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ABSTRACT 

Cor re l a t ion  equat ions were obtained f o r  published experimental small  
hollow sphere-impact data .  The f a i l u r e  deformation (?jf) as  a  func t ion  
of mean rad ius  (R), t h i ckness  (h) ,  and u l t ima te  s t r a i n  (E) i s  given by 

The f a i l u r e  ve loc i ty  (vf) a s  a  funct ion of mean rad ius ,  th ickness ,  
u l t ima te  s t r e s s  (a) , dens i ty  (p) , and u l t ima te  s t r a i n  (E) i s  given by 

0.56 ? 1 

Vf = 0.15 (Wh) (o/p)" E' 

Sphere ma te r i a l s  included SAE 4130 s t e e l ,  t i t an ium,  and Haynes Alloy 
No. 25. Diameters va r i ed  from 0.750 t o  2.000 inches (1*91 t o  5,08 cm), 
F a i l u r e  v e l o c i t i e s  va r i ed  from 297 t o  650 f t / s ec  (91 t o  198 d s e c ) .  

The c o r r e l a t i o n  equat ions were used t o  ca l cu la t e  t h e  f a i l u r e  v e l o c i t y  
and deformation of a  17 f t .  (5.18 m) diameter containment v e s s e l  f o r  a  
nuclear  r eac to r .  The deformation a t  f a i l u r e  was 7 ,O  f t .  (2.13 m) a t  an 
impact ve loc i ty  of 900 f t / s e c  (274 d s e c ) .  

The equat ions i n d i c a t e  t h a t  a  mul t i layer  s p h e r i c a l  cont ainment v e s s e l  
probably would have g r e a t e r  impact s t r e n g t h  than  a  corresponding s i n g l e  
wal l  vesse l .  
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SUMMARY 

Published experimental sphere impact da ta  were analyzed t o  determine t he  
e f f e c t s  of sphere radius ,  thickness,  mater ia l ,  and impact ve loci ty  on the  
impact deformation and f a i l u r e  of hollow spher ica l  s h e l l s  moving normal 
t o  and impacting on a hard f l a t  surface.  The information i s  needed t o  
predic t  t he  e f f e c t  of impact on a nuclear r eac to r  containment vesse l  10 
t o  20 f e e t  (3.05 t o  6.10 m) i n  diameter with a  wall  thickness of about 3 
inches (7.62 cm). A method was needed f o r  ext rapola t ing  from the  small 
hollow sphere impact t e s t  da ta  t o  predic t  t h e  e f f e c t s  of impact on l a rge  
spher ica l  containment vessels .  

Dimensional analys is  was used t o  obtain cor re la t ing  equations fo r  small 
sphere data. Outside diameters of spheres were 0,750 t o  2.000 inches 
(1.91 t o  5.08 cm). Deformation was defined by t he  r a d i a l  distance t he  
impact surface of t he  sphere was permanently deflected toward the  center  
of the  sphere. Fa i lu re  ve loc i t i e s  var ied  froril 297 t o  650 f t / sec  (91 t o  
198 d s e c ) .  Spheres were fabr ica ted  frorn SAE 4130 s t e e l ,  t i tanium, and 
Haynes Alloy No. 25. 

One equation s t a t e s  t h a t  the f a i l u r e  deformation-to-radius r a t i o  ( 6  
increases with t he  radius-to-thickness r a t i o  (R/h), and with the  u l  
s t r a i n  ( E ) .  

Another equation shows t ha t  t h e  f a i l u r e  veloci ty  (Vf) increases with t he  
radius-to-thickness r a t i o ,  with the  ul t imate s t ress- to-densi ty  r a t i o  ( ~ r / ~ ) ,  
and with the ul t imate s t r a i n ,  



The standard deviat ion of the experimental f a i l u r e  ve loc i t i e s  from values 
given by the  cor re la t ing  equation i s  20 percent.  Thus, 68 percent of the  
experimental f a i l u r e  ve loc i t i e s  would be expected t o  f a l l  wi th in  a  band 
of 120 percent from co r r e l a t i on  equation values. 

The equations show t h a t  both t he  f a i l u r e  deformation and the  f a i l u r e  
veloci ty  are s trongly dependent on the  mean radius  t o  thickness r a t i o .  
Variat ion of e i t h e r  t he  mean radius  or t h e  thickness t o  give a higher value 
f o r  the  r a t i o  w i l l  increase both the  f a i l u r e  veloci ty  and the  deformation 
a t  f a i l u r e .  The cor re la t ion  equations a l s o  ind ica te  t h a t  a  mult i layer  
containment vesse l  should have a s i gn i f i c an t l y  higher f a i l u r e  veloci ty  than 
a s ing le  l ayer  containment vesse l  of the  same t o t a l  thickness because t h i n  
wal l  vesse ls  y i e l d  a  higher f a i l u r e  veloci ty.  

These equations were used t o  ca lcu la te  the  f a i l u r e  veloci ty  and deforma- 
t i o n  of a  1 7  f t .  (5.18 m) diameter, 3  in .  (7.62 cm) wall ,  Type 304 s t a i n -  
l e s s  s t e e l  containment vesse l  f o r  a  nuclear reactor .  The deformation fo r  
f a i l u r e  was 7.0 f t .  (2.13 m) a t  an impact ve loci ty  of 900 f t / sec  (274 
d s e c )  . 
Hollow sphere impact t e s t s  are needed t o  ve r i fy  the  co r r e l a t i on  equations. 
The t e s t s  should be designed t o  inves t iga te  t he  e f f e c t  of l a rge r  diameters 
and t h e  e f f e c t  of mult i layer  wall  spher ica l  s h e l l s  on impact deformation 
and f a i l u r e .  

INTRODUCTION 

Safety i s  a primary requirement i n  the  design of a  nuclear airplane.  The 
importance of sa fe ty  with regard t o  nuclear a i r c r a f t  has been discussed i n  
reference 1. Release of radioact ive  f i s s i o n  products t o  t h e  atmosphere i n  
the  event of a crash  landing must be prevented. One method of preventing 
f i s s i o n  product r e lease  i s  t o  enclose the  reactor  i n  a  containment vessel .  
Valve c losures  would be provided t o  completely s e a l  the  containment vesse l  
i n  an emergency such as a  crash landing of the airplane.  

The radioact ive  contents of the  containment vesse l  must remain sealed i n  
t he  vesse l  even though t he  vesse l  i s  deformed by an impact. Afterheat 
from the  nuclear r eac to r  w i l l  heat the  deformed containment vesse l  and 
r a i s e  i n t e r n a l  vapor pressure. Then i n  the  heated, deformed condition, 
pressure generated ins ide  the  containment vesse l  must be contained. 

