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ABSTRACT 

The response of a closed cylindrical shell is determined for acoustic 

excitation which is random in time but deterministic in space. Two slightly 

different formulations of the statistical energy method are utilized to compute 

shell displacement and interior pressure responses which are comparedwith 

measured values in 113-octave frequency bands. Structural damping estimates 

are based on linear viscoelastic theory. Various 1/3-octave band averages 

are defined for computing other frequency-dependent parameters for the 

system. Rather good overall agreement between theoretical and experimental 

results for shell response is achieved when the non-ideal characteristics of 

the l/3-octave filters are accounted for. On the other hand, agreement for 

interior pressure response was somewhat less satisfactory. A detailed 

discussion is given for several possible sources of discrepancy. 
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INTRODUCTION 

Determination of the response of elastic structures to distributed 

random pressures is of fundamental concern in many engineering applica­

tions. It assumes particular significance in aerospace environments where 

acoustical energy from several sources1 exerts a profound influence on the 

dynamic response of the structure, as well as on its interior components. 

These pressures are usually random in time and are spatially distributed 

in a manner which is dependent on the phase of the launch trajectory. In 

general, the spatial distribution is not random, but is a deterministic 

function which varies with the speed of the vehicle, as well as with its 

position in the trajectory. 

Barnoski, et al. Z have reported a recent survey of the various methods 

available for the prediction of structural response to random excitation. 

However, most of these methods involve the application of empirical results 

extrapolated from previously available experimental data. The modal, or 

classical method, and the statistical energy method are two- that are more 

generally applicable, and are developed with at least some mathematical 

rigor. Nevertheless, both methods involve numerous simplifying assumptions 

which inevitably limit their use in a given practical case. 

The modal method is generally considered to be useful in low frequency 

regions which include low modal density. Some of its limitations for applica­

tion to the case of a cylindrical shell excited by random acoustic excitation 

were determined in the initial phase 3 of the present program. The results 
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of the remaining work, which are reported herein, represent an investigation 

of the response of the same basic cylindrical configuration over much wider 

frequency ranges which include high modal density and significant acoustic 

radiation. Two different formulations of the statistical energy method are 

employed for prediction and compared with the results of experiments which 

were designed to determine the practical applicability of this method. Thus, 

it is applied to a problem involving an excitation pressure having a space­

wise deterministic distribution, rather than a diffuse sound field, in order 

to simulate, at least qualitatively, a form of the acoustic fields 

encountered in space vehicle applications. 



3 

EXPERIMENTAL ANALYSIS 

Description of Physical System 

Various previous investigations 4 ' 5 have considered the response 

of a cylindrical shell to a spatially diffuse random acoustic excitation. For 

the present case, a non-diffuse excitation is desired. Therefore, the 

physical arrangement depicted in Figure I was selected. This is a similar 

system to that which was utilized in our previous effort 3 , except that more 

elaborate calibration procedures are necessary at higher frequencies, and 

the cylinder was capped in this case. The acoustical speaker was chosen 

to provide a reasonably effective area of excitation, yet small enough to 

minimize the computations required to obtain theoretical numerical 

results. A photograph of part of the actual apparatus is shown in Figure Z. 

The entire apparatus, which was designed to perform several related 

experiments, was composed of six parts: test fixture, excitors, excitation 

sources, transducers, analyzers, and recording devices, all of which are 

shown in the schematic of Figure 3. 

The test fixture was a thin-walled aluminum cylinder whose physical 

properties are given in Table I. This cylinder was bolted (by a welded-on 

ring flange) to a heavy steel plate at its bottom and similarly to a heavy 

3/4-inch aluminum disk plate at its top, which put the cylinder in an em L 

and nearly fixed-end configuration. Wood baffle plates of 1/4-inch 

thickness separated the interior space from the end plates. An isomode pad 

was used to cushion the steel base plate on crossed steel I-beams, which 



> TANGENT 
PLANE 

CIRCLE IN 
TANGENT PLANE 

/ R 
I 

\ / 

Xo 

2825
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Figure 2. Photograph Of Apparatus
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TABLE I. PROPERTIES OF TEST CYLINDER
 

Ps = 2.59 X 10 - 4 lb-secZ/in4 

hs = 0. 020 in. 

a 1Z. 4Z in. 

