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Greenbelt,	 Maryland 20771

ABSTRACT

Gyrosynchrotron radiation	 fiele ,	from midly	 relativistic

electrons	 in a magaetcactive plasma a-e asymptotically calculated

using the Green tensor and	 the Fourier	 transform-, #.ion.	 These

fields consist of' 	 the two components which correspond to the

ordinary and extraordinary modes. 	 Taking into account these

fields,	 the emissivities and 	 the absorption coe F ficients	 from

an arbitrary distribution of electrons are calculated	 in order	 ^;..

to discuss	 the intensity ;	spectrum and polariza ti.on of gyro-

synchrotron radiation.	 In general,	 the transfer of electro-

magnetic energy takes place along a direction different from

that of the wave normal since tae radiation fields have a non-

vanishing component along the direction of the wave normal. 	 A

consideration is given on the problem of radiative transfer in

relation to the Stokes parameters.
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INTRODUCTION

The problem of gyrosynchrotron radiation radiation from

midly relativistic electrons in a magnetoactive plasma occurs

in astrophysics, radio astronomy and magnetospheric physics.

The radiation from these electrons moving along helical

trajectories has some unusual properties duce to the c:ispersion

and anisotropy of the magnetoactive plasma as considered by

many authors (e . g . , Bunkin, 1957; Eidman, 1958; McKenzie, 1964;

Liemohn. 1965; Mansfiel d, 1967; Pakhomov et al., 1962, 1953;

Sakurai and Ogawa, 1969; Fung, 1969a). They have studied the

gyrosynchrotron radiation fields from an electron moving in a

helical trajectory in a magnetoactive plasma from various

points of vli_ew. Eidman (1958) and Liemoh n (1965), for example,

have solved the problem in a cold and collisionless magnetoactive

plasma by applying the well known Hamiltonian method of quantum

electrodynamics. By introducing the Green tensor and a Fourier

transformation, Bunkin (1957) and McKenzie (1964) have found

different asymptotic solutions of the radiation fields in a

cold and collisionless magnetoactive plasma. Similar method

have been further developed by Mans field (1967) using Fourier

transformations. In the case of a collisionless thermal magneto-

active plasma, Pakhomov, Al.eksin and Stepanov (1962, 1963) have

tried to calculate an asymptotic formula for the radiation fields.
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Recently, Ramaty. and Lingenfelter (1967) and Ramaty , (1968)

have studied the influence of the ambient plasma on synchrotron

and gyrosynchrotron radiation from energetic electrons in order

to interpret the suppression of type IV radio bursts at low

frequencies. In this case, they have assumed the ambient

plasma to be isotropic and homogeneous since it appears that

W >> w and w
H 

and w >> w H , where w, w and w 
}i 

are the angular
p	 p	 p 

radiation, plasma and gyro-frequencies, respectively. At

(, resent, this suppression of synchrotron radiation from

relativisLiLk: electrons has been applied to interpret the ob-

servational spectra of solar and stellar radio emission (e.g.,

Ramaty, 1968; McCray, 1967; Fung, 1969a; Fung and Yip, 1966;

Scheuer. 1965).

The physical condition which are actually encountered

near large sunspot groups, however, seems to be quite different

from the simple case where w >> w p and w H . In fact, the type IV

di	radio bursts are usually emitted by midly relativistic electrons

which are moving within a plasma medium where the strength of

the suns pot magnetic fields is very high, say 1 000 gauss (e.g.,

Kiepenheuer, 1953; Ellison, 1963; Bray and Doughead, 1965).

We must, therefore, consider the effect of magnetic fields in

dealing with the radiation characteristics of type 1V radio

bursts (Sakurai, 1964, 1965, 1970), and so we must solve the

3
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gyrosync hrotron radiation fields from midly relativistic

electrons moving in helical trajectories in a magnetoactive

plasma which take account of the influence of angular gyro-

frequency .

From this point of view, we deal with the problem of

gyrosynchrotron radiation from midly relativistic electrons

in a magnetoactive plasma by means of the method similar to

that of Bunkin (1957) and McKenzie (1964). In our method,

an asymptotic property of radiation fields is investigated

by using a Green tensor and a Fourier transformation. In

this paper, we assume that the medium is Homogeneous, cold

and collisionless and immersed in a static external magnetic

field. The absorption and polarization of gyrosynchrotron radia-

tion in this medium are considered in relation to the problem

of radiative transfer.

