototype stage of

construction, extensive software is being developed. This

includes:

1) 	A meta-assembler to attempt to allow for compatibility

between configurations.

2) 	A simulator to run on the Control Data 6600.

3) 	A JOVIAL compiler.

4) 	A run time package that includes a real-time multiprocessor

operating system and library and utility routines.

2.14 Safeguard Central Logic and Control Computer (CLC)

Classification: Ground-based multiprocessor

Operational Status: Two development models in operation

Description:

The design of this machine began in 1964 for the Nike-X

system; it has also been through the Sentinel phase on the

way to becoming the Safeguard Computer. Designed by Univac and

built by Western Electric, the system can have up to 10 pro
cessors and 16 "program" and 16 "variable" memories of 16K

64-bit (plus 4 parity bits) words. Program memories, which

originally were planned to be ROM's, now are similar to the

variable memories except that they may be written into by I/O

but not processors, and they have two access units per module

rather than one. Sixteen I/O channels are used to communicate

with standard peripherals plus the two radars and mission-oriented

command and control equipment.

The system functions as a special-purpose controller much

like a missile computer; little use is made of interrupts, and

a fixed pattern of computing is performed, with the major

cycle determined by the characteristics of the phased-array

radars. (Radar beam-steering is performed in special computers

located at the radars, and not by the CLC.) One spare copy of

each type is maintained on-line to serve as a replacement in

38

the event of failure. Parity checking, but no arithmetic check
ing, is performed. Each target is computed by a seven-element

Kalman filter; the seventh is the ballistic coefficient. If

track is lost or memory errors occur, the filter calculations

can be started over, making recovery from failures rather easy.

Missile guidance computations apparently can similarly be re
started.

To reduce the frequency of memory conflicts, some units

of program are replicated in other modules. The speed of the

memory is 0.5 Us; however, cable length is substantial, causing

propagation delays to be appreciable. Examples of register
register operations speeds are: add, 0.2 Vs; multiply, 0.53 *s;

divide, 5.9 ps. Approximately 1.5 million instructions per

second are performed.

An advanced design being considered includes the addition

of two array processors to the system. One would be used for

the tracking function, and one for guidance, with a processing

element assigned to each individual target or missile.

2.15 IBM -Pi Model CP-2

Classification: Airborne real-time flight computer

Operational Status: CP-2 is fully operational with flying
hardware and software.

Description:

a) One CPU

b) Two I/O channels tied to CPU

c) 8K to 32K 32-bit words

d) CPU characteristics:

1) 16- and 32-bit instructions

2) 16- and 32-bit data words

3) Single accumulator with extension register

4) Three index registers. One is hard wired, two in memory

5) Eight interrupts on two different levels

This is an older computer and not as advanced in features

as some of the others, but it has benefited from the wealth of

experience gathered through its widespread use. The hardware

39

is readily available and there is a great deal of good support

software.

The computer does not lend itself to a multiprocessor

configuration, because it is not possible to share memory.

However, it has been used in a federated dual computer mode

in the F-Ill Mark II Avionics Computer System. This uses

two parallel computers with separate memories, but with the

ability to send data back and forth to one another. One

computer is the general navigation computer and the other is a

weapons delivery computer. Key variables when computed by

either are transmitted to the other one. Programming was done

in such a way that if either computer failed, the other would

be able to carry on alone and execute the important jobs with

degraded performance.

References:

1) System 4-Pi CP-2 Technical Description, IBM Electronic

Systems Center, Owego, N.Y., Revised May 1969.

2) System 4-Pi Model CP-2 Support Software, IBM Electronic

Systems Center, Owego, N.Y., Revised August 1968.

3) Daggett, E.H. and Lee, R.Q.,"The F-l11D Computer Complex",

General Dynamics Corp., Fort Worth, Texas, AIAA Paper No.

68-837, August 1968.

2.16 IBM 4-Pi EP/MP Computer

Classification: 	 Airborne real-time computer,

multiprocessor configuration

Operational Status: 	 Hardware is operational. Computers

were delivered for MOL but project

was 	cancelled. Multiprocessor con
figuration developed for VS A-NEW,

the 	Navy ASW research project at

Johnsville, Pa. Software is now being

being prepared.

Description:

a) 	One or two CPU's (three CPU's are possible)

b) 	Two HIMAC (high speed multiplexer and control units), the

main I/O controllers

c) 	Up to eight modules of 16K 32-bit words with four ports,

one for each of the CPU's and HIMACs

d) 	CPU characteristics:

40

1) 	360-compatible instruction set (16, 32, and 48 bit

instructions) with the addition of special micropro
grammed instructions --sine, cosine, arc tangent, and

square root. Floating-point instructions are an op
tional extra.

2) 	32, 16, 8 bit data words

3) 	16 registers employable as accumulators or index

registers

4) 	Extensive instruction set including execute, move,

and binary-to-decimal conversion

This is the only computer in the 4-Pi set that is compatible

with the ground-based 360 series. By using the same 360 pro
gramming architecture for a flight computer, it is presumably

possible to do a detailed check-out and simulation on ground

equipment that will verify the programs to be used in the

flight computer.

The emulator system allows one to run EP programs under

Operating System/360 in either a direct or interpretive mode.

The interpreter mode simulates the instruction and permits

detailed evaluation via full traces, snapshots, and detailed

timing information on an instruction-by-instruction basis.

This presents a full history of the operation for debugging

purposes. The direct mode of the emulator system simulates

the execution of the EP by executing the EP program directly

on the system 360 in so far as possible. Only the instructions

unique to an EP are executed interpretively. This produces

a very fast simulation, but loses the capability of tracing

anddetailed timing information.

The VS A-NEW project is developing a dual-processor

multiprocessing system consisting of two EPs. Dual-processor

operation proven on the System/360 Model 65 shared storage

multiprocessor system has been incorporated into the VS A-NEW

software. It includes a floating executive that can be run

on either processor. Not only can the two processors work

independently on separate problems, but it is hoped that they

can work cooperatively on the single problem that requires

extra high-speed processing.

Reference:

VS A-NEW Brochure, IBM Federal Systems Division, Owego, N.Y.,

Brochure #69-825-lA.

41

2.17 Litton L-304, 305, 3050, 3070

Classification: 	 Multiprocessor, real-time control

flight computer family

Operational 	Status: Dual processors used in E-2B and

E-2C, Navy Airborne Warning System.

Hardware is operational. Single
3070 proposed for AWACS

Description:

a) 1 or 2 CPU's

b) 	Up to 8 I/O stations and up to 64 channels to transfer

data simultaneously

c) 	Shared memory of up to 16 blocks of 8192 words of 32 bits

(max. size of 131,072 words)

d) 	CPU characteristics:

1) 	32 bit instructions

2) 	16 or 32 bit data

3) 	64 program levels with automatic priority queueing and

4) 	8 multipurpose registers for each level.

5) 	Variety of addressing modes

6) 	Many real-time clocks with interrupt for each

7) 	Comprehensive instruction set including MOVE, EXECUTE,

EXCHANGE, and good literal handling, but no floating

point

This computer has a large capability and seems to be a well

thought-out design. Its unique aspects are centered around the

64 different program levels and built-in hardware type of exe
cutive, and the tie-in of interrupt structure to this executive.

Some thought has been given to failure detection. In

particular, a system has been designed that allows one pro
cessor to run as a back-up to another with automatic switch

over in case of failure.

The E-2C has two processors working on different dedicated

job streams with the capability of either doing the important

tasks in case of failure. The software has not been fully

worked out.

42

For AWACS, the initial proposal was for three L-3050's

two working steadily and one on standby or assigned to low
priority tasks. But the multiprocessing problems appeared
complex enough to tip the scales in favor of a newer, faster
version (L-3070) to do the job in a simplex mode of operation.
The conclusion may be drawn that, in spite of the fact that
the machine was designed for multiprocessing, the problems
of producing a large-scale cooperative multiprocessing system

(in particular, the software) are severe enough that a reason
able alternative is preferred. This is undoubtedly an over
simplification and may exaggerate the situation, but Litton's belief

seems clear.

Additional characteristics of the larger machines in the

family (L-3050, 3070) are:

1) 	Memory paging and memory protect features

2) 	More powerful instructions including floating point

options, substitute, test and insert/skip

3) 	16 registers per program level

4) 	Special linkage and level registers

Reference:

Litton L-304 System Application, Litton Data Systems Division,

Van Nuys, California, July 17, 1967.

2.18 ERC EXAM Computer

Classification: 	 Flight multiprocessor

Operational Status: 	 Early design, in hardware development

stage

Description:

The chief area of this effort at ERC has been in the design

of the modular cross-bar switching network, which connects the

individual memory modules to the various processors. The logic

is such that while one processor is connected to particular

memory module, other processors may be simultaneously communicat
ing with other memory units. When a processor needs to access

memory, its request is sent to the appropriate memory module.

If the memory is not busy servicing another processor, it will

grant a request for a new memory access. Simultaneous requests

from different processors to the same memory unit would be re
solved on-the basis of priority. The big advantage of the cross
bar scheme is the possibility of simultaneous data communication

between two or more processors and memory at the same time. A

43

much higher theoretical data transfer rate is possible. This

cross-bar is modular to allow expansion of more memory or more

processor units. Also proposed is a floating executive control.

References:

1) 	Wang, Gary Y., "An In-house Experimental Air Space Multi
processor - EXAM", ERC Memo #KC-T-031, September 20, 1967.

2) 	Wood, Paul E., Jr., "Interconnection of Processors and

Memory in the Multiprocessor System", ERC Memo #KC-T-041,

February 5, 1968.

3). 	 Wood, Paul E., Jr., "Input/Output System for An Aerospace

Multiprocessor", ERC Memo #RC-T-062, May 19, 1969.

2.19 MIT/Il ACGN Computer

Classification: Aerospace multiprocessor designed

for graceful degradation

Operational Status: Paper design only

Description:

This computer is a multiprocessor design based on the

anticipated requirements of a control, guidance, and navigation

job which is"advanced" relative to the Apollo mission. Several

types of experience on Apollo have contributed to the system:

I/O rates involved; reliability; processing speed; programming

ease; expandability.

The design of the system was not completed because of

exhaustion of contract funds. As a result, a number of loose

ends exist; however, most of the architectural considerations

were specified. A three-bus system was chosen: one bus connects

the processors and program memory, one connects the processors,

I/O controller and data memory, and one connects I/O devices

and I/O controller. A serial data bus was chosen because of

its conceptual simplicity and consequent reliability, and be
cause of the apparent difficulty in designing a gracefully

expandable crossbar array. The serial bus technique offered

the 	expansion potential of simply attaching additional modules

of the desired type to the bus; so long as the bus capacity is

sufficient, the system may continue to grow.

The concept of graceful degradation was realized by planning

the use of more processors than required to accomplish the com
putational functions, in conjunction with a software system

which could recover from the loss of a processor at any time.

Memory failures were to be masked by creating extra copies, in

separate modules, of critical data, so that no failure of any

44

PM: PROGRAM MEMORY MODULE

P: PROCESSOR

DM: DATA MEMORY MODULE

IOC: 1/0 CONTROLLER

IOD: 1/0 DEVICE

Figure 2.2 MIT/IL ACGN Computer

45

module was capable of preventing recovery of such information.

Obviously, in such a system, combined consideration of hardware

and software aspects was required to achieve a viable design.

The desire for continued operation in the presence of

failures necessitated certain design characteristics with re
spect to error handling..

1) 	All components of the system are to be infallible under

error detection; that is, the probability of the occurrence

of an undetected failure must be negligible.

2) 	Certain components of the system are to be infallible

under error correction; so that the probability of a

non-masked error in such components is at least as small as

the probability of an undetected error in a fallible com
ponent. Components required to be infallible in this way

include the buses and their associated logic, program memory,

and the I/O control unit.

3) 	Pages in data memory may fail in a detectable manner;

however, since critical data may be replicated in more

than one memory module, data may be considered to be in
fallible even though indlividual memory modules are not.

4) 	Fallible components which have failed must be capable

of being isolated from the system.

Software Characteristics:

Executive control of tasks in the system is of course a

key function. Because of the high traffic which might be anti
cipated in the executive process, two parallel approaches were

followed by MIT; selection of one over the other did not take

place, and might, in fact, depend upon the particular applica
tion of the system. In one approach, a special purpose system

module was provided to perform the executive function. This

module, attached to the system data bus, would contain process
ing elements and memory intended to remove most of the executive

data flow from the data bus. In the alternate approach, the

executive function was performed entirely in software, avoiding

the need for a special module with its replications to assure

infallibility. In both approaches, the functions performed

would be similar; the design proposed for the software execu
tive will be briefly described here.

Executive control is centralized around several lists of

data and a multipurpose special register located in the I/O

control unit. Only two of the lists will be mentioned here:

the dispatch list and the wait list. The dispatch list contains

all active requests for processing, ordered by priority and age.

The wait list contains pending requests for processing which

are to be issued at specified times. The special register

contains both the location in the dispatch list of the next

46

process request to be honored, and a group of bits whose

purpose is to indicate the occurrence of certain external events

which in some systems might trigger interruptions. It was be
lieved in the ACGN computer 	design, however, that computations

would be divided into several-millisecond sections, referred

to as jobs, and that this level of division would be the one

at which competition for processors took place. Thus, in many

a processor system, the average interval between a given instant

and the time at which some processor next completed a job would

be small. Thus, interrupts 	and their associated overhead could

be avoided by having each processor check for the presence of

an unserviced external event prior to taking the next active

job from the dispatch list. If one or more such bits were

present, the required functions would be performed by the dis
covering processor.

Provision of a compiler for the system was planned. Not

only was this approach felt to be important from the ease and

speed of programming point of view, but the use of the compiler

as a program-convention enforcer seemed equally desirable. Be
cause of the constant problem of multiprocess interference

when common data is involved, some kind of interlocking is

necessary. To reduce the number of ways or occasions when it

would be possible for a programmer to inadvertently misuse the

protection mechanism, the compiler could be equipped to do

virtually all of the interlock administration.

Reference:

"Control, Guidance, and Navigation for Advanced Manned Missions",

MIT Instrumentation Laboratory Report R-600. Vol. 2, Cambridge,

Mass., January 1968.

2.20 ERC-Hamilton Standard 	Modular Computer

Classification: Replaceable modular flight computer

(MFC)

Operational Status: 	 Prototype hardware version completed

and delivered to ERC

Description:

A computer consists of one of four types of units. They

are a MU (memory unit), CU (control unit), AU (arithmetic unit),

and an IU (I/O unit). Supplied are several of each type of

unit and a master switching unit that selects the modules that

are active. This is called the CAU (configuration assignment

unit) and is responsible for maintaining a set of operational

modules.

Diagnostic programs are used to detect and isolate mal

47

Figure 2.3 ERC-Hamilton Standard Modular Computer

48

functions in the units. Fault detection circuits can initiate

the diagnostics. They will categorize the failure and ask for

new units from the CAU if the failure is not a transient one.

The distinguishing feature is that this is not a multi
processor configuration, but two or three separate computers.

Possible modes of operation include the following:

1) 	Three computers working on the same problem and voting

on their results during a high reliability period such

as boost.

2) Three computers working 	on independent problems.

3) 	A method to keep several computers on-line with a minimum

of spares.

The system has possibilities but is complex because of

the amount of switching hardware needed. It also necessitates

an infallible CAU to achieve the reliability goals. It seems

of dubious value compared to an equivalent multiprocessor.

For another approach towards the same goals, see the JPL STAR

computer.

2.21 MIT/IL SIRU Computer

Classification: 	 Simplex computer with spare units

for automatic backup

Operational Status: 	 Breadboard under development

Description:

This computer has been designed by the MIT Instrumentation

Laboratory as part of the Strapped-down Inertial Reference Unit

(SIRU) system. The major function performed by this machine

is the maintenance of the quantities which describe the inertial

attitude of the inertial subsystem via measurements incorporated

every ten milliseconds. Additionally, the computer calculates

velocity from accelerometer measurements, and has several milli
seconds left over to devote to other jobs.

The computer contains two processors and two memories. One

processor is kept in a standby condition while the other operates.

Error detection features throughout the processor are provided

to signal the occurrence of single errors. If an error is de
tected, the active processor will initiate turn-on of the stand
by processor and concurrently attempt a re-try of the current

instruction. If the re-try 	is successful, however, the turn-on

of the standby,unit is terminated.

49

1/0 1/010

110 BUS
I/0 BUS

ISEQUNCERSEQUENCER

L L

PROCESSOR PROCESSOR

Figure 2.4 MIT/IL SIPJJ Computer

Operation of the memories is somewhat different: all

data written into memory is written into both, so that normally

both units contain identical data. Data read from memory,

however, comes only from the unit currently designated as

the active one of the pair. Should an error be detected in the

active unit, the memories exchange roles and operation continues.

Operation of a duplexed I/O system follows a similar pattern.

Exceptional Characteristics:

Each memory unit in the SIRU computer contains a high
speed scratchpad and working-register storage section. Exe
cution of instructions in the processor has been separated

into two distinct parts: first, the computation is performed

and the results stored in dedicated area of high-speed memory;

second, these results are moved from their temporary locations

to their final destinations. The advantage of this technique

is that each part of the execution of an instruction may be

safely re-initiated after partial completion since neither of

the two parts stores any results in locations occupied by the

operands for that part. Since the working registers for the

processors appear in both memories, any instruction execution

which suffers a fault in either working register or processor

may be completed or redone using either the alternate memory

or the alternate processor, or both.

This inherent ability of the hardware to perform success
ful error recovery in a manner totally transparent to the

software causes some sacrifice in processor speed. However, it

eliminates both the necessity for failure recovery software and

the historically knotty and costly effort required to verify

the adequacy and accuracy of such coding. This is felt to be

an extremely significant step in coordinated hardware/software

design.

Reference:

Crisp, R., Gilmore, J.P., and Hopkins, A.L., Jr., "SIRU - A

New Inertial System Concept for Inflight Reliability and

Maintainability", MIT Instrumentation Laboratory Report E-2407,

May 1969.

2.22 JPL STAR Computer

Classification: Experimental aerospace computer

with built-in automatic maintenance

features. Not a multiprocessor.

Operational Status: Experimental prototype under develop
ment; several subsystems have been

completed and tested.

51

Description:

The JPL STAR (self-testing and repairing) computer has

been designed as an attempt to provide an error-free, unattended

computer system which could operate for several years during the

unmanned exploration of the solar system. The principal system

features used to diagnose and recover from errors are:

a) 	Use of error-detecting codes to allow fault identification

concurrently with program execution.

b) 	Subdivision of the computer into a number of replaceable

functional units.

c) 	Fault recovery carried out under the control of special
purpose hardware; consists of program repetition or re
placement of faulty units.

d) 	Unit replacement accomplished by power switching; informa
tion lines of all units are permanently connected to the

busses through isolating circuits; unpowered units produce

only "zero" outputs.

The functions often implemented in the CPU of a computer have

been split into five subunits: the main arithmetic processor,

the logic processor, the control processor, the timing processor,

and the interrupt processor. Except for the logic processor,

which runs with two copies operational, for checking, only one

copy of each unit is powered, and several unpowered backup

copies are provided. Upon sensing of an error, the test-and
repair-processor (TARP), a processor unique to the STAR computer,

directs the recovery operations. Because of the key role played

the TARP in error recovery, three powered copies of the TARP

are run concurrently, with outputs determined by voting logic.

If a powered TARP disagrees with a voted output, it is

immediately returned to the standby condition and power is

applied to one of the other standby units.

Software Characteristics:

The software design for the STAR computer is only partially

complete. A key aspect of this software is the ability to per
form a "rollback" to a previous point in the program as part

of the error recovery process. Although an instruction has been

provided which stores a "rollback" address in the TARP for this

purpose, it appears that any attempt to incorporate multipro
gramming into the system will necessitate use of a group of

such addresses (viz., one for each active or scheduled task)

plus other information for rollback purposes. Although multiple

copies of this data would be necessary as a protection against

memory loss, the current configuration of the system requires

52

storage of this data outside the TARP.

Miscellaneous:

Because error detection is such a crucial component of

the system, a brief description is included here. Operand

words consist of eight 4-bit bytes, one of which is a check
byte whose value is 15 minus the modulo-15 residue of the

value of the other seven bytes. The checking algorithm com
putes the modulo-15 residue of the entire operand word; a

nonzero residue indicates a fault.

An instruction word consists of a three-byte operation

code and a four-byte address. The eighth byte is used as a

modulo-15 check on the four address bytes; checking of the

op-code consists of verifying that exactly two bits of each

byte are ones. In some cases it is necessary to perform both

checks for validity on a given word and rule it fault-free if

it passes either one.

Residue bytes are processed independently in the arithmetic

processor to provide a check on the arithmetic processing it
self. Because'the-residue byte propagation in logical opera
tions is difficult to compute, however, two copies of the

logic processor are operated concurrently, and the outputs are

compared to verify accuracy.

References:

1) 	Avizienis, Algirdas, "Design of Fault-Tolerant Computers",

Proc. FJCC, 1967, vol. 31, Thompson Books, Washington, D.C.

2) 	Avizienis, A., Mathur, F.P., Rennels, D.A., "Automatic

Maintenance of Aerospace Computers and Spacecraft Infor
mation and Control Systems", AIAA Paper No. 69-966,

AIAA Aerospace Computer Systems Conference, Los Angeles,

California, Sept. 1969.

2.23 RCA 215

Classification: Airborne real-time multiprocessor

Operational Status: Under development

Description:

a) 1 or 2 CPU's

b) 1 or 2 I/O units

c) 	Main memory of 2 to 8 modules of 16K 32-bit (plus 4 parity)

words (64K bytes/module)

53

d) 	Expanded version offers up to 4 CPU; 4 I/O units, and 16

memory modules (1 megabyte maximum)

e) 	CPU characteristics

1) 	Instruction set is fully compatible with the Spectra 70

and the non-privileged ones of the IBM 360.

2) 	Scratchpad storage consists of 64 words of 36 bits each

with 300 ns cycle time.

3) 	1024 64-bit words of ROM used for microprogram storage.

Cycle time is 300 ns.

4) 	Automatic fault diagnosis and error recovery.

5) 	4 processor states with special registers for each.

32 priority levels of interrupt use three of these

states.

This recently announced airborne computer system is another

one that offers compatibility as one of its chief virtues. As'

its manufacturer states, in order to supply the extensive and

complex functional programs and support software that is needed,

it is desirable to capture the work done on existing commercial

software systems. To attempt to develop a complete software

package for a special military application is extremely costly,

in both time and money. The solution according to RCA is to

rigorously produce a flight counterpart to a commercial computer.

It is not sufficient to imitate a ground computer by implementa
tion of only a subset of the instructions or generating results

which are "nearly the same". The flight computer must duplicate

the ground-based version on a bit-by-bit basis including non
instructional features. As a bonus, the ground twin can be used

for support for compilation and checkout.

With this aim, RCA has produced a computer that contains

the 	entire instruction set of Spectra 70 series of computers

(35,45,55) including the privileged instructions. It also dup
licates the four program states, the I/O channel control, the

interrupt management scheme,and other features of the Spectra 70.

As a result, any user program compiled and tested on a Spectra 70

will run without alteration on the 215. The 215 has added in
structions used by the executive for control of multiprocessing

and error recovery. This same instruction repertoire (as in

the Spectra 70) is fully compatible with the non-privileged mode

of the IBM System 360. This opens the door to a vast collection

of existing programs that would operate on the 215.

Another area that has been emphasized is that of fault

tolerance and error recovery. RCA has conscientiously striven

for a fail-soft computer complex. They have made a rigorous

attempt to avoid "single-thread" hardware and attain the capa
bility for "graceful degradation" while running programs written

54

for a different family of computers. Towards this end, hard
ware checking and other features have been incorporated as well

as extensive software routines in the executive including items

such as a "recovery nucleus" in a separate memory module. The

degree of success of these measures is not easy to ascertain,

but 	the underlying motives should be highly praised.

References:

1) 	Dieterich, E.J. and Kaye, C-.C., "A Compatible Airborne

Multiprocessor', FJCC, 1969, vol. 35, pp. 347-357.

2) 	"Introducing the RCA 215 Military Computer", RCA Aerospace

Systems, DEP/SCN 101-69.