= 30.0 in. 

fr = Z, 640 Hz 

fc 23,300 Hz 

Material = 6061-T6 Aluminum. 
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in turn rested on a concrete floor. The function of the isomode pad was to 

eliminate excitation of the cylinder through floor vibrations. A 3/4-inch 

hole was drilled through the center of the aluminum top plate of the test 

fixture to allow access to the interior of the cylinder, so that a study of 

the characteristics of the internal acoustic field was possible. Figure Z is 

a photograph of the test fixture in the configuration in which the acoustical 

speaker was used as an excitor. 

Two excitors were used. The primary one was aft 8-inch "hi-fi" 

loudspeaker which was mounted in relation to the cylinder as described by 

the coordinate system in Figure 1, where x 0 = 15.00 inches. The plane 

defined by the edges of the speaker cone was parallelto and 0. 85 inch from 

the tangent plane to the cylinder at the excitation center (r, 6, x = a, 0, xo). 

The acoustical speaker was mounted independent of the test fixture, to the 

concrete floor by a steel support as seen in Figure 2. Measurement of the 

properties of the acoustic field generated by the loudspeaker will be 

described under Calibration Procedures. 

The secondary excitor was a small magnet whose pole pieces were 

parallel and close together (approximately 0. 25 inch). The coil of this 

magnet could be driven by an AC power source and the pole pieces could be 

placed in close proximity to the cylinder wall (approximately 0. 10 inch). 

The interaction of eddy currents produced locally in the cylinder wall and 

the AC magnetic field effected a remote point excitation of the cylinder at 

twice the frequency at which the magnet was driven. This magnet was 
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used in only a few experiments which were designed to identify acoustic 

modes excited within the interior air cavity. 

The excitation sources were the signal generators used to drive the 

excitors through a 200-watt MacIntosh power amplifier. There were 

essentially four different excitation sources; a sine-wave generator and 

three sources of random noise. The first random source was created by 

taking the output of an Elgenco gaussian random noise generator, equalizing 

by means of LTV peak-notch filters to compensate for the frequency response 

characteristics of the loudspeaker, and taping the result on an Ampex 

FR-1800L tape recorder for frequencies below Z. 5 kHz. This 60-Hz to 

2. 5-kHz nominally equalized random noise signal on tape was called our
 

wide-band excitation. The second random source was formed by filtering
 

this wide-band taped signal through 1/3-octave filters, having standard
 

center and half-power frequencies as defined in Table II. The taped signal 

was played through these filters one at a time using filters from 100-Hz 

through 2-kHz center frequencies. This was called our 1/3-octave equalized 

signal. The third random source was the Elgenco random noise generator 

filtered directly by the 1/3-octave filters for center frequencies from 100 Hz 

to 5 kHz. This was called our 1/3-octave non-equalized signal. 

Five transducers were used to measure characteristics of the 

cylinder under excitation. Three of these were Bentley displacement 

*detectors located relative to coordinates of Figure 1, while values for these 

probe locations are given in Table III. A fourth transducer was a B&K
 

1/4-inch diameter microphone located at various points inside the cylinder.
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TABLE II. 1/3-OCTAVE FILTER CENTER FREQUENCIES
 
AND 1/Z-POWER POINT FREQUENCIES
 

Filter No. Center Frequency 1/2-Power Point Frequencies
 

1 100 88 11i
 

17 4000 3530 4440
 

z 125 Iil 140
 

3 160 140 178
 

4 z00 178 222
 

5 250 2ZZ 279
 

6 315 279 355
 

7 400 355 443
 

8 500 443 557
 

9 630 557 705
 

10 800 705 887
 

11 1000 887 1112
 

12 2Z50 IIIZ 1405
 

13 1600 1405 1778
 

14 2000 1778 2220
 

15 2500 2220 2790
 

16 3150 2790 3530
 



TABLE III. TRANSDUCER LOCATIONS 

0 x 

Probe 1 810 7.55 in. 