FUNDAMENTAL EQLTATIONS AND THE DERIVATION
OF RADIATION FIELDS

a) Fundamental Equations

Maxwell's electromagnetic equations in a magnetoactive

plasma are given, by using the complex dielectric tensor [K]

(Stix, 1962), as follows:

curl E = i 
uu 

B
c

W	 4n
curl B = - i – [KJ •E + —

c	 c

div d -- 0

(2-1)

(2-2)

(2-3)

4
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div [K] • E - 47P	 (2-4)

D - CK]'E, B - H,	 (2-5)

where E, li, L and B are the electric and magnetic fields

and the electric and magnetic inductions, respectively,

all of which are assumed to change with exp (-iuut) j, P

and c are the electric current and charge density and the

speed of light, respectively.

A magnetoactive plasma is electromagnetically dispersive

and anisotropic and may be characterized by a complex

dielectric tensor IKJ. This tensor is a function of the

angular propagation frequency and of the ang ie between the

wave normal and the sta,"Ac external magnetic field in case

of axial symmetry ( St ix, 1962). It is necessary for the

following analysis to assLime that this tensor is Hermitian

rL K] = [K] ,	 (2-6)

where the asterisk denotes the complex conjugate and trans-

pose. Furthermore, in our treatment, it is assumed that

the magnetic susceptibility of the medium vanishes so that

B = H.
--i

.

	

	 By the use 'if tre electromagnetic potential, A and 0,

the electromagnetic fieleai are expressed as

E = i	 A - grad ^,	 (2-7)

^	 y
H = curl A.	 (2-8)

5
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Thus, Ecls . (2-1 ) to ,2-6) reduce to

1	 w 2
	

4 n --*
curl cu: • I A + -- LK. grad m --2 LK] • A _ 	 J	 (2-9)

C c

- grad ( ILKI-grad 0) - div ^ [K 1-A = 4nk	 (2-10)

Since the potentials are not uniquely determined by

Eqs. (2-7) acid (2-8), a Coulomb gauge condition may be im-

posed on them (e . g . , Jac kson, 1962; Sakurai and OgawLk , 1969) :

div [K]• A = 0.	 (2--11)

In this gauge, 0 is just the static.: potential of the source

charge and so only denotes the corresponding static field

Dst = CKJ • grad 0. Consequently, the radiation fields E and

-P	 A'
Ii are derivable from the vector potential A alone. Thus

the vector potential A satisfies the following equation:

2
V 2 A + ^u2 iK) • A = - 4C J,	 (2-12)

c

which will be solved in the following discussion.

if we make use of a Green Tensor LG(r,re )] defined in

an infinite space with no boundary, that satisfies the

equation

2	 -,
curl curl [G] - w2 LK] • CGI _	 (r - re),

c.

6
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the formal solution foa- the vector potential It (r, t) is

expi essed ma t hems t ica l ly as

__O4 TT	 (.

A s c -+
r 	 t'

[G (r, r') : ,j (r, t') dr dt.,	 ( 2 -14)

where r and r' are the position vectors from the null point

of the coordinate system to the point of observation and to

the location of the radiating electrons, respectively. t and

t' are the times with respect to the point of observation

and the location of the radiating electrons, respectively.

Taking into account that the Green tensor which satisfies

Eq. (2-13) is a function of the difference in the coordinate

r - r' alone, the Fourier transformation of [G] is given by

LGJ	 —	 3	 ^G (k,w)	 exp(i k . (r - r')) uk',(2-15)
(2n )

where LG (k,w)I is the Fourier component of [G J'

The Dirac 6-function is also Fourier-transformed as

b (r - r') -	
13 f exp{i k . (r - r'))dk	 (2-16)

(211)

By the use of Eqs . (2-15) and (2-16) , Eq. (2-13) is .reduced

to

 2
k (k • LGJ) - k 2 1 ,--GI + '2 [K] • LGJ = - 1	 (2-13)

c
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1

-0

%hen a static external magnetic field N0 lies along

the !-axis in the Cartesi : ti p coordinate system, the comriex

dielectric tensor is given by (Stix, 1962)

[KJ	 S	 -iD	 01

	AD	 S	 0	 (2-17)

	

' 0	 0	 P

where

S = 2 (R + I.) , 	 D = 2 (R - L)

R- 1- X 	
X	 P	 1-X

	

1-Y
 , L	 1- 1+

Y
= 

a nd

X	 wP Z /u) 2 ,	 Y = u; H /w .

v substituting; Fqs . (2-17) into (2-13) ' , we obtain

[c (k,w) J = - [Qij /QO; 	 (2-18)

where

2
_

Q _o	 W2 P (k^:2 - 
k

li?1 ) (kit	 _ k  ^ 2 )
c

	

2	 ,
k	 2

	

11, 1	 GP {2SP ^? - (S + P) k2

	

2	 c

	

k 11,2	
(2-(2-19b')

