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FOREWORD
 

This document is the final report of an engineering study
 
of Multiprocessor Computer Systems, and the development of
 
multiprocessor theory and problems related to the proposed
 
space station and space base data management systems. This
 
research was sponsored by the National Aeronautics and Space
 
Administration Manned Spacecraft Center, under contract NAS 9-9763,
 
and performed by Intermetrics, Inc., Cambridge, Massachusetts.
 
Dr. James S. Miller was the Technical Director of the effort.
 

The study program covered the period from June 27, 1969
 
through March 27, 1970. Mr. James P. Ledet (EB6) of the Manned
 
Spacecraft Center, was Technical Monitor
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Chapter 1
 

Study Objectives and Terminology
 

1.0 Introduction
 

Multiprocessor and multicomputer systems are being proposed

for advanced manned space applications, including the space

station and space base programs. Since the applications of
 
systems of this type are relatively recent and not uniformly

successful, the Manned Spacecraft Center has undertaken an
 
analysis and extension of this technology. This document contains
 
the results of a study of multiprocessor computer systems,

related theory, and potential problems associated with implemen
tation of such a system in a space station Data Management
 
System (DMS).
 

This report is presented in six chapters. This chapter

presents the background and objectives of the study, and a
 
review of terminology involved. Chapter 2 presents the relevant
 
results of a survey of existing multiprocessor flight and ground
based systems. Chapter 3 presents design considerations which
 
are relevant to the architectural configuration of the data
 
management computer system. Chapter 4 discusses the major design

guideline constraints and requirements applicable to the system.

Chapter 5 presents the architectural design of a multiprocessor
 
computer system capable of satisfying the requirements.

Chapter 6 presents recommendations for future work in the areas
 
of technology and design.
 

1.1 Background
 

Among the next generation of space vehicles are to be
 
craft which closely resemble earth-based scientific facilities.
 
Earth orbital spade stations and bases are being defined as
 
facilities which can support operational and experimental equip
ment on a long-term basis of about ten years. An earth-orbiting
 
space laboratory housing 12-50 men has been proposed by NASA
 
for implementation in the 1975-1980 period.
 

The space station and the subsequent space base program

will introduce a new, more routine mode of space operations than
 
has characterized past programs. The station will exploit

the unique features provided by its location in low earth orbit
 
(200-300 km; inclinations of 28.50 to 550) for rapid earth
 
viewing and unobstructed celestial viewing, and will allow
 
scientists and engineers 
to pursue a wide variety of research
 
and application activities on board. It is also currently

envisioned that men and-equipment will be ferried between these
 
stations and the ground in a reusable Advanced Logistics System

(ALS) shuttle vehicle. Obviously, to achieve these goals, many

of the functions previously accomplished on the ground will be
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performed on board the base, allowing it quite autonomous
 
operation.
 

Part of the on-board Data Management System will be a
 
computer system capable of supporting all required mission opera
tions. Existing space-qualified information processing equipment
 
lacks the capacity and flexibility to satisfy the diversified
 
space station/base data management requirements.(1) The current
 
inventory consists primarily of dedicated hardware designed for
 
specific applications. Various government and industry programs
 
are developing technology and hardware applicable to the space
 
station data management requirements. Anticipated advancements
 
in electronic technology indicate that much can be done over the
 
near future to improve reliability, weight, power, and volume
 
of flight hardware. Included within this scope are multicomputer
 
and multiprocessor computer systems, which are being proposed
 
as candidates for the space station/base DMS since they seem to
 
offer the reliability, expandability, and modular features
 
required.
 

1.2 Objectives of the Study
 

The principal objectives of this study were threefold:
 

a) 	Collect and analyze available existing knowledge concerning
 
actual and proposed multiprocessor system design, utilization
 
and communication techniques.
 

b) 	Incorporate this knowledge in a generalized multiprocessor
 
theory that establishes a baseline definition of the various
 
system configurations and problems as defined to the present
 
date.
 

c) 	Expand multiprocessor computer system theory to include the
 
system and communication problems that would be encountered
 
in the DMS application.
 

The methodology used to accomplish these objectives began
 
with a survey of the state of art of multiprocessor and multi
computer systems. Twenty-nine ground based and airborne systems
 
were reviewed and information collected as to their current
 
status, architecture and organization, principal features of
 
hardware and software, problem areas, and applications. In
 
conjunction with this task, basic definitions and elementary
 
concepts in computer architecture and memory technologies were
 
documented.
 

Several basic multiprocessor configurations were analyzed
 
in terms of their applicability to the expected space station
 
requirements, and in particular their reliability and expand
ability. After a preliminary analysis of these approaches, a
 
parallel effort was established to examine some of the basic
 
design considerations and tradeoffs in multiprocessor systems.
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This included an analysis of reliability, memory paging and
 
segmentation, interrupt schemes, display concepts, stack, micro
programming, and storage protection.
 

To embody the knowledge gained from the survey, extension
 
of multiprocessor design, and projection of hardware capabilities,
 
a system design was prepared. While confined largely to the
 
organizational level, this design satisfies the requirements
 
presently envisioned for the orbiting laboratory program.
 

The text of this report generally refers to the space
 
station/base application as simply the space station,, to eliminate
 
redundancy. However, it is believed that the computer systems
 
for both should differ in scale only, and therefore the material
 
presented herein is intended to be applicable to both.
 

1.3 Introduction to Computer Architecture
 

This section is included in this report to define some of
 
the language used in present-day descriptions of computation
 
systems. The vocabulary and usage described are intended to
 
represent a majority opinion from the computer industry. In
 
places where such a majority does not exist or is not very sub
stantial, alternate descriptions are provided. This approach
 
tends to discourage any attempt at rigorous or strict treatment
 
of the subject; indeed, some areas have been left somewhat
 
imprecise. However, it is believed that the basic concepts can
 
be presented clearly and briefly by use of simple language and
 
examples.
 

1.3.1 Hardware Elements
 

Although most people have a fair idea of what a computer
 
is, there is no easy way to specify a set of criteria by which
 
one might satisfactorily decide whether a given collection of
 
equipment is or is not a computer. As far as the present discus
sion is concerned, the only systems meant to be included are
 
those which are computers without doubt. Almost any such system
 
will contain one or more units of each of the following types,
 
plus the communication and data paths required to interconnect
 
them:
 

a) Memory
 

b) Processor
 

c) Input/Output Controller
 

d) Input/Output Device
 

Descriptions of each follow.
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1.3.1.1 Memory
 

Often the largest and most expensive element of a computer
 
is its memory. Most computers have a number of different storage
 
media. Usually these are segregated into categoiries of high-speed
 
units and secondary storage units. The latter, which generally
 
involve mechanically moving parts and are accessible only via
 
I/O instructions, are covered under the I/O Device category.
 

The remaining memory is almost always of the random-access
 
type; that is, the time required to obtain each word from a given
 
unit is the same. Examples of the kinds of unit which do not
 
have this characteristic are the delay-line memory and the Hughes
 
Dynabit memory; in both, values nearest the output end of the
 
unit are accessible most rapidly, and so on.
 

The two classes of random-access memory are read-only and
 
read-write. The read-only memories usually have their contents
 
manufactured into them; thus, changing the contents of a read
 
only memory requires physical modification of the device. Such
 
memories are generally less expensive than a read-write unit of
 
the same capacity and speed, and are used in applications where
 
the contents do not need to be, or are not allowed to be, changed.
 
Read-write memories, on the other hand, are designed so that
 
their contents are electrically alterable, although in some
 
instances R/W memories are utilized in a manner which causes them
 
to normally behave as read-only devices.
 

R/W memories may be classed as volatile or non-volatile
 
according to whether their contents remain intact when power
 
is removed. Core memories are non-volatile, since the medium
 
of storage, the polarity of residual magnetic flux in the
 
core, is self-sustained; flip-flop memories, on the other hand,
 
are volatile, since the state of the device is sustained only by
 
its energization.
 

Non-volatile memories may be further classified as destruc
tive-read-out (DRO) or non-destructive-read-out (NDRO). Core
 
memories are DRO devices, since the contents of the selected cores
 
are sampled by driving the magnetization state of each to the
 
"zero" condition, which generates an induced voltage in the sense
 
lines of those cores which were in the "one" magnetic state. This
 
action leaves all of the interrogated cores in the "zero" state.
 
Thus, the information originally contained is instantaneously
 
erased from the cores, and must be rewritten if the same contents
 
are to be subsequently accessible. Plated-wire and flat-film
 
memories, however,may be non-destructively read. There are two
 
major advantages for NDRO memories: First, they are less vul
nerable to power fluctuations or other interruptions of the read
 
process, since at no time during the reading operation is the
 
information cleared from the memory. Second, they can be made
 
to operate at a higher reading rate, since it is not necessary
 
to follow each read by a rewrite operation.
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Many computers use several types of random-access memory.
 
For example, in the IBM 360/65, read-only and volatile read
write memories are used in the processor, while DRO memories
 
of two speeds are available as main storage. The term main
 
storage, which is synonomous with main memory and, unfortunately,
 
processor storage, refers to that memory used for storage of
 
instructions and data of programs being executed. Blocks
 
labeled as meoy in diagrams of computer organizations will
 
nearly always refer to main-memory units.
 

To enhance the speed gains achievable from overlapped
 
computer and I/O operations and from multiprocessing (see below
 
for descriptions of these), memory interleaving is often used.
 
This technique consists of organization of the main memory into
 
independent modules capable of'simultaneous operation, and the
 
distribution of memory addresses among them. For example, if
 
memory is divided into eight modules, locations 0, 8, 16, 24,
 
etc. would be physically located in the first module, locations
 
1, 9, 17, 25, etc. in the second, and so on. Based on the pre
sumption that instructions and I/O transfers largely use sequen
tial memory locations, this method of interleaving tends to
 
decrease the probability of memory-access conflicts.
 

1.3.1.2 Processor
 

The processor units in a computer may be roughly
 
described as those units which decode and execute the non-I/O
 
instructions from the programs. I/O instruction execution in
 
many computers takes place in an I/O processor to avoid interfer
ence with the main or central processor. Configurations of
 
processors vary widely; in the most straightforward case, the
 
processor is essentially a single entity. At the other extreme,
 
however, processors are comprised of special-purpose execution
 
and decoding elements many of which may be (and hopefully are)
 
operating simultaneously. For example, the CDC 6600 main
 
processor contains a decoding unit and ten special-purpose execu
tion units. Processors may be segmented for other reasons as
 
well. For example, the JPL STAR computer, designed for exception
ally long life without maintenance, has a processor divided into
 
five parts, with spare copies of each, to enhance its relia
bility; the ILLIAC IV computer separates instruction decoding
 
from execution, and incorporates 256 elements driven by a single
 
decoding unit.
 

1.3.1.3 I/O Controller
 

Early computers were built without separate controls for
 
I/O operations; as a consequence, program execution would proceed
 
at processor speed until an I/O instruction was performed.
 
At that point, the processor became dedicated to the performance
 
of the I/O operation. When that operation was completed, normal
 
instruction execution was resumed. The effect of treating I/O
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instruction execution like other-instruction execution was to
 
reduce the effective speed of the processor towards that of the
 
I/O devices used.
 

To eliminate this bottleneck, I/O control hardware was
 
added to the system. In some current computers, it may be in
 
the processor unit, and in others it is a relatively more inde
pendent component. In the IBM 360/65, as an example, the equip
ment is referred to as a channel; channels are placed into opera
tion by execution of a strt-nstruction in the processor, and
 
thereafter operate by fetching the executing commands themselves
 
concurrently (overlapped) with processor operation. Many
 
channels may be in simultaneous operation, and one type of
 
channel, the multiplexor channel, can control the concurrent
 
operation of a multiplicity of I/O devices. In spite of this
 
high degree of overlap, it is sometimes true of large scale data
 
processing systems that the processor is idle a disappointingly
 
large fraction of the time, waiting for I/O operations.
 

1.3.1.4 I/O Device
 

Into the category of I/O devices fall the drum, disk,
 
and tape units, card readers, printers, and the like. In real
time systems, transducers of wide variety are used. Additionally,
 
the I/O mechanism may be used to control the operation of hardware
 
not usually considered to be I/O devices, such as large-core
memory (LCM) and even other computers. The advantage of such
 
operations is that the processor is freed from the speed constraints
 
imposed by these elements in a manner completely analogous to
 
that used with ordinary I/O devices. Again using the IBM 360/65
 
as an example, the LCM cycle time of 8 Vsec is substantially
 
slower than the main storage cycle of 0.76 psec; use of the
 
so-called storage-channel can therefore increase the overall
 
efficiency of data transfers between memories significantly.
 

1.3.2 Program Structure
 

A prerequisite to the understanding of the many configura
tions of computer systems currently available is an understanding
 
of.program structural organization. Although what is to be des
cribed is not universally recognized or even always relevant,
 
the trend is in that direction, for reasons which will become
 
clear as the discussion continues.
 

Again looking back to early computers, a program was simply
 
described as a group of instructions with an identified starting
 
location and one or more ending locations. A program was loaded
 
into the memory of a computer, and execution was begun and allowed
 
to continue non-stop to the end. This simple structure is quite
 
unsatisfactory from an efficiency point of view, and has gradually
 
been abandoned. In its place is a view of a program as a time
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varying group of associated procses or tasks whose constraints
 
on relative execution sequence are ictatedby precedence rela
tionships associated with each.
 

The development of monitors or operating systems (also

executives or supervisors) has stimulate the above view of
 
programs. At first, monitors were developed to automatically

load and execute jobs sequentially without manual intervention.
 
The conceptual generalization of this system led to execution of
 
more than one job concurrently, in the sense that while one job

awaits completion of an I/O operation, another job can be
 
partially executed by the processor which would otherwise be idle.
 
This is an elementary form of multiprogrammin ; the more general

form presently used recognizes the possible separation of single

jobs into several tasks or processes which may themselves be
 
executed concurrently in the above sense. A second kind of 
multiprogramming has been facilitated by the hardware of the 
Honeywell 800, 1800, and 8200 computers. Referred to-by Honeywell 
as horizontal multi ro ramming (as opposed to the vertical multi
programming described above , this form of processo arin 
takes place on an instruction-by-instruction basis. The processor

of the H1800, for example, contains eight groups of the registers

used for program control (instruction counters, index registers,

etc.), and each set may be used independently to execute programs.

Because there is only a single instruction decoding and execu
tion unit, only one instruction is executed at a time, but control
 
is frequently passed from one active group to the next. 
Groups

which are waiting for the I/O are automatically bypassed, so that 
those groups which can use the CPU are given access without soft
ware intervention. 

Along with operating system development came the concept of
 
resource allocation which governs the assignment of core space,

tape drives, etc., and even units of data filed on secondary
 
storage, to requesting tasks; it was a natural extension of
 
resource allocation to consider processors themselves as resources
 
which could be requested and released by tasks as necessary.

Thus, the execution by a task of a pseudo-instruction which speci
fies that the task cannot continue until a specified event has
 
occurred can be interpreted as the release of the processor by

that task; the occurrence of the awaited event then is noted as
 
a request by the waiting task for a processor. It is easy to
 
see how this organization of program lends itself to use in
 
systems which contain more than one processor (multi-processors).

However, extension to more than one processor usually introduces
 
two classes of interlock problems whose solution is not neces
sarily straightforward. The two classes of interlock problems
 
are: first, the incorporation of means to prevent simultaneous
 
operations on a single data base where this is not logically

permissible, and second, the prevention of system collapse

because of situations such as the one where two or more tasks
 
are stalled, each one of which is waiting for another stalled
 
task to perform some operation. The solution of the first inter
lock problem has been greatly aided by the addition of a non
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interruptible test-and-then-set instruction to the hardware.
 
This kind of instruction causes the contents of a location in
 
memory to be tested and then altered in a single memory cycle,
 
so that there is no "gap"during which another process, processor,
 
or channel can gain access to the same location. If this loca
tion is respected as a "lock" by the software, a process wishing
 
sole access to the protected data executes the test-and-set
 

The process
instruction, which always leaves the lock locked. 

then uses the result of the test to see whether the lock had
 
already been locked; if so, it must wait for the process which
 
locked it to finish its use of the data and unlock the lock.
 

Units of program which are subject to sharing in a multi

programming or multiprocessing system must be treated in accord
ance with their categorization as not-reusable, serially-reusable,
 
or reenterable.
 

Program units are not-reusable if they modify themselves
 
during execution in such a way that a second attempt at execution
 
will fail. A program which does not modify itself or which
 
re-initializes itself upon subsequent use is called serially
 
reusable if the same copy may be used repeatedly, but by only
 
one process at a time. Reenterable program units are those
 
which may be used concurrently or simultaneously by more than
 
one process.
 

Another classification of program units specifically refers
 
to whether they modify themselves or not. The term pure
 
procedure means that the program unit (procedure) does not modify
 
itself. Such units may or may not be reenterable, but they
 
are at least serially reusable. Obviously, programs intended
 
for execution from read-only memory must be "pure" in this sense.
 

1.3.3 System-Use Classification
 

Computer system use is commonly classified into three
 
categories. Smaller systems are often totally dedicated to a
 
single category, although increasing numbers of larger systems
 
are capable of performing two or three with reasonable success.
 
The first category to exist historically is batch-processing.
 
In current usage, the term refers to a mode of operation in
 
which programmers submit their job decks for computation expect
ing an interval of hours or longer before their results are
 
returned. In batch-processing, no interaction is possible
 
between the programmer and his computation.
 

To remove the long delay between submission and computation,
 
time-sharing systems have been developed which allow many users,
 
from remote terminals, to use the computer as though they were
 
each the only user. That is, commands issued from a terminal
 
are executed by the system immediately, and results are displayed
 
almost at once.
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In real- ime applications, even more immediacy is required,

since the computer is typically in a control-loop, and must issue

control signals promptly, as a function of the input values it

automatically receives from the controlled system.
 

1.3.4 Configurations
 

Figures 1.1-1.8 show a number of system configurations in
 current use. The interconnections shown represent the primary

data and control paths, without respect to their mechanization,

which is the subject of the next section. Figure 1.1 shows the

conventional single 
rocessor or uni-processor-system; the
 
processor is connectd 
to the memory and to the I/O controller,

and the I/O controller is also connected directly to the memory.

The connection of the I/O controllers to I/O devices, and the

I/O devices themselves, 
are not shown in the figures, but are
 
understood to be present.
 

In Figure 1.2, the organization of the CDC 6000 series

and the related CDC 7600 is shown. The peripheral processors

(PP), significantly smaller and less powerful than the main pro
cessor, are used to perform the house-keeping functions involved
with job setup and control, and are responsible for execution
 
of I/O operations. The I/O functions normally found in I/O

controllers in other computers exist largely in the PP's in this

series of systems. 
The main processor is spared responsibility

for the less taxing operations and therefore has a higher avail
ability for execution of the meat of the problem programs. As

mentioned previously, the CDC 6600 
(and 7600) main processors

internally embody some degree of multiprocessing to enhance
 
their speed.
 

A multicomputer system is shown in Figure 1.3, and represents

the IBM 704x/709x Direct-Coupled System (DCS) and the IBM 360
 
Attached Support Processor (ASP) system. Like the CDC 6000

series, the processors in the system are dissimilar, with the

less powerful one used for housekeeping and I/O operations, in
 
an attempt to allow the more powerful one to concentrate on the

number-crunching kernels of each job. 
 That this configuration

is described as a multicomputer rather than a multiprocessor

system stems 
from the fact that the processors do not share
 
memory; they communicate only via a direct processor-to-processor

link and via a channel-to-channel adapter which makes each
 
computer look like an I/O device to the other. 
 The two systems
 
may also share I/O devices, such as disk storage.
 

The dual-computer system shown in Figure 1.4, the IBM 4 Pi

CP-2 configuration for the F-ll 
Mark II Avionics system, is

similar to the DCS 
or ASP since the processors communicate with

each other only directly or through the I/O interface, but do not

share memory. 
The system is different, hawewer-*at-t the
 
processors are identical, and the hardware and software are
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designed so that the failure of one processor or memory can be
 
tolerated to the extent that the system can continue to perform

its major functions. This characteristic has led to the use of
 

et*rthe term ete aed au~l systesm. 

Figure 1.5 portrays a modular computer structure investigated

by the NASA Electronics Research Center. In this design, each
 
processor has been split into control and arithmetic units for
 
reliability reasons. 
Not shown in the figure is a configuration

assignment unit 
(CAU) which is capable of changing the connection
 
paths between the other units. Again, in this configuration,
 
no memory may be shared, although more than one memory unit may

be connected to a processor. Although these units typically

function as independent computers, a potential connection scheme
 
is to add voting logic at appropriate places and to cause all
 
units to execute identical programs. This provides a system of
 
high reliability for critical computations when insufficient
 
time exists to diagnose errors and reconfigure the system. During

less critical times, the units might perform independent calcu
lations, or one or two could be idle as standbys in case of
 
failures in active units.
 

The MIT/IL computer designed for a high reliability appli
cation is portrayed in Figure 1.6. Two copies of each module
 
are included in the design, although one processor is always

in a standby condition. This sywtem is therefore not really

either a multicomputer or multiprocessor system even though it
 
utilizes two processors. Both memories accept all write commands
 
from the active processor, although only the one instantaneously

designated "primary" responds to read requests. 
 As a result,

both memories should contain identical contents, so that if an
 
error is detected in one, the designation of "primary" can be
 
switched to the other and the read request repeated. The JPL
 
STAR computer is similar, in that its operation is essentially

that of a uniprocessor even though multiple copies of modules
 
are present in the system. These two systems have been mentioned
 
to show the existence of "gray areas" of system classification.
 

The most frequently utilized general architecture for a
 
multiprocessor configuration is shown in Figure 1.7. 
 This
 
configuration is found in the IBM 360/65 multiprocessor, the

Burroughs D825, 5500, etc., Univac 1108 
 and AN/UYK-7, IBM 4 Pi
 
EP for VS A-NEW, IBM 9020, Hughes 4400, ERC EXAM, MIT/IL ACGN
 
computer, and so on. The distinguishing characteristic of the
 
multiprocessor organization is the equal sharing of memory and
 
I/O by each processor. Although the processors in this organiza
tion are often alike, they need not be. When they are, the operat
ing system software usually treats them interchangably, and
 
tasks may be assigned to any one when they become ready for
 
further execution.
 

The ILLIAC IV system shown in Figure 1.8 is called an
 
array processor, and differs markedly from the other systems
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Figure 1.6 MIT/IL SIRU Computer
 

I/OI
 

Figure 1.7 General Multiprocessor
 

13
 



described. Associated with each of the four instruction
 
decoding units are 64 execution units, each with its own memory.
 
Thus each instruction can be executed by up to 256 units each
 
addressing data in its own memory. The execution units are
 
arranged in a linear string but interconnected as though they
 
were laid out in four square matrices; that is, processor i
 
can communicate with processor i+l, i-l, i+8, and i-B, with
 
end-around connections where necessary. This system is driven
 
by a Burroughs 6500.
 

1.3.5 Interconnections
 

Figures 1.9-1.11 illustrate three interconnection tech
niques used to tie processors, memories, and I/O controllers
 
together. The scheme which is conceptually simplest is shown
 
in Figure 1.9, and consists of a common data bus to which all
 
modules are attached. This bus, which could be of word, byte,
 
or single-bit width, is time shared between pairs of units which
 
wish to communicate; only one message at a time is possible in
 
the simple system shown. This restriction has advantages as
 
well as disadvantages. The most pronounced disadvantage is the
 
bottleneck imposed by the one-at-a-time communication limitation,
 
since as processors and memories are added to expand the system
 
capacity, waiting times for bus-access grow and reduce the
 
per-unit effectiveness of the system. The advantage of the
 
single bus lies in its conceptual simplicity; conceivably,
 
it could be a single wire with only one connection point per
 
module, although practicality requires considerable logic in-each
 
unit. Also, the single bus permits implementation of certain
 
data-interlocking requirements by simple brief monopolizations
 
of the bus by the processor involved, without the need of any
 
explicit software or hardware locking machinery. Finally, the
 
simplicity of the data bus provides the minimum difficulty in
 
adding a unit to the system: it is simply attached to the bus.
 

Figures 1.10 and 1.11 illustrate two versions of an
 
essentially similar interconnection technique. In the scheme
 
shown in Figure 1.10, units called multiport memories permit
 
multiple connections to each memory nodu e. A con ict
resolving switch in each memory awards access to one requesting
unit at a time, but when several units simultaneously request
 
access to different modules, all of these accesses may be con
currently granted. As in the common data bus scheme, data path
 
width in these busses may be of any convenient size. However,
 
the number of ports on each memory unit is decided when the
 
unit is built, and if all ports are used in a given system,
 
addition of a processor or I/O controller is impossible.
 

A crossbar style of interconnection is shown in Figure
 
1.11. Thisscheme is similar to that of Figure 1.10 in that
 
simultaneous communications are possible, but it differs since
 

.the 	memories are single port devices and the switching is
 
accomplished in an external unit. That this mechanism can grow
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to be quite complex is illustrated by the fact that the maximum
 
configuration of the Hughes 4400 multiprocessor switch has a
 
component count equivalent to 2.5 processors. Since the switch
 
is external to the other units, it is possible to design it to
 
be modular and therefore expandable, to avoid the capacity
 
limitation imposed by multiport memories. A modular switch of
 
this kind has been under development at the NASA ERC.
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Chapter 2
 

Survey of Multiprocessor and Multicomputer 
Systems
 

2.0 Introduction
 

This chapter presents the results 
of a survey of existing
 

and proposed designs for multicomputer 
and multiprocessor archi-


The survey has included reviews 
of vendors sales and
 

tecture. 

technical material, articles from 

technical journals, and dis

cussion by telephone and in person 
with vendors and academic
 

computer personnel. Material from these sources has 
been com

bined with the technical experience 
of the authors and summarized
 

in the following pages. Although a common general format 
has
 

been used, the information given, 
and in fact the information
 

For the
 
which exists, varies considerably 

among the summaries. 


most part, this is a result of 
our attempt to include only in

formation which is fundamental 
to the individual system or
 

which is believed relevant to 
considerations of the design 

of
 

a computer organization suitable 
to meet the projected require

ments of a space station mission.
 

Although only relevant material 
is documented in this
 

section, the survey-taking process 
gathered other information
 

which provides the bulk of survey 
material that is described
 

Computer design examples are 
presented in Appendix
 

elsewhere. 

A, which reviews in detail 

the segmentation and paging 
mechan-


In addition, sections on micro
isms that are currently used. 


programming (3.8) and stack 
usage (3.7) discuss specific 

com

puter configurations.
 

2.1 Burroughs D825 System
 

Classification: Multiprocessor; ground-based 
military 

data-processing/real-time system 

Operational Status: Operational 

Description: 

The hardware complement of 
the D825 may include from one
 

to four processors, one to 
sixteen memory modules of 4096 

48-bit
 

The modular organiza
words, and up to twenty I/O 

controllers. 


tion of the system has been 
designed to achieve extremely 

re

liable operation. Additional modules of each 
type may be added
 

to provide redundancy; these 
elements do not remain idle, 

but
 
Burroughs
 

share the processing load during 
tormal operation. 


can be achieved in
 
claims that availability in 

excess of 99.99% 


this manner.
 

communication between major 
elements flows through a dis-


The switch
 
tributed switching interlock 

of the cross-bar type. 
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is designed so that no single failure can affect the operation

of modules other than the one in which the failure is located.
 
Memory modules may be used concurrently by all processor and I/O

buses. Should two to more buses simultaneously attempt to access
 
the same memory module, the switch resolves the conflict accord
ing 	to priority, and queues the lower priority requests.
 

The instruction set of the D825 contains instructions whose
 
lengths vary from one to seven 12-bit syllables; zero-, one-,

two-, and three-address formats are provided. 
Address modifica
tion may include infinite-level indirect addressing followed by

indexing using one, two, or three index registers. A four-level
 
thin-film operand stack is provided to reduce access time for
 
repeatedly-used operands.
 

Software Characteristics:
 

The D825 Automatic Operating and Scheduling Program (AOSP)

has three primary functions: it provides operational modularity

to modular hardware, it provides system unity for real-time re
sponse, and it coordinates modules without the vulnerability

associated with systems in which coordination is performed by a
 
unit of hardware. A revealing statement is made in the second
 
reference: "It is clear, however, that the D825 system would
 
have fallen far short of the goals set for it if only the hard
ware had been considered. The AOSP is as much a part of the
 
D825 system structure as is the actual hardware."
 

References:
 

1) 
"D825 Modular Data Processing System," Burroughs Corporation,
 
Paoli, Pa., undated.
 

2) 	"D-825-A Multiple-Computer System for Command and Control",
 
Proc. FJCC, 1962, vol. 22, Spartan Books, Washington, D.C.
 

2.2 IBM Direct-Coupled System (DCS) and IBM 360 Attached
Support Processor System (ASP)
 

Classification: 
 Dual computer system for ground-based
 

general purpose data processing
 

Operational Status: Operational
 

Description:
 

The 	ASP and DCS systems are essentially similar; ASP utilizes
 
two 	system/360 machines such as 65/40 or 65/5D, while DCS typi
cally consists of a 7044 and a 7094. The intention of the com
bination is to use the more powerful computer for the execution
 
of the processor-limited part of each job, and to use the smaller
 
for management of the I/O for each job and for job scheduling.
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Communication between the computers is through I/O channels
 
of each, which are connected by a channel-to-channel adapter,

having the effect of causing each computer to look like an I/O
 
device to the other. No sharing of core memory is utilized,
 
although it is convenient to utilize secondary storage devices
 
attached to both systems by means of two-channel switches.
 

Reference:
 

1
Rosin, R.F., )"Supervisory and Monitor Systems , Computing

Surveys, vol. 1, no. 1, March 1969.
 

2.3 Control Data 6600 and 7600
 

Classification: Multiprocessor; large scale ground-based
general purpose data processing system 

Operational Status: Operational 

Description: 

a) 	Central processor, plus peripheral processors (PPU).
 

b) 	Shared main memory.
 

c) 	Communication between processors via main memory and control
 
instructions.
 

The 	CDC 6600 and 7600 are similarly organized, although the
 
7600 is a considerably higher-performance system. Each consists
 
of a central processor and a group of smaller peripheral pro
cessors. The peripheral processors each possess private memory,

but can address the system main memory as well. The intention
 
embodied in the design of the system is that the central processor

be devoted to the meat of the data processing job, while the
 
peripheral units handle the I/O operations and clerical aspects.

Thus, while the central processor is executing a program resident
 
in main memory, one or more PPU's may be setting up another job
 
in main memory for subsequent execution.
 

The central processor is itself designed to exploit some
 
inherent parallelism in the sequence of instructions being
 
executed: the functional execution elements are capable of in
dependent and concurrent operations if operands are available
 
and the logical constraints of the program allow.
 

To indicate the level of potential system performance, the
 
following data is presented for the 7600: Cycle time for the
 
65K-word main memory is 275 ns; this memory is organized in 32
 
banks, which permits delivery of words at a rate of up to one
 
per minor cycle of 27.5 ns. A 512K-word secondary core memory
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is standard equipment, and is capable of delivering information
 
at the same rate through use of an 8-word data path and 8-bank
 
organization, even though its cycle time is 1760 ns.
 

Software Characteristics:
 

The 7600 will be available with an operating system to
 
sustain the user in the remote batch, the time-sharing, and the
 
real-time command and control environments.
 