Probe Z Z040 IZ.25 in. 

Probe 3 3180 Z4.40 in. 
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The fifth transducer was an Endevco accelerometer located on the top plate 

°of the test fixture at various points along a radius at 0 = 45 . 

Transducer signals were amplified and analyzed by three analog 

methods as shown in Figure 3: (1) The signals were fed directly into a 

Ballantine voltmeter which has an output proportional to the mean square of 

its input, and this output was time-averaged for 5 to 10 seconds as desired. 

(2) The signals were filtered with the 1/3-octave filters and then the time­

averaged mean square signal was obtained with the Ballantine meter. 

(3) The signals were fed into a Spectral Dynamics SD-101 tracking filter with 

a 10-Hz bandwidth and then into an SD-109 Power Spectral Density (PSD) 

Analyzer with variable RC. The latter system allowed relatively narrow 

band analysis. The results of all analysis methods were recorded either on 

X-Y recorders or on oscilloscope camera film. 

Calibration Procedures 

In order to define the spatial distribution of the acoustic field, 

calibrations were performed on the speaker prior to its use in the experi­

ments. The instrumentation setup for the speaker calibration is seen in 

block diagram form (within the dashed-line area) in Figure 3. The B&-K 

microphone was mounted in a baffle which simulated a segment of the 

cylindrical shell of the test fixture. The axis of the highly directional 

microphone was coincident with the shell radius, and the entire shell 

segment could be rotated on this radius. Thus, the microphone could 

effectively measure the acoustic field pressure on the cylindrical surface at 

points referenced to corresponding projected points which lay in a plane 



tangent to the segment at its intersection with the speaker cone axis. A 

photograph of the speaker and cylinder segment setup may be seen in 

Reference 3. 

Mapping of the acoustic field spatial distribution was done for the 

center frequencies of the 1/3-octave filters only, and was thus considered 

to be an average over each respective band. The field was found to be 

essentially symmetric with the axis of the speaker cone; thus, only one 

coordinate (R in Figure 1) was necessary to designate a point located in the 

tangent plane, but coincident with a point on the shell at which the sound 

pressure was measured with the microphone. 

In order to obtain the field distribution, a cross-spectral density was 

computed between the pressures measured at R = 0 and those for various 

R t 0. These data were found to consist of real (GO) and imaginary (QUAD) 

parts, and were completely deterministic in space as was expected. Data 

were taken relative to CO of CPSD = 1.0 for R = 0. The general empirical 

equation 

B0k R = exp (-A 0 R 0 ) cos (ilR/P0 ) (1) 

was found to fit the CO data well for various values of A0 , B 0 , and P 0 , which 

were dependent on the center frequencies of the 1/3-octave filters. The 

empirical equation 

kI = Do cos (IrR/Go) - B 0 (Z) 
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fit the data for the QUAD part where the constants Do, E 0 , and Go also were 

dependent on the center frequencies of the 1/3-octave filters. Values of 

these parameters for various center frequencies are given in Appendix A. 

Relative CO and QUAD plots as a function of R are given in Figures 4a and 4b. 

In order to provide a complete absolute calibration of the speaker 

field, the above- relative distribution must be combined with a power spectral 

density measurement at R = 0. For this, the ratio of the time-averaged 

acoustic power in RMS psi squared to the RMS volts squared of signal 

across the speaker terminals was measured for the three different random 

excitation sources at R = 0. For the cases of 1/3-octave equalized and 

non-equalized excitation sources, the microphone and speaker terminal 

signals were measured directly by the time-averaged mean square Ballantine 

apparatus. For the case of the wide-band excitation source, the microphone 

and speaker terminal signals were analyzed with the 1/3-octave filters and 

the resultant signals measured with the time-averaged mean square 

Ballantine apparatus. A PSD plot of the speaker output in psi 2 /Hz for the 

constant wide-band input to the speaker terminals (R = 0) is shown in 

Figure 5. This plot was obtained with the use of the Spectral Dynamics 

equipment using a 20-Hz filter, RC = 3 sec. Circled points on the plot at 

the 1/3-octave filter center frequencies were obtained from the calibration 

constant for the speaker by using the 1/3-octave equalized excitation source. 