The containment vesse l  f o r  an a i r c r a f t  nuclear r eac to r  w i l l  be a  r e l a t i v e l y  
l a rge  sphere approximately 10 t o  20 f e e t  (3.05 t o  6.10 m) i n  diameter, with 
a  wall  thickness of approximately 3 inches (7.62 cm) . The containment 
vesse l  mater ia l  must have high s t reng th  t o  r e s i s t  impact deformation and 
must a l so  have su f f i c i en t  d u c t i l i t y  t o  allow f o r  impact deformation with- 
out rupture.  



Impact energy absorbers may be provided t o  absorb pa r t  of the  impact 
energy of t h e  containment vesse l  package, The amount of energy ab- 
sorbers  t h a t  can be designed t o  protec t  the  containment vesse l  (as 
described i n  reference 2) i s  l imi ted  by t he  weight of the  energy ab- 
sorbers ,  Complete protec t ion  of the containment vesse l  would requ i re  
s o  much energy absorber t h a t  t he  added weight may be t oo  great  f o r  an 
airborne system, Thus, pa r t  of the  k i n e t i c  energy of the  containment 
vesse l  package must be absorbed i n  the  deformation of the  containment 
vesse l .  

The r e l a t i ons  f o r  impact deformation with and without rupture must be 
known f o r  l a rge  spheres i n  order t o  design the  containment vesse l  tr, 
withstand impact without rupture. I n  reference 3 ,  small sphere defor- 
mation data  was t:.irapolated t o  large  spheres by co r r e l a t i ng  data from 
small hollow spheres t h a t  deformed during impact without rupture. The 
purpose of t h i s  repor t  i s  t o  cor re la te  small sphere impact data a t  rup- 
t u r e  and t o  predic t  the  deformation and impact ve loci ty  a t  f a i l u r e  f o r  
l a rge  hollow spheres such as a containment vessel .  

The impact of spher ica l  s h e l l s  i s  a subject  of r e l a t i v e l y  recent theo- 
r e t i c a l  and experimental i n t e r e s t .  Simonis and Stoneking ( ref .  4) pre- 
sented t h e i r  work on the  impact of spher ica l  s h e l l s  i n  December 1966. 
Haskell ( ref .  5) presented a f a i l u r e  c r i t e r i o n  f o r  spher ica l  s h e l l s  i n  
December 1968. He used the  experimental sphere impact da ta  reported by 
Simonis and Stoneking i n  reference 4, 

An attempt was made t o  apply the  Haskell c r i t e r i o n  ( re f .  5) f o r  t he  i m -  
pact f a i l u r e  of spher ica l  s h e l l s  t o  a l a rge  containment vessel .  The 
f a i l u r e  veloci ty  obtained was unreasonably low. The c r i t e r i o n  was based 
on sphere impact t e s t s  of Simonis and Stoneking using spheres with d i -  
ameters of 0.750 t o  1.250 inches (1.91 t o  3,18 cm) . Haskel l t s  empirical  
c r i t e r i o n  could not be extrapolated fo r  use i n  the  design of a l a rge  
containment vessel .  

Reference 6 gives recent  t e s t  data on the  impact of spher ica l  she l l s ,  
The 4.00 inch (10.16 cm) diameter spheres t e s t e d  are the  l a rge s t  diameter 
hollow spheres f o r  which t e s t  da ta  was avai lable.  Fai lures  occurred 
during 2 inch (5.08 cm) diameter sphere impact t e s t s .  None of the  4 inch 
( 1 0 ~ 6  cm) diameter spheres f a i l e d  i n  t h e  t e s t s .  

Johnson (ref .  7)  obtained solut ions  fo r  t he  impact of an e l a s t i c  spher ica l  
s h e l l  on an e l a s t i c  surface. H i s  so lu t ions  as wel l  a s  those of Simonis 
and Stoneking make the  assumption of small def lec t ions .  Analyses based 
on small def lec t ion  theory cannot describe the impact of spheres under- 
going l a rge  permanent deformations. Consequently, no avai lable  theore t i ca l  
analys is  was applicable t o  the  problem of ca lcu la t ing  f a i l u r e  veloci ty  or 
f a i l u r e  deformation, 



4. 

SYMBOLS 

a Constant 

b Constant 

c Constant 

h Wall Thickness, in . ,  cm 

k Constant 

k P  Constant 

m Const ant 

Constant 

Percent Fa i lu res  a t  a  Given Velocity 

Mean Radius of Hollow Sphere, i n , ,  cm 

Impact Veloicty , f t /sec,  d s e c  

Ultimate True S t ra in ,  in. / in.  , cdcm 

6 Deformation, in .  , cm 

3 
Density of Sphere Material,  l b d i n  , g/cm 

3 
P 

o Ultimate S t r e s s ,  p s i ,  M N / ~  
2 

0 Angle 

Subscript 

f  Fai lure  Due t o  Rupture 

ANALYSIS 

I n  the  absence of an ana ly t i c a l  or empirical method of predic t ing  t he  
f a i l u r e  veloci ty  or deformation of l a rge  hollow spheres, t h e  avai lable  
experimental hollow sphere impact data ( refs .  4 and 6) were studied 
using dimensional analysis .  



kl 

Dimensional Analysis 

Mean Radius of Hollow Sphere L 

h  Wall Thickness L 

P Density of Sphere Material M L ‘ ~  

CT Ultimate S t r e s s  M L - ~  T - ~  

vf  Fa i lu re  Velocity L T - ~  

E Ultimate True S t r a in  

6f Deformation, Radial Deflect ion of L 
Impact Surface a t  Fai lure  

There a r e  seven var iab les  (R, h, p, CT, V f ,  E ,  Zjf) and th ree  dimensions 
(L, M, T ) ,  Dimensional analys is  y ie lds  four dimensionless p i  r a t i o s .  

The deformation-radius r a t i o  (6f/R) can he expressed a s  a  funct ion  of the  
other t h r ee  r a t i o s .  

