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Energy methods are used to determine the stability of a nondimensional two-degree-of- 1 
freedom column model under static and impulsive loading. A soft spring is used to create 1 

instability, and provision is made for initial imperfections. Stability is investigated at the static 1 
buckling load and at the saddles of the deflected system without a static load, and the difference 
is noted. Solution curves are determined for initial conditions to equal the saddle critical 
potential energy, and the excess initial energy required for collapse of the system is determined 
for various conditions. A numerical integration is used to determine the system responses. The 
effects of the various system parameters on the response are discussed. 
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Symbol Definition 

k Spring constant of a torsional spring, inch-pounds. 

Spring constant of a linear extensional spring, pounds. 
kl 

1 Length of link, inches. 

m, mi Mass, pounds. 

2r Length of major axis of an ellipse. 

t Time, seconds. 

Generalized coordinates of model. 

Rotated set of coordinates. 

‘i 

Yi’ zi 

C 3 - 4 7  
2 Constant of Euler load = 

E Total energy of the system, inch-pounds. 

Total energy of the nondimensional system. n E 

P 

cr 
Magnitude of the nondimensional load, - . P F 

I Magnitude of the nondimensional impulse, FD AT . 
P Magnitude of load, pounds. 

Generalized forces, inch-pounds . 
Qi 

S2 Dimensionless constant, 

T Kinetic energy, inch-pounds e 

m12u2 - - 7-EJ4i- 
k 4 

Nondimensional kinetic energy. 

Potential energy of internal forces or  strain energy, ineh- 
pounds. 

n T 

U 

vii 



Symbol Definition 

Nondimensional potential energy of internal forces. 

Total potential energy, inch-pounds . 
n u 

V 

Nondimensional total potential energy. 

Arbitrary constant that softens the spring. 

n V 

P 

6 9  A Incremental change in variables. 

E .  Imperfection or eccentricity of links , radians. 
1 

7, 
‘i 

1 Changed coordinates where cp = - . 
i @/2 

7 Nondimensional time, at. 

4-71 Angular displacement of lower link from the vertical, radians. 

4-72 Angular displacement of upper link from the vertical, radians. 

Angular rotation of y z. axes, degrees. i’ 1 $ 

w Angular frequency, radians/second . 

Q Potential energy of external load, inch-pounds: 

Nondimensional potential energy of external load. 
n Q 

Superscripts Definition 

Derivative of displacement with respect to t. 

.. Second derivative of displacement with respect to t. 

Derivative of displacement with respect to T. I 
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Superscripts Definition 

1 1  

A 

- 

0 

Subscripts 

b 

cr 

D 

f 

i, j, k, 1 

n 

0 

S 

Second derivative of displacement with respect t o  T . 
Initial velocity after impulse. 

Evaluated in the reference state. 

Degree. 

Definition . 

Initial energy. 

Critical value. 

Dynamic load. 

Final energy. 

Index notation with range of 1 to 2 except a s  noted. 

Nondimensional value. 

Initial condition. 

Static load. 

c 
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TECHNICAL MEMORANDUM X-64531 

s 

CT 

Energy methods a re  applied to determine the stability of a nondimen- 
sional two-degree-of-freedom column model under static and impulsive 
loading. A soft spring is used to  create instability, and provision is made for 
initial imperfections. No dissipation force is considered. The principle of 
minimum potential energy is used to  determine stability of the linear system 
at the critical static buckling load. A two-dimensional potential energy 
contour plot locates the saddles of the nonlinear deflected system and the 
critical potential energy of the saddle is determined. Stability at  the saddle 
without a static load is investigated. 

The initial kinetic energy to reach the saddles with and without static 
loading is provided by a pure impulse (initial velocities of the system) or a 
square -wave impulsive load with an initial imperfection. Solution curves a r e  
determined for the various initial conditions. A numerical integration is used 
to determine the system response and the excess initial kinetic energy required 
to  cause collapse is determined for various conditions. 

A relationship is shown between the pure impulse and the impulsive 
load with imperfections. The difference in stability criterion a t  the initial 
static critical buckling load and at the saddle of the deflected system without a 
static load is noted. The effects of the various system parameters are dis- 
cussed in the conclusions e 

This is an  initial investigation of a simplified system. Investigation of 
more complex systems may lead to application of the methods t o  physical 
systems a 



. 
In a broad sense, the theory of buckling is the theory of the Stability 

of equilibrium of mechanical systems. A s  the load on a mechanical system 
increases, the equilibrium states t race paths in a configuration space. At  
some load a "bifurcation point" or fork may be reached, and different paths 
may be traced from this point. Exceeding this critical (or  Euler) load 
results in buckling, and the initial postbuckling behavior of the system depends 
on the stability or  instability of equilibrium at the critical buckling load. 