2	 4
+[(S-P) 2 k4-4PD 2 k2 ^2 + 4P2 D 2 W 4 )

c	 c

8
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Y

and the elements of ^Q i ,) are
r

2
xxQ	 -k2 k 2 + (k2 + k2 - S W2) (k 2 - P ^2 )

Y	 Y.	 c	 c

2	 2
• k k k 2 + (k k - i D ^' ) (k2 - 

p W )
Qxy	 x y z	 x y	 2	 2

c	 c

	

2
l	

2
Q	 k k (k k - i D W ) + k k (k + kl - S W)

	

xz	 y z	 x y	 c2	 x z	 x	 y	 `2

2	 2

	

yx	 x y	 x yQ ^ kkk 2 + (kk + i D W2 ) (ki - P Wes,)

c	 c

c

	

2	 2
Q	 = ( k2 + k2 - S W ) ( k2 - P w

	
- k2 kl

'	 Y Y	 Y	 r.	 2	 1	
c 2'
	 x z

	

2	 2
Qy'	 kxkL (k x k y + i D W2 ) + k y k f (ky + kZ - S W2)

	

c	 c

	

2
2	

2
Q 
zx	 y z x y

k k (k k + i D W 2 	 x z
)+ k k (k 

x 
+ k 

7,
2 - S W)

2
c	 c

	

2	
2	

2
Qz ^. k x l	 x

	

k (kk - i D W2	 f) + k k (k + k2 - S W )

	

Y	 Y	 Y	 Y	 z	 (2

	

2	 2
Q	 = (kV + k- - S ^' ) (kX + kZ - S

	

zL	 ^2) -
c 	 c

.:	 2

	

2
	 2

	

( k , ky -i D Ŵ ) ( kx yk + i D W2 ) , k	 kx + kY + kL
C	 c

	

and k2 = k2 + k 2 , k	 k
	x 	 y 	 2.

Using E(Is . (2-15) , (2-18) and (2-19) , Eq. (2-14) is

calculated as follows:

2
-^	 1	 c	 CQi j ] i	 (r,t)

4n 3 c	 P W 2 (k^-kli^ i) (k?-k^^ 2)
-+ -* -*

exp [i (k.r-r') - W ( t -t')}]

x dk dw dr' dt'

9
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This gives the vector potent ial due to the cui-i-ent density

,j (r' , t') . 	 In order to calculate the gyrosync hrotron

radiation from a midly relativistic electron, we must define

the current density by taking; into account the hel ical

orbit of this electron.

b) Derivation of Gyrosynchrotron Radiation Fields

The Cartesian coordinate system as shown in Fig.

I is used Mere, where the static external magnetic fie,d it

-Y

is along; the Z-axis. The position vector r is assumed to

he in the (y-r) plane and therefore r	 (o, r sin cr,

r cos a) where or is the angle between H
0 

and the position

-Y

vector. The wave vector k is decomposed as k 	 (kl cos 0,

k l sin o, k z ), where 0 is the angle between H o and k.

The orbit of a radiating p lectron in a helical trajectory

is given as shown in Fig. 2, where r e (t') denotes the

position vector of the electron. Since the radiating electron

'produces the electric current, the current density ,j (r t')

iii Eq. (2-20) is given by

j (r',t')	 e V 0 (r' - r e (t')),	 (2-21)

where a and V are the electronic charge and the 7eiocity

of the electron. Tile velocity V and the position vector
	 + I

re (t') of the electron with pitch angle Y are expressed by

10
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I

I

ik

V-- .a V l sin 

wH 
t' + a V 1 cos W i t' i s V	 ('l -22a )

x	 y	 z	 .

and

YVl
r (t'1 - a	 coo 

wH 
t' + a	 -	 sin 

wH 
t' + a V t', (2-221))

C	 x W 	 Y	 y wIt	
Y	 z It

where V 1	 Y sin W, V 	 V cos ^, Y	 (1-F 2 )	 and d	 ^. ax,

a and a are the unit vectors as shown in Fig. 2.
y	 z

By substituting Eqs . (2-21) into (2-20) and using Eq.

(2-22) , Eq. (2-20) can be integrated as follows (gawa and

Sakurai, 1969):

-^ -► 	 a	 c2l Qi . lexp{ i (k l r lsin 0 + R ti ru - wt)}
A (r, t) - - 	 d k d w	 2 -- —	 —

2TT C	 Pw	 (k2 -k^ i I ) (k^ -k it 2)

x -2.[Rn	 IVYk 
11 u

n=

where

ER	 _ -i 
vl

{J	 (z)exp{ i(n-1) (m - rT ) } -J	 (z)exp{ i (n+l) (0 - 7) }
n	 2 n-1	 2	 n+l	 2

V^	 ,
— { J	 (z)exp{i(n-1) (^ - 2)}+J n+1

Wexp f i (n+1) (0 - ) I
2 n-1

V 11 Jn (z) exp i n(O - 2)

Here J (z) is the Bessel functic
n

11

`

Al

k V
1

and Z = Y
wH



2

k^ (9) = u-2

C

2 f.