2.24 Control Data ALPHA

Classification: Airborne computer

Operational Status: Operating prototype has been
demonstrated

Description:

This is a proposed LSI implementation computer. Features

include the following:

a) Up to 4 CPU's or I/O units total

b) Up to 8 banks of 16K 32 bit words

c) CPU characteristics:

1) 16 and 32 bit instructions

2) 16 registers for accumulators and index registers

3) Floating point instructions, SP and DP

4) 32, 16, 8 bit operand instructions

5) Special trig function instructions - sin/cos, vector

rotation, square root, rectangular to polar conversion

6) String and search instructions

Reference:

Control Data Brochure, "ALPHA Computer Family", #100, 644B.

55

2.25 Litton IRAD

Classification: Multiprocessor

Operational Status: 1975 target date

Description:

This system is at present a paper design of a computer

organization suitable for use as either a flight or ground com
puter. It is a company-funded effort, with three major goals:

1) Efficient multiprocessor structure

2) All LSI, for reliability and size

3) The instruction set is to efficiently use memory

Litton has strongly attacked the third of these, in the

belief that the extra cost of logic required to implement power
ful instructions will be significantly less than the cost saving

achieved through improvement in memory utilization. The in
struction set design at this time is claimed to require only

40% of the number of instructions used to code a similar problem

mix for the Litton 3050, and only 49% of the bits.

The instruction set differs from conventional sets in that

it is strongly oriented to the processing of bit fields, rather

than bytes or words. The arithmetic or general purpose registers

of the machine have been designed to reflect these considerations.

Data in registers is held in a floating-point format, with a 40
bit mantissa and an 8-bit "power". The mantissa is not usually

normalized; a type of "significant digit" arithmetic is perform
ed which preserves available accuracy but requires less time to

execute. When bit-fields are fetched from memory to registers,

the "power" .field is specified in the instruction, rather than

by the data itself. Similarly, the scaling for a store order is

also contained in the instruction. Because of use of push-doWn

mechanism for register addressing and elimination of the index
ing field when not needed, Litton claims that the average in
struction length is about normal, even though field and power

'data is included when needed.

The implementation of multiprocessing is accomplished using

an adaptation of the 64-level program hierarchy introduced -in

the L304. Major changes include modifications to the reserved
memory area to reduce the number of unused locations, addition

of storage interlocking machinery, and extension of the program
level switching logic to facilitate multiprocessing. A four
tier storage hierarchy is used: program, local, compool, and

"multi-level" data areas
are recognized.

This machine embodies some of the most novel ideas we have

encountered.

56

2.26 Burroughs Interpreter Computer

Classification: Airborne multiprocessor

Operational Status: In preliminary design phase

Description:

Unique features include:

1) 	Two levels of microprogramming - referred to as micro and

nano programming (one level wired in, the other loadable

from memory).

2) 	This allows the flight computer to look like any computer

that might be desirable, e.g. an IBM 360 or a B5500.

Reference:

Advanced Multiprocessor Computer Development, Burroughs

Corporation, OS SSG, August 5, 1968.

2.27 U.S. Navy NAVAIR AADC (Advanced Avionics Digital Computer)

Classification: 	 Generalized family of real-time

flight computers

Operational Status: 	 Paper computer - preliminary design

phase

Description:

The 	AADC program is attempting to develop a general purpose

modular set of digital computers to meet the Naval Airborne Com
puter requirements for the 19-75-85 time frame, using the build
ing block approach. The fundamental goal is the feasibility of

the design of a spectrum of computers from the same basic func
tional and byte-functional elements. This will hopefully allow

the reduction of the development cycle time from years to a

matter of weeks. The building blocks take advantage of LSI and

MSI technologies. The availability of these building block

modules will permit the rapid configuration of an airborne digi
tal computer system to meet a given set of specific operational

requirements. A big problem is determining a modular organiza
tion of the computer. The organization must be general and

powerful enough to satisfy the most exhausting performance

requirements that can be projected. At the same time it must

be divisible into smaller units needed to handle less demanding

tasks in a cost-effective manner.

57

It is expected that the computer will be microprogrammed

to provide an AADC with a variable instruction repertoire as

well as the capability to emulate computers already in the

Navy inventory. The heart of the AADC approach is the byte
functional module. This is proposed for its flexibility.

It allows variation in the specific computer organization and

permits the computer word length to be chosen for a particular

application to meet the specific requirements. Because each

specific computer developed from these building blocks might

be substantially different in its structure, the AADC program

has proposed a meta-compiler to accompany this set of computers.

This compiler could be adjusted to suit each unique hardware

organization and instruction set. The alternatives of identical

computers for all applications or the creation of a new compiler

for each hardware design are considered too restrictive.

The Navy also envisions the establishment of a data bank

for "best case" computer algorithms for solution of many of the

common computational problems.

Reference:

"Advanced Avionics Digital Computer Base-Line Definition",

Report #AIR-53333Fa, Naval Air Systems Command, Washington,

D.C., 23 July 1969.

2.28 SOLOMON

Classification: Parallel network computer (experi

mental)

Operational Status: Unknown

Description:

SOLOMON consists of a 32 x 32 array of processing elements

(PE's) under control'of a central control processor. The central

control unit contains program storage, has the means to retrieve

and interpret the stored instruction, and has the capability,

subject to multimodal logic, to cause execution of those in
structions within the array. Thus, at any given instant, each

processing element in the system is capable of performing the

same operation on the operands stored in the same memory location

of each PE. Because each PE is provided with its own core

storage unit, these operands may all be different.

Each processing element may communicate with its four

adjacent "neighbors". The "edge" elements., which do not

possess a full set of neighbors, use their free connections

for I/O. Additionally, the central control may broadcast con
stants for use by all members of the array.

58

Each PE in the array has a mode register; commands from

the central control to the PE are executed by the PE only

when the mode signals from the controller match the mode stored

in the PE.

Reference:

Slotnick, D.L., Borck, W.C., and McReynolds, R.C., "The

SOLOMON Computer", Proc. FJCC, 1962, Spartan Books, Washington,

D.C.

2.29 ILLIAC IV

Classification: 	 Parallel-array computer; contains

256 processing elements (experimental)

Operational Status: 	 Under development; target is late

1970.

Description:

The ILLIAC IV structure consists of 256 processing elements

(PE's) arranged in four arrays of 64 processors each. A thin
film memory of 2048 words is provided with each processor. A

common control unit for each array decodes the instructions and

generates control signals for all processing elements in that

array. A central index register group is included in the con
trol processor, and an index register and address adder is

provided in each processor for independence of operand address
ing. Each processor has an enable flip-flop whose setting

controls that unit's instruct-ionexecution. This bit is part

of a test-result register in each PE which holds the results

of tests on local data.

Data routing the processors is provided by connections to

units i+l, i-l, i+8, and i-8 from each unit i; end-around con
nections are provided for "edge" processors. (See Fig. 1.8)

The four arrays may be operated independently, in pairs,

or all together. The end-around data routing connections are

modified when the array configuration is changed. The system

program resides in a Burroughs 6500 general-purpose computer,

which supervises program loading, array configuration changes,

and I/O operations internal to the ILLIAC IV system and to the

external world. A large disk storage system is directly coupled

to the arrays, and there is also a provision for real-time data

connections to the arrays.

Instructions belong to one of two classes: control unit

(CU) instructions and PE instructions. The former control the

addressiig and sequencing in the CU, while the latter are de

59

coded in the CU and then transmitted to all the PE's.

Software Characteristics:

The ILLIAC IV operating system resides in the B6500, and

uses the standard B6500 master control program (MCP) for pro
cessing of most tasks.

The system designers have decided that for effective use

of the parallel array elements, it is essential that all

possible parallelism be detected in those algorithms which

are to be executed. They have further concluded that the

difficulty of achieving this if the algorithms are specified

in languages such as FORTRAN or ALGOL is prohibitive. Thus

they have designed a language, TRANQUIL, which is intended to

allow the user to express array-type computational processes

in terms of arrays and parallel operations. A key feature of

the language is its mapping function, used to map arrays to

optimize data transfers between primary and secondary memory,

to minimize unfilled areas of primary memory, and to optimize

the use of the PE's.

References:

1) 	Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick,

D.L., and Stokes, R.A., "The ILLIAC IV Computer", IEEE

Trans. on Computers, vol. C-17, No. 8, August 1968, p. 746.

2) 	Kuck, D.J., "ILLIAC IV Software and Application Programming",

ibid, p. 758.

3) 	Northcote, R.S., "Software Development for the Array Computer

ILLIAC IV", Department of Computer Science, University of

Illinois at Urbana-Champaign, Report No. 313, March 1969.

60

Chapter 3

Design Considerations

3.0 Introduction

The purpose of this chapter is to present the spectrum

of design considerations which are relevant to the architectural

configuration of the Data Management computer system. Addition
ally, material of tutorial content is included in order to

soundly establish an information base against which the design

proposed in Chapter 5 may be viewed. Necessarily, more questions

are raised than are answered, since many design details fall

beyond the scope of the current contract.

3.1 Configuration Considerations

The advantages and disadvantages of a number of possible

system configurations will now be-discussed. First to be

considered is the conventional uniprocessor computer shown in

Figure 3.1. Although this configuration is used in the vast

majority of computers, it fails to meet the requirements for

the space station on a number of different counts. First, in

its simple form, the system is incapable of degrading grace
fully since there is only one copy of each unit. Redundancy

might be added so that components could fail in the processor

without degradation; however, similar techniques fail to

protect against loss of data from a failed memory. Both the

memory and the series of I/O devices may be augmented within

limits to increase capacity. However, the processor is not

similarly expandable. Finally, since there is only one copy

of each element, the system cannot be repaired without inter
rupting its operation.

To meet graceful degradation and failure tolerance ob
jectives, it is beneficial to configure a system with multiple

copies of each of the important units. Figures 3.2 through

3.5 show four possible configurations. Figure 3.2 represents

perhaps the most conventional form of multiprocessor computers,

characterized by the use of multi-port memory. The system

shown uses four-port memories. Each of the ports is connected

to a separate data bus which in turn is connected to one of

the four driving units in the system, two processors and two

I/O controllers. Since the switch components are distributed

among the modules, it is straightforward to confine the effects

of a switch failure to the locality of the containing module.

If the number of memories in the system is at least one greater

than the number required to contain all of the necessary in
formation, then this system is capable of graceful degradation.

If through software techniques a sequence of snapshots of

memory contents is taken to provide recovery from memory failure,

and if a time history of input and output messages were main

61

P

M 1/0

Figure 3.1 Simplex Configuration

P PI/ IO

Figure 3.2 Multiprocessor with Multi-port Memories

1/010PyP

Figure 3.3 Multiprocessor with Crossbar Switch

62

tained, a software package could be prepared through which

memory failures might be tolerated. Should a processor fail,

its loss does not disable the other processor nor either of

the memories from continued operation. Should an I/O con
troller fail, it similarly does not prevent operation'of the

other. The system is modularly expandable or contractable to

an extent. That is, more memories can be added with connections

for each of the devices present in the system. The addition

of processors or I/O controllers, however, requires additional

ports on each memory. To enable expansion, the small version

of the system could be configured with a number of excess

memory ports, sufficient to contain connections for the largest

version of the system desired. Such a system would then be

expandable, with the upper-limit determined by the number of

ports on the memory.

The system shown in Figure 3.3 is quite similar in con
figuration to that of Figure 3.2. The essential difference

between the two configurations is that the switching between

paths to memory is done in a switch, rather than being built

into the memory as in the Figure 3.2 configuration. This system

has essentially the same characteristics as the previous one,

since memories and processors may be added. It does not have

the limitation, however, imposed by a fixed number of ports

on a memory. Rather, the limitation comes in the mechanization

of the crossbar switch itself. If the switch were built in

a modular style, so that additional components of the switch

required to support additional elements could be added at

the time the extra units were added, then the system would be

as expandable as desired. Attainment of necessary reliability

in the crossbar switch itself is one of the most difficult

design jobs in this system.

The configuration shown in Figure 3.4 differs from those

of Figures 3.2 and 3.3 in that communication between memories

and processors takes place over common data buses. Since each

unit connected to a bus contains logic for recognizing commands

to itself, in principle the system can be expanded by merely

attaching additional modules to the bus. However, the capacity

of the bus itself is the dominant potential bottleneck in this

configuration, since the bus can carry no more than one message

at any time. However, if this bus is a partially parallel bus

(for example, one byte wide) and if sufficiently sophisticated

technology is used to allow a high bit rate, then the bus may

be made sufficiently powerful to permit substantial system

growth. One further distinction is shown in Figure 3.4 which

is not necessarily peculiar to this configuration; namely,

the use of separate memories for program and data. It is per
haps most appropriate in Figure 3.4, since the bus traffic

capacity potentially represents the upper limit on system

capacity. If, as in many machines, execution of each instruc
tion requires one instruction fetch and one data fetch, then

the provision of a second bus either doubles the system capacity

or halves the bit rate requirement for each bus. This system

63

Figure 3.4 Multiprocessor with Common Buses

Figure 3.5

Multiprocessor with Common Buses

and

Preferred Memory Paths

64

is gracefully degradable, since memories and processors may

fail without causing the system to be down so long as they do

not in any way tie up the bus. However, the bus itself must

be infallible since no other communication path is provided.

The configuration shown in Figure 3.5 represents a com
promise between a multiprocessor configuration and a multicom
puter configuration. This system resembles Figure 3.4 in

that a common data bus allows any processor to communicate

with any memory. However, the system also represents Figure

3.2 since multi-port memories are used. In this system the

number of ports on the memory is exactly two, giving each

memory a preferred access path from one processor. Trade
offs are possible in this configuration between providing

small memories attached to processors or relatively larger

ones. A small memory would be used as a scratch-pad, whereas

a larger memory could contain a substantial fraction of the

total system memory and would contain resident programs and

data. This system degrades as gracefully as Figure 3.4, since

no program's execution depends upon availability of the pre
ferred path between the processor and the memory. However,

the existence of this path is intended to greatly reduce the

traffic load on the common data bus, which enables the system

to grow to a substantially larger configuration before reach
ing the upper limit of bus capacity.

In each of the systems it must be emphasized that a

requirement exists to prevent loss of information. No system

can be gracefully degradable if required information is destroy
ed or lost because of memory failure. The implication of this

requirement is that either the memories must be composed of

multiple units within each module so that there is a sufficiently

high probability that not both copies will fail at once and

therefore no information will be lost, or that the system soft
ware provides snapshots of data so that loss of memory does

not cause loss of data. In the latter case it is necessary

to supply an extra copy of memory which is not otherwise used

until a failure occurs. After a failure, data present in the

failed memory at the last snapshot is loaded into the fresh

copy. The implementation of such a recovery technique would

impose serious complexity on the operating system and applica
tions programs, since it would be necessary to update the

data from the failed memory to the time-state which existed

at the time of failure. This complexity is a strong stimulus

for rendering data-loss extremely improbable, by using multiple

copies of memory within each memory module, or other satisfac
tory means.

65

3.2 Trade-off Considerations

Once the configuration has been selected, or in connection

with the selection, it will be necessary to make a number of

decisions with respect to the major components. The following

discussion is intended to illuminate some of the trade-offs.

3.2.1 Processors

a) Should the processors all be alike? Clearly, if an early

decision is made to include provisions for unlike processors,

the system should operate well even if only like processors

are used. Perhaps the converse is true as well, but it

seems desirable to consider whether the system requirements

tend to indicate that a mixture of processor-types would

be advantageous. Several types of processors that might

be considered &re:

1) 	 "Standard" units with conventional general-purpose

instruction sets;

2) 	 units which perform floating-point arithmetic sub
stantially more efficiently than the standard units;

3) 	 units which perform bit-manipulation operations more

efficiently;

4) 	 units especially suited for list-processing operations;

5) 	 special-purpose units for performing executive or other

high-duty-cycle operations;

6) 	 array processors.

The 	advantages of unlike processors are apparent; an off
setting disadvantage is the departure from uniformity,

which complicates the graceful degradation property, the

repair and spare requirements, and the scheduling software.

One approach which appears feasible is the use of alterable

microprogram memories in the processors, so that processors

could assume any of the identities described above (except,

perhaps, the last) by loading the appropriate microprogram.

b) 	 How should processor error-detection be implemented? On

one side of the trade-off is the conceptually simple and

fool-proof checking scheme in which two or more copies of

the processor unit perform identical programs simultaneously

and compare their outputs. If it can be assumed that no

event which causes an error affects more than one copy,

this technique will catch eve error. Further, since the

processor and its checker are identical-, the same spare

can be used for both. The alternative is the incorporation

of checking circuitry within the processor. Although this

66

is a substantial complication to the design of the unit, it

presumably requires less logical components than does an

additional copy of the unit. However, parity or residue

checking within the unit cannot detect every error, and a

study of the expected probabilities of error-causing events

will be necessary in order to determine whether internal

checking and the inherent reliability of the unit are suffi
ciently trustworthy. An additional consideration regarding

internal checking is that new module failure modes are intro
duced: namely, failures in the checking components themselves.

The failure mode which causes continuous indication of no

error is particularly insidious.

c) 	Should "scratchpad" or other memory which is locally access
ible to the processor be provided? The use of scratchpad

storage can be beneficial both as a means of reducing access

time to data used in computations, and in removal of traffic

from the main communication lines in the system. The latter

point is especially significant if a configuration like

Figure 3.4 or 3.5 is used. Consider Figure 3.5: if the

size of local memory is larger than necessary for the data

of the task currently being processed, it becomes possibl-e

to use the additional space for the current program, or to

assign data or programs to be resident (permanently located)

there. If data or program for a task were resident in some

memory unit, it would clearly be desirable to execute that

task in the associated processor, although that assignment

would only increase efficiency, and not be mandatory. How
ever, there would be additional executive overhead introduced

as a result of the processor-preference criterion for schedu
ling; for example, the executive must prevent the occurrence

of a queue of tasks waiting for a preferred processor when

other processors are idle. Furthermore, whether or not the

loss of equality between units by virtue of resident-assign
ments is favorable or unfavorable to the reliability and

recovery strategy requires careful consideration.

3.2.2 Memories

a) 	Should memory for program and data be separate? Typically,

execution of an average instruction requires one instruction

fetch and one operand fetch. Separate program and data

memories lend themselves to separate bussing, as shown in

Figure 3.4, which reduces congestion. Additionally, the

fetching of programs from secondary storage, if required,

may be done without adding traffic to either bus if an

appropriate channel is provided. However, such savings are

achieved only by addition of hardware. Loss of flexibility

should be avoided by allowing program and data to be in the

opposite memory type when convenient.

b) 	Should memory be paged? While certainly no substitute for

adequate memory capacity, paging can be used to increase

the effectiveness of the physical memory present. However,

67

additional software and hardware are required to implement

such a system. Even so, use of some form of core-multiplex
ing appears desirable at this time, in view of the extent

to which the computational load predicted for the system re
sembles the time-sharing load of present commercial systems.

Implementation questions such as page or fragment size,

number and type of associative registers for rapid access,

and 	software strategy are of immediate significance.

c) 	How should storage protection be implemented? The wide

variety of program and data sources, the desire for on-board

program preparation and checkout, and the requirements for

high system reliability make storage protection appear manda
tory. To some extent, paging would provide such protection,

since contents of pages not assigned to a task are not even

addressable by the task.

Still further protection is desired, however. No task should

be allowed to modify its own instructions by writing into

its own program area; further, it would be beneficial to

implement array-limit protection, so that no writing address
ed to an array would be beyond that array's bounds. Addi
tionally, some subset of the storage protection mechanism

should be available to tasks for their own use.

d) 	Should memory addresses be interleaved among modules? Inter
leaving is frequently used to permit concurrent multiple

memory accesses, to reduce the number of memory conflicts

between processors and I/O controllers. In a multiprocessor

configuration, concurrent execution of the same program by

two processors when no interleaving is provided might cause

each to take twice as long to finish as the no-conflict case

would have taken. Two-way interleaving would alleviate this

problem. However, if one of the two halves failed, every
thing in memory would be affected. Because recovery from

loss of data is so difficult, the design of the memory must

make any such loss extremely improbable. If that objective

is achieved, interleaving appears desirable.

e) Should certain instructions be physically implemented in the

memory rather than the processor? The goal of this would be

to reduce the traffic in the communication system of the com
puter. List-search instructions, for example, might be con
ducted wholly within a memory module with virtually no use

of a data bus. The same is true of the intra-module multiple
word transfers. However, the limited use of such instruc
tions, compared with the estimated cost of the implementa
tion, including logic to deal with encountering a module
boundary, seems to indicate that it would be undesirable. If

memory interleaving were used, that would cinch it.

f) 	How can content-reliability best be achieved? This is a

three-fold question; it involves how to make the loss of con
tents from a given unit improbable, how to detect it if it

68

should happen, and what to do about it when it is detected.

The first is a design-for-reliability question beyond the

scope of the architectural consideration. The second and

third may or may not be connected, depending on whether,

for example, redundant copies of memory are operated to pro
vide error detection and data-backup. Many types of check
ing codes are capable of error detection in memory opera
tions and are readily implemented. Error correction can

also be achieved, although at the expense of additional

check-bits and logic. However, address selection errors

such as no-word, wrong-word, or multiple-word are not cor
rectible by such means, and unless these can be made suf
ficiently unlikely, use of extra copies may be the only

choice.

g) 	How much read-only memory should be included in the system?

The Apollo on-board computer method of placing all programs

in fixed memory is clearly not feasible for the next genera
tion of long-lifetime applications. This is true for two

reasons: first, too much on-line memory would be required,

and second, ROM is too inflexible (it was in Apollo, too).

However, read-only microprograms are frequently used, as

are system bootstrap memories for initial loading. The

priority of this question is probably rather low.

3.2.3 Communication Paths

a) 	How many paths should there be? The figures and preceding

text have portrayed these tradeoffs.

b) 	What should each path's width be? Obviously, the path

width should be related to the traffic expected, to prevent

log jams. The expected traffic is a function of processor

and memory capabilities, problem characteristics, and pro
blem mix. The latter two must be expected to still be

fairly umcertain at the time this decision must be made,

and an approach must be adopted which is quite conservative.

The history of the growth of planned function and the ex
tension of the life of the system must be taken fully into

consideration.

c) 	Should control and addressing signals have separate paths

or be multiplexed with data? This is both a traffic and a

reliability question. That separation of control and data

signals reduces traffic on the data bus is obvious; whether

it is advantageous to have a separate path to control or be

controlled by switching in the event of failures must be

investigated.

d) 	How can communication reliability best be achieved? Ques
tions discussed previously regarding redundancy and check
ing also apply to the communication net. So-called "trans
mission" coding can be used to check for and even correct

69

errors. However, since a viable communications net must

always exist even if processor and memory modules fail, the

problem is a severe one.

3.3 System Organization for Reliability

3.3.1 Introduction

Reliability, failure tolerance, and graceful degradation

are related requirements which must be considered in combination.

Reliability is concerned with the probability of failure in the

system equipment. It is associated with a time interval, and is

either estimated theoretically using a mathematical model, or

determined empirically by observation. Failure tolerance is the

capability of the system to continue operation after a failure

has occurred, whereas graceful degradation implies a gradual

reduction of system capability when failures occur. Ideally

the system design should:

a) Minimize the probability of equipment failures.

b) Continue full operation even if failures do occur.

Because current technology does not permit simplex con
struction of a computer having the required life without mainte
nance, some form of repair or replacement is mandatory. The

next subsections describe systems which obtain actual or effec
tive replacements from fixed and open-ended spare pools.

3;3.1.1 Closed System

Consider M to be the number of modules of a given type

in the system, and L to be the number of those which must be

active to provide adequate capacity. In a closed system, failed

modules are not replaced, and M must be about four times L to

achieve a .99 reliability over five years, given °afailure rate

of .0002 per hour per unit(10). In such a system,- an estimate

of system reliability can be obtained by forming the product of

the reliabilities of all modules, with the switching functions

allocated to other modules, or to a hypothetical switch module,

as appropriate. Each factor is a function of the number of gates,

the failure rate of gates per unit time, and time. Using the

data provided in reference 10, and considering an example of a

processor of 10,000 gates with the failure rate of 10- 8 per hour,

it is clear that to achieve a reliability of .9 or greater over

five years in a closed system requires either a significant de
crease in failure rates, or redundancy. However, a triply-re
dundant system is less reliable than a single unit after 7/10 of

the mean life of an individual unit. Thus, there are substantial

reasons why a closed system will not provide a ten year life with

70

currently available gate reliability.

