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TIME AND FUEL OPTIMAL CONTROL FOR
GRAVITY GRADIENT SPACECRAFT*

F. C, Zach

ABSTRACT

Severe constraints on the amount of fuel available in spacecraft make it nec-
essary to develop econor.aical policies for attitude control. A promising approach
is to combine active control by means of electric propulsion devices and passive
gravity gradiert control. 'The Maximum Principle is used to derive a time-fuel
optimal control law for gravity gradient satellites. Switching lines which make
it possible to determine the optimal control for each measured set of angles and
rates are derived for decoupled gravity gradient satellites. It is shown how by
this technique the special cases of pure time optimal and pure fuel optinial con-
trol, which have been already solved in the literature, are covered. The possible
extensions to coupled gravity gradient satellites are treated and it is shown that

no unique switching lines can be derived.

*The work for this paper was accomplished while the author held a National Research Council
Postdocioral Resident Research Associateship supported by the National Aeronautics and Space
Administration, Goddard Space Flight Center. The author is very much obliged to Mr. W. Isley and

Mr. D. Endres for their valuable suggestions.
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The index i1 stands for yaw, roll and pitch and is omitted when no distinction

PRECEDI

NOMENCLATURE

in the treatment of the different axes is necessary.

xmn’ ymn

I

gravity gradie::t coefficients, j = x,y, 2

centers of the switching circular arcs, m = 1, 2, 3, 4; n =
reduced disturbance torque (= T, /I,.), 1 = X,y, 2
Hamiltonian

moments of inertia, 1 = x,y, z

maximum absolute value of control u

performance index

avxiliary variables, m = 0, 1,--+ n

control torque, i = x,y, z

disturbance torque, i = x,y, z

time

time interval where control is on

time of control end

time interval where control is off

time of control start

reduced control torque (= T_, /I, ), 1 =x,y, z

state variable

cartesian coordinates of the centers ot the switching circular arcs,

m=123,4n=1,2,°--

vii
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Y., = y-coordinates of the switching circular arcs, m = 1, 2, 3, 4
1+ = pitch angle (corresgponds to z-axis)
* = maximum angle of circular arcs in thrusting periods

[, = line for switching from u = 0 tou = +k

= line for switching from u = 0to u = -k

» = maximum angle of circular arcs in coasting periods

I

A, = line for switching from u =k to u= 0

-k tou=20

I

A_ = line for switching from u
v = weighting factor for fuel in the performance index P
- weighting factor for time in the performance index P
£ont Pon = polar coordinates of the centers of the switching arcs, m = 1, 2, 3, 4;
n=1,2-°°°
+ = roll angle (corresponds to y-axis)

v = yaw angle (corresponds to x-axis)

w, = orbital angular rate for circular equatorial orbit
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TIME AND FUEL OPTIMAL CONTROL FOR

GRAVITY GRADIENT SPACECRAFT

INTRODUCTION

Attitude control of spacecraft requires economic use of fuel in order to
maximize the number of control maneuvers for a specified amount of fuel, A
promising approach is to combine active control by means of electric propulsion

1,2

devices and passive gravity gradient /GG) control, Tt has been shown in Ref-
erence 2 that the Maximum Principle can be used to derive the exact time optimal
control ]/ for gravity gradient satellites (GGS) if there is no coupiing between
the axes. However, if fuel constraints have to be imposed, consideration of fuel
consumption in the optimum control law is necessary. An approximate solution
has been derived in Reference 3 for GGSs with decoupled axes and in Reference 4
for general GGSs, The approximations made in these references maxke it nec-
essary to shift the switching lines in the phase plane according to the initial
angles and rates.

In the work performed here the exact solution for time/fuel optimal control
of decoupled GGSs will be derived first., It will then be shown how the special
cases of pure time optimal control as derived in References 2, 5, 6 and 7 and pure
fuel optimal control (Reference 3) result from this approach.

The possible extension of this time-fuel optimal control law to coupled GGSs

will be given.



Centrol maneuvers treated here bring initial angles and rates which can be
caused by disturhances to zero. Pointing in other directions can be treated as

in Reference 2,

TIME-FUEL OPTIMAL CONTROL FOR GGSs WITH UNCOUPLED AXES
It has been shown in References 2 and 8 that the small angle equations of
motion for a gravity gradient satellite in a nearly circular equatorial orbit with

negligible inner damping can be written as

Ixx .'. ‘ 102 (Izz - IY,V) v 7 (Izz - Iy.v Ixx) “o f ” Tcx | de (1)
Iyy .:'. : 40"02 ( I zz - Ixx ) + ' ( Ixx g I vy - I 2z ) . 0 “: . T(‘)' ) T"}' (2)
Izz L+ ()2 (Iyy N Ixx) : Tcz ' sz (3)

If it is assumed that
I = 3 + 1 (4)

the cross-coupling between che yaw and roll axes is eliminated. In this case the

equations of motion can be written as:

u, +d, (5)

and

Ei*aaa = u +d , (6)



~vhere

my = gl =1, Yl o a, = 4wt (I,, -1,)/1, (1)

a, = 32 (1, -1,)/1, (®)
W . u, = T /Ty 0y = Toufla (9)
d, *= de/'I“. d, = T4/1,, » d, = Td,/lu (10)

It is assumed that the u, are constrained in magnitude, i.e.

-k, Su, 5 for i = a, &,y (11)

1

~d, = d, = 0)and constant control (u , u,,

If a disturbance free case(d, - b

constant) i3 considered, circles for the phase plots are obtained in the

u, =
- ey oy 2
-‘*z; (45 va;''?), (¢, a,'?) and (¢, aa, '"?) phase planes,” providing thata , a, and
% S

i a, # 0. The centers of these circles are at +k, /a, with i = y,¢, 2, For a,

¥ D e

a,ora, =0 parabolas are obtained. For this case the solution for time-fuel

optimal control has been derived in Reference 1.

Equations (5) and (6) can be written as

(12)

x t ax = u

where x = Y, ¢, a, a = a,,8,,8,,U = U, Uy, U, and ~kSu=+tk,




5-7
The Maximum Principle will be applied to derive the time-fuel optimal
control for Equation (12) in order to drive x and x to zero. Thz following pro-

cedure has to be applied:

(a) the performance index P has to be defined; for time-fuel optimal control

t
P j (‘.\‘+)\f‘ul)dt (13)
t

o

where t is the start and t_the end of control action. /  is the time weighting
factor, A, the fuel weighting factor. E.g. ", = 0 leads to a pure time optimal

solution.

(b) the mathematical model of the system has to be written in the form of

first order liaear differential equations

x, = f (x,u) (i =0,1,+n) (14)

n is the order of the system equations, x is the vector of the state variables
(x,+++ x, ) and u is the vector of the control variables (u,---u ),

t¢) the Hamiltonian

B = Zp.f. , u)
i=0 St a9

has to be maximized where p - -« p  are auxiliary variables given by

dp,/dt = - 3H/dx, and dx, /dt = dH/dp, (L= 0. 1,%"*n) {6



It is shown in References 5—7 that for this case p, = ~ 1 can be chosen
and that
).(0 = fo (x,u) -~ Ne T A lu (17)
g In the case treated here
§ -
X xl X (18)
5
¥ which leads to
H = pyx, + py(u-ax ) - A = Ayl (19)
58 H is maximized at every instant of time by
u = ksgnp, for lp,l 2 A, (20)
_ and
u = 0 for |p2[ <A @1)
With Equations (16) and (19) one obtains
P, = Pysin (a2t +0) e

where P_ and ¢ are integration constants.




The final arc: Figure 1 shows p, and u versus time t. From this figure it

can be seen that u has to be on and off periodically. Furthermore, it can be said
that u has to be on at the final time t _; chis is true since the state would never
reach the origin with control off because in this case the trajectories are circles
with the origin as center. The on time before reaching the origin is between 0
and t , t_ being the maximum on time. Therefore the part of the trajectory
which leads the state to the origin has to be part of a semicircle with its center
at + k/a or - k/aas shown in Figure 2. The longest arc leading to the origin is
given by 5 = «wt_.

Censting before final arc: From Figure 1 it is obvious that the state has to

have a coasting period before reaching this final arc unless the initial condition
happened to be on this final arc. The length of the coasting period is limited by

¥ = wt ... If the initial conditions are far enough from the origin that more thrust
intervals than the final one leading to the origin are required to drive the state to
the origin the coasting interval is given by » = «t ... This means that by going

back in time by t .. the time of switching from control to coasting has been

of f
found. In the phase plane this can be depicted by drawing circular arcs with the
center ir .he origin and starting at each point of the arcs of Figure 2. The length
of thes. arcs for coasting is given by . The endpoints of these arcs again
form circle arcs which are produced by rotating the circle arcs of Figure 2 by

an angle counter clockwise about the origin. This is shown in Figure 3. It can

be seen from this figure that each initial state lying within the hatched area can



be brought to the origin in a time-fuel optimal maneuver by coasting to |, or [ _,

+

respectively and then by control application,

Thrusting before ‘inal coasting period: If the initial state does not lie in

the hatched area of Figure 3 one sees from Figures 1 and 3 that another thrusting
period is required wita control of the reverse sign when compared with the final
control. This thrusting period again can last up to a time interval t . Again
shorter intervals than t_for thrustings are applicable for cases where the initial
condition is located such that it can be brought to A_ by thrusting intervals less
than t_. In the general case of thrust application of exactly t_ duration all pos-
sible trajectories for this periocd again are circular arcs with an angle © and
their centers at -~ k’a or + k/a, respectively. This means that the geometric locus
of their starting points can be constructed by rotation of A_ or A, , respectively,

in Figure 3 counterclockwise by an angle “. The result is shown in Figure 4.

Complete switching lines: The procedures outlined can be pursued in the

same manner as above. The geometric relationship produced by rotating the
circie arcs by - or ,, respectively, show that all arcs which torm the switching
lines hav. their center on straight lines as shown in Figure 5. Also, the inter-
section points of the arcs lie on a straight line.

With y ~ xa’!'? the centers C, of the circular arcs for n = 1, 2,... are

given by

~O0S O ) 1no
COS &ln y yln ’L 1n s1in Yin (23)

bt



where

, , 21172
“1n R{[n(l + cos ,)-1]2 t Insin .'2}

1 arctan {n sin '/[n(l t cos )~ l]}

The equations of the circular arcs are then

yc'l i yln - [R2 —(x—xln)]l 2

for (n-1)R(1+cosy) < x = nR(1 *cos )

(24)

(25)

(26)

(27)

(28)

To find the n corresponding to a given x the following equation can be applied

n

The ejuations for

Pan

1

Integer [x R(1+ cos jv)] + 1 (x20)

the centers C, in the upper left hund quadrant are:

L, COSO ; Yon = T Pa, SING

2n 2n

1/2

R{[n(l + cos )~ cos ,.]2 i [(n -1) sin )’]2}
- arctan {(n -1) sin "//[n(l + cos y) ~ COS ) ]}

y2n T [R2 - (x —x2n)2] e

8

(29)

(30)

(31)

(32)

(33)



for

“nR(1 tcosy) < x < =(n=-1) R(1 *+cos ») (34)
n for a given x can be found by
n - Integer [-x/R(l t cos y) 4 l] (x<0) (35)

The equations for the centers C, in the lower left hand anadrant are:

W

x3n ) L 3n cos OJn ' y3n : - ")Jn $1n L-/3n (36)
" 3n “in ! "3n ;111 (37)
1/2
- n 4 .= - 2
yC3 y3n [R (X x3n) ] (38)

for

-nR(1 tcosy) € x< -(n-1)R(1+ cosy) (39)

n for a certain x is given by Equation (35).
For the centers C, in the lower right hand quadrant the following equations

hold

]
1"

4n ‘D4n cas q)4n ! y4n /"/4n Sln(p4n (40)



P an ":21\ : P4n Y2n (41)

1/2
yc4 ) y4n - [R2 —(x_x4n)2] (42)

for x given by inequality (28),

n for a certain xis given by Equation (29).

Based upon Equations (23-~42) the time/fue! optimal control law can be
given by the flow chart of Figure 6.
REDUCTION OF THE GENERAL TIME-FUEL OPTIMAL CONTROL TO PURE
TIME AND PURE FUEL OPTIMAL CONTROL

For the case where ", = 0 the pure time optimal control law is derived.

“f
This means for the switching lines that » = 0 which leads to the well known
semicircles as switching lines for the system with Equation (12). (Figure 7 and
References 2, 5—17).

On the other hand, for ", = 0 the pure fuel optimal control law is derived.

t
In this case thrusting is only provided when the state is exactly on the xa ' ?-
axis, which means an impulse at this time. This corresponds with the results
derived in Reference 3, where it is shown that most economic control for a sys-
tem given by Equation 12 is achieved when the thruster is only in operation when
the state falls on the xa™!" 2- axis,

OPTIMAL CONTROLOF GRAVITY GRADIENT SATELLITES WITH COUPLED AXES

In the case where one principal moment of inertia is not equal to the sum of

the two others the full GGS Equations (1)—(3) have to be considered. With

10



Equations (7)—(9) these can be written in the form:

.,. - - 2 " S
y * a,vy (1 au»/‘o) vo P u, *d, (43)
%+a¢f'+(l-a/%2)a4'; = u, +d
¢ 0 0 ¢ ¢ (44)
and
;{+aaa = u, +d, (45)

For the pitch equation the optimal control law derived above is still applicable;
however, roll and yaw are now coupled. In order to calculate an optimal con-
~ trol law the following transformations have to be made to make application of

9 Equations (15) and (16) possible:

- | = -
al aw/(to ) a2 a¢/&,o (46)

The time base shall be changed to 7 = «_ t. Therefore

d/dt = wyd/dT or ¢ = w,¥ and ¢ = w P i
which gives for Equations (43—44)
btaytbé = U, (48)
and
A (49)

11




with

and

X, X,
X, = = a,
X, = 1%
Xy = = 8,

o)

(i = ¥, @)

i

1 - 32/4

Uy

The performance index for time-fuel optimal control is

t
P = .[ [A.t 2y (|a¢|+-|a¢|)] dt
¥

0

which gives

(50)

(51)

(52)

(53)

(54)

(55)

(56)



The Hamiltonian is:

H = - A, = Ay (mu*i g %Gdal) teyxt Py (' a; x, ~b, "4)

which is maximized by:

k, sgnp, for

0 for

k, senp, for

0 for

Y/
>

’P2| - f

Applying Equation (16) to Equation (37) yields:

|
I

05-2

p4

Pyt bypy Pj

+AIB2+A2

t A p, + A

13

I

lp,l <A
lp,| 2 A
1Pl <A
8P
0
0

tpypuy tpyx, topy (_ a, X3~ b, "2) t Py Uy (57)

(58)

(59)

(60)

(61)

Py ~ ~P3 b p,62)

(63)

(64)

o



with

Al - a, ta, - bl b2 and A2 © a,a, (65)

The roll and yaw equations can be written in a similar form if u, and u, are

constant:

2 1 (66)
Y *AIU+A2 = azul (67)
The solutions for Equations (63) and (64) are:
p, = P, sin(t+9,)+P,, sin(A}27+09,) (68)
- . ( ) - . /2. 4,
P4 (bl/bz)sz cos {7+ ¢, ) (31/32)121322 cos (A)/27 +9,) {69)

For evaluation of the inequalities (58)—(61) only P, /P22 (instead of P,, and P,
separately) is interesting since »; also is only interesting as its ratio to \ for
the performance index. To find trajectories similar to the case with decoupled

axes a transformation is made for Equations (66) and (67) by

X - :L' + .;t: ) X3 = t;[).+ v (70)

which results in

X, + A, x = a G(b s §3 + A, x = azuw (71)

14
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Furthermore letting

Equations (71) give circles in the (x,y x,) and (x,, x,) phase planes for u, and u,

¢
constant,

To find the switching lines in these phase planes in analogy to the decoupled
case, variation of v , v, and P, /P,.,2 in Equations (68) and (69) and fullfillment
of the inequalities (58)—(61) as function of time in connection with the system
time history in the (xl, x2) and (xs, X,) phase planes is required.

However, no unique solution can be found. This i3 explained as follows:

For the decoupled case the solution of the adjoint equation for roll and yaw
is determined only by a phase angle 7 (see Equation 22) which corresponds with
the phase angles P, and v, in Equations (68)—(69). Due to coupling eifects also
PH/P22 has to be given in order to evaluate inequalities (58)—(61). But P,‘,I/F'22
not only depends on the coefficients b, and b, which determine the amount of
crosscoupling but also on the initial conditions. The latter statement can easily
be understood by the fact, that the switching sequence for one axis has to be much
different whether the initial conditions on the other axis are large or small. This
can be seen especially in these cases where the initial conditions are zero on
one axis and # 0 on the other axis. In the decoupled case no control is required

on the axis with initial cornditions = 0. However, in the coupled case consider-

able control action may be necessary also on the axis with zero initial conditions.



This fact has been the subject of experimental investigations on an analog
computer and the optimum switching sequence for special cases has been found
by trial and error met:l'xods.4
CONCLUSIONS

Time-fuel optimal control procedures have been derived for gravity gradient
satellites where yaw and roll axes are decoupled. It has been shown that for the
coupled case no switching lines can be found. (Switching lines are necessary for
the practical application of an optimal control law because the control strategy
has to be based cn the state of the system.) Therefore, it is recommended to
try to decouple the yaw and roll axes of gravity gradient satellites by proper
choice of moments of inertia if optimal control laws are to be applied. As one
sees from the flow chart the control law is easy to apply. Choice of one parameter
in the performance index covers the whole range between pure time and pure
fuel optimal control.
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Figure 1. Control u und auxiliary variable Py for time-fuel optimal control of the rlant

X+ ax =~ u.

# xa=1/2

Figure 2. Final Arc: This last part of the optin. . trajectory leads

to the origin. The maximum duration of this arc is given
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COASTING
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Figure 3. Coasting regions and switching lines. Between positive and riegative
thrust periods coasting periods are present whose length is given by .
", *++line for switching from v = 0 to +}

*+line for switching from v = 0 to —k

A, +++line for switching fromu = +k to 0

A_ *+line for switching fromu = =% to 0
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Figure 4. Extension of Figure 3 to show regions where thrust is applied before the state reaches

the coasting regions shown in Figure 3.
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STATE (x, y = xa™¥?)

NO YES

1 \

n=INT [-x/R(1 +COSy) +1] n=INT [x/R(1 +COSy) +1]

\ 1

CALCULATE y., USING EQS. (30)-(33) CALCULATE y., USING EQS. (23)=(27,
CALCULATE y., USING EQS. (36)-(38) CALCULATE y., USING EQS. (40)-(42)

v=0 [* | SPACECRAFT
i DYNAMICS

Fiqure 6. Flowchart for implementation of the time/fuel optimal control law

INT (x) = integer of the number x.
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