The averaging effect of these wider-band filters compared with the 20-Hz 

filter may be clearly seen. A list of the speaker calibration constants is given 

in Appendix B. 
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The Bentley displacement probes were calibrated at locations on the 

cylinder wall of the test fixture with the use of a micrometer head to measure 

static distance to 10- 4-inch accuracy. However, this linear range about the 

operating point used during the experiments was more than sufficient to 

insure good dynamic results to 10- 6 -inch accuracy. The axial microphone 

was calibrated with a B&K IZ4-dB audio pressure standard. The accelerometer 

was calibrated with a Kistler Model 808K/561T quartz vibration calibration 

standard.
 

Experiments Performed 

Three major experiments were performed in relation to shell response, 

along with additional supporting experiments. For the appropriate instrumen­

tation setup and the given switch locations, refer to Figure 3. The major 

experiments involved measurements of shell displacement and interior air 

pressure response for the following conditions: 

(1) 	 Wide-band equalized excitation source--the loudspeaker was used 

as the exciter, and the output of the proximity probes was analyzed 
with the 1/3-octave filters (switch locations A, a, 1-4, I) and the 
Ballantine meter. 

(Z) 	 1/3-octave equalized excitation source--the loudspeaker was 
used as the exciter, and the output of the proximity probes was 
analyzed with the Ballantine meter directly (switch locations 
B, a, 1-4, I). 

(3) 	 1/3-octave non-equalized excitation source--the loudspeaker 
was used as the exciter, and the output of the proximity probes 
was analyzed with the Ballantine meter directly (switch locations 
C, a, 1-4, II). 

Additional supporting experiments were also performed. Top plate 

accelerations were measured at points along a radius for 1/3-octave 



non-equalized excitation (switch locations C, a, 5, II). A 10-Hz resolution 

PSD of the outputs of proximity probe No. 2 and the microphone was obtained 

when using random noise through a 10-Hz tracking filter as an excitation 

source (switch locations D, a, 3-4, III). Damping measurements for the 

tank were obtained by means of sine wave excitation with the speaker and by 

observing the probe outputs on oscilloscope records. Both I/2-bandwidth 

and free-decay methods were utilized. Not all components for these experi­

ments are shown in Figure 3. Finally, some cursory observations of dis­

placement probe and microphone outputs were made with excitation by means 

of the electromagnetic coil. This method was used to identify low frequency 

air modes as symmetrical. 
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THEORETICAL ANALYSIS 

General Modal Relationships 

Before proceeding to discuss the details of the statistical energy 

method as applied to the vibration of a cylinder in air, first it is necessary 

to recognize the existence of different modal groups over various parts of 

a wide frequency band. Some of the principles set forth by Manning and 

Maidanik6 will be utilized for this purpose. 

Figure 6 shows a diagram which depicts many of the modes of the 

present cylinder over a wide frequency range. The general relationship 

utilized for calculating these modes is 

= {jZ a4[(n/a)Z + (Motrii)ZlZv 

]l/2+ (1- _V)(mrjI)4/[(n/a)Z + (m0el ZI (3) 

where 

= f/fr, P0 (hZ/lZa2), m= m + 0.2 

_
 
2 - z2 z E/[Ps(l - v?)] 

Note, that following Arnold and Warburton 7 , an effective axial wave number 

m 0 is utilized for the present case of a cylinder with partially fixed ends. 

For convenience, the vertical frequency scale of Figure 6 has been divided 

into the standard 1/3-octave bands at the i/Z-power point frequencies 

previously given in Table II. 
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The modes of the cylinder have been separated into three distinct graups 

representing non- radiating (NR), acoustically slow (AS), and acoustically fast (AF) 

modes. Non-radiating and acoustically slow modes are separated by the straight line 

v = (c 01cjln (4) 

while acoustically slow and acoustically fast modes are approximately 

separated by the curve 

n = (c,/c 0 )v Re [((1 - v?)i/- -[l - (Vc)Z]IZ}I (5) 

where
 

C2 Eh 3 
0fcVC=c/fr, 

r,w(D/pshs)i/- ,D 12(l - VZ) 

It should be recognized that additional, acoustically fast modes occur at 

higher frequencies outside the present range of interest. 