Miscellaneous:
 

The attempt made in the CDC 6600 to exploit local opportu
nities for parallelism in the sequence of instructions being
 
executed apparently was not as successful as the designers anti
cipated. This is indicated by two considerations: first, the
 
CDC 6400 was designed to be like the 6600 except that instead
 
of a concurrently-executing central processor composed of ten
 
separate functional units, the 6400 had all functions combined
 
into a single execution unit. The performance difference on
 
typical benchmark problems was only a factor of two, however,
 
showing that the achieved concurrency in the 6600 was markedly
 
less than the possible concurrency. Second, the arrangement
 
of function units in the 7600 has been significantly altered
 
from that in the 6600, indicating that Contral Data believes
 
that a better allocation of functions would improve the system
 
performance. These considerations are mentioned here only
 
to highlight the problems apparently inherent in exploiting,
 
in hardware, parallelism which has not explicitly been identified
 
in the program.
 

2.4 Univac 1108 

Classification: Multiprocessor; large scale ground

based data processing system. 

Operational Status: Operational 

Description: 

a) 	One to three processors (typical).
 

b) 	One or two I/O controllers (typical).
 

c) 	Up to four processors or I/O controllers may be attached to
 
each I/O control unit.
 

Each processor can address all of main memory (which can be
 
up to 262,144 36-bit words). Memory cycle time is 750 ns. Up
 
to four logical banks for instruction/data fetch overlapping
 
provide an effective cycle time of 375 ns., under control of
 
the processor; up to eight-way interleaving is available to
 
minimize conflicts.
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Error detection in the hardware is limited to parity check
ing; each 36-bit word is provided with two parity bits. No
 
arithmetic checking is performed. Storage protection is pro
vided by means of a storage limits register which imposes strict
 
boundaries on the areas of memory which may be accessed for
 
instructions and data. A privileged mode exists where the
 
limits are enforced only relative to writes, and an open mode
 
provides free use of all memory.
 

Software Characteristics:
 

Exec-8 operational, but considerably behind schedule.
 
Multiprocessor 1108 acceptance at Marshall Space Flight Center
 
was delayed for two years due to software performance problems.
 

Miscellaneous:
 

Univac has prepared a formula for use in evaluating the
 
performance improvement realizable from addition of processors
 
to a system, and supplied numbers for the 1108 system. The
 
formula is:
 

P x 106
 

NC+Q+D+E
 

where N is the instruction rate, P is the number of processors,
 
C is the memory cycle time, Q is delay due to queues at memory

units, D is the delay due to hardware (multiple module adapters,

etc.), and E is the time added due to extended-sequence in
structions.
 

For one processor,
 
N l
1x 106
 

= 1.33 x 106
N 
 0.75
 

With extended instructions,
 

106 0.95 x 106
N 1 x 
0.75 + 0.30
 

For two processors,
 
N = 2 x 106 1.63 x 106
 

0.75 + 0.05 + 0.125 + 0.30
 

Thus, the gain for the second processor is
 

1.63 - 0.95 = 0.71 
0.95 
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References:
 

1) 	Univac 1108 Multiprocessor System Description, Univac Data
 
Processing Division, undated.
 

2) 	Stanga, D.C., "Univac 1108 Multiprocessor System", Proc.
 
SJCC 1967, vol. 30, Thompson Books, Washington, D.C.
 

2.5 IBM System/360 Model 65 Multiprocessor
 

Classification: Multiprocessor; ground-based general
purpose data processing system. 

Operational Status: Hardware and software operational 

Description: 

a) 	Dual processor system.
 

b) 	Shared main memory.
 

c) 	Shared I/O.
 

d) 	Direct communication between processors.
 

Each CPU can address all of the locations in main storage;
 
each CPU has its own 4K byte interrupt area in main storage; each
 
CPU can address any secondary storage device through alternate
 
path I/O control; each CPU can reset, interrupt, or start the
 
other CPU with a "Direct Control" signal or a "Malfunction Alert"
 
signal through a direct hardware connection. The system can be
 
reconfigured according to the availability of components. Op
tionally, the system can be run in the dual processor mode with
 
main storage and I/O devices apportioned to the two processors.
 

Error detection in the hardware is the same as for the
 
standard Model 65, and includes checking of arithmetic and
 
logical operations as well as parity checking of information
 
transfers. A group of "recovery management" programs attempt
 
to recover from a machine malfunction by retrying the failing
 
operation. If the operation cannot be retried, they assess
 
program damage and either repair the effects of the failure or
 
attempt to restrict the effects of the failure to a single job
 
step. If the damage is unrecoverable, the job step is terminated.
 
If the supervisor program is damaged, the system must be re
started. When "hard" errors occur, the operator is notified so
 
that necessary reconfiguration may be accomplished. The operator
 
may add or delete I/O devices, channels, CPUs, and blocks of
 
main storage. However, at no time can any storage area contain
ing a part of the supervisor be removed from the system.
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Figure 2.1 IBM 360/65 Multiprocessor
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Software Characteristics:
 

A generalization of the standard 0S/360 MVT is used. The
 
fundamental unit of processing is referred to as a task; tasks
 
are selected for execution by the supervisor routine, -wich
 
searches a task control block (TCB) queue for the ready task
 
with the highest priority. When a CPU discontinues execution
 
of a task, the"btatus of the task is recorded in the TCB. Task
 
switching can take place as a result of a CPU interruption.
 
If a CPU receives an interruption indicating that it should
 
switch tasks, it does so. If the interruption indicates that
 
the other CPU should switch tasks, it signifies this through a
 
direct control signal which causes an external interruption in
 
that CPU.
 

Miscellaneous:
 

Because of the design of the 360 I/O control units, connec
tion to more than two processors is not feasible. Also, because
 
of the nature of the direct control feature for communication
 
between processors, the system is limited to two processors.
 
Thus, the system is restricted by its hardware design from ex
pansion beyond a two-CPU configuration, although the principles
 
upon which the system is based are not so restricted.
 

References:
 

1) IBM Systems Reference Library, IBM System/360 Operating
 
System, Model 65, Shared Main Storage Multiprocessing,
 
Preliminary Description, Form C28-6671-0, Jan. 1968.
 

2) Witt, B.I., "M65: An Experiment in OS/360 Multiprocessing",
 
presented at Information Systems Symposium, Sept. 4-6,
 
1968, Washington, D.C.
 

2.6 IBM 9020 

Classification: Ground-based multiprocessor with 
graceful degradation capability, in 
a real-time application. 

Operational Status: Operational 

Description: 

The IBM 9020 was built to meet the needs of the FAA's
 
National Airspace System for air traffic control operations.
 
One of the important requirements which the.system was designed
 
to meet was that of twenty-four hour fail-safe performance.
 
To achieve this goal, a redundant group of substantially modi
fied elements of System/360 Model 50 computers (later versions
 
use 67 components) has been put together with a control program
 
which is capable of directing error recovery in the event of a
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subsystem failure. The resulting system embodies redundant
 
capacity for all major elements, automatic error detection and
 
dynamic system recovery capabilities, restart techniques for
 
intermittent failures, and rescheduling of application functions
 
when necessitated by solid failures. In the presence of a
 
solid failure, the system can operate in a fail-safe mode by

calling upon a redundant element; no functions are discontinued,
 
nor are other aspects of system performance changed.
 

Should the number of available components fall below the
 
number required to maintain complete performance, the system
 
can 'continue in a fail-soft mode, with degraded performance,
 
as long as at least one of each major element is operational.
 

The major components of the 9020 system are its memories,
 
processors, and I/O control units. Six-port memories are used,
 
connected to three processors and three I/O control units. Three
 
tape controls are used, each of which is connected to two I/O

controllers. Additionally, three peripheral adapter units are
 
used as interfaces with external equipment. System units are
 
classified operationally as active if they are involved in air
 
traffic control operations, redu-ndant when not so employed but
 
available within a 30 second recovery period, or inactive if not
 
in operational use nor available within 30 seconds. Redundant
 
units may be used to expedite the repair of a malfunctioning

unit, although they may have to be released to become active
 
units in the event of another failure.
 

The configuration of the system is under program control;

each of the five types of components mentioned above contain
 
configuration registers whose contents may be set only by a
 
privileged instruction, and only by certain processors, under
 
control of the contents of the register itself.
 

Interlocking of common data in shared memory is accomplished
 
by the standard 360 Test and Set instruction; however, a non
standard instruction has been added to allow a processor to
 
delay a short time (for example, if it finds a desired memory
 
area locked by another processor) without making further refer
ences to memory and possibly causing unnecessary conflicts.
 

Certain other non-standard instructions have been added to
 
the 9020 system to enable a processor to identify itself and
 
to set the location in memory of a preferential storage area
 
itself. Others allow control of address translation which
 
relates logical and physical storage locations in the system.
 

Software Characteristics:
 

The general control of program execution in the 9020 is
 
quite similar to that of OS/360 MVT (multiprogrammingwith a
 
variable member of tasks). Programs are divided into units,
 
called tasks, which are scheduled for execution by priority.
 
Single-level interruption is utilized; that is, when an inter
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ruption has control of a processor, further interruptions of
 
that processor are inhibited. Continued processing of an
 
interrupted task may be performed by another processor if one
 
is available.
 

A problem encountered in both multiprogrammed and multi
processing systems is that of avoiding mutual lockout because
 
of the sequence and strategy for resource allocation. In the
 
9020, this problem potentially occurs with respect to allocation
 
of main storage. It is avoided by defining a functional hier
archy for storage usage, and enforcing rules (in the control
 
program) for storage assignment. The rules are that: 1) a
 
task must request storage of different classifications in the
 
order defined by the functional hierarchy; and 2) no storage
 
of a given category may be requested by a task which has
 
already been allocated, but not released or unlocked, storage
 
of -that category. Execution of a task which violates these
 
rules is terminated by the control program. A task which re
quests storage not immediately available is suspended until
 
the requirements can be satisfied.
 

Reference:
 

Entire issue, IBM Systems Journal, vol. 6, no. 2, 1967.
 

2.7 Univac AN/UYK-7 and 1832
 

Classification: 	 Multiprocessor, real-time controi
 
computer. UYK-7 is primarily for
 
Navy surface ships; 1832 is 	a new,
 
faster, miniature version for the
 
Navy ASW program, the S3A aircraft.
 

Operational Status: 	 UYK-7 is operational; 1832 is in
 
design phase.
 

Description:
 

a) 	1 to 3 CPU's.
 

b) 	1 or 2 I/O controllers, direct to memory independent of CPU.
 

c) 	Completely shared memory from 1 to 16 modules of 16 K words
 
of 32 bits (max. size = 262,144 words).
 

d) 	1 to 4 independent power supply modules.
 

e) 	CPU characteristics:
 

1) 16 and 32 bit instructions.
 

2) Data word size = 8, 16, and 32 bits (64 DP fixed-point).
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3) Multiple accumulators with separate ones for
 

executive mode.
 

4) Cascaded indirect and dual base and index addressing.
 

5) Instructions for 48 bit floating point data - 32 bit
 
mantissa and 16 bit exponent (232768).
 

6) Memory lockout registers for memory protection.
 

7) Variable length character-handling instructions.
 

This computer is a large, flexible system. The instruction
 
set is very extensive including immediate or literal and sub
stitute types. The computer is reminiscent of an 1108 with a
 
48 bit floating point format.
 

No particular attention seems to have been given to
 
failure detection and isolation or recovery procedures.
 

The multiprocessor software does not seem to exist but
 
will have to be developed for the S3A program. The degree of
 
difficulty should be approximately the same as for the 1108;
 
in fact, the experience on that may be applicable. The progress
 
of the S3A program should reveal the multiprocessing potentials

of this design. The effort seems to address itself to the
 
question, "Can a good, powerful, flexible, but conventional
 
computer design lend itself to an efficient multiprocessor
 
computer configuration without special M/P software-oriented
 
hardware features?"
 

References:
 

1) 	Computer Data, AN/UYK-7, SB-12292, UNIVAC-, December 5,
 
1968.
 

2) 	AN/UYK-7 (V) brochure, #PX 4758-A, UNIVAC Federal Systems
 
Division, April 1968.
 

2.8 General Electric 645 

Classification: Non-product-line time-sharing multi

processor 

Operational Status: Operational 

Description: 

The GE-645 is an extension of the 635, a product-line system.
 
It was designed jointly by GE and MIT's Project MAC, a research
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program sponsored by ARPA. The objective of the design was
 
to produce a system which could run the Multics operating system,
 
a comprehensive, general-purpose software research project in
tended to be capable of meeting the requirements of a large
 
computer utility. The 645 differs from the 635 in the areas
 
of the I/O controller, the interrupt structure, and most im
portant, the addressing logic, which was the first to incorpo
rate both segmentation and paging.
 

The system on the air at MIT is a two-processor configura
tion with 384K 36-bit words of memory. The novelty of the
 
addressing is described further in Appendix A, but the part
 
played by the processor will be briefly outlined here. Unlike
 
more conventional processors, the 645 forms "two-dimensional"
 
addresses by providing a base register which contains the number
 
of an entry in a segment table, and computing separately the
 
address of the word within that segment. The "procedure base
 
register" holds the segment number for the procedure being
 
executed; the "instruction counter" holds the offset. The
 
"descriptor-segment base register" contains the address of the
 
descriptor-segment or segment table; this address is added to
 
the segment number to obtain the location of the appropriate
 
entry. A register is provided to hold the segment number of
 
the operand of the,instruction, and four pairs of address base
 
registers are used to hold addresses of argument lists, linkage
 
segments, and stack segments. Eight index registers are in
cluded, and sixteen words of associative memory are used to
 
contain recently-used segment and page table entries.
 

A special form of indirect addressing is implemented,
 
which permits the generation of an interrupt (fault) when it
 
is invoked; Multics utilizes this to provide a dynamic
linking facility in which linkages are completed as execution
 
proceeds. This is useful in three ways, although it entails
 
considerable overhead. First, it eliminates the necessity
 
for a "link-edit" process prior to execution; second, it elimi
nates the linking of segments whose linkages are not used during
 
a given instance of execution; third, it circumvents the pro
blems caused by the fact that segment numbers are assigned during
 
execution, not at compile time, and therefore cannot be placed
 
into external addresses.
 

References:
 

1) 	Corbato, F.J., Vyssotsky, V.A., "Introduction and Overview
 
of the Multics System", Proc. FJCC, 1965.
 

2) 	Glaser, E.L., Couleur, J.F., Oliver, G.A., "System Design of
 
a Computer for Time-Sharing Applications", Proc. FJCC, 1965.
 

3) 	Organick, E.I., "A Guide to Multics for Subsystem Writers",
 
MIT Project MAC Memos M0086, Nov. 1967; M0087, Feb. 1968;
 
M0090, Feb. 1968; M0106, Jan. 1969; M0107, Feb. 1969; M0108,
 
Mar. 1969; M0115, Aug. 1969.
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4) GE-625-635 System Manual, Jan. 1965.
 

2.9 Honeywell Model 8200 
to H800 andse800) 

(information mostly applicable also 

Classification: Two-processor ground-based data pro
cessing system, with hardware to per
mit concurrent multiprogramming. 

Operational Status: H800, H1800 and H8200 operational. 

Description: 

Although the H8200 is a two-processor system (one word
oriented, and one character-oriented) with shared memory, the
 
system is included in this summary because of the unique nature
 
of its word-oriented processor, which is essentially the same
 
as the H1800 and H800. Only the characteristics of this unit
 
will be described.
 

Because of the unusual way the processor is organized,
 
a brief discussion of two types of multiprogramming will be
 
given. In a conventional multiprogramming system, a list of
 
tasks is maintained, often ordered by priority. Normally,
 
the processor is controlled so that the highest-priority

"ready" task is being executed. When the task cannot proceed,
 
for example because it is awaiting the completion of an I/O
 
operation, it is removed from "ready"status and control is
 
given to another task. When the operation-completion is sig
naled, the waiting task is placed in the "ready" condition
 
again and execution resumes when its priority is the highest.
 
Honeywell refers to this kind of processor-sharing as "vertical
 
multiprogramming".
 

Another type of sharing, referred to by Honeywell as
 
"horizontal multiprogramming" is implemented in the hardware
 
of the H1800. A three-address instruction format is used,
 
so that results are not normally left in the accumulator of
 
the CPU between instructions. Although there is only a single
 
copy of the arithmetic unit in the CPU, the program control
 
registers (instruction counters, index registers, etc.) are
 
replicated 8 times (9 in the H8200) so that up to 8 tasks can
 
sequentially time-share the CPU on an instruction-by-instruction
 
bases. A program control group which has been allocated to a
 
task for execution is called an active group; the CPU scans for
 
the next active group while it executes an instruction from an
 
active group. When any task is awaiting completion of an I/O
 
operation, a bit is set for that group in the hardware which
 
causes it to be bypassed by the scanning process. Completion
 
of the I/O operation causes this bit to be reset. When a group
 
is not active or when it is stalled, as above, time slices which
 
would have been used by that group are available for use by
 
active groups.
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The main advantages claimed-by Honeywell for horizontal
 
multiprogramming are that task switching is accomplished by
 
hardware with zero time overhead, and combinations of programs
 
that make heavy use of peripheral devices tend to obtain better
 
overall throughput than under vertical multiprogramming.
 

Software Characteristics:
 

The characteristics described here are those of the
 
Honeywell Mod 8 Operating System, written for the 8200. The
 
8200 has a ninth program control group, the Master Group, and
 
a character-oriented processor (similar to the H4200 CPU), and
 
thus this operating system is applicable Only to the 8200, and
 
not-to the 800 or 1800.
 

Each job is assigned a priority by the user; the operating
 
system selects jobs for execution based on their priority and
 
their profitability. A job is considered "profitable" to run
 
immediately if it requires the use of currently unused resources
 
and does not also require the, use of a currently busy resource
 
that cannot be shared efficiently. Protection of programs
 
from one another is accomplished largely in hardware; facilities
 
employed for this purpose include memory protection, a peripheral
 
protection/reassignment table, a privileged instruction set,
 
and a watchdog timer to protect against endless interruptible
 
loops. These features are augmented by software facilities
 
which take cognizance of the detailed resource assignments.
 

References:
 

1) 	Hatch, T.F., Jr., Geyer, J.B., "Hardware/Software Interaction
 
on the Honeywell Model 8200", Proc. FJCC 1968, Thompson
 
Book Co., Washington, D.C.
 

2) 	Honeywell 1800 Programmers' Reference Manual, Honeywell
 
Inc. Electronics Data Processing Division, Wellesley Hills,
 
Mass., 1964.
 

2.10 Burroughs B6500
 

Classification: 	 Ground-base commercial general
 
purpose data processing system with
 
multiprocessor capability.
 

Operational Status: 	 Deliveries began in 1969. Software
 

not complete.
 

Description:
 

a) 	1 or 2 CPU's.
 

b) 	1 or 2 I/O multiplexors.
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c) 	Completely shared memory of up to 32 modules of 16K 48 bit
 
data words plus 3 tag bits and 1 parity.
 

Burroughs commercial machines have for many years been
 
unique. They have a radically different architecture and
 
philosophy concerning the place of software. The 6500 merely
 
continues these thoughts from their expression in the B5500.
 
The B5500 has had an unusual reception among users. It has been
 
a "later bloomer" in that demand has been increasing during
 
each year of its existence, rather than being the largest
 
when the machine was brand new. This has been true quite recently,
 
even though the hardware was old and slow by comparison with
 
newer designs. This growing group of enthusiastic users is quite
 
a tribute to its unusual design concepts.
 

The B6500 is an attempt to provide up-to-date hardware to
 
stay competitive and to increase the fold of satisfied customers.
 
Rather than maintaining machine compatibility, they increased
 
its capabilities in many areas such as memory capacity and I/O

flexibility, while sticking to the basic philosophy that they
 
have espoused before. The basic tenet seems to be, "Thou shalt
 
not program in machine language". In fact, Burroughs does not
 
even supply as assembly language.
 

They expect that all the programming will be done in a
 
higher level programming--language. The ones that they plan
 
to give the chief support on the 6500 are:
 

1) 	ALGOL: Burroughs has used this extensively for many years.
 

2) 	FORTRAN, most widely used scientific language.
 

3) 	COBOL, most widely used business language.
 

4) 	PL/I, newer, but growing set of users.
 

Other features of the B6500 include:
 

1) 	Processor hardware design to implement higher level languages

and run them under a comprehensive operating system called
 
Master Control Program (MCP).
 

2) 	Multiprogramming is considered the normal mode of operation,
 
and is recognized in the design.
 

" 
3)	 3 extra control bits (tag bits) in each word are used for
 
flagging special characteristics.
 

4) 	A hardware stack mechanism is provided to automatically
 
handle operand storage and other temporary data in a manner
 
that makes it easy for compilers.
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5) 	Polish notation type of instructions with variable number
 
of syllables of 8 bits each.
 

6) 	Programs cannot be modified while in core. This produces
 
re-entrant and even recursive subroutines as well as per
mitting automatic overlay with little special effort by
 
the MCP.
 

7) 	Actual addressing is relative and/or indirect which makes
 
it easy to relocate.
 

8) 	Memoryprotect includes upper and lower bound on arrays
 
and descriptors for segmentation.
 

References:
 

1) 	Burroughs B6500/7500 Characteristics Manual, Burroughs Corp.,
 
Sept. 1968.
 

2) 	Burroughs B6500/7500 Electronic Data Processing System,
 
July, 1968.
 

3) 	Hillegass, John B., "Burroughs Dares to Differ", Data Pro
cessing Magazine, July 1968.
 

4) 	Hauch, E.A., and Deut, B.A.,"Burrough B6500/7500 Stack
 
Mechanism", Proc. SJCC, 1968, vol. 32.
 

2.11 IBM System/360 Model 195 (information below mostly applicable
 
to Models 91 and 95 also)
 

Classification: Single processor system embodying 
internal parallelism; very large 
ground-based general-purpose data 
processing system. 

Operational Status: Partially complete prototype 
operational; first delivery scheduled 
for 1971. Software operational. 
Models 91 and 95 operational. 

Description: Single processor system with extensive 
overlapping and "pipelining" of 
operations. 

Although the M195 has only one processor, its unique degree
 
of internal parallelism causes it to deserve consideration here.
 
Five separate units may be operating concurrently; main memory,
 
storage control unit and buffer storage, instruction processor,
 
fixed-point/variable-field-length/decimal processor, and floating
point processor. Furthermore, each of these units may be per
forming several functions at one time. For example, as many as
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three floating-point operations may be taking place concurrently.
 

A high speed buffer memory is used to partially mask the
 
access time to main storage (810 ns). Additionally, an
 
instruction look-ahead buffer is used to reduce conflicts be
tween instruction and data word fetches, and to eliminate in
struction fetching altogether for certain small program loops.

Each of the two execution elements is provided with stacks
 
to enhance pipeline operation. The floating-point add unit
 
can deliver two 64-bit sums as often as every 162 ns; the
 
multipy/divide unit can form a 64-bit product in 162 ns.
 

A pronounced degree of "real time" seeking of implicit

parallelism is performed by the machine. That is, each
 
instruction, after being decoded in sequence, is sent to an
 
execution element where its further processing occurs se
quentially only when expeditious or logically necessary. The
 
use of buffer registers and other buffering techniques often
 
makes out-of-sequence execution of instructions efficient.
 
This philosophy is pursued to the extent that instruction
 
decoding continues even in the interval between the point that
 
a conditional branch has been decoded and the point that exe
cution of the instruction which sets the condition code is
 
completed. Of course, if the assumption made by the processor

about whether the branch will or will not be taken proves false,
 
the partially processed instructions must be canceled. However,
 
as a hedge against this contingency, the instruction fetching

mechanism fetches several instructions down the alternate path
 
at the same time the conditional processing is taking place,
 
so that regardless of the outcome of the condition test when
 
it finally occurs, some progress has been made beyond that
 
point in the program.
 

Software Characteristics:
 

A somewhat modified version of OS/360 is used in the M195.
 
One of the consequences of the out-of-sequence instruction
 
execution in the M195 is that certain interrupts are triggered

after the location of the responsible instruction has been lost.
 
The result is an uncertainty, for example, as to which instruc
tion caused a storage-protection violation, overflow, etc.,
 
on some occasions. An instruction, otherwise a no-op, has
 
been implemented in such a way in the M195 that no further
 
instruction'decoding takes place until the execution pipelines

have been emptied. Although use of this instruction can prevent

the uncertainty mentioned above, performance of the system is
 
degraded since a great deal of the capacity of the processor

is inherently disabled temporarily.
 

the design of the M195 clearly indicates an attempt to
 
exploit parallelism implicit in ordinary coding prepared in the
 
customary ways for a serial processor. However, the variation
 
in performance between two versions of a problem coded with
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and without M195 considerations can be quite dramatic.
 

Exceptional Characteristics:,
 

Monolithic circuitry is used in the M195; basic stage delay
 
time is less than 5 ns. Two boards of 8 x 12 inches hold plug
gable cards which contain a floating-point add execution unit
 
for 64 bits in which both preshifting and postshifting are
 
accomplished. The high-speed buffer memory of 32K bytes is
 
packaged on pluggable cards held by two 10 x 12 inch boards.
 
The speed of the M195 clearly requires small physical size;
 
its complexity, also required for high performance, tends to
 
significantly add to the component count. Further increases in
 
system performance will require comparable reductions in physical
 
size, or more dependence on multiple processing, or both.
 

Reference:
 

IBM System Reference Library, IBM System/360 Model 195 Functional
 
Characteristics, Form A22-6943-0, August 1969.
 

2.12 Control Data STAR Computer (String Array Processor)
 

Classification: Commercial data processing computer
 

Operational Status: Design Phase
 

Description:
 

This is a large 4th generation general purpose machine which
 
is being designed for ground-based real-time applications in
cluding time-sharing. It is not a multiprocessor. It is being
 
designed by a different team and is a complete departure from
 
the architecture of the 6000 and 7600 series. General character
istics include:
 

1) Variable word length: 2-1024 bytes
 

2) Vector processors
 

3) 32 or 64 bit instructions
 

4) 32 banks of 16K 64-bit words
 

5) 32 and 64 bit floating point,
 

6) 1000 data channels
 

The precise details of the computer are still somewhat
 
tentative; it is anticipated that more information will become
 
available when the design is frozen.
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2.13 Hughes H4400
 

Classification: 	 Specifically a real-time multiproces
sor development primarily aimed at
 
military command and control
 

Operational Status: 	 Prototype hardware being built and
 
software written by company 	funds.
 
If funded, it could be a flight
 
and/or a ground computer.
 

Description:
 

a) 	Up to 8 CPU's or I/O units total
 

b) 	Up to 16 banks of 16K 32-bit words
 

c) 	Central "cross-bar" switch that communicates and controls
 

d) 	Multiple usage registers for accumulators, index, and
 
base registers
 

e) 	Various options allow capabilities to increase in the
 
following order:
 

1) 	16 bit simplex, sequential machine
 

2) 32 bit multiple memory, 	multiprocessor
 

3) 	bit/string instructions
 

4) 	floating point, SP/DP
 

5) 	hardware macros, microprogrammed sequences (sine,
 
arctan, etc.)
 

f) 	Hardware, interlocked multiprocessing executive
 

g) 	Memory protect but no memory paging
 

h) 	Special instruction for multiprocessing, e.g., interrupt
 
assignment between processors
 

This is a computer development project to produce an ex
pandable family of multiprocessors to meet various real-time
 
computer needs. To do so, a multiprocessor hardware-software
 
concept must be developed. They are proceeding along conven
tional lines with the addition of extra features to aid the
 
multiprocessor executive problem.
 

Hughes has given a good deal of thought to the failure
 
detection and isolation problem. They estimate that 90% of
 
the failures can be diagnosed down to the "card level". They
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also have devised a system of switching in and out various CPU's
 
and 	memory units after the failure detection. This is done by
 
hardware in an extensive switching unit. A system has been
 
devised to provide for failure of all modules including an
 
executive processor or memory. The only function not neatly
 
handled is the manner in which the programs are resumed via a
 
"roll-back". They consider this to be "an applications pro
gramming problem". This leaves it up to the software to do it
 
which may prove quite difficult.
 

Although the computer is still in the prototype stage of
 
construction, extensive software is being developed. This
 
includes:
 

1) 	A meta-assembler to attempt to allow for compatibility
 

between configurations.
 

2) 	A simulator to run on the Control Data 6600.
 

3) 	A JOVIAL compiler.
 

4) 	A run time package that includes a real-time multiprocessor
 
operating system and library and utility routines.
 

2.14 Safeguard Central Logic and Control Computer (CLC)
 

Classification: Ground-based multiprocessor
 

Operational Status: Two development models in operation
 

Description:
 

The design of this machine began in 1964 for the Nike-X
 
system; it has also been through the Sentinel phase on the
 
way to becoming the Safeguard Computer. Designed by Univac and
 
built by Western Electric, the system can have up to 10 pro
cessors and 16 "program" and 16 "variable" memories of 16K
 
64-bit (plus 4 parity bits) words. Program memories, which
 
originally were planned to be ROM's, now are similar to the
 
variable memories except that they may be written into by I/O
 
but not processors, and they have two access units per module
 
rather than one. Sixteen I/O channels are used to communicate
 
with standard peripherals plus the two radars and mission-oriented
 
command and control equipment.
 

The system functions as a special-purpose controller much
 
like a missile computer; little use is made of interrupts, and
 
a fixed pattern of computing is performed, with the major
 
cycle determined by the characteristics of the phased-array
 
radars. (Radar beam-steering is performed in special computers
 
located at the radars, and not by the CLC.) One spare copy of
 
each type is maintained on-line to serve as a replacement in
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the event of failure. Parity checking, but no arithmetic check
ing, is performed. Each target is computed by a seven-element
 
Kalman filter; the seventh is the ballistic coefficient. If
 
track is lost or memory errors occur, the filter calculations
 
can be started over, making recovery from failures rather easy.
 
Missile guidance computations apparently can similarly be re
started.
 

To reduce the frequency of memory conflicts, some units
 
of program are replicated in other modules. The speed of the
 
memory is 0.5 Us; however, cable length is substantial, causing
 
propagation delays to be appreciable. Examples of register
register operations speeds are: add, 0.2 Vs; multiply, 0.53 *s;
 
divide, 5.9 ps. Approximately 1.5 million instructions per
 
second are performed.
 

An advanced design being considered includes the addition
 
of two array processors to the system. One would be used for
 
the tracking function, and one for guidance, with a processing
 
element assigned to each individual target or missile.
 

2.15 IBM -Pi Model CP-2 

Classification: Airborne real-time flight computer 

Operational Status: CP-2 is fully operational with flying 
hardware and software. 

Description: 

a) One CPU 

b) Two I/O channels tied to CPU
 

c) 8K to 32K 32-bit words
 

d) CPU characteristics:
 

1) 16- and 32-bit instructions
 

2) 16- and 32-bit data words
 

3) Single accumulator with extension register
 

4) Three index registers. One is hard wired, two in memory
 

5) Eight interrupts on two different levels
 

This is an older computer and not as advanced in features
 
as some of the others, but it has benefited from the wealth of
 
experience gathered through its widespread use. The hardware
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is readily available and there is a great deal of good support
 
software.
 

The computer does not lend itself to a multiprocessor
 
configuration, because it is not possible to share memory.
 
However, it has been used in a federated dual computer mode
 
in the F-Ill Mark II Avionics Computer System. This uses
 
two parallel computers with separate memories, but with the
 
ability to send data back and forth to one another. One
 
computer is the general navigation computer and the other is a
 
weapons delivery computer. Key variables when computed by
 
either are transmitted to the other one. Programming was done
 
in such a way that if either computer failed, the other would
 
be able to carry on alone and execute the important jobs with
 
degraded performance.
 

References:
 

1) System 4-Pi CP-2 Technical Description, IBM Electronic
 
Systems Center, Owego, N.Y., Revised May 1969.
 

