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ABSTRACT

Correlation equations were obtained for published experimental small
hollow sphere-impact data. The failure deformation (&) as a function
of mean radius (R), thickness (h), and ultimate strain (e) is given by

1
5¢/R = 0.100 (R/h)0-O% ez

The failure velocity (Vf) as a function of mean radius, thickness,
ultimate stress (o), density (p), and ultimate strain (€¢) is given by

1

Ve = 0.15 (R/h)

Sphere materials included SAE 4130 steel, titanium, and Haynes Alloy
No. 25. Diameters varied from 0.750 to 2.000 inches (1.91 to 5.08 cm).
Failure velocities varied from 297 to 650 ft/sec (91 to 198 m/sec).

The correlation equations were used to calculate the failure velocity
and deformation of a 17 ft. (5.18 m) diameter containment vessel for a
nuclear reactor. The deformation at failure was 7.0 ft. (2.13 m) at an
impact velocity of 900 ft/sec (274 m/sec).

The equations indicate that a multilayer spherical containment vessel
probably would have greater impact strength than a corresponding single
wall vessel,
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SUMMARY

Published experimental sphere impact data were analyzed to determine the
effects of sphere radius, thickness, material, and impact velocity on the
impact deformation and failure of hollow spherical shells moving normal
to and impacting on a hard flat surface. The information is needed to
predict the effect of impact on a nuclear reactor containment vessel 10
to 20 feet (3.05 to 6.10 m) in diameter with a wall thickness of about 3
inches (7.62 cm). A method was needed for extrapolating from the small
hollow sphere impact test data to predict the effects of impact on large
spherical containment vessels.

Dimensional analysis was used to obtain correlating equations for small
sphere data. Outside diameters of spheres were 0.750 to 2.000 inches
(1.91 to 5.08 cm). Deformation was defined by the radial distance the
impact surface of the sphere was permanently deflected toward the center
of the sphere. Failure velocities varied from 297 to 650 ft/sec (91 to
198 m/sec). Spheres were fabricated from SAE 4130 steel, titanium, and
Haynes Alloy No. 25.

One equation states that the failure deformation-to-radius ratio (8./R)
increases with the radius-to-thickness ratio (R/h), and with the ultimate
strain (€).

3] 0.64
f = R z
= 0.109 (h) € (L)

Another equation shows that the failure velocity (V§) increases with the
radius-~to-thickness ratio, with the ultimate stress-to-density ratio (cr/p)9
and with the ultimate strain.

e (2)

ES
2

Ve = 0.163 ®&0° "0 (o/p)
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The standard deviation of the experimental failure velocities from values
given by the correlating equation is 20 percent. Thus, 68 percent of the
experimental failure velocities would be expected to fall within a band
of 20 percent from correlation equation values.

The equations show that both the failure deformation and the failure
velocity are strongly dependent on the mean radius to thickness ratio.
Variation of either the mean radius or the thickness to give a higher value
for the ratio will increase both the failure velocity and the deformation
at failure. The correlation equations also indicate that a multilayer
containment vessel should have a significantly higher failure velocity than
a single layer containment vessel of the same total thickness because thin
wall vessels yield a higher failure velocity.

These equations were used to calculate the failure velocity and deforma-
tion of a 17 ft. (5.18 m) diameter, 3 in. (7.62 cm) wall, Type 304 stain-
less steel containment vessel for a nuclear reactor. The deformation for
failure was 7.0 ft. (2.13 m) at an impact velocity of 900 ft/sec (274
m/sec) .

Hollow sphere impact tests are needed to verify the correlation equations.
The tests should be designed to investigate the effect of larger diameters
and the effect of multilayer wall spherical shells on impact deformation
and failure.

INTRODUCTION

Safety is a primary requirement in the design of a nuclear airplane. The

importance of safety with regard to nuclear aircraft has been discussed in
reference 1. Release of radiocactive fission products to the atmosphere in
the event of a crash landing must be prevented. One method of preventing

fission product release is to enclose the reactor in a containment vessel.
Valve closures would be provided to completely seal the containment vessel
in an emergency such as a crash landing of the airplane.