2E1
(2-25)

kind of n-th order. 'The	 right hand side of Eq. (2-23) must

he i ntegrated with respect to k.	 In	 integrating this equation,

we can decompose dk il ► Lo k dk d  dm. The integration over 0

gives the radiation fields in the (y-z) plane. In order

to obtain the radiation fields, all the terms of the order

higher than r -1 are excluded in the integrand. The manipu-

lative method for integrating over k is given in the

literature (Og awa and Sakurai, 1969).

By integrating; Eq. (2-23) with respect to k . , we obtain

a, ► asympoto ► tic expression of the radiation fields by applying

the laborious method of steepest descents which will now be

described. As has been defined in Fig;. 1, k l and k 
1 

are

given by

'..	 I

k = k. (A) sin 6
1	 J	

(2-24)

k	 k (a) cos a,

where j = 1,2 and 0 is the angle between Ho and k. Ac-

cording to the theory of the propagation of electromagnetic

waves it, a ma.gnetoactive plasma, k J. (e) is given as (e . g . ,

Ginzburg, 1964).

where

12
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e l 	P cos t 8 + S sin g A

e 2	 PS (1 + cos 2 d) . ( S Z - D 2 ) sin g 0	
y

a nd

e 3 = P ( S 2 - D
9
 )
	 I

Taking into account these relations between k  (j - 1, 2)

and 0, we can transform the integration over k 1 
into one

over 0. Thus, the integration over 8 leads to the following

form:

F (r)	 f	 W (,,4) exp jr^ (u")I dd	 (2-26)
c0

where c 0 denotes the contour of the integration in the

0-plane and 1, (0) is expressed as ik
1
 (0) cos (3-U). When	 ..1. ,

the distance from the point of ohservatior, to that of the

electron is much longer than the wave length of radiation

fields, i.e., Ik j (E) rl >> 1, the integration of Eq. (2-26)

is approximately carried out by the method of steepest

descents. The result is

	

F (r)	 ^ -	 2n	 (es) e xp jr^ (8s)^
vr^" (0s)

In	 where	 S
	 6 2 x/62 8 16 = @ and 0s is the angle at

s

the saddle point which can be determined by the equation

(2-27)

13
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where

t2-28)Wnj
J

14

YO

1	 •

k (E)
ae	 i	 de	

cos (6-or) - iit (8) sin (@ - a) = 0,

from which we obtain the well-known equation,

1	 ak .
J = tan (d - a)

J

or

aµj

^	 as
tan x , X	 8 - a

which gives the relation between the wave normal direction

0 and the ray direction a (e.g., Stix, 1962; Bekefi, 1966),

where ,^j (j = 1,2) defines the phase refractive index in the

propagation of electromagnetic waves (µj = ck./w).

Taking Eq. (2-27) into consideration, the asymptotic

solution of Eq. (2-23) integrated with respect to k is given

by

A(r,t) = i rE E (-1) J+1	dw exp{i( J r cos	 - wt)JI , (E)
^ n

w
X ^- i U	 (wb-n H -µ	

WO 
cos e)n

J,	 J	 s

Vnj



1
^	 J

cos or G sin A)

I (A)	 cos^cos a --- [sin at ( w' - ►- ) cos x - 2µ sin x)
J	 J	 J

x ( (S - P) 2 w s{.n 4 	- 4PD 2 Gsin2 8 - P).j	 .)

U	 =	 {,.2 (P cos 2 U + S sin  a) - SP} J' (z)
nj	 J	 n

n p+ D { 1 (P - w 2 sin g d) - p µ 2 sin a cos 6) J W,
z	 j	 ► ,	 J	 n

V	 p D(P - W2 sin  0 J (z)
nj	 1	 J	 n

-+ G 2 - S) 

`no 
1 (P - µ2 sin 2 A)

J	 z	 J

ii 	
sin A cos p ) Jn (z)

and

W	 - - d D ,^? sin 8 cos 6 J' (7)
nj	 1	 n

n" 1 2	 2
[	 µ	 (µ . - S) sin A cos 6

z	 J	 J

+ 0i, { (w^ - S) Gi cos 2 8 - S) - D 2 ) ] J
n (z).

Here
µ Y W d sin 9
J	 1

--	 d 1 = p sin W , 1! _	 COs

WH

µ^ = aµ j /d a, µ^ - a2µj /a 
E2 

and Jn (z) = aJ n (z)/6 z.