3.3.1.2 Open System

The space system will be an open system, in which failed

modules are replaced. In this case, t--overall reliability of

the system involves the probability of the occurrence of a second

failure before the first is repaired. In this sense, reliability

encompasses more than equipment reliability. In an open system,

the probability of mission success (PMS) is a measure of adequacy

which is somewhat less dependent on reliability than it is in

the closed system. This is because the PMS is defined as the

probability that the computer system will perform at or above

specified operational levels, which are time-dependent. Thus, a

dip in performance capability may be harmless to mission success

if the performance required during the dip happens to be low.

The PMS is a function of the time to repair and replace modules

as well as the reliability of the modules. A reliability model

which includes repair statistics will be generated for purposes

of analysis. However, it is intuitively evident that lower

module MTBF's can be tolerated in an open system for a given

reliability than in a closed system.

3.3.2 Graceful Degradation

The term "graceful degradation" refers to the diminished

relative operational capabilities of the system after one or

more permanent failures have occurred. The ability of the

system to continue its function after a failure has occurred

in an element or module is usually achieved by using either

redundantpo-1ircc modules or off-line modules which can be con
nected to the system after the error has been identified.

Assuming that there are "critical" functions being perform
ed by the DMC$ and that it must be operational for ten years,

there are two basic approaches:

3.3.2.1 Standby/Active Approach

Given that L active modules of a given type are required

for processing, and that M of these are provided in the system,

then (M-L) of them may be kept on standby status, awaiting acti
vation after failures among the L modules. Thus, the system can

survive (M-L) failures without any degradation of system per
formance. In order that certain functions of the system may be

continued when more than (M-L) modules have failed, levels of

operational priority must be established, since less processing

can be done by the system as more modules fail. Figure 3.6

shows an example.

In this case, we see that the system continues to perform

100% of its functions as long as L modules are available. When

71

M-5
LOW-PRIORITY L 3

SPROCESSING

213 ----- -- -

z ROUTINE
)PROCESSING

(CRITICAL
FUNCTIONS
I I I I ,,

0 1 2 3 4 5

NUMBER OF FAILURES

Figure 3.6 Graceful Degradation

a-

C-,

1/2

L.

0 1 2 3

NUMBER OF FAILURES

Figure 3.7 Degradation of a Triply-redundant System

72

less than L modules are available, selected functions are elimi
nated. When all but one module has failed, the system continues

to perform only those functions considered essential, and ignores

others. The number of levels selected and the functions asso
ciated with each are arbitrary and will define the degraded modes

of the system. Probabilities can be predicted using the model

for each level. The overall goal for system reliability is crit
ical to the selection of the number of modules. For example,

if L were the maximum number of modules simultaneously required,

then it is probable that less than this number will suffice for

much of the time. If this were taken into account in the pro
bability model, then M could be smaller, since the joint pro
bability of the occurrence of the (M-L+l)st failure at a time

when L modules are actually required is less than the probability

of that failure alone.

3.3.2.2 Full Redundancy Approach

In a full redundancy approach, the system has only

one level of operational degradation; it will either be opera
tional with 100% capability, or inoperative. For example, a

triply-redundant system will provide 100% processing capability

until the second failure occurs, at which point it must stop.

This mechanization may be adequate in an open system. If the

probability of the occurrence of a second failure before the first

module has been repaired is sufficiently small that the PMS goal

is achieved, then this approach is adequate. Note that a multi
mode redundant system with voting could be used to increase the

number of successive failures that the system could tolerate

prior to repair.

3.3.2.3 Comment on Approaches

a) 	In both approaches, the system design must provide a "fail

safe" mode if there is any appreciable probability that the

set of failures which have occurred prevents the system from

continuing. When this occurs:

1) 	It must recognize the situation, and communicate it to

the crew and other computers.

2) 	All non-critical functions must be terminated, and the

system automatically put into a dormant mode, receptive

to direction from the operator. Perhaps hardware func
tions will be required which automatically set status

and control bits, so that the system is left in a truly

safe configuration. Apollo G&N computer experience has

shown that this simple-sounding procedure can in fact be

extraordinarily difficult to implement because of the

time-varying nature of what "safe" really implies.

73

b) 	other factors for consideration with respect to these ap
proaches are complexity of software, error detection capabil
ity, etc.

c) 	It may also be consistent to require configuration of either

type mode as a function of mission phase. That is, during

critical phases, the system might operate in a redundant

mode, but in the active/standby mode otherwise.

3.4 Elementary Reliability Based on Queueing Theory

3.4.1 Introduction

The purpose of this section is to illuminate some of the

trade-offs which must be resolved in designing a configuration

intended to allow "graceful degradation" by inclusion of more

than one unit of each kind. It is not claimed that the curves

included in this document have direct applicability to any parti
cular design; rather, they are intended to be roughly character
istic of several different design-concepts, and provide an in
tuitive feeling for the relative benefits provided by the concept

itself and by varying the redundancy within a given concept.

Throughout this section, failures are assumed to be random,

with exponential distribution. This assumption is made because

it is expected to be roughly correct, but also because it is

mathematically easy to use. It is realized, of course, that non
random failures and random failures of other characteristics may

be of significance. However, they are completely ignored herein.

3.4.2 Review of Basic Theory

If we denote the probability of survival (continued suc
cessful operation) of an element at time t by s, (t), the ex
ponential distribution assumption may be portrayed as

-
Xt
 sl(t)- e

where X is the failure rate, or average number of failures of

that kind of component per unit of time. Another way of describ
ing 	this failure characteristic is to say that the probability

that a unit which is operational at time t will fail by the time

t+dt is Xdt, and therefore independent of t itself.

Consider now a system repair station or maintenance man

which is capable of working on a single problem at a time, and

whose probability of completion of a repair which is in process

at time t by time t+dt is V'dt. If the population of units po
tentially requiring repair is large, the probabilities that none,

74

one, two (and so on) units are failed and not yet repaired are

described respectively, by

dP0
t - -A +SP

dP 1
+

dt A P0 - (S+A) P 1 S P2

dPi

+
- = A Pil - (S+A) Pi S Pi+l

dt

where i > 1, and A and S represent the rates of arrival (failure)

and service (repair) which characterize the system and the repair

facility. The assumed initial conditions for this set is that

all units are initially working: P0 (0) - 1, and Pi(0) = 0 for

i 1.

Given values for A and S, these equations could be integrated

numerically to obtain at least the P.'s for small i's. However,

we postpone discussion of time-dependent solutions temporarily,

and instead consider the steady state solution. In the steady

state, all the dPi/dt are zero, and the solutions may be obtained

step-by-step in terms of P0 by starting at the top.

=
Pi P0 (A/S)i i 2: 0

Since the Pi's are mutually exclusive and cover all cases, P0

may be found from

E Pi = 1

Thus, P0 = 1 - A/S, and

i
Pi = (1 - A/S) (A/S-) i > 0

Under these conditions, the average number of units not opera
tional may be readily computed from

m - Z i Pi = A/(S-A)

75

Several cases are illustrated below:

A/S: 0.1 0.5 0.9

P0: 0.9 0.5 0.1

PI: 0.09 0.25 0.09

P2: 0.009 0.125 0.81

M: 0.111 1.0 9.0

Notice that as the average failure rate approaches the average

repair rate capacity, the number of units awaiting repair grows
quite rapidly.

3.4.3 Application to a Finite Population

In the preceding analysis, the assumption of a large

population permitted treatment of A and S as constants which

were independent of the state of the system. Consider now a

small population representative, say, of the number of processor

elements in a multiprocessor computer system. If we ignore the

possibility that the pressure of a long waiting line at the

repair facility will have an effect on the repair rate (one way

or the other), S may still be considered constant. However,

the probability that one of the operational units fails in a

specified interval is strongly dependent on the number which are

already in the failed state: indeed, if none are working, the

probability that one more fails is zero. Thus,

dP0

dt - -A 0 P+SPi

dPi
- (Ai + S) Pi

+ S Pi+l 1 i < N
t - Ai-iPi-I
dt

dPN

- = AN-I PN-1 - S PN
dtN

where Ai is the system failure rate when i units are already in

the repair queue.

If A is defined to be the failure rate of an individual unit

(previously, A was the collective failure rate of a large ensemble

of units), then Ai = (N - i)A and

76

dP

dt0 -N A P0 + S P 1

dP i
at - (N-i+l)A Pii - [(N-i)A + S]P i + S Pil < N i

dPN

t A PN- S PN
dtN

The steady-state solution of this set is given by

i=o (N-i)!

Pi iN!

T P0 (A/S)i l < N

A few illustrative plots of the solutions of the differential

equations are shown in.Figure 3.8. The scales are non-dimension
al; time is expressed in units of At, and the repair rate in

terms of S/A. The curves indicate what might be expected in
tuitively, in that as time increases, the system quickly leaves

the initial all-operational state P0 = 1, while the probabilities

of n units in the repair queue increase. The P's for larger

n's increase more slowly than for smaller n's, since the first

transitions into the n state come from the n-1 state.

Figure 3.9 shows a plot of the steady-state solution for

a number of cases, but presented in a different light. Again

with S/A as a parameter, the probability that all units are in

the failed state is plotted against number of in--ts in the

system. Notice that the probability scale is logarithmic, to

allow display of the wide range of values involved.

Figures 3.10 and 3.11 display the probabilities that less

than 3 and less than 5 units are operational in the steady state,

as a function of number of units in the system. The motivation

for this form of display is that the situation whose probability

is plotted is the one in which a system requiring at least 3 or

5 units for full performance of its functions is below that level.

Again, several intuitive expectations are borne out. First,

notice the curvature of the plots for lower values of S/A, which

represent cases where the average unit repair rate is little

greater than the unit failure rate. This curvature represents

a tendency towards a horizontal asymptote, and reflects the

fact that when the repair facility is slow, addition of units

causes little reliability improvement. This is because the

failed units wait in the repair queue so long, that the added

77

1.0

SIA - 10
0.9 (see text)

0.8 	 P0,3

0.7

0.6 -	 P0.6

" 0.5
0

0.4

1,6
0.3 	 -P

0.3P1,3

0.2

0.1

0
0 	 0.1 0.2 0.3 0.4 0.5

NORMALIZED TIME

Figure 3.8
Probability that m of n Units are Awaiting Repair Vs. Normalized Time

78

1.0

101-2

10-2 5

103

10

10- -

S10 2010-

10-12

o10 -8

0-9 -50

lO-10- PARAMETER =S/A
(see text)

10-13
10

10-12

10-13

10- 14 0

10-15 1 1 J1'....I I.I

0 2 4 6 8 10 12 14 16 18 20

NUMBER IN SYSTEM
Figure 3.9

Probability that no Units are Operational vs.

Number of Units in the System

79

1.0

10 -1 5,

102

10-

10- 20

10 -6

10-6

- 10-8 -5

10 .9

10-10

10-12

-13 - PARAMETER S/A 200
(see text)

10-14

0 2 4 6 8 10 12 14 16. 18 20

NUMBER IN SYSTEM

Figure 3.10

Probability that Less Than Three Units will be Operational

Vs. Number of Units in the System

80

units are very likely to fail themselves before the others get

fixed.

The second intuitive belief is that the number of spares,

on a per-required-unit basis, should diminish as the number of

required units increases. That is, if a given reliability is

achieved when three units are required and five units (1.67 x 3)

are provided, then better reliability should result if five

units are required and 1.67 x 5 or 8.33 units are provided. For

example, in Figure 3.10 it is seen that the probability that less

than three units are operational when five are in the system and

S/A = 100 is 0.00006; however, Figure 3.11 shows that for the

same S/A, the chances that less than five of 8.33 are operational

are about ten times lower. Unfortunately, some of the happiness

that this brings to the system designer is lost when the diffi
culties of adding a third,of a unit to the system are considered.

3.4.4 No On-board Repairs

Finally, an alternate concept for system maintenance is

considered. Suppose that all the units of a type are either

hooked into the system or that on-board spares can be swapped

with failed units so quickly that it is as though they had been

in the system. Further suppose that failed units are not re
paired on board, but rather the replacements are brought up

for those units on the next periodic shuttle flight. Then, if

the shuttle flight period is T, the state of the system tends

to diminish with time over the interval, but is restored to

perfect condition every T units of time. The differential equa
tions for one interval of this case are simply

-A P
dP0

dt

dPi
- - Ai-i Pi-i - Ai Pi 1 < i < N

dt

dPN

AN-I PN-1dt

for 0 S t < T, with P0 (0) = 1, and Pi()= 0 when- 1 i N.
If we changee variables so that henceforth t represents what was

t/T before, and if the former relation Ai = (N-i)A is substitut
ed, the equations become

81

1.0
50-1 .

10-2 - 10

10-3 20

10-4
10-5

0-6 -5

10"9

10-10 _

i0-12

! PARAMETER =S/A
10-13 - (see text)

10-14

10-5

0

-

2 4 6 8

NUMBER

10 12

IN SYSTE

14 16 18 20

M

Figure 3. 11
Probability that Less Than Five Units will be Operational

Vs. Number of Units in the System

82

d - [-N P0] AT

dP i = I(N-i+l) Pi-i - (N-i)Pi] AT 1 < i < N

dt

dPNdt -][PNdt AT

for 0 t < 1. This system never really reaches a steady state

in the zero derivative sense, but to avoid the nuisance of the

time dependence, Figure 3.12 has been constructed from the aver
age values of the P's over an interval, with l/AT as the para
meter.

3.4.5 Conclusion

The figures in this section seem to show that reliabili
ties of multi-unit systems which require only a fraction of the

total number of units to be working can be made quite high. How
ever, it must be stressed that these results are based on models

of the failure process. It is important for the reader to real
ize, as he probably has already, that no accounting has been

made for the fact that to increase the number of units in a

system requires more than just more units; unfortunately, more

connections, switches, and other components must be added as

well, and often it is the unreliability of these that dominates

the system performance.

Another oversimplified consideration is that the failure

rates of units are independent of each other and of the level of

their own activity. It is well known that failure rates of many

kinds of electronics increase with temperature, and decrease

when power is off. Failures induced by power switching have also

been ignored, but are potentially significant.

The basic conclusion, however, seems clear: if a means

can be found for constructing a system so that redundant units

can be utilized without introducing appreciable unreliability

via their own inclusion, the system reliability can be made

almost arbitrarily high. The design proposed in Chapter 5 is

believed to possess these attributes.

83

10-3

0

1.0

10-1 1
10-2 2

10 -5 -5

10-6

"?

b--10

10-10

10-12 -5

10-13 PARAMETER = hAT
(see text)

10-14

NUMBER IN SYSTEM

Figure 3.12

Probability That Less Than Three Units Will Be Operational

Vs. Number of Units in the System

84

3.5 Segmentation and Paging

3.5.1 History

The handling of the problem of allocation of memory in

computers has evolved over the years in response to the changing

usage of the computer as a system. In the early systems, only

one job ran at a time, and the entire computer resources were

available for use by that job. Core allocation as such did not

exist; the individual programmer was simply responsible for in
suring that his program would fit in the storage available. If

this was insufficient, he was required to break his program up

into pieces which would fit, and to plan their sequential exe
cution. This process is referred to as overlaying.

The next significant change to storage management occurred

when multi-programming was introduced. In this case, more than

one job could simultaneously be active in the system, and a

decision had to be made regarding allocation of space to each.

Time-shared systems introduced an even greater dimension, since

response-time seen by the user at a terminal became an important

parameter in the system operation. The first concept introduced

to solve the storage allocation problem was known as relocation.

At the time when a segment of a program was to be executed, it

was preprocessed by a program called a relocating loader which

would customize the program for that instance of execution by

changing the addresses in the program to correspond to the

physical memory locations from which the program would be exe
cuted. Subsequently, hardware was added to the processor to

aid this problem,,typically in the form of relocation registers.

This removes some of the problem of relocation, since it was

performed dynamically in the hardware. However, the binding

of several program segments together to run was still required

since each of the segments was written as though it was to be

executed in the low numbered addresses of memory. As the number

of users occupying resources of the computer at a given time has

grown, the responsibility for core allocation among them has

been awarded to a supervisory program. As time-response has

become as important as processor efficiency, more exotic address

mapping hardware has been added to the processor.

The manifestation of the fundamental storage allocation

problem is storage fragmentation, or fractionation of free

storage into multiple, relatively small, pieces. This phenome
non is partially caused by the general inability to anticipate

storage requirements even over seemingly short time intervals,

but it is somewhat unavoidable without hardware aid. An illus
tration-may prove helpful: suppose there are ten units of

storage, numbered 0-9. Suppose also that the allocation algo
rithm awards the lowest-numbered smallest piece of available

space which is big enough to satisfy the request. Consider the

following sequence, where the number is-the space involved,

and R or F indicate whether the transaction is a request or

85

finish (return of space): 2R, 5R, 2F, 4R. It is seen that the

4R request cannot be satisfied even though five units are avail
able, because of the fragmentation of free space.

Two methods used to circumvent this problem are described

in the following sections; a survey of systems using these

methods is given in Appendix A.

3.5.2 Paging

Paging is a form of address mapping which was first utilized

in the Ferranti Atlas Computer. It was introduced to help solve

two problems which are an inherent part of time-shared computer

usage:

1) 	It is desirable to execute programs which are not wholly

loaded into memory or which will not even fit in the avail
able memory space.

2) 	It is necessary to remove programs from memory and replace

them with ones more currently required, and later to restore

them, without substantial storage allocation overhead.

The 	notion of paging is simple enough: a level of indirect

addressing is added to cause logical addresses issued by a pro
gram to be translated into physical addresses corresponding to

the 	current location of the block of the users program or data

referred to. The list which describes the translation is re
ferred to as a page table, and is addressed implicitly by the

processor when needed.

Paging has permitted the user to write his program as though

it were to-execute in a large virtual memory, the correspondence

between the virtual address space of his program and the physical

address space computer being accomplished at execution time. In

execution, the reference by a program to a page not currently

in memory causes a missing-page interruption. The supervisory

program then initiates a fetch of the desired page, meanwhile

giving control to another process awaiting execution. This

strategy is referred to as demand-paging. The combination of

poor strategy for selecting pages to be replaced in core plus

overambitious attempts to crowd too many users into a given

memory have caused some notable performance disasters when paged

systems have become overloaded.

One of the important characteristics of paging is that it

is invisible to the programmer. This means the programmer need

not be aware of the fact that he has other than the virtual memory

which he envisions when his program is prepared. This can be an

advantage since it frees him from problems of storage allocation.

It, however, can also be a disadvantage, since it prevents him

from being able to influence memory allocation. Since pages are

usually fixed length blocks, it is difficult for him to arrange

86

the contents of the blocks so that the pages are meaningful

logical units of program or data. As a result, sometimes large

fractions of pages are filled with information not immediately

relevant to that which is being currently used.

Hardware aid to the paging process takes several forms.

First, the processor may incorporate high speed memory for stor
age of part or all of the translation address words, to reduce

the time penalty caused by the extra indirection in addressing.

Second, the hardware can control the settings of bits to indicate

those pages which have been referred to and those pages which

have been written into since a given time, in order that the

page switching software can determine whether it is necessary

to write a page out to secondary storage when its space is pre
empted to make room for another page. If the page has not been

modified, it need not be written out, since a copy already exists

on the secondary storage device. Third, the hardware might (but

normally does not) keep an ordered list of page references so

that the software could determine with a minimum of overhead

which page was least recently used when space for a new page was

required. Fourth, the hardware can readily implement storage

protection by providing bits in the translation address word

which indicate the page is a read-only page, an execute-only

page, or a free read and write page. It should be noted that

pages not known to a process by virtue of being included in its

page table are protected automatically, since they are simply

not addressable by the process and therefore, are completely

safe from over-writing.

That paging is an effective means of memory allocation

depends upon a characteristic of programs in execution for short

periods of time: namely, that the accessing of words in program

and data is not uniformly random, but rather is confined to a

small subset with high probability(6). Thus, if the period of

execution of a program is brief, for example, one time slice,

much of the program and data will not be referred to during the

interval, and therefore need.not occupy space in memory. The

extent to which this hypothesis is true in a given application

can profoundly affect the success or performance of a given

implementation. As a result, many articles have appeared in the

literature describing different paging measurements and strate
gies.

3.5.3 Segmentation

Segmentation is a generalization of the virtual memory

concept through the provision of a series of independent virtual

memories. Each one of the virtual memo-ries may be considered to

contain exactly one segment, so that any segment may grow or

shrink without affecting other segments. Further, segments not

in use during execution of a program need not be physically pre
sent in memory. That is, segments need be loaded only when re
ferred to. This is useful since the largest unit of program

87

which must be bound together, as described previously, is the

segment. Since the virtual addressing within each segment may

begin at location zero, and since these addresses are dynamically,

not physically, relocated during execution, segments may readily

be shared between processes without elaborate additional mechanism.

It is seen that some of the characteristics of segmentation

overlap those of paging. Indeed, if the typical size of a seg
ment was of the order of the size of the page, paging as such

would not be useful as an additional characteristic of the hard
ware. On the other hand, if segments are often substantially

larger than the page size, paging is useful.

The use of segmentation is often referred to as two-dimen
sional addressing, since the address of an item in a segment is

specified by a segment number and a relative location within the

segment. Therefore, unlike paging, segmentation is a logical

division of address space which is completely visible to the pro
grammer, and need not be inherently related to-EH oblem of

memory allocation.

Two of the most recent systems to be based on segmentation

(5)
are the MIT Multics system using the G.E. 645 computer and

the Burroughs 6500/7500 computer system(3). In Multics, both

segmentation and paging are provided. In the Burroughs system,

only higher order language is used for program preparation, and

the structure of these languages is used to inherently define

rather small segments. Thus, paging is not required, except

for large data arrays. In both systems, segmentation is used to

segregate read-only procedures or programs from alterable data.

Additionally, both systems rely on segmentation to achieve order
ly sharing of programs and data among processes. In both, seg
ment descriptor words are used for location translation of seg
ment addresses. Segment length information is also contained in

the descriptor word, and is used to validate addresses as they

are issued. Burroughs uses this feature to the extent that each

array is defined to be a segment, so that illegal subscripting

can be discovered by hardware, eliminating software overhead for

this.

3.5.4 Paging Studies

3.5.4.1 Theoretical Consideration of Paging

The material presented in this section is based on the

content of reference 7.

Let m be the probability that a page-fetch is demanded by a

particular program. This is a function of the size of the pro
gram, the number of programs resident in memory, and the memory

size. Let T be the traverse time of a page-fetch, which is the

sum of Ta,' the access time of the page on the secondary storage

88

device, and Tt, the time to transfer the -block of words com
prising the page. Let time be measured in microseconds, making

the time-unit roughly comparable to the instruction execution

time of the processor. If a page is defined to be 1000 words,

the 	following table indicates typical speeds:

Device Ta Tt T

IC or film .1 102 102

Core 1.0 103 103

Bulk Core 10 104 104

Fast Drum 104 103 104

Moving-arm Disc 105 103 105

Suppose a job is running for an interval of time over which

the missing page probability, m, is approximately constant. We

wish to compute the paging efficiency, which is defined to be:

e(m) RT T

RT + Page wait time

Page wait time = m x RT x T

e(m) RT 1

RT + m RT T 1 + m T

Figure 3.13 is a plot of e versus m for various values of T. It

illustrates dramatically the need for small values of the product

m T.

At first glance, it appears that a low paging efficiency

for one job could be compensated for by running enough jobs

simultaneously to keep the processor occupied. This falls short

on two grounds:

1) 	The objective of paging (neglecting interactive users'

response times) is to multiplex core to keep the processor

efficiently loaded. But if each job has only a low duty

cycle, then more core will be needed, not less.

2) 	The paging device, often a drum, will saturate and become

the limiting item. In running a set of 10% efficiency jobs,

the drum may continually be fetching pages, and the pro
cessor will be idle while all jobs are waiting for pages.

The only real answer lies in providing enough pages so

that each job can run with a reasonably high efficiency.

89

I 0.8.9
k-2

0 -26.7 p"58.4
k-4 k 2

9-118.4
k E

p- 140.1
k 4 p-04.7I

I

0.8

II

I
I

C.4

/

.//

,.SOID CORVES:0ATA
DASHEDCURVES:INSTRUCTIONS

125,00 INSTRUCTIONSINTERPREIED
PAGESIZE-1024WORDS
LRUALCORITHM

0

0

/00. /00

M.

