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ABSTRACT

Gyrosynchrotron radiation field . from midly relativistic
electrons in a magnetcactive plasma a-e asymptotically calculated
using the Green tensor and the Fourier transform: .ion. These
fields consist of the two components which correspond to the
ordinary and ext:aordinary modes. Taking into account these
fields, the emissivities and the absorption coe“ficients from
an arbitrary distribution of electrons are calculated in order

to discuss the intensity, spectrum and polarization of gyro-

synchrotron radiation. In general, the transfer of electro-
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magnetic energy takes place along a direction different from

that of the wave normal since tae radiation fields have a non-

vanishing component along the direction of the wave normal. A
consideration is given on the problem of radiative transfer in

relation to the Stokes parameters.

*NAS-NRC Associate with NASA




INTRODUCTION

The problem of gyrosynchrotron radiation radiation from
midly relativistic electrons in a magnetoactive plasma occurs
in astrophysics, radio astronomy and magnetospheric physics.
The radiation from these electrons moving along helical
trajectories has some unusual properties due to the dispersion
and anisotropy of the magnetoactive plasma as considered by

many authors (e.g., Bunkin, 1957; Eidman, 1958: McKenzie, 1964;

Liemohn, 1965; Mansfield, 1967; Pakhomov et al., 1962, 1963;

Sakurai and Ogawa, 1969; Fung, 1969a). They have studied the
gyrosynchrotron radiation fielis from an eiectron moving in a
helical trajectory in a magnetoactive plasma from various

points of view. Eidman (1958) and Liemohn (1965), for example,
have solved the problem in a cold and collisinnless magnetoactive
plasma by applying the well known Hamiltonian method of quantum
electrodynamics. By introducing the Green tensor and a Fourier

transformation, Bunkin (1957) and McKenzie (1964) have found

different asymptotic solutions of the radiation fields in a

AT s et

cold and collisionless magnetoactive plasma. Similar method
have been further developed by Mansfield (1967) using Fourier
transfornations. In the case of a collisionless thermal magneto-

active plasma, Pakhomov, Aleksin and Stepanov (1962, 1963) have

tried to calculate an asymptotic formula for the radiation fields.




Recently, Ramaty and Lingenfelter (1967) and Ramaty (1968)

have studied the influence of the ambient plasma on synchrotron
and gyrosvnchrotron radiation from energetic electrons in order
to interpret the suppression of type IV radio bursts at low
frequencies. In this case, they have assumed the ambient
plasma to be isotropic and homogeneous since it appears that
w >> wp and wH and wp >> wH, where w, wp and wH are the angular
radiation, plasma and gyro-frequencies, respectively. At
gresent, this suppression of synchrotron radiation from
relativis.ac electrons has been applied to interpret the ob-
servational spectra of solar and stellar radio emission (e.g.,
Ramaty, 1968; McCray, 1967; Fung, 1969a; Fung and Yip, 1966;
Scheuer, 1965).

The physical condition which are actually encountered
near large sunspot groups, however, seems to be quite different
from the simple case where w >> wp and wH. In fact, the type IV
radio bursts are usually emitted by midly relativistic electrons
which are moving within a plasma medium where the strength of

the sunspot magnetic fields is very high, say 1000 gauss (e.g.,

Kiepenheuer, 1953; Ellison, 1963; Bray and Doughead, 1965).

We must, therefore, consider the effect of magnetic fields in
dealing with the radiation characteristics of type IV radio

bursts (Sakurai, 1964, 1965, 1970), and so we must solve the
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gyvosynchrotron radiation fields from midly relativistic
electrons moving in helical trajectories in a magnetoactive
plasma which take account of the influence of angular gyro-
frequency.

From this point of view, we deal with the problem of
gyrosynchrotron radiation from midly relativistic electrons
in a magnetoactive plasma by means of the method similar to
that of Bunkin (1957) and McKenzie (1964). In our method,
an asymptotic property of radiation fields is investigated
by using a Green tensor and a Fourier transformation. In
this paper, we assume that the medium is homogeneous, cold
and collisionless and immersed in a static external magnetic
field. The absorption and polarization of gyrosynchrotron radia-
tion in this medium are considered in relation to the problem
of radiative transfer.

FUNDAMENTAL EQUATIONS AND THE DERIVATION
OF RADIATION FIELDS

a) Fundamental Equations

Maxwell's electromagnetic equations in a magnetoactive
plasma are given, by using the complex dielectric tensor (K]

(Stix, 1962), as follows:

curl E - i % B (2-1)
) - —
curl B » - 1 2 [KE)-B + -4 j (2-2)
c c
div B = o (2-3)
4
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div [K)-E = 4np (2-4)

- > - -
D = [(KJ'E, B =H, (2-5)

-

where E, ﬁ, 6 and B are the electric and magnetic fields
and the electric and magnetic inductions, respectively,
all of which are assumed to change with exp (-iwt) -;. 8
and ¢ are the electric current and charge density and the
speed of light, respectively.