Most of the phenomena associated with instability and buckling can be 
observed in simple systems. The one-degree-of-freedom system depicted in 
Figure la  illustrates this phenomenon. * It is composed of two rigid bars  joined 
by a frictionless pin, and constrained by a linear extensional spring ( kl) and 
a torsional spring (k)  . The top is constrained to  move vertically while the 
bottom is pinned to a fixed support by a frictionless pin. 

urcation of u~librium States 

Figure l b  depicts the deflection of the system a s  a function of a 
nondimensional load. A t  the bifurcation point ( P  = P ) the equilibrium paths 

branch into the curves 1A or lB. The horizontal branch depicts the classical 
theory. 

c r  

If the extensional spring (kl)  is removed, the equilibrium path is 
l A ,  which represents a stable configuration. This is typical of the actual 
postbuckling behavior of large bars.  If the extensional spring is retained and 
the torsional spring ( k )  is removed, the equilibrium path is iB ,  which 
represents unstable con€igurations In some types of structures, particularly 
shells, an instantaneous displacement of considerable magnitude can occur 
a s  the G-:k;lcture moves from one point on the equilibrium path to another point 
on the path. This is known as  "snap-through" and is shown in Figure 2. 

Imperfection-sensitivity and its effect on static buckling has been 
studied intensively in recent years. The curves of Figure 3 a re  based on 
the studies of Koiter [ 1 ] , where the solid lines represent the states of 

I 

'g This model was developed by D r  e G. A .  Wernpner , University of Alabama 
in Huntsville. 

2 



a 
$0 

b 

Figure i. Buckling of a column. 

equilibrium of perfect systems, and 
the dotted lines represent the states of 
equilibrium of imperfect systems. 
Figure 3a represents stable equilibrium 
a s  the load must increase with deflection. 
Figure 3b represents unstable equilib- 
rium as  the load decreases with deflec- 
tion. Figure 3b has greater imperfec- 
tion sensitivity. 

P 

c. pose of the Study 

Figure 2. Snap-through. The effects of static and dynamic 
loading on a simplified nondimensional 

two-degree -of-freedom system a r e  examined to determine whether the methods 
a re  applicable to stability analyses. The study contains four parts: 

1. A linear analysis to determine the critical conditions for initial 
buckling. 

2.  A nonlinear analysis of the potential energy to  ascertain the stability 
of the equilibrium states. 

3 



a b 

Figure 3. Postbuckling behavior and imperfections. 

3. An analysis of the dynamic loading that will cause unrestricted 
deflections. 

4. An analysis of the effect of initial imperfections. 

The principle of minimum potential energy and a Taylor series 
expansion about the equilibrium state are used in the stability analysis. No 
dissipation force is considered. Lagrange's equations of motion for 
conservative systems a r e  used in the dynamic analysis with an applied static 
and/or dynamic load. The initial kinetic energy that will equal the critical 
potential of the saddle is determined. A numerical integration is then used 
to determine the excess initial kinetic energy that will result in  collapse of 
the system. 

The two-degree-of-freedom model used in the analyses is shown in 
Figure 4. It is a double pendulum composed of two rigid weightless bars of 
equal length, 1, which car ry  two masses such that m1 = 2m and m2 = m. 
The pins on which the bars  rotate a r e  frictionless. The generalized coordinates 
a r e  angles cpl and so2 measured from the vertical. An imperfection, a 
small  angle ( E ) ,  is provided for each link to determine the effect of imper- 
fections under impulse loading. The restoring force consists of a nonlinear 
torsional spring at  each pin such that the restoring force is of the form 

I 

- 1  

4 



Figure 4. Two-degree-of-freedom model. 

with p 
similar to snap-through. A force is applied at  the free end of the linkage; 
this is a conservative static force ( P  ) and/or a dynamic force ( P  ) where 

P 

an arbitrary constant. The soft spring is to produce conditions 

S D 
is a function of time. The force of gravity on the masses is neglected. D 

The kinetic energy, T ,  the external potential energy, !2 , the 
internal potential energy, U, and the generalized forces, Ql and Q2, of 
the system shown in Figure 4 a r e  

5 



Qi = P 1 sin( qi + €1) , ( id) 
D 

The total potential energy of the system is 

V = U + Q  . t 2) 

ents for Stable Equilibriu 

The principle of minimum potential energy states that a conservative 
holonomic system is in a configuration of stable equilibrium if, and only i f ,  the 
potential energy is a relative minimum [ 21 e To examine the requirements for 
stable equilibrium, let q. denote the generalized coordinates of the system, 

with i = 1, 2 .  Then the change in  potential energy is 
1 

Expansion of this in a Taylor ser ies  can be written a s  

where 6V is known as  the first variation, 
etc 

ij2V a s  the second variation, 

The system has a stationary value and is in equilibrium if 6V= 0. 
This stationary value can be a maximum, a minimum, o r  a saddle, and the 
state of e+ihility is determined by the higher order terms of equation (3 )  e 

Since the potential energy is a relative minimum for stable equilibrium, 

6 



AV > 0 is necessary and sufficient for  stability [I]. A further necessary 
condition for stability [ b] is 

d2V 2 0  . 