Modal density for the cylinder obviously becomes quite high within 

the frequency range considered in Figure 6. For the sake of information, 

a modal density count for total modal density and density of acoustically fast 

modes are compared with theoretical predictions in Figure 7. Theoretical 

values are based on Eqs. (67) and (68) of Bozich and White 5 , which are 

valid for a simply-supported cylinder. There is obvious disagreement for 

the total modal density which may result from the extrapolation of Eq. (3) 

to the case of a cylinder with nearlyfixed ends. Therefore, in thepresent 

work, modal density was based on actual modal count obtained from Figure 6 
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in order to be consistent. Thus, for each 1/3-octave band, the number of 

each type of modes IZAF, 1ZAS, and TZNR were counted directly from 

Figure 6, along with Eqs. (4) and (5). 

Power Balance Equations 

General Concepts 

The general formulation of the statistical energy analysis 

involves equations for power flow in and out of designated subgroups of a 

system. Barnoski, et al. , 2 and Ungar 8 have presented recent summaries 

of the fundamentals of the method and are careful to point out the existence 

of numerous limitations on its use. Further discussion of these limitations 

has been presented by Zeman and Bogdanoff 9 . For our purpose here, it 

will be convenient to repeat the assumptions given by Reference 2 as 

required in the application of the method: 

(1) 	 Modes of each substructure of interest must be grouped 
into similar sets. 

(Z) 	 Coupling between modes in a group is negligible. 

(3) 	 Coupling between groups is conservative. 

(4) 	 Modal damping is light and modal response is mostly 
resonant. 

(5) 	 The power spectrum of force is approximately constant 
over the bandwidth of interest. 

(6) 	 Kinetic energy is evenly divided among modes in a set. 

(7) 	 Kinetic energy in coupling must be small compared to 
modal kinetic energy. 

(8) 	 The coupling factors between modes is constant and not 
strongly frequency dependent near the resonance condition. 



2Z5
 

Use of these assumptions will become apparent in the development 

that follows. 

Detailed Derivation 

One possible form of power balance equations for the vibration 

of a cylinder in air has been presented by Conticelli1 0 and Bozich and 

White 5 . However, their equations do not directly contain terms which allow 

for a non-diffuse excitation, or for non-radiating modes. Therefore, we 

will first present a similar set of equations which do account for such 

additions. These equations will be referred to as the separate group theory, 

for reasons which will become obvious. Then, as a result of discrepancies 

which resulted between this theory and measured values in part of the 

frequency range, a second, slightly modified theory is developed. It will 

be referred to as the percentage theory. In particular, the non-interaction 

between AF, AS, and NR structural modes of the shell is considered in an 

alternate manner. Both, however, are slightly different modifications of 

the same basic statistical energy theory. The development will proceed 

from several earlier references on the subject. 

For two normalized linear oscillators I I having instantaneous 

velocities u I and u 2 , power balance equations can be written as 

P,(u') - gZ(91 - 0z) = Puu() - rl[(u) - (u'>] = (flul) (6) 

- ~ug21 (& - 61) - P - ral [(U>) - (ul) I = (fZuZ> (7) 
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The first term in Eq. (6) represents the average internal dissipation. 

Pl is a normalized damping coefficient of the first oscillator, and Ol is 

the average energy (per mode) of the first oscillator (flUl) IP. The 

second term represents the power flow from mode 1 to mode 2; gl is the 

power flow coefficient; and r 1 2 is the coupling coefficient between mode 1 

and mode 2. The extreme right-hand side of Eq. (6) represents the work 

done per second, or the input power on mode 1. The terms in Eq. (7) have 

similar meanings. For "gyroscopic" coupling, which holds I1 for shell-air 

coupling g 1 Z = g 2 1, r 1 2 = r 2 l, and the dissipation in the system is independent 

of the coupling which is, in this sense, conservative. More general 

coupling equations will be discussed later. 