A magnetoactive plasma is electromagneti;ally dispersive
and anisotropic and may be characterized by a complex
dielectric temnsor LKJ. This tensor is a function of the
angular propagation frequency and of the ang(e between the
wave normal and the static external magnetic field in case

of axial symmetry (Stix, 1962). It is necessary for the

following analysis to assume that this tensor is Hermitian
- ok
(k] = (K], (2-6)

where the asterisk denotes the complex conjugate and trans-
pose. Furthermore, in our treatment, it is assumed ihat
the magnetic susceptibility of the medium vanishes so that
- -
B=H.
a
By the use ~f tre electromagnetic potential, A and 9,

the electromagnetic fields are expressed as

o w =
E =1 'E A - grad ¢, (2-7)
- o
H = curl A. (2-8)
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Thus, Egs. (2-1) to (2-6) reduce to

curl curl K . : LK 'grad ¢ - — ;KJ'K - j (2-9)
C 2 C
c
- grad (.KJ'grad ¢) - div z LKJ‘K = 4mp (2-10)

Since the potentials are not uniquely determined by
Eqs. (2-7) aud (2-8), a Coulomb gauge condition may be im-

posed on them (e.g., Jackson, 1962; Sakurai and Ogaws, 1969):

div [(K]‘A = 0. (2-11)

In this gauge, ¢ is just the static potential of the source
charge and so only denotes the corresponding static field
Bst = LKJ'grad 9. Consequently, the radiation fields E and

- -
H are derivable from the vector potential A alone. Thus

-
the vector potential A satisfies the following equation:

-> [
V" A + — LKJ'A = =« — 3, (2-12)

which will be solved in the following discussion.
> =
if we make use of a Green Tensor LG(r,re)] defined in
an infinite space with no boundary, that satisfies the

equation

2 Lo 4
curl curl [G] - 35 [k1:-[G] = 6 (¥ - ¥ ), (2-13)
i




the formal solution for the vector potential i (?,t) is

expressed mathematically as

= A T I AP« ->!
G (r,r")) 5 (r,t') dr dt, (2-14)

where ; and ;' are the position vectors from the null point

of the coordinate system to the point cf observation and to

the location of the radiating electrons, respectively. t and

t' are the times with respect to the point of observation

and the location of the radiating electrons, respectively.
Taking into account that the Green tensor which satisfies

Eq. (2-13) is a function of the difference in the coordinate

- i 4 .
r - r' alone, the Fourier transformation of [G) is given by

(6] = =4~ [ G (K,w)] exp{i K- (¥ - ¥)} dk’,(2-15)
(2m)

L~ = .
where (G (k,w)] is the Fourier component of [G].

The Dirac o~function is also Fourier-transformed as

1

(2n)°

$(r-r') = [ exp{i kK- (r - r’')}dk (2-16)

By the use of Eqs. (2-15) and (2-16), Eq. (2-13) is reduced

to

2
k (k-(G]) - K° (G] + 95 (k) [G] = -1 (2-13)
C




-
When a static external magnetic field Ho lies along
the Z-axis in the Cartesian coordinate system, the complex

dielectric tensor is given by (Stix, 1962)

(K] =r S -iD 0
iD S 0 (2-17)
L0 0 P
where
1 1
8 -3 (R + L), D=3 (R =1L
X X
Rel -5, bel-s2g, P = 1-X
and
X = wpz/wz, Y = wH/w.

'v substituting Egs. (2-17) into (2-13)', we obtain

~ =
(G (k,w)] = - LQiJ]/qo, (2-18)
where
ws 2 2 2 2
[ J—— - -— -1
Q0 c2 " (k“ kn,l) (k“ ku,2) (2-192)
kx f 1 w2 2
L, g .
. = 3P {2sP 02 (S + P) k|
k (2-19b)
,2 i
2 4
g 4 2 2w 2.2 w
C C
8




and the elements of th ) are

J
2 2
Qx - -kz kz + (k2 . k2 - S 2—) (k2 - P S )
X y z x y 2 It 2
c c
2 2
2 w 2 w
qu kxkykz + (kxky -1D=5) (k) - P . | )
c c
2 2
Qx = kk (kk -1iD 2—) + k k (k2 + k2 - S !-)
z y 2z Xy c2 X z X y c2
2 2
Q, - kk k> + (kk +1D%) k2 -p%)
X Xy z Xy 2 4
c c
2 2
2 2 w 2 W 32 .2
= - = n) =
ny (ky +k, -8 =) (k] - P =5 k. Kk
c c
w2 2 2 w2
Qyz = kaZ (kxky + 1D ;7) + kykz (ky + kz - S c—z—)
w2 2 2 w2
Q, = kk(kk +1iD=) +kk (k +k -8 =)
X yz Xy c2 X z B z c2
w2 2 2 w2
Q = kk (kk -1D =) +kk (k +k° -8 =)
zy X z Xy C2 y z y z c2
2 2
2 2 W 2 2 W
sz (ky 4 kz - S —5) (kx + kz - S —5) -
c c
. : 2 2 2 2
(k. k -4 D) (kk +4D%%),k° =k + x° ¢+ &
Xy c2 Xy c2 X y z

and kf - k2 + kz, k =k .
X y i z

Using Eqs. (2-15), (2-18) and (2-19), Eq. (2-14) is

calculated as follows:

2

c” [(Q

R = - — [ 5t
4n ¢ Puw (k -k

- = =

13 (rit)
2 3 B

1) (ku-ku,Z)

exp [i {k.r-r’) - w (t-t')}]
» dk dw dr’ dt’ (2-20)




This gives the vector potential due to the current density

3 (;'.t'). In order to calculate the gyrosynchrotron
radiation from a midly relativistic electron, we must define
the current density by taking into account the helical

orbit of this electron.

b) Derivation of Gyrosynchrotron Radiation Fields

The Cartesian coordinate system as shown in Fig.
1 is used here, where the static external magnetic fieid ﬁo
is along the Z-axis. The position vector ; is assumed to
he in the (y-z) plane and therefore ; = (0, r 8in a,
r cos «) where o« is the angle between ﬁo and the position
vector. The wave vector ; is decomposed as

- (k* coSs ¢,

*
k
e -

k sin 9, kz), where ¢ is the angle between Ho and k.

The orbit of a radiating ~lectron in a helical trajectory
—.’

is given as shown in Fig. 2, where r_ (t’) denotes the {

position vector of the electron. Since the radiating electron

- =
produces the electric current, the current density (r',t')

W PTPRRPIPSpI SV

in Eq. (2-20) is given by

/

F(r',t')=eV5s (* - r, (")), (2-21)

where e and V are the electronic charge and the velocity

-
of the electron. The veloczity V and the position vector

-
2, (t’) of the electron with pitch angle Y are expressed by




H ’ g H / - N
V=-a_ V, sin -v t" +a V cos -7 t" +a V (2-22a)
y L Z I
and
Yv w vV w
- -» 4
r (t’) = a cos | t’ +a — sin B e v v t’, (2-22b)
e X Wy ( y Wy Y z

3

where V =V siny, V =Vcosy, v-= (1-62)"% and 5 - %. a_,

- -
ay and az are the unit vectors as shown in Fig. 2.

By substituting Eqs. (2-21) into (2-20) and using Eq.
(2-22), Eq. (2-20) can be integrated as follows (Ogawa and

Sakurai, 1969):

2
N e e [Qij)exp[i(k*rLsin ¢ + Ryr - wt)
;e o (ku-ku,l) (ku-ku,Z)
, ot = 2-23
X ;gam [Rn] 6 (w oy, k“Vu) ( )
where
\'

[RnJ LA —%[Jn_l(Z)GXP{i(n-l)(¢ - %)}-Jn+1(z)exp{i (n+1) (¢ - %)}

\J

_%(Jn-1(z)exp[i(“'1)(¢ - I+a  (@expli (n+1) (0 - 3!

m
v“ Jn (z) exp i n(¢p - 2)

k*V‘
and Z = Y

Here Jn(z) is the Bessel function of the first

w
H




kind of n-th order. The right hand side of Eq. (2-23) must

be integrated with respect to ﬁ. In integrating this equation,
we can decompose dﬁ into dek‘dk“dw. The integration over ¢
gives the radiation fields in the (y-z) plane. In order

to obtain the radiaticn fields, all the terms of the order
higher than r-5 are excluded in the integrand. The manipu-
lative method for integrating over k11 is given in the
literature (Ogawa and Sakurai, 1969).

By integrating Eq. (2-23) with respect to k,, we obtain
an asympototic expression of the radiation fields by applying
the laborious method of steepest descents which will now be
described. As has been defined in Fig. 1, k and ku are

given by

=
i

k. (8) sin
J (2-24)

w
I

k. (8) cos 8,
I J

FHVRISTITTRITIR. SN

- -
where j = 1,2 and ¢ is the angle between Ho and k. Ac-

[ERNPRVERTTI SRR

cording to the theory of the propagation of electromagnetic
waves in a magnetoactive plasma, kJ(e) is given as (e.g.,

Ginzburg, 1964).

k';.’ (9) = (2-25)

where
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e, = P cos2 e + S sin2 0

1
e2 = PS (1 + cos2 g) + (S2 - Dz) sin2 3]
and
2 2
€, P (S™ - D7)

Taking into account these relations between kJ (j =1, 2)

and 6, we can transform the integration over k; into one

over 0. Thus, the integration over § leads to the following

form:

F(r) = [ v (8) expfre (e)}ds (2-26)

€s

where ce denotes the contour of the integration in the
g-plane and % (6) is expressed as ikJ () cos (8-a). When
tlhe distance from the point of observation to that of the
electron is much longer than the wave length of radiation
fields, i.e., IkJ (8) r| > 1, the integration of Eq. (2-26)

is approximately carried out by the method of steepest

descents. The result is

21 l
F (r) = [ i v (8_) expiré (© )} E
V o= o) . { s cgpid o
s
where ¢&" (as) = 62 §/62 ele . 4 and es is the angle at |

-
the saddle pocint which can be determined by the equation

?""""""""""""!-lIIllllll!!-!!!'!l!!IlI!IlIII---n------------&



. o k (8)
OY & 1 s
o

o8

cos (bH-a) = ikj(e) sin (8 - a) = 0,

D

from which we obtain the well-known equation,

, Ok,
= —J = tan (8 - a)
K 9t
J
or
1 Op |
— —Jd -tan X, X = § - &
v o8

which gives the relation between the wave normal direction
o and the ray direction o (e.g., Stix, 1962; Bekefi, 1966),
where .j (j = 1,2) defines the phase refractive index in the

propagation of electromagnetic waves (»j = ck_ /w).