For  the two-degree-of-freedom system shown in Figure 4, the first  
variation is 

Since 6qi and 6q2 a re  independent, the equilibrium conditions can be 
expressed as 

and the equations of equilibrium a r e  

e Critical Buckling Load 

The second variation, a2V, is a positive definite quadratic when 
P < P . With 6V= 0, the second variation is c r  

The right side can be expressed in 
t 

matrix form a s  CPE - CP , o r  

7 



For other than trivial conditions, the character of equation (6) is determined 
by the matrix x . A t  the critical buckling load, the matrix w becomes 
positive semid2inite [ 21 and 

- 

det w = 0 . - 

In determining the critical buckling load of the perfect system, E .  is 

neglected. The higher order terms of 'p are also neglected since near 
i vi = p2 = 0 these a re  much smaller than vi and 'p2. Substitution of 

equations ( i b )  , ( IC) ,  and (2)  into equation ( 6 )  and setting det Tf = 0 yields 

1 

- 

-P1+ 2k -k 
= o  . 

-k -P1+ k 

Solution of this gives 

P =  

and the lower value is the critical or  Euler buckling load 

P =  c r  

8 



To determine the initial buckling mode, P is substituted for P 
in equation (5a) o r  (5b) again neglecting higher orders of 40. e Equation 
(5a) then gives the initial buckling mode a s  

cr 

1 

uations of Motio 

Since the system of Figure 4 is holonomic, the nonlinear equations of 
motion a r e  given by Lagrange's equations [3] a s  

Substitution of equation ( I )  into this gives 

To determine the linear frequency equation with P = 0, assume D 
solutions of equation (9 )  in the form of 

= A.  sin(& + A )  V i  1 

with vi << 1 and q2 << I, which yields 

2 2  (-3ml w + 2k - Psl) A,  + ( -m12 o2 - k) A, = 0 , 

( - m 1 2 0 2 - k )  A i +  (-ml 2 2  o +k-P81)  A 2 = O  . 
9 



This has a nontrivi’al solution only if the determinant of the coefficients of 
A, and A, vanish. Let 

= S 2  and - = N  . m P  w2 
k k 

The frequency equation is then 

s4 + (a - 7 )  S2+ ( N2 - 3N + I) = 0 

If Fs = 0, this reduces to  

2 5 4  - 7s2 + I = 0 

and 

The lowest natural frequency of the linear system is then 

To determine the critical load of the linear system, +at w = 
5’ = 0 and equation (16) becomes 

N 2 - 3 N + 1 = 0  , 

(11) 

, Then 

and 

f 0  



The critical or buckling load is the lower value 

c r  1 P 

which agrees with equation (7)  , 

G. Nondi men sional Equations 

To eliminate certain physical parameters, the equations of motion 
a r e  changed to a nondimensional form by using the dimensionless quantities: 

m12 w s2= - 
k 

pS FS = p 9 

c r  

With 50' = w+ and 50'' = w2;p', the nondimensional equations of motion a r e  

- f l ,  and F is defined a s  F and/or Fs. 
2 D 9 c =  7 -m 

4 where S2= 



The nondimensional equations of equilibrium are 

The nondimensional energy equation is 

where 

E = T  + a  + U  . ( 15b) n n n n  

The remainder of the analyses is based on the nondimensional equa- 
tions. In these, the critical buckling load is 

F = i  . c r  

At  the critical buckling load, equation (4) becomes zero, and the 
necessary conditions for stable equilibrium [ I] a re  

i2  



S % = O  

s4vz 0 , 

The third variation is identically zero, due to the symmetry of the model. 
Therefore, the fourth variation must be positive definite for stable equilibrium, 
or 

Using equation ( 15) setting F = F = 1, linearizing at buckling cr  
for ql and q2 << I, and making use of the initial buckling mode of 
equation (8) , equation (17) is found to be 

Solution of this shows that the system is in stable 3 - 4 5  
2 

where C = 

equilibrium if 

or p < 0.4363 . . . 3 + G  
12 P <  

The critical value of p is therefore defined as  



Because of the symmetry of the model, S4V > 0 as  developed in equations 
( 18) and ( 19) meets the sufficiency condition for stable equilibrium. This is 
shown in Reference 4 a 

To determine the equilibrium paths at bifurcation, equation (14) is 
evaluated at the critical buckling load with an approximation procedure. This 
consists of linearizing in terms of small changes in the variables. Then the 
load change that occurs with small finite displacements of the system can be 
evaluated. Let equation (14) be represented by 

With an increment in the variables, the corresponding increment in f .  is 
1 

a fi a fi a fi 
6 F ,  i = l , 2  . A f . =  - 

1 a<pi + acpz 6402 + 

where the derivatives a re  evaluated in the reference state (Ti, T2, F) 
Since the system remains in equilibrium, 

e 

a f .  a fi 
1 

a fi - 6<Pi+ 6502 + 6 F = 0 ,  i = 1 , 2  . a <Pi 

Substituting equation ( 14) into this gives 

14 



This is placed in the form 

Transposing and using Cramer's rule, this can be solved in te rms  of either 
6ql or  6q2; that is, 

D 6F = , 

To trace the equilibrium paths, equation (21) was programmed on 
the SDS930 using the form of equation (22) . It is necessary to  assign an 
arbitrary el or c2 to make equations (2la)  or (21b) nonhomogeneous. 
The program was run for various values of p using 6q l  = 0.0001 and 

= 0.01. The results, a s  shown in Figure 5, indicate that, with p < p cr 
[equation ( 20)],  the system is in stable equilibrium as  the load must increase 
with deflection. With p > per, the load decreases with deflection and the 

system at buckling is in unstable equilibrium. These correspond to the 
conditions depicted in Figures 3a and 3b, respectively. The unstable system 
( p  > p 
11. B. 