2) System 4-Pi Model CP-2 Support Software, IBM Electronic
 
Systems Center, Owego, N.Y., Revised August 1968.
 

3) Daggett, E.H. and Lee, R.Q.,"The F-l11D Computer Complex",
 
General Dynamics Corp., Fort Worth, Texas, AIAA Paper No.
 
68-837, August 1968.
 

2.16 IBM 4-Pi EP/MP Computer
 

Classification: 	 Airborne real-time computer,
 
multiprocessor configuration
 

Operational Status: 	 Hardware is operational. Computers
 
were delivered for MOL but project
 
was 	cancelled. Multiprocessor con
figuration developed for VS A-NEW,
 
the 	Navy ASW research project at
 
Johnsville, Pa. Software is now being
 
being prepared.
 

Description:
 

a) 	One or two CPU's (three CPU's are possible)
 

b) 	Two HIMAC (high speed multiplexer and control units), the
 
main I/O controllers
 

c) 	Up to eight modules of 16K 32-bit words with four ports,
 
one for each of the CPU's and HIMACs
 

d) 	CPU characteristics:
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1) 	360-compatible instruction set (16, 32, and 48 bit
 
instructions) with the addition of special micropro
grammed instructions --sine, cosine, arc tangent, and
 
square root. Floating-point instructions are an op
tional extra.
 

2) 	32, 16, 8 bit data words
 

3) 	16 registers employable as accumulators or index
 
registers
 

4) 	Extensive instruction set including execute, move,
 
and binary-to-decimal conversion
 

This is the only computer in the 4-Pi set that is compatible
 
with the ground-based 360 series. By using the same 360 pro
gramming architecture for a flight computer, it is presumably
 
possible to do a detailed check-out and simulation on ground
 
equipment that will verify the programs to be used in the
 
flight computer.
 

The emulator system allows one to run EP programs under
 
Operating System/360 in either a direct or interpretive mode.
 
The interpreter mode simulates the instruction and permits
 
detailed evaluation via full traces, snapshots, and detailed
 
timing information on an instruction-by-instruction basis.
 
This presents a full history of the operation for debugging
 
purposes. The direct mode of the emulator system simulates
 
the execution of the EP by executing the EP program directly
 
on the system 360 in so far as possible. Only the instructions
 
unique to an EP are executed interpretively. This produces
 
a very fast simulation, but loses the capability of tracing
 
anddetailed timing information.
 

The VS A-NEW project is developing a dual-processor
 
multiprocessing system consisting of two EPs. Dual-processor
 
operation proven on the System/360 Model 65 shared storage
 
multiprocessor system has been incorporated into the VS A-NEW
 
software. It includes a floating executive that can be run
 
on either processor. Not only can the two processors work
 
independently on separate problems, but it is hoped that they
 
can work cooperatively on the single problem that requires
 
extra high-speed processing.
 

Reference:
 

VS A-NEW Brochure, IBM Federal Systems Division, Owego, N.Y.,
 
Brochure #69-825-lA.
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2.17 Litton L-304, 305, 3050, 3070
 

Classification: 	 Multiprocessor, real-time control
 
flight computer family
 

Operational 	Status: Dual processors used in E-2B and
 
E-2C, Navy Airborne Warning System.
 
Hardware is operational. Single 
3070 proposed for AWACS 

Description: 

a) 1 or 2 CPU's 

b) 	Up to 8 I/O stations and up to 64 channels to transfer
 
data simultaneously
 

c) 	Shared memory of up to 16 blocks of 8192 words of 32 bits
 

(max. size of 131,072 words)
 

d) 	CPU characteristics:
 

1) 	32 bit instructions
 

2) 	16 or 32 bit data
 

3) 	64 program levels with automatic priority queueing and
 

4) 	8 multipurpose registers for each level.
 

5) 	Variety of addressing modes
 

6) 	Many real-time clocks with interrupt for each
 

7) 	Comprehensive instruction set including MOVE, EXECUTE,
 
EXCHANGE, and good literal handling, but no floating
 
point
 

This computer has a large capability and seems to be a well
 
thought-out design. Its unique aspects are centered around the
 
64 different program levels and built-in hardware type of exe
cutive, and the tie-in of interrupt structure to this executive.
 

Some thought has been given to failure detection. In
 
particular, a system has been designed that allows one pro
cessor to run as a back-up to another with automatic switch
 
over in case of failure.
 

The E-2C has two processors working on different dedicated
 
job streams with the capability of either doing the important
 
tasks in case of failure. The software has not been fully
 
worked out.
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For AWACS, the initial proposal was for three L-3050's 

two working steadily and one on standby or assigned to low
priority tasks. But the multiprocessing problems appeared 
complex enough to tip the scales in favor of a newer, faster 
version (L-3070) to do the job in a simplex mode of operation. 
The conclusion may be drawn that, in spite of the fact that 
the machine was designed for multiprocessing, the problems 
of producing a large-scale cooperative multiprocessing system
 
(in particular, the software) are severe enough that a reason
able alternative is preferred. This is undoubtedly an over
simplification and may exaggerate the situation, but Litton's belief
 
seems clear.
 

Additional characteristics of the larger machines in the
 
family (L-3050, 3070) are:
 

1) 	Memory paging and memory protect features
 

2) 	More powerful instructions including floating point
 
options, substitute, test and insert/skip
 

3) 	16 registers per program level
 

4) 	Special linkage and level registers
 

Reference:
 

Litton L-304 System Application, Litton Data Systems Division,
 
Van Nuys, California, July 17, 1967.
 

2.18 ERC EXAM Computer
 

Classification: 	 Flight multiprocessor
 

Operational Status: 	 Early design, in hardware development
 
stage
 

Description:
 

The chief area of this effort at ERC has been in the design
 
of the modular cross-bar switching network, which connects the
 
individual memory modules to the various processors. The logic
 
is such that while one processor is connected to particular
 
memory module, other processors may be simultaneously communicat
ing with other memory units. When a processor needs to access
 
memory, its request is sent to the appropriate memory module.
 
If the memory is not busy servicing another processor, it will
 
grant a request for a new memory access. Simultaneous requests
 
from different processors to the same memory unit would be re
solved on-the basis of priority. The big advantage of the cross
bar scheme is the possibility of simultaneous data communication
 
between two or more processors and memory at the same time. A
 

43
 



much higher theoretical data transfer rate is possible. This
 
cross-bar is modular to allow expansion of more memory or more
 
processor units. Also proposed is a floating executive control.
 

References:
 

1) 	Wang, Gary Y., "An In-house Experimental Air Space Multi
processor - EXAM", ERC Memo #KC-T-031, September 20, 1967.
 

2) 	Wood, Paul E., Jr., "Interconnection of Processors and
 
Memory in the Multiprocessor System", ERC Memo #KC-T-041,
 
February 5, 1968.
 

3). 	 Wood, Paul E., Jr., "Input/Output System for An Aerospace
 
Multiprocessor", ERC Memo #RC-T-062, May 19, 1969.
 

2.19 MIT/Il ACGN Computer 

Classification: Aerospace multiprocessor designed 

for graceful degradation 

Operational Status: Paper design only 

Description: 

This computer is a multiprocessor design based on the
 
anticipated requirements of a control, guidance, and navigation
 
job which is"advanced" relative to the Apollo mission. Several
 
types of experience on Apollo have contributed to the system:
 
I/O rates involved; reliability; processing speed; programming
 
ease; expandability.
 

The design of the system was not completed because of
 
exhaustion of contract funds. As a result, a number of loose
 
ends exist; however, most of the architectural considerations
 
were specified. A three-bus system was chosen: one bus connects
 
the processors and program memory, one connects the processors,
 
I/O controller and data memory, and one connects I/O devices
 
and I/O controller. A serial data bus was chosen because of
 
its conceptual simplicity and consequent reliability, and be
cause of the apparent difficulty in designing a gracefully
 
expandable crossbar array. The serial bus technique offered
 
the 	expansion potential of simply attaching additional modules
 
of the desired type to the bus; so long as the bus capacity is
 
sufficient, the system may continue to grow.
 

The concept of graceful degradation was realized by planning
 
the use of more processors than required to accomplish the com
putational functions, in conjunction with a software system
 
which could recover from the loss of a processor at any time.
 
Memory failures were to be masked by creating extra copies, in
 
separate modules, of critical data, so that no failure of any
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PM: PROGRAM MEMORY MODULE 

P: PROCESSOR 

DM: DATA MEMORY MODULE 

IOC: 1/0 CONTROLLER 

IOD: 1/0 DEVICE 

Figure 2.2 MIT/IL ACGN Computer
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module was capable of preventing recovery of such information.
 
Obviously, in such a system, combined consideration of hardware
 
and software aspects was required to achieve a viable design.
 

The desire for continued operation in the presence of
 
failures necessitated certain design characteristics with re
spect to error handling..
 

1) 	All components of the system are to be infallible under
 
error detection; that is, the probability of the occurrence
 
of an undetected failure must be negligible.
 

2) 	Certain components of the system are to be infallible
 
under error correction; so that the probability of a
 
non-masked error in such components is at least as small as
 
the probability of an undetected error in a fallible com
ponent. Components required to be infallible in this way
 
include the buses and their associated logic, program memory,
 
and the I/O control unit.
 

3) 	Pages in data memory may fail in a detectable manner;
 
however, since critical data may be replicated in more
 
than one memory module, data may be considered to be in
fallible even though indlividual memory modules are not.
 

4) 	Fallible components which have failed must be capable
 

of being isolated from the system.
 

Software Characteristics:
 

Executive control of tasks in the system is of course a
 
key function. Because of the high traffic which might be anti
cipated in the executive process, two parallel approaches were
 
followed by MIT; selection of one over the other did not take
 
place, and might, in fact, depend upon the particular applica
tion of the system. In one approach, a special purpose system
 
module was provided to perform the executive function. This
 
module, attached to the system data bus, would contain process
ing elements and memory intended to remove most of the executive
 
data flow from the data bus. In the alternate approach, the
 
executive function was performed entirely in software, avoiding
 
the need for a special module with its replications to assure
 
infallibility. In both approaches, the functions performed
 
would be similar; the design proposed for the software execu
tive will be briefly described here.
 

Executive control is centralized around several lists of
 
data and a multipurpose special register located in the I/O
 
control unit. Only two of the lists will be mentioned here:
 
the dispatch list and the wait list. The dispatch list contains
 
all active requests for processing, ordered by priority and age.
 
The wait list contains pending requests for processing which
 
are to be issued at specified times. The special register
 
contains both the location in the dispatch list of the next
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process request to be honored, and a group of bits whose
 
purpose is to indicate the occurrence of certain external events
 
which in some systems might trigger interruptions. It was be
lieved in the ACGN computer 	design, however, that computations
 
would be divided into several-millisecond sections, referred
 
to as jobs, and that this level of division would be the one
 
at which competition for processors took place. Thus, in many
 
a processor system, the average interval between a given instant
 
and the time at which some processor next completed a job would
 
be small. Thus, interrupts 	and their associated overhead could
 
be avoided by having each processor check for the presence of
 
an unserviced external event prior to taking the next active
 
job from the dispatch list. If one or more such bits were
 
present, the required functions would be performed by the dis
covering processor.
 

Provision of a compiler for the system was planned. Not
 
only was this approach felt to be important from the ease and
 
speed of programming point of view, but the use of the compiler
 
as a program-convention enforcer seemed equally desirable. Be
cause of the constant problem of multiprocess interference
 
when common data is involved, some kind of interlocking is
 
necessary. To reduce the number of ways or occasions when it
 
would be possible for a programmer to inadvertently misuse the
 
protection mechanism, the compiler could be equipped to do
 
virtually all of the interlock administration.
 

Reference:
 

"Control, Guidance, and Navigation for Advanced Manned Missions",
 
MIT Instrumentation Laboratory Report R-600. Vol. 2, Cambridge,
 
Mass., January 1968.
 

2.20 ERC-Hamilton Standard 	Modular Computer
 

Classification: Replaceable modular flight computer
 
(MFC)
 

Operational Status: 	 Prototype hardware version completed
 
and delivered to ERC
 

Description:
 

A computer consists of one of four types of units. They
 
are a MU (memory unit), CU (control unit), AU (arithmetic unit),
 
and an IU (I/O unit). Supplied are several of each type of
 
unit and a master switching unit that selects the modules that
 
are active. This is called the CAU (configuration assignment
 
unit) and is responsible for maintaining a set of operational
 
modules.
 

Diagnostic programs are used to detect and isolate mal
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Figure 2.3 ERC-Hamilton Standard Modular Computer
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functions in the units. Fault detection circuits can initiate
 
the diagnostics. They will categorize the failure and ask for
 
new units from the CAU if the failure is not a transient one.
 

The distinguishing feature is that this is not a multi
processor configuration, but two or three separate computers.
 
Possible modes of operation include the following:
 

1) 	Three computers working on the same problem and voting
 
on their results during a high reliability period such
 
as boost.
 

2) Three computers working 	on independent problems.
 

3) 	A method to keep several computers on-line with a minimum
 
of spares.
 

The system has possibilities but is complex because of
 
the amount of switching hardware needed. It also necessitates
 
an infallible CAU to achieve the reliability goals. It seems
 
of dubious value compared to an equivalent multiprocessor.
 
For another approach towards the same goals, see the JPL STAR
 
computer.
 

2.21 MIT/IL SIRU Computer
 

Classification: 	 Simplex computer with spare units
 
for automatic backup
 

Operational Status: 	 Breadboard under development
 

Description:
 

This computer has been designed by the MIT Instrumentation
 
Laboratory as part of the Strapped-down Inertial Reference Unit
 
(SIRU) system. The major function performed by this machine
 
is the maintenance of the quantities which describe the inertial
 
attitude of the inertial subsystem via measurements incorporated
 
every ten milliseconds. Additionally, the computer calculates
 
velocity from accelerometer measurements, and has several milli
seconds left over to devote to other jobs.
 

The computer contains two processors and two memories. One
 
processor is kept in a standby condition while the other operates.
 
Error detection features throughout the processor are provided
 
to signal the occurrence of single errors. If an error is de
tected, the active processor will initiate turn-on of the stand
by processor and concurrently attempt a re-try of the current
 
instruction. If the re-try 	is successful, however, the turn-on
 
of the standby,unit is terminated.
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Operation of the memories is somewhat different: all
 
data written into memory is written into both, so that normally
 
both units contain identical data. Data read from memory,
 
however, comes only from the unit currently designated as
 
the active one of the pair. Should an error be detected in the
 
active unit, the memories exchange roles and operation continues.
 
Operation of a duplexed I/O system follows a similar pattern.
 

Exceptional Characteristics:
 

Each memory unit in the SIRU computer contains a high
speed scratchpad and working-register storage section. Exe
cution of instructions in the processor has been separated
 
into two distinct parts: first, the computation is performed
 
and the results stored in dedicated area of high-speed memory;
 
second, these results are moved from their temporary locations
 
to their final destinations. The advantage of this technique
 
is that each part of the execution of an instruction may be
 
safely re-initiated after partial completion since neither of
 
the two parts stores any results in locations occupied by the
 
operands for that part. Since the working registers for the
 
processors appear in both memories, any instruction execution
 
which suffers a fault in either working register or processor
 
may be completed or redone using either the alternate memory
 
or the alternate processor, or both.
 

This inherent ability of the hardware to perform success
ful error recovery in a manner totally transparent to the
 
software causes some sacrifice in processor speed. However, it
 
eliminates both the necessity for failure recovery software and
 
the historically knotty and costly effort required to verify
 
the adequacy and accuracy of such coding. This is felt to be
 
an extremely significant step in coordinated hardware/software
 
design.
 

Reference:
 

Crisp, R., Gilmore, J.P., and Hopkins, A.L., Jr., "SIRU - A
 
New Inertial System Concept for Inflight Reliability and
 
Maintainability", MIT Instrumentation Laboratory Report E-2407,
 
May 1969.
 

2.22 JPL STAR Computer
 

Classification: Experimental aerospace computer
 
with built-in automatic maintenance
 
features. Not a multiprocessor.
 

Operational Status: Experimental prototype under develop
ment; several subsystems have been
 
completed and tested.
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Description:
 

The JPL STAR (self-testing and repairing) computer has
 
been designed as an attempt to provide an error-free, unattended
 
computer system which could operate for several years during the
 
unmanned exploration of the solar system. The principal system
 
features used to diagnose and recover from errors are:
 

a) 	Use of error-detecting codes to allow fault identification
 
concurrently with program execution.
 

b) 	Subdivision of the computer into a number of replaceable
 
functional units.
 

c) 	Fault recovery carried out under the control of special
purpose hardware; consists of program repetition or re
placement of faulty units.
 

d) 	Unit replacement accomplished by power switching; informa
tion lines of all units are permanently connected to the
 
busses through isolating circuits; unpowered units produce
 
only "zero" outputs.
 

The functions often implemented in the CPU of a computer have
 
been split into five subunits: the main arithmetic processor,
 
the logic processor, the control processor, the timing processor,
 
and the interrupt processor. Except for the logic processor,
 
which runs with two copies operational, for checking, only one
 
copy of each unit is powered, and several unpowered backup
 
copies are provided. Upon sensing of an error, the test-and
repair-processor (TARP), a processor unique to the STAR computer,
 
directs the recovery operations. Because of the key role played
 
the TARP in error recovery, three powered copies of the TARP
 
are run concurrently, with outputs determined by voting logic.
 

If a powered TARP disagrees with a voted output, it is
 
immediately returned to the standby condition and power is
 
applied to one of the other standby units.
 

Software Characteristics:
 

The software design for the STAR computer is only partially
 
complete. A key aspect of this software is the ability to per
form a "rollback" to a previous point in the program as part
 
of the error recovery process. Although an instruction has been
 
provided which stores a "rollback" address in the TARP for this
 
purpose, it appears that any attempt to incorporate multipro
gramming into the system will necessitate use of a group of
 
such addresses (viz., one for each active or scheduled task)

plus other information for rollback purposes. Although multiple
 
copies of this data would be necessary as a protection against
 
memory loss, the current configuration of the system requires
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storage of this data outside the TARP.
 

Miscellaneous:
 

Because error detection is such a crucial component of
 
the system, a brief description is included here. Operand
 
words consist of eight 4-bit bytes, one of which is a check
byte whose value is 15 minus the modulo-15 residue of the
 
value of the other seven bytes. The checking algorithm com
putes the modulo-15 residue of the entire operand word; a
 
nonzero residue indicates a fault.
 

An instruction word consists of a three-byte operation
 
code and a four-byte address. The eighth byte is used as a
 
modulo-15 check on the four address bytes; checking of the
 
op-code consists of verifying that exactly two bits of each
 
byte are ones. In some cases it is necessary to perform both
 
checks for validity on a given word and rule it fault-free if
 
it passes either one.
 

Residue bytes are processed independently in the arithmetic
 
processor to provide a check on the arithmetic processing it
self. Because'the-residue byte propagation in logical opera
tions is difficult to compute, however, two copies of the
 
logic processor are operated concurrently, and the outputs are
 
compared to verify accuracy.
 

References:
 

1) 	Avizienis, Algirdas, "Design of Fault-Tolerant Computers",
 
Proc. FJCC, 1967, vol. 31, Thompson Books, Washington, D.C.
 

2) 	Avizienis, A., Mathur, F.P., Rennels, D.A., "Automatic
 
Maintenance of Aerospace Computers and Spacecraft Infor
mation and Control Systems", AIAA Paper No. 69-966,
 
AIAA Aerospace Computer Systems Conference, Los Angeles,
 
California, Sept. 1969.
 

2.23 RCA 215 

Classification: Airborne real-time multiprocessor 

Operational Status: Under development 

Description: 

a) 1 or 2 CPU's 

b) 1 or 2 I/O units 

c) 	Main memory of 2 to 8 modules of 16K 32-bit (plus 4 parity)
 
words (64K bytes/module)
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d) 	Expanded version offers up to 4 CPU; 4 I/O units, and 16 

memory modules (1 megabyte maximum)
 

e) 	CPU characteristics
 

1) 	Instruction set is fully compatible with the Spectra 70
 
and the non-privileged ones of the IBM 360.
 

2) 	Scratchpad storage consists of 64 words of 36 bits each
 
with 300 ns cycle time.
 

3) 	1024 64-bit words of ROM used for microprogram storage.
 
Cycle time is 300 ns.
 

4) 	Automatic fault diagnosis and error recovery.
 

5) 	4 processor states with special registers for each.
 
32 priority levels of interrupt use three of these
 
states.
 

This recently announced airborne computer system is another
 
one that offers compatibility as one of its chief virtues. As'
 
its manufacturer states, in order to supply the extensive and
 
complex functional programs and support software that is needed,
 
it is desirable to capture the work done on existing commercial
 
software systems. To attempt to develop a complete software
 
package for a special military application is extremely costly,
 
in both time and money. The solution according to RCA is to
 
rigorously produce a flight counterpart to a commercial computer.
 
It is not sufficient to imitate a ground computer by implementa
tion of only a subset of the instructions or generating results
 
which are "nearly the same". The flight computer must duplicate
 
the ground-based version on a bit-by-bit basis including non
instructional features. As a bonus, the ground twin can be used
 
for support for compilation and checkout.
 

With this aim, RCA has produced a computer that contains
 
the 	entire instruction set of Spectra 70 series of computers
 
(35,45,55) including the privileged instructions. It also dup
licates the four program states, the I/O channel control, the
 
interrupt management scheme,and other features of the Spectra 70.
 
As a result, any user program compiled and tested on a Spectra 70
 
will run without alteration on the 215. The 215 has added in
structions used by the executive for control of multiprocessing
 
and error recovery. This same instruction repertoire (as in
 
the Spectra 70) is fully compatible with the non-privileged mode
 
of the IBM System 360. This opens the door to a vast collection
 
of existing programs that would operate on the 215.
 

Another area that has been emphasized is that of fault
 
tolerance and error recovery. RCA has conscientiously striven
 
for a fail-soft computer complex. They have made a rigorous
 
attempt to avoid "single-thread" hardware and attain the capa
bility for "graceful degradation" while running programs written
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for a different family of computers. Towards this end, hard
ware checking and other features have been incorporated as well
 
as extensive software routines in the executive including items
 
such as a "recovery nucleus" in a separate memory module. The
 
degree of success of these measures is not easy to ascertain,
 
but 	the underlying motives should be highly praised.
 

References:
 

1) 	Dieterich, E.J. and Kaye, C-.C., "A Compatible Airborne
 
Multiprocessor', FJCC, 1969, vol. 35, pp. 347-357.
 

2) 	"Introducing the RCA 215 Military Computer", RCA Aerospace
 
Systems, DEP/SCN 101-69.
 

2.24 Control Data ALPHA 

Classification: Airborne computer 

Operational Status: Operating prototype has been 
demonstrated 

Description: 

This is a proposed LSI implementation computer. Features
 
include the following:
 

a) Up to 4 CPU's or I/O units total
 

b) Up to 8 banks of 16K 32 bit words
 

c) CPU characteristics:
 

1) 16 and 32 bit instructions
 

2) 16 registers for accumulators and index registers
 

3) Floating point instructions, SP and DP
 

4) 32, 16, 8 bit operand instructions
 

5) Special trig function instructions - sin/cos, vector
 
rotation, square root, rectangular to polar conversion
 

6) String and search instructions
 

Reference:
 

Control Data Brochure, "ALPHA Computer Family", #100, 644B.
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2.25 Litton IRAD
 

Classification: Multiprocessor
 

Operational Status: 1975 target date
 

Description:
 

This system is at present a paper design of a computer
 
organization suitable for use as either a flight or ground com
puter. It is a company-funded effort, with three major goals:
 

1) Efficient multiprocessor structure
 

2) All LSI, for reliability and size
 

3) The instruction set is to efficiently use memory
 

Litton has strongly attacked the third of these, in the
 
belief that the extra cost of logic required to implement power
ful instructions will be significantly less than the cost saving
 
achieved through improvement in memory utilization. The in
struction set design at this time is claimed to require only
 
40% of the number of instructions used to code a similar problem
 
mix for the Litton 3050, and only 49% of the bits.
 

The instruction set differs from conventional sets in that
 
it is strongly oriented to the processing of bit fields, rather
 
than bytes or words. The arithmetic or general purpose registers
 
of the machine have been designed to reflect these considerations.
 
Data in registers is held in a floating-point format, with a 40
bit mantissa and an 8-bit "power". The mantissa is not usually
 
normalized; a type of "significant digit" arithmetic is perform
ed which preserves available accuracy but requires less time to
 
execute. When bit-fields are fetched from memory to registers,
 
the "power" .field is specified in the instruction, rather than
 
by the data itself. Similarly, the scaling for a store order is
 
also contained in the instruction. Because of use of push-doWn
 
mechanism for register addressing and elimination of the index
ing field when not needed, Litton claims that the average in
struction length is about normal, even though field and power
 
'data is included when needed.
 

The implementation of multiprocessing is accomplished using
 
an adaptation of the 64-level program hierarchy introduced -in
 
the L304. Major changes include modifications to the reserved
memory area to reduce the number of unused locations, addition
 
of storage interlocking machinery, and extension of the program
level switching logic to facilitate multiprocessing. A four
tier storage hierarchy is used: program, local, compool, and
 
"multi-level" data areas 
are recognized.
 

This machine embodies some of the most novel ideas we have
 
encountered.
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2.26 Burroughs Interpreter Computer
 

Classification: Airborne multiprocessor 

Operational Status: In preliminary design phase 

Description: 

Unique features include:
 

1) 	Two levels of microprogramming - referred to as micro and
 
nano programming (one level wired in, the other loadable
 
from memory).
 

2) 	This allows the flight computer to look like any computer
 
that might be desirable, e.g. an IBM 360 or a B5500.
 

Reference:
 

Advanced Multiprocessor Computer Development, Burroughs
 
Corporation, OS SSG, August 5, 1968.
 

2.27 U.S. Navy NAVAIR AADC (Advanced Avionics Digital Computer)
 

Classification: 	 Generalized family of real-time
 
flight computers
 

Operational Status: 	 Paper computer - preliminary design
 
phase
 

Description:
 

The 	AADC program is attempting to develop a general purpose
 
modular set of digital computers to meet the Naval Airborne Com
puter requirements for the 19-75-85 time frame, using the build
ing block approach. The fundamental goal is the feasibility of
 
the design of a spectrum of computers from the same basic func
tional and byte-functional elements. This will hopefully allow
 
the reduction of the development cycle time from years to a
 
matter of weeks. The building blocks take advantage of LSI and
 
MSI technologies. The availability of these building block
 
modules will permit the rapid configuration of an airborne digi
tal computer system to meet a given set of specific operational
 
requirements. A big problem is determining a modular organiza
tion of the computer. The organization must be general and
 
powerful enough to satisfy the most exhausting performance
 
requirements that can be projected. At the same time it must
 
be divisible into smaller units needed to handle less demanding
 
tasks in a cost-effective manner.
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It is expected that the computer will be microprogrammed
 
to provide an AADC with a variable instruction repertoire as
 
well as the capability to emulate computers already in the
 
Navy inventory. The heart of the AADC approach is the byte
functional module. This is proposed for its flexibility.
 
It allows variation in the specific computer organization and
 
permits the computer word length to be chosen for a particular
 
application to meet the specific requirements. Because each
 
specific computer developed from these building blocks might
 
be substantially different in its structure, the AADC program
 
has proposed a meta-compiler to accompany this set of computers.
 
This compiler could be adjusted to suit each unique hardware
 
organization and instruction set. The alternatives of identical
 
computers for all applications or the creation of a new compiler
 
for each hardware design are considered too restrictive.
 

The Navy also envisions the establishment of a data bank
 
for "best case" computer algorithms for solution of many of the
 
common computational problems.
 

Reference:
 

"Advanced Avionics Digital Computer Base-Line Definition",
 
Report #AIR-53333Fa, Naval Air Systems Command, Washington,
 
D.C., 23 July 1969.
 

2.28 SOLOMON 

Classification: Parallel network computer (experi

mental) 

Operational Status: Unknown 

Description: 

SOLOMON consists of a 32 x 32 array of processing elements
 
(PE's) under control'of a central control processor. The central
 
control unit contains program storage, has the means to retrieve
 
and interpret the stored instruction, and has the capability,
 
subject to multimodal logic, to cause execution of those in
structions within the array. Thus, at any given instant, each
 
processing element in the system is capable of performing the
 
same operation on the operands stored in the same memory location
 
of each PE. Because each PE is provided with its own core
 
storage unit, these operands may all be different.
 

Each processing element may communicate with its four
 
adjacent "neighbors". The "edge" elements., which do not
 
possess a full set of neighbors, use their free connections
 
for I/O. Additionally, the central control may broadcast con
stants for use by all members of the array.
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Each PE in the array has a mode register; commands from
 
the central control to the PE are executed by the PE only
 
when the mode signals from the controller match the mode stored
 
in the PE.
 

Reference:
 

Slotnick, D.L., Borck, W.C., and McReynolds, R.C., "The
 
SOLOMON Computer", Proc. FJCC, 1962, Spartan Books, Washington,
 
D.C.
 

2.29 ILLIAC IV
 

Classification: 	 Parallel-array computer; contains
 
256 processing elements (experimental)
 

Operational Status: 	 Under development; target is late
 
1970.
 

Description:
 

The ILLIAC IV structure consists of 256 processing elements
 
(PE's) arranged in four arrays of 64 processors each. A thin
film memory of 2048 words is provided with each processor. A
 
common control unit for each array decodes the instructions and
 
generates control signals for all processing elements in that
 
array. A central index register group is included in the con
trol processor, and an index register and address adder is
 
provided in each processor for independence of operand address
ing. Each processor has an enable flip-flop whose setting
 
controls that unit's instruct-ionexecution. This bit is part
 
of a test-result register in each PE which holds the results
 
of tests on local data.
 

Data routing the processors is provided by connections to
 
units i+l, i-l, i+8, and i-8 from each unit i; end-around con
nections are provided for "edge" processors. (See Fig. 1.8)
 

The four arrays may be operated independently, in pairs,
 
or all together. The end-around data routing connections are
 
modified when the array configuration is changed. The system
 
program resides in a Burroughs 6500 general-purpose computer,
 
which supervises program loading, array configuration changes,
 
and I/O operations internal to the ILLIAC IV system and to the
 
external world. A large disk storage system is directly coupled
 
to the arrays, and there is also a provision for real-time data
 
connections to the arrays.
 

Instructions belong to one of two classes: control unit
 
(CU) instructions and PE instructions. The former control the
 
addressiig and sequencing in the CU, while the latter are de
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coded in the CU and then transmitted to all the PE's.
 

Software Characteristics:
 

The ILLIAC IV operating system resides in the B6500, and
 
uses the standard B6500 master control program (MCP) for pro
cessing of most tasks.
 

The system designers have decided that for effective use
 
of the parallel array elements, it is essential that all
 
possible parallelism be detected in those algorithms which
 
are to be executed. They have further concluded that the
 
difficulty of achieving this if the algorithms are specified
 
in languages such as FORTRAN or ALGOL is prohibitive. Thus
 
they have designed a language, TRANQUIL, which is intended to
 
allow the user to express array-type computational processes
 
in terms of arrays and parallel operations. A key feature of
 
the language is its mapping function, used to map arrays to
 
optimize data transfers between primary and secondary memory,
 
to minimize unfilled areas of primary memory, and to optimize
 
the use of the PE's.
 

References:
 

1) 	Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick,
 
D.L., and Stokes, R.A., "The ILLIAC IV Computer", IEEE
 
Trans. on Computers, vol. C-17, No. 8, August 1968, p. 746.
 