)
Taking Eq. (2-27) into consideration, the asymptotic

-

solution of Eq. (2-23) integrated with respect to k is given

by

o . ; bW
A(r,t) = i -‘:;Z B i ] . expli(=— r cos ¥ - wt)}IJ )

W
Y H
X (- i Unj 5(w-n s MJ wB“ cos 6)9 = es
|
i .
! nJ
|
i
{ W“JI §2-28)
\ J
where
14



cos a(u sin 9)5
I SE—— (sin cn\(w') - .-J) cos L - 2#3 sin X}

e s
IJ( )

COS ¥ Cos ¢

x ((8 - P)° ” sin? o - 4pp? o sin? 0 - P)) 178,

2 2 2 ,
UnJ = B¢ {»J (P cos” 6 + S sin” 8) - SP} Jn (z)

ne

-

+ D {—;~ (P - M? sin2 g) - 8 pi sin 6 cos 8} Jn (z),

¥
2 2 '
= 9 Dp-w 5 :
VnJ A ( p sin  ©) Jn (z)
9 ng

+ o - 8B) (mmi (p - wz sin2 8)
J z J

2
-8 7 sin 6 cos 0]} Jn (z)

and
2
W = «38 Du" sin @ cos 6 J' (z)
nj 1 J n
n&‘
- wz (M? - 8) sin 0 cos 8
. -3 3
2 2 2 2
+ B {(uj - S)(“J cos® 6 - 8) -D7}] J (2).
Here
bYW B‘ sin @
8 s i , B =B siny, B =8 cos ¥,
W 4 1l
H
b Bu /30wt w3t /50t ekt I () 50 G
g & J n n '




We must finally integrate Eq. (2-28) with respect
to w. Since the augument of the Dirac delta function in
Eq. (2-28) is a function of the variable of integration, we

therefore obtain the following relation,

J G(w) o (f (w) - w ) dw = —gfigl—v- (2-29)
. 9L W) | "¢ (u) = w
dw (6}
Since f (w) = w - w "y ® cos ¥y cos 9 and wo o= an/ Y(n =
_-=, %)) in our case, it follows that
n wH/ Y
" 1 MJ p cos ¥ cos © (3-30)
which gives the well-known Doppler-shifted angular wave
frequency.
2
The vector potential A thus obtained is expressed as
- = 2 = -
E(rs%) = 3, 3 & (¢ (2-31a)
nj
J=1 n=-=
A (v - b S ol 8} -iv_ | |
= —_— - —_— - -— w =
Anj(r’t) e (-1) exp{ i( <~ r cos y - w 53 w
‘ 8 = es
nj
WnJ
(2-31b)

and
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by = 1)/ 1 -8 cos o cos ¥ —— | (2-31c¢)

- -
AnJ (r,t) denotes the n-th harmonic of the j-th mode of the

vector potential. From Eq. (2-25), the phase refractive index

gJ (w, 8) is deduced to be

2 _ 1 X (1 - X)
pe - :
J 2 2 1 4
1-X - Y sin & {Y :in 8 (1-X)2 Y2 cos2 9]&

(2-32)
where the upper sign (+), corresponding to the case j) = 1, de-
notes the ordinary mode of electromagnetic wave propagations
and the lower sign (=) (j = 2), the extraordinary mode.
As has been considered earlier in this paper, the radia-
tion fields can be determined by using only the vector potential
K. Thus the fields of the n-th harmonic of the j-th mode are

ecasily calculated from the equations

>l

-> w«) -
E =+ 1 E A y B = curl

: . 3 (2-33)
nj nj nj

¢) The Emissivities

By calculating the Poynting vector, the flow of

electromagnetic wave energy of the n-th harmonic of the j-th

mode is given by




- C - -» o 4 .-
P.=—(E . xH=*+E*x

nj 8 n)j n) n) nj
2 2
e u W 2 -d - -
_."JEJ cos X IS (fn D+ g8 X n)Iw -y (2-34)
4rer J J n

8 = 6
=

(‘j = 192)

where the asterisk denotes the complex conjugate and

S = U 2 + Z ?
nj nj nj
2
n . = (V, =W ?) sin o cos . + V W (cos2 a - sin2 a )
nj n)j nj J J nj nj 3 b
Z =V cos a - W  sin o
nj nj 3 nj J