The r a t i o ,  6/R, i s  a  measure of t he  sever i ty  of the  deformation of t he  
hollow sphere. I t  i s  proport ional  t o  t he  angle B between a  r a d i a l  l i n e  
drawn perpendicular t o  the  f l a t t ened  impact surface and a  rad ius  drawn 
t o  t he  i n t e r s ec t i on  of the  undeformed surface and the  f l a t t ened  surface 
of the  sphere (see f i g .  1 ) .  This ang9.e i s  r e l a t e d  t o  the  sever i ty  of 
the  bending or shear deformation a t  the  periphery of ?he f l a t t ened  sur-  
f  ace ., 

Equation (4) was presented i n  reference 3. T h i s  i s  a general equation 
r e l a t i n g  deformation and impact ve loci ty  below the f a i l u r e  ve loc i ty ,  



Symbols f o r  deformation and veloci ty  without the  subscr ip t  f  r e f e r  t o  
v e l o c i t i e s  and deformations from spheres t e s t e d  without f a i l u r e .  The 
equation was obtained using dimensional analysis ,  It agrees with the  
conclusion of Simonis and Stoneking (ref .  4) t h a t  t he  change i n  diameter 
of impacted spheres was a l i n e a r  function of the  impact ve loci ty ,  

The f a i l u r e  veloci ty  used i n  t h i s  analys is  i s  defined a s  the  lowest t e s t  
ve loci ty  t h a t  r e su l t ed  i n  a through-crack i n  t he  wall  of t he  t e s t  sphere. 
A t  high s t r a i n  r a t e s ,  t h e  average dynamic s t r e s s  associated with p l a s t i c  
flow of the  sphere mater ia l  i s  assumed t o  approach the  u l t imate  s t reng th  
of the  material .  Therefore, the  u l t imate  s t reng th  of sphere mater ia ls  
i s  used i n  t h i s  analysis .  

Figure 1 i s  a p lo t  of equation (4) using the  data  from t ab l e s  1 and 2 
f o r  f a i l e d  spheres, The s o l i d  l i n e  i s  a graph of t he  equation. The 
f i t  of the  experiment a1  def ormat ion-radius r a t i o s  f o r  the  f a i l e d  spheres 
t o  t he  empirical equation i s  e s sen t i a l l y  s imi lar  t o  the  f i t  of experi-  
mental da ta  from unfa i led  hollow sphere impacts shown i n  reference 3 .  
There i s  no evidence i n  f igure  1 t o  show tha t  the  deformation-radius 
r a t i o s  obtained from f a i l e d  spheres was af fec ted  by t he  cracks i n  the  
wal ls  of the  spheres. Consequently the  range of appl ica t ion  of equation 
(4) can be extended t o  include deformation-radius r a t i o s  f o r  sphere i m -  
pac ts  a t  f a i l u r e  ve loc i t i e s .  

Equation (3) d i f f e r s  from equation (4) i n  t h a t  equation (4) i s  a general 
deformation cor re la t ion  equation whereas equation (3) i s  an equation fo r  
t h a t  pa r t i cu l a r  deformation-radius r a t i o  a t  which f a i l u r e  w i l l  occur. 
The same var iables  are  present i n  both r e l a t i ons  except f o r  the  u l t imate  
s t r a i n -  

Equation (3) has th ree  exponents t o  be evaluated. A t  the  f a i l u r e  veloci ty ,  
t h e  deformation-radius r a t i o  i s  t he  same f o r  both equations (3) and (4) . 
Equating t h e  two equations el iminates t he  f a i l u r e  def ormat ion-radius r a t i o  
y ie ld ing an e q u a t i o ~  i n  th ree  dimensionless r a t i o s .  This equation may be 
solved f o r  ( p~ f2 /o )2 .  Subs t i tu t ion  of k f o r  the  numerical coef f i c ien t  
and replac ing t he  algebraic exponents with m and n gives equation (5). 

The u l t imate  s t r a i n  has the  same value f o r  a l l  specimens from a given 
material .  Consequently the  r i g h t  s ide  of equation (5) becomes a constant 
times the  exponential funct ion of R/h f o r  a given material .  The log-log 
p lo t  of equation (5) provides a family of l i n e s  having a slope equal t o  m, 
Data from each s e t  of specimens having a f ixed value for  ul t imate s t r a i n  
w i l l  p lo t  as one l i n e  on the  graph. 



There a r e  11 data poin ts .  Three ma te r i a l s  a r e  represented ,  However, 
t h e r e  i s  only one da ta  po in t  per ma te r i a l  f o r  two of t h e  ma te r i a l s  
t e s t e d .  A l i n e  was drawn through t h e  nine da ta  po in t s  f o r  SAE 4130 
specimens i n  a  graph of equat ion (5). P a r a l l e l  l i n e s  were drawn 
through t h e  Haynes Alloy No, 25 and t h e  Titanium da ta  poin ts .  Data 
f o r  constant  values of R/h were obtained from t h e  graph, A graph of 
equat ion (5) with R/h constant  was p l o t t e d  t o  ob ta in  a value f o r  n. 
The s lope  (n) of t h e  l i n e  through t h e  t h r e e  noncol l inear  po in t s  could 
not be evaluated p r e c i s e l y  but  t h e  value of n  = 0.5 was chosen f o r  a  
reasonable da ta  f i t ,  This  value improved t h e  f i t  of t h e  t i t an ium and 
t h e  Haynes Alloy sphere impact da ta  po in t s  on graphs of data.  

1 - 1 

Figure 2 shows a  graph of R/h versus ( d o ) '  y f / e z e r  The s o l i d  l i n e  i s  
t h e  l e a s t  squares r eg res s ion  of R/h on ( d o 1 2  v~/E'. Equation (6) i s  
t h e  equat ion of t h e  s o l i d  l i n e  i n  f igu re  2 ,  This  equat ion provides 
va lues  f o r  k T  and m i n  equat ion (5)-  

Equation (6) may be solved f o r  Vf.  

S u b s t i t u t i o n  f o r  Vf from equat ion (7) i n t o  equat ion (4) y i e l d s  t h e  
equat ion f o r  t h e  f a i l u r e  deformation-radius r a t i o .  

An equat ion f o r  t h e  f a i l u r e  deformation-thickness r a t i o  i s  obtained by 
mult iplying equat ion (8) by R/h. 

Figures  3, 4, and 5 a re  graphs of equations ( 7 ) ,  ( 8 ) ,  and (Q), 



Equation (8) corresponds t o  equat ion  ( 3 ) .  The constant  k i n  equat ion  
(3) has t h e  value 0,109. The k i n e t i c  energy t o  u l t ima te  s t r e s s  r a t i o  
dropped out when t h e  expression f o r  f a i l u r e  v e l o c i t y  was s u b s t i t u t e d  
i n t o  t h e  general  deformation-radius equat ion (4) . Hence, t h e  exponent 
a = 0, The exponent b = 0.64. And t h e  exponent c = 0.50. 

RESULTS 

Hollow sphere impact f a i l u r e  t e s t  d a t a  obtained from published references  
was analyzed us ing  dimensional ana lys i s .  F a i l u r e  ve loc i ty  f o r  a given 
sphere geometry and ma te r i a l  was s e l e c t e d  from t h e  impact t e s t  d a t a  a s  
t h e  lowest impact t e s t  ve loc i ty  t h a t  r e s u l t e d  i n  f a i l u r e  of t h e  sphere. 
F a i l u r e  was defined by t h e  presence of a through-crack i n  t h e  w a l l  of 
t h e  impacted sphere. 