I /__/
1

____ ___ __,

20 3 4. 00
PAGERESIDENCETIME(INSTRUCTIONCOUNT)

Figure 3.13

Paging Efficiency

Figure 3.14

Pace Residency Distribution

3000

0 TIIX 42 PACES
O TI. X* 35 PAGES
A TI.IXX)(35 PAGES

IKPAGESIZE
F1FOREPLACEMENTALGORITHM
SINGLEPROGRAMMED

.15 5200

03
F2000

5 0.05

100

0

1

4

1 .

a

I

12

.

16 UT
k

.

24 23 3Z SK 16K 24K 32K 40K 48K
REALCORE SIZE UK1-024 WORDS)

Figure 3.15

Comparison of LRU
and BOR Algorithms

Figure 3.16

Effects of real core size
Ti-Matrix inversion (100xlOO)

90

3.5.4.2 Experimental Studies

Results of several studies are presented without ex
tensive comment. First are some measurements by Varian and

4
Coffman(). Figure 3.14 is a plot of what is called "page

residence time" distribution. Actually, it is the distribution

of the time intervals between consecutive page faults for a

particular problem under differing allocations of number of

pages. The test problem is a SNOBOL compiler for the IBM 360,

which consisted of 15 instruction pages and 22 data pages, each

of 4096 bytes. The results for data and instruction pages are

given separately. The quantity labeled p is the mean time

between page faults; k is the number of pages allocated. As

can be seen, for 8 out of 15 instruction pages, the mean time

between page faults is only 300 instructions; for 8 out of

22 data pages, the mean is 120 instructions.

Figure 3.15 shows the overall picture for the same problem.

The ordinate, labeled "normalized page faulting", is the number

of page faults divided by the total number of instructions that

were executed. The abscissa, labeled k, is again the maximum

number of pages that this problem was allowed. As mentioned

above, the size of the problem was 37 pages. The scaling is

not good atlarge k's, but even for a k of 24 to 30 the amount of

paging is not negligible. (LRU = Least Recently Used, BOR =

Belady Optimum Replacement, two strategies for page replacement.)

Another study was done at the IBM Thomas J. Watson Research

(1
 Center), using a specially modified 7044. In these cases,

core size was varied, and the actual time to complete the pro
blem was measured. The secondary storage device had a traverse

time that was 25,000 times the core memory cycle time. Three
jobs were selected to be run.

1) A FORTRAN job that inverts a 100 by 100 matrix.

2) 	A FORTRAN job that does data correlation using a fair quan
tity of input information.

3) 	A sorting job that sorted 10,000 10-word items.

Figure 3.16 shows the run time as a function of the alloted

core space for the first job. The original problem is given

by the points marked by the circles. The triangles and square

represent versions of the program that were reprogrammed to re
flect the paging environment.

Figure 3.17 illustrates the second problem results. This

time the triangles stand for the initial program and the circles

for the improved version.

Figure 3.18 gives the times for the sort problem. The

solid rectangle is the basic program and the others were succes

91

2500

300

0 TI.,A. 42 PAGES(CASUAL CODE)
O TI.IX 35 PAGES(MOST IMPROVED CODE)

----MIN REPLACEMENT ALGORITHIM
- FIFOREPLACEMENTALGORITHM

I K PAGESIZE
SINGLEPROGRAMMED

5727@10K 7335 @24K

S2000

t'1506-

1000

0

500

OK 16K 24K 32K 40K 48K
REAL CORE SIZE (K- 1024 WORDS)

Figure 3.17

Effects of page replacement algorithm

Tl-Matrix inversion (100xl00)

4500

500- T4.15X 1Z9 PAGES 4730 SECONDS0T4.1XQX 130PAGES AT64K

a T4.XQR 1Z PAGES

0 T4.1XRN 129PAGES
IKPAGESIZE

FIFOREPLCEMENTAGORITHM

SINGLEPROGRAMMEO

2D .

500

SGOD

0 1S 3.1 4.5 64K 60K 96K 112K 130K
REALCORESIZE IS.- 100343S

Figure 3.18

Effects of real core size

T4-Sorting (10,000 10-word items)

92

sive improvements. The rather dramatic savings in core needed

were achieved by using the large file of data (100 pages) in

small sub-files at the cost of additional processor time. Less

processor time is required when the whole file can be randomly

addressed and a list threaded through it.

The thrust of the conclusions was that acceptable perfor
mance can be realized if programming techniques are used which

recognize the paging environment. If allowances are made by

the programmer for the need of the paging mechanism to shrink

the allotted size of memory available for his program, then it

is possible to produce programs that will run efficiently under

paging.

Two factors should be mentioned which might influence the

extrapolation of the results:

1) The compilers and programs were taken from an IBM 7044, a

second generation computer. Techniques and program layout

methods have changed since then: re-entrant code, pure

procedures, involved interaction with large operating systems,

etc.

2) The jobs all had one characteristic in common: they were

larger than 32K in their natural form, and had all been

reworked to make them fit into a 32K configuration by over
lay techniques. (Perhaps the breaks in the run-time of

the FORTRAN jobs near 32K are no coincidence.)

3.6 Processor Interrupts

3.6.1 Introduction

The purpose of processor interruption is to alert a

processor to the occurrence of an event, while eliminating the

necessity for-repetitive testing under program control. Each

interruption causes that processor to record sufficient infor
mation to resume the interrupted process at a later time, and

then to begin execution of instructions at a location correspond
ing to the particular interruption. Hardware interrupt features

are an integral part of the design of most computer systems.

Their implementation, coupled with the executive scheduling and

dispatch functions in the software, provide the overall control

structure for the configuration.

Multiprocessing systems introduce an extra dimension for

design consideration. Such questions as "which processor should

be interrupted" or "should one processor service all interruots"

appear in addition to the questions in simple processor system

design such as "should there be a priority structure for inter
rupts", "what are the hardware functions for interrupts", and

"what software control of interruption-disabling is possible".

93

The purpose of this section is to review interrupt features

of several existing systems.

3.6.2 History and Background

Historically, the early computers operated in a serial

manner, in that initiation of each action had to await comple
tion of the previous action. It was frequently necessary to

afford careful consideration to execution timing in order to

synchronize data transfers between memory and the peripheral

devices.

Later, computers such as the IBM 709 enabled interleaved

instruction execution and I/O operation. These systems included

one or more input/output channels capable of executing sequences

of I/O commands themselves without the participation of the

processor. When processor aid did become necessary, the channel

was able to trigger an interruption. This system had the ad
vantage of permitting program execution and I/O to operate con
currently. The interruption of the running program upon com
pletion of an I/O operation was accomplished by causing an in
voluntary transfer of control to a predetermined memory location,

at which an interrupt service routine began. Multiple and time
shared I/O channels were subsequently introduced, which increased

the possibile multiplicity of the I/O operations and the complex
ity of the interrupt servicing.

3.6.3 Single-Level Interrupt

In a single-level interrupt structure, the processor is in

one of two modes, the "normal" mode or the "interrupt" mode.

When the processor is operating in the normal mode and a condition

occurs which, by design, requires an interrupt, the processor is

placed in the interrupt mode, and control is transferred to a

predetermined location in memory. The concept of single level

is simply that while the processor is in the interrupt mode, it

may not again be interrupted. That is, recognition of further

interrupts is postponed until the processor leaves the interrupt

mode. This inhibiting of interrupts requires the hardware to

be designed such that no data or interrupts are lost.

When the interrupt occurs, certain information must be pre
served so that the interrupted program may later be resumed.

This information includes the processor state, plus the set of

machine registers which could be over-written during the execu
tion of the interrupt servicing routine.

3.6.4 Multi-Level Interrupt

The multi-level interrupt structure typically assigns each

interrupt or class of interrupts to a "priority level". The

94

hardware is designed to allow interrupts assigned to a given

level to interrupt those of a lower level. Otherwise, the

basic concepts are similar to the single-level interrupt struc
ture.

An unusual system of this type, the Litton 304, uses 64

levels, and delegates a significant amount of the executive

control to this hardware. Each process (or program) as well

as each interrupt is assigned a level, and the system essentially

never leaves the interrupt mode.

3.7 Stacks

3.7.1 General Description

(I
A stack, according to Knuth l), "is a linear list for

which all insertions and deletions (usually all accesses) are

made at one end of the list". Stacks, which have proved to

be important in many computer applications, especially recur
sive procedures, have been called by many other names. Among

them are "push down lists", "last in, first out (LIFO) lists",

"cellars", "nesting stores", and even "yoyo lists".

When an item is put onto the top of the stack the process

is called "pushing down"; to take an item off the top is to

"pop up". The bottom of the stack is the oldest word in it,

and hence the least accessible item. When a stack is pushed

down to accept an additional item, the words in the stack in

memory are not physically moved from one location to the next.

Instead, a variable, called the stack pointer, contains the ad
dress of the location in memory of the top of the stack, and is

merely incremented when an item is added to the stack. Thus the

items in the stack appear to be pushed down because their loca
tion is farther away from the location pointed at by the stack

pointer.

Usually there are limits or bounds on the memory space that

the stack may occupy. If the stack size violates these bounds,

the condition is called stack "overflow" or "underflow".

3.7.2 Examples of Stack Implementations

A stack system has been implemented strictly through soft
ware for many computers. However, several computer manufacturers

have recognized the utility of stacks, and have implemented hard
ware and instructions which facilitate stacking mechanisms. Some

of the computers which have implemented stacks are the following:

1) 	505 Sigma 7(14). The Sigma 7 resembles the IBM 360 in its

data format and special registers. It includes byte, half
word, word, and double-word data handling instructions. How

95

ever, its instruction set is quite different, and it has a

stack capability. The instructions are as follows: Push

word, Pull word, Push multiple word, and Modify stack

pointer. The effective address portion of each of these

instructions points at a location which contains the "stack

pointer double word" (SPD). The operation can be seen by

consideration of the "Push word" instruction which increments

the stack pointer, and then takes a word from an accumulator

and stores it in the location pointed at by the new contents

of the stack pointer. Stack limit data in the SPD is used

to validate the operation before it is actually performed.

(8)
2) 	DEC PDP-10 . The stacking capabilities of the PDP-10

are similar to the Sigma 7. The two common instructions are

PUSH and POP. The PUSH instruction is like that of the Sigma

7, except that the sources of data and stack pointer are

reversed; i.e., an accumulator contains the stack pointer,

and the effective address specifies the location of the data

to be transferred to the stack.

Two more instructions that are useful are PUSHJ, which causes

a transfer to the addressed subroutine, leaving return infor
mation in the stack, and a return counterpart, POPJ. In

detail, PUSHJ increments the stack pointer accumulator,

pushes the program counter and flag information into the

stack, and jumps to the location specified by the effective

address. POPJ provides the means to return. This pair of

instructions is a-useful mechanism for handling nested or

recursive subroutines.

3) 	Burroughs 5500, 6500 and 7500(2,3). The Burroughs imple
mentation of the stack is no half-way measure. Rather than

offering a stack as an optional feature which may or may

not be used by the programmer, Burroughs has incorporated the

stack into the fundamental architecture of their computer.

The pair of registers that are sources for operands and

destinations for results (effectively, the accumulators) are

logically considered by the hardware to be the top of a

stack. Arithmetic operations such as ADD take their inputs

from the top of the stack and leave their results on the

top of the stack. Other instructions are provided to move

operands from memory to the top of the stack, or store data

from the stack to memory. The top of thestack, then, is

the heart of all calculations and the stack itself shrinks

or grows as the computational sequence indicates. This utter

dependence upon a stack rather than multipurpose accumulators

seems to be unique to Burroughs.

(9)
4) 	DEC PDP-II . The PDP-11 contains eight "general registers",

two of which are dedicated to specific functions and are im
plicitly addressed by certain operations. One of these is

the program counter; the other is the stack pointer (SP).

The addressing modes of the machine autoincrementing (incre
ment register after use) and autodecrementing (decrement

register before use) which facilitate the use of other re

96

gisters as stack pointers also. The interrupt sequence in

the processor and the subroutine call and return instructions

store appropriate information in the stack by use of SP, so

that priority interrupt and nested or recursive subroutine

implementation is quite direct. Hardware-aided checks on'

stack limits are almost non-existent; a single fixed address

in memory is treated as the stack upper limit, and a trap

occurs if a stack controlled by SP exceed this boundary.

3.8 Microprogramming

The term microprogramming was introduced in a paper by

Wilkes in 1951(15). The intent was to introduce "a systematic

alternative to the usual somewhat ad hoc procedure of designing

digital computers". The traditional technique was to specify

only the inputs and the outcome of each individual instruction

and leave the details of the implementation to the logic designer.

Wilkes pointed out that the execution of an instruction involved

a sequence of information transfers, and compared these individ
ual steps to the execution of individual instructions in a pro
gram. Each step can be considered a microinstruction; the

complete set then constitutes a microprogram.

* Microprograms usually reside in a device distinct from the

users' memory, called the control storage. Although control

stores have generally been read-only memories, several computers

have recently been developed with read-write control stores.

This opens the door to intriguing possibilities, such as dynamic

variation of the instruction set the particular computer might

possess. Use has been made of this capability to build emulators

for existing computers and to write diagnostic routines which

perform machine checks at a more basic level than could be accom
plished with ordinary instructions.

The significant advantage that microprogramming offers can

be described by one keyword: flexibility. Profitable uses of

this flexibility include the following:

1) 	Many times it becomes apparent during the software-writing

effort that certain additional instructions would make them

more useful, but it is too late in the design cycle to in
corporate these changes. Microprogramming allows the re
design of an instruction set (within limits) long after the

basic hardware intself has been frozen. This situation arose

in 1968, when IBM redefined the floating point arithmetic

on all 360 models. For the most part, this change was ac
complished by merely rewriting and debugging the appropriate

microprograms. To have made a corresponding change at the

hardware level would have been enormously more expensive(13).

2) 	Similarly, microprogramming offers the opportunity to provide

instructions and special features tailor-made to a customer's

97

unique needs long after the system has been specified, with

no hardware modifications. The addition of special purpose

hardware and peripherals, not supported in the original de
sign, to an already designed system has historically been

an awkward and expensive task. Microprogramming offers real

potential for solutions to this.problem.

3) 	As an extension to the capability to emulate older computers,

microprogramming may prove quite valuable as a test-bed for

the development of future computers. Emulators may be writ
ten for proposed machines and measurements conducted to offer

empirical evidence of the design efficiency.

Examples of contemporary microprogrammed computers include
3

the 	following(1):'

1) 	IBM 360/25. The 25 has a writable control store for which

load decks that make it look like either a 360 or a 1400

series computer are supplied. Since the control store is

generally writable, other emulators could be produced for the

25.

2) 	IBM 360/85. The 85 has two microprogram control stores.

One is read-only, and contains the 360 emulator. The other

is generally writable, and supports the 7094 emulator as

well as basic machine diagnostic routines.

3) 	Standard Computer Corporation's IC Series. Standard has

introduced a whole series of computers which are micropro
grammed. The earlier ones were designed especially to simu
late the IBM'7090/7094 and 7040/7044. Newer machines in the

Standard line offer the possibility of emulating a number of

different common computers of several manufacturers. The

IC7000 is particularly slanted towards the time-sharing mar
ket.

Enthusiasts have raved over the possibilities and seemingly

unlimited potentials of general microprogramming. They envision

the ability to manufacture a computer that could emulate the

characteristics of every commonly used computer. By the relative
ly minor amount of programming necessary to construct the micro
programs (1800 instructions in the Standard Model 9)(12), they

can cash in on the huge investment in time and money already

spent to produce operating software. The technique would all

but eliminate the gigantic reprogramming costs of switching over

to a new generation computer. The following quotes illustrate

some of the claims that one proponent of microprogramming is

zealously putting forth: The "life of existing program libraries

will be extended to infinity". "Vintage software, massaged and

made workable through frequent use and long study, can now be

employed as required without locking the user in or out." "We are

rapidly approaching the time when all programs will run on all
2

machines."(1)

98

References for Chapter 3

1. 	Brawn, B.S., and Gustavson, F.G., "Program Behavior in

a Paging Environment", Proc. FJCC, 1968. Vol. 33, pp.

1019-1032.

2. 	Burroughs Corporation, "A Narrative Description of the

B5500 Disk File Master Control Program". May 1965.

3. 	Burroughs Corporation, B6500/B7500 Characteristics Manual.

Sept. 1968.

4. 	Coffman, E.G., and Varian, L.C., "vurther Experimental

Data on the Behavior of Programs in a Paging Environment",

CACM 11,7. July 1968. pp. 471-474.

5. 	Corbato, F.J., "A Paging Experiment with the Multics

System", MIT Memo MAC-M-384. July 8, 1968.

6. 	Denning, P.J., "The Working Set Model for Program Behavior",

CACM 11,5. May 1968. pp. 323-333.

7. 	Denning, P.J., "Thrashing: Its Causes and Prevention",

Proc. FJCC. 1968. Vol. 33, pp. 915-922.

8. 	Digital Equipment Corporation PDP-10 Reference Handbook.

1969.

9. 	Digital Equipment Corporation PDP-11 Handbook. 1969.

10. 	 Erwin, F.D., and Bersoff, E., "Modular Computer Archi
tecture Strategy for Long Term Missions", Proc. FJCC, 1969.

11. 	 Knuth, D.E., The Art of Computer Programming, Vol. 1,

Addison-Wesley. -8

12. 	 Rokoczi, L.L., "The Computer-within-a-Computer - Fourth

Generation Concept". Computer Group News (March 1969),

pp. 14-20'.

13. 	 Rosin, R.F., "Contemporary Concepts of Microprogramming

and Emulation". Comp Surveys 1,4 (Dec. 1969), pp. 197-212.

14. 	 SDS Sigma 7 Computer Reference Manual. 90-09-50F. Dec.

1968.

15. 	 Wilkes, M.V., "The Best Way to Design an Automatic Cal
culating Machine". Manchester University Computer Con
ference, 1951. pp. 16-21.

99

PRECEDING PAGE BLANK NOT FILMED.

Chapter 4

System Design Guidelines and Constraints

4.0 Introduction

This chapter presents the major guidelines and constraints

influencing the architecture of the computer for the space

station data management system. The scope of this contract did

not include any detailed analysis or generation of system design

requirements; however, it is a meaningless exercise to attempt

to configure a large-scale,system without at least order-of
magnitude estimates of requirements. Therefore, this chapter is

intended to summarize existing space station DMS guidelines,

and preliminary DMS design requirements being developed by the

Space Station Phase B contractors.

We observe that at present, neither the design criteria

for the computer system nor the operational and performance

requirements it must satisfy are well defined.
Terms such as

high reliability, on-line reconfiguration, graceful degradation,

and configuration flexibility are being used rather loosely

as characteristics of the computer system.
 These terms all

have broad scope in meaning, and their exact interpretation

with respect to the space station has a direct effect on the

architecture of the computer system.
In addition, the processing

requirements of the on-board computer system in terms of "what

it must do" have so far only been grossly estimated, based upon

preliminary functional analyses.
 These obviously are not

adequate to finalize performance requirements or sizing of the

computer system.

However, these requirements, guidelines and constraints

have been used in planning and designing the organization of the

computer system presented in Chapter 5. It is therefore useful

to restate them, and to interpret them where necessary. The

information is presented in the following sections:
 General

Space Station Subsystem Requirements, Performance Requirements,

Physical Requirements and Reliability.

4.1 General Space Station Subsystem Requirements

With reference to the "Statement of Work Space Station

Program Definition (Phase B)",
14 April 1969, the space station

will be designed for a minimum of ten years of operational life,
and each of the subsystems will be designed with large margins

and provisions for in-flight maintenance, repair, and replace
ment. In addition, the station will be designed to take advan
tage of technological advances in subsystems which occur after

it becomes operational.

101

The Intermetrics interpretation of this follows:

a) 	The data management computer system (DMCS) should be

designed to have an operational life of at least ten

years.

b) 	The DMCS should be designed assuming that in-flight repair

or replacement of failed modules will be performed, and

that the supply of spares may be replenished via the shuttle.

c) 	The DMCS should be designed to take advantage of technolo
gical advances which occur during its life. This implies

that the initial system is not a "closed system", or one

in which all equipment is available from the beginning, within

the initial configuration.

It should be noted that expansion of requirements over the

operational life of a system has always been underestimated.

It therefore appears reasonable to establish a guideline

that the computer system be designed with an expansion

safety factor of about four. That is, the capacity of the

design, if not the initial implementation, will accommodate

a quadrupling of requirements over the life of the system.

d) 	It is assumed that the software will be expanded and other
wise modified during the life of the system. It is also

assumed that on-board software generation capability is to

be provided, plus provision for testing and introducing of

new program modules created on-board or on the ground.

e) 	The system must detect all permanent and transient failures

which result in errors. In addition, it must distinguish

between permanent and transient errors, identify the modules

which contain permanent failures, and recover automatically.

f) 	The power supply shall be decentralized, and implemented

so that'no power failure at a modular level can disrupt

system operation.

g) 	The interface of the DMCS with other systems shall be

designed with a capacity in excess of the predicted traffic,

by about a factor of four.

4.2 Performance Requirements

The major contributions to the load on the data management

computer system is estimated to be the processing and control of

experiments. Approximately 70-90% of the storage requirements

and 50-70% of the speed are expected to be absorbed by programs

and data for scheduling, initializing, and controlling experi
ments, plus data collection and computational services(2).

Therefore, a careful examination of these requirements is

necessary to ultimately size the system.

102

Prior to discussing the storage and processing requirements,

a brief overview of the anticipated operational functions is

provided.

4.2.1 Functions of the DMCS

At the current stage of the space station program, the

design of the major operational functions is not complete to

the level of detail necessary to assess their full impact on the

computer's sizing. Further, it is our estimate that this will

not be fully resolved during phase B of the program.

In general, the DMS'computer system will be interfaced with

a number of subsystems on board, and will serve as the primary

computation facility. Some of its principal interfaces with

on-board sensors and subsystems are: Control and Display Sub
system (probably CRT-like devices), an Inertial Subsystem, Digital

Communications Subsystem, Rendezvous and Docking Radar Subsystem

and other Docking Sensors, Surveillance Radar, Reaction Control

Subsystem, Primary Propulsion System, Balancing Subsystem, Power

System, Experiment Equipment Interfaces Environment, Thermal

Control, and Biomedical Subsystem. It is assumed that the DMCS

will send and receive information over the external data bus,

and provide the control and processing required by these subsystems.

The following major operational functions will be supported

by the DMCS:

a) Primary and Command and Control

One of the prime functions of the DMCS is to drive the

displays for command of the space station. The computer

will assist the crew in planning and execution of maneuvers,

flight decisions, and trajectory control, and will provide

other data for flight control of the space station during

its mission. This will include functions such as rendezvous

and docking.

b) On-Board Checkout

Another function of the DMCS is the periodic checkout of the

on-board subsystems to determine whether or not they are

operating in an acceptable manner. There are several

aspects to on-board checkout: status monitoring, in which

test points are checked to determine if any gross faults

exist; trend analysis, for predictinq faults; and diagnosticsto

determine malfunction location to provide a basis for

reconfiguration actions. In addition., some form of failure

correction, calibration, and record keeping are part of

these functions.

103

c) Mission Planning and Operations Scheduling

The computer will assist the crew in performing mission

analysis and assessment, and in daily crew scheduling and

logistics inventory control.

d) Guidance, Navigation, and Control

The computer will, using its sensor subsystems, maintain

knowledge of position and velocity of the station. It will

also perform the artificial G stabilization, and attitude

control for pointing of earth survey instrumentation.

e) Experiment Command, Control and Data Processing

As stated above, one of the largest tasks of the DMCS

is predicted to be the processing of data from various

experiment modules. Some of these functions include experi
ment scheduling, experiment command and control, data collec
tion, data formatting and storage, data reduction and pro
cessing, and display interfaces.,

There are many experiments planned for the space station

over its life, Four of these experiments predicted to

have the largest impact on data input to the computer system

are:(5)

Advanced Stellar Astronomy

Plasma Physics - Subsatellite

Earth Surveys

Remote Maneuvering Satellite

f) Software Support System

This portion of the DMCS includes the software operating

system. For purposes of this organization of functions,

it includes utility software required to support other

aspects of the computer system.

4.2.2 Summary of Phase B Preliminary Sizing Estimates

4.2.2.1 Storage

Preliminary estimates of the size of and storage

requirements for the space station computer system have been

made by M-D/IBM, the MSFC Phase B contractor, to be about

300-500K words of operating main storage and 7 x 106 - 4 x 107

words of bulk storage (36 bit words). Supporting assumptions

104

for 	these estimates are included in reference 2.