; is the unit vector in the direction of ; (Fig. 3). The

first term of the Poynting vector is along the direction K

which subtends the angle aJ from the external magnetic field

EO as shown in Fig. 3, whereas the second term is in the (y - z)

plane and perpendicular to the vector K. Since the second

term does not give the energy flux passing through the point

of observation along the vector ;, we do not need to take

into account this term in calculating the observational flux.
The angular distribution of the radiation from a single

electron at the n-th harmonic of the j-th mode at the point

of the electron is thus calculated from Eq. (2-34) as follows:

18




Q (8,8,v)

nJ
o “!'wz 2 ;)(MJUJ)
[ J— 47‘0— cCOS '/.J l." ’.n.](l-d COS §H CoS X _-——o—d).-—) I w - wnJ
D = 6
s (2-39)
(3 - 1,2)

In deriving the ahbove result, we have considered the correction

discussed by Scheuer (1968) and Ginzburg and Syrovatskii (1969).

This result gives the emissivity from a radiating electron
at the n-th harmonic of the j-th mode. Then, the frequency
and angular distribution of the radiation from a single electron,

into the ordinary and extraordinary modes, is given by

(W- Or:“v"l.)

o(uw w)

2 o
=¥ cos x Z 1\2 &  (1-B cos © cos V¥ —it (2-36)
- n=1 J

) |

4n “nj ow W o= w

This result is very similar to that obtained by Ramaty (1969),

but different from his case because th¢ present result includes

the effect due to the longitudinal component of radiation

electric fields. This difference arises from the fact that

the radiation energv does not propagate along the direction of
-

the wave normal k because of the existence of the longitudinal

component.

e ——————



The emission-coefficient, JJ (v, 8) are thus give. by

the following general expression (Bekefi, 1966; Ramaty, 1969):

J.(w,8) = | fJ(w,O,p,w) f (B') d3p' ergs/sec str Bz cm3
() = 1,2) (2-37)

g 3
where f (p) d p is the number of electrons per unit volume,
3 e
with womenta in d p around P,
ABSORPTION
The absorption coefficient, aJ for an arbitrary

velocity and pitch-angle distribvtion can be obtained from

the following general expression (Bekefi, 1966):

3 2
@ ,0,8,4) = - 5=—C— [n (u,0,8,N(2E) - £(p] a°p' (3-1)
J nrJ~h w J

where h and n are, respectively, Planck's constant divided by

rj
21 and the ''ray" refractive index given by Bekefi (1966). In

the above equation, the sign is defined such that a photon is

— -
emitted when the momentum of an electron changes from p' to p.
Since the photon energy hw is assumed to be much smaller than

the electron energy E (= ng c4 . p2 c2), it follows that

- E of -h
£ (p') - £ (p) =~ 24 0
pc P p ¢ 8in ¢ cos ¥
(3-2)
x {E -2 n, pc cos 6 cos ¥} of
J oV




The coefficient of the se¢cond term on the right hand side
of the above equation gives the change in the pitch-angle
of the radiating electron resulting from the emission of a
photon of energy My into the direction o,

In case of an isotropic distribution (of/oy = 0), a
necessary condition for negative absorption is of/op > 0
as can be seen from Egs. (3-1) and (3-2). For an anisotropic
distribution, however, the negative absorption can occur
even if o1/op < 0. A necessary condition for this is given
by

1 i of
—— —————————— -~ » 4 — p 3-3
R (E 2nJ pc cos O cos ¥} Y 0 ( )

Since this equation contains the phase refractive index, nJ,
the condition for negative absorption is to some extent
different between the ordinary a-. extraordinary modes. For
ultra-relativisitic electrons, the emission is strongly con-

centrated into the direction of the instantaneous velocity and

so the above condition can be approximated as

2
1l - 2nJ cos ¥ 5f

sin Vv cos ¥ oV

>0

since E > pc and ¢ “ ¥. In the case of v < n/2 and 3f/3y > 0O,

for example, the pitch-angle of radiating electrons is limited

21




within the range given by 0 < cos y < Vl/(ZnJ). in order to
amplify synchrotron radiation. We must, however, remark that
maser action from a moderately anisotropic distribution of

radiating electrons will be confined mainly to the first

few harmonics of gyrosynchrotron radiation (Heyvaerte, 1968).

The momentum and pitch-angle distribution of radiatirg
electrons is, therefore, very important in calculating the
absorption coefficient and heunce the source function in relation
to the equation of radiative transfer of gyrosynchrotron radia-
tion from midly relativistic electrons in a magnetoactive plasma.