I

m

I

I	 hf

1
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We must finally integrate Eq. (2-28) with respect

to w. S i i ► ce the augumen t o f the Di rac de I to funct ion in

Eq. (2-28) is a function of the variable of integration, we

therefore obtain. the following relation,

J G(a;) b (f (w) - w ) dw = G (w)	 I	 (2-29)

o	 I d df w (w) I	 f (w) - w

Since f (w)	 w - w w , d cos W cos 9 and w o = nw 11 / ti (n =
J

in our case, it follows that

n w / Y
_	 H

w n 	 1- µ. d cos W cos a	
(2-.30)

J

which gives the well-known Doppler-shifted angular wave

frequency.

The vector potential A thus obtained is expressed as

2	 m

A	 r,t) -	 A	 (r, t)	 (2-31a)
nj

J=1 n=

µ .w
A

	

	 t) = i r (-1) J+1 A exp( i( ^— r cos	 - wt} -iU nj ( ^c = wn

l
0 a 6s

V
nj

W
nj

(2-31b)

and

16

l^ J



.M-

I . (3)/ 1 -	 cos 0 cos W -- 
aW	

(2-310
. j	J

A
nj 

(r,t) denotes the n-th harmonic of the J-th mode of the

vector potential. From Eq. (2-25), the phase refractive index

(w, 0) i5 deduced to be

2 = 1	 X (1 - X)

Y2 si n
 
	 Y4 sin  a	 2 2	 2

1-X -	
2	

+ {__ ____-__ + (1-X) Y cos D}
1

(2-32)

where the upper sign (+), corresponding to the case j = 1, de-

notes the ordinary mode of electromagnetic wave propagations

and the lower sign (-) ( j 	2), the extraordinary mode.
As has been considered earlier in this paper, the radia-

tion fields can be determined by using only the vector potential

A. Thus the fields of the n-th harmonic of the j-th mode are

easily calculated from the equations

E	 _+ i 
w 

A	 B	 = curl A	 (2-33)
n j	 c nj	 n j	 n j

c) The Emissivities

By calculating the Poynting vector, the flow of

electromagnetic wave energy of the n-th harmonic of the j-th

mode is given by

17



P	 - —^ (E	 x H * + E* x H )
I'.)8.	 nj	 nJ	 n.)	 tl.1

2
,r	 2

2 cos	 n+ r a x x n) 1 W

cr	 J	 n.l	 n")	 2 	 ^ ►
e = cS

(.)	 = 1,2)

(2-34)

where the asterisk denotes the complex conjugate and

= U 2 + Z 2
n.l	 Ii j	 tlj

2	 2	 2	 `2

^nj	 (Vnj - W n . j ) sin u ) cos a. + V , ^j W n . (cos Ot - sin a ll )

Z	 = V	 cos a- W	 sin a
ti j	 n J	 J	 ilj	 J

n is the unit vector in the direction of r (Fig. 3). The

first tern, of the Poynting vector is along the direction n

which subtends the angle a
j 

from the external magnetic field

H
0 

as shown in Fig. 3, whereas the second term is in the (y - z)

plane and perpendicular to the vector n. Since the second

term does not give the energy flux passing through the point

-i
of observation along the vector r, we do not need to take

into account this term in calculating the observational flux.

The angular distribution of the radiation from a single

electron at the n-th harmonic of the j-th mode at the point

of the electron is thus calculated from Eq. (2-34) as follows:

18



E

r

Qna (8,0 00

e 2 ►^ 
w 2	

2	 6( ►. w)

- --- — cos xj 
A 

E
n (1-S coos 9 cos x —^ —) I	 - Wn.)

9 - 6S (2 -35)

	

(.t	 1,1)

In deriving the above result, we have considered the correction

discussed by Scheuer (1968) and Ginzburg and Syrovatskii (1969).

This result gives the emissivity from a radiating electron

at the n-th harmonic of the j-th mode. Then, the frequency

and angular distribution of the radiation from a single electron,

into the ordinary and extraordinary modes, is given by

T-1 j (w, 69	 f ^' )

e 
2 

w 
2	 CO	 2	 d(w .W)	 2-36)

	

- 
4nc - Cos x	 ^1j 5 r^ ) (1-^ Cos Q Cos V'

	 ow	 ) ^w = W
n -1	 nj

e = e
S

This result is very similar to that obtained by Ramaty (1969) ,

but different from his case because the present result includes

the effect due to thn longitudinal component of radiation

electric fields. This difference arises from the fact that

the radiation energy does not propagate along the direction of

y
the wave normal k because of the existence of the longitudinal

component.