) corresponds to the "snap-through" of shells described in Section c r  

The strain energy is a nonlinear function of q1 and ( q2 - q l )  , and 
the total strain energy is the sum of the strain energies of the two springs. 
From equation (15) the nondimensional strain energy is 

15 



\ 

9 2  

Figure 5. Equilibrium paths at bifurcation. 

The stationary values for vi and (502 - cpl) in equation (23) a r e  found by 
taking 

f 6  



and the maximum value of U in each spring is found to  occur at  n 

The energy plot of the strain energy of each spring is shown in Figure 6. 

8.25 in 

Figure 6. Strain energy of the soft spring. 

Since equation (24) shows that the maximum value of the strain energy 
is an inverse function of 6 , the equilibrium equations a re  modified by the 
use of 

v i =  - , i = i , 2  , 
6 

and the equations of equilibrium in the q. coordinates a r e  
1 

(-26a) 

17 



9 

where E. has been neglected because E. << vi . The strain energy is 
1 1 

The total spring potential energy of the system is shown in Figure 7 
a s  a two-dimensional plot of equal energy contours. It can be seen that the 
potential energy is a minimum at the origin where the system is in stable 
equilibrium, and that there are four saddle points at 

which are labeled positions I, 11, III, and IV, respectively, for ready 
reference. The saddle points in the cp coordinates are found by dividing 
these by pl/' . 

The potential energy contour plot of Figure 7 is important in the 
analysis of the system. If the system is released from rest at  any point 
( o r  arrives at that point with no kinetie energy) , it will move in the 
direction of a lower potential. If it is outside the saddle point energy contour 
in a region of lower potential, the rotation of the system will increase 
uncontrollably. This is considered to  be collapse of the system. 

With a large p (very soft spring) , the saddle points a r e  near the 
origin and the system may collapse with small deflections. A s  p decreases, 
the saddle points move out (the actual saddle point for F = 0 is 

cpi = ( y z  - vi) = 0. I l l  a . . radians for p = 9 .0 ,  and I. 291. . . radians 
for p = 0.6) . A t  p = 0, which corresponds to  a linear spring, the saddle 
points are at infinity. 

S 



Figure 7. Potential energy contour plot of the spring energy. 

I Loading 

The saddle points determined in Section IV. C were based on the 
internal spring energy only. A s  an external load is added, the location of 
these saddles will change. A t  the saddle points for any specified value of 
FS, the system can be represented by the equilibrium equations 

19 



The incremental change remains in equilibrium, and 

a fi a fi a fi 
6771 + - 6q2 + - 6 F = 0 ,  i = l , 2  . - 

a rli a 112 aF 

Substitution of equation (26) into equation (28) gives 

r 1 

where y. and F are evaluated in the reference state. Since these are 

linear in 6qi, 6q2,  and 6FS, they can be solved by Cramer's rule. 

Changing the form to 

1 S 

the solution becomes 

mi = D 6FS 9 

20 



Substitution of the saddle point values into the above gives the initial 
incremental changes in vi and 72 for an incremental external load. The 
initial changes a r e  depicted in Figure 8. 

Figure 8 shows that the changes in the saddle points of positions I 
and I11 a re  mir ror  images about the axes, a s  a r e  the changes in positions I1 
and IV. This is because of the symmetry of the model and the oddness of the 
sine function. The table of Figure 8 also shows that the direction of the saddfe 

point movement reverses when p < 9, a value less than p 

(20)] .  Thus, the system becomes unstable under these conditions at a 

i 
7r c r  [equation 

different value of p .  The relation between sin - and p is shown in  

Figure 9. 
p v  

S 
It is to  be expected that the locus of the saddle points, a s  F 

increases, will t race a path from at least two of the mir ror  image positions 
of Figure 8 to  the origin. A s  the saddle point approaches the origin, it is 
also expected that 

lim F = F  =I . 
S c r  

vi, v2- 0 

Linearizing equation (26) for q1 and q2 near zero gives 

21 



Position 

I 

II 

IL! 

IV 

I 

0 

-1 

0 

772 

I 

I 

-1 

-1 

Figure 8. 