4.2.2.2 Processing

IBM has estimated the speed required of the computer

to be not more than 106 equivalent add operations/sec(2). This

is currently above the speed of presently available airborne

computer systems; however, we believe this estimate to be low.

Data processing centers, in many ways comparable to the DMCS,

operate in excess of this figure. In fact, some contemporary

ground-based systems are achieving more than 107 ops/sec.

However, to estimate the speed requirement accurately requires

deeper resolution of the functional requirements, which is not

possible at this time.

4.2.3 Digital Input Data Rates (5)

A preliminary estimate by NAR of the total input data

rate to the DMCS from all experiments suggests that 310 x 109

bits/day is the upper limit. However, with scheduling of the

larger data-gathering experiments as proposed by NAR, 90%

of all experiment requirements can be achieved within a limit

of 180 x 109 bits/day. The computer system will process and

compress this data so that only a small percentage of it need

be maintained in the files or sent to the ground.

4.3 Physical Requirements

There are no currently existing physical requirements such

as power, weight, and size for the DMS computer system. Some

figures, however, for existing airborne systems are presented

in Appendix A of this report.

4.3.1 Modularity

Another constraint on the system is that it be modular.

We have interpreted the meaning of modularity, and present

the following general requirements: the system will be composed

of a number of modules best defined by their physical charac
teristics. Each module will be a subunit which is physically

self-contained, and which can be replaced without a major

disassembly of the entire system. Each is connected to the system

at a number of points for power, information (I/O), thermal

control, and physical support. Memory, processor, and I/O units

are examples of modules.

a) 	If a module fails permanently, it will be replaced. Each

module will be constructed to maximize its reliability,

and will include internal redundancy if appropriate.

105

b) The number of different types of modules in the system will

be minimized, to facilitate maintenance and testing.

c) 	The electrical interface for each module will be simple,

with the minimum number of pins necessary to satisfy

performance requirements with reliable technology.

d) 	The interface for each module will be standardized to

facilitate expansion, testing, etc.

e) 	Sach module will be designed so that it can be removed and

replaced on line without shutting the system down.

f) 	Logical connection of modules to the system must be under

both program and operator control,

4.4 Reliability

Two of the most important factors in the trade-off

considerations of the configuration design are flexibility

(or expandability) and reliability. To date no complete quanti
tative statement of a reliability requirement exists.

One important assumption which we have made with respect

to reliability is that the computer system is performing some

number of "critical" functions, those which directly effect crew

safety, during the mission. It is considered that these func
tions must be performed 100% of the time, with interruptions

of no longer than milliseconds for recovery from failures.

4.4.1 Failure Tolerance

Reference 4 defines a failure tolerance requirement for

the system which allows no performance degradation after one

failure, performance at a reduced level with two failures, and

fail safe after the third. This requirement is quoted below:

a) 	Capability shall be provided for performing critical

functions at a nominal level (performance of operations

for which the system was designed) with any single component

failed or with any portion of the subsystem inactive for

maintenance.

b) 	Capability shall be provided for performing critical

functions at a reduced level with any credible combination

of two component failures or with any credible combination

of a portion of a subsystem inactive for maintenance and

failure of a component in the remaining subsystem.

c) 	Capability shall be provided for performing critical

functions at an emergency level (sufficient for survival

only) until the affected function can be restored or the

106

crew returned to earth.

Although the above failure tolerance criteria are

frequently referred to as reliability specifications, brief

consideration shows that they are not. In colloquial language,

the "real" reliability requirement is the attainment of a

specified probability that the DMCS will be able to perform

needed functions at the time they are needed. Clearly, this

involves a combination of failure rate, failure tolerance,

and repair rate which provides the specified probability that

needed performance capability exists. In particular, if the

time to repair a failure is substantially smaller than the time

to the next failure, tolerance of more than one failure seems

unnecessary. On the other hand, less favorable combinations

of failure and repair rates can conceivably require tolerance

of more failures in order to meet the goal.

Because of the large cost of the DMCS, and the sensitivity

of the cost to redundancy and other "reliability"-aids, a much

more carefully thought-out specification for reliability and

availability is needed for the DMCS than has historically been

put together for airborne and space systems. Only when this

specification has been created can relevant decisions be made

with respect to failure tolerance, error detection, and recovery

characteristics of the computer system.

4.5 Information & Display

4.5.1 General

The design of information and display techniques for

the space station DMS must provide a sufficient interface for

the crew to operate, control, and communicate with on-board

subsystems to accomplish mission objectives. Currently, manned

spacecraft are filled with many gauges, meters, controls, and

computer-generated data displays which permit significant

interaction with the pilot. The concept for future advanced

spacecraft will include not only more sophisticated subsystems

with more automatic processes, but more autonomous operational

tasks, and a wide spectrum of scientific experimentation and

research over longer mission intervals.

The on-board display and controls provided must therefore

emphasize flexibility for multipurpose use and high reliability,

but remain a simple, efficient, man/machine interface. The

purpose of this section is to supply an overview of the general

information and display concepts, discuss control of a multi
processor computer system which is performing a number of

independent tasks, and related problems.

107

4.5.2 Space Station Information & Display Requirements

It is helpful here to review some of the basic assumptions

envisioned for the space station, to serve as a background for

discussion of the display interfaces with the multiprocessor

system.

4.5.2.1 Displays

A general ground rule will be that electromechanical

3

display devices() are to be eliminated. These will be replaced

by more flexible electronic displays, such as CRT's or other

two-dimensional devices. The state-of-the-art in input and

output devices for computer systems will certainly change and

improve over the next decade.

4.5.2.2 Interactive System Terminal Developments

Most interactive system terminals today use typewriter
like devices. Their prime advantages are their relatively low

price and the use of the hard copy medium, which automatically

provides a record of all input and output. Cathode ray tube

devices avoid some of the problems of typewriters; they can

operate rapidly, and are considerably more flexible in format

and editing control. CRT's are gradually becoming more widely

available as terminal devices, and over the next few years should

be increasingly competitive with typewriter devices. Obstacles

to their acceptance include high cost for terminals, lack of hard

copy, and communications limitations, which make the rapid data

rate necessary to remotely maintain distant displays prohibi
tively expensive. Prices are coming down slowly, and the

continuing influx of reasonably inexpensive keyboard-plus-CRT

alphanumeric terminals has accelerated the trend away from paper

output devices.

Other techniques are being investigated which will facilitate

new methods of dialogue with computers in the future. These

include direct use of handwritten input via devices such as the

Rand Tablet or Grafacon, and even voice input and output through

a set of software and hardware constructions. Interesting

demonstrations and papers are being presented on on-line, hand
written input.

Some research work is underway into audio-input systems.

LISPER is a limited s eech recognition system developed by Bolt,

Beranek, and Newman.(). LISPER operates within certain limita
tions. First, there are a hundred items in its vocabulary.

Second, the number of speakers is limited, and each must first

be trained by the system in closed-loop fashion so that the

system recognizes him. Nevertheless, it has been successfully

demonstrated.

108

Audio output is also available today on some ground-based

systems, and may have application in the space station program.

Another approach to computer input which has been tried

is a so-called "list selection technique". This technique

involves lists which are displayed either on a CRT or optical

screen, and which may be changed rapidly under computer control.

The user composes input into the system by selecting words and

phrases from the list.
 This can be done either with a light

pen, or in the case of the CDC Digiscribe, by touching electri
cally conductive regions on the face of the CRT with the finger.

As the user selects phrases from the list, new lists
are 	displayed

as required.
This approach to computer input takes advantage of

the wide bandwidth of this class of displays, and of the human

eye, to rapidly convey information to the user. He may then

respond manually at a low rate. It is particularly useful for

users who are not good typists.

4.5.2.3 Space Station Terminal Complement

However attractive some of the developmental techniques

appear, we propose to limit present consideration to equipment

which is certain to be available in time. The initial display

equipment needs are assumed to be:

a) 	A computer controlled, multi-purpose display and control

unit to be used as the primary man/machine interface. It

will consist of:

1) 	A CRT-like display console with state-of-the-art refresh

rates, illumination, resolution, and buffer memory.

2) 	Keyboard input device with alphanumeric and special

character keys.

3) 	General purpose function keyboard for single action

responses, with flexibility to redesignate function/key

assignments dynamically.

4) 	Light pen or similar device.

b) 	Hardcopy device such as a line printer.

c) 	 to
Microfilm viewer with programmed retrieval capability;

contain schematic and other reference or library data.

d) 	Closed circuit TV monitoring system.

e) 	Status and control panels.

f) 	Direct "joy stick" controls.

109

The design of these subsystems must conform to space

station guidelines of low power consumption, high reliability,

long life, compact packaging, and modular construction.

The remainder of this section is devoted to a discussion

of Item a. (Control and Display Unit) and the associated design

problems.

4.5.2.4 Preview of Manned Operations Aboard Space Station

As presently conceived, the space station will have

*acentral command center similar to the bridge or combat infor
mation center of a ship. The command center will be manned

on a 24-hour basis, and will contain all controls necessary for

operation of the station. An experiment control center, not

necessarily co-located with the primary command center, will

contain displays and controls necessary to operate and monitor

the 	experiments and other functions of the station.

Functions of the command center include:

.1) 	Flight operations scheduling and control of mission

events,

2) 	Vehicle operation; all operations performed with

the vehicle: rendezvous, docking, orbit determination,

attitude control, etc.

3) 	Subsystem status, monitoring, control, and configuration

control.

4) 	Operation and control of the DMS computer.

5) 	Crew scheduling and-training.

6) 	Communications.

Functions of the Experiment Control Center include:

1) 	Experiment control and planning.

2) 	Data collection and compression

3) 	Ground interface

4) 	Data analysis

Internal communications and procedures will be established

for overlap in control of the base with respect to experiments.

110

4.5.2.5 Display and Control Information Required On-Board

The information required by the crew to control and

operate the space station has a variety of characteristics.

Alphanumeric data, graphs, and pictorial data (static or even

moving) may all be required. Further analysis is required to

resolve the optimum level of information to be presented to the

operator with respect to each operational function requiring

an interface. To resolve this issue requires an interactive

process in which automatic and non-automatic computer functions,

and 	crew interfaces required to best perform mission tasks are

evaluated. Hardware/software complexity, availability, and

cost will constrain the degree of automation and types of

displays made available, whereas crew safety and the complexity

of the crew's role may require more advanced display techniques.

Since it is premature to identify all displays, some

examples are offered of the types of functions to be performed

to indicate the scope of display data requirements. As a

general observation, the display and control capabilities will

include: alphanumeric and graphic outputs from the computer and

alphanumeric, special function key, and light pen inputs.

Examples of functions which involve displays are:

a) 	Control and operation ofthe DMS system.

b) 	Control, selection, and data input/output from operational

software (rendezvous tracking, maneuvers, docking, instru
ment pointing, etc.).

c) 	Station position and situation,displays (orbital position

and velocity indications, attitude, rotation rates, thrust

controls, extra-vehicular module position, communication

coverage, mission events and schedule).

d) 	System and subsystem situation and status displays (confi
guration of system, health of subsystems, equipment modes).

e) 	Interactive data requests (file management, data retrieval,

graphs).

f) 	Experiments displays/control (experiments equipment status,

data displays, controls).

4.5.3 Preliminary Information and Display Concepts

The on-board computer system, coupled with its software

and multipurpose display and control unit, are the basis for

the overall man/machine interface in the space station. Although

it is premature to attempt a detailed design of the display

system required for all DMS subsystems, some general concepts and

ill

problems for that design are identified.

4.5.3.1 Software Environment

One view of the computer system for the space station

is that it is a real-time process control system, providing

remote time-sharing services to both batch entry and interactive

users. It is unique in this sense. A hypothetical example for

comparison purposes might be some large time-sharing service

(like Multics) which is also operating a power plant and a

surveillance radar. The many varied users of this system establish

a need for varied types of displays.

To expand on the requirements for displays for the system,

a brief organization of the software environment during system

operation reveals four types of software:

a) System Control Supervisor

This class of processing is continuously operating, control
ling the resources of the system.

b) Continuous Automatic Sequences

This class of processing includes the functions critical

to operation of the space base, and operates automatically

and continuously. Examples are attitude control, environ
ment control, system failure detection, and status monitor
ing and recording.

c) Periodic Operating Processing

This class includes processes which are not in continuous

operation, but are of greater importance than some other

functions when operating. For example, rendezvous operations,

fault isolation, maneuvers, control of external crafts,

and some experiment control.

d) Batch-type Data

This class of processing includes utilization of the computer

by various subsystems on an as-required basis. This includes

scientific experiments, data processing, bio-medical process
ing, data reduction, preventive maintenance, data retrieval,

etc.

These classes of programs involve varied display require
ments; however, common to all is the operator's ability to

initiate programs, provide data input, receive outputs, and

generally to control the operation of the system.

112

4.5.3.2 Control of the Multiprocessor

4.5.3.2.1 Job Control. The operator must be provided the

capability to initiate various sequences or programs to perform

specific mission functions. This may be accomplished by a job

control language, which should be generalized for all types of

job requests and execution. The periodic operational programs

and terminal-submitted software require this feature.

The job control language wbuld be the primary interface

between the user (or operator) and the operating system. The

commands given via this language would be interpreted and result

in queues set up for processing by the executive. There are

at least two types of users:

a) 	The remote job entry, whereby a user enters jobs at a

terminal and expects them to be executed at some future

time.

b) 	The on-line user who needs to interact with the computer to

accomplish this job.

On-line users must be provided with other features which

enable easy rapid access to selected programs. Minimum actions

should be required to select and operate frequently used programs.

For example, the method of selecting programs may be via a light

pen action. Program names would be presented on the CRT, and

the operator would activate a program by pointing with the

light pen. Other data required at program selection time could

be entered via the keyboard.

4.5.3.2.2 Protection Philosophy. Input or job requests from

terminals should generally be accepted by the system only when

the system verifies that the user has appropriate access and

execution privileges for the requested job. This may be imple
mented in the system in many ways: through hardware, software,

or both. The degree of built-in interlocks for job requests or

file-access depends on the criticality of the damage that can be

done and the system implementation and overhead cost.

4.5.3.2.3 Data Output and Display Format. Programs must be cap
able of requesting action from the operator, such as data entry

or verification. Again a language must be defined for use with

a CRT display which is generalized for many functions. The

Apollo G&N System uses a VERB and NOUN dpproach to identify

actions and data between the operator and computer. With its

limited DSKY, it provided much flexibility.

Generally, attempts should be made to minimize the amount

of coded output. With an alphanumeric display, direct language

113

communication should be provided. Coded information requires

training or memorizing of codes which at best is error prone.

The Apollo DSKY is designed to transmit commands and requests

made up of a limited vocabulary of 99 nouns and 99 verbs. To

command the computer, the astronaut depresses the verb (operator)

key followed by two decimal digits, and enters a noun (operand)

in a similar fashion. The enter key is then depressed, and the

computer acts on the request. As an example, Verb 16 Noun 20

means display and monitor spacecraft attitude. Verb 16 means

"display and monitor" (continuously update); Noun 20 identifies

what to display, in this case "spacecraft attitude".

Features such as: DISPLAY (VARIABLE), DISPLAY VARIABLE

EVERY N SECS, DISPLAY VARIABLE IF (CONDITION),PLOT (VARIABLE)

VS VARIABLE, etc., are all desirable components of an operator's

input language.

Data output from the computer to the operator must

optionally include the variable name, value, and units (unless

standard units are used throughout). The vocabulary of the

computer to the operator requesting action must be simplified.

The format of the output frame should be standardized. The

conversational vocabulary should be easily identified, perhaps

by its location on the CRT, or by size or illumination. Variable

names and data should be distinctly set off from this vocabulary

to eliminate confusion., A standard header should exist at the

tope or bottom of the display and include pertinent data about

the console's use, time of day, etc.

4.5.3.2.4 Display Rouin. A number of display and control

consoles, manned by ifferent personnel performing varied func
tions (some of which overlap), requires a technique for establish
ing "who gets what displayed". Furthermore, the command console

must be identified to the system as such, since it may be the

only console allowed to direct certain critical functions.

From a software point of view, the system is communicating

with a number of consoles, not people. When a periodic opera
tional software program is requested, the question of where

the output should be sent is fairly straighforward: namely,

to the console requesting the job. However, when an alarm is

detected by one of the automatic or continuous programs, it

may be desirable to output this to a number of consoles. Two

solutions to this are (1) dedicate consoles physically to receive

such data, or (2) provide a technique for assigning displays

to consoles. The latter appears distinctly superior.

4.5.3.3 Parallel Processing with Serial Output

*A conflict arises when more than one task operating

in the computer requires communication with the same operator.

114

This problem is not unique to multiprocessor systems, but also

exists in multiprogrammed systems.

This problem occurred in thd Apollo G&N system when a

"background" type program, such as rendezvous tracking, detected

an alarm condition while the astronaut was using the DSKY to

operate a "foreground" program, such as rendezvous targeting.

The design of that system (which is probably unacceptable for

the space base) was to bring up automatically a priority display

over-riding the existing DSKY display, whether the astronaut

wanted to see it immediately or not. Furthermore, he had to

respond to it before he could continue with the targeting

program operation. Fortunately, this did not occur often, but

it caused crew dissatisfaction, and in some cases special excep
tions had to be implemented via software to work around this

problem.

One possible solution to this problem for the space station

is to utilize a portion of the CRT screen (or possibly a

separate panel) to advise the operator of waiting displays.

This portion could be divided into a number of subsections, each.

with a sufficient area to display meaningful identification

information for a waiting display. The content of the information

in this subsection could range from simply a presence-indicator

for a waiting display with no identification, to a short identi
fying message which could include its priority, coded content

clue, origin of job, and level of importance.

In any event, the operator would be given the choice of

(1) ignoring the waiting request, or (2) selecting a particular

waiting display using light pen or keyboard. In the latter

case, the system might put the previous display and job into a

wait state. This would imply that the old display would be

placed on the waiting display queue.

4.5.4 Conclusion

The foregoing description of aspects of the information
handling operations required on the space station indicates that

a great deal will be demanded of the terminal equipment and the

operating system and terminal-support software. Command and

control, real-time monitoring, program preparation, data-process
ing, automatic checkout, and information retrieval operations

are readily foreseen. Furthermore, control of several indepen
dent processes from the same terminal is likely to be the rule

rather than the exception. This combination of anticipated

complexity, plus the additional operations which must be expected

to develop over the life of the mission, results in a clear

requirement for a thoroughly thought-out, generalized terminal

and operating-system philosophy and implementation.

115

References for Chapter 4

1) 	Bobrow, D. G., Klatt, D. H., "A limited speech recognition

system", Proc. FJCC, 1968.

2) 	IBM, Draft of Space Station DMS Requirements, S.O.W. item

no. 2.1.2-b, c, d, e; undated; informally transmitted

Jan. 1970.

3) 	MSC Space Station Task Group, Space Station/Base Technology

Program Plan, Nov. 1969.

4) 	MSC Space Station Task Group, Guidelines and Constraints

Document, MSC-00141, Rev. I, 9 Jan. 1970.

5) 	North American Rockwell, Space Division, Space Station

Program Phase B Definition-February Progress Review, PDS70-212,

19 Feb. 1970.

116

Chapter 5

Selected Multiprocessor Design Configuration

5.0 Introduction

The preceding chapters have presented considerations, alter
natives, trade-offs, and requirements which influence the design

of the system for the space station. With that material as

background, it is the purpose of this chapter to present the

design created by Intermetrics. This design is the primary

result of the study effort.

There are three major factors which tend to cause considera
tion of a multiprocessor or multicomputer configuration, rather

than a simplex system, for an application:

a) 	The computing capacity required exceeds that attainable

from a single processor.

b) 	The reliability or availability required exceeds that

attainable from a single processor.

c) 	It is desired to be able to incrementally expand the system

without overhauling it.

In the space station application, it is clear that the

latter two apply, whether or not the first does. Therefore,

the design considerations were concentrated on creating a sound

multiprocessor or multicomputer configuration.

At the present stage of the space station and space base

programs, both the performance and reliability requirements are

incompletely formulated. The forecast of performance expansion

required over. the five or ten year life of the mission is parti
cularly cloudy, and may, in fact, ultimately be based 6n the

capability of the computer configuration adopted, rather than

the other way around. It would be foolish to ignore these un
certainties in formulating a design; instead, Intermetrics has

developed an architectural organization which allows implementa
tion of a series of compatible configurations with a strikingly

wide range of performance.

5.1 Configuration Summary

The basic organization selected is shown in Figure 5.1.

The fundamental characteristic of this configuration is its use

of a common internal bus, which eliminates the requirement for

multiple buses and switching networks. The simplicity of this

organization is most attractive; the threat of a potential

bottleneck imposed by the common internal bus is its outstanding

117

drawback. To avoid congestion which would be caused by heavy

bus traffic, each processor is provided with a local memory

whose architectural characteristics depend on the required per
formance. At the low-performance end of the spectrum, this

memory is used to contain a push-down stack for storage of

temporary results. At the high-performance end, the local

memory contains a stack, but also acts as a high-speed buffer

store similar to the "cache" of the IBM System/360 Models 85

and 195(5,10,11,12).

The bus recommended for each of the configurations is the

same. Although this bus is capable of sustaining the processing

level of the maximum system, its capability, which is not ex
pensive, is used effectively in the lower performance models.

The manner in which this is achieved is clear if one views the

Ml memory as a device for reducing the per-instruction bus-use

frequency for its processor. At lower performance, Ml contains

only a stack, and perhaps a few words of instruction buffering.

If the processor speed were increased without modifying Ml,

the frequency of bus-accesses would increase proportionately.

However, the introduction of a cache would effect a traffic

reduction. By adjusting the size of the cache (buffer) memory,

the average bus-use per instruction can be controlled, so

that bus-use per processor can be made fairly uniform, indepen
dent of processor speed.

The above considerations reveal that processors of differ
ing performance may be attached to the bus, since they are

compatible in every way except performance. (That this is

true depends upon the fact that the buffer operation is in
visible to the software; this is explained in section 5.2.1

below.) As a result, performance of the system can be changed

over a very wide range after it is in operation, merely by

adding, removing, or rep-l-acing one or more processors.

Two other levels of memory are provided in the organization.

The second level, shown as M2 in the figure, assumes the roles

played by both high speed main memory and drum storage in most

commercial time-sharing or data-processing systems, since it

is both sufficiently fast and large. Finally, because the

subset of programs at any given time represents only a fraction

of the total, a third level (W3) of memory is included for

bulk storage. Of course, the amount of M2 and M3 memory in the

configuration is incrementally variable, and may be selected

or varied to meet system operating requirements.

The system shown in Figure 5.1 represents the Intermetrics

belief that a multiprocessor configuration can best meet the

requirements of the application. However, the proposed organi
zation is also excellent for a single-processor configuration,

should one be required for the mission or for decentralized

subsystem testing.

118

1/0 DEVICES

F -F INTERNAL BUS

M3 MEMORY
M2 MEMORY

Figure 5.1 Intermetrics Multiprocessor Series

5.2 Buffer Memory

Because of the key role played by the buffer memory in

the operation of the high-performance system, it is described

first.

5.2.1 Design Rationale

The access time seen by a processor attempting to fetch

instructions and data directly influences the maximum operating

speed. For a processor to be capable of operation in the 1 to

10 million instructions per second (mips) range, this access

time must be from 0.1 to 1 usec. Additionally, to sustain such

a rate, the volume of a cessible data must be large, since a

sequential series of 109 executed instructions normally spans

a considerable number of program and data words. The two re
quirements of speed and capacity'conflict, however, since in
creased capacity at a given speed leads to increased physical

size, with attendant signal propagation delay increases (not

to mention the cost penalties). Fortunately, it is character

)
istic of typical programs(l,6 that the accesses to instructions

and data tend to be localized, over short time intervals. As

a result, a split-level memory can be used to great advantage

to provide, at one level, a very high-speed modestly-sized

store, and at the other level, large capacity at readily attain
able speed.

In operation, the processor issues fetch requests to the

buffer memory. If the addressed word is currently contained

in the buffer, it is sent to the processor without requiring

a fetch from the M2 memory. Otherwise, the buffer initiates

a fetch of a group of words from M2, and retains the group for

future use.