2) 	Kuck, D.J., "ILLIAC IV Software and Application Programming",
 
ibid, p. 758.
 

3) 	Northcote, R.S., "Software Development for the Array Computer
 
ILLIAC IV", Department of Computer Science, University of
 
Illinois at Urbana-Champaign, Report No. 313, March 1969.
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Chapter 3
 

Design Considerations
 

3.0 Introduction
 

The purpose of this chapter is to present the spectrum
 
of design considerations which are relevant to the architectural
 
configuration of the Data Management computer system. Addition
ally, material of tutorial content is included in order to
 
soundly establish an information base against which the design
 
proposed in Chapter 5 may be viewed. Necessarily, more questions
 
are raised than are answered, since many design details fall
 
beyond the scope of the current contract.
 

3.1 Configuration Considerations
 

The advantages and disadvantages of a number of possible
 
system configurations will now be-discussed. First to be
 
considered is the conventional uniprocessor computer shown in
 
Figure 3.1. Although this configuration is used in the vast
 
majority of computers, it fails to meet the requirements for
 
the space station on a number of different counts. First, in
 
its simple form, the system is incapable of degrading grace
fully since there is only one copy of each unit. Redundancy
 
might be added so that components could fail in the processor
 
without degradation; however, similar techniques fail to
 
protect against loss of data from a failed memory. Both the
 
memory and the series of I/O devices may be augmented within
 
limits to increase capacity. However, the processor is not
 
similarly expandable. Finally, since there is only one copy
 
of each element, the system cannot be repaired without inter
rupting its operation.
 

To meet graceful degradation and failure tolerance ob
jectives, it is beneficial to configure a system with multiple
 
copies of each of the important units. Figures 3.2 through
 
3.5 show four possible configurations. Figure 3.2 represents

perhaps the most conventional form of multiprocessor computers,
 
characterized by the use of multi-port memory. The system
 
shown uses four-port memories. Each of the ports is connected
 
to a separate data bus which in turn is connected to one of
 
the four driving units in the system, two processors and two
 
I/O controllers. Since the switch components are distributed
 
among the modules, it is straightforward to confine the effects
 
of a switch failure to the locality of the containing module.
 
If the number of memories in the system is at least one greater
 
than the number required to contain all of the necessary in
formation, then this system is capable of graceful degradation.
 
If through software techniques a sequence of snapshots of
 
memory contents is taken to provide recovery from memory failure,
 
and if a time history of input and output messages were main
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Figure 3.3 Multiprocessor with Crossbar Switch
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tained, a software package could be prepared through which
 
memory failures might be tolerated. Should a processor fail,
 
its loss does not disable the other processor nor either of
 
the memories from continued operation. Should an I/O con
troller fail, it similarly does not prevent operation'of the
 
other. The system is modularly expandable or contractable to
 
an extent. That is, more memories can be added with connections
 
for each of the devices present in the system. The addition
 
of processors or I/O controllers, however, requires additional
 
ports on each memory. To enable expansion, the small version
 
of the system could be configured with a number of excess
 
memory ports, sufficient to contain connections for the largest
 
version of the system desired. Such a system would then be
 
expandable, with the upper-limit determined by the number of
 
ports on the memory.
 

The system shown in Figure 3.3 is quite similar in con
figuration to that of Figure 3.2. The essential difference
 
between the two configurations is that the switching between
 
paths to memory is done in a switch, rather than being built
 
into the memory as in the Figure 3.2 configuration. This system
 
has essentially the same characteristics as the previous one,
 
since memories and processors may be added. It does not have
 
the limitation, however, imposed by a fixed number of ports
 
on a memory. Rather, the limitation comes in the mechanization
 
of the crossbar switch itself. If the switch were built in
 
a modular style, so that additional components of the switch
 
required to support additional elements could be added at
 
the time the extra units were added, then the system would be
 
as expandable as desired. Attainment of necessary reliability
 
in the crossbar switch itself is one of the most difficult
 
design jobs in this system.
 

The configuration shown in Figure 3.4 differs from those
 
of Figures 3.2 and 3.3 in that communication between memories
 
and processors takes place over common data buses. Since each
 
unit connected to a bus contains logic for recognizing commands
 
to itself, in principle the system can be expanded by merely
 
attaching additional modules to the bus. However, the capacity
 
of the bus itself is the dominant potential bottleneck in this
 
configuration, since the bus can carry no more than one message
 
at any time. However, if this bus is a partially parallel bus
 
(for example, one byte wide) and if sufficiently sophisticated
 
technology is used to allow a high bit rate, then the bus may
 
be made sufficiently powerful to permit substantial system
 
growth. One further distinction is shown in Figure 3.4 which
 
is not necessarily peculiar to this configuration; namely,
 
the use of separate memories for program and data. It is per
haps most appropriate in Figure 3.4, since the bus traffic
 
capacity potentially represents the upper limit on system
 
capacity. If, as in many machines, execution of each instruc
tion requires one instruction fetch and one data fetch, then
 
the provision of a second bus either doubles the system capacity
 
or halves the bit rate requirement for each bus. This system
 

63
 



Figure 3.4 Multiprocessor with Common Buses
 

Figure 3.5
 

Multiprocessor with Common Buses
 

and
 

Preferred Memory Paths
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is gracefully degradable, since memories and processors may
 
fail without causing the system to be down so long as they do
 
not in any way tie up the bus. However, the bus itself must
 
be infallible since no other communication path is provided.
 

The configuration shown in Figure 3.5 represents a com
promise between a multiprocessor configuration and a multicom
puter configuration. This system resembles Figure 3.4 in
 
that a common data bus allows any processor to communicate
 
with any memory. However, the system also represents Figure
 
3.2 since multi-port memories are used. In this system the
 
number of ports on the memory is exactly two, giving each
 
memory a preferred access path from one processor. Trade
offs are possible in this configuration between providing
 
small memories attached to processors or relatively larger
 
ones. A small memory would be used as a scratch-pad, whereas
 
a larger memory could contain a substantial fraction of the
 
total system memory and would contain resident programs and
 
data. This system degrades as gracefully as Figure 3.4, since
 
no program's execution depends upon availability of the pre
ferred path between the processor and the memory. However,
 
the existence of this path is intended to greatly reduce the
 
traffic load on the common data bus, which enables the system
 
to grow to a substantially larger configuration before reach
ing the upper limit of bus capacity.
 

In each of the systems it must be emphasized that a
 
requirement exists to prevent loss of information. No system
 
can be gracefully degradable if required information is destroy
ed or lost because of memory failure. The implication of this
 
requirement is that either the memories must be composed of
 
multiple units within each module so that there is a sufficiently
 
high probability that not both copies will fail at once and
 
therefore no information will be lost, or that the system soft
ware provides snapshots of data so that loss of memory does
 
not cause loss of data. In the latter case it is necessary
 
to supply an extra copy of memory which is not otherwise used
 
until a failure occurs. After a failure, data present in the
 
failed memory at the last snapshot is loaded into the fresh
 
copy. The implementation of such a recovery technique would
 
impose serious complexity on the operating system and applica
tions programs, since it would be necessary to update the
 
data from the failed memory to the time-state which existed
 
at the time of failure. This complexity is a strong stimulus
 
for rendering data-loss extremely improbable, by using multiple
 
copies of memory within each memory module, or other satisfac
tory means.
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3.2 Trade-off Considerations
 

Once the configuration has been selected, or in connection
 
with the selection, it will be necessary to make a number of
 
decisions with respect to the major components. The following
 
discussion is intended to illuminate some of the trade-offs.
 

3.2.1 Processors
 

a) Should the processors all be alike? Clearly, if an early
 
decision is made to include provisions for unlike processors,
 
the system should operate well even if only like processors
 
are used. Perhaps the converse is true as well, but it
 
seems desirable to consider whether the system requirements
 
tend to indicate that a mixture of processor-types would
 
be advantageous. Several types of processors that might
 
be considered &re:
 

1) 	 "Standard" units with conventional general-purpose
 
instruction sets;
 

2) 	 units which perform floating-point arithmetic sub
stantially more efficiently than the standard units;
 

3) 	 units which perform bit-manipulation operations more
 
efficiently;
 

4) 	 units especially suited for list-processing operations;
 

5) 	 special-purpose units for performing executive or other
 
high-duty-cycle operations;
 

6) 	 array processors.
 

The 	advantages of unlike processors are apparent; an off
setting disadvantage is the departure from uniformity,
 
which complicates the graceful degradation property, the
 
repair and spare requirements, and the scheduling software.
 
One approach which appears feasible is the use of alterable
 
microprogram memories in the processors, so that processors
 

could assume any of the identities described above (except,
 
perhaps, the last) by loading the appropriate microprogram.
 

b) 	 How should processor error-detection be implemented? On
 
one side of the trade-off is the conceptually simple and
 
fool-proof checking scheme in which two or more copies of
 
the processor unit perform identical programs simultaneously
 
and compare their outputs. If it can be assumed that no
 
event which causes an error affects more than one copy,
 
this technique will catch eve error. Further, since the
 
processor and its checker are identical-, the same spare
 

can be used for both. The alternative is the incorporation
 
of checking circuitry within the processor. Although this
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is a substantial complication to the design of the unit, it
 
presumably requires less logical components than does an
 
additional copy of the unit. However, parity or residue
 
checking within the unit cannot detect every error, and a
 
study of the expected probabilities of error-causing events
 
will be necessary in order to determine whether internal
 
checking and the inherent reliability of the unit are suffi
ciently trustworthy. An additional consideration regarding

internal checking is that new module failure modes are intro
duced: namely, failures in the checking components themselves.
 
The failure mode which causes continuous indication of no
 
error is particularly insidious.
 

c) 	Should "scratchpad" or other memory which is locally access
ible to the processor be provided? The use of scratchpad
 
storage can be beneficial both as a means of reducing access
 
time to data used in computations, and in removal of traffic
 
from the main communication lines in the system. The latter
 
point is especially significant if a configuration like
 
Figure 3.4 or 3.5 is used. Consider Figure 3.5: if the
 
size of local memory is larger than necessary for the data
 
of the task currently being processed, it becomes possibl-e
 
to use the additional space for the current program, or to
 
assign data or programs to be resident (permanently located)

there. If data or program for a task were resident in some
 
memory unit, it would clearly be desirable to execute that
 
task in the associated processor, although that assignment

would only increase efficiency, and not be mandatory. How
ever, there would be additional executive overhead introduced
 
as a result of the processor-preference criterion for schedu
ling; for example, the executive must prevent the occurrence
 
of a queue of tasks waiting for a preferred processor when
 
other processors are idle. Furthermore, whether or not the
 
loss of equality between units by virtue of resident-assign
ments is favorable or unfavorable to the reliability and
 
recovery strategy requires careful consideration.
 

3.2.2 Memories
 

a) 	Should memory for program and data be separate? Typically,

execution of an average instruction requires one instruction
 
fetch and one operand fetch. Separate program and data
 
memories lend themselves to separate bussing, as shown in
 
Figure 3.4, which reduces congestion. Additionally, the
 
fetching of programs from secondary storage, if required,
 
may be done without adding traffic to either bus if an
 
appropriate channel is provided. However, such savings are
 
achieved only by addition of hardware. Loss of flexibility
 
should be avoided by allowing program and data to be in the
 
opposite memory type when convenient.
 

b) 	Should memory be paged? While certainly no substitute for
 
adequate memory capacity, paging can be used to increase
 
the effectiveness of the physical memory present. However,
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additional software and hardware are required to implement
 
such a system. Even so, use of some form of core-multiplex
ing appears desirable at this time, in view of the extent
 
to which the computational load predicted for the system re
sembles the time-sharing load of present commercial systems.
 
Implementation questions such as page or fragment size,
 
number and type of associative registers for rapid access,
 
and 	software strategy are of immediate significance.
 

c) 	How should storage protection be implemented? The wide
 
variety of program and data sources, the desire for on-board
 
program preparation and checkout, and the requirements for
 
high system reliability make storage protection appear manda
tory. To some extent, paging would provide such protection,

since contents of pages not assigned to a task are not even
 
addressable by the task.
 

Still further protection is desired, however. No task should
 
be allowed to modify its own instructions by writing into
 
its own program area; further, it would be beneficial to
 
implement array-limit protection, so that no writing address
ed to an array would be beyond that array's bounds. Addi
tionally, some subset of the storage protection mechanism
 
should be available to tasks for their own use.
 

d) 	Should memory addresses be interleaved among modules? Inter
leaving is frequently used to permit concurrent multiple
 
memory accesses, to reduce the number of memory conflicts
 
between processors and I/O controllers. In a multiprocessor
 
configuration, concurrent execution of the same program by
 
two processors when no interleaving is provided might cause
 
each to take twice as long to finish as the no-conflict case
 
would have taken. Two-way interleaving would alleviate this
 
problem. However, if one of the two halves failed, every
thing in memory would be affected. Because recovery from
 
loss of data is so difficult, the design of the memory must
 
make any such loss extremely improbable. If that objective
 
is achieved, interleaving appears desirable.
 

e) Should certain instructions be physically implemented in the
 
memory rather than the processor? The goal of this would be
 
to reduce the traffic in the communication system of the com
puter. List-search instructions, for example, might be con
ducted wholly within a memory module with virtually no use
 
of a data bus. The same is true of the intra-module multiple
word transfers. However, the limited use of such instruc
tions, compared with the estimated cost of the implementa
tion, including logic to deal with encountering a module
boundary, seems to indicate that it would be undesirable. If
 
memory interleaving were used, that would cinch it.
 

f) 	How can content-reliability best be achieved? This is a
 
three-fold question; it involves how to make the loss of con
tents from a given unit improbable, how to detect it if it
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should happen, and what to do about it when it is detected.
 
The first is a design-for-reliability question beyond the
 
scope of the architectural consideration. The second and
 
third may or may not be connected, depending on whether,
 
for example, redundant copies of memory are operated to pro
vide error detection and data-backup. Many types of check
ing codes are capable of error detection in memory opera
tions and are readily implemented. Error correction can
 
also be achieved, although at the expense of additional
 
check-bits and logic. However, address selection errors
 
such as no-word, wrong-word, or multiple-word are not cor
rectible by such means, and unless these can be made suf
ficiently unlikely, use of extra copies may be the only
 
choice.
 

g) 	How much read-only memory should be included in the system?
 
The Apollo on-board computer method of placing all programs
 
in fixed memory is clearly not feasible for the next genera
tion of long-lifetime applications. This is true for two
 
reasons: first, too much on-line memory would be required,
 
and second, ROM is too inflexible (it was in Apollo, too).
 
However, read-only microprograms are frequently used, as
 
are system bootstrap memories for initial loading. The
 
priority of this question is probably rather low.
 

3.2.3 Communication Paths
 

a) 	How many paths should there be? The figures and preceding
 
text have portrayed these tradeoffs.
 

b) 	What should each path's width be? Obviously, the path

width should be related to the traffic expected, to prevent
 
log jams. The expected traffic is a function of processor
 
and memory capabilities, problem characteristics, and pro
blem mix. The latter two must be expected to still be
 
fairly umcertain at the time this decision must be made,
 
and an approach must be adopted which is quite conservative.
 
The history of the growth of planned function and the ex
tension of the life of the system must be taken fully into
 
consideration.
 

c) 	Should control and addressing signals have separate paths

or be multiplexed with data? This is both a traffic and a
 
reliability question. That separation of control and data
 
signals reduces traffic on the data bus is obvious; whether
 
it is advantageous to have a separate path to control or be
 
controlled by switching in the event of failures must be
 
investigated.
 

d) 	How can communication reliability best be achieved? Ques
tions discussed previously regarding redundancy and check
ing also apply to the communication net. So-called "trans
mission" coding can be used to check for and even correct
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errors. However, since a viable communications net must
 
always exist even if processor and memory modules fail, the
 
problem is a severe one.
 

3.3 System Organization for Reliability
 

3.3.1 Introduction
 

Reliability, failure tolerance, and graceful degradation
 
are related requirements which must be considered in combination.
 
Reliability is concerned with the probability of failure in the
 
system equipment. It is associated with a time interval, and is
 
either estimated theoretically using a mathematical model, or
 
determined empirically by observation. Failure tolerance is the
 
capability of the system to continue operation after a failure
 
has occurred, whereas graceful degradation implies a gradual
 
reduction of system capability when failures occur. Ideally
 
the system design should:
 

a) Minimize the probability of equipment failures.
 

b) Continue full operation even if failures do occur.
 

Because current technology does not permit simplex con
struction of a computer having the required life without mainte
nance, some form of repair or replacement is mandatory. The
 
next subsections describe systems which obtain actual or effec
tive replacements from fixed and open-ended spare pools.
 

3;3.1.1 Closed System
 

Consider M to be the number of modules of a given type
 
in the system, and L to be the number of those which must be
 
active to provide adequate capacity. In a closed system, failed
 
modules are not replaced, and M must be about four times L to
 
achieve a .99 reliability over five years, given °afailure rate
 
of .0002 per hour per unit(10). In such a system,- an estimate
 
of system reliability can be obtained by forming the product of
 
the reliabilities of all modules, with the switching functions
 
allocated to other modules, or to a hypothetical switch module,
 
as appropriate. Each factor is a function of the number of gates,
 
the failure rate of gates per unit time, and time. Using the
 
data provided in reference 10, and considering an example of a
 
processor of 10,000 gates with the failure rate of 10- 8 per hour,
 
it is clear that to achieve a reliability of .9 or greater over
 
five years in a closed system requires either a significant de
crease in failure rates, or redundancy. However, a triply-re
dundant system is less reliable than a single unit after 7/10 of
 
the mean life of an individual unit. Thus, there are substantial
 
reasons why a closed system will not provide a ten year life with
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currently available gate reliability.
 

3.3.1.2 Open System
 

The space system will be an open system, in which failed
 
modules are replaced. In this case, t--overall reliability of
 
the system involves the probability of the occurrence of a second
 
failure before the first is repaired. In this sense, reliability
 
encompasses more than equipment reliability. In an open system,
 
the probability of mission success (PMS) is a measure of adequacy
 
which is somewhat less dependent on reliability than it is in
 
the closed system. This is because the PMS is defined as the
 
probability that the computer system will perform at or above
 
specified operational levels, which are time-dependent. Thus, a
 
dip in performance capability may be harmless to mission success
 
if the performance required during the dip happens to be low.
 
The PMS is a function of the time to repair and replace modules
 
as well as the reliability of the modules. A reliability model
 
which includes repair statistics will be generated for purposes
 
of analysis. However, it is intuitively evident that lower
 
module MTBF's can be tolerated in an open system for a given
 
reliability than in a closed system.
 

3.3.2 Graceful Degradation
 

The term "graceful degradation" refers to the diminished
 
relative operational capabilities of the system after one or
 
more permanent failures have occurred. The ability of the
 
system to continue its function after a failure has occurred
 
in an element or module is usually achieved by using either
 
redundantpo-1ircc modules or off-line modules which can be con
nected to the system after the error has been identified.
 

Assuming that there are "critical" functions being perform
ed by the DMC$ and that it must be operational for ten years,
 
there are two basic approaches:
 

3.3.2.1 Standby/Active Approach
 

Given that L active modules of a given type are required
 
for processing, and that M of these are provided in the system,
 
then (M-L) of them may be kept on standby status, awaiting acti
vation after failures among the L modules. Thus, the system can
 
survive (M-L) failures without any degradation of system per
formance. In order that certain functions of the system may be
 
continued when more than (M-L) modules have failed, levels of
 
operational priority must be established, since less processing
 
can be done by the system as more modules fail. Figure 3.6
 
shows an example.
 

In this case, we see that the system continues to perform
 
100% of its functions as long as L modules are available. When
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less than L modules are available, selected functions are elimi
nated. When all but one module has failed, the system continues
 
to perform only those functions considered essential, and ignores
 
others. The number of levels selected and the functions asso
ciated with each are arbitrary and will define the degraded modes
 
of the system. Probabilities can be predicted using the model
 
for each level. The overall goal for system reliability is crit
ical to the selection of the number of modules. For example,
 
if L were the maximum number of modules simultaneously required,
 
then it is probable that less than this number will suffice for
 
much of the time. If this were taken into account in the pro
bability model, then M could be smaller, since the joint pro
bability of the occurrence of the (M-L+l)st failure at a time
 
when L modules are actually required is less than the probability
 
of that failure alone.
 

3.3.2.2 Full Redundancy Approach
 

In a full redundancy approach, the system has only
 
one level of operational degradation; it will either be opera
tional with 100% capability, or inoperative. For example, a
 
triply-redundant system will provide 100% processing capability
 
until the second failure occurs, at which point it must stop.
 
This mechanization may be adequate in an open system. If the
 
probability of the occurrence of a second failure before the first
 
module has been repaired is sufficiently small that the PMS goal
 
is achieved, then this approach is adequate. Note that a multi
mode redundant system with voting could be used to increase the
 
number of successive failures that the system could tolerate
 
prior to repair.
 

3.3.2.3 Comment on Approaches
 

a) 	In both approaches, the system design must provide a "fail
 
safe" mode if there is any appreciable probability that the
 
set of failures which have occurred prevents the system from
 
continuing. When this occurs:
 

1) 	It must recognize the situation, and communicate it to
 
the crew and other computers.
 

2) 	All non-critical functions must be terminated, and the
 
system automatically put into a dormant mode, receptive
 
to direction from the operator. Perhaps hardware func
tions will be required which automatically set status
 
and control bits, so that the system is left in a truly
 
safe configuration. Apollo G&N computer experience has
 
shown that this simple-sounding procedure can in fact be
 
extraordinarily difficult to implement because of the
 
time-varying nature of what "safe" really implies.
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b) 	other factors for consideration with respect to these ap
proaches are complexity of software, error detection capabil
ity, etc.
 

c) 	It may also be consistent to require configuration of either
 
type mode as a function of mission phase. That is, during
 
critical phases, the system might operate in a redundant
 
mode, but in the active/standby mode otherwise.
 

3.4 Elementary Reliability Based on Queueing Theory
 

3.4.1 Introduction
 

The purpose of this section is to illuminate some of the
 
trade-offs which must be resolved in designing a configuration
 
intended to allow "graceful degradation" by inclusion of more
 
than one unit of each kind. It is not claimed that the curves
 
included in this document have direct applicability to any parti
cular design; rather, they are intended to be roughly character
istic of several different design-concepts, and provide an in
tuitive feeling for the relative benefits provided by the concept
 
itself and by varying the redundancy within a given concept.
 

Throughout this section, failures are assumed to be random,
 
with exponential distribution. This assumption is made because
 
it is expected to be roughly correct, but also because it is
 
mathematically easy to use. It is realized, of course, that non
random failures and random failures of other characteristics may
 
be of significance. However, they are completely ignored herein.
 

3.4.2 Review of Basic Theory
 

If we denote the probability of survival (continued suc
cessful operation) of an element at time t by s, (t), the ex
ponential distribution assumption may be portrayed as
 

-
Xt
 sl(t)- e
 

where X is the failure rate, or average number of failures of
 
that kind of component per unit of time. Another way of describ
ing 	this failure characteristic is to say that the probability
 
that a unit which is operational at time t will fail by the time
 
t+dt is Xdt, and therefore independent of t itself.
 

Consider now a system repair station or maintenance man
 
which is capable of working on a single problem at a time, and
 
whose probability of completion of a repair which is in process
 
at time t by time t+dt is V'dt. If the population of units po
tentially requiring repair is large, the probabilities that none,
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one, two (and so on) units are failed and not yet repaired are
 
described respectively, by
 

dP0 
t - -A +SP 

dP 1 
+

dt A P0 - (S+A) P 1 S P2 

dPi
 
+ 
- = A Pil - (S+A) Pi S Pi+l 

dt 

where i > 1, and A and S represent the rates of arrival (failure)

and service (repair) which characterize the system and the repair

facility. The assumed initial conditions for this set is that
 
all units are initially working: P0 (0) - 1, and Pi(0) = 0 for
 
i 1.
 

Given values for A and S, these equations could be integrated

numerically to obtain at least the P.'s for small i's. However,
 
we postpone discussion of time-dependent solutions temporarily,

and instead consider the steady state solution. In the steady
 
state, all the dPi/dt are zero, and the solutions may be obtained
 
step-by-step in terms of P0 by starting at the top.
 

= 
Pi P0 (A/S)i i 2: 0
 

Since the Pi's are mutually exclusive and cover all cases, P0
 
may be found from
 

E Pi = 1 

Thus, P0 = 1 - A/S, and
 

i
Pi = (1 - A/S) (A/S-) i > 0 

Under these conditions, the average number of units not opera
tional may be readily computed from
 

m - Z i Pi = A/(S-A)
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Several cases are illustrated below:
 

A/S: 0.1 0.5 0.9
 

P0: 0.9 0.5 0.1
 

PI: 0.09 0.25 0.09
 

P2: 0.009 0.125 0.81
 

M: 0.111 1.0 9.0
 

Notice that as the average failure rate approaches the average
 
repair rate capacity, the number of units awaiting repair grows
quite rapidly.
 

3.4.3 Application to a Finite Population
 

In the preceding analysis, the assumption of a large
 
population permitted treatment of A and S as constants which
 
were independent of the state of the system. Consider now a
 
small population representative, say, of the number of processor
 
elements in a multiprocessor computer system. If we ignore the
 
possibility that the pressure of a long waiting line at the
 
repair facility will have an effect on the repair rate (one way
 
or the other), S may still be considered constant. However,
 
the probability that one of the operational units fails in a
 
specified interval is strongly dependent on the number which are
 
already in the failed state: indeed, if none are working, the
 
probability that one more fails is zero. Thus,
 

dP0
 
dt - -A 0 P+SPi
 

dPi 
- (Ai + S) Pi 

+ S Pi+l 1 i < N
t - Ai-iPi-I
dt
 

dPN
 
- = AN-I PN-1 - S PN 
dtN
 

where Ai is the system failure rate when i units are already in
 
the repair queue.
 

If A is defined to be the failure rate of an individual unit
 
(previously, A was the collective failure rate of a large ensemble
 
of units), then Ai = (N - i)A and
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dP

dt0 -N A P0 + S P 1 

dP i 
at - (N-i+l)A Pii - [(N-i)A + S]P i + S Pil < N i 

dPN
 
t A PN- S PN
dtN
 

The steady-state solution of this set is given by
 

i=o (N-i)!
 

Pi iN!
 
T P0 (A/S)i l < N 

A few illustrative plots of the solutions of the differential
 
equations are shown in.Figure 3.8. The scales are non-dimension
al; time is expressed in units of At, and the repair rate in
 
terms of S/A. The curves indicate what might be expected in
tuitively, in that as time increases, the system quickly leaves
 
the initial all-operational state P0 = 1, while the probabilities

of n units in the repair queue increase. The P's for larger

n's increase more slowly than for smaller n's, since the first
 
transitions into the n state come from the n-1 state.
 

Figure 3.9 shows a plot of the steady-state solution for
 
a number of cases, but presented in a different light. Again

with S/A as a parameter, the probability that all units are in
 
the failed state is plotted against number of in--ts in the
 
system. Notice that the probability scale is logarithmic, to
 
allow display of the wide range of values involved.
 

Figures 3.10 and 3.11 display the probabilities that less
 
than 3 and less than 5 units are operational in the steady state,
 
as a function of number of units in the system. The motivation
 
for this form of display is that the situation whose probability

is plotted is the one in which a system requiring at least 3 or
 
5 units for full performance of its functions is below that level.
 
Again, several intuitive expectations are borne out. First,
 
notice the curvature of the plots for lower values of S/A, which
 
represent cases where the average unit repair rate is little
 
greater than the unit failure rate. This curvature represents
 
a tendency towards a horizontal asymptote, and reflects the
 
fact that when the repair facility is slow, addition of units
 
causes little reliability improvement. This is because the
 
failed units wait in the repair queue so long, that the added
 

77
 



1.0 

SIA - 10
0.9 (see text)
 

0.8 	 P0,3 

0.7 

0.6 -	 P0.6 

" 0.5 
0 

0.4 

1,6
0.3 	 -P
 
0.3P1,3
 

0.2 

0.1 

0 
0 	 0.1 0.2 0.3 0.4 0.5 

NORMALIZED TIME 

Figure 3.8 
Probability that m of n Units are Awaiting Repair Vs. Normalized Time
 

78
 



1.0 

101-2
 

10-2 5
 

103

10
 

10- -

S10 2010-

10-12 

o10 -8 

0-9 -50 

lO-10- PARAMETER =S/A 
(see text) 

10-13 
10
 

10-12

10-13

10- 14  0 

10-15 1 1 J1'....I I.I 

0 2 4 6 8 10 12 14 16 18 20 

NUMBER IN SYSTEM 
Figure 3.9
 

Probability that no Units are Operational vs.
 

Number of Units in the System
 

79
 



1.0
 
10 -1  5,
 

102

10- 

10-  20 

10 -6 

10-6 

- 10-8 -5 

10 .9
 

10-10


10-12 

-13 - PARAMETER S/A 200 
(see text)


10-14 

0 2 4 6 8 10 12 14 16. 18 20 

NUMBER IN SYSTEM 

Figure 3.10
 

Probability that Less Than Three Units will be Operational
 

Vs. Number of Units in the System
 

80
 



units are very likely to fail themselves before the others get
 
fixed.
 

The second intuitive belief is that the number of spares,
 
on a per-required-unit basis, should diminish as the number of
 
required units increases. That is, if a given reliability is
 
achieved when three units are required and five units (1.67 x 3)
 
are provided, then better reliability should result if five
 
units are required and 1.67 x 5 or 8.33 units are provided. For
 
example, in Figure 3.10 it is seen that the probability that less
 
than three units are operational when five are in the system and
 
S/A = 100 is 0.00006; however, Figure 3.11 shows that for the
 
same S/A, the chances that less than five of 8.33 are operational
 
are about ten times lower. Unfortunately, some of the happiness
 
that this brings to the system designer is lost when the diffi
culties of adding a third,of a unit to the system are considered.
 

3.4.4 No On-board Repairs
 

Finally, an alternate concept for system maintenance is
 
considered. Suppose that all the units of a type are either
 
hooked into the system or that on-board spares can be swapped
 
with failed units so quickly that it is as though they had been
 
in the system. Further suppose that failed units are not re
paired on board, but rather the replacements are brought up
 
for those units on the next periodic shuttle flight. Then, if
 
the shuttle flight period is T, the state of the system tends
 
to diminish with time over the interval, but is restored to
 
perfect condition every T units of time. The differential equa
tions for one interval of this case are simply
 

-A P
dP0 


dt
 

dPi 
- - Ai-i Pi-i - Ai Pi 1 < i < N 

dt
 

dPN
 

AN-I PN-1dt 

for 0 S t < T, with P0 (0) = 1, and Pi()= 0 when- 1 i N. 
If we changee variables so that henceforth t represents what was
 

t/T before, and if the former relation Ai = (N-i)A is substitut
ed, the equations become
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d - [-N P0 ] AT 

dP i = I(N-i+l) Pi-i - (N-i)Pi] AT 1 < i < N 

dt
 

dPNdt - ][PNdt AT 

for 0 t < 1. This system never really reaches a steady state
 
in the zero derivative sense, but to avoid the nuisance of the
 
time dependence, Figure 3.12 has been constructed from the aver
age values of the P's over an interval, with l/AT as the para
meter.
 

3.4.5 Conclusion
 

The figures in this section seem to show that reliabili
ties of multi-unit systems which require only a fraction of the
 
total number of units to be working can be made quite high. How
ever, it must be stressed that these results are based on models
 
of the failure process. It is important for the reader to real
ize, as he probably has already, that no accounting has been
 
made for the fact that to increase the number of units in a
 
system requires more than just more units; unfortunately, more
 
connections, switches, and other components must be added as
 
well, and often it is the unreliability of these that dominates
 
the system performance.
 