The range of t h e  f a i l e d  sphere da ta  i s  a s  fol lows:  The f a i l u r e  v e l o c i t y  
va r i ed  from 297 t o  650 f e e t  pe r  second (91 t o  198 d s e c ) .  Sphere 
ge ometries ranged from thick-walled t o  thin-walled spheres.  Mean rad ius  
t o  th ickness  r a t i o s  of sphere t e s t  da ta  va r i ed  from 2.9 t o  28.1. Ou t -  
s i d e  diameters ranged from 0.750 t o  2.00 inches (1.91 t o  5.08 cm). 
Mater ia l s  included SAE 4130 s t e e l  and t i t an ium spheres t e s t e d  a t  room 
temperature,  and Haynes Alloy No. 25 spheres t e s t e d  a t  1800°F ( 1 2 5 6 " ~ ) .  

Empirical c o r r e l a t i o n  equat ions presented can be used t o  p r e d i c t  t h e  
permanent deformation and t h e  impact ve loc i ty  which w i l l  cause f a i l u r e  
of a hollow sphere moving normal t o  and impacting on a hard f l a t  surface.  

The genera l  hollow sphere impact deformation equat ion presented i n  
re ference  3 was found t o  be appl icable  t o  hollow sphere impact f a i l u r e  
t e s t  data.  The r a t i o  of deformation a t  f a i l u r e  t o  sphere r ad ius  o r  
th ickness  was found t o  be independent of impact v e l o c i t y ,  dens i ty  of 
t h e  sphere ma te r i a l ,  and t h e  u l t ima te  s t r e s s  parameters. A s  shown by 
equat ions (8) and (9) ,  bo th  r a t i o s  c o r r e l a t e d  wi th  funct ions  only of 
ge ome t r y  and u l t  imate s t r a i n .  

Equation ( 7 ) ,  an empir ica l  c o r r e l a t i o n  equat ion f o r  f a i l u r e  v e l o c i t y ,  
was found t o  be a func t ion  of geometry and ma te r i a l s  proper t ies .  The 
equat ion presented s t a t e s  t h a t  t he  f a i l u r e  ve loc i ty  i s  propor t ional  t o  
t h e  mean radius- to- th ickness  r a t i o  t o  t h e  0.56 power, t o  t h e  square 
roo t  of t h e  u l t ima te  s t r e s s  t imes t h e  u l t ima te  t r u e  s t r a i n ,  and i s  i n -  
ve r se ly  p ropor t iona l  t o  t h e  square roo t  of t h e  dens i ty  of t h e  sphere 
mater ia l .  

The s tandard dev ia t ion  of t h e  experimental f a i l u r e  v e l o c i t i e s  f r  om 
c o r r e l a t i o n  equat ion (equation 7) va lues  i s  20 percent.  Thus assuming 
a normal d i s t r i b u t i o n  due t o  random data  s c a t t e r ,  68 percent  of t h e  
experimental hollow sphere impact f a i l u r e  v e l o c i t i e s  would be expected 
t o  f a l l  wi th in  a band of rt20 percent from the  c o r r e l a t i o n  equat ion values,  



DISCUSSION OF RESULTS 

This sec t ion  of the  repor t  includes a  discussion of the  co r r e l a t i on  
equations and t he  f i t  of the  experimental data. Sources of va r i a t i on  
of the  data  points  from the cor re la t ion  include the  method of de ter -  
mining the  f a i l u r e  veloci ty  and the  consequent va r i a t i on  i n  the  prob- 
a b i l i t y  of f a i l u r e  associated with each of t h e  data  points ,  

Another source of va r i a t i on  i s  the  uncertainty or lack  of information 
concerning t he  dynamic proper t ies  of the  sphere materials .  The 
spec i f i c  energy of a  material  i s  equal t o  the  area under the  dynamic 
t r u e - s t r e s s  versus t r u e - s t r a i n  diagram. This property i s  an important 
parameter of the  impact f a i l u r e  veloci ty .  

Limitations of the  cor re la t ion  equations are  discussed. Ef fec t s  of 
va r i a t i on  of the  parameters are in te rp re ted  t o  suggest t h a t  a  hollow 
sphere with a  mult i layer  wall  would have a  superior  impact s trength.  

F inal ly ,  appl ica t ion  of the  cor re la t ion  equations t o  the impact of a  
l a rge  spher ica l  containment vesse l  provided evidence t h a t  such a vesse l  
can su s t a in  considerable deformation a t  r e l a t i ve ly  high v e l o c i t i e s  with- 
out f a i l u r e  . 

Correlat ion Equations 

Figures 3 t o  5 a re  graphs of the  f a i l u r e  deformation and f a i l u r e  veloci ty  
co r r e l a t i on  equations (7) t o  ( 9 ) .  The s o l i d  l i n e s  are graphs of  the  
equations. The dashed l i n e s  define ranges of F 30 percent based on t he  
ordinate functions. I n  f igure  3 the  s tandard deviat ion (s) i s  given as  
20 percent. Hence the  dashed l i n e s  define a  band of F 1.5 standard de- 
v ia t ions .  Eighty-seven percent of the  experimentally determined f a i l u r e  
ve loc i t i e s  would be expected t o  f a l l  within the  region defined by t h e  
dashed l i n e s .  

Each of t he  graphs shows s ca t t e r i ng  of t he  experimental da ta  about the  
s o l i d  co r r e l a t i on  l i ne .  The f a i l u r e  deformation t o  thickness r a t i o  i n  
f igure  5 has t he  grea tes t  range of va r i a t i on  of the  11 experimental data 
points.  This graph v e r i f i e s  t h a t  the cor re la t ion  equation i s  representa-. 
t i v e  of t he  f a i l u r e  deformation behavior of the  experimental sphere impact 
t e s t  data,  

The s c a t t e r  of the  data  points  i n  f igures  3 and 4 suggests t h a t  t he r e  
might be some sources of va r i a t i on  other  than the random va r i a t i on  of the  
va r iab les  i n  the  cor re la t ion  equations, 



Sources of Variat ion of Experimental Data 

Important sources of va r i a t i on  of the  experimental data include the  
procedure f o r  the determination of the  f a i l u r e  veloci ty  and the  methods 
fo r  con t ro l l ing  and determining mater ia ls  propert ies .  

Determining the  f a i l u r e  veloci ty.  - The procedure fo r  determining the  
f a i l u r e  veloci ty  was an important source of va r i a t i on  i n  the  experi- 
mental f a i l u r e  ;elocity data. The lowest impact t e s t  ve loci ty  t h a t  
r e su l t ed  i n  a  through-crack i n  t he  wal l  of the  sphere of a  given 
geometry and mater ia l  was se lec ted  as t he  f a i l u r e  veloci ty .  