To avoid performance degradation that would be caused by

software overhead, control of the contents of the buffer memory

is implemented wholly in the hardware. This results in the

desirable characteristic that the presence of the buffer is

entirely invisible to both the application programs and the

operating system. The relative performance is then a function

only of the speed ratio between the average access times for

the two memories and the probability that a given access finds

the word is not in the buffer. For if there are n accesses

in time T, if the average access times seen by the processor are

tm and tb for main and buffer memories, and if the probability

that the accessed word is not in the buffer is p, the word

rate W is given by

W- +1
T ptm + (l-p)tb

120

Let tm/tb = R

1

then W tb = 1 + (R-l)p

where W tb is the normalized word rate. For R = 10, W tb as

a function of p is shown by

p: 0.9 0.5 0.1 0.05 0.01

W tb: 0.11 0.18 0.53 0.69 0.92

Thus, if a value of 10 can be maintained for R, and if p

can be made as small as 5%, the system will perform at about

70% of the speed of one whose entire memory was as fast as the

buffer. Studies performed in connection with the configuration

design of the 360/85(12) concluded that a 16 kilobyte buffer is

adequate to attain an average miss percentage of 3.2% in the

absence of task switching. The main memory of the 85 is 0.5

to 4 megabytes in size, so that buffer capacity represents from

3% to 0.4% of the main memory. IBM estimated that multiprogram
ming would degrade the miss frequency to about the 5% level.

The Model 195 whose buffer memory (cache) is differently organ
ized, and larger, is reported to achieve a 1% miss-rate 7)

5.2.2 Operation Details

With respect to buffer operations, the main or M2 memory

may be considered to be composed of a large group of small

blocks of, say, eight words. As described above, fetch requests

issued by the processor for words currently contained in the

buffer cause no M2 memory operation. However, when the addressed

word is not currently resident in the buffer, the buffer issues

a block-fetch request to M2 over the internal bus. M2 responds

by returning the group of eight words, which are retained in the

buffer in a location chosen automatically by the hardware, based

on a least-recently-used strategy. The word originally requested

is forwarded to the processor as soon as it arrives at the buffer.

The main memory address of the fetched block is stored in the

buffer with the data, to allow the buffer to recognize subsequent

fetches from the same block.

Three types of store operations are separately considered.

Normal stores will always cause main memory to be updated; if

the addressed word is in the buffer of the processor performing

the operation, it too will be modified. If not, the buffer

content will be left alone. Each other buffer unit which con
tains the same block will respond to the store message on the

bus by marking its corresponding block invalid. Should its pro
cessor subsequently address that block, it will experience a

121

normal buffer-miss condition. The immediate updating of

main memory eliminates the need to copy modified blocks from

the buffer back to main memory when their space in the buffer

is pre-empted, and also means that processes running on other

processors, and I/O operations, use current data.

The second type of store occurs when data is placed into

main memory by an I/O controller. In this case, since the

chances of that data residing in any buffer are small, each

buffer will respond to such a message on the bus by simply

marking its corresponding block, if any, invalid. Again,

should its processor subsequently address that block, it will

experience a normal buffer-miss condition.

The third type of store operation may be generically termed

multi-process-critical stores. The non-interruptible test-and
then-set instruction mentioned in Chapter 1 is perhaps the best

example of this class of operations. There, the explicit in
tention of the instruction is to provide the mechanism for

air-tight interlocking between processes. If this instruction

were to follow the operational sequences outlined above,

integrity of execution could only occur if access by any other

unit to the addressed location in M2 was inhibited until the

fetch from M2, testing by the'processor, and restoring into

M2, was complete. This is readily implemented, since all affect
ed units are linked by the common bus.

Perhaps it is appropriate to mention here that the test
and-then-set instruction is troublesome in another way: a

processor encountering a locked lock must either execute a

loop, which includes the test, until the test is satisfied,

or delay further operation until it receives a signal that the

lock has been unlocked. The former places a potentially heavy

load on the common bus, which will degrade the speed of the

very operations whose completion is awaited; the latter requires

provision of a specific lock-clearing instruction whose exe
cution additionally causes delaying processors to re-test the

locks they are waiting for. The second approach is superior,

and readily implemented.

I

5.2.3 Characteristics

Although more detailed examination of both the require
ments and the interactions between the buffer and other elements

of the system is clearly necessary, the tentative capacity re
quired in each buffer storage unit is in the 105-106 bit range,

with a cycle time of 100 ns. The relation between these numbers,

and those of the other modules in the system will be developed

in the discussion below.

122

5.3 Processor

To specify the power of a processor in terms of millions

of instructions per second (mips) inherently requires the exist
ence of a standard for definition of the "instruction" itself.

Neither this standard nor the instruction set for this processor

have been developed. However, despite the ambiguity of the

measure, we will assume that processors should have a .5 to

5 mips capacity to meet the space station requirements. The

processor configuration proposed by Intermetrics includes
an

alterable microprogram, and is organized around a stack concept

resembling the Burroughs computer family, particularly the

6500/7500 processors (cf. Chapter 3, and Appendix A).

5.3.1 Microprogram Characteristics

The 360/85 microproqram consists of about 2500 108-bit

words, or 2.7 x 105 bits(10). The 360/25 has about ha f that

number, while the Standard IC-9000 offers up to 2 x 10 bits(14).

While the specification of the space station computer's micro
program size must be postponed until a later desian phase it

is reasonable to assume that it will fall in the 105 - 106 bit

range, with access time on the order of 50 ns for the high
performance version.

Part of this microprogram should be implemented in fixed

memory, the exact fraction to be determined later. However,

it is necessary at a minimum to include in the fixed part those

microinstructions required to load the variable part, plus

those to perform a "dead start". Further, certain diagnostic

functions should be included, such as ones required to isolate

a problem which prevents successful loading of other diagnostics

into the variable part.

At least a part of the microprogram should be implemented

in readwrite storage, or be switchable extensions in read
only memory, or both. In addition to the advantages of con
ventional microprogramming mentioned in section 3.8, use of the

alterable or switchable portion allows the user to capitalize

on the dynamic modification of the apparent characteristics

of the processor. This would permit processes, for example,

to be executed on processors having high-efficiency floating

point operations, character-string manipulations, list-process
ing instructions, etc., at will. A further generalization would

allow the instruction set of a processor to be closely tuned

to the characteristics of each of a number of higher-order lan
guages.

5.3.2 Stack

Because the stack plays such an important role in the re

123

duction of internal-bus traffic, it presumably would be im
plemented in the fixed part of the microprogram. Further, it

provides some of the primary guidelines for processor design.

The fundamental utility of the stack lies in its
automatic

ability to dynamically allocate and deallocate storage locations

for temporary values from a pool provided for the purpose.

This results in extensive time-sharing of these pool locations,

but without requiring explicit assignment action by programmers,

an error-prone activity.
Since the result of this organization

is to produce intense load/store activity near the top of the

stack, the stack is unusually powerful in the proposed organiza
tion, since the provision of a number of registers in the pro
cessor, with an extension in a dedicated portion of the buffer,

keeps a high percentage of fetches and stores from using the

internal bus. A processor's use of the stack is an implicit

declaration that the quantities involved are local to the

process; there is thus no need to keep an M2-memory copy of

them for potential use by other processes.

The number of locations that this concept requires is an

undetermined design parameter at this time.
The B6500 design

includes only two stack slots and a pointer in processor storage;

however, a larger total is obviously necessary, to achieve the

bus-traffic reduction sought. To allow maximum stack size to

be independent of the number of locations provided in the Ml

memory, stack extension into M2 should be possible. Thus, Ml

would initiate stores to M2 when the area became filled or

when stack-switching occurred.

5.4 Segmentation, Paging, and Level-2 Memory

5.4.1 Segmentation and Paging Design

Section 3.5 described the storage fragmentation problem,

which has required increasing system-designer attention since

the one-job-at-a-time days of computer operation.
 The 	three

means currently most often used to either avoid or deal with

this condition are:

1) 	Use of relocation registers in the processor. Since only

these few relocation values (one or two per process) re
present the translation between logical (virtual machine)

and physical storage addresses, it is relatively easy to

interrupt running processes long enough to "repack" core

to eliminate the fragments when necessary. Modification

of only the affected relocation values is sufficient to

complete the procedure.

2) 	Use of paging. This technique assures that the fragments

of free space and occupied space are of uniform size;

since address translation makes scattered pages look

124

logically contiguous, the only unusable space which can

occur is that within partially empty pages.

3) Segmentation. Although segmentation can be considered

as a logically separate concept from paging, the success

of the Burroughs 5500 and 6500 systems.indicates that it

is not necessary to do so. Clearly, if the typical segment

size is a small fraction of the storage area from which its

space must be allocated, the amount of space lost to frag
mentation will be acceptably small. Then segments (except

for very large ones) may be alternatively considered to be

variable-length pages, and treated as such by the hardware

and software alike.

It is the third of these approaches which has been selected

for the present design. Segmentation of program into relatively

small units will be automatically performed by the higher-order

language translators. There is overhead caused by the indirect

addressing required during execution (analogous to the segment
table access in a segmented-and-paged system, but without the

"page" table access, except in a few cases); however, the high

speed and automatic loading characteristics of the buffer memory

promise to reduce the effective cost of this to quite an accept
able level, since the indirect address words are likely to be

found in the high-speed buffer. As mentioned, this approach

does require treatment of exceptional cases: "paging" of very

large segments, and storage reassignment for unpaged segments

which outgrow their currently allocated storage. However,

because the number of segments large enough to require paging

and the number of segments of dynamically varying size are both

small, the system as a whole benefits from the more streamlined

design suited to the vast majority of cases.

5.4.2 Level-2 Memory

Section 3.5 presents in Figure 3.13, a graphic illustra
tion of the ill-effects of high traverse time for a required

block of words from a lower-leyel store. For a typical T for

drum-core transfer of 1.5 x10 , and a missing page probability

of 0.003 (l page fault per 300 instructions; cf. 3.5.4.2), the

paging efficiency, computed as in 3.5.4.1, is a skimpy 2.2%.

To achieve a considerable improvement of efficiency, within

an assumed groundrule prohibitifig use of memory devices with

moving parts,, it is proposed to rovide a maximum level-2 memory

(M2) of 1 Usec cycle time and 107 - 108 bits capacity. This

memory will be used in the way both drum and main memory are

used in contemporary systems; programs will reside there when

required by one or more active processes, and will be executed

from there by running processes. Not only does this strategy

enormously improve the "paging" efficiency by making fetches

from M3 memory occur only once per process per segment, but

125

it eliminates processor overhead experienced in the storage

allocation program associated with swapping. This overhead

averages 3 - 6 milliseconds per page fault in the current

Multics implementation(9,1 3).

With respect to modularity and interleaving, one relia
bility and two operational requirements dominate the design

decision. Modularity is necessary to allow for systematic

expandability. Interleaving is desired within the module to

allow reduction of the traverse time from M2 to Ml below the

one memory-cycle per "word" that otherwise would occur. The

level of interleaving proposed is that which allows a block

fetch by Ml to be answered by one module of M2 at the maximum

rate M1 can accept. This in turn depends on the number of bits

accessed per M2 sub-module fetch, a parameter not yet determined.

However, unless the contents of memory are adequately

protected against loss, n-fold interleaving magnifies the region

of a unit failure by the same n-factor. More is said of the

contents-loss problem in section 5.7.

5.5 Level-3 Memory

The level-3 or M3 ,memory in the proposed design consists

of two independent sections: read-only, and read-write. The

characteristics of the mass read-only memory required on the

space station are expected to depend primarily on the reference

requirements of the experiment packages. These requirements

are even more elusive to grasp at the current time than are

estimates of data processing needs, and therefore no attempt

will be made to size this memory. Two of its other design

features are more readily specified: first, the speed and ad
dressing properties of the ROM should be about the same as

the read-write part of M3, for system compatibility. Second,

the ROM should permit introduction of new data loads in at

,least a fraction of its address space. The characteristics

of this memory will be more extensively discussed in the report

of the Mass Memory Study which is part of the current contract.

The read-write part of M3 is analogous to the disk and

data-cell storage found on commercial computers. This memory

holds those programs and data files which are available for

use by system users. A block-oriented configuration would be

suitable for this level, if any advantage could be gained by

this approach. Contents will be located by means of a directory

hierarchy similar to that used in current systems, such as OS/

360 or Multics. The maximum size of the M3 level of read-write

memory is estimated to be on the order of 109 - 1010 bits; its

speed should be such that the traverse time ratio for a block

of words into M2 falls in the 10 - 1000 range, but this parameter

is felt to be fairly unimportant.

126

5.6 Data Transmission

5.6.1 Processor to Ml

The architecture described in section 5.1 relies heavily

on the satisfactory communication of data between several hier
archical levels of memory. A system processing potential of up

to 107 instructions per second is proposed. This implies that

the processor must be able to access the Ml memory for data

within about 100 nanoseconds. This data path is a dedicated one;

it need not be shared by other processors or memories. It can

therefore be designed without consideration for the flexibility

and expandability requirements of the system as a whole. The

physical distances over which the processor and Ml communicate

will be of the order of inches, rather than feet. This can be

achieved by carefully designed conventional wiring, and will

not 	necessitate exotic transmission line techniques. Depending

on the chosen "width" of the path, i.e., the number of separate

parallel lines constituting the bus, data and control pulses

of 10 to 100 ns duration will be involved, at frequencies between

10 and 100 MHz. The major problems are:

a) 	Maintaining the shape of a pulse as it traverse the inter
face. This is a'matter of matching the distributed capa
citance and inductance of each line, and terminating each

in its characteristic impedance to avoid the reflections

which would otherwise degenerate the next pulse in sequence.

b) 	Maintaining equal transmission delays over the individual

lines of a parallel interface. This may involve the "loop
ing" of connecting lines between terminals that are closer

together than others. Synchronization is important in

achieving high repetition rates in parallel data transfers.

c) 	Minimizing the effects of undesired coupling between adjacent

lines. A common measure is to surround each conductor with

a low impedance ground shield, or to sandwich it between

parallel grounded conductors. Unfortunately, this adds to

the capacitance in the system and therefore increases the

power required to drive the lines. For a specific design,

a compromise between physical topology, speed, and power

dissipation must be reached.

2
The design of the IBM 360/85 cache memory() illustrates

one current approach to some of these problems. This memory is

about one cubic foot in volume, and has interconnection distances

of a few inches.- It is organized into cards which carry the

storage, drive, and sense circuits. Each card is designed to

provide equal transmission delays for parallel data paths: delay

times to all storage elements are within 3 ns of each other.

Space on each card is devoted to termination resistances for

the X and Y drive lines. Although the individual circuits have

127

characteristic delays of less than 10 ns, the delay per board

averages 25 ns due to the contribution from the equalized

wiring. The overall memory of 0.25 x 106 bits has 40 ns access

and 60 ns cycle times, which are comparable to those required

for the maximum computer configuration proposed in this report.

Developments in packaging density and circuit power requirements

can be expected to assist in the achievement of high performance

transmission paths between the memory and the processor.

5.6.2 The Internal Bus

The transmission of data between processor/memory pairs

and other elements of the system such as mass store, I/O units,

etc., may involve physical distances of up to a few feet. A

data bus is proposed to link all these elements. Because

multiple data will pass along a common physical transmission

medium, a multiplexing approach is necessary. The data bus it
self becomes a significant element in the computer and due

consideration must be.given to its design.

The peak data rate requirement comes from traffic between

Ml and M2 memories. To support the proposed top processing

speed, information must be delivered from M2 at the rate of

a single word transfer in 100 ,ns. The bit rate capacity that

this requirement imposes on the bus is a complex question.

Some of the factors are enumerated here:

a) 	Message Structure. Since many types of data will be

transmitted on the bus, identification and control are

necessary. This implies either separate control lines,

complicating the bus structure, or addition of control

bits to the basic data word, thus increasing the required

bit frequency.

b) 	Bus-access Control. In time-division multiplexing (which

is the probable approach), only one message may appear on

the bus at a time. A technique must be devised to grant

bus-access to units seeking to transmit data. Conceptually,

perhaps the simplest way is to sample each unit at a rate

high enough to allow satisfactory dynamic operation, with

additional contingency for expansion. The direct effect

of this technique is to force the required bit rate up.

Other techniques, such as the request-and-grant approach,

ease the bit rate requirement, but impose further hardware

complexity.

c) 	Error Checking. Techniques for detecting and correcting

errors, e.g., Hamming or other transmission codes, add more

bits to the message. It may, however, be possible to com
bine memory and bus error checking as a part of the bus

system, since they have certain similar characteristics.

128

d) Reliability. The likelihood of failure is generally pro
portional to system complexity, other things being equal.

A bus consisting of a single wire is inherently more reliable

than one comprising a hundred. For a given level of infor
mation traffic, however, fewer lines demand a higher bit

rate capability.

e) Bus Interface Circuitry. The elements of the computer system

generally process data in a parallel, word- or byte-organized

fashion. (High speed linear-select memories handle especial
ly wide data structures, sometimes up to several hundred bits,

to minimize internal drive problems.) Serial/parallel con
version is necessary for elements to interface with a bus

system that is narrower than the basic data. For very narrow

buses, very fast circuitry is necessary to perform the con
version, with the attendant problems of layout, power

dissipation, etc.

The proposed computer design imposes a peak memory-to-memory

transfer load on the bus of about 40 information bits per 100 ns

interval. To this must be added a block transfer overhead of

about 20-30 bits of address information, up to 10 bits of message

check-coding, and, say, 20 bits of bus identification and control

overhead. For eight-word blocks, this may total 400 bits in an

800 ms interval. If a minimum pulse half-period of 10 ns is

postulated, this data rate can be accommodated on a 10-path

parallel data bus. Since about 2.2 Hz bandwidth is required per

pulse per second, the minimum bandwidth necessary to achieve

transmission of 10 ns pulses is approximated by 2.2/(10 x 10-9)

or 220 MHz. This is within the capability of miniature coaxial

cable, which can handle up to 500 MHz. More lines than 10 would

allow more straightforward wiring techniques to be considered

(dependent on length), but would increase the complexity and

interconnection problems, and decrease reliability.

Providing connections to transmission lines involves pro
blems of impedance matching, attenuation, noise suppression, and

level conversion. A technique employed in the IBM 360/85, the

directional coupler (well known in microwave technology) has been

described.(3,4)

The directional coupler enables simple junctions to be made

to transmission lines without the usual line-to-line impedance

mismatch and its attendant restriction on the length of the

junction. It requires no DC connection, eliminating voltage

level and grounding problems. It inherently suppresses driver

noise and mismatch reflection by virtue of its directionality.

Its chief disadvantage is that its operation relies on the steep
ness of the transmitted pulse, which must induce corresponding

voltage changes in a capacitatively coupled conductor. Both rise

and fall times must be in the subnanosecond region. This imposes

the usual layout and power dissipation problems on the drive

129

circuitry. However, integrated circuit techniques being develop
8

ed today are probing the fractional nanosecond region(), and

by the time period projected for the operation of the proposed

computer, compact techniques for driving a line with sharp pulses

of sufficient energy are expected to have been developed.

5.7 Error Detection

The reliability concept for the space station DMCS includes

not only the conventional notion of low probability of component

failure, but additionally requires uninterrupted error-free per
formance even when components ordinariy considered,to be critical

have failed. It is inconceivable that techniques will be avail
able by the mid 70's for building a computer which can operate

for five to ten years without repair, even if massive redundancy

is used. Consequently, the reliability of the computer system

must be such that the number of failures which occur in the time

interval between the occurrence of the first failure and the

repair of the system does not exceed the failure tolerance capa
bility built into the design. Because of space and weight

limitations in the space station, it .may be impractical to pro
vide on-board spare modules for each system. Thus, the relia
bility and failure tolerance goals may need to be keyed to

shuttle flight schedules rather than derived from the expected

time to diagnose and repair a failed module.

The soundest approach to reliability in the technology of

the foreseeable future is to use simple, conservative circuit

design and the most reliable parts and fabrication techniques

available. Only when this approach fails to yield the required

reliability should the designer resort to redundancy; the addi
tion of redundant components introduces additional failure

possibilities which tend to offset their effectiveness. In

fact, attempts to achieve unrealistic reliability goals may

cause the product to contain such complexity that the failures

against which the design is meant to be protected occur in the

protection equipment itself with such high probability that only

the cost, and not the reliability, is found to have increased.

Therefore, any imposed requirements for multiple-failure toler
ance should be reviewed in particular because of the impact

it has on the design.

Methods for detection of failures when they do occur may

vary considerably between the types of units because of the

disparity in their functional characteristics. The buses, for

example, lend themselves to checking by use of transmission

codes, of which a great deal is known. Many of these codes per
mit errors to be corrected as well as detected, so that tran
sient failures may be rather easily masked. Processors, however,

modify data they handle in so many ways that checking, though

possible, is more difficult. Recovery from transients is

straightforward if inputs to operations are retained, since the

130

operation which failed may then be repeated. Memories have

some of the characteristics of buses, and transmission codes

may be used for detection and correction of certain errors.

However, other failure modes cause contents to be lost; when

data is destroyed, only reconstruction by some process can

permit full recovery.

The proposed multiprocessor configurations inherently are

tolerant of processor failures if four conditions are satisfied:

a) 	All processor-errors are detected, and the system advised.

b) 	A failed processor can be logically removed from operation,

and does not contaminate the system.

c) 	Sufficient processing capacity remains after the failed

units have become dormant.

d) 	The hardware/software combination can reconstitute the

process which was runhing on the processor at the instant

it committed the error.

Section 3.4 demonstrates the relative effect on availability

produced by the use of redundant elements.

Memory failures differ conceptually from processor failures,

since they represent a potential loss of information, rather than

a loss of capability. Memories tend to fail in four ways:

1) 	One or more words read have a bit in error;

2) 	when a word is addressed, no response occurs;

3) 	when a word is addressed, the superimposed contents of

several words are delivered;

4) 	when a word is addressed, the contents of the wrong

location are delivered.

The first of these may be handled by provision of a trans
mission-type code such as parity or a cyclic block code. Such

codes are relatively easy to implement, and can provide both

detection and correction capability. If the all-zero bit com
bination is an error code under the chosen method, the second

type of failure above is detected. The third is more difficult

to discern because of the possibility that superimposed words

may pass the checks. For simple parity, use of a word with

an even total number of bits and odd parity is the best solution.

However, if the memory fetches two words, the chance of this

error being detected is only 50%, which is clearly unsatis
factory. More elaborate checking codes, such as Hamming codes,

detect superimposed words with higher probability. The fourth

type of failure cannot be detected by any of these methods,

131

and protection against it involves further complexity, such

as storage of address bits along with data, for example.

Thus, it presently appears desirable to operate multiple

copies of memory simultaneously. All write commands would be

accepted by all functional copies, so that each contains

completely current contents. Each will respond to read re
quests, and all outputs will be compared in an evaluation

circuit. Provision of checking codes permits the detection of

the erroneous word in most cases. However, in the few instances

where this fails, the software is required to attempt recovery.

The overall result is the elimination of undetected errors

and the resulting propagation of bad data throughout the system.

If the redundant-memory-copy approach is adopted, some

cost saving may be realized by operating some modules of M2

in simplex mode. This is possible because all program segments

are pure procedures, and can thus be recopied from M3 if the

M2 area they occupy should fail. With this philosophy, it is

only necessary to detect errors in M2; correction within that

domain of M2 is unnecessary.

Ihtermettics recognizes that there is a potential hardware/

software tradeoff in the attainment of reliability. The approach

outlined above reflects our strong belief that hardware failures

in the computer system must be rendered invisible to the appli
cations software whenever possible. As a result of comprehensive

experience in the development of the Apollo on-board G&N software,

we have found that trying to achieve failure protection primarily

by software techniques is incredibly expensive. Further, in

addition to the steeply increased software cost, there is in
variably an associated software unreliability which remains

even after completion of extensive and ambitious testing, which

prevents attainment of the overall system reliability sought.

The redundant-copy approach outlined above reflects this ex
perience. Nevertheless, we are aware of the cost, power, weight,

and volume penalties which result from the provision of redundant

copies of units; we submit that this area must receive additional

study.

5.8 Operating System Philosophy

The computing system for the space station is required to

accomplish a spectrum of activities which includes real-time

control, general-purpose data processing, and interactive com
puting directed from remote terminals. It must also allow users

to share programs and data. These requirements span virtually

the entire range of computing problem types, which usually are

performed in computers dedicated to a single one of these func
tions. Consequently, the operating system must be a very broad

and general one, and yet must not cost the system an unreasonable

amount of overhead.