Another oversimplified consideration is that the failure
 
rates of units are independent of each other and of the level of
 
their own activity. It is well known that failure rates of many
 
kinds of electronics increase with temperature, and decrease
 
when power is off. Failures induced by power switching have also
 
been ignored, but are potentially significant.
 

The basic conclusion, however, seems clear: if a means
 
can be found for constructing a system so that redundant units
 
can be utilized without introducing appreciable unreliability
 
via their own inclusion, the system reliability can be made
 
almost arbitrarily high. The design proposed in Chapter 5 is
 
believed to possess these attributes.
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3.5 Segmentation and Paging
 

3.5.1 History
 

The handling of the problem of allocation of memory in
 
computers has evolved over the years in response to the changing
 
usage of the computer as a system. In the early systems, only
 
one job ran at a time, and the entire computer resources were
 
available for use by that job. Core allocation as such did not
 
exist; the individual programmer was simply responsible for in
suring that his program would fit in the storage available. If
 
this was insufficient, he was required to break his program up

into pieces which would fit, and to plan their sequential exe
cution. This process is referred to as overlaying.
 

The next significant change to storage management occurred
 
when multi-programming was introduced. In this case, more than
 
one job could simultaneously be active in the system, and a
 
decision had to be made regarding allocation of space to each.
 
Time-shared systems introduced an even greater dimension, since
 
response-time seen by the user at a terminal became an important
 
parameter in the system operation. The first concept introduced
 
to solve the storage allocation problem was known as relocation.
 
At the time when a segment of a program was to be executed, it
 
was preprocessed by a program called a relocating loader which
 
would customize the program for that instance of execution by
 
changing the addresses in the program to correspond to the
 
physical memory locations from which the program would be exe
cuted. Subsequently, hardware was added to the processor to
 
aid this problem,,typically in the form of relocation registers.
 
This removes some of the problem of relocation, since it was
 
performed dynamically in the hardware. However, the binding

of several program segments together to run was still required

since each of the segments was written as though it was to be
 
executed in the low numbered addresses of memory. As the number
 
of users occupying resources of the computer at a given time has
 
grown, the responsibility for core allocation among them has
 
been awarded to a supervisory program. As time-response has
 
become as important as processor efficiency, more exotic address
 
mapping hardware has been added to the processor.
 

The manifestation of the fundamental storage allocation
 
problem is storage fragmentation, or fractionation of free
 
storage into multiple, relatively small, pieces. This phenome
non is partially caused by the general inability to anticipate
 
storage requirements even over seemingly short time intervals,
 
but it is somewhat unavoidable without hardware aid. An illus
tration-may prove helpful: suppose there are ten units of
 
storage, numbered 0-9. Suppose also that the allocation algo
rithm awards the lowest-numbered smallest piece of available
 
space which is big enough to satisfy the request. Consider the
 
following sequence, where the number is-the space involved,
 
and R or F indicate whether the transaction is a request or
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finish (return of space): 2R, 5R, 2F, 4R. It is seen that the
 
4R request cannot be satisfied even though five units are avail
able, because of the fragmentation of free space.
 

Two methods used to circumvent this problem are described
 
in the following sections; a survey of systems using these
 
methods is given in Appendix A.
 

3.5.2 Paging
 

Paging is a form of address mapping which was first utilized
 
in the Ferranti Atlas Computer. It was introduced to help solve
 
two problems which are an inherent part of time-shared computer
 
usage:
 

1) 	It is desirable to execute programs which are not wholly
 
loaded into memory or which will not even fit in the avail
able memory space.
 

2) 	It is necessary to remove programs from memory and replace
 
them with ones more currently required, and later to restore
 
them, without substantial storage allocation overhead.
 

The 	notion of paging is simple enough: a level of indirect
 
addressing is added to cause logical addresses issued by a pro
gram to be translated into physical addresses corresponding to
 
the 	current location of the block of the users program or data
 
referred to. The list which describes the translation is re
ferred to as a page table, and is addressed implicitly by the
 
processor when needed.
 

Paging has permitted the user to write his program as though
 
it were to-execute in a large virtual memory, the correspondence
 
between the virtual address space of his program and the physical
 
address space computer being accomplished at execution time. In
 
execution, the reference by a program to a page not currently
 
in memory causes a missing-page interruption. The supervisory
 
program then initiates a fetch of the desired page, meanwhile
 
giving control to another process awaiting execution. This
 
strategy is referred to as demand-paging. The combination of
 
poor strategy for selecting pages to be replaced in core plus
 
overambitious attempts to crowd too many users into a given
 
memory have caused some notable performance disasters when paged
 
systems have become overloaded.
 

One of the important characteristics of paging is that it
 
is invisible to the programmer. This means the programmer need
 
not be aware of the fact that he has other than the virtual memory
 
which he envisions when his program is prepared. This can be an
 
advantage since it frees him from problems of storage allocation.
 
It, however, can also be a disadvantage, since it prevents him
 
from being able to influence memory allocation. Since pages are
 
usually fixed length blocks, it is difficult for him to arrange
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the contents of the blocks so that the pages are meaningful
 
logical units of program or data. As a result, sometimes large
 
fractions of pages are filled with information not immediately
 
relevant to that which is being currently used.
 

Hardware aid to the paging process takes several forms.
 
First, the processor may incorporate high speed memory for stor
age of part or all of the translation address words, to reduce
 
the time penalty caused by the extra indirection in addressing.
 
Second, the hardware can control the settings of bits to indicate
 
those pages which have been referred to and those pages which
 
have been written into since a given time, in order that the
 
page switching software can determine whether it is necessary
 
to write a page out to secondary storage when its space is pre
empted to make room for another page. If the page has not been
 
modified, it need not be written out, since a copy already exists
 
on the secondary storage device. Third, the hardware might (but
 
normally does not) keep an ordered list of page references so
 
that the software could determine with a minimum of overhead
 
which page was least recently used when space for a new page was
 
required. Fourth, the hardware can readily implement storage
 
protection by providing bits in the translation address word
 
which indicate the page is a read-only page, an execute-only
 
page, or a free read and write page. It should be noted that
 
pages not known to a process by virtue of being included in its
 
page table are protected automatically, since they are simply
 
not addressable by the process and therefore, are completely
 
safe from over-writing.
 

That paging is an effective means of memory allocation
 
depends upon a characteristic of programs in execution for short
 
periods of time: namely, that the accessing of words in program
 
and data is not uniformly random, but rather is confined to a
 
small subset with high probability(6 ). Thus, if the period of
 
execution of a program is brief, for example, one time slice,
 
much of the program and data will not be referred to during the
 
interval, and therefore need.not occupy space in memory. The
 
extent to which this hypothesis is true in a given application
 
can profoundly affect the success or performance of a given
 
implementation. As a result, many articles have appeared in the
 
literature describing different paging measurements and strate
gies.
 

3.5.3 Segmentation
 

Segmentation is a generalization of the virtual memory
 
concept through the provision of a series of independent virtual
 
memories. Each one of the virtual memo-ries may be considered to
 
contain exactly one segment, so that any segment may grow or
 
shrink without affecting other segments. Further, segments not
 
in use during execution of a program need not be physically pre
sent in memory. That is, segments need be loaded only when re
ferred to. This is useful since the largest unit of program
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which must be bound together, as described previously, is the
 
segment. Since the virtual addressing within each segment may
 
begin at location zero, and since these addresses are dynamically,
 
not physically, relocated during execution, segments may readily
 
be shared between processes without elaborate additional mechanism.
 

It is seen that some of the characteristics of segmentation
 
overlap those of paging. Indeed, if the typical size of a seg
ment was of the order of the size of the page, paging as such
 
would not be useful as an additional characteristic of the hard
ware. On the other hand, if segments are often substantially
 
larger than the page size, paging is useful.
 

The use of segmentation is often referred to as two-dimen
sional addressing, since the address of an item in a segment is
 
specified by a segment number and a relative location within the
 
segment. Therefore, unlike paging, segmentation is a logical
 
division of address space which is completely visible to the pro
grammer, and need not be inherently related to-EH oblem of
 
memory allocation.
 

Two of the most recent systems to be based on segmentation

(5 ) 
are the MIT Multics system using the G.E. 645 computer and
 

the Burroughs 6500/7500 computer system(3 ). In Multics, both
 
segmentation and paging are provided. In the Burroughs system,
 
only higher order language is used for program preparation, and
 
the structure of these languages is used to inherently define
 
rather small segments. Thus, paging is not required, except
 
for large data arrays. In both systems, segmentation is used to
 
segregate read-only procedures or programs from alterable data.
 
Additionally, both systems rely on segmentation to achieve order
ly sharing of programs and data among processes. In both, seg
ment descriptor words are used for location translation of seg
ment addresses. Segment length information is also contained in
 
the descriptor word, and is used to validate addresses as they
 
are issued. Burroughs uses this feature to the extent that each
 
array is defined to be a segment, so that illegal subscripting
 
can be discovered by hardware, eliminating software overhead for
 
this.
 

3.5.4 Paging Studies
 

3.5.4.1 Theoretical Consideration of Paging
 

The material presented in this section is based on the
 
content of reference 7.
 

Let m be the probability that a page-fetch is demanded by a
 
particular program. This is a function of the size of the pro
gram, the number of programs resident in memory, and the memory
 
size. Let T be the traverse time of a page-fetch, which is the
 
sum of Ta,' the access time of the page on the secondary storage
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device, and Tt, the time to transfer the -block of words com
prising the page. Let time be measured in microseconds, making
 
the time-unit roughly comparable to the instruction execution
 
time of the processor. If a page is defined to be 1000 words,
 
the 	following table indicates typical speeds:
 

Device Ta Tt T
 

IC or film .1 102 102
 
Core 1.0 103 103
 
Bulk Core 10 104 104
 
Fast Drum 104 103 104
 
Moving-arm Disc 105 103 105
 

Suppose a job is running for an interval of time over which
 
the missing page probability, m, is approximately constant. We
 
wish to compute the paging efficiency, which is defined to be:
 

e(m) RT T
 

RT + Page wait time
 

Page wait time = m x RT x T
 

e(m) RT 1
 
RT + m RT T 1 + m T
 

Figure 3.13 is a plot of e versus m for various values of T. It
 
illustrates dramatically the need for small values of the product
 
m T.
 

At first glance, it appears that a low paging efficiency
 
for one job could be compensated for by running enough jobs
 
simultaneously to keep the processor occupied. This falls short
 
on two grounds:
 

1) 	The objective of paging (neglecting interactive users'
 
response times) is to multiplex core to keep the processor
 
efficiently loaded. But if each job has only a low duty
 
cycle, then more core will be needed, not less.
 

2) 	The paging device, often a drum, will saturate and become
 
the limiting item. In running a set of 10% efficiency jobs,
 
the drum may continually be fetching pages, and the pro
cessor will be idle while all jobs are waiting for pages.
 

The only real answer lies in providing enough pages so
 
that each job can run with a reasonably high efficiency.
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3.5.4.2 Experimental Studies
 

Results of several studies are presented without ex
tensive comment. First are some measurements by Varian and
 

4
Coffman( ). Figure 3.14 is a plot of what is called "page

residence time" distribution. Actually, it is the distribution
 
of the time intervals between consecutive page faults for a
 
particular problem under differing allocations of number of
 
pages. The test problem is a SNOBOL compiler for the IBM 360,
 
which consisted of 15 instruction pages and 22 data pages, each
 
of 4096 bytes. The results for data and instruction pages are
 
given separately. The quantity labeled p is the mean time
 
between page faults; k is the number of pages allocated. As
 
can be seen, for 8 out of 15 instruction pages, the mean time
 
between page faults is only 300 instructions; for 8 out of
 
22 data pages, the mean is 120 instructions.
 

Figure 3.15 shows the overall picture for the same problem.
 
The ordinate, labeled "normalized page faulting", is the number
 
of page faults divided by the total number of instructions that
 
were executed. The abscissa, labeled k, is again the maximum
 
number of pages that this problem was allowed. As mentioned
 
above, the size of the problem was 37 pages. The scaling is
 
not good atlarge k's, but even for a k of 24 to 30 the amount of
 
paging is not negligible. (LRU = Least Recently Used, BOR =
 
Belady Optimum Replacement, two strategies for page replacement.)
 

Another study was done at the IBM Thomas J. Watson Research
 
( 1
 Center ), using a specially modified 7044. In these cases,
 

core size was varied, and the actual time to complete the pro
blem was measured. The secondary storage device had a traverse
 
time that was 25,000 times the core memory cycle time. Three 
jobs were selected to be run. 

1) A FORTRAN job that inverts a 100 by 100 matrix. 

2) 	A FORTRAN job that does data correlation using a fair quan
tity of input information.
 

3) 	A sorting job that sorted 10,000 10-word items.
 

Figure 3.16 shows the run time as a function of the alloted
 
core space for the first job. The original problem is given
 
by the points marked by the circles. The triangles and square
 
represent versions of the program that were reprogrammed to re
flect the paging environment.
 

Figure 3.17 illustrates the second problem results. This
 
time the triangles stand for the initial program and the circles
 
for the improved version.
 

Figure 3.18 gives the times for the sort problem. The
 
solid rectangle is the basic program and the others were succes
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sive improvements. The rather dramatic savings in core needed
 
were achieved by using the large file of data (100 pages) in
 
small sub-files at the cost of additional processor time. Less
 
processor time is required when the whole file can be randomly
 
addressed and a list threaded through it.
 

The thrust of the conclusions was that acceptable perfor
mance can be realized if programming techniques are used which
 
recognize the paging environment. If allowances are made by

the programmer for the need of the paging mechanism to shrink
 
the allotted size of memory available for his program, then it
 
is possible to produce programs that will run efficiently under
 
paging.
 

Two factors should be mentioned which might influence the
 
extrapolation of the results:
 

1) The compilers and programs were taken from an IBM 7044, a
 
second generation computer. Techniques and program layout

methods have changed since then: re-entrant code, pure

procedures, involved interaction with large operating systems,
 
etc.
 

2) The jobs all had one characteristic in common: they were
 
larger than 32K in their natural form, and had all been
 
reworked to make them fit into a 32K configuration by over
lay techniques. (Perhaps the breaks in the run-time of
 
the FORTRAN jobs near 32K are no coincidence.)
 

3.6 Processor Interrupts
 

3.6.1 Introduction
 

The purpose of processor interruption is to alert a
 
processor to the occurrence of an event, while eliminating the
 
necessity for-repetitive testing under program control. Each
 
interruption causes that processor to record sufficient infor
mation to resume the interrupted process at a later time, and
 
then to begin execution of instructions at a location correspond
ing to the particular interruption. Hardware interrupt features
 
are an integral part of the design of most computer systems.
 
Their implementation, coupled with the executive scheduling and
 
dispatch functions in the software, provide the overall control
 
structure for the configuration.
 

Multiprocessing systems introduce an extra dimension for
 
design consideration. Such questions as "which processor should
 
be interrupted" or "should one processor service all interruots"
 
appear in addition to the questions in simple processor system
 
design such as "should there be a priority structure for inter
rupts", "what are the hardware functions for interrupts", and
 
"what software control of interruption-disabling is possible".
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The purpose of this section is to review interrupt features
 
of several existing systems.
 

3.6.2 History and Background
 

Historically, the early computers operated in a serial
 
manner, in that initiation of each action had to await comple
tion of the previous action. It was frequently necessary to
 
afford careful consideration to execution timing in order to
 
synchronize data transfers between memory and the peripheral
 
devices.
 

Later, computers such as the IBM 709 enabled interleaved
 
instruction execution and I/O operation. These systems included
 
one or more input/output channels capable of executing sequences

of I/O commands themselves without the participation of the
 
processor. When processor aid did become necessary, the channel
 
was able to trigger an interruption. This system had the ad
vantage of permitting program execution and I/O to operate con
currently. The interruption of the running program upon com
pletion of an I/O operation was accomplished by causing an in
voluntary transfer of control to a predetermined memory location,
 
at which an interrupt service routine began. Multiple and time
shared I/O channels were subsequently introduced, which increased
 
the possibile multiplicity of the I/O operations and the complex
ity of the interrupt servicing.
 

3.6.3 Single-Level Interrupt
 

In a single-level interrupt structure, the processor is in
 
one of two modes, the "normal" mode or the "interrupt" mode.
 
When the processor is operating in the normal mode and a condition
 
occurs which, by design, requires an interrupt, the processor is
 
placed in the interrupt mode, and control is transferred to a
 
predetermined location in memory. The concept of single level
 
is simply that while the processor is in the interrupt mode, it
 
may not again be interrupted. That is, recognition of further
 
interrupts is postponed until the processor leaves the interrupt

mode. This inhibiting of interrupts requires the hardware to
 
be designed such that no data or interrupts are lost.
 

When the interrupt occurs, certain information must be pre
served so that the interrupted program may later be resumed.
 
This information includes the processor state, plus the set of
 
machine registers which could be over-written during the execu
tion of the interrupt servicing routine.
 

3.6.4 Multi-Level Interrupt
 

The multi-level interrupt structure typically assigns each
 
interrupt or class of interrupts to a "priority level". The
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hardware is designed to allow interrupts assigned to a given
 
level to interrupt those of a lower level. Otherwise, the
 
basic concepts are similar to the single-level interrupt struc
ture.
 

An unusual system of this type, the Litton 304, uses 64
 
levels, and delegates a significant amount of the executive
 
control to this hardware. Each process (or program) as well
 
as each interrupt is assigned a level, and the system essentially
 
never leaves the interrupt mode.
 

3.7 Stacks
 

3.7.1 General Description
 

( I
A stack, according to Knuth l ), "is a linear list for
 
which all insertions and deletions (usually all accesses) are
 
made at one end of the list". Stacks, which have proved to
 
be important in many computer applications, especially recur
sive procedures, have been called by many other names. Among
 
them are "push down lists", "last in, first out (LIFO) lists",

"cellars", "nesting stores", and even "yoyo lists".
 

When an item is put onto the top of the stack the process
 
is called "pushing down"; to take an item off the top is to
 
"pop up". The bottom of the stack is the oldest word in it,
 
and hence the least accessible item. When a stack is pushed
 
down to accept an additional item, the words in the stack in
 
memory are not physically moved from one location to the next.
 
Instead, a variable, called the stack pointer, contains the ad
dress of the location in memory of the top of the stack, and is
 
merely incremented when an item is added to the stack. Thus the
 
items in the stack appear to be pushed down because their loca
tion is farther away from the location pointed at by the stack
 
pointer.
 

Usually there are limits or bounds on the memory space that
 
the stack may occupy. If the stack size violates these bounds,
 
the condition is called stack "overflow" or "underflow".
 

3.7.2 Examples of Stack Implementations
 

A stack system has been implemented strictly through soft
ware for many computers. However, several computer manufacturers
 
have recognized the utility of stacks, and have implemented hard
ware and instructions which facilitate stacking mechanisms. Some
 
of the computers which have implemented stacks are the following:
 

1) 	505 Sigma 7(14). The Sigma 7 resembles the IBM 360 in its
 
data format and special registers. It includes byte, half
word, word, and double-word data handling instructions. How
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ever, its instruction set is quite different, and it has a
 
stack capability. The instructions are as follows: Push
 
word, Pull word, Push multiple word, and Modify stack
 
pointer. The effective address portion of each of these
 
instructions points at a location which contains the "stack
 
pointer double word" (SPD). The operation can be seen by
 
consideration of the "Push word" instruction which increments
 
the stack pointer, and then takes a word from an accumulator
 
and stores it in the location pointed at by the new contents
 
of the stack pointer. Stack limit data in the SPD is used
 
to validate the operation before it is actually performed.
 

(8 )
2) 	DEC PDP-10 . The stacking capabilities of the PDP-10
 
are similar to the Sigma 7. The two common instructions are
 
PUSH and POP. The PUSH instruction is like that of the Sigma
 
7, except that the sources of data and stack pointer are
 
reversed; i.e., an accumulator contains the stack pointer,
 
and the effective address specifies the location of the data
 
to be transferred to the stack.
 

Two more instructions that are useful are PUSHJ, which causes
 
a transfer to the addressed subroutine, leaving return infor
mation in the stack, and a return counterpart, POPJ. In
 
detail, PUSHJ increments the stack pointer accumulator,
 
pushes the program counter and flag information into the
 
stack, and jumps to the location specified by the effective
 
address. POPJ provides the means to return. This pair of
 
instructions is a-useful mechanism for handling nested or
 
recursive subroutines.
 

3) 	Burroughs 5500, 6500 and 7500(2,3). The Burroughs imple
mentation of the stack is no half-way measure. Rather than
 
offering a stack as an optional feature which may or may
 
not be used by the programmer, Burroughs has incorporated the
 
stack into the fundamental architecture of their computer.
 
The pair of registers that are sources for operands and
 
destinations for results (effectively, the accumulators) are
 
logically considered by the hardware to be the top of a
 
stack. Arithmetic operations such as ADD take their inputs
 
from the top of the stack and leave their results on the
 
top of the stack. Other instructions are provided to move
 
operands from memory to the top of the stack, or store data
 
from the stack to memory. The top of thestack, then, is
 
the heart of all calculations and the stack itself shrinks
 
or grows as the computational sequence indicates. This utter
 
dependence upon a stack rather than multipurpose accumulators
 
seems to be unique to Burroughs.
 

(9 )
4) 	DEC PDP-II . The PDP-11 contains eight "general registers",
 
two of which are dedicated to specific functions and are im
plicitly addressed by certain operations. One of these is
 
the program counter; the other is the stack pointer (SP).
 
The addressing modes of the machine autoincrementing (incre
ment register after use) and autodecrementing (decrement
 
register before use) which facilitate the use of other re
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gisters as stack pointers also. The interrupt sequence in
 
the processor and the subroutine call and return instructions
 
store appropriate information in the stack by use of SP, so
 
that priority interrupt and nested or recursive subroutine
 
implementation is quite direct. Hardware-aided checks on'
 
stack limits are almost non-existent; a single fixed address
 
in memory is treated as the stack upper limit, and a trap
 
occurs if a stack controlled by SP exceed this boundary.
 

3.8 Microprogramming
 

The term microprogramming was introduced in a paper by
 
Wilkes in 1951(15). The intent was to introduce "a systematic
 
alternative to the usual somewhat ad hoc procedure of designing
 
digital computers". The traditional technique was to specify
 
only the inputs and the outcome of each individual instruction
 
and leave the details of the implementation to the logic designer.
 
Wilkes pointed out that the execution of an instruction involved
 
a sequence of information transfers, and compared these individ
ual steps to the execution of individual instructions in a pro
gram. Each step can be considered a microinstruction; the
 
complete set then constitutes a microprogram.
 

* Microprograms usually reside in a device distinct from the
 
users' memory, called the control storage. Although control
 
stores have generally been read-only memories, several computers
 
have recently been developed with read-write control stores.
 
This opens the door to intriguing possibilities, such as dynamic
 
variation of the instruction set the particular computer might
 
possess. Use has been made of this capability to build emulators
 
for existing computers and to write diagnostic routines which
 
perform machine checks at a more basic level than could be accom
plished with ordinary instructions.
 

The significant advantage that microprogramming offers can
 
be described by one keyword: flexibility. Profitable uses of
 
this flexibility include the following:
 

1) 	Many times it becomes apparent during the software-writing
 
effort that certain additional instructions would make them
 
more useful, but it is too late in the design cycle to in
corporate these changes. Microprogramming allows the re
design of an instruction set (within limits) long after the
 
basic hardware intself has been frozen. This situation arose
 
in 1968, when IBM redefined the floating point arithmetic
 
on all 360 models. For the most part, this change was ac
complished by merely rewriting and debugging the appropriate
 
microprograms. To have made a corresponding change at the
 
hardware level would have been enormously more expensive(13 ).
 

2) 	Similarly, microprogramming offers the opportunity to provide
 
instructions and special features tailor-made to a customer's
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unique needs long after the system has been specified, with
 
no hardware modifications. The addition of special purpose
 
hardware and peripherals, not supported in the original de
sign, to an already designed system has historically been
 
an awkward and expensive task. Microprogramming offers real
 
potential for solutions to this.problem.
 

3) 	As an extension to the capability to emulate older computers,
 
microprogramming may prove quite valuable as a test-bed for
 
the development of future computers. Emulators may be writ
ten for proposed machines and measurements conducted to offer
 
empirical evidence of the design efficiency.
 

Examples of contemporary microprogrammed computers include
3

the 	following(1 ):'
 

1) 	IBM 360/25. The 25 has a writable control store for which
 
load decks that make it look like either a 360 or a 1400
 
series computer are supplied. Since the control store is
 
generally writable, other emulators could be produced for the
 
25.
 

2) 	IBM 360/85. The 85 has two microprogram control stores.
 
One is read-only, and contains the 360 emulator. The other
 
is generally writable, and supports the 7094 emulator as
 
well as basic machine diagnostic routines.
 

3) 	Standard Computer Corporation's IC Series. Standard has
 
introduced a whole series of computers which are micropro
grammed. The earlier ones were designed especially to simu
late the IBM'7090/7094 and 7040/7044. Newer machines in the
 
Standard line offer the possibility of emulating a number of
 
different common computers of several manufacturers. The
 
IC7000 is particularly slanted towards the time-sharing mar
ket.
 

Enthusiasts have raved over the possibilities and seemingly
 
unlimited potentials of general microprogramming. They envision
 
the ability to manufacture a computer that could emulate the
 
characteristics of every commonly used computer. By the relative
ly minor amount of programming necessary to construct the micro
programs (1800 instructions in the Standard Model 9)(12), they
 
can cash in on the huge investment in time and money already
 
spent to produce operating software. The technique would all
 
but eliminate the gigantic reprogramming costs of switching over
 
to a new generation computer. The following quotes illustrate
 
some of the claims that one proponent of microprogramming is
 
zealously putting forth: The "life of existing program libraries
 
will be extended to infinity". "Vintage software, massaged and
 
made workable through frequent use and long study, can now be
 
employed as required without locking the user in or out." "We are
 
rapidly approaching the time when all programs will run on all
2

machines."(1 )
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Chapter 4
 

System Design Guidelines and Constraints
 

4.0 Introduction
 

This chapter presents the major guidelines and constraints

influencing the architecture of the computer for the space

station data management system. The scope of this contract did
 
not include any detailed analysis or generation of system design

requirements; however, it is a meaningless exercise to attempt

to configure a large-scale,system without at least order-of
magnitude estimates of requirements. Therefore, this chapter is

intended to summarize existing space station DMS guidelines,

and preliminary DMS design requirements being developed by the
 
Space Station Phase B contractors.
 

We observe that at present, neither the design criteria
 
for the computer system nor the operational and performance

requirements it must satisfy are well defined. 
Terms such as
 
high reliability, on-line reconfiguration, graceful degradation,

and configuration flexibility are being used rather loosely

as characteristics of the computer system. 
 These terms all
 
have broad scope in meaning, and their exact interpretation

with respect to the space station has a direct effect on the
 
architecture of the computer system. 
In addition, the processing

requirements of the on-board computer system in terms of "what
 
it must do" have so far only been grossly estimated, based upon

preliminary functional analyses. 
 These obviously are not
 
adequate to finalize performance requirements or sizing of the
 
computer system.
 

However, these requirements, guidelines and constraints
 
have been used in planning and designing the organization of the
 
computer system presented in Chapter 5. It is therefore useful
 
to restate them, and to interpret them where necessary. The
 
information is presented in the following sections: 
 General

Space Station Subsystem Requirements, Performance Requirements,

Physical Requirements and Reliability.
 

4.1 General Space Station Subsystem Requirements
 

With reference to the "Statement of Work Space Station
 
Program Definition (Phase B)", 
14 April 1969, the space station
 
will be designed for a minimum of ten years of operational life,
and each of the subsystems will be designed with large margins

and provisions for in-flight maintenance, repair, and replace
ment. In addition, the station will be designed to take advan
tage of technological advances in subsystems which occur after
 
it becomes operational.
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The Intermetrics interpretation of this follows:
 

a) 	The data management computer system (DMCS) should be
 
designed to have an operational life of at least ten
 
years.
 

b) 	The DMCS should be designed assuming that in-flight repair
 
or replacement of failed modules will be performed, and
 
that the supply of spares may be replenished via the shuttle.
 

c) 	The DMCS should be designed to take advantage of technolo
gical advances which occur during its life. This implies
 
that the initial system is not a "closed system", or one
 
in which all equipment is available from the beginning, within
 
the initial configuration.
 

It should be noted that expansion of requirements over the
 
operational life of a system has always been underestimated.
 
It therefore appears reasonable to establish a guideline
 
that the computer system be designed with an expansion
 
safety factor of about four. That is, the capacity of the
 
design, if not the initial implementation, will accommodate
 
a quadrupling of requirements over the life of the system.
 

d) 	It is assumed that the software will be expanded and other
wise modified during the life of the system. It is also
 
assumed that on-board software generation capability is to
 
be provided, plus provision for testing and introducing of
 
new program modules created on-board or on the ground.
 

e) 	The system must detect all permanent and transient failures
 
which result in errors. In addition, it must distinguish
 
between permanent and transient errors, identify the modules
 
which contain permanent failures, and recover automatically.
 

f) 	The power supply shall be decentralized, and implemented
 
so that'no power failure at a modular level can disrupt
 
system operation.
 

g) 	The interface of the DMCS with other systems shall be
 
designed with a capacity in excess of the predicted traffic,
 
by about a factor of four.
 

4.2 Performance Requirements
 

The major contributions to the load on the data management
 
computer system is estimated to be the processing and control of
 
experiments. Approximately 70-90% of the storage requirements
 
and 50-70% of the speed are expected to be absorbed by programs
 
and data for scheduling, initializing, and controlling experi
ments, plus data collection and computational services(2).
 
Therefore, a careful examination of these requirements is
 
necessary to ultimately size the system.
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Prior to discussing the storage and processing requirements,
 
a brief overview of the anticipated operational functions is
 
provided.
 

4.2.1 Functions of the DMCS
 

At the current stage of the space station program, the
 
design of the major operational functions is not complete to
 
the level of detail necessary to assess their full impact on the
 
computer's sizing. Further, it is our estimate that this will
 
not be fully resolved during phase B of the program.
 

In general, the DMS'computer system will be interfaced with
 
a number of subsystems on board, and will serve as the primary
 
computation facility. Some of its principal interfaces with
 
on-board sensors and subsystems are: Control and Display Sub
system (probably CRT-like devices), an Inertial Subsystem, Digital
 
Communications Subsystem, Rendezvous and Docking Radar Subsystem
 
and other Docking Sensors, Surveillance Radar, Reaction Control
 
Subsystem, Primary Propulsion System, Balancing Subsystem, Power
 
System, Experiment Equipment Interfaces Environment, Thermal
 
Control, and Biomedical Subsystem. It is assumed that the DMCS
 
will send and receive information over the external data bus,
 
and provide the control and processing required by these subsystems.
 