The experimental impact t e s t s  of Simonis and Stoneking ( ref .  4) ver i fy  
t h a t  t he r e  i s  a  range of impact ve loci ty  between t h e  veloci ty  with a  
very small probabi l i ty  of f a i l u r e  and t he  veloci ty  with a  very small 
probabi l i ty  of surviving t he  impact (non- f  a i lu re )  . 
A s  shown i n  f igure  6, when t he  impact ve loci ty  i s  below some value 
t he r e  w i l l  be a  region of no f a i l u r e s .  A s  t he  impact ve loci ty  i s  i n -  
creased, there  i s  a  veloci ty  above which a l l  specimens w i l l  f a i l  on 
impact. That is ,  t he  probabi l i ty  of f a i l u r e  i s  100 percent. A p lo t  
of the  r a t e  of change i n  percent f a i l u r e s  a t  a  given veloci ty  (dN/dV) 
versus impact ve loci ty  i s  a l s o  shown i n  f igure  6. ~t some veloci ty  
50 percent of the  impact specimens w i l l  f a i l .  A t  t h a t  ve loci ty ,  the  
r a t e  of change i n  percent f a i l u r e s  is zero. As veloci ty  increases  
above t h e  value fo r  50 percent f a i l u r e s ,  the  r a t e  of change i n  percent 
f a i l u r e s  decreases and f a l l s  t o  zero. 

Assume t h a t  dN/dV i s  normally d i s t r i bu t ed  about the  impact ve loc i ty  with 
a  50 percent probabi l i ty  of f a i l u r e ,  The curve can then be normalized 
so  t h a t  t he  area  under t he  curve i s  equal t o  one. A t  an impact ve loci ty  
which i s  th ree  standard deviat ions (3s) l e s s  than t he  veloci ty  f o r  56,- sZ 
percent f a i l u r e s ,  t he r e  i s  a  very small probabi l i ty  of f a i l u r e .  A t  a p  -, 
impact ve loci ty  which i s  th ree  standard deviat ions (3s) grea ter  t hanza  -. + 

t h e  veloci ty  f o r  50 percent f a i l u r e s ,  t he r e  i s  almost a  100 percentL 
probabi l i ty  of f a i l u r e .  

Reference 4  provides an extensive repor t  on a  l a rge  number of sphere i m -  
pact t e s t s .  I n  one s e r i e s  of t e s t s  of one geometry, most of t he  t e s t  
v e l o c i t i e s  were i n  the region of 100 percent f a i l u r e s  (see f ig .  6). Six- 
t een  out of 19 t e s t  spheres f a i l e d  om impact. A l l  of the  1 9  spheres i m -  
pact ve loc i t i e s  were g rea te r  than the  50 percent f a i l u r e  veloci ty .  Con- 
sequently t h e  f a i l u r e  veloci ty  reported fo r  t h a t  s e t  of t e s t s  has more 
than  a  50 percent probabi l i ty  of f a i l u r e ,  

A study of the  frequency of f a i l u r e  versus veloci ty  p lo t s  f o r  each s e t  
of da ta  showed t h a t  some of the  experimental f a i l u r e  ve loc i t i e s  would 
f a l l  above and some would f a l l  below the  50 percent f a i l u r e  veloci ty .  
The cor re la t ion  equation f o r  f a i l u r e  veloci ty  i s  the  equation fo r  a  



l i n e  developed t o  f i t  t h e  experimental da ta  po in t s ,  Thus, t h e  f a i l u r e  
ve loc i ty  c o r r e l a t i o n  equat ion  w i l l  give values of f a i l u r e  v e l o c i t y  t h a t  
f a l l  near  t h e  cen te r  of t h e  p r o b a b i l i t y  d i s t r i b u t i o n ,  And t h e  co r re -  
l a t i o n  equat ion g ives  va lues  f o r  f a i l u r e  v e l o c i t y  wi th  approximately a  
50 percent  p robab i l i t y  of f a i l u r e ,  

Because of the  method of s e l e c t i o n ,  experiment a 1  f a i l u r e  v e l o c i t i e s  do 
not have a  uniform p r o b a b i l i t y  of f a i l u r e .  Var i a t ion  i n  t h e  p robab i l i t y  
of f a i l u r e  of t h e  experimental f a i l u r e  v e l o c i t y  da ta  con t r ibu tes  t o  t h e  
s c a t t e r  i n  f i g u r e  3 and i n  t h e  o ther  graphs of data.  

One objec t ive  of f u t u r e  sphere impact t e s t s  should be t o  e s t a b l i s h  sphere 
impact f a i l u r e  v e l o c i t i e s  wi th  a  uniform l e v e l  of p robab i l i t y .  The t e s t  
program may be designed t o  provide t h e  number of experimental sphere i m -  
pac t s  requi red  t o  ge t  t h e  s e l e c t e d  l e v e l  of p robab i l i t y ,  

Mater ia l s  p rope r t i e s .  - The behavior of spheres under condi t ions of impact 
deformation and f a i l u r e  a r e  dependent upon t h e  dynamic p r o p e r t i e s  of t h e  
sphere mater ia l s .  No dynamic property da ta  i s  ava i l ab le  f o r  t h e  ma te r i a l s  
used t o  f a b r i c a t e  t h e  t e s t  spheres,  Consequently some assumptions were 
necessary. 

The average dynamic p l a s t i c  flow s t r e s s  of t h e  hollow sphere ma te r i a l s  
was assumed t o  approach t h e  u l t imate  s t rength .  The u l t ima te  s t r e n g t h  
was used i n  t h e  ana lys is .  The dynamic u l t ima te  t r u e  s t r a i n  assoc ia ted  
wi th  f a i l u r e  of impact deformed spheres  was assumed t o  be t h e  u l t ima te  
t r u e  s t r a i n  obtained from s t a t i c  t e n s i l e  t e s t s  based on t h e  reduct ion  of 
area.  I n  t h e  case of Haynes Alloy No. 25, t h e  u l t imate  t r u e  s t r a i n  was 
based on t h e  reduct ion  i n  a rea  of a  s t a t i c  t e n s i l e  specimen of c a s t  ba r  
t h a t  was t e s t e d  a t  1800°F (1256"~)  ( re f .  8) s ince  t h a t  was t h e  b e s t  va lue  
ava i l ab le .  Values used f o r  u l t ima te  s t r e n g t h  and u l t imate  t r u e  s t r a i n  
fo r  SAE 4130 s t e e l  hea t  t r e a t e d  .to Rockwell C hardness of 35 (Rc35) were 
a l s o  found i n  re ference  8. Values used f o r  t i t an ium mate r i a l s  p r o p e r t i e s  
were t h e  p r e f a b r i c a t i o n  as -received values given i n  re ference  4, 

The p o s s i b i l i t y  of improving t h e  uniformity of t h e  p robab i l i t y  of f a i l u r e  
of t h e  f a i l u r e  v e l o c i t i e s  from reference  4  was inves t iga ted ,  I n  p l o t s  of 
percent f a i l e d  versus  impact ve loc i ty ,  bimodal and i n  one case t r imodal  
frequency of f a i l u r e  d i s t r i b u t i o n s  suggested t h e  presence of more than  one 
hea t  treatment.  