19
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The emission-coefficient, j  (w, 9) arc , thus dive.. by

the following; general expression ( Beke fi, 1966; Ramaty, 1969) :

l^ (w, A)	 J -n (uu, A,0 , W) f (	 3P dp' ergs/sec str 1i cmL	 3

(j - 1,2)	 (2-:3?)
y 3where f (p) d p is the number of electrons per unit volume,

with womenta in d 3p around P.

ABSORPTION

The absorption coefficient, a  for an arbitrary

velocity and pitch-angle distribU tion can be obtained from

the following general expression (Bekefi, 1966):

3 2
a.(WA,d,^V) = -	 >3n — L	 ( 

T1 (W,A,k1,W)^f^(P') - f (P)I d3p '	 (3-1)
r	 3	 J
cu	

,1

J

where N and r,
rJ 

are, respectively, Planck's constant divided by

2n and the "ray" refractive index given by Bekefi (1966). In

the above equation, the sign is defined such that a photon is

emitted when the momentum of an electron changes from p' to P.

Since the photon energy taw is assumed to be much smaller than

the electron energy E (_ Jm2 c 4 + p2 c 2 ), it follows that
0

f (p , ) - f (p) = E -hw	 of	 -ti
PC 	 ap p2 c2 sin W cos W

(3-2)

	

x (E - 2 n p	
of

j c cos e cos *} aW
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The coefficient of the second term <,n the right hand side

of the above equation gives the change in the pitch-angle

of the radiating electron rebulting from the emission of a

photon of energy Rw into the direction

In case of an isotropic distribution (df/6# - 0), a

necessary condition for negative absorption is e)f/ ,)p	 0

as can be seen from Eqs. (3-1) and (3-2). For an anisotropic

distribution, however, the negative absorption can occur

even if of/bp	 0. A necessary condition for this is given

by

1	 — (E - 2n. pe cos 0 cos W) d f > 0.
sin V cos ^	 ,J	 d W

(3-3)

Since this equation contains the phase refractive index, ni,

the condition for negative absorption is to some extent

different between the ordinary a-,: extraordinary modes. For

ultra-relativisitic electrons, the emission is strongly con-

centrated into the direction of the instantaneous velocity and

so the above condition can be appro;;imated as

1 - 2nd cos 2
 V r)f

— ^ 0
sin	 cos	 d^

since E , pc and 0 " * . In the case of V < 7/2 and of/)^ > U,

for example, the pitch-angle of radiating electrons is limited
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within the range given by U < cos t < 111; (2n j ) , in order to

amplify synchrotron radiation. We must, however, remark that

maser action from : ► moderately anisotropic distribution of

uadiating electrons will be conlined mainly to the first

few harmonics of gyrosynchrotron radiation (Heyvaerte, 1968)

The momentum and pitch-angle distribution of radiating

electrons is, therefore, very important in calculating the

absorption coefficient and hence the source function in relation

to the equation of radiative transfer of gyrosynchrotron radia-

tion from midly relativistic electrons in a magnetoactive plasma.

POLARIZATION AND RADIATIVE TRANSFER

The shape of polarization ellipse, It
nj

, for the n-th

I ► armonic of the j-th mode is given by

(k x a )-E	 (k x a )•A
It	 =	 x	 nj _ --- x	 nJ

11.j	 a 
x 

'E	
n,j . I

k l	 a 
X* 

A  
u,j ' 

1k1

N'	 cos 8- W	 s i ll e

i n^
	

U n')	 (J = 1 , 2 )	 (4-1a)
nj

Z
i UnJ	 Q = 1, 2)	 (4-1b)

tt,^

Taking into account that U	 and Z . are both real, the polariza-
n,j	 n.l

tion of both ordinary and extraordinary waves is elliptic with

the axes of a x and k x a x/Ikl (Fig. 4).
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E D
nj 6 njR = = -

n,j E D
nj x nj

z
n,j

i (j
U

n,7

Since D	 does not have the component D
nj	 n

Stokes p- _ ameters such as I, Q. U and V

as the vacuum case, in which E nj k = 0 s

W . cos E = 0.
ni
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In a magnetoactive plasma, the electric fields E 	 which
nj

are given by Eq. (2-33) generally have a component along; the

direction k. In order to consider the radiative transfer in

such a medium, we cannot, therefore, use the Stokes parar,teters

defined for and applicable to the transverse polarized electro-

magnetic waves. It is convenient to consider the electric

induction D instead of using; the electric field E in this case

because the former does not haze a component along the direction

k (e . k . , Zheleznyakov, , 1968; Fug, 1969b) . After some algebra,

the electric induction D is calculated as follows:

1D ili
	 (D njx  U nj Q' D nk k)

2

(^ w j )	 ( End x , - E
nj 9

, 0) (j=1,2)	 (4-2)