The radioactive contents of the containment vessel must remain sealed in
the vessel even though the vessel is deformed by an impact. Afterheat
from the nuclear reactor will heat the deformed containment vessel and
raise internal vapor pressure. Then in the heated, deformed condition,
pressure generated inside the containment vessel must be contained.

The containment vessel for an aircraft nuclear reactor will be a relatively
large sphere approximately 10 to 20 feet (3.05 to 6.10 m) in diameter, with
a wall thickness of approximately 3 inches (7.62 cm). The containment
vessel material must have high strength to resist impact deformation and
must also have sufficient ductility to allow for impact deformation with-
out rupture.




Impact energy absorbers may be provided to absorb part of the impact
energy of the containment vessel package. The amount of energy ab-
sorbers that can be designed to protect the containment vessel (as
described in reference 2) is limited by the weight of the energy ab-
sorbers. Complete protection of the containment vessel would require
so much energy absorber that the added weight may be too great for an
airborne system. Thus, part of the kinetic energy of the containment
vessel package must be absorbed in the deformation of the containment
vessel.

The relations for impact deformation with and without rupture must be
known for large spheres in order to design the containment vessel to
withstand impact without rupture. In reference 3, small sphere defor-
mation data was exirapolated to large spheres by correlating data from
small hollow spheres that deformed during impact without rupture. The "
purpose of this report is to correlate small sphere impact data at rup-
ture and to predict the deformation and impact velocity at failure for
large hollow spheres such as a containment vessel.

The impact of spherical shells is a subject of relatively recent theo-
retical and experimental interest. Simonis and Stoneking (ref. 4) pre-
sented their work on the impact of spherical shells in December 1966.
Haskell (ref. 5) presented a failure criterion for spherical shells in
December 1968. He used the experimental sphere impact data reported by
Simonis and Stoneking in reference Y.

An attempt was made to apply the Haskell criterion (vref. 5) for the im-
pact failure of spherical shells to a large containment vessel. The
failure velocity obtained was unreasonably low. The criterion was based
on sphere impact tests of Simonis and Stoneking using spheres with di-
ameters of 0.750 to 1.250 inches (1.91 to 3.18 cm). Haskell's empirical
criterion could not be extrapolated for use in the design of a large
containment vessel.

Reference 6 gives recent test data on the impact of spherical shells.

The 4.00 inch (10.16 cm) diameter spheres tested are the largest diameter
hollow spheres for which test data was available. Failures occurred
during 2 inch (5.08 cm) diameter sphere impact tests. None of the 4 inch
(10.16 cm) diameter spheres failed in the tests.

Johnson (ref. 7) obtained solutions for the impact of an elastic spherical
shell on an elastic surface. His solutions as well as those of Simonis

and Stoneking make the assumption of small deflections. Analyses based

on small deflection theory cannot describe the impact of spheres under-
going large permanent deformations. Consequently, no available theoretical
analysis was applicable to the problem of calculating failure velocity or
failure deformation.




SYMBOLS

a Constant
b Constant
c Constant
h Wall Thickness, in., cm
k Constant
kt Constant
m Constant
T Constant
N ‘ Percent Failures at a Given Velocity
R Mean Radius of Hollow Sphere, in., cm
Y Impact Veloicty, ft/sec, m/sec
€ Ultimate True Strain, in./in., cm/cm
3 Deformation, in.., cm
0 Density of Sphere Material, lbm/inB, g/em3
o Ultimate Stress, psi, MN/m2
] Angle
Subscript
f Failure Due to Rupture

ANALYSIS

In the absence of an analytical or empirical method of predicting the
failure velocity or deformation of large hollow spheres, the available .
experimental hollow sphere impact data (refs. U4 and 6) were studied
using dimensional analysis.




Dimensional Analysis

R Mean Radius of Hollow Sphere L

h Wall Thickness L

0 Density of Sphere Material M L'3

o Ultimate Stress M L_l 'I‘"2
Ve Failure Velocity L ot

€ Ultimate True Strain

Sf Deformation, Radial Deflection of L

Impact Surface at Failure

There are seven variables (R, h, p, 0, Vg, €, df) and three dimensions
(L, M, T). Dimensional analysis yields four dimensionless pi ratios.

1 o 2 R
3 h 13

The deformation-radius ratioc (8f/R) can bhe expressed as a function of the
other three ratios.
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The ratio, 8/R, is a measure of the severity of the deformation of the
hollow sphere. It is proportional to the angle @ between a radial line
drawn perpendicular to the flattened impact surface and a radius drawn
to the intersection of the undeformed surface and the flattened surface
of the sphere (see fig. 1). This angle is related to the severity of
the bending or shear deformation at the periphery of the Tlattened sur-
face.

Equation (4) was presented in reference 3. This is a general equation
relating deformation and impact velocity below the failure velocity.
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_ o) (R
8/R 0.67 ( . ) (h) ()

Symbols for deformation and velocity without the subscript f refer to
velocities and deformations from spheres tested without failure. The
equation was obtained using dimensional analysis. It agrees with the
conclusion of Simonis and Stoneking (ref. 4) that the change in diameter
of impacted spheres was a linear function of the impact velocity.

The failure velocity used in this analysis is defined as the lowest test
velocity that resulted in a through-crack in the wall of the test sphere.
At high strain rates, the average dynamic stress associated with plastic
flow of the sphere material is assumed to approach the ultimate strength
of the material. Therefore, the ultimate strength of sphere materials
is used in this analysis.

Figure 1 is a plot of equation (4) using the data from tables 1 and 2
for failed spheres. The solid line is a graph of the equation. The

fit of the experimental deformation-radius ratios for the failed spheres
to the empirical equation is essentially similar to the fit of experi-
mental data from unfailed hollow sphere impacts shown in reference 3.
There is no evidence in figure 1 to show that the deformation-radius
ratios obtained from failed spheres was affected by the cracks in the
walls of the spheres. Consequently the range of application of equation
(4) can be extended to include deformation-radius ratios for sphere im-
pacts at failure velocities.

Equation (3) differs from equation (%) in that equation (4) is a general
deformation correlation equation whereas equation (3) is an equation for
that particular deformation-radius ratio at which failure will occur.
The same variables are present in both relations except for the ultimate
strain.

Equation (3) has three exponents to be evaluated. At the failure velocity,
the deformation-radius ratio is the same for both equations (3) and (4).
Equating the two equations eliminates the failure deformation-radius ratio
yielding an equation in three dimensionless ratios. This equation may be
solved for (pV§</c)2. Substitution of k' for the numerical coefficient
and replacing the algebraic exponents with m and n gives equation (5).

2
pr)
(—
The ultimate strain has the same value for all specimens from a given
material. Consequently the right side of equation (5) becomes a constant
times the exponential function of R/h for a given material. The log-log
plot of equation (5) provides a family of lines having a slope equal to m.

Data from each set of specimens having a fixed value for ultimate strain
will plot as one line on the graph.

Moje

1

k'(%)m e | (5)




There are 11 data points. Three materials are represented. However,
there is only one data point per material for two of the materials
tested. A line was drawn through the nine data points for SAE 4130
specimens in a graph of equation (5). Parallel lines were drawn
through the Haynes Alloy No. 25 and the Titanium data points. Data
for constant values of R/h were obtained from the graph. A graph of
equation (5) with R/h constant was plotted to obtain a value for n.
The slope (n) of the line through the three noncollinear points could
not be evaluated precisely but the value of n = 0.5 was chosen for a
reasonable data fit. This value improved the fit of the titanium and
the Haynes Alloy sphere impact data points on graphs of data.

1 1
Figure 2 shows a graph of R/h versus (p/09)% Vp/e®.1 The solid line is
the least squares regression of R/h on (p/0)2 Vg/e®. Equation (6) is
the equation of the solid line in figure 2. This equation provides
values for k' and m in equation (5).

N ‘
s V .560
e . (B)
(0) = 0.163 |3 (6)
Equation (6) may be sclved for V-
560 5
_ RY oe\
v = ‘0,163(5—) (Tf) 7)

Substitution for V. from equation (7) into equation (4) yields the
equation for the failure deformation-radius ratio.

0.64 1
L = 0.109 (%) 2 (8)

An equation for the failure deformation-thickness ratio is obtained by
multiplying equation (8) by R/h.

R A
=+ = 0,109(5) 2 (9)

Figures 3, Y4, and 5 are graphs of equations (7), (8), and (9).




Equation (8) corresponds to equation (3). The constant k in equation
(3) has the value 0,.,109. The kinetic energy to ultimate stress ratio
dropped out when the expression for failure velocity was substituted
into the general deformation-radius equation (4). Hence, the exponent
a = 0. The exponent b = 0.64. And the exponent c = 0.50.

RESULTS

Hollow sphere impact failure test data obtained from published references
was analyzed using dimensional analysis. Failure velocity for a given
sphere geometry and material was selected from the impact test data as
the lowest impact test velocity that resulted in failure of the sphere.
Failure was defined by the presence of a through-crack in the wall of
the impacted sphere.

The range of the failed sphere data is as follows: The failure velocity
varied from 297 to 650 feet per second (91 to 198 m/sec). Sphere
geometries ranged from thick-walled to thin-walled spheres. Mean radius
to thickness ratios of sphere test data varied from 2.9 to 28.1. Out-
side diameters ranged from 0.750 to 2.00 inches (1.91 to 5.08 cm).
Materials included SAE 4130 steel and titanium spheres tested at room
temperature, and Haynes Alloy No. 25 spheres tested at 1800°F (1256°K).

Empirical correlation equations presented can be used to predict the
permanent deformation and the impact velocity which will cause failure
of a hollow sphere moving normal to and impacting on a hard flat surface.

The general hollow sphere impact deformation equation presented in
reference 3 was found to be applicable to hollow sphere impact failure
test data. The ratio of deformation at fasilure to sphere radius or
thickness was found to be independent of impact velocity, density of
the sphere material, and the ultimate stress parameters. As shown by
equations (8) and (9), both ratios correlated with functions only of
geometry and ultimate strain.

Equation (7), an empirical correlation equation for failure velocity,
was found to be a function of geometry and materials properties. The
equation presented states that the failure velocity is proportional to
the mean radius-to-thickness ratio to the 0.56 power, to the square
root of the ultimate stress times the ultimate true strain, and is in-
versely proportional to the square root of the density of the sphere
material.

The standard deviation of the experimental failure velocities from
correlation equation (equation 7) values is 20 percent. Thus assuming

a normal distribution due to random data scatter, 68 percent of the
experimental hollow sphere impact failure velocities would be expected

to fall within a band of 20 percent from the correlation eguation values.




DISCUSSION OF RESULTS

This section of the report includes a discussion of the correlation
equations and the fit of the experimental data. Sources of variation
of the data points from the correlation include the method of deter-
mnugthefmbmevdpmiyamiﬂm(mmmmmntvm&ﬂum:mimepmm-
ability of failure associated with each of the data p01nts,'

Another source of variation is the uncertainty or lack of information
concerning the dynamic properties of the sphere materials. The
specific energy of a material is equal to the area under the dynamic
true-stress versus true-strain diagram. This property is an important
parameter of the impact failure velocity. ‘

Limitations of the correlation equations are discussed. Effects of
variation of the parameters are interpreted to suggest that a hollow
sphere with a multilayer wall would have a superior impact strength.

Finally, application of the correlation equations to the impact of a
large spherical containment vessel provided evidence that such a vessel
can sustain considerable deformation at relatively high velocities with-
out failurve.

Correlation Equations

Figures 3 to 5 are graphs of the failure deformation and failure velocity
correlation equations (7) to (9). The solid lines are graphs of the
equations., The dashed lines define ranges of * 30 percent based on the
ordinate functions. In figure 3 the standard deviation (s) is given as
20 percent. Hence the dashed lines define a band of * 1.5 standard de-
viations. Eighty-seven percent of the experimentally determined failure
velocities would be expected to fall within the region defined by the
dashed lines.

Each of the graphs shows scattering of the experimental data about the
solid correlation line. The failure deformation to thickness ratio in
figure 5 has the greatest range of variation of the 11 experimental data
points. This graph verifies that the correlation equation is representa-
tive of the failure deformation behavior of the experimental sphere impact
test data.

The scatter of the data points in figures 3 and Y4 suggests that there
might be some sources of variation other than the random varlatlon of the
variables in the correlation equations.
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Sources of Variation of Experimental Data

Important sources of variation of the experimental data include the
procedure for the determination of the failure velocity and the methods
for controlling and determining materials properties.

Determining the failure velocity.- The procedure for determining the
failure velocity was an important source of variation in the experi-
mental failure velocity data. The lowest impact test velocity that
resulted in a through-crack in the wall of the sphere of a given
geometry and material was selected as the failure velocity.

The experimental impact tests of Simonis and Stoneking (ref. W) verify
that there is a range of impact velocity between the velocity with a
very small probablllty of failure and the velocity with a very small
probability of surviving the impact (non-failure).

As shown in figure 6, when the impact velocity is below some value
there will be a region of no failures. As the impact velocity is in-
creased, there is a velocity above which all specimens will fail on
impact. That is, the probability of failure is 100 percent. A plot
of the rate of change in percent failures at a given velocity (dN/dV)
versus impact velocity is also shown in figure 6. At some velocity

50 percent of the impact specimens will fail. At that velocity, the
rate of change in percent failures is zero., As velocity increases
above the value for 50 percent failures, the rate of change in percent
failures decreases and falls to zero.

Assume that dN/dV is mormally distributed about the impact velocity with
a 50 percent probability of failure. The curve can then be normalized
so that the area under the curve is equal to one. At an impact velocity
which is three standard deviations (3s) less than the velocity for 56~ .
percent failures, there is a very small probability of failure. At am -
impact velocity which is three standard deviations (3s) greater than: '
the velocity for 50 percent failures, there is almost a 100 percent"
probability of failure.

Reference U provides an extensive report on a large number of sphere im-
pact tests. In one series of tests of one geometry, most of the test
velocities were in the region of 100 percent failures (see fig. 6). Six-
teen out of 19 test spheres failed om impact. All of the 19 spheres im-
pact velocities were greater than the 50 percent failure velocity. Con-
sequently the failure velocity reported for that set of tests has more
than a 50 percent probability of failure.

A study of the frequency of failure versus velocity plots for each set
of data showed that some of the experimental failure velocities would

fall above and some would fall below the 50 percent failure velocity.

The correlation equation for failure velocity is the equation for a
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line developed to fit the experimental data points. Thus, the failure
velocity correlation equation will give values of failure velocity that
fall near the center of the probability distribution. And the corre-
lation equation gives values for failure velocity with approximately a
50 percent probability of failure.

Because of the method of selection, experimental failure velocities do
not have a uniform probability of failure. Variation in the probability
of failure of the experimental failure velocity data contributes to the
scatter in figure 3 and in the other graphs of data.

One objective of future sphere impact tests should be to establish sphere
impact failure velocities with a uniform level of probability. The test
program may be designed to provide the number of experimental sphere im-
pacts required to get the selected level of probability.

Materials properties.- The behavior of spheres under conditions of impact
deformation and failure are dependent upon the dynamic properties of the
sphere materials. No dynamic property data is available for the materials
used to fabricate the test spheres. Consequently some assumptions were
necessary.

The average dynamic plastic flow stress of the hollow sphere materials
was assumed to approach the ultimate strength. The ultimate strength
was used in the analysis. The dynamic ultimate true strain associated
with failure of impact deformed spheres was assumed to be the ultimate
true strain obtained from static tensile tests based on the reduction of
area. In the case of Haynes Alloy No. 25, the ultimate true strain was
based on the reduction in area of a static tensile specimen of cast bar
that was tested at 1800°F (1256°K) (ref. 8) since that was the best value
available. Values used for ultimate strength and ultimate true strain
for SAE 4130 steel heat treated to Rockwell C hardness of 35 (Ro35) were
also found in reference 8. Values used for titanium materials properties
were the prefabrication as-received values given in reference H.

The possibility of improving the uniformity of the probability of failure
of the failure velocities from reference 4 was investigated. In plots of
percent failed versus impact velocity, bimodal and in one case trimodal
frequency of failure distributions suggested the presence of more than one
heat treatment.

Simonis and Stoneking (ref. W) indicate that the SAE 4130 hollow steel
spheres were heat treated after fabrication. They were austenitized and
then tempered to a hardness of RC35, No range of acceptable hardness was
indicated. The spheres were reported as commercially manufactured. When

a manufacturing shop works to a specification of "temper to Ry 35" this

may be interpreted as the minimum acceptable hardness. In such a case, if
the hardness measured after a tempering cycle were Ro40, that hardness would
meet the required specification.
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Thus, the study of the experimental hollow sphere impact data of Simonis
and Stoneking (ref. H) suggests that variations occurred in the temper
hardness and hence in the strength levels of sets of manufactured hollow
steel test spheres. Variation in the strengths of sphere materials would
contribute to the observed variations in the experimentally measured
sphere impact failure velocities.

Cracks, laps, voids, and inclusions resulting from fabrication processes
may cause high local stresses to occur during impact and reduce the
failure velocity. These factors can be eliminated and/or minimized by
careful inspection procedures during and following fabrication.

Equation (7) states that the failure velocity is directly proportional
to the square root of oe. The stress, 0, 1s a stress greater than the
yield strength for the sphere material where plastic flow initiates.

It is the average true stress on the dynamic true-stress versus true-
strain diagram between the yield strength and the rupture strength.

This stress when multiplied by the ultimate true strain, ¢, gives the
specific energy for the material in in.-1bf/1bm or Nm/kg. The specific
energy is the amount of energy per unit volume absorbed by the material
from initial loading to rupture. It is also equal to the area under the
dynamic true-stress versus true-strain diagram. Thus, the failure
velocity is directly proportional to the square root of the specific energy
for the material.

Application of Correlation LEguations

The correlation equations presented in this report are strictly applicable
only within the ranges of the variables in the hollow sphere impact data
listed in Table I. The largest sphere listed in the table is twoin. (5.1 cm)
in diameter. Application of the equations to larger diameter spheres would
constitute an extrapolation. Since the equations may not be applicable
outside the ranges of the parameters in the experimental test data used in
the analysis, information obtained by extrapolation of the correlation
equations must be used with caution.

A sphere with a mean radius to thickness ratio of 2.90 is a thick-walled
sphere. Although more data with known material properties and with failure
velocities at a definite level of probability are desirable, the avail-
able sphere impact test data does cover the range from thin-walled to
thick-walled spheres. Limited by the reliability of the available test
data, the correlation equations apply over the range of mean radius to
thickness ratios represented in the test data.

The failure deformation to mean radius ratio must also be restricted to
the range of the test data. At a value of 1.0 the impacted sphere would
be deformed to the shape of a hemisphere. This would constitute an
extrapolation since the largest experimental value for the ratio is 0.61.
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For practical purposes, a containment vessel will contain numerous
structural components that will limit the amount of deformation
physically possible. After the impact, a containment vessel must also
have strength to retain radiocactive gases and pressures from the after-
heat and melt-down of the reactor. A containment vessel capable of
surviving severe damage is very desirable. The impact deformation
should be kept small to preserve the post-impact strength of the contain-
ment vessel.

In reference 3 it was pointed out that doubling the mean radius to
thickness ratio resulted in a small (6 percent) increase in the defor-
mation to mean radius ratio when the parameters were held constant.
This observation is based on the small exponent on the ratio R/h in
equation (4).

In contrast, the failure deformation to mean radius ratio given by
equation (8) is a relatively strong function of the R/h ratio. Equation
(7) shows that the failure velocity, Vg, is also strongly dependent on
the R/h ratio.

Thus, for a given material, doubling the R/h ratio of a hollow sphere
results in only a 6 percent increase in the deformation to mean radius
ratio at velocities below the failure velocity, but results in an in-
crease in the failure deformation to mean radius ratio by 56 percent,
and an increase in the failure velocity by U7 percent.

Multilayer spheres appear to have advantages over single layer spheres.
Consider the impact behavior of two thin-walled spheres. The spheres
have the same outside diameter, the same total wall thickness, and are
fabricated from the same material. The first has a solid wall. The
second has a wall comprised of two layers. o

The two spheres are tested at the same impact velocity. Each of the two
spherical shells comprising the second sphere with its double wall will
absorb part of its own kinetic energy and deform essentially as an in-
dividual shell. The mean radius to thickness ratio for each of the two
shells comprising the second sphere will be twice that for the first
sphere with its solid wall. The deformation of the second sphere will .
be about six percent greater than the impact deformation of the first.

The second sphere will have important advantages over the first sphere.
Stresses and strains resulting from bending of the walls during impact
will be reduced. The double layer will can sustain greater deformation
during impact without failure. From the above paragraph on doubling the
R/h ratio we find that both the deformation and velocity at failure may
be increased markedly.

Thus, the equations presented suggest that a multilayer spherical con-
tainment vessel may have superior deformation and failure velocity cap-
ability compared to a vessel with a solid wall.
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Estimate of Failure Velocity for
a 17 Yoot Diameter Conmtainment Vessel

The purpose of this analysis was to obtain relations for use in the
prediction of the failure deformation and failure velocity of a large
containment vessel for a nuclear reactor. Application of the corre-
lation equations based on small sphere impact to this large containment
vessel constitutes an extrapolation of two orders of magnitude in
diameter.

Materials and geometry data are given in figure 7. Deformation-radius
ratios are given as a function of impact velocity. The failure defor-
mation-radius ratio for the impact failure velocity is plotted on the
graph. The calculated failure deformation-radius ratio from equation
(8) is equal to .84, which is greater than 0.6l and hence is outside
the range of the expeerimental test data.

The failure velocity of 900 ft/sec (274 m/sec) shown in figure 7 is the
value given by equation (7). The vessel impacting at the velocity will
have an estimated 50 percent probability of failure.

If the vessel in figure 7 were fabricated with a double wall three
inches (7.62 cm) total thickness, the failure deformation-radius ratio
and the failure velocity given by the correlation equations would both
be increased and those values would be well beyond the range of
applicability of the eguations. The high values suggest that such a
vessel would sustain considerable deformation from an impact velocity
greater than 900 feet per second without failure. '

CONCLUDING REMARKS

The following conclusions are based on the dimensional analysis of hollow
sphere impact test failure data obtained from published references.
Failure velocity for a given spherve geometry and material was selected
from the limited mumber of test date points as the lowest impact test
velocity that resulted in failure of the sphere. TFailure was defined by
the presence of a through-crack in the wall of the impacted sphere.

The range of the data is as follows: The failure velocity varied from

297 to 650 ft/sec (91 to 198 m’sec). Sphere geometries ranged from thick-
walled to thin-walled spheres. Mean radius to thickness ratios of sphere
test data varied from 2.80 to 28.07. Outside diameters ranged from 0.750
to 2.00 inches (1.91 to 5.08 cm). Materials included SAE 4130 steel and
titanium spheres tested at room temperature, and Haynes Alloy No. 25
spheres tested at 1800°F (1256°K).
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Empirical correlation equations given in the report can be used

to predict the permanent deformation and the impact velocity which
will cause failure of a hollow sphere moving normal to and impacting
on a hard flat surface.

Thick-walled and thin-walled sphere impact data were correlated
with the same equations.

The impact deformation which results in failure of the sphere was
found to be independent of velocity, density of material, and the
ultimate strength of the material.

The impact deformation to mean radius ratio (8f/R) at failure was
found to be a function of mean radius (R), thickness (h), and the
ultimate true strain (e€).