Simonis and Stoneking ( r e f ,  4) i n d i c a t e  t h a t  t h e  SAE 4130 hollow s t e e l  
spheres  were hea t  t r e a t e d  a f t e r  f ab r i ca t ion .  They were a u s t e n i t i z e d  and 
t h e n  tempered t o  a  hardness of Rc35, No range of acceptable  hardness was 
ind ica ted ,  The spheres were repor ted  as commercially manufactured, When 
a  manufacturing shop works t o  a  s p e c i f i c a t i o n  of "temper t o  Rc 3%" t h i s  
may be i n t e r p r e t e d  a s  the  minimum acceptable  hardness,  I n  such a  case,  i f  
t h e  hardness measured a f t e r  a  tempering cyc l e  were R,40, t h a t  hardness would 
meet t h e  required s p e c i f i c a t i o n ,  



Thus, the  study of the  experimental hollow sphere impact data of Simonis 
and Stoneking ( re f .  4) suggests t h a t  va r ia t ions  occurred i n  the temper 
hardness and hence i n  the  s t reng th  l e v e l s  of s e t s  of manufactured hollow 
s t e e l  t e s t  spheres. Variat ion i n  the  s t rengths  of sphere mater ia ls  would 
contr ibute  t o  the  observed var ia t ions  i n  t he  experiment a l l y  measured 
sphere impact f a i l u r e  ve loc i t i e s .  

Cracks, l ap s ,  voids,  and inclusions r e su l t i ng  from fabr ica t ion  processes 
may cause high l o c a l  s t r e s s e s  t o  occur during impact and reduce t h e  
f a i l u r e  veloci ty .  These f ac to r s  can be eliminated and/or minimized by 
ca re fu l  inspect ion  procedures during and following fabr ica t ion .  

Equation (7) s t a t e s  t h a t  the  f a i l u r e  veloci ty  i s  d i r ec t l y  proport ional  
t o  t he  square root  of o ~ .  The s t r e s s ,  o, i s  a s t r e s s  g rea te r  than  t he  
y i e l d  s t reng th  f o r  the  sphere mater ia l  where p l a s t i c  flow i n i t i a t e s .  
It i s  t he  average t r u e  s t r e s s  on the  dynamic t r ue - s t r e s s  versus t r ue -  
s t r a i n  diagram between the  y i e ld  s t reng th  and t he  rupture s trength.  
This s t r e s s  when mul t ip l ied  by the  u l t imate  t r u e  s t r a i n ,  E ,  gives the  
spec i f i c  energy fo r  t he  mater ia l  i n  in.-lbf/lbm or Ndkg. The spec i f i c  
energy i s  the  amount of energy per u n i t  volume absorbed by the  mater ia l  
from i n i t i a l  loading t o  rupture. It i s  a l s o  equal t o  the  area under t he  
dynamic t r ue - s t r e s s  versus t r ue - s t r a i n  diagram. Thus, the  f a i l u r e  
veloci ty  is  d i r e c t l y  proport ional  t o  the  square root  of the  spec i f i c  energy 
fo r  the  material .  

Application of Correlat ion Equations 

The cor re la t ion  equations presented i n  t h i s  repor t  a re  s t r i c t l y  applicable 
only within t he  ranges of t h e  var iables  i n  the  hollow sphere impact da ta  
l i s t e d  i n  Table I. The l a r g e s t  sphere l i s t e d  i n  the  t ab l e  i s  two in. (5.1 cm) 
i n  diameter. Application of the  equations t o  l a rge r  diameter spheres would 
cons t i tu te  an extrapolat ion,  Since t he  equations may not be applicable 
outside t h e  ranges of the  parameters i n  the  experimental t e s t  da ta  used i n  
t he  analys is ,  information obtained by ext rapola t ion  of the  cor re la t ion  
equations must be used with caution. 

A sphere with a  mean radius  t o  thickness r a t i o  of 2.90 i s  a thick-walled 
sphere. Although more data with known mater ia l  proper t ies  and with f a i l u r e  
ve loc i t i e s  a t  a  de f i n i t e  l e v e l  of probabi l i ty  are des i rable ,  t he  ava i l -  
able sphere impact t e s t  da ta  does cover the  range from thin-walled t o  
thick-walled spheres. Limited by the  r e l i a b i l i t y  of the  avai lable  t e s t  
data,  t he  cor re la t ion  equations apply over the  range of mean rad ius  t o  
thickness r a t i o s  represented i n  t he  t e s t  data. 

The f a i l u r e  deformation t o  mean radius  r a t i o  must a l s o  be r e s t r i c t e d  t o  
the  range of the  t e s t  data. A t  a  value of 1.0 the  impacted sphere would 
be deformed t o  t he  shape of a  hemisphere, This would cons t i tu te  an 
ext rapola t ion  since the  l a rge s t  experimental value fo r  the  r a t i o  i s  0.61. 



For p r a c t i c a l  purposes, a containment vesse l  w i l l  contain numerous 
s t r u c t u r a l  components t h a t  w i l l  l i m i t  the  amount of deformation 
physical ly possible.  After the  impact, a containment vesse l  must a l s o  
have s t reng th  t o  r e t a i n  radioact ive gases and pressures from t h e  a f t e r -  
heat and melt-down of the  reactor .  A containment vesse l  capable of 
surviving severe damage i s  very desirable,  The impact deformation 
should be kept small t o  preserve the  post-impact s t r eng th  of t he  contain- 
ment vesse l ,  

I n  reference 3 it was pointed out t h a t  doubling t he  mean radius  t o  
thickness r a t i o  r e su l t ed  i n  a small (6 percent) increase i n  t he  defor- 
mation t o  mean rad ius  r a t i o  when the  parameters were held constant.  
This observation i s  based on t he  small exponent on the  r a t i o  R/h i n  
equation (4). 

I n  con t ras t ,  the  f a i l u r e  deformation t o  mean radius  r a t i o  given by 
equation (8) i s  a r e l a t i ve ly  s t rong function of t h e  R/h r a t i o ,  Equation 
(7) shows t h a t  t h e  f a i l u r e  veloci ty ,  V f ,  i s  a l s o  strongly dependent on 
t h e  R/h r a t i o .  