SV 

6 772 

0 

0 

1 -1 - cp'/2 6~~ sin - 
3 p U 2  

Change in saddle points with incremental loading. 
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1 .O 

K 
v, 
.- 

0 
Rad 0 1 2 3 

r :  I 
I I 
1 I 

I 

009 2 1 -6 .406 .lo1 

Figure 9. Relation of sin- ' and p .  
p 1/2 

Then as  and q2- 0 , 

Eliminating 

that at 

from equation (29) and solving the resultant quadratic shows 
r], 

= qz = 0 

lim F = l = F  S c r  
71, r]2 - 0 

There a r e  two ways of determining the locus of saddle points a s  
F 

values of F The other is to  eliminate F from equation (26) ,  which 

gives a single equation represented by 

varies from 0 to I. One is a direct solution of equation (26) for various S 

s' S 

23 



where p 
solution is a family of curves for various values of p.  When equation (30) 
has been solved for vi and q2, the values can be substituted into equation 
(26) to  determine FS. 

is an arbitrary constant. From this it can be seen that the 

The solutions of equation (26)  for values of p = 0.6  and p = 9 . 0  
a re  shown in Figure 10 for the change in saddle point of position I. The change 
in position Ill is a mir ror  image of this .  The locus of saddle points from 
positions I1 and IV do not approach the origin because 772 is increasing more 
rapidly than ql. Figure 10 also shows that the solution curves do not vary 
much for widely spread values of p ,  but that there is some difference in the 
location of the saddle point for the same values of F 

S' 

ddle Point Equal Energy Contours 

A s  F increases from zero and the saddle points change as shown 
S 

in Figure 10, the entire potential energy contour plot of Figure 7 will change. 
Using equation (25)  to  express the energy in terms of q1 and q2 yields 

where E has been neglected because E .  << r/ . Then the potential energy of 

the external load and the internal springs can be calculated for any load and 
position. Using the values of qi, q2, and Fs that were the basis of Figure 

10, the saddle point equal energy contour lines were calculated for F = 0, 

0 .5 ,  and 0.9,  and are shown in Figure I1 for a /3 = 0.6. Contour lines for  
saddle points of other values of F 

same general shape. 

1 i 

s 

would lie in between these and be of the s 
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0 "  
1.0 

Bh 

S' Figure 10. Saddle point location for values of F 

The change in saddle points of positions I1 and IV as F, increases 
U 0 .25  

moves these points outside of the contour V = - of Figure 7. They 
p 1 / 2  

are still saddle points, but at a higher energy level than the saddle points of 
positions I and 111. 

The F contour lines of Figure 11 have the same significance as 

those for F = 0 discussed in Section IV. C. The system without kinetic 
S 

s 
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S' 
Figure 11. Saddle point potential energy contour plot with F 

energy will seek a lower potential energy level. If it is in a region outside 
the saddle point energy contour for that F 

saddle point, the system will collapse. 

and at a lower potential than the 
S 

Using equation (31) and the values of q l ,  q2, and F that determined 
S 

Figure I O ,  the potential energy of the system can be calculated at the saddle 
points. Then the critical potential energy is 

v = U n + a  
nFS Cr (32) 



where U is the strain energy of the system at the saddle point corresponding 
n 

to FS9 and ~2 is the potential energy of that static load. Then, V is cr 
nFS 

the energy that must be added to the system when cpi = 402 = 0 to bring the 
system to the saddle point energy level. Figure 12 shows V for ,6 = 0.6 

and /3 = 9. 0. 
c r  

U" - n r  

/ U" 

-0.3 

s 

Figure- 12. Critical potential energy. 
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The analyses of Section IV were confined to equilibrium states and a 
determination of the critical potential energy for these conditions. This 
section consists of analyses of the dynamic responses to impulsive loads. 
The impulsive loads considered a re  of two types: 

a. A single square wave such that the impulse, I ,  is 

I = FDAr (33) 

where T is the nondimensional time of equation (12). 

b. A pure impulse where 

The pure impulse is an initial velocity of pi and/or p2 from the equilibrium 
state without any load being applied. It represents the limit condition 

I = lim F D A ~  
AT- 0 

The use of a pure impulse is  necessary because the results would be influenced 
by the length of AT in equation (33 ) .  Also the model system of Figure 4 
requires an imperfection, E ,  to initiate motion when loaded with the impulse 
of equation (33 ) ,  while the pure impulse will result in movement of the model 
system without an imperfection. 
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When a square-wave impulse is applied to  the imperfect system, qli 
and q2 change. The initial velocities of q1 and q2 can be determined by 
Lagrange's impulsive equations [ 51. Since the system is at rest prior to  the 
impulse, the kinetic energy after the impulse is 

A aT  - -  - Qi a gi ( 34) 

A 
where Q. is the generalized impulse. Using the nondimensional energy 

equation ( 15), equation (34) becomes 
1 

where 2; is the initial velocity after the impulse. In the initial condition, 
ql = cp2 = 0. Using equation (33) and linearizing for and c2 << I, the 
initial velocities a r e  found to be 

. Therefore, the initial velocities are 7 - G I  
4 

where I = F AT and S2= D 
dependent on the imperfections in the system as well as the impulse. This 
also shows, as previously stated, that an imperfection is required for the 
model to move with an impulse a s  
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Section IV. C showed that if the system was at rest outside the outer- 
most saddle point equal energy contour line in a region of lower energy, it 
would collapse. Since the system is conservative, the initial kinetic energy 
is equated to the saddle point potential energy with the system at rest. Then 

E = T  = U  + a d  , n nb nf 

nf where E 

and 

respectively, at the saddle point. With equation (32) , equation (36) becomes 

is the total energy, Tnb is the initial kinetic energy, and U 

a r e  the final strain energy and the potential energy of the load, 
n 

T n b = U  nf + O n f = V  c r  ’ ( 37) 

and the initial kinetic energy required to reach the saddle point energy is 
equal to  the critical potential energy of that saddle point. Since the potential 
of the external load is a negative value [equation ( 15)], equation (37) shows 
that an external load will decrease the initial kinetic energy required to 
reach the saddle point. 