POLARIZATION AND RADIATIVE TRANSFER

The shape of polarization ellipse, R for the n-th

nj’
harmonic of the j-th mode is given by
- — - - -0 -
(k x a )'E | (k x a )'A
R N X njg _ x" nj
nj - - - - = -
a ‘E |k a ‘A k]|
X nj X nj
\Y cos 6 - W sin ©
-3 -2 _ (j = 1,2) (4-1a)
U
nj
Zn
-1 U—J— ( = 1,2) (4-1b)

nj

Taking into account that UnJ and Zn are both real, the polariza-

J

tion of both ordinary and extraordinary waves is elliptic with

- - - =
the axes of a_ and k x ax/|k| (Fig. 4).
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In a magnetoactive plasma, the electric fields Enj which
are given by Eq. (2-33) generally have a component along the
direction ;. In order to consider the radiative transfer in
such a medium, we cannot, therefore, use the Stokes paraneters
defined for and applicable to the transverse polarized electro-
magnetic waves. It is convenient to consider the electric
induction B instead of using the electric field E in this case
because the former does not have a component along the direction

—

k (e.g., Zheleznyakov, 1968; Fung, 1969b). After some algebra,

the electric induction 5 is calculated as follows:

D - y D y
Dnj (Dnj X nj o an k)
- 2
s = , = E . =1,2 4-2
(c »J) (Enj - nj o 0) (3 ) ( )
Here Dnj 8 and Enj 8 are the components along the unit vector

e
ae as shown in Fig. 4. The definition of the polarization,

Eq. (4-1), is thus rewritten as

R _ -8 = 3
nj .
nj x nj x
& -
-1 (§=1,2) (4-3)
U
nj

Since an does not have the component D we can define the

nj k’

Stokes p-.ameters such as I, Q, U and V in an analogous wAay

as the vacuum case, in which En = 0 since Vn sin 6§ +

J k J

W _cos 6 = 0.
nj

v S S ¢ s M



By adding both components of the ordinary and extra-
ordinary modes, we can define the polarization tensor
Iap (o, = x,0) of the radiation in terms of the components

of 6, which are given by
D, =D, %,
J
D 6
o =2 nj
J
The tensor Ia: is, therefore, defined as

*
Iab - Da DB’ (Q, B = X, e) (4-4)

where the asterisk indicates the complex conjugate of the
components. The Stokes parameters are then expressed in

terms of 1 as follows:
o

I =1 + I

XX 66
- = de
« Ixx IB( (4-5)
U = ng + Ixe
r=3 (Iex = Ixe)

From Eq. (4-3), we can define the polarization coefficients
in terms of the components of the electric induction of the

radiation fields as
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pa--1gl-1e,0=1,3 (4-6,

Taking into account the "apparent'" radiation intensities of

the ordinary and extraordinary modes, I1 and 12,

from the electric induction and the phase difference & between

calculated

both modes, Dx and De can he written as

D 4

() = (D

[11é 5’1 + o0 12i 32], (4-7)

where the unit vectors are given by

-» - 1
a, = (1 + o_) 4 (
J 83 i aej

). (J = 1,2)

Consequently, we can express the Stokes parameters, Eq. (4-5),
in terms of IJ and aeJ (j = 1,2). 1In these expressions, we
do not need to consider the component along the direction ﬁ
of the electric fields. Therefore, we can develnp the problem

of radiative transfer in a similar way as has been considered

by Zheleznyakov, (1968) and Fung (1969b).

The degre~ of polarization, p, the ellipticity, €, and

tne angle X between the major axis and the x-direction can be

written as (Born and Wolf, 1964; Bekefi, 1966):




¢ = tan B; sin 28 = — .Y (4-8)
[ 2 2 2
VvVQ + U + V
U
tan 2X = —
Q
Taking into account Eq. (4-5), the degree of polarization p
is expressed as
1, - 1,]
1 2
p=—5 (4-9)

This means that p is always less than the unity when both modes
can escape from the source region.

As has been discussed eariier in this paper, the electro-
magnetic energy emitted from electrons is usually transported
in the direction making the angle aJ with the static external
magnetic field which is not generally coincident with the angle
oj as shown in Fig. 3. The Stokes parameters defined in this
paper are very useful for dealing with the problem of radiative
transfer, especially the polarization treatment, but are not
so much helpful in the study of the transport of the electro-
magnetic energy in a magnetoactive plasma because of the reason
just mentioned.

The transport of the electromagnetic energy in a magneto-
active plasma has recently been considered by Bekefi (1966)

and Enome (1969). According to them, the equation of the
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transfer of electromagnetic energy is given by

. » *
s ik . 3 J. I
Dy o 8y & ). J _ :
aS( 2) i w . ot ( 2) 2 QJ 2 ! QG 1,2) (4-10)
 « P £) n n n
rj rj rj r)

where the scalar quantity I; is known as the specific intensity
of radiation and usually not equal to Ij as defined earlier.
Here dg i€ the element of the length along the ray direction

§ (Fig. 3). ng is the group velocity.

In dealing with the transfer of radiation, let us assume

?

-
the wave normal vectors, k., and Kk,

o to be initially in the

1
-
k

N
same direction, i.e., klll .