Thus, f o r  a given material ,  doubling the  R/h r a t i o  of a hollow sphere 
r e s u l t s  i n  only a 6 percent increase i n  t he  deformation t o  mean radius  
r a t i o  a t  ve loc i t i e s  below the  f a i l u r e  veloci ty ,  but r e s u l t s  i n  an i n -  
crease i n  t h e  f a i l u r e  deformation t o  mean radius  r a t i o  by 56 percent ,  
and an increase i n  the  f a i l u r e  veloci ty  by 47 percent. 

Multilayer spheres appear t o  have advantages over s ingle  l ayer  spheres, 
Consider the  impact behavior of two thin-walled spheres. The spheres 
have the  same outside diameter, the  same t o t a l  wal l  thickness,  and a re  
fabr ica ted  from the  same material.  The f i r s t  has a s o l i d  wall.  The 
second has a wall  comprised of two layers ,  

The two spheres are  t e s t e d  a t  t he  same impact ve loci ty ,  Each of t he  two 
spher ica l  s h e l l s  comprising t he  second sphere with i t s  double wal l  w i l l  
absorb pa r t  of i t s  own k i n e t i c  energy and deform e s sen t i a l l y  as  an in -  
d iv idual  she l l .  The mean radius  t o  thickness r a t i o  f o r  each of t he  two 
s h e l l s  comprising the  second sphere w i l l  be twice t h a t  f o r  t he  f irst  
sphere with i t s  s o l i d  wall. The deformation of the  second sphere w i l l  
be about s i x  percent grea ter  than the  impact deformation of t he  f i r s t ,  

The second sphere w i l l  have important advantages over the  first sphere. 
S t resses  and s t r a i n s  r e su l t i ng  from bending of the  walls  during impact 
w i l l  be reduced. The double layer  w i l l  can su s t a in  grea ter  deformation 
during impact without f a i l u r e ,  From the  above paragraph on doubling t he  
R/h r a t i o  we f ind  t h a t  both the  deformation and veloci ty  a t  f a i l u r e  may 
be increased markedly. 

Thus, the  equa-tions presented suggest t h a t  a mult i layer  spher ica l  con- 
tainment vesse l  may have superior  deformation and f a i l u r e  veloci ty  cap- 
a b i l i t y  compared t o  a vesse l  with a so l i d  wall,  



Estimate o f  F a i l u r e  Velocity f o r  
a 17 Foat Diameter Coctainrnrnk Vessel 

The purpose s f  t h i s  a n a l y s i s  was t o  ob ta in  r e l a t i o n s  f o r  use i n  t h e  
p r e d i e t i o a  of t h e  f a i l u r e  deformhtion a d  f a i l u r e  v e l o c i t y  of a l a r g e  
corrtainment v e s s e l  f o r  a nacleaxl r e a c t o r ,  Applicat ion of t h e  co r re -  
l a t i o ~  e q u a t i s ~ i s  based on small  sphere impact t o  t h i s  l a r g e  containment 
v e s s e l  c o n s t i t u t e s  an ex t r apo la t ion  of two orders  of magnitude i n  
diameter, 

Mater ia l s  and geometry d a t a  a re  given i 2  f i g u r e  7 .  Deformation-radius 
r a t i o s  a r e  given as  a funct ion  of impact ve loc i ty .  T k  f a i l u r e  defor-  
mation-radius r a t i o  f o r  the  impact f a i l u r e  ve loc i ty  i s  p l o t t e d  on t h e  
graph, The ca lcu la t ed  f a i l u r e  deformation-radius r a t i o  from equat ion 
(8) i s  equal  t o  .84, which i s  g r e a t e r  than  0.61 and hence i s  outs ide  
t h e  range of t h e  expeerimental t e s t  da ta ,  

The f a i l u r e  ve loc i ty  of 900 f t / s ee  ( 2 7 4  d s e c )  shown i n  f igu re  7 i s  t h e  
value given by equat ion ( 7 ) ,  The v e s s e l  impacting a t  t h e  v e l o c i t y  w i l l  
have air!. es t imated 50 pepcent p robab i l i t y  of f a i l u r e ,  

I f  t h e  v e s s e l  ir f igu re  7 were f ab r i ca t ed  wi th  a double wa l l  t h r e e  
inches (7,62 cm) t o t  a1  t h i c k ~ ~ e s s ,  t h e  f a i l u r e  deformation-radius r a t i o  
and t h e  f a i l u r e  ve loc i ty  give9 by t h e  ccorcelation equat ions would both  
be increased  and those values would be ~ a e l l  beyond t h e  range of 
appl icabi l i ' ty  of t h e  equat locs ,  The high values suggest t h a t  such a 
v e s s e l  would s u s t a i n  eonsiderabl e def crmation from an impact v e l o c i t y  
g rea te r  than  900 f e e t  pe r  second without f a i l u r e ,  

CONCLUDING REMARKS 

The fol lowing c&anclusio.~~s a r e  based. ox t h e  dirrrensional ana lys i s  of hollow 
sphere impact t e s t  f a i l u r e  da ta  obtained from published references .  
F a i l u r e  v e l o c i t y  f o r  a given sphere geovetry and m a t e r i a l  was s e l e c t e d  
from t h e  l i m i t e d   umber of t e s t  data p a i n t s  as t h e  lowest impact t e s t  
ve loc i ty  t h a t  r e s a l t e d  i n  f a i l u r e  of the  sphere,  Fa i lu re  was defined by 
t h e  presence of a through-crack i r ,  t h e  wal l  of the impacted sphere. 

The range of t h e  da ta  i s  as  EoPlows: The f a i l u r e  ve loc i ty  va r i ed  from 
297 t o  650 f t / s ec  (91 t o  198 w'sec), Sphere geometries ranged from th ick -  
walled t o  thin-walled spheres ,  Mean rad ius  t o  th ickness  r a t i o s  of sphere 
t e s t  d a t a  va r i cd  from 2,9Q tc 28,07. Outside diameters ranged from 0,750 
t o  2,00 inches (1-91  t o  5-08  cm). Ivl3terials ~ n e l u d e d  SAE 4130 s t e e l  and 
t i t an ium spheres t e s t e d  a t  room temperarure, and Haynes Alloy No. 25 
spheres  t e s t e d  a t  1800°F (1256"~)- 



Empirical c o r r e l a t i o n  equat ions given i n  t h e  r e p o r t  can be used 
t o  p red ic t  t h e  permanent deformation and t h e  impact v e l o c i t y  which 
w i l l  cause f a i l u r e  of a  hollow sphere moving normal t o  and impacting 
on a  hard f l a t  sur face .  

Thick-walled and thin-walled sphere impact d a t a  were c o r r e l a t e d  
wi th  t h e  same equations.  

The impact deformation which r e s u l t s  i n  f a i l u r e  of t h e  sphere was 
found t o  be independent of ve loc i ty ,  densi ty  of ma te r i a l ,  and t h e  
u l t imate  s t r e n g t h  of t h e  mater ial .  

The impact deformation t o  mean rad ius  r a t i o  (6f/R) a t  f a i l u r e  was 
found t o  be a  funct ion  of mean rad ius  (R) , t h i ckness  (h) , and t h e  
u l t ima te  t r u e  s t r a i n  ( E ) .  

The hollow sphere impact f a i l u r e  ve loc i ty  i s  a  funct ion  of mean 
rad ius ,  t h i ckness ,  u l t ima te  s t r e s s  ( o ) ,  u l t ima te  t r u e  s t r a i n ,  and 
dens i ty  of t h e  sphere m a t e r i a l  ( p ) ,  

There i s  a  range of v e l o c i t i e s  between t h e  non-fa i lure  l e v e l  of 
ve loc i ty  and t h e  v e l o c i t y  f o r  100 percent  f a i l u r e .  Fa i lu re  v e l o c i t y  
must be defined by spec i fy ing  t h e  p robab i l i t y  of f a i l u r e .  F a i l u r e  
v e l o c i t i e s  t o  be compared and c o r r e l a t e d  must have t h e  same 
s p e c i f i e d  p r o b a b i l i t y  of f a i l u r e .  Hollow sphere impact t e s t  programs 
a re  r equ i red  t o  provide f a i l u r e  ve loc i ty  da ta  wi th  a  s p e c i f i e d  prob- 
a b i l i t y  of f a i l u r e .  

Dynamic p r o p e r t i e s  of ma te r i a l s  a r e  involved i n  t h e  impact defor-  
mation and f a i l u r e  of hollow spheres.  Experimental h igh  s-L;,ir; 
r a t e  t e s t  da ta  i s  needed f o r  candidate sphere mater ia l s .  Metal 
p r o p e r t i e s  r equ i red  a r e  t h e  dynamic p l a s t i c  flow s t r e s s  and t h e  
dynamic u l t ima te  t r u e  s t r a i n .  

The c o r r e l a t i o n  equat ions provide a  b a s i s  f o r  suggest ing t h a t  a  mul t i -  
l a y e r  containment v e s s e l  may have supe r io r  impact s t r e n g t h  compared 
t o  a  corresponding v e s s e l  with a  s o l i d  wal l ,  Experimental t e s t s  a r e  
requi red  t o  i n v e s t i g a t e  t h i s  p o s s i b i l i t y ,  



9 ,  The c o r r e l a t i o n  equa t io r~s  provided an es t imate  of Vf = 900 
f t / s e c  f o r  the  f a i l u r e  ve loc i ty  and 6f/R = .84 f o r  t h e  impact 
def ormatien a t  f a i l u r e  f o r  a  l a r g e  th in-wal led  containment 
vessel  f o r  a  nuclear  r eac to r .  

10. In fo rma t ionfo r the  containment v e s s e l  obtained by ex t rapo la t ion  
of t h e  c o r r e l a t i o n  equat ions must be used wi th  caut ion  s ince  t h e  
equat ions may not be appl icable  outs ide  t h e  ranges of t h e  parameters 
i n  t h e  experimental t e s t  da ta  used i n  t h e  ana lys is .  

11. Impact t e s t s  of l a r g e  diameter hollow spheres a r e  requi red  t o  
i n v e s t i g a t e  s i z e  e f f e c t s  on t h e  impact f a i l u r e  of spheres s e v e r a l  
f e e t  i n  diameter compared t o  t h e  behavior of t h e  small  diameter 
spheres  f o r  which experimental t e s t  da ta  i s  ava i lab le .  

1 2 .  If l a r g e  hollow sphere impact t e s t s  da ta  c o r r e l a t e s  with t h e  small  
sphere impact data ,  a d d i t i o n a l  small  sphere impact t e s t s  could pro- 
vide experimental f a i l u r e  v e l o c i t i e s  wi th  an equal  p robab i l i t y  of 
f a i l u r e .  The new d a t a  could then  be used t o  improve t h e  sphere 
impact deformation and f a i l u r e  v e l o c i t y  c o r r e l a t i o n s  f o r  a p p l i c a t i o n  
t o  the design of l a r g e  containment vesse l s .  
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TABLE I 

Impact  F a i l u r e  T e s t  D a t a  f o r  S p h e r i c a l  S h e l l s  

Sym- Mate- -- 0. D. 
b o l  r i a l a  -- 

I .D .  Wall R/h F a i l u r e  D e f l e c t i o n  symbolb - 
T h i c k n e s s  V e l o c i t y  6 

h 
- 

Vc 
-. 

i n .  - cm, - i n .  - cm. - i n .  - cm, - 
I - 

f p s  d s e c  - - i n .  cm. - 

65 0  1 9 8  - 2 0 3  - 0 5 2  4 

389 11 9  . I 0 7  - 0 2 7  4 

45 4  1 3  8  - 1 8 3  - 0 4 6  4 

297 9 1  - 1 3 4  , 0 3 4  id- 

358 109 .118 ,030  4 

3  07 9 4  .123 - 0 3 1  4 

346  105  . l o 7  -027  4 

3  07 94  -072  - 0 1 8  4 

350 107 .082 , 0 2 1  4 

397 1 2 1  ,082 . 0 2 1  4 

390 119 - 5 9 8  1 , 5 1 9  6 

a. M a t e r i a l s  b. Source  o f  T e s t  D a t a  

1, SAE 4130 S t e e l  
(Refe rence  No.) 

2. T i t a n i u m  
3 .  Haynes A l l o y  No, 25 



TABLE I1 

Sphere M a t e r i a l s  

M a t e r i a l  

SAE 4130 
S t e e l  

T i t  anium 

Haynes Al loy 
No. 25 

Ul t imate  Ul t imate  U l t ima t e  
 strength,^ S t r e n  t h  o True Dens i ty ,p  D e n s i z , ~  

KS I - s t a , ~  l b / i n j  Remarks 

Data f o r  0.040 i n c h  
(1.02 mm) s h e e t  1570°F 
(1128°K) OQ, 1000°F 
(811°K) - 2 h r ,  R, 
33-35, Ref. 8. 

Ref. 4, BHN 221, a s  
r e ce ived .  

Refs.  6 and 8. Aged 
500 hrs. a t  1500°F 
(108g°K), t e s t e d  a t  
1800°F ( 1 2 5 6 " ~ )  . 













F i w s  6. - Velation of Per aent Failures ar 
a Function of Impact Velocity. 