132

The general characteristics and philosophy of the

operating system are summarized below:

1) 	The operating system will contain the conventional

kernel of programs required to run the entire computing

system itself. This includes scheduling and dispatching

of tasks or processes, a dynamic relocation mechanism

for management of information transfer between the M2

and M3 memories, and a comprehensive file system. The

file system must be sufficiently general to allow data

sharing and data interlocking among users, although it

is probably not appropriate to require the file system

itself to perform the interlocking.

2) 	It should be the responsibility of those who prepare the

operating system to also prepare a comprehensive set of

system utilities for use by application programs. These

include display interface routines, language processors,

and so on. It should be within the capabilities of the

protection mechanisms of the operating system to prevent

other than specified system routines from beingtsed, for

example, to command input/output devices or displays, to

prevent proliferation of interface programs, and also to

prevent misuse of the devices.

3) 	The system must provide the maximum achievable autonomy

for users. This is desirable both to allow decentralized

application-programming efforts, with local management,

and also to prevent a continuing requirement for augmenta
tion of the operating system to meet new and changing

requirements. This autonomy does not preclude or even dis
courage exercise of good management practices over the over
all programming job. Specifically, it makes it a fairly

straightforward job to apply memory space and execution time

budgets to the decentralized autonomous functions.

4) 	In conjunction with the philosophy of decentralized program
ming, the users themselves must be required to provide the

software to handle their own equipment on board the station.

That is, no specific I/O routines for special-purpose user

equipment will be included in the central supervisor. How
ever, it is desirable to make I/O instructions "privileged",

so that the supervisor can validate them in order to control

accidental access to unauthorized devices or memory. Access

to programs and data should be granted by this operating

system on the basis of the identity of the individual user.

That is, each program and data file should have access rights

or access control information specifying who may, or who

may not, have read, write, or execution access. The identi
ties used by the access controller should be functionally

oriented; that is, access privileges should be based on the

function being performed, rather than the identity of the

individual, assuming that the system has already verified the

particular individual's authority to perform the function.

133

5) Any function required to effect recovery from computer system

hardware failures or errors, but which is not implemented in

the hardware itself, must be performed by the operating

system. In no case should any computer failure require

application-software recovery action. On the other hand,

failures of application-hardware are outside the operating

system domain.

5.9 Word-length, Protection, and Flag Bits

5.9.1 Word-length

At the very heart of any discussion of word-length lies

the question of what the function of a word is. Indeed, not

all computers are word-organized: .some computers are character
oriented with variable length instructions; punctuation bits

associated with each character (word marks and item marks) denote

the end of data. (IBM 1400 series is an example.) Other com
puters are byte-oriented, the term referring to the absence of

punctuation bits. But the word-oriented computer still finds

much favor. While the byte-oriented computer regards data as

strings of characters that can be manipulated as strings or

individual bytes, the word-oriented computer organizes the data

into fixed-length groups. Groups of words may make up an array.

Floating-point data fits neatly into words, as do fixed-point

and integer quantities. In fact, fast.arithmetic operations

are more directly implemented with word-parallel hardware;

variable-length operands typically require digit-serial opera
tions. Alphanumeric and string data are best suited to byte

or character representation. Of course, string data can be for
matted on a word machine, and arithmetic data can be represented

on a character machine. The question is one of relative gains

and losses.

Recognizing the hazards of premature desigA decisions, but

also seeing the need for a design strawman, it is proposed that

this computer should be word-oriented.

Within a word there must be a smaller unit to represent

characters of information. Although it can be argued that eight

bits is wasteful, the eight-bit byte has received an acceptance

that is approaching universality in recent computer configura
tions. Special cases and exception-handling seem particularly

inappropriate in communication equipment and transmission paths;

since these seem inevitable if shorter bytes are used, the 8

bit byte is chosen.

In selecting the word-length, it seems mandatory that it

be an exact multiple of the byte length. Reasonable arguments

can be generated that support a word length of 24, 32, 40, 48,

134

or 64 bits. Actually, the field can be reduced to two funda
mental choices, either 32 or 48 bits. From the point of view

of scientific computation, the scales are tipped in favor of

48 bits. Experience has shown that most floating-point problems

.can comfortably live within 48 bits with double-precision re
quired only for rare exceptional cases. However, 32 bits is too

small for a large class of routine calculations required in

aerospace applications. Thus, a long version of 64 bits would

be often required. Occasionally, an exceptional case would

still arise which requires even longer precision. Hence, at

least three different floating-point number representations are

needed.

Nevertheless, 32 bits has been selected for the word length.

Although it is convenient to have a word that contains a number

of bytes which is a power of two, this is not an over-riding

consideration. For the last five years, any computer introduced

that has a word length which is not multiple or submultiple of

32 bits (8, 16, 32, or 64 bits) appears eccentric. Thus, again

the decision is motivated by considerations of compatibility

and general standardization. This compatibility permits ease

of simulation on existing ground-based computers, and allows

a direct comparison of arithmetic results for both floating
point and fixed-point calculations, assuming that the number

system, floating-point formats, and algorithms are similar.

5.9.2 Memory Protection

Memory protection can be achieved in a very rigorous,

yet flexible manner, through a combination of hardware mechanisms,

rooted in the basic structure of the computer, and software

capabilities exercisable only by the operating system. The

fundamental concept adopted by Intermetrics to protect one pro
gram from undesired access by another is one of prevention

rather than detection. One process cannot adversely affect

another if there is no way for them to address each other. The

variables and information of one are simply placed outside the

scope of the others.

Some of the characteristics of the computer that produce

this environment include the following:

a) 	Absolute addressing may never be used by application programs.

All addressing is relative: relative to the base of the

procedure or subroutine segment, relative to the base of the

array or buffer areas, relative to the base of the stack or

the stack pointer. Thus, all addressing is oriented to key

items that have been assigned to the process by the super
visor. As a bonus, this addressing is automatically relocat
able.

b) 	Upper limits are imposed, as are lower limits or base values.

When the executive assigns an area for data or program or a

135

process, it also places an upper bound on the segment,

thereby constraining the process to stay within its limits.

Hardware is provided that automatically detects attempts to

go beyond the allocated area, by incorrect indexing for

example, Thus, operating windows are established, and

programs are confined to remain within the windows.

c) 	The linkage words, indirect addresses; data and program

points, and supervisor calls cannot be modified in the pro
blem state. The scope of knowledge of any operating process

is thus established by the executive, and fully controlled

by it. No individual program can escape its own region.

d) 	The links form a small and carefully controlled network of

interconnections between various programs and data. The

executive can remove or modify these links to adjust the

capabilities of individual tasks, or to restructure the

memory allocation. This gating of the interfacing between

program elements through limited connecting paths provides

a powerful means of regulation to prevent inadvertent ac
cesses.

e) 	Finally, individual words are identified and protected by a

set of bits, called flag bits, which are described in detail

in the next section. It is these bits that protect the link

words from being overwritten by problem state programs.

5.9.3 Flag Bits

Associated with every word of memory are several extra

bits that identify the type of word, and offer a means to prevent

it from being accidently modified or incorrectly used. Current

design thinking suggests the following developmental strawman:

a) 	Three flag bits will accompany each 64-bit double-word.

The three bits will be examined by the hardware whenever

the whole double-word or either single word is fetched or

stored.

b) 	The flag bits apply to both words, so that both must be

write-protected when one must be.

c) 	Functions performed include write-protection, trace mode,

and identification of variables, constants, program, inter
lock words, and shared data base pointers.

d) 	Proposed bit-pattern categories:

1) 	Writable variable

2) 	Trace-trap this variable

3) 	Interlock word, used for shared-data handling

136

4) 	Instructions or constants

5) 	Trace-trap this instruction or constant

6) 	Special double-word: link word, pointer, etc.

Flag sub-bits will further identify,

The last three are write-protected.

The class of special double-words are useful in many ways.

Among other things, they offer a method to provide an indirect

address to data when data itself was expected, to produce a jump

to a closed subroutine when data or an address of data was

expected, or to cause an interrupt to the executive under other

conditions; e.g., in order to allocate a data area in memory.

These special double-words are generally only created and up
dated by the executive. However, certain types of them are

freely produced and altered by specific problem state instruc
tions, such as subroutine call and return.

Special double-words are used for:

a) 	Indirect addresses: expected pointers to data or program.

b) 	Unexpected pointers

1) Data pointers when data expected (indirect address)

2) Programpointers when data or data pointers expected.

c) 	Interrupt calls

1) 	Missing data, program, or data area

2) 	Supervisor-calls, or entrance to executive routines

d) 	Special words

1) Stack markers

2) Link words

3) Pointer-pointers: addresses in stack of executive
generated pointers; e.g., subroutine return markers

The trace-trap condition causes a trap to trace routines

to indicate whenever an instruction or operand is executed or

referenced. This is an extremely useful debugging tool.

The interlock word indicates a type of word that is treated

by the hardware in a unique fashion. It provides a mechanism to

accomplish interlocking that is done by the Test and Set instruc

137

tion on many computers. It is also designed to facilitate the

sharing of data. It operates as follows:

a) 	The interlock double-word serves as a pointer to a resource

whose usage needs to be regulated or interlocked. Users

are gated through this control or check-point.

b) 	A lock instruction examines the interlock double-word, and

if the lock is free, it is locked by the placement of two

pieces of identification in the lock word. One is hardware
determined; the other can be varied by the program for in
ternal communication. If the lock is busy, the program

either loops or idles until the lock is free.

c) 	An unlock instruction reverses the process; it frees the

lock and returns the word to the available state.

d) 	When the lock is busy, usage of the pointer to access the

interlocked resource is prohibited by hardware unless the

user's identification key matches to an acceptable degree

the 	lock value.

e) 	For simultaneous reading of shared data bases a special

halflock instruction is provided. This locks the resource

from store instructions (write-protect) but permits other

programs to read the data. Two or more users may make

successive halflock requests which are accepted. The sug
gested procedure is to combine part of their lock ID's by

a simple process, say an exclusive OR operation. Then an

unlock or halfunlock could do another exclusive OR of the

ID of that process.

f) 	An instruction desiring to store into a shared area must be

preceded by a full lock instruction, which would stall un
til all other users are through reading the shared data as

indicated by a free lock. Then it would lock it for its

exclusive use, and do the updating of the shared data. When

through, it would unlock it for others to use again.

Other uses of the interlocking mechanism will be uncovered

as the software system is developed. The synchronization and

control of concurrent processes is an immediate candidate.

5.10 I/O and Interrupt Structure

Communication with its external environment is an essential

facet of the operation of the data management computer system.

Nevertheless, consideration of I/O requirements and implementa
tion formed a very minor part of this study. Only broad design

conclusions were reached; they are presented in the following

sections.

138

5.10.1 I/O Bus

It is postulated that the space station communications

with the DMCS take place over a limited number of lines, per
haps as few as one. These system I/O buses would be routed

throughout the spacecraft; units would communicate with the

bus through a standard interface element, which would provide

the necessary isolation in case of failure, and be capable of

sending and receiving messages in standard but variable
length formats. A bit-rate capacity limit of 1-10 megabits

per second is visualized for the I/O buses to allow their

construction to be elementary and their reliability to be ex
ceedingly high. Should a unit.be capable of overloading the

I/O bus, either a special bus should be provided, or preferably,

data compression techniques be applied at the unit to lower the

actual bit rate. At the computer end of the bus, communication

takes place via one or more I/O controller units, described in

the following section.

5.10.2 IO Controllers and Interrupts

Because of the variety of I/O device types which can be

anticipated in an orbiting scientific facility, the I/O con
troller must be a generalized and multiplexed unit with a simple

communication interface. A typical I/O operation is one in

which a processor issues a request to an I/O controller for a

specified block of data from a device. This request, transmitted

to the IOC on the system internal bus, specifies the device, an

action code for the device, a word count for the data block, and

the address in M2 where the block is to be stored. An additional

bit is used to specify whether a completion-interrupt is to be

generated by the IOC.

Upon receipt of this request from the processor, the IOC

in turn issues a request to the device over the appropriate I/O

bus. The device, at its own response rate, replies with an

identifier and the block of data. The IOC directs this data to

M2, and when the transfer is complete, signals the requesting

processor via an interrupt message, if one was requested.

Multiplexing in the IOC permits many such operations to be in

various states of completion at the same time. Because the IOC

retains the identity of the requesting processor, any error sig
nal which occurs may be transmitted in an interrupt message to

that processor for action.

To allow I/O devices to volunteer data without being spe

cifically requested to do so, it must be possible for a device

to initiate a request-interrupt, which would contain a code

indicating the action desired of the processor. Because this

interrupt is not a result of a processor-initiated operation, no

processor identity will be held in the IOC to be used as the tar
get for the interrupt. The IOC can either select a processor at

random, or address the processor which last initiated a command

to the device.

139

References for Chapter 5

1. 	Ashley, D.W., "A Methodology for Large Systems Performance

Prediction", IBM Technical Report TR 00.1773, Sept. 10, 1968.

2. 	Ayling, J.D., and Moore, R.D., "A High-Performance Mono
lithic Store", Digest of Technical Papers, 1969 IEEE

International Solid State Circuits Conference, p. 36.

3. 	Bolt, M.H., and Nick, H.H., "A New Tool in Computer Bussing:

The Multiplex Directional Coupler", Computer Design, May

1969, p. 40.

4. 	Private communication with M.H. Bolt, IBM, Durham, North

Carolina. March 17, 1970.

5. 	Conti, C.J., Gibson, D.H., and Pitkowsky, S.H., "Structural

Aspects of the System/360 Model 85: General Organization",

IBM Sys. J., Vol. 7, No. 1, 1968.

6. 	Denning, P.J., "The Working Set Model for Program Behavior",

CACM 11,5. May 1969. pp. 323-333.

7. 	Gibson, D.H., Shevel, W.L., "'Cache' Turns Up a Treasure",

Electronics, October 13, 1969. p. 105-107.

8. 	Gold, H.S., and Pedersen, R.A., "An Integrated Logic Gate

with Subnanosecond Propagation Delay as a System Element",

Digest of Technical Papers, 1969, IEEE International Solid

State Circuits Conference, p. 70.

9. 	Informal presentation by J.M. Grochow at the Multics Users

Forum, March 4, 1970.

10. 	 IBM System/360 Model 85 Functional Characteristics, Form

A22-6916-1. June 1968.

11. 	 IBM System/360 Model 195 Functional Characteristics, Form

A22-6943-0. August 1969.

12. 	 Liptay, J.S., "Structural Aspects of the System/360 Model 85:

The Cache", IBM System Journal, Vol. 7, No. 1, 1968.

13. 	 Organick, E.J., "A Guide-to Multics for Subsystem Writers"

Chapter VII, p. 7-28, MIT Project Mac Memo M0115, August 1969.

14. 	 Rosin, R.F., !'ContemporaryConcepts of Microprogramming and

Emulation", Computing Surveys, Vol. 1, No. 4, Dec. 1969,

p. 196-212.

140

Chapter 6

Summary and Recommendations

6.0 Introduction

This chapter is included to summarize and comment on the

information collected and analyzed during the
course of the

study, to discuss technology trends and their impact on the

computer, and to present areas in which it is recommended that

more study or design occur.

We believe that the overall objectives of this study have

been achieved. Existing knowledge concerning actual and proposed

multiprocessor systems has been collected and included in the

survey. General multiprocessor theory and a baseline definition

of various system configurations has been presented and analyzed

in Chapter 3, along with a discussion of the design considera
tions and a review of the existing space station DMS require
ments. An architectural design of a multiprocessor computer system

was presented as an extension of multiprocessor technology to

the space station DMS application.

6.1 Technology Trends

The computer design presented in Chapter 5 can be satis
factorily implemented for a space base application only if

certain technological developments take place. A computer of

this design could certainly be built using current techniques,

but its probable volume, weight, power consumption, and environ
mental requirements would be more comparable to a large data

processing facility, which it resembles in performance, than to

the small aerospace computers currently in operation. Without

considering the M3 memory, the physical characteristics of the

system might be: volume, 500-1000 cubic feet; weight, several

thousand pounds; and power, 50-100 kilowatts. Appendix B makes

a tenuous estimate of the physical characteristics of the

computer for a 1975 cut-off, based on a continuous development

of today's technology. Predicting what these developments

will be is a hazardous task. However, it is possible to discuss

trends that are visible today and to identify areas of the

computer design that should receive the major emphasis for

improvement.

6.1.1 Memory

The greatest reward for the effort of development will

cope in the area of memory, which is generally the bulkiest,

costliest, and slowest element of a computer.
The ferrite core

has dominated the main high-speed memory (capacity up to l07

141

bits) for so long since its first application in the mid-1950s

that "core" has become synonymous with "memory". Its "imminent

demise" at the hands of up and coming competitive techniques

(e.g., plated wire, film) has been heralded for ten years; core

technology has always responded by increasing its dominance

in this application. Early cores were large, 100 mil diameter,

and slow, 10 Us switch time. Successive improvements have

occurred in both the geometry of the core, which is in commer
cial production in a 12.5 mil O.D., 7 mil I.D. size as the

9
element of a 375 ns cycle time memory(),and in the organization
2
of the memory core arrays(). These improvements have enabled

cores to at least keep up in performance while always maintain
ing a steady lead in terms of cost.

Despite .its past success, the ferrite core is bound to

yield its position sooner or later. There are several reasons

for this view today: Firstly, the bit density of core arrays

will never match that obtainable by other techniques, such as

semiconductors. The high speed memory of Ref. 9, for example,

has an overall density of 4,000 bits/cu. in., which is 10 to

100 times less dense than current MOS techniques. Since memory

capacity requirements are expected to go up with time, this

factor will become increasingly important. Plated wire and thin

film memories, although potentially an order of magnitude

faster than ferrite core, also suffer from a poor bit density:

1000 to 10,000 bits per cubic inch. In spite of a current

strong emphasis in developing plated wire,(4) it is our opinion

that this technique does not have the ultimate promise of semi
conductors.

Secondly, the performance curve is beginning to flatten

out at about 100-200 ns cycle time. Techniques such as even

smaller cores, partial switching, two cores per bit, or expensive

2-D configurations must be employed to get into this speed region;

these are all factors that diminish the ferrite core's advan
tages of simplicity, manufacturing ease, and cheapness.

Thirdly, the competition is in a very healthy developmental

phase. Semiconductor memory arrays are currently the subject of

intense commercial activity; this is always the portent of

general acceptance of a new technology. LSI arrays of bipolar

transistor flip-flop memory cells provide the capability of very

high speed (10 - 100 ns) local random access memories of limited

capacity (up to 105 bits). Currently, densities of about 100

bits per 100 x 100 mil chip with dissipations of about 10 mw

per bit are being achieved. MOS transistor arrays provide

denser packing at a lower speed (1000 bits per chip at 1 Us)

and lower power dissipation (as low as 10 nw/bit for CMOS

logic), for implementation of the larger main memories. Other

technologies, such as the MNOS transistor (8) which has the

property of non-voiatility and which requires only one active 1)

device per bit, and the magnetic domain "bubble" in orthoferrites, "

promise very high densities, and are the subjects of current

142

experimental investigations. The rate of development of semi
conductor techniques, which promise orders of magnitude improve
ments in speed and density, is accelerating, whereas current

memory technologies are reaching a developmental plateau. It

seems inevitable that the memory system of the next generation

of aerospace computers will be realized to a great extent with

semiconductor techniques.

6.1.2 Logic

Improvement in the logic areas of the computer system,

the processors, I/O controllers, buses, etc., have until recently

been realized by increased speed in the logic and control cir
cuitry. However, the logic available today already operates

in the sub-nanosecond region(5). The problem now is the timely

communication of data at these high speeds over physical paths73):

a pulse is delayed by about 2 ns for every foot of interconnection.

The reduction of physical dimension and the minimization of

interconnection paths becomes the route to increased circuit

performance. The possibilities offered by large scale semi
conductor integration in pursuit of these ends are overwhelmingly

attractive and consequently LSI has received a great deal of

attention and publicity, some of it premature.(6) In conjunc
tion with increased circuit speeds, performance improvements

will be achieved by tailoring the organization of the computer

to this end. The concept of the buffer memory proposed in

Chapter 5 is an example. It enables large programs stored in

the relatively slow M2 memory to be executed at a speed approach
ing the capability of the much smaller high speed memory Ml.

The use of parallel rather than serial processing is a path to

increased performance which has always-exacted penalties of

increased complexity and cost. However, it is just these

factors that LSI seems particularly suited to combat. With the

increased employment of LSI techniques, we would expect to see

highly parallel logical organization in the design of future

aerospace computers.

6.1.3 Summary and Recommendations

Technological improvements are most needed for the imple
mentation of the proposed computer memory system. It is antici
pated that LSI semiconductor techniques will be the main line

of attack. If improvements in LSI yield (cost), speed, power

dissipation, and density continue to accelerate, this technique

will be used in the majority of the logic and memory circuitry

in computers beyond 1975.

It is, however, a long road from the experimental demonstra
tion of a promising technique to its application in a real opera
tional environment. Although there is much activity, for

example, in semiconductor chip design for high yield, high

density and low dissipation, the problems of integrating these

143

chip elements into an operational unit such as a 108 bit memory

are not being as widely pursued. We would recommend that imple
mentational problems associated with interconnecting a large

number of densely-packed elements be evaluated in a pilot

stUdy. The construction of an operational memory should be

undertaken with a view to identifying the construction technique

that achieved the best compromise between performance, cost,

and size. Recommendations as to the best technology and memory

size for the DMS computer will be made at the conclusion of the

mass memory study that is a part of-this contract.

A vital part of the proposed computer configuration is the

transmission of data between the various elements along a common

data bus. The many data types, resulting in complex bus message

structures, and the high speeds will make severe demands on the

implementational technology. The interfacing of the bus with

the processing elements will involve high speed, serial-parallel

data conversion, error detection and correction and signal

conditioning and re-formatting. We would recommend that the bus,

and its interfaces be the subject of separate study and experi
mental implementation.

These studies should precede detailed DMS computer design

work by 1-2 years in order to gain sufficient lead time to meet

a post-1975 operation.

6.2 Recommendations for Future Effort

The architectural design presented in Chapter 5 is a solid

base from which to proceed toward the goal of an operational

system. A group of next steps suggests itself; for the most part,

they represent continuing design applicable to the technology

of computation in general, and would be valuable whether or not

prototype development of the proposed configuration was planned.

As.mentioned in the previous chapter, the architecture

developed is well suited to both a family of multiprocessors of

varied performance capability, and to a single-processor confi
guration. Whichever approach might be currently believed most

promising, or indeed, if it was desired to postpone making a

choice, the efforts outlined in the following sections would

enable systematic progress to continue at modest cost.

6.2.1 Continuation of System Design

This study has provided a description of a basic computer

organization, founded solidly on its technological predecessors.

Certain areas have been identified as being of particular signi
ficance.

a) Maintenance of reasonable levels of internal bus traffic

144

through sizing of Ml and M2, and choice of an instruction

set which takes full advantage of the hardware stack.

b) 	Provision of generalized, yet efficient, communication

conventions for the I/O bus and devices.

c) 	Recognition of the failure recovery problem, and provision

of a systematic hardware and software recovery design.

d) 	Provision of general, yet simple, operating system and

file systems.

The following tasks are recommended.

6.2.1.1 Instruction Set

Design of the addressing structure, instruction formats,

and instruction set are required. This task will additionally

entail consideration of the register complement of the processor.

Verification of compatibility with the chosen word length of

32 bits is inherently a part of the task.

6.2.1.2 Stack

Related to the preceding task, consideration of details

of stack implementation in Ml will influence the instruction

set design, and the treatment of data items of length other than

one word. Stack interaction with M2 should be predicted on the

basis of stack size and estimates of stack-switching frequency.

6.2.1.3 Buffer Memory

Details of information-handling in the buffer memory

should be resolved. The influence of the instruction set,

stack, and buffer size on the bus traffic should be formulated.

Buffer sizing for constant bus traffic as a function of processor

speed should be studied.

6.2.1.4 Internal Bus

Message formats, bus-access control, traffic levels,.

and interfaces should be established, and the adequacy of the

bus-implementation technology proposed in Chapter 5 verified.

Particular attention must be paid to reliability and error

detection because of the central and solo nature of the bus.

145

6.2.1.5 I/O Controller

As the nature of the space station experiment packages

and control requirements become more clearly defined, it will

be possible to design the I/O controller in more detail. Message

formats, interrupt structure, command multiplexing, and error

handling are areas which require further design at the next stage

of development. The definition of the standard interface

element used by I/O devices falls into this category.