[]I=2

€

. 64
)O

= R
' - 0.109 (E

The hollow sphere impact failure velocity is a function of mean
radius, thickness, ultimate stress (o), ultimate true strain, and
density of the sphere material (p).

There is a range of velocities between the non-failure level of
velocity and the velocity for 100 percent failure. TFailure velocity
must be defined by specifying the probability of failure. Failure
velocities to be compared and correlated must have the same

specified probability of failure. Hollow sphere impact test programs
are required to provide failure velocity data with a specified prob-
ability of failure.

Dynamic properties of materials are involved in the impact defor-
mation and failure of hollow spheres. Experimental high strain
rate test data is needed for candidate sphere materials. Metal
properties required are the dynamic plastic flow stress and the
dynamic ultimate true strain.

The correlation equations provide a basis for suggesting that a multi-
layer containment vessel may have superior impact strength compared
to a corresponding vessel with a solid wall. Experimental tests are
required to investigate this possibility.
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The correlation equations provided an estimate of V¢ = 900
ft/sec for the failure velocity and d8§/R = .84 for the impact
deformation at failure for a large thin-walled containment
vessel for a nuclear reactor.

Information for the containment vessel obtained by extrapolation

of the correlation equations must be used with caution since the
equations may not be applicable outside the ranges of the parameters
in the experimental test data used in the analysis.

Impact tests of large diameter hollow spheres are required to
investigate size effects on the impact failure of spheres several
feet in diameter compared to the behavior of the small diameter
spheres for which experimental test data is available.

If large hollow sphere impact tests data correlates with the small
sphere impact data, additional small sphere impact tests could pro-
vide experimental failure velocities with an equal probability of
failure. The new data could then be used to improve the sphere
impact deformation and failure velocity correlations for application
to the design of large containment vessels.
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TABLE I

Impact Failure Test Data for Spherical Shells

Sym- Mate- 0.D. I.D. Wall R/h Failure Deflection SymbolP
bol rial? T T Thickness T Velocity B
h Vf
in. cm. in. cm. in. T cm.. fps T m/sec in. cm.
O 1 1.000 ° 2.54 .860 2.18 .070 .178 6. 64 650 198 . 203 .052 4
O 1 .823 2.09 . 665 1.69 .079 .201 4.71 389 119 .107 .027 4
o 1 1.177 2.99 1.019 2.59 .079 .201 6.95 454y 138 .183 .0u6 b
v 1 1.250 3.18 1.050 2.67 .100 . 254 5.75 297 91 134 .034 4
0 1 1.000 2.54 .800 2.03 .100 . 254 4.50 358 109 . 118 .030 b
0 1 1.177 2.99 -.935 2.37 121 .307 4.36 307 9y .123 .031 4
4L 1 1.000 2.5 .730 1.85 .130 .330 3.35 346 105 . 107 .027 4
O 1 . 750 1.91 .550 1.40 .100 . 254 3.25 307 9y .072 .018 4
<> 1 .823 2.09 .581 1.u48 121 .307 2.90 350 107 . 082 .021 b
<> 2 1.000 2.54 .800 2.03 .100 . 254 4.50 397 121 . 082 .021 4
> 3 2.000 5.08 1.930 4.90 . 035 .089 28.07 390 119 .598 1.519 6
a. Materials b. Source of Test Data

1. SAE 4130 Steel (Reference No.)

2. Titanium
3. Haynes Alloy No. 25



Material

SAE 4130

Steel

Titanium

Haynes Alloy
No. 25

TABLE II

Sphere Materials

Ultimate Ultimate Ultimate
Strength,c Strength,o True
KSI MN/m< Strain,e
143 986 .75
99 774 .62
27 186 U3

Density,p Density.p

1b/ins  g/em’
. 283 7.83
.163 4,51
.330 9.13

Remarks

Data for 0.040 inch
(L.02 mm) sheet 1570°F
(1128°K) 0Q, 1000°F
(811°K) - 2 hr, Rg
33-35, Ref. 8.

Ref. 4, BHN 221, as
received.

Refs. 6 and 8. Aged
500 hrs. at 1500°F
(1089°K), tested at
1800°F (1256°K).
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