3

Here Dn 
l Q 

and En
.l 

6 are the components along the unit vector

--Y

a.- as shown in Fib;. 4. The definition of the polarization,

Eq. (4-1) , is thus rewritten as



I

By adding both components of the ordinary and extra-

`	 ordinary modes, we can define the polarization tensor

I ad (cx,d - x, ©) of the radiation in terms of the components

Of D, which are given by

Dx	Dnj x
.l

D e ED 
11.)  

b

J

Tile tensor 1 01 is, therefore, defined as

100 = D
a Dd P (G, p = x, A)	 (4-4)

where the asterisk indicates the complex conjugate of the

components. The Stokes parameters are then expressed in

terms of I nd as follows:

I - I xx + I AA

I xx	 IAb	
(4-5)

U	
I Hx + Ix A

v = i (I Ax
	 Ix A)

From Eq. (4-3), we can define the polarization coefficients

in tei•ms of the components of the electric induction of the

radiation fields as
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F- r

-I = - i VnA - 1 a	 (j - 1,2)	 (4-6,
D
xj	

U  j	 8J

Taking into account the "apparent" radiation intensities of

the ordinary and extraordinary modes, I 1 and I 2 , calculated

from the electric induction and the phase difference b between

both modes, D  and D e can by written as

(Dx )	 (27)	 (I	 a + e-io I	 a	 (4-7)
D e	 c.	 1	 1	 2	 2

where the unit vectors are given by

a j - (1 + a ej ) y ( i or

	

)	 (j = 1,2)
^j

Consequently, we can express the Stokes parameters, Eq. (4-5),

in terms of I,
J 

and a	 (j = 1,2). In these expressions, we
©j

do not need to consider the component along the direction k

of the electric fields. Therefore, we can develop the problem

of radiative transfer in a similar way as has been considered

by Zheleznyakov, , (1968) and Fung (1969b) .

The degre es of polarization, p, the ellipticity, e , and

the angle X between the major axis and the x-direction can be

written as (Born and Wolf, 1964; Bekefi, 1966):
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%Q + U2 + V2
p =	 - I
	

--

= tan d ; sin 26 = — _V	(4-8)
IQ2 

► U 2 + V2

tan 2x = U
Q

Taking into account Eq. (4-5), the degree of polarization p

is expressed as

I2 1

	

p - - _-- --	 (4-9)
I

This means that p is always less than the unity when both modes

can escape from the source region.

As has been discussed earlier in this paper, the electro-

magnetic energy emitted from electrons is usually transported

in the direction making the angle a.J with the static external

magnetic field which is not generally coincident with the angle

a  as shown in Fig. 3. The Stokes parameters defined in this

[	 paper are very useful for dealing with the problem of radiative

transfer, especially the polarization treatment, but are not

so much helpful in the study of the transport of the electro-

magnetic energy in a magnetoactive plasma because of the reason

,just mentioi.ed .

Tile transport of the electromagnetic energy in a magneto-

active plasma has recently been considered by Bekefi (1966)

and Enome (1969). According to them, the equation of the
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transfer of electromagnetic energy is given by

^ ( J	 + 1	 a 
( Ij--) _ -,^ - a ^-	 (j - 1, 2)	 (4-10)

as	 2	 w	 at	 2	 2	 j	 2
n	 gj	 n	 n	 n
rj 	rj	 rJ	 rJ

*
where the scalar quantity I is known as the specific intensity

.l
of radiation and usually not equal to I,J as defined earlier.

Here dS is the element of the length along the ray direction

S (Fig. 3) . wis the group velocity.
9.)

In dealing with the transfer of radiation, let us assume

the wave normal vectors, k  and k 2 to be initially in the

same direction, i.e., k 1 Ilk 2' Even in this case, the ray

IF	
direction of the ordinary anode ce l , in general, does not coincide

with thaw of the extraordinary mode, 0 2 , i.e., U1 t a 2 . This

result can be proved by calculating the equation

aµ .
tan (0 - ^j ) 

= µl	
a0 '^ 	 (J - 1,2)

J

and 0 - 6 1 = 0 2 . Accordingly, the two directions of the

*	 *
intensities I 1 and I 2 which are obtained by solving Eq. (4-10),

are generally not coincident with each other.

The case in which I  and n rj are independent of time,

Eq. (4-10) is reduced to

I
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I , 	I	 I

os	 a( 2 ) _ 2 - j 2	 (j = 1,2)	 (4-11)

	

n r j	 nr j	 nr j

or, by dividing both sides with c(j,

#

	

I	 I

WT	 (	 2 )	 2	
S ,	 ( j = 1,2)	 (4-12)

j	 ti	 ►i	 J
rj	 rj

where dT s - x•
J 

dS and
J 

I.

	

S	
- 2
	 aJ	

(j = 1,2)	 (4-13)
.1	 n	 Jrj

which is known as the source function and plays an important

role in the analysis of the radiation from the medium (e.g.,

Chandrasekhar, 1960). The above equation (4-12) shows that

the effective path length is generally different between the

two modes.

When the phase difference between the ordinary and extra-

ordinary modes is completely random, i.e., when the Faraday

rotation is very large, the two modes of waves propagate

independently. In this case, we can separately solve the

equation of radiative transfer, Eqs. (4-11) or (4 -12) for

each mode. For a homogeneous source region, we can integrate

Eq. (4-11) as given by
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I*	 =	 -	 (1	 - exp	 (- a	 L .) ],	 (j 1, 2) (4-14)
J	 aj J	 .l

where L	 is	 the depth of the source. The intensity of the

escaping radiation can thus be given by

22 - 	 3*	 11I	 W J • ^
j

f	 (p , )	 d p,

I	

J	 J

j	 38r E 6f 1fr^j(-	 --	 +	 --- -- (2nj	 pc cos	 0 cos	 W	 - E) LW )d
of	 3

p'
P	 2

p sin W cos	 W

3
8TT E d f 1x	 1	 - L

j 	
2
	 2- r^	 (-

p 'P
+- 2 ---

n	 w , p	 sin Y cosr j	 j

x	 (2 n.	 pe cos	 0 cos	 y	 - E) —f) d 3 p I ] (j	 =	 1,2) (4-15)
J

In arriving at this result,	 we have used Eqs. (2-37),	 (3-1)

and	 (3-2).

If the inequality

-	 1	 (2ap cos 0 cos - E)	 < 0 (4-16)
P	

+	 2 nj pc ofp	 sin W cos

is satisfied in some	 frequency range, the radiation can be

amplified and then is observed to be enhanced in the same

frequency range.

The source function S j	is given, by using Eqs.	 (2-37),

a

(3-1)	 and	 (3-2),	 as	 follows:
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w 2	 f n f (p' ) d p'
S 
J	 8n3 r^ (- E of +	 1	 (2n pc cos 0 cos W - E)a^)d3p'

J .1	 p ')p	 p 

2

sin W cos V	 J

(j - 1 , 2)	 (4-17)

The source function S  is sometimes conveniently written

in the form

W
2

5 -	 L-3
= 	 j	 k T.	 1,2)	 (4 - 18)

n 2 or j	
8n 3 c2	 J

rj

where k is Boltzmann's constant and T  is a quantity with

dimensions of temperature. This is usually referred to as

the radiation temperature of the medium and is a function of

frequency, the direction of the ray in the medium and the

elementary emission processes. The temperature is also

usually different between the two modes, and is very important

in estimating the radiation processes associated with solar

and galactic radio emissions. This temperature occasionally

becomes negative when maser action works in the medium where

the radiation and propagation take place.

If' we assume that w >> w
p	 H	 p	 H
, w and w >> w , the refractive

index n. is reduced approximately to (1 - w2 /w2 0. If follows
J	 p

that n  = n 2 , nrl nr,2 and xj = e3 - or = 0. Taking into the

above assumption, the results obtained here are reduced to the

same forms as currently used (e.g., Ramaty, 1969). It is clear
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that the former are much more complicated than the latter.

However, the equations of radiative transfer and their solution

are similar to each other except for some essential differences

on the solution of radiation fields.

.14I1LIMAPV

We have asymptotically calculated the gyrosynchrotron

radiation fields from electrons in a magnetuactive plasma

by using I.he Green tensor and the Fourier transformation. The

medium has been assumed to be cold and collisionless and

immersed in a static external magnetic field. The radiation

fields obtained in this paper would be useful in studying

the interpretation of solar radio type IV radio bursts and

stellar and galactic radio spectra.

Taking these radiation fields into consideration, we have

developed the detailed calculation of the emissivity and

absorption coefficients for a given direction of observation

from an ensemble of electrons with arbitrary momentum and

pitch an-le distribution.

In order to study the problem of radiative transfer, we

have used the electric induction D in place of the electric

field E. The former is very convenient in formulating the

Stokes parameters since it does not have a component along the

y
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wave normal k. The electromagnetic energy is, however,

usually transported in a direction different from thE: direction

k. In order to calculate the transport of this energy, we

►nust then consider the electric and magnetic fields, E and

If. When the longitudinal component of the electric fields

cannot be neglected, the theory of radiative transfer, therefore,

becomes much complicated in comparison with the theory

currently used.

In this paper, we have not shown any results of numerical

calculation, but this will be studied in a forthcoming paper

and applied to problems on solar and galactic radio emissions.
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