Even in this case, the ray

direction of the ordinary mode « in general, does not coincide

1’
with that of the extraordinary mode, oy, i.e., oy *-02. This

result can be proved by calculating the equation
0

Mo
tan (6 - Q.) » _l —_l (J - 112)
J Mo 8
J
and 6 = 61 = 6y Accordingly, the two directions of the

6
- *
1 and 1, which are obtained by solving Eq. (4-10),

intensities 1 B

are generally not coincident with each other.
+
The case in which IJ and nrj are independent of time,

Eq. (4-10) is reduced to




* . *
I I I
n . n
FJ r) r)
or, by dividing both sides with aJ,
. .
3 {l_ I
P (- 2) - —‘1—2 - SJ., (G =1,2) (4-12)
J n_. n_.
r) rj
where dr = - o dS and
J J
*
I I
§ = —— L (j =1,2) (4-13)
J 2 o
Y J

which is known as the source function and plays an important
role in the analysis of the radiation from the medium (e.g.,

Chandrasekhar, 1960). The above equation (4-12) shows that

the effective path length is generally different between the
two modes.

When the phase difference hetween the ordinary and extra-
ordinary modes is completely random, i.e., when the Faraday
rotation is very large, the two modes of waves propagate
independently. In this case, we can separately solve the
equation of radiative transfer, Eqs. (4-11) or (4 -12) for

each mode. For a homogeneous source region, we can integrate

Eq. (4-11) as given by




-

e N * "
I, =5t (1 - exp (- o LJ)J, (j = 1,2) (4-14)

-

where LJ is the depth of the source. The intensity of the

escaping radiation can thus be given by

2 2 , - 3
n . w, | n, f (') dp'
N ] 2 Tl Bl Jl
3 3
J 8 Jn.(- s gf + 5 1 —-{an pc cos O cos V - E]%%)dsp'
J »op p Sin v cos V¥
X-I-L-—§n3 | (_E:C)__f_‘+ 1
J nz. W? cd P op p2 sin ¥V cos V¥
ry J
, of 3 '

x {2 n, pc cos © cos ¥ - E} gV) d"p | (j = 1,2) (4-15)

In arriving at this result, we have used Egs. (2-37), (3-1)
and (3-2).
If the inequality

of , 1 {2 n; pc «os 6 cos ¥ - E} — <0 (4-16)

p2 sin ¥V cos ¢

o |t
o

is satisfied in some frequency range, the radiation can be
amplified and then is observed to be enhanced in the same

frequency range.

The source function Sj is given, by using Eqs. (2-37),

(3-1) and (3-2), as follows:




2 - - 3
W Jn. £ (p') dp'
8, = =y — %% - ‘
J 8n Jq (- = %— » =y 1 {Zanc cos O cos § - E]%%)d3p'
J P oP p sin Vv cos ¥
(J =1,2) (4-17)
The source function SJ is sometimes conveniently written
in the form
2
J w
§ = —— Ao Jd g1, (§=1,2) (4-18)
J 2 o 3 2 J
nrJ J 81 ¢

where k is Boltzmann's constant and TJ is a quantity with
dimensions of temperature. This is usually referred to as
the radiation temperature of the medium and is a function of
frequency, the direction of the rry in the medium and the
elementary emission processes. The temperature is also
usually different between the two modes, and is very important
in estimating the radiation processes associated with solar
and galactic radio emissions. This temperature occasionally
becomes negative when maser action works in the medium where
the radiation and propagation take place.

If we assume that w >> wp, Wy and wp >> W the refractive
index nJ is reduced approximately to (1 - wz/w2 Q. If follows
that n, = n,, By ” n .o and xJ - e) - aj = 0. Taking into the

above assumption, the results obtained here are reduced to the

same forms as currently used (e.g., Ramaty, 1969). It is clear

otk he . e iide o adl R ettt sttt s



that the former are much more complicated than the latter.
However, the equations of radiative transfer and their solution
are similar to each other except for some essential differences
on the solution of radiation fields.

SUMMARY

We have asymptotically calculated the gyrosynchrotron
radiation fields from electrons in a magnetoactive plasma
by usimg Lhe Green tensor and the Fourier transformation. The
medium has been assumed to be cold and collisionless and
immersed in a static external magnetic field. The radiation
fields obtained in this paper would be useful in studying
the interpretation of solar radio type IV radio bursts and
stellar and galactic radio spectra,

Taking these radiation fields into consideration, we have
developed the detailed calculation of the emissivity and
absorption coefficients for a given direction of observation
from an ensemble of electrons with arbitrary momentum and
pitch an~le distribution. %

In order to study the problem of radiative transfer, we
have used the electric induction D in place of the electric
field E. The former is very convenient in formulating fhe

Stokes parameters since it does not have a component along the

!-'""'“-..-l-----.-IlllI-IIll-!!—!!!H--!.----------Illl!!llI‘Ll



wave normal ;. The electromagnetic energy is, however,
usually transported in a direction different from the direction
ﬁ. In order to calculate the transport of this energy, we
must then consider the electric and magnetic fields, E and
ﬁ. When the longitudinal component of the electric fields
cannot be neglected, the theory of radiative transfer, therefore,
becomes much complicated in comparison with the theory
currently used.

In this paper, we have not shown any results of numerical
calculation, but this will be studied in a forthcoming paper

and applied to problems on solar and galactic radio emissions.