The following major operational functions will be supported
 

by the DMCS:
 

a) Primary and Command and Control
 

One of the prime functions of the DMCS is to drive the
 
displays for command of the space station. The computer
 
will assist the crew in planning and execution of maneuvers,
 
flight decisions, and trajectory control, and will provide
 
other data for flight control of the space station during
 
its mission. This will include functions such as rendezvous
 
and docking.
 

b) On-Board Checkout
 

Another function of the DMCS is the periodic checkout of the
 
on-board subsystems to determine whether or not they are
 
operating in an acceptable manner. There are several
 
aspects to on-board checkout: status monitoring, in which
 
test points are checked to determine if any gross faults
 
exist; trend analysis, for predictinq faults; and diagnosticsto
 
determine malfunction location to provide a basis for
 
reconfiguration actions. In addition., some form of failure
 
correction, calibration, and record keeping are part of
 
these functions.
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c) Mission Planning and Operations Scheduling
 

The computer will assist the crew in performing mission
 
analysis and assessment, and in daily crew scheduling and
 
logistics inventory control.
 

d) Guidance, Navigation, and Control
 

The computer will, using its sensor subsystems, maintain
 
knowledge of position and velocity of the station. It will
 
also perform the artificial G stabilization, and attitude
 
control for pointing of earth survey instrumentation.
 

e) Experiment Command, Control and Data Processing
 

As stated above, one of the largest tasks of the DMCS
 
is predicted to be the processing of data from various
 
experiment modules. Some of these functions include experi
ment scheduling, experiment command and control, data collec
tion, data formatting and storage, data reduction and pro
cessing, and display interfaces.,
 

There are many experiments planned for the space station
 
over its life, Four of these experiments predicted to
 
have the largest impact on data input to the computer system
 
are:(5)
 

Advanced Stellar Astronomy
 

Plasma Physics - Subsatellite
 

Earth Surveys
 

Remote Maneuvering Satellite
 

f) Software Support System
 

This portion of the DMCS includes the software operating
 
system. For purposes of this organization of functions,
 
it includes utility software required to support other
 
aspects of the computer system.
 

4.2.2 Summary of Phase B Preliminary Sizing Estimates
 

4.2.2.1 Storage
 

Preliminary estimates of the size of and storage
 
requirements for the space station computer system have been
 
made by M-D/IBM, the MSFC Phase B contractor, to be about
 
300-500K words of operating main storage and 7 x 106 - 4 x 107
 

words of bulk storage (36 bit words). Supporting assumptions
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for 	these estimates are included in reference 2.
 

4.2.2.2 Processing
 

IBM has estimated the speed required of the computer
 
to be not more than 106 equivalent add operations/sec( 2 ). This
 
is currently above the speed of presently available airborne
 
computer systems; however, we believe this estimate to be low.
 
Data processing centers, in many ways comparable to the DMCS,
 
operate in excess of this figure. In fact, some contemporary
 
ground-based systems are achieving more than 107 ops/sec.
 
However, to estimate the speed requirement accurately requires
 
deeper resolution of the functional requirements, which is not
 
possible at this time.
 

4.2.3 Digital Input Data Rates (5)
 

A preliminary estimate by NAR of the total input data
 
rate to the DMCS from all experiments suggests that 310 x 109
 
bits/day is the upper limit. However, with scheduling of the
 
larger data-gathering experiments as proposed by NAR, 90%
 
of all experiment requirements can be achieved within a limit
 
of 180 x 109 bits/day. The computer system will process and
 
compress this data so that only a small percentage of it need
 
be maintained in the files or sent to the ground.
 

4.3 Physical Requirements
 

There are no currently existing physical requirements such
 
as power, weight, and size for the DMS computer system. Some
 
figures, however, for existing airborne systems are presented
 
in Appendix A of this report.
 

4.3.1 Modularity
 

Another constraint on the system is that it be modular.
 
We have interpreted the meaning of modularity, and present
 
the following general requirements: the system will be composed

of a number of modules best defined by their physical charac
teristics. Each module will be a subunit which is physically
 
self-contained, and which can be replaced without a major
 
disassembly of the entire system. Each is connected to the system
 
at a number of points for power, information (I/O), thermal
 
control, and physical support. Memory, processor, and I/O units
 
are examples of modules.
 

a) 	If a module fails permanently, it will be replaced. Each
 
module will be constructed to maximize its reliability,
 
and will include internal redundancy if appropriate.
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b) The number of different types of modules in the system will
 
be minimized, to facilitate maintenance and testing.
 

c) 	The electrical interface for each module will be simple,
 
with the minimum number of pins necessary to satisfy
 
performance requirements with reliable technology.
 

d) 	The interface for each module will be standardized to
 
facilitate expansion, testing, etc.
 

e) 	Sach module will be designed so that it can be removed and
 
replaced on line without shutting the system down.
 

f) 	Logical connection of modules to the system must be under
 
both program and operator control,
 

4.4 Reliability
 

Two of the most important factors in the trade-off
 
considerations of the configuration design are flexibility
 
(or expandability) and reliability. To date no complete quanti
tative statement of a reliability requirement exists.
 

One important assumption which we have made with respect
 
to reliability is that the computer system is performing some
 
number of "critical" functions, those which directly effect crew
 
safety, during the mission. It is considered that these func
tions must be performed 100% of the time, with interruptions
 
of no longer than milliseconds for recovery from failures.
 

4.4.1 Failure Tolerance
 

Reference 4 defines a failure tolerance requirement for
 
the system which allows no performance degradation after one
 
failure, performance at a reduced level with two failures, and
 
fail safe after the third. This requirement is quoted below:
 

a) 	Capability shall be provided for performing critical
 
functions at a nominal level (performance of operations
 
for which the system was designed) with any single component
 
failed or with any portion of the subsystem inactive for
 
maintenance.
 

b) 	Capability shall be provided for performing critical
 
functions at a reduced level with any credible combination
 
of two component failures or with any credible combination
 
of a portion of a subsystem inactive for maintenance and
 
failure of a component in the remaining subsystem.
 

c) 	Capability shall be provided for performing critical
 
functions at an emergency level (sufficient for survival
 
only) until the affected function can be restored or the
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crew returned to earth.
 

Although the above failure tolerance criteria are
 
frequently referred to as reliability specifications, brief
 
consideration shows that they are not. In colloquial language,
 
the "real" reliability requirement is the attainment of a
 
specified probability that the DMCS will be able to perform

needed functions at the time they are needed. Clearly, this
 
involves a combination of failure rate, failure tolerance,
 
and repair rate which provides the specified probability that
 
needed performance capability exists. In particular, if the
 
time to repair a failure is substantially smaller than the time
 
to the next failure, tolerance of more than one failure seems
 
unnecessary. On the other hand, less favorable combinations
 
of failure and repair rates can conceivably require tolerance
 
of more failures in order to meet the goal.
 

Because of the large cost of the DMCS, and the sensitivity

of the cost to redundancy and other "reliability"-aids, a much
 
more carefully thought-out specification for reliability and
 
availability is needed for the DMCS than has historically been
 
put together for airborne and space systems. Only when this
 
specification has been created can relevant decisions be made
 
with respect to failure tolerance, error detection, and recovery
 
characteristics of the computer system.
 

4.5 Information & Display
 

4.5.1 General
 

The design of information and display techniques for
 
the space station DMS must provide a sufficient interface for
 
the crew to operate, control, and communicate with on-board
 
subsystems to accomplish mission objectives. Currently, manned
 
spacecraft are filled with many gauges, meters, controls, and
 
computer-generated data displays which permit significant

interaction with the pilot. The concept for future advanced
 
spacecraft will include not only more sophisticated subsystems

with more automatic processes, but more autonomous operational
 
tasks, and a wide spectrum of scientific experimentation and
 
research over longer mission intervals.
 

The on-board display and controls provided must therefore
 
emphasize flexibility for multipurpose use and high reliability,
 
but remain a simple, efficient, man/machine interface. The
 
purpose of this section is to supply an overview of the general

information and display concepts, discuss control of a multi
processor computer system which is performing a number of
 
independent tasks, and related problems.
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4.5.2 Space Station Information & Display Requirements
 

It is helpful here to review some of the basic assumptions
 
envisioned for the space station, to serve as a background for
 
discussion of the display interfaces with the multiprocessor
 
system.
 

4.5.2.1 Displays
 

A general ground rule will be that electromechanical
 
3


display devices( ) are to be eliminated. These will be replaced
 
by more flexible electronic displays, such as CRT's or other
 
two-dimensional devices. The state-of-the-art in input and
 
output devices for computer systems will certainly change and
 
improve over the next decade.
 

4.5.2.2 Interactive System Terminal Developments
 

Most interactive system terminals today use typewriter
like devices. Their prime advantages are their relatively low
 
price and the use of the hard copy medium, which automatically
 
provides a record of all input and output. Cathode ray tube
 
devices avoid some of the problems of typewriters; they can
 
operate rapidly, and are considerably more flexible in format
 
and editing control. CRT's are gradually becoming more widely
 
available as terminal devices, and over the next few years should
 
be increasingly competitive with typewriter devices. Obstacles
 
to their acceptance include high cost for terminals, lack of hard
 
copy, and communications limitations, which make the rapid data
 
rate necessary to remotely maintain distant displays prohibi
tively expensive. Prices are coming down slowly, and the
 
continuing influx of reasonably inexpensive keyboard-plus-CRT
 
alphanumeric terminals has accelerated the trend away from paper
 
output devices.
 

Other techniques are being investigated which will facilitate
 
new methods of dialogue with computers in the future. These
 
include direct use of handwritten input via devices such as the
 
Rand Tablet or Grafacon, and even voice input and output through
 
a set of software and hardware constructions. Interesting
 
demonstrations and papers are being presented on on-line, hand
written input.
 

Some research work is underway into audio-input systems.
 
LISPER is a limited s eech recognition system developed by Bolt,
 
Beranek, and Newman.(). LISPER operates within certain limita
tions. First, there are a hundred items in its vocabulary.
 
Second, the number of speakers is limited, and each must first
 
be trained by the system in closed-loop fashion so that the
 
system recognizes him. Nevertheless, it has been successfully
 
demonstrated.
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Audio output is also available today on some ground-based

systems, and may have application in the space station program.
 

Another approach to computer input which has been tried
 
is a so-called "list selection technique". This technique

involves lists which are displayed either on a CRT or optical

screen, and which may be changed rapidly under computer control.

The user composes input into the system by selecting words and

phrases from the list. 
 This can be done either with a light

pen, or in the case of the CDC Digiscribe, by touching electri
cally conductive regions on the face of the CRT with the finger.

As the user selects phrases from the list, new lists 
are 	displayed

as required. 
This approach to computer input takes advantage of

the wide bandwidth of this class of displays, and of the human
 
eye, to rapidly convey information to the user. He may then

respond manually at a low rate. It is particularly useful for
 
users who are not good typists.
 

4.5.2.3 Space Station Terminal Complement
 

However attractive some of the developmental techniques
 
appear, we propose to limit present consideration to equipment

which is certain to be available in time. The initial display

equipment needs are assumed to be:
 

a) 	A computer controlled, multi-purpose display and control
 
unit to be used as the primary man/machine interface. It
 
will consist of:
 

1) 	A CRT-like display console with state-of-the-art refresh
 
rates, illumination, resolution, and buffer memory.
 

2) 	Keyboard input device with alphanumeric and special
 
character keys.
 

3) 	General purpose function keyboard for single action
 
responses, with flexibility to redesignate function/key
 
assignments dynamically.
 

4) 	Light pen or similar device.
 

b) 	Hardcopy device such as a line printer.
 

c) 	 to
Microfilm viewer with programmed retrieval capability;

contain schematic and other reference or library data.
 

d) 	Closed circuit TV monitoring system.
 

e) 	Status and control panels.
 

f) 	Direct "joy stick" controls.
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The design of these subsystems must conform to space
 
station guidelines of low power consumption, high reliability,
 
long life, compact packaging, and modular construction.
 

The remainder of this section is devoted to a discussion
 
of Item a. (Control and Display Unit) and the associated design
 
problems.
 

4.5.2.4 Preview of Manned Operations Aboard Space Station
 

As presently conceived, the space station will have
 
*acentral command center similar to the bridge or combat infor
mation center of a ship. The command center will be manned
 
on a 24-hour basis, and will contain all controls necessary for
 
operation of the station. An experiment control center, not
 
necessarily co-located with the primary command center, will
 
contain displays and controls necessary to operate and monitor
 
the 	experiments and other functions of the station.
 

Functions of the command center include:
 

.1) 	Flight operations scheduling and control of mission
 
events,
 

2) 	Vehicle operation; all operations performed with
 
the vehicle: rendezvous, docking, orbit determination,
 
attitude control, etc.
 

3) 	Subsystem status, monitoring, control, and configuration
 

control.
 

4) 	Operation and control of the DMS computer.
 

5) 	Crew scheduling and-training.
 

6) 	Communications.
 

Functions of the Experiment Control Center include:
 

1) 	Experiment control and planning.
 

2) 	Data collection and compression
 

3) 	Ground interface
 

4) 	Data analysis
 

Internal communications and procedures will be established
 
for overlap in control of the base with respect to experiments.
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4.5.2.5 Display and Control Information Required On-Board
 

The information required by the crew to control and
 
operate the space station has a variety of characteristics.
 
Alphanumeric data, graphs, and pictorial data (static or even
 
moving) may all be required. Further analysis is required to
 
resolve the optimum level of information to be presented to the
 
operator with respect to each operational function requiring
 
an interface. To resolve this issue requires an interactive
 
process in which automatic and non-automatic computer functions,
 
and 	crew interfaces required to best perform mission tasks are
 
evaluated. Hardware/software complexity, availability, and
 
cost will constrain the degree of automation and types of
 
displays made available, whereas crew safety and the complexity

of the crew's role may require more advanced display techniques.
 

Since it is premature to identify all displays, some
 
examples are offered of the types of functions to be performed
 
to indicate the scope of display data requirements. As a
 
general observation, the display and control capabilities will
 
include: alphanumeric and graphic outputs from the computer and
 
alphanumeric, special function key, and light pen inputs.
 

Examples of functions which involve displays are:
 

a) 	Control and operation ofthe DMS system.
 

b) 	Control, selection, and data input/output from operational
 
software (rendezvous tracking, maneuvers, docking, instru
ment pointing, etc.).
 

c) 	Station position and situation,displays (orbital position
 
and velocity indications, attitude, rotation rates, thrust
 
controls, extra-vehicular module position, communication
 
coverage, mission events and schedule).
 

d) 	System and subsystem situation and status displays (confi
guration of system, health of subsystems, equipment modes).
 

e) 	Interactive data requests (file management, data retrieval,
 
graphs).
 

f) 	Experiments displays/control (experiments equipment status,
 
data displays, controls).
 

4.5.3 Preliminary Information and Display Concepts
 

The on-board computer system, coupled with its software
 
and multipurpose display and control unit, are the basis for
 
the overall man/machine interface in the space station. Although
 
it is premature to attempt a detailed design of the display
 
system required for all DMS subsystems, some general concepts and
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problems for that design are identified.
 

4.5.3.1 Software Environment
 

One view of the computer system for the space station
 
is that it is a real-time process control system, providing
 
remote time-sharing services to both batch entry and interactive
 
users. It is unique in this sense. A hypothetical example for
 
comparison purposes might be some large time-sharing service
 
(like Multics) which is also operating a power plant and a
 
surveillance radar. The many varied users of this system establish
 
a need for varied types of displays.
 

To expand on the requirements for displays for the system,
 
a brief organization of the software environment during system
 
operation reveals four types of software:
 

a) System Control Supervisor
 

This class of processing is continuously operating, control
ling the resources of the system.
 

b) Continuous Automatic Sequences
 

This class of processing includes the functions critical
 
to operation of the space base, and operates automatically
 
and continuously. Examples are attitude control, environ
ment control, system failure detection, and status monitor
ing and recording.
 

c) Periodic Operating Processing
 

This class includes processes which are not in continuous
 
operation, but are of greater importance than some other
 
functions when operating. For example, rendezvous operations,
 
fault isolation, maneuvers, control of external crafts,
 
and some experiment control.
 

d) Batch-type Data
 

This class of processing includes utilization of the computer
 
by various subsystems on an as-required basis. This includes
 
scientific experiments, data processing, bio-medical process
ing, data reduction, preventive maintenance, data retrieval,
 
etc.
 

These classes of programs involve varied display require
ments; however, common to all is the operator's ability to
 
initiate programs, provide data input, receive outputs, and
 
generally to control the operation of the system.
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4.5.3.2 Control of the Multiprocessor
 

4.5.3.2.1 Job Control. The operator must be provided the
 
capability to initiate various sequences or programs to perform
 
specific mission functions. This may be accomplished by a job
 
control language, which should be generalized for all types of
 
job requests and execution. The periodic operational programs
 
and terminal-submitted software require this feature.
 

The job control language wbuld be the primary interface
 
between the user (or operator) and the operating system. The
 
commands given via this language would be interpreted and result
 
in queues set up for processing by the executive. There are
 
at least two types of users:
 

a) 	The remote job entry, whereby a user enters jobs at a
 
terminal and expects them to be executed at some future
 
time.
 

b) 	The on-line user who needs to interact with the computer to
 
accomplish this job.
 

On-line users must be provided with other features which
 
enable easy rapid access to selected programs. Minimum actions
 
should be required to select and operate frequently used programs.
 
For example, the method of selecting programs may be via a light
 
pen action. Program names would be presented on the CRT, and
 
the operator would activate a program by pointing with the
 
light pen. Other data required at program selection time could
 
be entered via the keyboard.
 

4.5.3.2.2 Protection Philosophy. Input or job requests from
 
terminals should generally be accepted by the system only when
 
the system verifies that the user has appropriate access and
 
execution privileges for the requested job. This may be imple
mented in the system in many ways: through hardware, software,
 
or both. The degree of built-in interlocks for job requests or
 
file-access depends on the criticality of the damage that can be
 
done and the system implementation and overhead cost.
 

4.5.3.2.3 Data Output and Display Format. Programs must be cap
able of requesting action from the operator, such as data entry
 
or verification. Again a language must be defined for use with
 
a CRT display which is generalized for many functions. The
 
Apollo G&N System uses a VERB and NOUN dpproach to identify
 
actions and data between the operator and computer. With its
 
limited DSKY, it provided much flexibility.
 

Generally, attempts should be made to minimize the amount
 
of coded output. With an alphanumeric display, direct language
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communication should be provided. Coded information requires
 
training or memorizing of codes which at best is error prone.
 

The Apollo DSKY is designed to transmit commands and requests
 
made up of a limited vocabulary of 99 nouns and 99 verbs. To
 
command the computer, the astronaut depresses the verb (operator)
 
key followed by two decimal digits, and enters a noun (operand)

in a similar fashion. The enter key is then depressed, and the
 
computer acts on the request. As an example, Verb 16 Noun 20
 
means display and monitor spacecraft attitude. Verb 16 means
 
"display and monitor" (continuously update); Noun 20 identifies
 
what to display, in this case "spacecraft attitude".
 

Features such as: DISPLAY (VARIABLE), DISPLAY VARIABLE
 
EVERY N SECS, DISPLAY VARIABLE IF (CONDITION),PLOT (VARIABLE)
 
VS VARIABLE, etc., are all desirable components of an operator's
 
input language.
 

Data output from the computer to the operator must
 
optionally include the variable name, value, and units (unless
 
standard units are used throughout). The vocabulary of the
 
computer to the operator requesting action must be simplified.
 
The format of the output frame should be standardized. The
 
conversational vocabulary should be easily identified, perhaps

by its location on the CRT, or by size or illumination. Variable
 
names and data should be distinctly set off from this vocabulary
 
to eliminate confusion., A standard header should exist at the
 
tope or bottom of the display and include pertinent data about
 
the console's use, time of day, etc.
 

4.5.3.2.4 Display Rouin. A number of display and control
 
consoles, manned by ifferent personnel performing varied func
tions (some of which overlap), requires a technique for establish
ing "who gets what displayed". Furthermore, the command console
 
must be identified to the system as such, since it may be the
 
only console allowed to direct certain critical functions.
 

From a software point of view, the system is communicating
 
with a number of consoles, not people. When a periodic opera
tional software program is requested, the question of where
 
the output should be sent is fairly straighforward: namely,
 
to the console requesting the job. However, when an alarm is
 
detected by one of the automatic or continuous programs, it
 
may be desirable to output this to a number of consoles. Two
 
solutions to this are (1) dedicate consoles physically to receive
 
such data, or (2) provide a technique for assigning displays
 
to consoles. The latter appears distinctly superior.
 

4.5.3.3 Parallel Processing with Serial Output
 

*A conflict arises when more than one task operating

in the computer requires communication with the same operator.
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This problem is not unique to multiprocessor systems, but also
 
exists in multiprogrammed systems.
 

This problem occurred in thd Apollo G&N system when a
 
"background" type program, such as rendezvous tracking, detected
 
an alarm condition while the astronaut was using the DSKY to
 
operate a "foreground" program, such as rendezvous targeting.

The design of that system (which is probably unacceptable for
 
the space base) was to bring up automatically a priority display
 
over-riding the existing DSKY display, whether the astronaut
 
wanted to see it immediately or not. Furthermore, he had to
 
respond to it before he could continue with the targeting
 
program operation. Fortunately, this did not occur often, but
 
it caused crew dissatisfaction, and in some cases special excep
tions had to be implemented via software to work around this
 
problem.
 

One possible solution to this problem for the space station
 
is to utilize a portion of the CRT screen (or possibly a
 
separate panel) to advise the operator of waiting displays.

This portion could be divided into a number of subsections, each.
 
with a sufficient area to display meaningful identification
 
information for a waiting display. The content of the information
 
in this subsection could range from simply a presence-indicator
 
for a waiting display with no identification, to a short identi
fying message which could include its priority, coded content
 
clue, origin of job, and level of importance.
 

In any event, the operator would be given the choice of
 
(1) ignoring the waiting request, or (2) selecting a particular
 
waiting display using light pen or keyboard. In the latter
 
case, the system might put the previous display and job into a
 
wait state. This would imply that the old display would be
 
placed on the waiting display queue.
 

4.5.4 Conclusion
 

The foregoing description of aspects of the information
handling operations required on the space station indicates that
 
a great deal will be demanded of the terminal equipment and the
 
operating system and terminal-support software. Command and
 
control, real-time monitoring, program preparation, data-process
ing, automatic checkout, and information retrieval operations
 
are readily foreseen. Furthermore, control of several indepen
dent processes from the same terminal is likely to be the rule
 
rather than the exception. This combination of anticipated
 
complexity, plus the additional operations which must be expected
 
to develop over the life of the mission, results in a clear
 
requirement for a thoroughly thought-out, generalized terminal
 
and operating-system philosophy and implementation.
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Chapter 5
 

Selected Multiprocessor Design Configuration
 

5.0 Introduction
 

The preceding chapters have presented considerations, alter
natives, trade-offs, and requirements which influence the design
 
of the system for the space station. With that material as
 
background, it is the purpose of this chapter to present the
 
design created by Intermetrics. This design is the primary
 
result of the study effort.
 

There are three major factors which tend to cause considera
tion of a multiprocessor or multicomputer configuration, rather
 
than a simplex system, for an application:
 

a) 	The computing capacity required exceeds that attainable
 
from a single processor.
 

b) 	The reliability or availability required exceeds that
 
attainable from a single processor.
 

c) 	It is desired to be able to incrementally expand the system

without overhauling it.
 

In the space station application, it is clear that the
 
latter two apply, whether or not the first does. Therefore,
 
the design considerations were concentrated on creating a sound
 
multiprocessor or multicomputer configuration.
 

At the present stage of the space station and space base
 
programs, both the performance and reliability requirements are
 
incompletely formulated. The forecast of performance expansion
 
required over. the five or ten year life of the mission is parti
cularly cloudy, and may, in fact, ultimately be based 6n the
 
capability of the computer configuration adopted, rather than
 
the other way around. It would be foolish to ignore these un
certainties in formulating a design; instead, Intermetrics has
 
developed an architectural organization which allows implementa
tion of a series of compatible configurations with a strikingly
 
wide range of performance.
 

5.1 Configuration Summary
 

The basic organization selected is shown in Figure 5.1.
 
The fundamental characteristic of this configuration is its use
 
of a common internal bus, which eliminates the requirement for
 
multiple buses and switching networks. The simplicity of this
 
organization is most attractive; the threat of a potential
 
bottleneck imposed by the common internal bus is its outstanding
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drawback. To avoid congestion which would be caused by heavy
 
bus traffic, each processor is provided with a local memory

whose architectural characteristics depend on the required per
formance. At the low-performance end of the spectrum, this
 
memory is used to contain a push-down stack for storage of
 
temporary results. At the high-performance end, the local
 
memory contains a stack, but also acts as a high-speed buffer
 
store similar to the "cache" of the IBM System/360 Models 85
 
and 195(5,10,11,12).
 

The bus recommended for each of the configurations is the
 
same. Although this bus is capable of sustaining the processing
 
level of the maximum system, its capability, which is not ex
pensive, is used effectively in the lower performance models.
 
The manner in which this is achieved is clear if one views the
 
Ml memory as a device for reducing the per-instruction bus-use
 
frequency for its processor. At lower performance, Ml contains
 
only a stack, and perhaps a few words of instruction buffering.
 
If the processor speed were increased without modifying Ml,
 
the frequency of bus-accesses would increase proportionately.
 
However, the introduction of a cache would effect a traffic
 
reduction. By adjusting the size of the cache (buffer) memory,
 
the average bus-use per instruction can be controlled, so
 
that bus-use per processor can be made fairly uniform, indepen
dent of processor speed.
 

The above considerations reveal that processors of differ
ing performance may be attached to the bus, since they are
 
compatible in every way except performance. (That this is
 
true depends upon the fact that the buffer operation is in
visible to the software; this is explained in section 5.2.1
 
below.) As a result, performance of the system can be changed
 
over a very wide range after it is in operation, merely by
 
adding, removing, or rep-l-acing one or more processors.
 

Two other levels of memory are provided in the organization.
 
The second level, shown as M2 in the figure, assumes the roles
 
played by both high speed main memory and drum storage in most
 
commercial time-sharing or data-processing systems, since it
 
is both sufficiently fast and large. Finally, because the
 
subset of programs at any given time represents only a fraction
 
of the total, a third level (W3) of memory is included for
 
bulk storage. Of course, the amount of M2 and M3 memory in the
 
configuration is incrementally variable, and may be selected
 
or varied to meet system operating requirements.
 

The system shown in Figure 5.1 represents the Intermetrics
 
belief that a multiprocessor configuration can best meet the
 
requirements of the application. However, the proposed organi
zation is also excellent for a single-processor configuration,
 
should one be required for the mission or for decentralized
 
subsystem testing.
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5.2 Buffer Memory
 

Because of the key role played by the buffer memory in
 
the operation of the high-performance system, it is described
 
first.
 

5.2.1 Design Rationale
 

The access time seen by a processor attempting to fetch
 
instructions and data directly influences the maximum operating
 
speed. For a processor to be capable of operation in the 1 to
 
10 million instructions per second (mips) range, this access
 
time must be from 0.1 to 1 usec. Additionally, to sustain such
 
a rate, the volume of a cessible data must be large, since a
 
sequential series of 109 executed instructions normally spans
 
a considerable number of program and data words. The two re
quirements of speed and capacity'conflict, however, since in
creased capacity at a given speed leads to increased physical
 
size, with attendant signal propagation delay increases (not
 
to mention the cost penalties). Fortunately, it is character

)
istic of typical programs(l,6 that the accesses to instructions
 
and data tend to be localized, over short time intervals. As
 
a result, a split-level memory can be used to great advantage
 
to provide, at one level, a very high-speed modestly-sized
 
store, and at the other level, large capacity at readily attain
able speed.
 

In operation, the processor issues fetch requests to the
 
buffer memory. If the addressed word is currently contained
 
in the buffer, it is sent to the processor without requiring
 
a fetch from the M2 memory. Otherwise, the buffer initiates
 
a fetch of a group of words from M2, and retains the group for
 
future use.
 

To avoid performance degradation that would be caused by
 
software overhead, control of the contents of the buffer memory
 
is implemented wholly in the hardware. This results in the
 
desirable characteristic that the presence of the buffer is
 
entirely invisible to both the application programs and the
 
operating system. The relative performance is then a function
 
only of the speed ratio between the average access times for
 
the two memories and the probability that a given access finds
 
the word is not in the buffer. For if there are n accesses
 
in time T, if the average access times seen by the processor are
 
tm and tb for main and buffer memories, and if the probability
 
that the accessed word is not in the buffer is p, the word
 
rate W is given by 

W- +1 
T ptm + (l-p)tb 
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Let tm/tb = R 

1
 
then W tb = 1 + (R-l)p
 

where W tb is the normalized word rate. For R = 10, W tb as
 

a function of p is shown by
 

p: 0.9 0.5 0.1 0.05 0.01
 

W tb: 0.11 0.18 0.53 0.69 0.92
 

Thus, if a value of 10 can be maintained for R, and if p
 
can be made as small as 5%, the system will perform at about
 
70% of the speed of one whose entire memory was as fast as the
 
buffer. Studies performed in connection with the configuration
 
design of the 360/85(12) concluded that a 16 kilobyte buffer is
 
adequate to attain an average miss percentage of 3.2% in the
 
absence of task switching. The main memory of the 85 is 0.5
 
to 4 megabytes in size, so that buffer capacity represents from
 
3% to 0.4% of the main memory. IBM estimated that multiprogram
ming would degrade the miss frequency to about the 5% level.
 
The Model 195 whose buffer memory (cache) is differently organ
ized, and larger, is reported to achieve a 1% miss-rate 7)
 

5.2.2 Operation Details
 

With respect to buffer operations, the main or M2 memory
 
may be considered to be composed of a large group of small
 
blocks of, say, eight words. As described above, fetch requests

issued by the processor for words currently contained in the
 
buffer cause no M2 memory operation. However, when the addressed
 
word is not currently resident in the buffer, the buffer issues
 
a block-fetch request to M2 over the internal bus. M2 responds
 
by returning the group of eight words, which are retained in the
 
buffer in a location chosen automatically by the hardware, based
 
on a least-recently-used strategy. The word originally requested
 
is forwarded to the processor as soon as it arrives at the buffer.
 
The main memory address of the fetched block is stored in the
 
buffer with the data, to allow the buffer to recognize subsequent
 
fetches from the same block.
 

Three types of store operations are separately considered.
 
Normal stores will always cause main memory to be updated; if
 
the addressed word is in the buffer of the processor performing
 
the operation, it too will be modified. If not, the buffer
 
content will be left alone. Each other buffer unit which con
tains the same block will respond to the store message on the
 
bus by marking its corresponding block invalid. Should its pro
cessor subsequently address that block, it will experience a
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normal buffer-miss condition. The immediate updating of
 
main memory eliminates the need to copy modified blocks from
 
the buffer back to main memory when their space in the buffer
 
is pre-empted, and also means that processes running on other
 
processors, and I/O operations, use current data.
 

The second type of store occurs when data is placed into
 
main memory by an I/O controller. In this case, since the
 
chances of that data residing in any buffer are small, each
 
buffer will respond to such a message on the bus by simply
 
marking its corresponding block, if any, invalid. Again,
 
should its processor subsequently address that block, it will
 
experience a normal buffer-miss condition.
 

The third type of store operation may be generically termed
 
multi-process-critical stores. The non-interruptible test-and
then-set instruction mentioned in Chapter 1 is perhaps the best
 
example of this class of operations. There, the explicit in
tention of the instruction is to provide the mechanism for
 
air-tight interlocking between processes. If this instruction
 
were to follow the operational sequences outlined above,
 
integrity of execution could only occur if access by any other
 
unit to the addressed location in M2 was inhibited until the
 
fetch from M2, testing by the'processor, and restoring into
 
M2, was complete. This is readily implemented, since all affect
ed units are linked by the common bus.
 

Perhaps it is appropriate to mention here that the test
and-then-set instruction is troublesome in another way: a
 
processor encountering a locked lock must either execute a
 
loop, which includes the test, until the test is satisfied,
 
or delay further operation until it receives a signal that the
 
lock has been unlocked. The former places a potentially heavy
 
load on the common bus, which will degrade the speed of the
 
very operations whose completion is awaited; the latter requires
 
provision of a specific lock-clearing instruction whose exe
cution additionally causes delaying processors to re-test the
 
locks they are waiting for. The second approach is superior,
 
and readily implemented.
 

I
 
5.2.3 Characteristics
 

Although more detailed examination of both the require
ments and the interactions between the buffer and other elements
 
of the system is clearly necessary, the tentative capacity re
quired in each buffer storage unit is in the 105-106 bit range,
 
with a cycle time of 100 ns. The relation between these numbers,
 
and those of the other modules in the system will be developed
 
in the discussion below.
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5.3 Processor
 

To specify the power of a processor in terms of millions
 
of instructions per second (mips) inherently requires the exist
ence of a standard for definition of the "instruction" itself.
 
Neither this standard nor the instruction set for this processor

have been developed. However, despite the ambiguity of the
 
measure, we will assume that processors should have a .5 to
 
5 mips capacity to meet the space station requirements. The
 
processor configuration proposed by Intermetrics includes 
an
 
alterable microprogram, and is organized around a stack concept

resembling the Burroughs computer family, particularly the
 
6500/7500 processors (cf. Chapter 3, and Appendix A).
 

5.3.1 Microprogram Characteristics
 

The 360/85 microproqram consists of about 2500 108-bit
 
words, or 2.7 x 105 bits(10). The 360/25 has about ha f that
 
number, while the Standard IC-9000 offers up to 2 x 10 bits(14).

While the specification of the space station computer's micro
program size must be postponed until a later desian phase it
 
is reasonable to assume that it will fall in the 105 - 106 bit
 
range, with access time on the order of 50 ns for the high
performance version.
 

Part of this microprogram should be implemented in fixed
 
memory, the exact fraction to be determined later. However,
 
it is necessary at a minimum to include in the fixed part those
 
microinstructions required to load the variable part, plus
 
those to perform a "dead start". Further, certain diagnostic

functions should be included, such as ones required to isolate
 
a problem which prevents successful loading of other diagnostics
 
into the variable part.
 

At least a part of the microprogram should be implemented

in readwrite storage, or be switchable extensions in read
only memory, or both. In addition to the advantages of con
ventional microprogramming mentioned in section 3.8, use of the
 
alterable or switchable portion allows the user to capitalize
 
on the dynamic modification of the apparent characteristics
 
of the processor. This would permit processes, for example,
 
to be executed on processors having high-efficiency floating
 
point operations, character-string manipulations, list-process
ing instructions, etc., at will. A further generalization would
 
allow the instruction set of a processor to be closely tuned
 
to the characteristics of each of a number of higher-order lan
guages.
 

5.3.2 Stack
 

Because the stack plays such an important role in the re
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duction of internal-bus traffic, it presumably would be im
plemented in the fixed part of the microprogram. Further, it
 
provides some of the primary guidelines for processor design.

The fundamental utility of the stack lies in its 
automatic
 
ability to dynamically allocate and deallocate storage locations
 
for temporary values from a pool provided for the purpose.

This results in extensive time-sharing of these pool locations,

but without requiring explicit assignment action by programmers,
 
an error-prone activity. 
Since the result of this organization

is to produce intense load/store activity near the top of the
 
stack, the stack is unusually powerful in the proposed organiza
tion, since the provision of a number of registers in the pro
cessor, with an extension in a dedicated portion of the buffer,

keeps a high percentage of fetches and stores from using the
 
internal bus. A processor's use of the stack is an implicit

declaration that the quantities involved are local to the
 
process; there is thus no need to keep an M2-memory copy of
 
them for potential use by other processes.
 

The number of locations that this concept requires is an
 
undetermined design parameter at this time. 
The B6500 design

includes only two stack slots and a pointer in processor storage;

however, a larger total is obviously necessary, to achieve the
 
bus-traffic reduction sought. To allow maximum stack size to
 
be independent of the number of locations provided in the Ml
 
memory, stack extension into M2 should be possible. Thus, Ml
 
would initiate stores to M2 when the area became filled or
 
when stack-switching occurred.
 

5.4 Segmentation, Paging, and Level-2 Memory
 

5.4.1 Segmentation and Paging Design
 

Section 3.5 described the storage fragmentation problem,

which has required increasing system-designer attention since
 
the one-job-at-a-time days of computer operation. 
 The 	three
 
means currently most often used to either avoid or deal with
 
this condition are:
 

1) 	Use of relocation registers in the processor. Since only

these few relocation values (one or two per process) re
present the translation between logical (virtual machine)

and physical storage addresses, it is relatively easy to
 
interrupt running processes long enough to "repack" core
 
to eliminate the fragments when necessary. Modification
 
of only the affected relocation values is sufficient to
 
complete the procedure.
 

2) 	Use of paging. This technique assures that the fragments

of free space and occupied space are of uniform size;

since address translation makes scattered pages look
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logically contiguous, the only unusable space which can
 
occur is that within partially empty pages.
 

3) Segmentation. Although segmentation can be considered
 
as a logically separate concept from paging, the success
 
of the Burroughs 5500 and 6500 systems.indicates that it
 
is not necessary to do so. Clearly, if the typical segment
 
size is a small fraction of the storage area from which its
 
space must be allocated, the amount of space lost to frag
mentation will be acceptably small. Then segments (except
 
for very large ones) may be alternatively considered to be
 
variable-length pages, and treated as such by the hardware
 
and software alike.
 

It is the third of these approaches which has been selected
 
for the present design. Segmentation of program into relatively
 
small units will be automatically performed by the higher-order
 
language translators. There is overhead caused by the indirect
 
addressing required during execution (analogous to the segment
table access in a segmented-and-paged system, but without the
 
"page" table access, except in a few cases); however, the high
 
speed and automatic loading characteristics of the buffer memory
 
promise to reduce the effective cost of this to quite an accept
able level, since the indirect address words are likely to be
 
found in the high-speed buffer. As mentioned, this approach
 
does require treatment of exceptional cases: "paging" of very
 
large segments, and storage reassignment for unpaged segments
 
which outgrow their currently allocated storage. However,
 
because the number of segments large enough to require paging

and the number of segments of dynamically varying size are both
 
small, the system as a whole benefits from the more streamlined
 
design suited to the vast majority of cases.
 

5.4.2 Level-2 Memory
 

Section 3.5 presents in Figure 3.13, a graphic illustra
tion of the ill-effects of high traverse time for a required
 
block of words from a lower-leyel store. For a typical T for
 
drum-core transfer of 1.5 x10 , and a missing page probability
 
of 0.003 (l page fault per 300 instructions; cf. 3.5.4.2), the
 
paging efficiency, computed as in 3.5.4.1, is a skimpy 2.2%.
 

To achieve a considerable improvement of efficiency, within
 
an assumed groundrule prohibitifig use of memory devices with
 
moving parts,, it is proposed to rovide a maximum level-2 memory
 
(M2) of 1 Usec cycle time and 107 - 108 bits capacity. This
 
memory will be used in the way both drum and main memory are
 
used in contemporary systems; programs will reside there when
 
required by one or more active processes, and will be executed
 
from there by running processes. Not only does this strategy
 
enormously improve the "paging" efficiency by making fetches
 
from M3 memory occur only once per process per segment, but
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it eliminates processor overhead experienced in the storage
 
allocation program associated with swapping. This overhead
 
averages 3 - 6 milliseconds per page fault in the current
 
Multics implementation(9,1 3 ).
 

With respect to modularity and interleaving, one relia
bility and two operational requirements dominate the design
 
decision. Modularity is necessary to allow for systematic
 
expandability. Interleaving is desired within the module to
 
allow reduction of the traverse time from M2 to Ml below the
 
one memory-cycle per "word" that otherwise would occur. The
 
level of interleaving proposed is that which allows a block
 
fetch by Ml to be answered by one module of M2 at the maximum
 
rate M1 can accept. This in turn depends on the number of bits
 
accessed per M2 sub-module fetch, a parameter not yet determined.
 

However, unless the contents of memory are adequately
 
protected against loss, n-fold interleaving magnifies the region
 
of a unit failure by the same n-factor. More is said of the
 
contents-loss problem in section 5.7.
 

5.5 Level-3 Memory
 

The level-3 or M3 ,memory in the proposed design consists
 
of two independent sections: read-only, and read-write. The
 
characteristics of the mass read-only memory required on the
 
space station are expected to depend primarily on the reference
 
requirements of the experiment packages. These requirements
 
are even more elusive to grasp at the current time than are
 
estimates of data processing needs, and therefore no attempt
 
will be made to size this memory. Two of its other design
 
features are more readily specified: first, the speed and ad
dressing properties of the ROM should be about the same as
 
the read-write part of M3, for system compatibility. Second,
 
the ROM should permit introduction of new data loads in at
 
,least a fraction of its address space. The characteristics
 
of this memory will be more extensively discussed in the report
 
of the Mass Memory Study which is part of the current contract.
 

The read-write part of M3 is analogous to the disk and
 
data-cell storage found on commercial computers. This memory
 
holds those programs and data files which are available for
 
use by system users. A block-oriented configuration would be
 
suitable for this level, if any advantage could be gained by
 
this approach. Contents will be located by means of a directory
 
hierarchy similar to that used in current systems, such as OS/
 
360 or Multics. The maximum size of the M3 level of read-write
 
memory is estimated to be on the order of 109 - 1010 bits; its
 
speed should be such that the traverse time ratio for a block
 
of words into M2 falls in the 10 - 1000 range, but this parameter
 
is felt to be fairly unimportant.
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5.6 Data Transmission
 

5.6.1 Processor to Ml
 

The architecture described in section 5.1 relies heavily
 
on the satisfactory communication of data between several hier
archical levels of memory. A system processing potential of up
 
to 107 instructions per second is proposed. This implies that
 
the processor must be able to access the Ml memory for data
 
within about 100 nanoseconds. This data path is a dedicated one;
 
it need not be shared by other processors or memories. It can
 
therefore be designed without consideration for the flexibility
 
and expandability requirements of the system as a whole. The
 
physical distances over which the processor and Ml communicate
 
will be of the order of inches, rather than feet. This can be
 
achieved by carefully designed conventional wiring, and will
 
not 	necessitate exotic transmission line techniques. Depending
 
on the chosen "width" of the path, i.e., the number of separate
 
parallel lines constituting the bus, data and control pulses
 
of 10 to 100 ns duration will be involved, at frequencies between
 
10 and 100 MHz. The major problems are:
 

a) 	Maintaining the shape of a pulse as it traverse the inter
face. This is a'matter of matching the distributed capa
citance and inductance of each line, and terminating each
 
in its characteristic impedance to avoid the reflections
 
which would otherwise degenerate the next pulse in sequence.
 

b) 	Maintaining equal transmission delays over the individual
 
lines of a parallel interface. This may involve the "loop
ing" of connecting lines between terminals that are closer
 
together than others. Synchronization is important in
 
achieving high repetition rates in parallel data transfers.
 

c) 	Minimizing the effects of undesired coupling between adjacent
 
lines. A common measure is to surround each conductor with
 
a low impedance ground shield, or to sandwich it between
 
parallel grounded conductors. Unfortunately, this adds to
 
the capacitance in the system and therefore increases the
 
power required to drive the lines. For a specific design,
 
a compromise between physical topology, speed, and power

dissipation must be reached.
 

2
The design of the IBM 360/85 cache memory( ) illustrates
 
one current approach to some of these problems. This memory is
 
about one cubic foot in volume, and has interconnection distances
 
of a few inches.- It is organized into cards which carry the
 
storage, drive, and sense circuits. Each card is designed to
 
provide equal transmission delays for parallel data paths: delay
 
times to all storage elements are within 3 ns of each other.
 
Space on each card is devoted to termination resistances for
 
the X and Y drive lines. Although the individual circuits have
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characteristic delays of less than 10 ns, the delay per board
 
averages 25 ns due to the contribution from the equalized
 
wiring. The overall memory of 0.25 x 106 bits has 40 ns access
 
and 60 ns cycle times, which are comparable to those required
 
for the maximum computer configuration proposed in this report.
 
Developments in packaging density and circuit power requirements
 
can be expected to assist in the achievement of high performance
 
transmission paths between the memory and the processor.
 

5.6.2 The Internal Bus
 

The transmission of data between processor/memory pairs
 
and other elements of the system such as mass store, I/O units,
 
etc., may involve physical distances of up to a few feet. A
 
data bus is proposed to link all these elements. Because
 
multiple data will pass along a common physical transmission
 
medium, a multiplexing approach is necessary. The data bus it
self becomes a significant element in the computer and due
 
consideration must be.given to its design.
 

The peak data rate requirement comes from traffic between
 
Ml and M2 memories. To support the proposed top processing
 
speed, information must be delivered from M2 at the rate of
 
a single word transfer in 100 ,ns. The bit rate capacity that
 
this requirement imposes on the bus is a complex question.
 
Some of the factors are enumerated here:
 

a) 	Message Structure. Since many types of data will be
 
transmitted on the bus, identification and control are
 
necessary. This implies either separate control lines,
 
complicating the bus structure, or addition of control
 
bits to the basic data word, thus increasing the required
 
bit frequency.
 

b) 	Bus-access Control. In time-division multiplexing (which
 
is the probable approach), only one message may appear on
 
the bus at a time. A technique must be devised to grant
 
bus-access to units seeking to transmit data. Conceptually,
 
perhaps the simplest way is to sample each unit at a rate
 
high enough to allow satisfactory dynamic operation, with
 
additional contingency for expansion. The direct effect
 
of this technique is to force the required bit rate up.
 
Other techniques, such as the request-and-grant approach,
 
ease the bit rate requirement, but impose further hardware
 
complexity.
 

c) 	Error Checking. Techniques for detecting and correcting
 
errors, e.g., Hamming or other transmission codes, add more
 
bits to the message. It may, however, be possible to com
bine memory and bus error checking as a part of the bus
 
system, since they have certain similar characteristics.
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d) Reliability. The likelihood of failure is generally pro
portional to system complexity, other things being equal.
 
A bus consisting of a single wire is inherently more reliable
 
than one comprising a hundred. For a given level of infor
mation traffic, however, fewer lines demand a higher bit
 
rate capability.
 

e) Bus Interface Circuitry. The elements of the computer system
 
generally process data in a parallel, word- or byte-organized
 
fashion. (High speed linear-select memories handle especial
ly wide data structures, sometimes up to several hundred bits,
 
to minimize internal drive problems.) Serial/parallel con
version is necessary for elements to interface with a bus
 
system that is narrower than the basic data. For very narrow
 
buses, very fast circuitry is necessary to perform the con
version, with the attendant problems of layout, power
 
dissipation, etc.
 

The proposed computer design imposes a peak memory-to-memory
 
transfer load on the bus of about 40 information bits per 100 ns
 
interval. To this must be added a block transfer overhead of
 
about 20-30 bits of address information, up to 10 bits of message
 
check-coding, and, say, 20 bits of bus identification and control
 
overhead. For eight-word blocks, this may total 400 bits in an
 
800 ms interval. If a minimum pulse half-period of 10 ns is
 
postulated, this data rate can be accommodated on a 10-path
 
parallel data bus. Since about 2.2 Hz bandwidth is required per
 
pulse per second, the minimum bandwidth necessary to achieve
 
transmission of 10 ns pulses is approximated by 2.2/(10 x 10-9)
 
or 220 MHz. This is within the capability of miniature coaxial
 
cable, which can handle up to 500 MHz. More lines than 10 would
 
allow more straightforward wiring techniques to be considered
 
(dependent on length), but would increase the complexity and
 
interconnection problems, and decrease reliability.
 

Providing connections to transmission lines involves pro
blems of impedance matching, attenuation, noise suppression, and
 
level conversion. A technique employed in the IBM 360/85, the
 
directional coupler (well known in microwave technology) has been
 
described.(3,4)
 

The directional coupler enables simple junctions to be made
 
to transmission lines without the usual line-to-line impedance
 
mismatch and its attendant restriction on the length of the
 
junction. It requires no DC connection, eliminating voltage
 
level and grounding problems. It inherently suppresses driver
 
noise and mismatch reflection by virtue of its directionality.
 
Its chief disadvantage is that its operation relies on the steep
ness of the transmitted pulse, which must induce corresponding
 
voltage changes in a capacitatively coupled conductor. Both rise
 
and fall times must be in the subnanosecond region. This imposes
 
the usual layout and power dissipation problems on the drive
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circuitry. However, integrated circuit techniques being develop
8


ed today are probing the fractional nanosecond region( ), and
 
by the time period projected for the operation of the proposed
 
computer, compact techniques for driving a line with sharp pulses
 
of sufficient energy are expected to have been developed.
 

5.7 Error Detection
 

The reliability concept for the space station DMCS includes
 
not only the conventional notion of low probability of component
 
failure, but additionally requires uninterrupted error-free per
formance even when components ordinariy considered,to be critical
 
have failed. It is inconceivable that techniques will be avail
able by the mid 70's for building a computer which can operate
 
for five to ten years without repair, even if massive redundancy
 
is used. Consequently, the reliability of the computer system
 
must be such that the number of failures which occur in the time
 
interval between the occurrence of the first failure and the
 
repair of the system does not exceed the failure tolerance capa
bility built into the design. Because of space and weight
 
limitations in the space station, it .may be impractical to pro
vide on-board spare modules for each system. Thus, the relia
bility and failure tolerance goals may need to be keyed to
 
shuttle flight schedules rather than derived from the expected
 
time to diagnose and repair a failed module.
 

The soundest approach to reliability in the technology of
 
the foreseeable future is to use simple, conservative circuit
 
design and the most reliable parts and fabrication techniques
 
available. Only when this approach fails to yield the required
 
reliability should the designer resort to redundancy; the addi
tion of redundant components introduces additional failure
 
possibilities which tend to offset their effectiveness. In
 
fact, attempts to achieve unrealistic reliability goals may
 
cause the product to contain such complexity that the failures
 
against which the design is meant to be protected occur in the
 
protection equipment itself with such high probability that only
 
the cost, and not the reliability, is found to have increased.
 
Therefore, any imposed requirements for multiple-failure toler
ance should be reviewed in particular because of the impact
 
it has on the design.
 

Methods for detection of failures when they do occur may
 
vary considerably between the types of units because of the
 
disparity in their functional characteristics. The buses, for
 
example, lend themselves to checking by use of transmission
 
codes, of which a great deal is known. Many of these codes per
mit errors to be corrected as well as detected, so that tran
sient failures may be rather easily masked. Processors, however,
 
modify data they handle in so many ways that checking, though
 
possible, is more difficult. Recovery from transients is
 
straightforward if inputs to operations are retained, since the
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operation which failed may then be repeated. Memories have
 
some of the characteristics of buses, and transmission codes
 
may be used for detection and correction of certain errors.
 
However, other failure modes cause contents to be lost; when
 
data is destroyed, only reconstruction by some process can
 
permit full recovery.
 

The proposed multiprocessor configurations inherently are
 
tolerant of processor failures if four conditions are satisfied:
 

a) 	All processor-errors are detected, and the system advised.
 

b) 	A failed processor can be logically removed from operation,
 
and does not contaminate the system.
 

c) 	Sufficient processing capacity remains after the failed
 
units have become dormant.
 

d) 	The hardware/software combination can reconstitute the
 
process which was runhing on the processor at the instant
 
it committed the error.
 

Section 3.4 demonstrates the relative effect on availability
 
produced by the use of redundant elements.
 

Memory failures differ conceptually from processor failures,
 
since they represent a potential loss of information, rather than
 
a loss of capability. Memories tend to fail in four ways:
 

1) 	One or more words read have a bit in error;
 

2) 	when a word is addressed, no response occurs;
 

3) 	when a word is addressed, the superimposed contents of
 
several words are delivered;
 

4) 	when a word is addressed, the contents of the wrong
 
location are delivered.
 

The first of these may be handled by provision of a trans
mission-type code such as parity or a cyclic block code. Such
 
codes are relatively easy to implement, and can provide both
 
detection and correction capability. If the all-zero bit com
bination is an error code under the chosen method, the second
 
type of failure above is detected. The third is more difficult
 
to discern because of the possibility that superimposed words
 
may pass the checks. For simple parity, use of a word with
 
an even total number of bits and odd parity is the best solution.
 
However, if the memory fetches two words, the chance of this
 
error being detected is only 50%, which is clearly unsatis
factory. More elaborate checking codes, such as Hamming codes,
 
detect superimposed words with higher probability. The fourth
 
type of failure cannot be detected by any of these methods,
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and protection against it involves further complexity, such
 
as storage of address bits along with data, for example.
 

Thus, it presently appears desirable to operate multiple
 
copies of memory simultaneously. All write commands would be
 
accepted by all functional copies, so that each contains
 
completely current contents. Each will respond to read re
quests, and all outputs will be compared in an evaluation
 
circuit. Provision of checking codes permits the detection of
 
the erroneous word in most cases. However, in the few instances
 
where this fails, the software is required to attempt recovery.
 
The overall result is the elimination of undetected errors
 
and the resulting propagation of bad data throughout the system.
 

If the redundant-memory-copy approach is adopted, some
 
cost saving may be realized by operating some modules of M2
 
in simplex mode. This is possible because all program segments
 
are pure procedures, and can thus be recopied from M3 if the
 
M2 area they occupy should fail. With this philosophy, it is
 
only necessary to detect errors in M2; correction within that
 
domain of M2 is unnecessary.
 

Ihtermettics recognizes that there is a potential hardware/
 
software tradeoff in the attainment of reliability. The approach
 
outlined above reflects our strong belief that hardware failures
 
in the computer system must be rendered invisible to the appli
cations software whenever possible. As a result of comprehensive
 
experience in the development of the Apollo on-board G&N software,
 
we have found that trying to achieve failure protection primarily
 
by software techniques is incredibly expensive. Further, in
 
addition to the steeply increased software cost, there is in
variably an associated software unreliability which remains
 
even after completion of extensive and ambitious testing, which
 
prevents attainment of the overall system reliability sought.
 
The redundant-copy approach outlined above reflects this ex
perience. Nevertheless, we are aware of the cost, power, weight,
 
and volume penalties which result from the provision of redundant
 
copies of units; we submit that this area must receive additional
 
study.
 

5.8 Operating System Philosophy
 

The computing system for the space station is required to
 
accomplish a spectrum of activities which includes real-time
 
control, general-purpose data processing, and interactive com
puting directed from remote terminals. It must also allow users
 
to share programs and data. These requirements span virtually
 
the entire range of computing problem types, which usually are
 
performed in computers dedicated to a single one of these func
tions. Consequently, the operating system must be a very broad
 
and general one, and yet must not cost the system an unreasonable
 
amount of overhead.
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The general characteristics and philosophy of the
 
operating system are summarized below:
 

1) 	The operating system will contain the conventional
 
kernel of programs required to run the entire computing
 
system itself. This includes scheduling and dispatching
 
of tasks or processes, a dynamic relocation mechanism
 
for management of information transfer between the M2
 
and M3 memories, and a comprehensive file system. The
 
file system must be sufficiently general to allow data
 
sharing and data interlocking among users, although it
 
is probably not appropriate to require the file system

itself to perform the interlocking.
 

2) 	It should be the responsibility of those who prepare the
 
operating system to also prepare a comprehensive set of
 
system utilities for use by application programs. These
 
include display interface routines, language processors,

and so on. It should be within the capabilities of the
 
protection mechanisms of the operating system to prevent
 
other than specified system routines from beingtsed, for
 
example, to command input/output devices or displays, to
 
prevent proliferation of interface programs, and also to
 
prevent misuse of the devices.
 

3) 	The system must provide the maximum achievable autonomy

for users. This is desirable both to allow decentralized
 
application-programming efforts, with local management,

and also to prevent a continuing requirement for augmenta
tion of the operating system to meet new and changing
 
requirements. This autonomy does not preclude or even dis
courage exercise of good management practices over the over
all programming job. Specifically, it makes it a fairly
 
straightforward job to apply memory space and execution time
 
budgets to the decentralized autonomous functions.
 

4) 	In conjunction with the philosophy of decentralized program
ming, the users themselves must be required to provide the
 
software to handle their own equipment on board the station.
 
That is, no specific I/O routines for special-purpose user
 
equipment will be included in the central supervisor. How
ever, it is desirable to make I/O instructions "privileged",
 
so that the supervisor can validate them in order to control
 
accidental access to unauthorized devices or memory. Access
 
to programs and data should be granted by this operating
 
system on the basis of the identity of the individual user.
 
That is, each program and data file should have access rights
 
or access control information specifying who may, or who
 
may not, have read, write, or execution access. The identi
ties used by the access controller should be functionally

oriented; that is, access privileges should be based on the
 
function being performed, rather than the identity of the
 
individual, assuming that the system has already verified the
 
particular individual's authority to perform the function.
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5) Any function required to effect recovery from computer system
 
hardware failures or errors, but which is not implemented in
 
the hardware itself, must be performed by the operating
 
system. In no case should any computer failure require
 
application-software recovery action. On the other hand,
 
failures of application-hardware are outside the operating
 
system domain.
 

5.9 Word-length, Protection, and Flag Bits
 

5.9.1 Word-length
 

At the very heart of any discussion of word-length lies
 
the question of what the function of a word is. Indeed, not
 
all computers are word-organized: .some computers are character
oriented with variable length instructions; punctuation bits
 
associated with each character (word marks and item marks) denote
 
the end of data. (IBM 1400 series is an example.) Other com
puters are byte-oriented, the term referring to the absence of
 
punctuation bits. But the word-oriented computer still finds
 
much favor. While the byte-oriented computer regards data as
 
strings of characters that can be manipulated as strings or
 
individual bytes, the word-oriented computer organizes the data
 
into fixed-length groups. Groups of words may make up an array.
 
Floating-point data fits neatly into words, as do fixed-point
 
and integer quantities. In fact, fast.arithmetic operations
 
are more directly implemented with word-parallel hardware;
 
variable-length operands typically require digit-serial opera
tions. Alphanumeric and string data are best suited to byte
 
or character representation. Of course, string data can be for
matted on a word machine, and arithmetic data can be represented
 
on a character machine. The question is one of relative gains
 
and losses.
 

Recognizing the hazards of premature desigA decisions, but
 
also seeing the need for a design strawman, it is proposed that
 
this computer should be word-oriented.
 

Within a word there must be a smaller unit to represent
 
characters of information. Although it can be argued that eight
 
bits is wasteful, the eight-bit byte has received an acceptance
 
that is approaching universality in recent computer configura
tions. Special cases and exception-handling seem particularly
 
inappropriate in communication equipment and transmission paths;
 
since these seem inevitable if shorter bytes are used, the 8
 
bit byte is chosen.
 

In selecting the word-length, it seems mandatory that it
 
be an exact multiple of the byte length. Reasonable arguments
 
can be generated that support a word length of 24, 32, 40, 48,
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or 64 bits. Actually, the field can be reduced to two funda
mental choices, either 32 or 48 bits. From the point of view
 
of scientific computation, the scales are tipped in favor of
 
48 bits. Experience has shown that most floating-point problems
 

.can comfortably live within 48 bits with double-precision re
quired only for rare exceptional cases. However, 32 bits is too
 
small for a large class of routine calculations required in
 
aerospace applications. Thus, a long version of 64 bits would
 
be often required. Occasionally, an exceptional case would
 
still arise which requires even longer precision. Hence, at
 
least three different floating-point number representations are
 
needed.
 

Nevertheless, 32 bits has been selected for the word length.
 
Although it is convenient to have a word that contains a number
 
of bytes which is a power of two, this is not an over-riding
 
consideration. For the last five years, any computer introduced
 
that has a word length which is not multiple or submultiple of
 
32 bits (8, 16, 32, or 64 bits) appears eccentric. Thus, again
 
the decision is motivated by considerations of compatibility
 
and general standardization. This compatibility permits ease
 
of simulation on existing ground-based computers, and allows
 
a direct comparison of arithmetic results for both floating
point and fixed-point calculations, assuming that the number
 
system, floating-point formats, and algorithms are similar.
 

5.9.2 Memory Protection
 

Memory protection can be achieved in a very rigorous,
 
yet flexible manner, through a combination of hardware mechanisms,
 
rooted in the basic structure of the computer, and software
 
capabilities exercisable only by the operating system. The
 
fundamental concept adopted by Intermetrics to protect one pro
gram from undesired access by another is one of prevention
 
rather than detection. One process cannot adversely affect
 
another if there is no way for them to address each other. The
 
variables and information of one are simply placed outside the
 
scope of the others.
 

Some of the characteristics of the computer that produce
 
this environment include the following:
 

a) 	Absolute addressing may never be used by application programs.
 
All addressing is relative: relative to the base of the
 
procedure or subroutine segment, relative to the base of the
 
array or buffer areas, relative to the base of the stack or
 
the stack pointer. Thus, all addressing is oriented to key
 
items that have been assigned to the process by the super
visor. As a bonus, this addressing is automatically relocat
able.
 

b) 	Upper limits are imposed, as are lower limits or base values.
 
When the executive assigns an area for data or program or a
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process, it also places an upper bound on the segment,
 
thereby constraining the process to stay within its limits.
 
Hardware is provided that automatically detects attempts to
 
go beyond the allocated area, by incorrect indexing for
 
example, Thus, operating windows are established, and
 
programs are confined to remain within the windows.
 

c) 	The linkage words, indirect addresses; data and program
 
points, and supervisor calls cannot be modified in the pro
blem state. The scope of knowledge of any operating process
 
is thus established by the executive, and fully controlled
 
by it. No individual program can escape its own region.
 

d) 	The links form a small and carefully controlled network of
 
interconnections between various programs and data. The
 
executive can remove or modify these links to adjust the
 
capabilities of individual tasks, or to restructure the
 
memory allocation. This gating of the interfacing between
 
program elements through limited connecting paths provides
 
a powerful means of regulation to prevent inadvertent ac
cesses.
 

e) 	Finally, individual words are identified and protected by a
 
set of bits, called flag bits, which are described in detail
 
in the next section. It is these bits that protect the link
 
words from being overwritten by problem state programs.
 

5.9.3 Flag Bits
 

Associated with every word of memory are several extra
 
bits that identify the type of word, and offer a means to prevent
 
it from being accidently modified or incorrectly used. Current
 
design thinking suggests the following developmental strawman:
 

a) 	Three flag bits will accompany each 64-bit double-word.
 
The three bits will be examined by the hardware whenever
 
the whole double-word or either single word is fetched or
 
stored.
 

b) 	The flag bits apply to both words, so that both must be
 
write-protected when one must be.
 

c) 	Functions performed include write-protection, trace mode,
 
and identification of variables, constants, program, inter
lock words, and shared data base pointers.
 

d) 	Proposed bit-pattern categories:
 

1) 	Writable variable
 

2) 	Trace-trap this variable
 

3) 	Interlock word, used for shared-data handling
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4) 	Instructions or constants
 

5) 	Trace-trap this instruction or constant
 

6) 	Special double-word: link word, pointer, etc.
 
Flag sub-bits will further identify,
 

The last three are write-protected.
 

The class of special double-words are useful in many ways.
 
Among other things, they offer a method to provide an indirect
 
address to data when data itself was expected, to produce a jump
 
to a closed subroutine when data or an address of data was
 
expected, or to cause an interrupt to the executive under other
 
conditions; e.g., in order to allocate a data area in memory.
 
These special double-words are generally only created and up
dated by the executive. However, certain types of them are
 
freely produced and altered by specific problem state instruc
tions, such as subroutine call and return.
 

Special double-words are used for:
 

a) 	Indirect addresses: expected pointers to data or program.
 

b) 	Unexpected pointers
 

1) Data pointers when data expected (indirect address)
 

2) Programpointers when data or data pointers expected.
 

c) 	Interrupt calls
 

1) 	Missing data, program, or data area
 

2) 	Supervisor-calls, or entrance to executive routines
 

d) 	Special words
 

1) Stack markers
 

2) Link words
 

3) Pointer-pointers: addresses in stack of executive
generated pointers; e.g., subroutine return markers
 

The trace-trap condition causes a trap to trace routines
 
to indicate whenever an instruction or operand is executed or
 
referenced. This is an extremely useful debugging tool.
 

The interlock word indicates a type of word that is treated
 
by the hardware in a unique fashion. It provides a mechanism to
 
accomplish interlocking that is done by the Test and Set instruc
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tion on many computers. It is also designed to facilitate the
 
sharing of data. It operates as follows:
 

a) 	The interlock double-word serves as a pointer to a resource
 
whose usage needs to be regulated or interlocked. Users
 
are gated through this control or check-point.
 

b) 	A lock instruction examines the interlock double-word, and
 
if the lock is free, it is locked by the placement of two
 
pieces of identification in the lock word. One is hardware
determined; the other can be varied by the program for in
ternal communication. If the lock is busy, the program
 
either loops or idles until the lock is free.
 

c) 	An unlock instruction reverses the process; it frees the
 
lock and returns the word to the available state.
 

d) 	When the lock is busy, usage of the pointer to access the
 
interlocked resource is prohibited by hardware unless the
 
user's identification key matches to an acceptable degree
 
the 	lock value.
 

e) 	For simultaneous reading of shared data bases a special
 
halflock instruction is provided. This locks the resource
 
from store instructions (write-protect) but permits other
 
programs to read the data. Two or more users may make
 
successive halflock requests which are accepted. The sug
gested procedure is to combine part of their lock ID's by
 
a simple process, say an exclusive OR operation. Then an
 
unlock or halfunlock could do another exclusive OR of the
 
ID of that process.
 

f) 	An instruction desiring to store into a shared area must be
 
preceded by a full lock instruction, which would stall un
til all other users are through reading the shared data as
 
indicated by a free lock. Then it would lock it for its
 
exclusive use, and do the updating of the shared data. When
 
through, it would unlock it for others to use again.
 

Other uses of the interlocking mechanism will be uncovered
 
as the software system is developed. The synchronization and
 
control of concurrent processes is an immediate candidate.
 

5.10 I/O and Interrupt Structure
 

Communication with its external environment is an essential
 
facet of the operation of the data management computer system.
 
Nevertheless, consideration of I/O requirements and implementa
tion formed a very minor part of this study. Only broad design
 
conclusions were reached; they are presented in the following
 
sections.
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5.10.1 I/O Bus
 

It is postulated that the space station communications
 
with the DMCS take place over a limited number of lines, per
haps as few as one. These system I/O buses would be routed
 
throughout the spacecraft; units would communicate with the
 
bus through a standard interface element, which would provide
 
the necessary isolation in case of failure, and be capable of
 
sending and receiving messages in standard but variable
length formats. A bit-rate capacity limit of 1-10 megabits
 
per second is visualized for the I/O buses to allow their
 
construction to be elementary and their reliability to be ex
ceedingly high. Should a unit.be capable of overloading the
 
I/O bus, either a special bus should be provided, or preferably,
 
data compression techniques be applied at the unit to lower the
 
actual bit rate. At the computer end of the bus, communication
 
takes place via one or more I/O controller units, described in
 
the following section.
 

5.10.2 IO Controllers and Interrupts
 

Because of the variety of I/O device types which can be
 
anticipated in an orbiting scientific facility, the I/O con
troller must be a generalized and multiplexed unit with a simple
 
communication interface. A typical I/O operation is one in
 
which a processor issues a request to an I/O controller for a
 
specified block of data from a device. This request, transmitted
 
to the IOC on the system internal bus, specifies the device, an
 
action code for the device, a word count for the data block, and
 
the address in M2 where the block is to be stored. An additional
 
bit is used to specify whether a completion-interrupt is to be
 
generated by the IOC.
 

Upon receipt of this request from the processor, the IOC
 
in turn issues a request to the device over the appropriate I/O
 
bus. The device, at its own response rate, replies with an
 
identifier and the block of data. The IOC directs this data to
 
M2, and when the transfer is complete, signals the requesting
 
processor via an interrupt message, if one was requested.
 
Multiplexing in the IOC permits many such operations to be in
 
various states of completion at the same time. Because the IOC
 
retains the identity of the requesting processor, any error sig
nal which occurs may be transmitted in an interrupt message to
 
that processor for action.
 

To allow I/O devices to volunteer data without being spe

cifically requested to do so, it must be possible for a device
 
to initiate a request-interrupt, which would contain a code
 
indicating the action desired of the processor. Because this
 
interrupt is not a result of a processor-initiated operation, no
 
processor identity will be held in the IOC to be used as the tar
get for the interrupt. The IOC can either select a processor at
 
random, or address the processor which last initiated a command
 
to the device.
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Chapter 6
 

Summary and Recommendations
 

6.0 Introduction
 

This chapter is included to summarize and comment on the

information collected and analyzed during the 
course of the
 
study, to discuss technology trends and their impact on the
 
computer, and to present areas in which it is recommended that
 
more study or design occur.
 

We believe that the overall objectives of this study have
 
been achieved. Existing knowledge concerning actual and proposed

multiprocessor systems has been collected and included in the
 
survey. General multiprocessor theory and a baseline definition
 
of various system configurations has been presented and analyzed

in Chapter 3, along with a discussion of the design considera
tions and a review of the existing space station DMS require
ments. An architectural design of a multiprocessor computer system
 
was presented as an extension of multiprocessor technology to
 
the space station DMS application.
 

6.1 Technology Trends
 

The computer design presented in Chapter 5 can be satis
factorily implemented for a space base application only if
 
certain technological developments take place. A computer of
 
this design could certainly be built using current techniques,

but its probable volume, weight, power consumption, and environ
mental requirements would be more comparable to a large data
 
processing facility, which it resembles in performance, than to
 
the small aerospace computers currently in operation. Without
 
considering the M3 memory, the physical characteristics of the
 
system might be: volume, 500-1000 cubic feet; weight, several
 
thousand pounds; and power, 50-100 kilowatts. Appendix B makes
 
a tenuous estimate of the physical characteristics of the
 
computer for a 1975 cut-off, based on a continuous development

of today's technology. Predicting what these developments
 
will be is a hazardous task. However, it is possible to discuss

trends that are visible today and to identify areas of the
 
computer design that should receive the major emphasis for
 
improvement.
 

6.1.1 Memory
 

The greatest reward for the effort of development will
 
cope in the area of memory, which is generally the bulkiest,

costliest, and slowest element of a computer. 
The ferrite core
 
has dominated the main high-speed memory (capacity up to l07
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bits) for so long since its first application in the mid-1950s
 
that "core" has become synonymous with "memory". Its "imminent
 
demise" at the hands of up and coming competitive techniques
 
(e.g., plated wire, film) has been heralded for ten years; core
 
technology has always responded by increasing its dominance
 
in this application. Early cores were large, 100 mil diameter,
 
and slow, 10 Us switch time. Successive improvements have
 
occurred in both the geometry of the core, which is in commer
cial production in a 12.5 mil O.D., 7 mil I.D. size as the
 

9
element of a 375 ns cycle time memory( ),and in the organization
2
of the memory core arrays( ). These improvements have enabled
 
cores to at least keep up in performance while always maintain
ing a steady lead in terms of cost.
 

Despite .its past success, the ferrite core is bound to
 
yield its position sooner or later. There are several reasons
 
for this view today: Firstly, the bit density of core arrays
 
will never match that obtainable by other techniques, such as
 
semiconductors. The high speed memory of Ref. 9, for example,
 
has an overall density of 4,000 bits/cu. in., which is 10 to
 
100 times less dense than current MOS techniques. Since memory
 
capacity requirements are expected to go up with time, this
 
factor will become increasingly important. Plated wire and thin
 
film memories, although potentially an order of magnitude
 
faster than ferrite core, also suffer from a poor bit density:
 
1000 to 10,000 bits per cubic inch. In spite of a current
 
strong emphasis in developing plated wire,(4) it is our opinion
 
that this technique does not have the ultimate promise of semi
conductors.
 

Secondly, the performance curve is beginning to flatten
 
out at about 100-200 ns cycle time. Techniques such as even
 
smaller cores, partial switching, two cores per bit, or expensive
 
2-D configurations must be employed to get into this speed region;

these are all factors that diminish the ferrite core's advan
tages of simplicity, manufacturing ease, and cheapness.
 

Thirdly, the competition is in a very healthy developmental
 
phase. Semiconductor memory arrays are currently the subject of
 
intense commercial activity; this is always the portent of
 
general acceptance of a new technology. LSI arrays of bipolar
 
transistor flip-flop memory cells provide the capability of very
 
high speed (10 - 100 ns) local random access memories of limited
 
capacity (up to 105 bits). Currently, densities of about 100
 
bits per 100 x 100 mil chip with dissipations of about 10 mw
 
per bit are being achieved. MOS transistor arrays provide

denser packing at a lower speed (1000 bits per chip at 1 Us)
 
and lower power dissipation (as low as 10 nw/bit for CMOS
 
logic), for implementation of the larger main memories. Other
 
technologies, such as the MNOS transistor (8) which has the
 
property of non-voiatility and which requires only one active 1)
 
device per bit, and the magnetic domain "bubble" in orthoferrites, "
 
promise very high densities, and are the subjects of current
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experimental investigations. The rate of development of semi
conductor techniques, which promise orders of magnitude improve
ments in speed and density, is accelerating, whereas current
 
memory technologies are reaching a developmental plateau. It
 
seems inevitable that the memory system of the next generation
 
of aerospace computers will be realized to a great extent with
 
semiconductor techniques.
 

6.1.2 Logic
 

Improvement in the logic areas of the computer system,
 
the processors, I/O controllers, buses, etc., have until recently
 
been realized by increased speed in the logic and control cir
cuitry. However, the logic available today already operates
 
in the sub-nanosecond region(5). The problem now is the timely
 
communication of data at these high speeds over physical paths73):
 
a pulse is delayed by about 2 ns for every foot of interconnection.
 
The reduction of physical dimension and the minimization of
 
interconnection paths becomes the route to increased circuit
 
performance. The possibilities offered by large scale semi
conductor integration in pursuit of these ends are overwhelmingly
 
attractive and consequently LSI has received a great deal of
 
attention and publicity, some of it premature.(6) In conjunc
tion with increased circuit speeds, performance improvements
 
will be achieved by tailoring the organization of the computer
 
to this end. The concept of the buffer memory proposed in
 
Chapter 5 is an example. It enables large programs stored in
 
the relatively slow M2 memory to be executed at a speed approach
ing the capability of the much smaller high speed memory Ml.
 
The use of parallel rather than serial processing is a path to
 
increased performance which has always-exacted penalties of
 
increased complexity and cost. However, it is just these
 
factors that LSI seems particularly suited to combat. With the
 
increased employment of LSI techniques, we would expect to see
 
highly parallel logical organization in the design of future
 
aerospace computers.
 

6.1.3 Summary and Recommendations
 

Technological improvements are most needed for the imple
mentation of the proposed computer memory system. It is antici
pated that LSI semiconductor techniques will be the main line
 
of attack. If improvements in LSI yield (cost), speed, power
 
dissipation, and density continue to accelerate, this technique
 
will be used in the majority of the logic and memory circuitry
 
in computers beyond 1975.
 

It is, however, a long road from the experimental demonstra
tion of a promising technique to its application in a real opera
tional environment. Although there is much activity, for
 
example, in semiconductor chip design for high yield, high
 
density and low dissipation, the problems of integrating these
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chip elements into an operational unit such as a 108 bit memory
 
are not being as widely pursued. We would recommend that imple
mentational problems associated with interconnecting a large
 
number of densely-packed elements be evaluated in a pilot
 
stUdy. The construction of an operational memory should be
 
undertaken with a view to identifying the construction technique
 
that achieved the best compromise between performance, cost,
 
and size. Recommendations as to the best technology and memory
 
size for the DMS computer will be made at the conclusion of the
 
mass memory study that is a part of-this contract.
 

A vital part of the proposed computer configuration is the
 
transmission of data between the various elements along a common
 
data bus. The many data types, resulting in complex bus message
 
structures, and the high speeds will make severe demands on the
 
implementational technology. The interfacing of the bus with
 
the processing elements will involve high speed, serial-parallel
 
data conversion, error detection and correction and signal
 
conditioning and re-formatting. We would recommend that the bus,
 
and its interfaces be the subject of separate study and experi
mental implementation.
 

These studies should precede detailed DMS computer design
 
work by 1-2 years in order to gain sufficient lead time to meet
 
a post-1975 operation.
 

6.2 Recommendations for Future Effort
 

The architectural design presented in Chapter 5 is a solid
 
base from which to proceed toward the goal of an operational
 
system. A group of next steps suggests itself; for the most part,
 
they represent continuing design applicable to the technology
 
of computation in general, and would be valuable whether or not
 
prototype development of the proposed configuration was planned.
 

As.mentioned in the previous chapter, the architecture
 
developed is well suited to both a family of multiprocessors of
 
varied performance capability, and to a single-processor confi
guration. Whichever approach might be currently believed most
 
promising, or indeed, if it was desired to postpone making a
 
choice, the efforts outlined in the following sections would
 
enable systematic progress to continue at modest cost.
 

6.2.1 Continuation of System Design
 

This study has provided a description of a basic computer
 
organization, founded solidly on its technological predecessors.
 
Certain areas have been identified as being of particular signi
ficance.
 

a) Maintenance of reasonable levels of internal bus traffic
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through sizing of Ml and M2, and choice of an instruction
 
set which takes full advantage of the hardware stack.
 

b) 	Provision of generalized, yet efficient, communication
 
conventions for the I/O bus and devices.
 

c) 	Recognition of the failure recovery problem, and provision

of a systematic hardware and software recovery design.
 

d) 	Provision of general, yet simple, operating system and
 
file systems.
 

The following tasks are recommended.
 

6.2.1.1 Instruction Set
 

Design of the addressing structure, instruction formats,
 
and instruction set are required. This task will additionally
 
entail consideration of the register complement of the processor.
 
Verification of compatibility with the chosen word length of
 
32 bits is inherently a part of the task.
 

6.2.1.2 Stack
 

Related to the preceding task, consideration of details
 
of stack implementation in Ml will influence the instruction
 
set design, and the treatment of data items of length other than
 
one word. Stack interaction with M2 should be predicted on the
 
basis of stack size and estimates of stack-switching frequency.
 

6.2.1.3 Buffer Memory
 

Details of information-handling in the buffer memory

should be resolved. The influence of the instruction set,
 
stack, and buffer size on the bus traffic should be formulated.
 
Buffer sizing for constant bus traffic as a function of processor
 
speed should be studied.
 

6.2.1.4 Internal Bus
 

Message formats, bus-access control, traffic levels,.
 
and interfaces should be established, and the adequacy of the
 
bus-implementation technology proposed in Chapter 5 verified.
 
Particular attention must be paid to reliability and error
 
detection because of the central and solo nature of the bus.
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6.2.1.5 I/O Controller
 

As the nature of the space station experiment packages
 
and control requirements become more clearly defined, it will
 
be possible to design the I/O controller in more detail. Message
 
formats, interrupt structure, command multiplexing, and error
 
handling are areas which require further design at the next stage
 
of development. The definition of the standard interface
 
element used by I/O devices falls into this category.
 

6.2.2 Software Design
 

Perhaps the clearest single problem area in the history
 
of multiprocessor developments (and maybe computer systems
 
generally) is the development of software which can operate the
 
hardware at a satisfactory level of performance and reliability.
 
It is Intermetrics' strong conviction that the most fundamental
 
problems of this type can be avoided if the software development
 
is undertaken with the same vigor and at the same time as the
 
design of the hardware. If this is done, the two design efforts
 
can interact freely, and stimulate changes when changes are
 
least expensive. The following paragraphs contain specific
 
recommendations.
 

6.2.2.1 Operating System Design
 

The philosophy proposed by Intermetrics for the space
 
station operating system is presented in section 5.8. Implicit
 
in this philosophy is the need to orient the operating system
 
so that the overhead imposed is least when the frequency of use
 
is highest. Protection must be air-tight, yet the operating
 
system must be so direct that applications conceived years
 
after the system becomes frozen have a very high probability
 
of being compatible. The OS must allow those users who require
 
it to benefit fully from the opportunities of extremely general
 
and flexible sharing of procedures and data made possible by the
 
multiprocessor type of organization.
 

6.2.2.2 Application Software Management
 

To assure compatability between the operating system
 
and the management procedures which can be applied to the
 
development of the vast quantity of semi-interdependent appli
cation software, it is essential that a software configuration
 
management plan be prepared and employed for all software
 
development for the space station. It should provide a common
 
set of criteria and features for the software development,
 
and should be enforced.
 

It is Intermetrics' belief that the best means for imple
mentation of software conventions is to incorporate them
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into the language translators used to prepare the executable
 
code. This clearly requires that suitable languages be
 
provided for the application software, and that their compilers
 
be-prepared so that they are capable of more than simple language
 
translation.
 

Because of the length of the anticipated mission, software
 
testing takes on even more importance than it conventionally
 
has, since on-board testing should be provided to allow upgrading
 
of virtually any part of the software without fear of system
 
disruption.
 

6.3 Conclusion
 

We are aware.that the centralized multiprocessor computer
 
approach to the DMS application is not the only approach which
 
has been recommended. Although it is clearly not within the
 
scope of this study to analyze or perform a trade-off of
 
alternate candidates, nor have we done so, it is our conclusion
 
that a multiprocessor computer system can be designed, developed,
 
and implemented to achieve the DMS functions in a cost-effective
 
manner.
 

Even a cursory examination reveals several distinct advan
tages of this approach over one in which distributed computers
 
are used:
 

a) 	Its cost should be lower, for a number of reasons. "Grosch's
 
law" is an empirical observation that the cost of a computer
 
is roughly proportional to the square root of its performance;
 
thus one system with n units of power should prove less expen
sive than n systems each with one unit. Furthermore, the
 
aggregate power of a distributed system must necessarily
 
be greater than that of a central system, since each of
 
the distributed units must be sized for its peak require
ment, even if its average requirements is substantially
 
lower. The peak load required of a central system is more
 
closely related to the root-sum-square of the peak indi
vidual requirements than it is to their sum.
 

b) 	Its flexibility is greater, since it is inherently capable
 
of expansion, and because it deals with a wide variety
 
of applications via a simple, generalized interface.
 

c) 	Its reliability should be easier to achieve, since it is
 
organized'specifically for inherent failure-tolerance.
 

d) 	Its ability to implement communication among processes and
 
users is vastly superior, since all are directly attached
 
to the system and have access (when permitted) to common
 
information in the common memories.
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Other agencies are planning or using multiprocessing; the
 
Navy AADC, the ASW aircraft S3A, the IBM 9020 for the FAA, to
 
mention a few, plus the RCA-215, the Hughes 4400, CDC Alpha,
 
and 	so on, which have been developed for general applications.
 

Intermetrics strongly recommends the adoption of the multi
processor approach for the space station and space base Data
 
Management Systems, and believes the design presented in
 
Chapter 5 is an excellent candidate for these applications.
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Appendix A
 

Survey of Paging and Segmentation
 

Characteristics of Computer Systems
 

Many time-sharing systems have been implemented on computers

which do not utilize paging. Among them are the DEC PDP-10, the
 
Burroughs 5500 and 6500/7500, the Univac 1108, and the Control
 
Data 6000 series. Other manufacturers have elected to implement

paging; a number of these are reviewed below.
 

A.1 The Control Data 3300
 

The memory in the CDC 3300 is logically divided into pages

of 2048 48-bit words. A special fast core memory is used to
 
contain the physical addresses of pages in storage, indexed by

the upper bits of the logical address from the program. Pages
 
are further divided into quarters; storage may be allocated on
 
the basis of this smaller quantum.' Two additional bits are
 
provided in each entry of the fast-core page table for quarter
page addressing. These two bits are added to two bits of the
 
program-specified address with wrap-around, so that a three
 
quarter page requirement can be satisfied by a page with, say,
 
only quarters 3, 4 and 1 available.
 

A.2 The Control Data 3800
 

The 3800 paging mechanism uses an allocation memory (AM)

which contains 128 13-bit words. Three of the bits from each
 
entry are used for page access-protection, and to provide

write protection for the lower and upper halves of the page.
 
Seven to ten of the remaining bits are used for relocation,
 
depending on the page size. A four-position switch is used to
 
set the page size to 256, 512, 1024, or 2048 words, and to
 
control the selection of address bits used to index into the
 
AM. In all cases, seven bits are used to specify the location
 
in the AM, but the position in the logical address from which
 
they are taken is varied by the switch setting.
 

A.3 The XDS Sigma 7
 

Like the IBM 360, the Sigma 7 uses 8-bit bytes, 4-byte

words, etc. However, the addressing scheme is quite different.
 
The virtual memory addressed by the program is limited to 512K
 
bytes, which is 256 2048-byte pages. A high-speed 256-byte
 
memory map is provided to perform address translation; eight

bits of the virtual address select one of these bytes, whose
 
contents are substituted for the original eight bits of the
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virtual address to form the physical address.
 

Associated with each page is a two-bit access control code,
 
which is used to selectively inhibit non-executive programs
 
from reading, executing, or writing page contents. A 2-bit
 
lock and key protection feature is also provided; a program
 
can write into a given block if lock and key values match (the
 
lock is associated with storage, the key with the process
 
being executed), or if either is zero.
 

A.4 The RCA Spectra 70/46
 

The Spectra 70/46 is basically a Spectra 70/45 with memory
 
address translation hardware added. The virtual memory and
 
paging facilities are achieved using a translation memory.
 
Control bits in each translation memory entry indicate whether
 
the corresponding page has been written into or accessed. These
 
bits are set automatically by hardware. Each translation memory
 
entry also includes a "usable" bit, indicating whether the page
 
is in memory, and the physical address of that page in memory.
 

The translation memory has 512 entries, one for each 4K
byte page; the limit of virtul memory is thus two million
 
bytes. Although the virtual address is broken down into what
 
are referred to as segment and page fields, addressin9 is one
dimensional. The segment concept refers only to the fact that
 
eighteen-bit address arithmetic is used. Specifically, nine
 
bits from the address are used to select entries from the 512
halfword translation memory. Each entry, in turn, supplies
 
six bits which are combined with the 12-bit displacement in the
 
o-r-ginal address. Thus, no more than 64 pages (one "segment")
 
can be contiguously addressed.
 

By convention, the first four segments, or 256 pages of
 
virtual memory, are available as users' virtual memory. The
 
other four segments are not available to users' programs, but
 
are used by the control program. This system virtual memory
 
is always allocated for system and shared code. Its mapping
 
is resident in the translation memory and need not be modified
 
as control is passed from one task to another. When a task
 
is to be given control of a processor, the necessary portion
 
of the first half of the TM entries (the size of its assigned
 
virtual memory) is loaded.
 

A.5 The Burroughs 5000/5500
 

The Burroughs 5000 was one of the first computers to use
 
the segment concept. The segments are variable in length, but
 
have a maximum size of 1024 words of 48 bits. Users of the
 
B5500 are not supplied with an assembler; thus, all programs
 
are expected to be written in compiler languages. The system
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programming was done in a language called Extended ALGOL. Pro
grams are segmented by compilers at the level of ALGOL blocks or
 
COBOL paragraphs. Arrays are also compiled as separate segments.
 
The segment is used as the unit of memory allocation. Not all
 
segments have to be present in the core memory for the program
 
to begin running. When reference is first made to a segment,
 
the segment is fetched by the executive in response to an inter
rupt.
 

Each program is assigned a program reference table (PRT),
 
pointed to by a special register In the CPU. Each segment of
 
the program is represented by a PRT entry, which contains the
 
base address, the length of the segment, the starting location
 
relative to the base, and an indication of whether the segment
 
is currently present in memory. The entries in the PRT are
 
called descriptors by Burroughs. Core selection strategy to
 
prevent fragmentation includes choosing the smallest available
 
block of sufficient size. Because of the way in which segments
 
are formed, the average segment size is on the order of one
 
or two hundred words.
 

A.6 The GE 645, and Multics
 

The Multics project at MIT was the innovator of two
dimensional addressing with paging (cf. Chapter 2). The basic
 
motivation behind the combination was the desire to permit in
formation sharing in a more automatic and general matter.
 
Consider, for example, the problems involved in a non-segmented
 
system when a file is to be shared: typically a copy of the
 
desired information is provided to each user in response to
 
I/O requests he issues. Any modification or updatinq is done
 
on each copy, and is reflected in the original file only upon
 
completion of further I/O requests. Thus, logically acceptable
 
updates performed by different users at nearly the same time
 
can prove disastrous. In Multics, on the other hand, each
 
file is a segment. When a file is initially referred to by
 
a user, it becomes "active". Initial references by subsequent
 
users will find the segment active; only one page table will
 
ever exist for the file. If a user refers to a given address
 
in the file, the operating system automatically finds and fetches
 
the page into memory. Thus, the notion of copy is irrelevant;
 
a file page either is present in memory, or on secondary storage,
 
at the pleasure of the core-management routines.
 

The implementation of this system is quite complex. An
 
address can be considered to comprise two major parts: segment
 
number, and the word offset within the segment. In operation,
 
each of these parts is further divided into page and page-offset
 
parts. A key processor register, the "descriptor-segment base
 
register" (dbr), contains a value unique to each process: the
 
address of the page-table for the "descriptor segment". This
 
segment contains a list of pointers to page-tables of seaments
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known to that process. In address decoding, the page number
 
part of the segment number is added to the pointer in the dbr
 
to select a word in the descriptor segment page table. This
 
word contains the address of the page of the descriptor segment;
 
the low-order part of the segment number is added to this
 
address to locate the entry which points to the page table
 
for the appropriate segment. This page table is unique to
 
the segment regardless of the number of users to which the
 
segment is currently known.
 

In a similar manner, the upper half of the segment offset
 
is used to select an entry from the segment page table, which
 
points to the core location of the page; the lower half of
 
the segment offset is then used to finally address the word
 
wanted.
 

Prior to each lookup in a page-table, the hardware checks
 
the index to be used against a length-limit contained in the
 
pointer to the page-table; if the index is invalid, the operation
 
is trapped, and control is passed to the supervisor for process
 
termination. Each page-table entry contains a bit used to
 
alert the supervisor if the page is not physically in core,
 
by means of a page-fault. The supervisor responds by fetching
 
the page, and then returning control to the user. If a
 
selected segment descriptor word similarly indicates the
 
absence of the segment page table, this triggers a missing
segment fault, which requires the supervisor to make the
 
segment "known".
 

The GE-645 provides the means to use 1024 or 64 word pages,
 
and to use unpaged segments. Although the original Multics
 
implementation used both page sizes, the use of 64-word pages
 
was abandoned to enhance system performance. Unpaged segments
 
are used only in the part of the supervisor which is core
resident. Sixteen associative registers are provided in the
 
processor to retain recently-used descriptor-segment and page
 
table entries, to speed subsequent references.
 

A.7 IBM.System 360/Model 67
 

This system, which is generally compatible with the rest
 
of the 360 line, has additional features to enhance its time
sharing utilization. Memory is divided into 4096-byte pages
 
(1024 32-bit words). The IBM operating system TSS/360 takes
 
up about 90 pages, so that a 512K machine has only about 40
 
pages left for user-multiplexing. As a result, performance of
 
systems with larger memory has been substantially better.
 

The addressing in the 67 is two dimensional; upper bits of
 
the address select a word in a segment table which points to the
 
page table for that segment. The remainder of the address speci
fies a word in the segment by indicating a page table entry and
 
an offset within the page. Although in the 360 line addresses
 
are 24 bits long, a 32-bit mode is optionally available on the 67
 
to increase the number of addressable segments from 16 to 4096.
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Appendix B
 

Physical Characteristics
 

The physical characteristics of a computer are strongly
 
influenced by the requirements imposed upon it by the operational
 
environment. Size and weight limitations are chronic problems
 
in space applications; they become the main forcing functions in
 
determining the ultimate physical characteristics. To these
 
may be added temperature, pressure, humidity, shock, vibration,

"g", and so on. The logistical requirements of modularity, stan
dardization, maintenance, repair, etc., add further constraints.
 
Accommodating these constraints without compromising the required
 
performance is a burden that falls upon the technologies of
 
implementation and manufacture.
 

It is obviously impossible at this time to formulate a
 
realistic projection of the physical properties of the computer
 
proposed in this report without realistic estimates of its
 
expected environment, or of the performance requirements. This
 
study has concentrated on an evaluation of basic configurations.
 
The design presented in Chapter 5 has been chosen as the optimum
 
compromise of the conflicting factors discussed in other chapters.
 
The choice was made without specific assumptions about the imple
mentation technology. However, it is the application of this
 
technology that will contribute substantially to the physical
 
characteristics of the computer. Over the next 5 to 10 years
 
this technology will experience periods of very rapid develop
ment, so-called "breakthroughs", which will diminish the accuracy
 
of predictions based on current rates of development.
 

Nevertheless, the following heuristic approach to estimating
 
the proposed computer size and weight is presented to give at
 
least some idea of its scale. The weight, volume, power dissi
pation and performance of a number of current aerospace computers
 
have been normalized to allow them to be compared and plotted
 
against time. The machines chosen are listed in Table B.1.
 
Although some of them have more advanced features (e.g., floating
 
point arithmetic) than others, they are comparably organized,
 
and the memory cycle time is taken as an indication of processing
 
speed. The basic memory size is used in determining the perfor
mance factor, even though the capability of many of these
 
computers can be extended considerably by adding more storage.
 

The performance is expressed by the factor K, where
 

6
 
Memory size (bits)/10
K -
Memory cycle time 
(lis)
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I.e., a 1O6 bit machine with a 1 us MCT has one unit of
 

performance capability.
 

Normalized weight, volume and power are calculated from:
 

M* = M/K 

V* = V/K 

W* = W/K 

and are plotted in Figures B.l through B.3. The straight line
 
plots are intended to suggest trends and are not mathematically
 
derived.
 

The validity of an extrapolation to 1975, which must be
 
the cut-off point for designs that are to be operational 2-3
 
years later, is questionable because:
 

a) 	It is unlikely that the rate of development of the current
 
technologies common to all the plotted computers will be
 
maintained at a uniform rate for the next 5 years.
 

b) 	It is very likely (as mentioned above) that in a five year
 
period, quite novel techniques of implementation will be
 
developed, to which these graphs may have no relation.
 

Nevertheless; if these factors are ignored, and if it
 
is assumed that K is linear for all values of memory size and
 
processing speed, the subject computer will, by 1975 standards,
 
possess the following characteristics., per processor (assuming 
M2 = 107 bits per processor, cycle time of 100 ns, and an 
efficiency factor of 70% - see 5.2.1): 

K 107/106
 
-
1
 

10
 

Weight = 700 lbs.
 

Volume = 7 cu. ft.
 

Power - 700 watts
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Table B.1
 
Approximate Year
 

Computer Of Operation
 

IBM EP/MP 69
 
Nortronics 1051A 67
 
IBM TC-2 67
 
RCA-215 70
 
Univac AN/VYK 68
 
Burroughs 70
 
CDC ALPHA 70
 
AGC II 64
 
Litton 3050 68
 
IBM CP-2 67
 
DEC PDP-11 70
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