Equation (37) is evaluated first without an external load. Using 
equation (25)  and the energy equation (15) with F = 0, equation (37) is S 

Transposing and setting ql and q2 at any of the saddle points of Figure 7, 
equation (38)  becomes 
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In the q~ coordinate system, this is 

Solution of this gives the critical pure impulse velocities for initial 
kinetic energies that will equal the saddle point energy under the conditions 

F = F  = O  S D  

The solution of equation (39) is the locus of points shown in Figure 13. This 
locus of points is an ellipse with the major axis rotated 2 2 . 5  degrees from 
the vertical. 

Addition of an external load would change the saddle point and reduce 
the energy level on the right side of equation (39 ) .  Thus, the solution for the 
initial pure impulse critical values would be a series of concentric ellipses 
within that shown in Figure 13, with the actual ellipse dependent on F S' 

D. Critical Imperfections 

The relationship between the imperfections or eccentricities and 
e2 and the critical impulse I to reach the saddle point energy can be 

determined by substituting equation (35) into equation (40) to get 
c r  

where S2 and C a r e  constants with the values previously determined. The 
solution of equation (41) is a locus of points dependent on the value of I . cr 
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\ 

Figure 13. Critical pure impulse velocity when F = 0. 
S 

Figwe 14 shows the solution for the value I = 1064. These solutions a r e  

also ellipses a t  an angle of 22.5 degrees from the coordinate system, and 
have the same eccentricity as that of Figure 13. 

cr 

Equation (41) and Figure 14 a r e  based on the condition Fs = 0. If an 

external load is applied to the system, the energy level of the saddle is 
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\ I = 1064 

-1 

Figure 14. Critical impulse for imperfections of the system. 

reduced. Thus, the right side of equation (41) would be reduced and the solu- 
tion would be a series of concentric ellipses within that of Figure 14, with the 
actual ellipse dependent on F Points outside the ellipse result in increased 

kinetic energy. 
so 

Equation (41) gives the values of the imperfections in E. that will 
1 

cause the system to  reach the saddle point energy level for specified values 
of the spring softner, p,  and the applied impulse, I. It can be seen that 
a s  the spring softens ( p  increases) or the impulse increases, the critical 
values of the imperfections will decrease, as intuitively expected. To 
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determine the critical impulse to  reach the saddle point energy level for 
specified imperfections equation ( 41) is rearranged as 

S 
I =  c r  

Ise Velocities to t h e  I mperfect System 

The relation between the pure impulse velocity in Figure 13 and the 
velocities of the imperfect system given by the Lagrange impulsive equations 
can be obtained. For any given conditions of the imperfection €1 and €2, 

a relationship is established for viv and cp2' by equation (35) . This can 
be defined a s  

A A 

Y j =  1, 2, 3 , .  . . A A '  
v2' = Kj vi 

Converting this by equation (25) to 

and substituting into equation (39)  will  give a solution corresponding to a 
point on Figure 13. For example, let = 0 and = 5 ,  an arbitrary value. 
Then from equation (35)  

A @I A CI 
<pi' = - 5 5 9 v2' = 3 3 5 

Solving equation (39)  with equation ( 42) will give the values of point A on 

Figure 13. In a similar manner, point B corresponds to €2 = 7 q, and 
1 
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1 
point C t o  e2 = - el. Figure 15 shows representative configurations for 3 
selected points on the ellipse. In this manner, a pure impulse velocity can 
be determined that will represent an imperfect system without the distortion 
introduced in the equations of the imperfect system. 

Figure 15. Configurations represented by pure impulses. 
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Figure 14 is based on the solution of an equation using the imperfec- 
tions cci and e2 of the system. It has already been shown that Figure 13 
can be related to imperfections so  there is a correspondence between Figures 
13 and 14 and a transformation of coordinates can be established. This 
transformation is 

z i  = Gi Y i  Y 

z2 = 6 2  Y2 

where 

The transformed locations of points A ,  B, and C of Figure 13 a re  shown on 
Figure 14. 

F. Responses to Impulsive Loads 

To determine the actual responses to impulsive loads, the nondimen- 
sional equations of motion (13) were programmed for the Univac 1108 using 
a fourth-order Runge-Kutta integration. The different values of F and p 
were used with pure impulse velocities determined from equation (40) that 
would give the system an initial kinetic energy equal. to the saddle point 
energy. Plots of the responses of the system to these loads and impulses are 
shown :1= Figures 16 through 21 for a spring softner constant p = 0.6. 

S 

The solid lines of Figures 16, 17, and 18 show the response with 
F = 0 t o  the initial velocity of points A, B, and C of Figure 13, respectively. 

In none of these does the configuration reach a point outside the saddle point 
energy contour. 

s 
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,O =0.6 

Initial kinetic energy to reach saddle potential energy. 

Initial kinetic energy plus 6 percent. ------ 

Figure 16. Response of point A to pure impulse ( F  = 0) . S 
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/3 =0.6 

Initial kinetic energy to reach saddle potential energy. 

Initial kinetic energy plus 2 percent. ------ 

Figure 17. Response of point B to pure impulse (F = 0). S 
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P = 0 . 6  

Initial kinetic energy to reach saddle potential energy. 

Initial kinetic energy plus 16 percent. ------ 

Figure 18. Response of point C to pure impulse ( F  = 0) . S 
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Initial kinetic energy to reach saddle potential energy. 

Initial kinetic energy plus 70 percent. ------ 

Figure 19. Response of point A to pure impulse (F  = 0.5) . S 
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Initial kinetic energy to reach saddle potential energy. 

Initial kinetic energy plus 2 percent. ------ 

Figure 20. Response of point B to pure impulse ( F  = 0.5) e s 
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Figure 21. Response of point C! to pure impulse (F  = 0.5) s 

P =0.6 

Initial kinetic energy to reach saddle potential energy. 

Initial kinetic energy plus 20 percent. -----_ 
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A static load, F = 0 . 5 ,  was then applied to the system. The S 
responses a r e  shown by the solid lines in Figures 19, 20, and 21, which 
correspond respectively to the conditions of Figures 16, I?, and 18, with the 
exception of the added external load. Again, the system does not go outside 
the saddle point energy contour. 

No equation was found to  show the excess energy required to drive 
the system outside the saddle point energy contour and cause the uncontrolled 
deflection and failure of the system previously discussed. Computer runs 
were made with increasing initial kinetic energies until failure of the system 
resulted on the first cycle. The responses a r e  shown by dotted lines in 
Figures 16 through 21. 

For the unloaded configuration, the excess energy required for 
failure varied from less than 2 percent for point B of Figure 14 to  almost 
16 percent for point C. For the system loaded at  F = 0 .5 ,  the excess 

energy varied from less than 2 percent for point B to nearly 70 percent for 
point A.  The excess energy required to make the system fail appears to be 
related to the direction the system initially moves, being lower when it moves 
directly toward a saddle. 

S 

Several of the points of extreme deflection for the systems with excess 
energy in Figures 16 through 21 a r e  outside the saddle point energy contour, 
but in regions of higher energy. Failure only occurs when it is outside this 
contour in  a region of lower energy. Because of computer time limitations, 
none of these systems was run long. Without dissipation, it is probable that 
if they ran long enough, all would get in a position where they would fail. 
Figure 16 shows an example of this, as  the system did not go over the saddle 
on the approach to +( cp2 - v i ) ,  but did at -( cpz - ql). Failure of the system 
in Figure 19 is over the saddle point of position 11, which is at a higher 
energy level than position I. A longer run at a lower energy level might put 
it over the saddles shown on the contour plot. However, since all real  systems 
have some dissipation energy, early failure is considered a better measure of 
stability. 
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These analyses were conducted with the nondimensional parameters 
p ,  E . ,  F, and I to determine their effect on the system, and the major 

conclusions are contained in Paragraphs A through D below. The dimensional 
parameters k, 1, and m were not explicitly considered; however, some 
general comments concerning them a r e  contained in Paragraph E. Areas 
for additional study a r e  listed in Paragraph F. 

1 

ffect of P 
The spring softening term,  p ,  affects the response in three ways: 

I. Under static loading, values of p greater than the critical value 

result in unstable equilibrium at the critical ; equation (20) 1 3 + G  
[ P  c r  = 12 
buckling load and cause a "snap-through" effect a s  shown in Figure 5. 
However, the unloaded deflected system becomes unstable at  the saddle 

point at a different value of p 

2. The location of the saddle point is an inverse function of pi/' 
[equation ( 24)], and increasing p moves the sp-ddle point toward the origin 
(Fig. 7) ,  which reduces the amount the system can deflect prior to collapse. 
Also, an increase in p decreases the energy of the deflected springs 
[equation (23)]  and the critical potential energy (Fig.  12) . Since V is c r  
equal to the energy required to reach the saddle point, an increasein p 
reduces the dynamic load required to  cause collapse. 

3. Changing the value of p changes the equation of motion: an 
increase in p results in greater amplitudes of the two angles and an increase 
in the Deriod of the system. No analysis of this was made, but the different 
responses for two inputs, identical except for p,  a r e  shown in Figure 22. 

is not important in the dynamic response a s  there is little difference in 'cr 
responses for values above and below p . c r  
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Figure 22. Response with different values of p . 
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e 
1. For the pure impulse (initial velocities of ql' and qZp equivalent 

to  an impulsive load), the imperfections are not used. However, the initial 
pure impulse velocities correspond directly to particular imperfections 
(Section V. E and Fig. 15) . 

2.  The values of E~ and ~2 that combine with an impulse load 
to  equal the critical potential energy, 

the ellipse of Figure 14. For a given impulse, I all values of el and c2 

on the ellipse result in the same initial kinetic energy. Values of E .  within 

the ellipse will give less energy, and values outside the ellipse will give 
greater energy and result in collapse of the system. 

and cause collapse are given by 'cry 

cr' 

1 

fect of Static Loading 

Increasing the static loading, FS, decreases the kinetic energy that 

the system can absorb without collapse [equation (32) and Fig. 121. This 
results in smaller concentric ellipses in Figure 13 and reduces the energy 
pulse required to  reach the saddle point energy. Loadings greater than 
F = I will result in collapse without any initial kinetic energy (provided the 
model is perturbed slightly from the origin, vi = cp2 = 0). 
S 

An initial pulse of energy in excess of V will result in the total c r  
energy of the system exceeding the saddle point energy, and the system will 
collapse if it reaches a configuration outside the energy contour of the saddle 
point and in a region of lower potential energy (Fig. 7) . The excess energy 
required for collapse on the first  cycle ( a  cycle of the system is considered 
to be tile closed path of vi) varied from less than 2 percent to  70 percent 
and is dependent on the initial conditions. A s  shown in Figures 16 through 
21, it is less when the system initially moves directly toward the saddle point. 
If a static load is applied, a smaller concentric ellipse would give the velocities; 
however, with a static load, the direction to the saddle changes. 
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Figures 16 through 21 show that the response of the system to  an 
impulse is an oscillation of the upper angle ( <p2 - cpl) in relation to the 
lower angle ( <pi) , while the latter oscillates more slowly. The rapidity 
of motion of q2 - <pi, in relation to pi,  is dependent on the initial 
conditions. Since the response of the system in a configuration space does 
not trace the same path on each cycle, it is probable that, without a 
dissipation function, any system with an initial energy in excess of V 

eventually reach a point where it will collapse. 

will 
C T  

E. Comments on  t h e  Dimensional Parameters 

The effect on the system of parameters k, 1, and m was not 
analyzed. However, certain comments can be made concerning them. These 
parameters a r e  contained in the coefficients of cpl and p2 in the nondimen- 
sional equations and in the term S2 [equation (12a)l .  

Changing the assumed mass distribution o r  making the bars of unequal 
length (Fig.  4) will change the coefficients of cpl' and 'p2* in equations (35) , 
(40) , and ( 41) . This would change the shape and inclination of the response 
ellipses in Figures 13 and 14, resulting in different values for the critical 
impulse. Unequal bar lengths would also change V by changing the relation 

between Q and U. 
c r  

ml2u2 In the nondimensional equations, S2 = - , where w is the 
7 - a  K 

'l 4 lowest natural frequency of small oscillations. The use of S2 = 
m 1" 
k 

- 
as  the lowest natural frequency assumes that - = 1. Actual values of 

k, 1, and m could change the value of S2. Assuming the same relation- 
ship for ml, m2, l,, and 12, a change in S2 would only affect the size 
of the ellipses in Figures 13 and 14. An increase in S2 would decrease the 
ellipse in Figure 13 and result in smaller pure impulse velocities for collapse. 
This is the same effect a s  that of an increase in p .  It would increase the size 
of the ellipse in Figure 14 and permit larger imperfections for a given impulse 
without collapse. This is the opposite effect a s  that of an increase in p .  In 
other words, a system with a higher natural frequency of small oscillations 
( stiffer against small displacements) admits smaller impulsive loading, but 
larger imperfections for a given impulse without collapse. The response for 
three different values of S2 is shown in Figure 23. 
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Figure 23. Response with different values of S2 . 
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The dimensional parameters discussed in this paragraph only affect 
the quantitative values of the analyses and do not change the conclusions. 

The following a re  areas  where additional analyses would be desirable: 

I. The applicability of the nonlinear equations to  very small  deflec- 
tions. This includes the effect of p on collapse when the saddle point is near 
the origin. 

2. Further analysis of the effect of p on the system. 

3. The effects of S2 and the different dimensional parameters on 
the system. 

4. The effect of the various parameters on p . cr 

5. The applicability of phase-plane trajectories to the analysis. 

6. The excess energy requirements for failure after a number of 
cycles and the effect of the direction of initial displacements. 

7. The extension of this concept to multi-degree-of-freedom systems. 

8. Introduction of dissipation forces. 

ysical Systems 

These analyses a r e  initial theoretical investigations of a simplified system to 
determine methods that can be used in  stability analyses. Further studies a s  
outlined above a re  needed to determine the effectiveness of the methods as the 
system deflections approach linearity o r  the system becomes more complicated 
(i.e.,  more degrees of freedom) . Because of the assumption of frictionless 
pins and the use of nondimensional quantities, direct application of the com- 
pleted analyses to physical systems is not possible. Introduction of dissipation 
forces at the pins and conversion of the equations to dimensional form (or  
correlation of dimensional characteristics with the numerical values of the 
nondimensional equations a s  discussed in paragraph VIE) is required to  make 
the analyses applicable to physical systems. 
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