6.2.2 Software Design

Perhaps the clearest single problem area in the history

of multiprocessor developments (and maybe computer systems

generally) is the development of software which can operate the

hardware at a satisfactory level of performance and reliability.

It is Intermetrics' strong conviction that the most fundamental

problems of this type can be avoided if the software development

is undertaken with the same vigor and at the same time as the

design of the hardware. If this is done, the two design efforts

can interact freely, and stimulate changes when changes are

least expensive. The following paragraphs contain specific

recommendations.

6.2.2.1 Operating System Design

The philosophy proposed by Intermetrics for the space

station operating system is presented in section 5.8. Implicit

in this philosophy is the need to orient the operating system

so that the overhead imposed is least when the frequency of use

is highest. Protection must be air-tight, yet the operating

system must be so direct that applications conceived years

after the system becomes frozen have a very high probability

of being compatible. The OS must allow those users who require

it to benefit fully from the opportunities of extremely general

and flexible sharing of procedures and data made possible by the

multiprocessor type of organization.

6.2.2.2 Application Software Management

To assure compatability between the operating system

and the management procedures which can be applied to the

development of the vast quantity of semi-interdependent appli
cation software, it is essential that a software configuration

management plan be prepared and employed for all software

development for the space station. It should provide a common

set of criteria and features for the software development,

and should be enforced.

It is Intermetrics' belief that the best means for imple
mentation of software conventions is to incorporate them

146

into the language translators used to prepare the executable

code. This clearly requires that suitable languages be

provided for the application software, and that their compilers

be-prepared so that they are capable of more than simple language

translation.

Because of the length of the anticipated mission, software

testing takes on even more importance than it conventionally

has, since on-board testing should be provided to allow upgrading

of virtually any part of the software without fear of system

disruption.

6.3 Conclusion

We are aware.that the centralized multiprocessor computer

approach to the DMS application is not the only approach which

has been recommended. Although it is clearly not within the

scope of this study to analyze or perform a trade-off of

alternate candidates, nor have we done so, it is our conclusion

that a multiprocessor computer system can be designed, developed,

and implemented to achieve the DMS functions in a cost-effective

manner.

Even a cursory examination reveals several distinct advan
tages of this approach over one in which distributed computers

are used:

a) 	Its cost should be lower, for a number of reasons. "Grosch's

law" is an empirical observation that the cost of a computer

is roughly proportional to the square root of its performance;

thus one system with n units of power should prove less expen
sive than n systems each with one unit. Furthermore, the

aggregate power of a distributed system must necessarily

be greater than that of a central system, since each of

the distributed units must be sized for its peak require
ment, even if its average requirements is substantially

lower. The peak load required of a central system is more

closely related to the root-sum-square of the peak indi
vidual requirements than it is to their sum.

b) 	Its flexibility is greater, since it is inherently capable

of expansion, and because it deals with a wide variety

of applications via a simple, generalized interface.

c) 	Its reliability should be easier to achieve, since it is

organized'specifically for inherent failure-tolerance.

d) 	Its ability to implement communication among processes and

users is vastly superior, since all are directly attached

to the system and have access (when permitted) to common

information in the common memories.

147

Other agencies are planning or using multiprocessing; the

Navy AADC, the ASW aircraft S3A, the IBM 9020 for the FAA, to

mention a few, plus the RCA-215, the Hughes 4400, CDC Alpha,

and 	so on, which have been developed for general applications.

Intermetrics strongly recommends the adoption of the multi
processor approach for the space station and space base Data

Management Systems, and believes the design presented in

Chapter 5 is an excellent candidate for these applications.

References for Chapter 6

1) 	Bobeck, A. H., et alia: "A New Approach to Memory and

Logic - Cylindrical Domain Devices", Proceedings FJCC,

Vol. 35, 1969, pp. 489-498.

2) 	Brown, J. R., Jr.: "First and Second Order Ferrite Memory

Core Characteristics and Their Relationship to System

Performance". IEEE Transactions on Electronic Computers,

Vol. EC-15, No. 4, 1966, pp. 485-501.

3) 	Dailey, J. R. and Kuntzman, H. C., "The Impact of Technology

and Organization on Future Computer Systems", Computer

Design, February 1970, pp. 49-54.

4) 	Electronic News, January 26, 1970, pp. 1, 4-5.

5) 	Gold, H. S., and Pedersen, R. A.: "An Integrated Logic

Gate with Subnanosecond Propagation Delay as a System

Element", 1969 IEEE International Solid-State Circuits

Conference, pp. 70-71.

6) 	Rudenberg, H. G.: "Large-Scale Integration: Promises

versus Accomplishments - The dilemma of our Industry',

Proceedings FJCC, Vol. 35 1969, pp. 359-367.

7) 	Wald, B., "Utilization of a Multiprocessor in Command

and Control", Proc. IEEE, vol. 54, no. 12, December 1966.

8) 	Wegener, H. A. R., et alia: "An Integrated Nonvolatile

Read-Write Memory with Addressing", Proceedings of 21st

National Aerospace Electronics Conference, Dayton, Ohio,

May 19-21, 1969, pp. 443-446.

9) 	Werner, G. E. and Whalen, R. M.: "A 375-Nanosecond Main

Memory System Utilizing 7 mil cores". Proceedings FJCC,

Vol. 26, 1965, pp. 985-993.

148

Appendix A

Survey of Paging and Segmentation

Characteristics of Computer Systems

Many time-sharing systems have been implemented on computers

which do not utilize paging. Among them are the DEC PDP-10, the

Burroughs 5500 and 6500/7500, the Univac 1108, and the Control

Data 6000 series. Other manufacturers have elected to implement

paging; a number of these are reviewed below.

A.1 The Control Data 3300

The memory in the CDC 3300 is logically divided into pages

of 2048 48-bit words. A special fast core memory is used to

contain the physical addresses of pages in storage, indexed by

the upper bits of the logical address from the program. Pages

are further divided into quarters; storage may be allocated on

the basis of this smaller quantum.' Two additional bits are

provided in each entry of the fast-core page table for quarter
page addressing. These two bits are added to two bits of the

program-specified address with wrap-around, so that a three

quarter page requirement can be satisfied by a page with, say,

only quarters 3, 4 and 1 available.

A.2 The Control Data 3800

The 3800 paging mechanism uses an allocation memory (AM)

which contains 128 13-bit words. Three of the bits from each

entry are used for page access-protection, and to provide

write protection for the lower and upper halves of the page.

Seven to ten of the remaining bits are used for relocation,

depending on the page size. A four-position switch is used to

set the page size to 256, 512, 1024, or 2048 words, and to

control the selection of address bits used to index into the

AM. In all cases, seven bits are used to specify the location

in the AM, but the position in the logical address from which

they are taken is varied by the switch setting.

A.3 The XDS Sigma 7

Like the IBM 360, the Sigma 7 uses 8-bit bytes, 4-byte

words, etc. However, the addressing scheme is quite different.

The virtual memory addressed by the program is limited to 512K

bytes, which is 256 2048-byte pages. A high-speed 256-byte

memory map is provided to perform address translation; eight

bits of the virtual address select one of these bytes, whose

contents are substituted for the original eight bits of the

149

virtual address to form the physical address.

Associated with each page is a two-bit access control code,

which is used to selectively inhibit non-executive programs

from reading, executing, or writing page contents. A 2-bit

lock and key protection feature is also provided; a program

can write into a given block if lock and key values match (the

lock is associated with storage, the key with the process

being executed), or if either is zero.

A.4 The RCA Spectra 70/46

The Spectra 70/46 is basically a Spectra 70/45 with memory

address translation hardware added. The virtual memory and

paging facilities are achieved using a translation memory.

Control bits in each translation memory entry indicate whether

the corresponding page has been written into or accessed. These

bits are set automatically by hardware. Each translation memory

entry also includes a "usable" bit, indicating whether the page

is in memory, and the physical address of that page in memory.

The translation memory has 512 entries, one for each 4K
byte page; the limit of virtul memory is thus two million

bytes. Although the virtual address is broken down into what

are referred to as segment and page fields, addressin9 is one
dimensional. The segment concept refers only to the fact that

eighteen-bit address arithmetic is used. Specifically, nine

bits from the address are used to select entries from the 512
halfword translation memory. Each entry, in turn, supplies

six bits which are combined with the 12-bit displacement in the

o-r-ginal address. Thus, no more than 64 pages (one "segment")

can be contiguously addressed.

By convention, the first four segments, or 256 pages of

virtual memory, are available as users' virtual memory. The

other four segments are not available to users' programs, but

are used by the control program. This system virtual memory

is always allocated for system and shared code. Its mapping

is resident in the translation memory and need not be modified

as control is passed from one task to another. When a task

is to be given control of a processor, the necessary portion

of the first half of the TM entries (the size of its assigned

virtual memory) is loaded.

A.5 The Burroughs 5000/5500

The Burroughs 5000 was one of the first computers to use

the segment concept. The segments are variable in length, but

have a maximum size of 1024 words of 48 bits. Users of the

B5500 are not supplied with an assembler; thus, all programs

are expected to be written in compiler languages. The system

150

programming was done in a language called Extended ALGOL. Pro
grams are segmented by compilers at the level of ALGOL blocks or

COBOL paragraphs. Arrays are also compiled as separate segments.

The segment is used as the unit of memory allocation. Not all

segments have to be present in the core memory for the program

to begin running. When reference is first made to a segment,

the segment is fetched by the executive in response to an inter
rupt.

Each program is assigned a program reference table (PRT),

pointed to by a special register In the CPU. Each segment of

the program is represented by a PRT entry, which contains the

base address, the length of the segment, the starting location

relative to the base, and an indication of whether the segment

is currently present in memory. The entries in the PRT are

called descriptors by Burroughs. Core selection strategy to

prevent fragmentation includes choosing the smallest available

block of sufficient size. Because of the way in which segments

are formed, the average segment size is on the order of one

or two hundred words.

A.6 The GE 645, and Multics

The Multics project at MIT was the innovator of two
dimensional addressing with paging (cf. Chapter 2). The basic

motivation behind the combination was the desire to permit in
formation sharing in a more automatic and general matter.

Consider, for example, the problems involved in a non-segmented

system when a file is to be shared: typically a copy of the

desired information is provided to each user in response to

I/O requests he issues. Any modification or updatinq is done

on each copy, and is reflected in the original file only upon

completion of further I/O requests. Thus, logically acceptable

updates performed by different users at nearly the same time

can prove disastrous. In Multics, on the other hand, each

file is a segment. When a file is initially referred to by

a user, it becomes "active". Initial references by subsequent

users will find the segment active; only one page table will

ever exist for the file. If a user refers to a given address

in the file, the operating system automatically finds and fetches

the page into memory. Thus, the notion of copy is irrelevant;

a file page either is present in memory, or on secondary storage,

at the pleasure of the core-management routines.

The implementation of this system is quite complex. An

address can be considered to comprise two major parts: segment

number, and the word offset within the segment. In operation,

each of these parts is further divided into page and page-offset

parts. A key processor register, the "descriptor-segment base

register" (dbr), contains a value unique to each process: the

address of the page-table for the "descriptor segment". This

segment contains a list of pointers to page-tables of seaments

151

known to that process. In address decoding, the page number

part of the segment number is added to the pointer in the dbr

to select a word in the descriptor segment page table. This

word contains the address of the page of the descriptor segment;

the low-order part of the segment number is added to this

address to locate the entry which points to the page table

for the appropriate segment. This page table is unique to

the segment regardless of the number of users to which the

segment is currently known.

In a similar manner, the upper half of the segment offset

is used to select an entry from the segment page table, which

points to the core location of the page; the lower half of

the segment offset is then used to finally address the word

wanted.

Prior to each lookup in a page-table, the hardware checks

the index to be used against a length-limit contained in the

pointer to the page-table; if the index is invalid, the operation

is trapped, and control is passed to the supervisor for process

termination. Each page-table entry contains a bit used to

alert the supervisor if the page is not physically in core,

by means of a page-fault. The supervisor responds by fetching

the page, and then returning control to the user. If a

selected segment descriptor word similarly indicates the

absence of the segment page table, this triggers a missing
segment fault, which requires the supervisor to make the

segment "known".

The GE-645 provides the means to use 1024 or 64 word pages,

and to use unpaged segments. Although the original Multics

implementation used both page sizes, the use of 64-word pages

was abandoned to enhance system performance. Unpaged segments

are used only in the part of the supervisor which is core
resident. Sixteen associative registers are provided in the

processor to retain recently-used descriptor-segment and page

table entries, to speed subsequent references.

A.7 IBM.System 360/Model 67

This system, which is generally compatible with the rest

of the 360 line, has additional features to enhance its time
sharing utilization. Memory is divided into 4096-byte pages

(1024 32-bit words). The IBM operating system TSS/360 takes

up about 90 pages, so that a 512K machine has only about 40

pages left for user-multiplexing. As a result, performance of

systems with larger memory has been substantially better.

The addressing in the 67 is two dimensional; upper bits of

the address select a word in a segment table which points to the

page table for that segment. The remainder of the address speci
fies a word in the segment by indicating a page table entry and

an offset within the page. Although in the 360 line addresses

are 24 bits long, a 32-bit mode is optionally available on the 67

to increase the number of addressable segments from 16 to 4096.

152

Appendix B

Physical Characteristics

The physical characteristics of a computer are strongly

influenced by the requirements imposed upon it by the operational

environment. Size and weight limitations are chronic problems

in space applications; they become the main forcing functions in

determining the ultimate physical characteristics. To these

may be added temperature, pressure, humidity, shock, vibration,

"g", and so on. The logistical requirements of modularity, stan
dardization, maintenance, repair, etc., add further constraints.

Accommodating these constraints without compromising the required

performance is a burden that falls upon the technologies of

implementation and manufacture.

It is obviously impossible at this time to formulate a

realistic projection of the physical properties of the computer

proposed in this report without realistic estimates of its

expected environment, or of the performance requirements. This

study has concentrated on an evaluation of basic configurations.

The design presented in Chapter 5 has been chosen as the optimum

compromise of the conflicting factors discussed in other chapters.

The choice was made without specific assumptions about the imple
mentation technology. However, it is the application of this

technology that will contribute substantially to the physical

characteristics of the computer. Over the next 5 to 10 years

this technology will experience periods of very rapid develop
ment, so-called "breakthroughs", which will diminish the accuracy

of predictions based on current rates of development.

Nevertheless, the following heuristic approach to estimating

the proposed computer size and weight is presented to give at

least some idea of its scale. The weight, volume, power dissi
pation and performance of a number of current aerospace computers

have been normalized to allow them to be compared and plotted

against time. The machines chosen are listed in Table B.1.

Although some of them have more advanced features (e.g., floating

point arithmetic) than others, they are comparably organized,

and the memory cycle time is taken as an indication of processing

speed. The basic memory size is used in determining the perfor
mance factor, even though the capability of many of these

computers can be extended considerably by adding more storage.

The performance is expressed by the factor K, where

6

Memory size (bits)/10
K -
Memory cycle time
(lis)

153

I.e., a 1O6 bit machine with a 1 us MCT has one unit of

performance capability.

Normalized weight, volume and power are calculated from:

M* = M/K

V* = V/K

W* = W/K

and are plotted in Figures B.l through B.3. The straight line

plots are intended to suggest trends and are not mathematically

derived.

The validity of an extrapolation to 1975, which must be

the cut-off point for designs that are to be operational 2-3

years later, is questionable because:

a) 	It is unlikely that the rate of development of the current

technologies common to all the plotted computers will be

maintained at a uniform rate for the next 5 years.

b) 	It is very likely (as mentioned above) that in a five year

period, quite novel techniques of implementation will be

developed, to which these graphs may have no relation.

Nevertheless; if these factors are ignored, and if it

is assumed that K is linear for all values of memory size and

processing speed, the subject computer will, by 1975 standards,

possess the following characteristics., per processor (assuming
M2 = 107 bits per processor, cycle time of 100 ns, and an
efficiency factor of 70% - see 5.2.1):

K 107/106

-
1

10

Weight = 700 lbs.

Volume = 7 cu. ft.

Power - 700 watts

154

101

10) AGCII\ I

. PDP-11

RCA215

104

IWATTS)

10,

W* eAGC II

0 PDP-11

0 RCA215

\TC-2
CP-2\ * ANIUYK

ID51A
- EP/MP

M\

(LBS)

102

ANIUYK

* CP-2 * EPIMP
*1051A

LITTON3050\'BURROUGHS

* CDC ALPHA

102

LITTON3050 a \ BURROUGHS

CDC ALPHA

101

S I I I

62 64 66 68 710 72 74
APPROXIMATEYEAROFOPERATION

Figure B.1

Normalized weight vs. operational date

I

76

I I I I

62 64 66 68 70 72 74 76

APPROXIMATEYEAROFOPERATION

Figure B.2

Normalized Power vs. operational date

1o

P RCA 215

*AGC11 \ LITTON
3050lo
SACI .t~NoO10'

eTC-2

101 	 \ ANUYK

CP-2 \ EPIMP

Ve '
ICU FT. I 105\ e EPIMP

' * CDCALPHA
AANIUYK100108

O'•BU K 	 0 C 1RRO4JGHS

6CDC ALPHA100

• LITTON3050
0 1051A

10 	 CP-2 @BURROUGHS

e PDP-1Ie TC-2*AGCII

I I I I I I 0 Z I I - I

62 64 8 I6 7L7 4 7 10-21 1 1 1 1
66 68 70 72 74 62 64 66 68 70 72 74 76

APPROXIMATE YEAROFOPERATIONAPPROXIMATEYEAROFOPERATION

Figure B.3 Figure B.4

Normalized volume vs. operational date Normalized performance vs. operational da

Table B.1

Approximate Year

Computer Of Operation

IBM EP/MP 69

Nortronics 1051A 67

IBM TC-2 67

RCA-215 70

Univac AN/VYK 68

Burroughs 70

CDC ALPHA 70

AGC II 64

Litton 3050 68

IBM CP-2 67

DEC PDP-11 70

157

PRECEDING PAGE BLANK NOT FILMED.
Appendix C

Additional Bibliography

Listed in this appendix are a number of papers studied

in the course of the contract which were found to have relevant

content. The list does not include papers cited in the chapter

reference lists.

1) 	Ashenhurst, R.L., "The Maniac III Arithmetic System", Proc.

SJCC, 1962, Vol. 21. National Press, Palo Alto, California.

2) 	Barron, D.W., Recursive Techniques in Programming. American

Elsevier. 1969.

3) 	Batson, A., Ju, S., and Wood, D.C., "Measurement of Segment

Size", ACM Second Symposium on Operatinq System Principles.

Princeton, N.J. Oct. 20-22, 1969. pp. 25-29.

4) 	Beelitz, H.R., Levy, S.Y., Linhardt, R.J., Miller, H.S.,

"System Architecture for Large-Scale Integration", Proc.

FJCC, 1967, Vol. 31. Thompson Books, Washington, D.C.

5) 	Belady, L.A., and Kuehner, C.J., "Dynamic Space-Sharing

in Computer Systems". CAC4 12, 5 May 1969, pp. 282-288.

6) 	Bensoussan, A., Clingen, C.T., and Daley, R.C., "The

Multics Virtual Memory", Second Symposium on Operating System

Principles. Princeton, N.Y. Oct. 20-22, 1969.

7. 	Burroughs Corporation, B8500 System Reference Manual,

BJ-8, May 1967.

8. 	Control Data Corporation, 3800 Computer System Reference

Manual. Oct. 1965.

9. 	Corbato, F.J., and Saltzer, J.H., "Some Considerations of

Supervisor Program Design for Multiplexed Computer Systems",

MIT Memo MAC-M-372. May 1968.

10. 	 Daley, R.C. and Dennis, J.B., "Virtual Memory, Processes,

and Sharing in Multics", CACM 11,5, May 1968.

11. 	 Dennis, J.B., "Segmentation and the Design of Multiprogrammed

Computer Systems". J. ACM 12, 4. 1965. pp. 589-602.

12. 	 Dennis, J.B., and Van Horn, E.C., "Programming Semantics

for Multiprogrammed Computations", CACM 9,3, March 1966.

13. 	 Dijkstra, E.W., "The Structure of the 'THE' - Multiprogramming

System", CACM 11,5, May 1968, pp. 341-346.

159

14. 	 Fine, G.H., Jackson, C.W., and McIsaac, P.V., "Dynamic

Program Behavior under Paging" Proc. ACM 21st National

Conference, 1966, pp. 223-228.

15. 	 Fuchel, K., and Heller, S., "Considerations in the

Design of a Multiple Computer System with Extended Core

Storage", CACM 11,5, May 1968, pp. 334-340.

16. 	 Glaser, E.L., Couleur, J.F., and Oliver, G.A., "System

Design of a Computer for Time Sharing Applications",

Proc. FJCC. 1965, Vol. 27, pp. 197-202.

17. 	 Graham, R.M., "Protection in an Information Processing

Utility", CACM 11,5, May 1968.

18. 	 Hauch, E.A., and Deut, B.A., "Burroughs' B6500/B7500

Stack Mechanism", Proc. SJCC 1968, Vol. 32, pp. 245-251.

19. 	 IBM System/360 Model 67 Functional Characteristics,_

Form A27-2719-0. 1967.

20. 	 Kerner, H., Gellman, L., "Memory Reduction Through

Higher Level'Language Hardware", AIAA Aerospace Computer

Systems Conference, paper 69-963, Los Angeles, Calif.,

Sept. 1969.

21. 	Kopf, J.O., and Plauger, P.J., "JANUS: A Flexible Approach

to Realtime Time-Sharing", Proc. FJCC, 1968, Vol. 33,

pp. 1033-1042.

22. 	 Kuehner, C.J., and Randell,B., "Demand Paging in Per
spective", Proc. FJCC, 1968, Vol. 33, pp. 1011, 1017.

23. 	 Lampson, B.W., "A Scheduling Philosophy for Multiprocessing

Systems", CACM 11,5, May 1968, pp. 347-360.

24. 	 Lampson, B.W., "Dynamic Protection Structures", Proc.

FJCC, 1969, Vol. 35, pp. 27-38.

25. 	 Linde, R.R., Weissman, C., and Fox, C.E., "The ADEPT-50

Time-Sharing System", Proc. FJCC, 1969, Vol. 35, pp. 39-50.

26. 	 Mullery, A.P., and Driscoll, C.C., "A Processor Allocation

Method for Time-Sharing", CACM 13,1, Jan. 1970, pp. 10-14.

27. 	 Oppenheimer, G., and Weizer, N., "Resource Management for

a Medium Scale Time-Sharing Operating System", CACM 11,5,

May 1968.

28. 	 Randell, B., and Kuehner, C.J., "Dynamic Storage Allocation

Systems", CACM 11,5, May 1968, pp. 297-306.

160

29. 	 Randell, B., "A Note on Storage Fragmentation and Program

Segmentation", CACM 12,7. July, 1969. pp. 365-372.

30. 	 Rappaporti R.L., "Implementing Multi-process Primitives

in a Multiplexed Computer System", M.S. Thesis, MIT, 1968,

MAC-TR-55.

31. 	 Saltzer, J.H., "Traffic Control in a Multiplexed Computer

System", Sc. D. Thesis, MIT, 1966, MAC-TR-30.

32. 	 Sayre, D., "Is Automatic Folding of Programs Efficient

Enough to Displace Manual?", CACM 12, 12. Dec. 1968.

pp. 656-660.

33. 	 Vareha, A.L., Rutledge, R.M., and Gold, M.M., "Strategies

for Structuring Two Level Memories in a Paging Environment".

ACM Second Symposium on Operating System Principles.

Princeton, N.J. Oct. 20-22, 1969. pp. 54-59.

34. 	 Vyssotsky, V.A., Corbato, F.J., and Graham, R.M., "Structure

of the Multics Supervisor," Proc. FJCC, 1965, Vol. 27,

pp. 203-212.

35. 	 Wald, B., "Utilization of a Multiprocessor in Command and

Control", Proc. of IEEE 54, 12. Dec. 1966, pp. 1885-1888.

36. 	 Wallace, V.L., and Mason, D.L., "Degree of Multiprogramming

in Page-on-Demand Systems", CACM 12, 6., June 1969, pp.

305-318.

37. 	 Wilkes, M.V., "The Growth of Interest in Micro-programming-

A Literature Survey", Comp Surveys 1,3. Sept. 1969. pp. 139
145.

38. 	 Wirth, N., "On Multiprogramming, Machine Coding, and Computer

Organization", CACM, 12,9, Sept. 1969, pp. 489-498.

161