ACKNOWLEDGEMENT

I am much indebted to Mr. Tadahiko Ogawa for his in-
valuable contribution and help in studying this subject. I
wica to thank Dr. R.G. Stone and Mr. R.J. Fitzenreiter for :

their valuable criticism and discussion and for their critical

reading of the manuscript and valuable advice.




REFERENCES

Bekifi, G., 1966, Radiation Processes in Plasmas, John
Wiley, New York.
Bo.'n, M., and Wolf, E., 1964, Piinciples of Optics, Macmillan

Company, New York.
Bray, R.J. and Loughhead, R.E., 1985, Sunspots, John Wiley,
New York.
Bunkin, F.V., 1957, Soviet FPhys. - JETP, 5, 277.
Chandrasekhar, S., 1960, Radiative Transfer, Dover, New York.
Eidman, V. Ia., 1958, Soviet Phys. - JETP, 34, 91.
Ellison, M.A., 1963, Planetary Space Sci., 11, 597.
Enomé, S., 1969, Pub. Astron. Soc. Japan, 21, 367.
Fung, P.C.W., 1969a, Canad. J. Phys., 47, 757.
Fung, P.C.W., 1969b, Astrophys. Space Sci., 5, 448.
Fung, P.C.W., and Yip, W.K., 1966, Austral. J. Phys. 19, 759.
Ginzburg, V.L., 1964, The propagation of Electromagnetic

Waves in DPlasmas, Pergamon, New York.

Ginzburg, V.L. and Syrovatskii, S.I., 1969, Ann. Rev. Astron.
Astrophys., 7, 375.

Heyvaerts, M.J., 1968, Ann. d'Astrophys., 31, 129.

Jackson, J.D., 1962, Classical Electrodynamics, John Wiley,

New York.
Kiepenheuer, K.O., 1953, The Sun, p. 325, ec¢. by Kuiper,

G.P., Univ. of Chicago, Chicago.
Liemohn, H.B., 1965, Radio Sci., 69D, 741.
Mansfield, V.N., Ap. J., 147, 672.
McCray, R.A., 1967, Ap. J., 147, 544.
McKenzie, J.F., 1964, Proc. Phys. Soc., 84, 269.




Ogawa, T. and Sakurai, K., 1969, J. Geomag. Geoel., 21, 705,

Pakhomov, V.I., Aleksin, V.F. and 3tepanov, K. N., 1962,
Soviet Phys. - Technical Phys., 6, 856.

Pakhomov, V.I. and Stepanov, K.X., 1963, Soviet Phys. - Tech-

nical Phys., 8, 28 .

Ramaty, R., 1968, J. Gecphys. Res., 73, 3573.

Ramaty, R., 1969, Ap. J., 158, 753.

Ramaty, R. and Lingenfelter, R.E., 1967, J. Geophys. Res., 72,
879.

Sakurai, K., 1964, Rep. Ionos. Space Res. Japan, 18, 366.

Sakurai, K., 1965, J. Geoph's. Res., 70, 3235.

Sakurai, K., 1970, Planetary Space Sci., 18, 33.

Sakurai, K. and Ogawa, T., 1969, Planetary Space Sci., 17, 1449.

Scheuer, P.A.G., 1965, Quasi-Stellar Sources and Gravitational
Collapse, p. 373, edited by Robinson, Schild and Schucking,

Univ. of Chicago, Chicago.
Scheuer, P.A.G., 1968, Ap. J., 151, L139.
Stix, T.H., 1962, Theory of Plasma Waves, McGraw-Hill, New York.
Zheleznyakov, V.V., 1968, Astrophys. Space Sci., 2, 417.




i S b o0 o as b M A B R T Y Nl TP e e, Iyt

‘auerd (z - £) ayj3 ur ST
I0392aA uorjrisod ayyl (¥ pue I) SI03O09A Teuwxou
“ -

aAem pue uorlisod ayl pue waj}sAs 33eUTIPIOOD YL - 1 “314 ¥

¢
/VA,V

__x

UoI}DAI9SqQ
JO tuod ! o

d




‘Wa1SAS 21BUIPIOOD UBTIS3}IE) 3yl UT paurjap aae

A X
Anm ‘e ‘ E) sSI0302A 3JTUN 3JY] “UOTIOW UOIIOA[2 AU}
. - -

pue uUOT}eAIasSqo Jo jurcd ayj uaaml}aq uoTIe[AX BYL - Z 8TJ

10J09A jlun 'D

i

‘o

91buy yoyid : 4




*[ewIou aAem ayjl pue jaxodsuexr) ASxaua

2yl JO SUOT}D2ITP OM] aY} U29M}3Q UOTIEB[aI ayL - ¢ 314

S

(ud) s




‘asd111o uorjezraejod ayj auryap

01 Axessadau sSI0303A 3Tun 3yl Suowe uoTIe[AX AYL - ¥ 813

g'!'3

Xp
_u_n_lxoxw_,.vumw >




	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf

