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TIME AND FUEL OPTIMAL CON TI  ROL FOR

GRAVITY GRADIENT SPACECRAFT*

F. C. Zach

ABSTRACT

Severe constraints on the amount of fuel avaiiable in spacecraft make it nec-

essary to develop economical policies for attitude control. A promising approach

is to combine active control by means of electric propulsion devices and passive

gravity gradient control. 'i'he Maximum Principle is used to derive a time-fuel

optimal control law for gravity gradient satellites. Switching lines which make

it possible to determine the optimal control for each measured set of angles and

rates are derived for decoupled gravity gradient satellites. It is shown how by

this technique the special cases of pure time optimal and pure fuel optinial cot: -

trol, '%vhich have been already solved in the literature, are covered. The possible

extensions to coupled gravity gradient satellites are treated and it is shown that

no unique switching lines can be derived.

*The work for this paper was accomplished while the author held a National Research Council

Postdoc.oral Resident Research Associateship supported by the National Aeronautics and Space

Administration, Goddard Space Flight Center. The author is very much obliged to Mr. W. Isley and

Mr. D. Endres for their valuable suggestions.
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NOMENCLATURE

The index i sLands for yaw, roll and pitch and is omitted «-hen no distinction

in the treatment of the different axes is necessary.

r^ i = gravity gradie::t coefficients, j 	 y, z

C 'in = centers of the switching circular arcs, m = 1, 2, 3, 4; ^^	 i, 2.

d i	 - educed disturbance v irque (= T 'I i `I i i ), i = x , y , z

H = Hanniltonian

I ii 7. moments of inertia, i - x, y, z

k maximum absolute value of control u

11 -= performance index

p m = auxiliary variables, m - 0, 1, • • • n

Tci = control torque, i - x, y, z

T i i = disturbance torque, i= x, y, z

t = time

t - time interval where control is on

t = time of control ende

t off = tune interval where control is off

t = time of control startO

u i -- reduced control torque (= T e i /I i , ), i = x , y , z

x = state variable

xmfl, ymn = cartesian coordinates of the centers of the switching circular arcs,

m	 1, 2, 3, 4; n	 1, 2,

vii
a
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y Vm	 y-coordinates of the switching circular arcs, m	 1, 2, 3, 4

a = pitch angle (correEponds to z-axis)

5 = maximum angle of circular arcs in thrusting; periods

	

F +	 line for switching from ► ,	 0 to u = + k

F_ = line for switching from a -= 0 to u = - k

y = maximum angle of circular arcs in coasting periods

	

A,	 line for switching from u k to u = 0

	

A_	 line for switching from u	 - k to u = 0

A f = weighting factor for fuel in the performance index P

k t = weighting factor for time in the performance index P

P mn' T mn = Polar coordinates of the centers of the switching arcs, m	 1, 2, 3, 4;

n	 1, 2,

roll angle (corresponds toy-axis)

= yaw angle (corresponds to x -axis)

WO = orbital angular rate for circular equatorial orbit

viii
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TIME AND FUEL OPTIMAL CONTROL, hOR

GRAVITY GRADIENT SPACECRAFT

INTRODUCTION

Attitude control of spacenraft requires economic use of fuel in order to

maximize the number of control maneuvers for a specified amount of fuel. A

promising approach is to combine active control by means of electric propulsion

,)
devices l ' ` and passive gravity gradient 11G) control. It has been shown in Ref-

erence 2 that the Maximum Principle can be used to derive the exact time optimal

control I o i for gravity gradient satellites (GGS) if there is no coupiing between

the axes. However, if fuel constraints have to be imposed, consideration of fuel

consumption in the jptimum control law is necessary. An approximate solution

has been derived in Reference 3 for GGSs with decoupl( ,, l axes and in Reference 4

for general GGSs. The approximations made in these references mace it nec-

essary to shift the switching lines in the phase plane according to the initial

angles and rates.

In the work performed here the exact solution for time/fuel optimal control

of decoupled GGSs will be derived first. It will then be shown how the special

cases of pure time optimal control as derived in References 2, 5, 6 and 7 and pure

fuel optimal control (Reference 3) result from this approach.

The possible extension of this time-fuel optimal control law to coupled GGSs

will be given.
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Ccntrol maneuvers treated herd bring initial angles and rates which can he

caused bey disturbances to zero. Pointing in other directions can be treat(,-d as

in Reference 2.

TIME-FUEL OPTIMAL CONTROL FOR GGSs WITH UNCOUPLED AXES

It lots been sliumm in References 2 and 8 that the small angle equations of

motion for a gravity gradient satellite in a nearly circular equatorial orbit with

negligible inner damping can be written as

I	 ^+w 2 ^I	 -I )w+ ^I	 -j	 -I Y i =	 cxT	 + T	 (1)xx	 0	 t:	 yy	 tt	 yy	 xx	 0	 dx

I yy ^ + 4(,)	I : ,	 I xx / ^ + ( I xx + I yy - 1 7: 1 Wo ^' -	 T ,y + T (i;	 (2)

IzZ*z + 3``'02 (I YY - I xx) °	 T(_/	 , T (iz	 (3)

If it is assumed that

I ±z	 Ixx	 Iyy	 (4)

the cross--coupling between the yaw and roll axes is eliminated. In this case the

equations of motion can be written as:

	

* + a0 Ik =	 u41 + dtp ,	 Il. + a(, ^) 
=
	 110 + d4)

and

a + a s a - u  + d  ,

I

(5)

(6)

2



r	 --

Acre

a0 _ ``'0 1 I "t - I yy V I xx .	 am -	 0 ( I z I - I xx )/ I yy
	 (7)

ea	 3`'`'01 (',y  - I xx )/ I ::
	

(8)

T , x / i xx	 um	 TCY /i yy	 ua	 T ,z / I zz
	

(9)

-	 j	 d	 T / Ido	 -	 T<!x I xx	 dm	 T,,y I yy ^	 1	 d_,	 ::	 (10)

It is assumed that the u are constrained in magnitude, i.e.

	

-ki <ui ^-	 for	 i	 =	 a. ^6,'/,	 (11)

	

If a disturbance free case ! d L = d^ = d 2	 0) and constant control (u:,, ud,,

U  = constant) is considered, circles for the phase plots are obt<ained in the

(, ^a - 1i2 ), (, ¢a -1i2) and (CL, as - iii) phase planes, providing that a , a and
G	 m	 a	 ^ ^

a Q # 0. The centers of these circles are at ±k i ja i with i = ^, d^, a. For a,,,

am or as - 0 parabolas are obtained. For this case the solution for time-fuel

optimal control has been derived in Reference 1.

Equations (5) and (6) can be written as

	

x + ax = u
	

(12)

where X= 4, (^, a, a= a',, a4 , a Q , u = u y , um , ua and - k —"^ u '^ + k

3



'rho Maximum Principle s-7 will be applied to derive the time-fuel optimal

control for Equation (12) in order to drive x anti x to zero. Th, following pro-

cedure has to be applied:

(a) the performance index P has to be defined; for time-fuel optimal control

t r

P	 (kt +Xf luj) dt
ft 0

where to is the start and t . the end of control action. ^ t is the time weighting

factor, k f the fuel weighting factor. E.g. k f = 0 leads to a pure time optimal

solution.

(b) the mathematical model of the system has to be written ;n the form of

first order liAear differential equations

x i	 =	 f i (x, u)	 (i = 0, 1, - • • n)	 (14)

ii is the order of the system equations, x is the v;;ctor of the state variables

( x() • • • x ,, ) and u is the vector of the control variables ( uo • • • u[I).

te) the Hamiltonian

I 

}i  L P  f i (x, u)

i=o	
(15)

has to be maximized where p o • • . p ,, are auxiliary variables given by

dp,/dt	 - 3H/dx i and clx./dt	 oHlapi	 (i	 0, 1. • • • n)	 (16)

4
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J.

It is sho%%m in References 5-7 that for this ;ase P a = - 1 can be chosen

and that

Xo	 fo ( x , U )	 A,t + k, lul
	

(17)

In the case treated here

X0	 X0

X	 X1	 \	 X1	

(18)
X	 X2 

which leads to

f;	 P1 X 2 ' P 2 (ll - slx l ) - kt - k f lul
	

(19)

11 is maximized at every instant of time by

U ._
	

k sgn P 2	 for	 'P21  ? k f	 (20)

and

	

ki	 0 for	 P 2 1 < k 
	

(21)

With Equations (16) and (19) one obtains

	

P 2	 Pm sill (a 1/2 t +	
(22)

where P m and ^p are integration constants.



Me final arc: Figure 1 shows P l and u versus time t. From this figure It

can be seen that u has to he on and oft' periodically. Furthermore, it can be said

that a has to be on at the final time t . ; this is true since the state would never

reach the origin with control off because in this case the trajectories are circles

with the origin as center. The on time before reaching the origin is between 0

and t . , t . being the maximum on time. "Therefore the part of the trajectory

which leads the state to the origin has to be part of a semicircle with its center

at 4 k/a or - k/a as shown in Figure 2. The longest arc leading to the origin is

given by 0 = (4 t c .

Ce.9 stin& before final arc: From Figure 1 it is obvious that the state has to

have a coasting period before reaching this final arc unless the initial condition

happened to be on this final arc. The length of the coasting period is limited by

-Y 	 wt ) f f . If the initial conditions are far enough from the origin that more thrust

intervals than the final one leading to the origin are required to drive the state to

the origin the coasting interval is given by -/ = -t of f . This means that by going

back in time by tof f the time of switching from control to coasting has been

found. In the phase plane this can be depicted by drawing circular arcs with the

center it he origin and starting at each point of the arcs of Figure 2. The length

of thes _ arcs for coasting is given by y. The endpoints of these arcs again

form circle arcs which are produced by rotating the circle arcs of Figure 2 by

an angle counter clockwise about the origin. This is shown in Figure 3. It can

be seen from this figure that each initial state lying within the hatched area can

6



I,c brought to the origin in a time-fuel optimal maneuver by coasting to F, or F-,

respectively and then by control application.

Thrusting before "inal coasting period: If the initial state does not lie in

the hatched area of Figure 3 one sees from Figures 1 and 3 that another thrusting

period is required wit:Z control of the reverse sign « ,hen compared %\ith the final

control. This thrusting period again can last up to a time interval t _ . Again

shorter intervals than t c for thrustings are applicable for cases where the initial

condition is located such that it can be brought to A - by thrusting intervals less

than t	 III 	 general case of thrust application of exactly t duration all pos-

sible trajectories for this perioc' again are circular arcs with an angle 3 and

their centers at - k a or * k;a, respectively. This means that the geometric locus

of their starting points can be constructed by rotation of A - or A, , respectively,

in Figure 3 counterclockwise by an angle . The result is shown in Figure 4.

Complete switching lines: The procedures outlined can be pursued in the

same manner as above. The geometric relationship produced by rotating the

circle arcs by or , , respectively, show that all arcs which form the switching

lines hav:, their center on straight lines as shown in Figure 5. Also, the inter-

section points of the arcs lie on a straight line.

	

With y	 xa -1 2 the centers C, n of the circular arcs for n = 1, 2, • • • are

given by

xIn	
f' In Cos ^'ln	

Yin	 -	 P in sin (:p In
	 (23)



where

n1 ,	 R{[n(1 + cos	 l	 + [ n sin y)	 (24)

arctan S n sin /r11( 1	 Cos y) - 1 1}	 (25)

R	 k : ► 	 (26)

The equations of the circular arcs are then

l	
1

y C 1	 y 
1n	 I 

R 2  - (x	 x,,, 	 (27)

for (n - 1 ) R(1 + cos y) m^ x < nR(1 + cos y )	 (28)

To find the n corresponding to a given x the following equation can be applied

n	 Integer [x R(1 + Cosy) 4- 1	 (x?0)

The -:,nations for the centers C 2 „ in the upper left hand quadrant are:

x 2	 P2n COs T 2	 Y2n	 P2n S1n'^D2n

1

p en	 - R{[n	 ;(1 +cos y) -cos 1'' - [(n - 1) sin y]2ly
1'2

(29)

(30)

(31)

(32)
2n

- arctan 1 l (I1 - 1) sin "/11 1 (1. + COs -y) - COS y 11

2 _ (	 \ 2 1/2
+	 )Y c2	 Y2r	 R	 x - x 2n ]

8
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for

- nR( 1 + cos y) ! x	 - 0i - 1) R(1 + cos y)	 (34)

n for a given x can be found by

	

11	 Integer [-x/R(1 + cos y)+ 1]	 (x<0)	 (35)

The equations for the centers C ar in the lower left hand almdrant are:

	

x 3	 ^3n COs 3n	 y3n	 Pan Sin (p 3n 	 (35)

P 3n	 ^ln	 fD3n	 In	 (37)

[RI 2	 / _	 \ 211/2

	

J	 I	 (38)y c3	 Y3,,`	 3n

for

- nR(1 + cos y) < x < - (n - 1 ) R(1 + cos y) (39)

n for a certain x is given by Equation (35).

For the centers C 4 in the lower right hand quadrant the following equations

hold

x 4	 Pon COS 'p 4n	 Y 4	 P4n sin 'p4n	 (40)

9



F 4n	 P 2 '	 (P 4n	 T1n	 (41)

1'2

y c4	 y4n	 R2 _ ( x x 4n ) 
21	

(42)

for x given by inequality (28).

n for a certain x is given by Equation (29).

Based upon Equations (23•-42) the time/fuel optimal control law can be

given by the flow chart of Figure G.

REDUCTION OF THE GENERAL TIME-FUEL OPTIMAL CONTROL TO PURE

TIME AND PURE FUEL OPTIMAL CONTROL

For the case where k f = 0 the pure time optimal control law is derived.

This means for the switching lines that -v = 0 which leads to the well known

semicircles as switching lines for the system with Equation (12). (Figure 7 and

References 2, 5-7).

On the other hand, for X t = 0 the pure fuel optimal control law is derived.

In this case thrusting is only provided when the state is exactly on the xa-i 2

axis, which means an impulse at this time. This corresponds with the results

derived in Reference 3, where it is shown that most economic control for a sys-

tern given by Equation 12 is achieved when the thruster is only in operation when

the state falls on the xa -1 2 - axis.

OPTIMAL CONTROL OF GRAVITY GRADIENT SATELLITES WITH COUPLEDAXES

In the case where one principal moment of inertia is not equal to the sum of

the two others the full GGS Equations (1)—(3) have to be considered. With
i

10



Equations (7)—(9) these can be written in the form:

a	 ao/w 2) (1)	 U + d

+ a^ ¢ + l 1 a©/4`"0 ``o	 u. + d,,	
(44)

and

a + a s a = u  + d 	 (45)

For the pitch equation the optimal control law derived above is still applicable;

however, roll and yaw are now coupled. In order to calculate an optimal con-

trol law the following transformations have to be made to make application of

Equations (15) and (16) possible:

a,	 O/U) 2	 a /W 2

The time base shall be changed to r = W  t. Therefore

d/dt = wo d/d7 or	 _ ``'o	 and	 _ ``'o (47)

which gives for Equations (43-44)

+ a 1 'k + b l	 = uIk	 (48)

and

+ a2 (^ + b2 ^ = um (49)

r

11



with

U	 = u 
i A 0
	

( i = LP , (^)
	

(50)

bl	 al - 1 , I) ,	 1 - az/4

umd

(51)

The following substitutions are made:

4	 X1 ,	 - X 2 	- X3

This yields for Equations (48--49):

X 1 	X2

?C2	 _ al X1 _ b  
X4 + 

UIk

X 3	 X4

X 4	 - a 2 X 3 - b 2 X 2 + U4)

The performance index for time-fuel optimal control is

= X4	 (52)

(53)

(54)

t

P	

P 1 k + X f (l U^l + lu¢ ^ )] dt
ft o (55)

which gives

X D =	 ^`t + 1\ f (luoI + I Umi)

12
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The Hamiltonian is:

(IuO I + IU t l / + P I X 2 + P 2	 al X 1 -b l X4

+ P2 Uk 4 P 3 X4 + P 4 \ a2 X3 _ b2 X2 / + P 4 Ut	 (57)

which is maximized by:

U	 - k^, sgrl p 2	 for	 1P21 > k f	 (58)

u^	 0	 for	 IP 2 I < \ f

um k 3 sgnp 4 for IP 4 1 ? X 

um 0 for Ip 2 i < kf

(59)

(60)

(61)

Applying Equation (16) to Equation (37) yields:

P 1	 a1 P 2 ,	 P-	 - P 1 + b 2 P Q	 P3	 a2 P 4	 P4	 P3 + b1 P2(62)

and

P2 + A l P2 + A2	 0 (63)

.P4 +	
Al

P4 + A2 	 0 (64)

13



t

f	 with

Al	 a1 + a 2 - b 1 b 2	 and A 2 
_	

r+1 a 2
	

(65)

The roll and yaw equations can be written in a similar form if % and u, are

constant:

.(P
Al

{ A 2 al Um
(66)

+
Al

G + A2 a2 541 (67)

The solutions for Equations (63) and (64) are:

P 2	 P21 sin (-r + ^P
1 ) + P22 sin ( A 21/2 T + (P2 )

	

(68)

P 4 - - ( 1) 1/b 2 I P21 cos 1 T + 1^	 \al/a2 1
1/2 P22 Cos (A2/2 T + (02^	 (69)

For evaluation of the inequalities (58)—(61) only P21/P22 (instead of P 21 and P22

separately) is interesting since X f also is only interesting as its ratio to Xt for

the performance index. To find trajectories similar to the case with decoupled

axes a transformation is made for Equations (66) and (671 by

X 1 = (k +	 X3 = ^ +	 (70)

which results in

xl 
+ A2 X 1 - a 1 u(;6	 X3	 A2 X3 - a2 U^	 (71)

14



Furthermore letting

X1	 x2	 X3	 x4

Equations (71) give circles in the (x I t X2 ) and (x 3 , x 4 ) phase {Manes for uQ, and u,,

constant.

To find the switching lines in these phase planes in analogy to the decoupled

case, variation of 4)1, ^D2 and P 21/' 22 in Equations (68) and (69) and fullfillment

of the inequalities (58)—(61) as function of time in connection with the system

time history in the (x 1 , x 2 ) and (x 3 , x 4 ) phase planes is required.

However, no unique solution can be found. This i3 explained as follows:

For the decoupled case the solution of the adjoint equation for roll anti yaw

is determined only by a phase angle .p (see Equation 22) which corresponus with

the phase angles r l and D2 in Equations (68)—(69). Due to coupling effects also

P21/P22 has to be given in order to evaluate inequalities (58)—(61). But P21/P22

not only depends on the coefficients b l and 1) 2 which determine the amount of

crosscoupling but also on the initial conditions. The latter statement can easily

be understood by the fact, that the switching sequence for one axis has to be much

different whether the initial conditions on the other axis are large or small. This

can be seen especially in these cases where the initial conditions are zero on

one axis and / 0 on the other axis. In the decoupled case no control is required

on the axis with initial conditions = 0. However, in the coupled case consider-

able control action may be necessary also on the axis with zero initial conditions.

15
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This fact has been the subject of experimental investigations on an analog

computer and the optimum switching sequence for special cases has been found

by trial and error methods.4

CONCLUSIONS

Time-fuel optimal control procedures have been derived for gravity gradient

satellites where yaw and roll axes are decoupled. It has been shown that for the

coupled case no switching lines can be found. (Switching lines are necessary for

the practical application of an optimal control law because the control strategy

has to be based on the state of the system.) Therefore, it is recommended to

try to decouple the yaw and roll axes of gravity gradient satellites by proper

-hoice of moments of inertia if optimal control laws are to be applied. As one

sees from the flow chart the control law is easy to apply. Choice of one parameter

in the performance index covers the whole range between pure time and pure

fuel optimal control.
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P. t

x

r ,g,,re 1. Control u and auxiliary variable p2 for time-fuel optimal control of the rlr3nt

z+ ax - V.

, i„

Figure 2. Final Arc: This last part of the optin, , trajectory leads

to the origin. The maximum duration of this crc is given

by 8 7 " I t
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C

x

NG
► N

i a 1/2

Figure 3. Coasting regions and switching lines. Between positive and negative

thrust periods coasting periods are present whose length is given by 'y.

I' 'I, • • • line for switching from u = 0 to 4

T- - • • • line for switching from u -- 0 to -k

A+ • • • line for switching from u = + k to 0

;1_ • • - line for switching from u = -!c to 0
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x

Figure 4. Extension of Figure 3 to show regions where thrust is applied before the state reaches

the coasting regions shown in Figure 3.
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\ y ' yC 3

NO

YES	 u = +k I
y

\

< YC4

V

NO

STATE  (x , y= i a -112 )

NO
	

YES
X ? 0

n = INT [-x/R(1 + COS y) + 1 ]
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Figure 6. Flowchart for implementation of the time/fuel optimal control law

INT (x) - integer of the number x.
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