For our present problem, the above equations are extended to 

groups of modes so that the subscripts 1, 2, and 3 are used for the outside 

air, the cylindrical shell, and the interior air, respectively. However, 

group 2 is further separated into NR, AS, and AF modes. In the separate 

group theory, essentially five groups are then defined, i.e., 1, ZNR, ZAS, 

2AF, and 3. In this case, we may write Eqs. (6) and (7) accordingly as 

power balance (per unit bandwidth) equations. For the cylinder 

CE2AF E3 
c71nZEzAF +G)T3AFnZAF n - 3 ) 

EnIA - pin 
+ °w'lAFn AF EZAF 2AF (8)nZAF 
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Q)12EZAS + cJ)1z 3 AS n ZAS - )n2AS 
EZAS I ( 9) 

+ OGZIASnZAS nzAS ZAS 

WTIE ZNR = ZINRN (10) 

Note that for non-radiating (NR) modes.the acoustic coupling is donsidered 

negligible. Similarly, for the interior air 

W11l3E 3 -wT]3AFnZAF ( niF 3 

- nZ 3 ASnZAS AS - E3) = 0 (11) 

A similar equation for coupling to the external air is not required since it is 

assumed to be of infinite extent. These are the governing equations for the 

separate group theory. 

Now, consider a slightly alternate method of arranging the 

governing equations. Consistent with the concepts of the statistical energy 

theory, the modes of each separate medium (I or 2 or 3) are assumed to 

possess approximately the same energy level. In particular, we shall assume 

that the shell structural modes, AF, AS, or NR are approximately of the 

same energy so the structural coupling between these modes can be neglected. 

We have: 



---
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E2 EZAF EZAS EZNR (12) 
<> n2 nZAF nZAS nZNR 

.(13) 

3 n 3 

Since the exterior domain of air is assumed to be of nearly infinite extent, 

there is only radiation outward from the shell with negligible reflected 

radiation 

(U4) 0 (14) 

The power equation of medium 1 thus is decoupled from the shell-interior­

air power equations. Equations (6) and (7) yield the following average power 

balance equation (per unit band width) for AF, AS, and NR modes, respectively: 

WIE/ EB E3 )2 

(12EZAF + (c023AFn2AF n- n3 

EZ IN (15)
+c71J1AFnzAF - PZAF2 

WT12IAEA (E? 3 

W1ZEZAS + COTZ3ASnZAS (nZ n 3 

n2 E2 PIN (16) 

+ 0)9IASnZAS nZ ZAS 

IN (17)a thENr p P NR 

Similarly, the average power balance equation for the interior air modes is: 
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3E3 - ,23AFnZAF (r- ) 

(18)- = 0- 'Z3AsnzAs 

Equations (15) through (18) are the basic governing equations for 

the percentage method. Consider now a slight rearrangement of these 

equations which makes the name of the method more obvious. The total 

energy of the shell is 

E2 = EZAF + EZAS + EZNR (19) 

The total number of shell resonant modes per unit bandwidth is 

n Z = nAF + nZAS ± nZN R (20) 

Only reasonant modes are counted, since except at low frequencies, their 

contribution to energies outweighs other modes provided that they are lightly 

damped. If Eqs. (15) to (17) are summed (with equal weight), one obtains 

WIZZ+ w12 3n2 - ±2. + cil. 1nz (­
3 (2)

PI=IN IN + IN
2P2AF + P2AS PZNR (' 

where the coupling coefficients are 

nZAF nzAS 
-ZjAFnzj +- - jAS ' 5 = I or 3 (ZZ) 
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Equation (22) expresses each part of the radiation as a portion, or percent, 

of the total radiation. This is similar to that presented by Manning and 

Maidanik 6 . 

The determination of number of modes IZAF, IZAS, IZNR 

in each given bandwidth Ac, centered at co is described in the previous section. 

For the shell, the respective modal densities are then 

n2AF = IZAF/Awo, etc. (23) 

For the number of interior air modes, 'we will employ those for an 

equivalent rectangular room1 2 (which is only an approximation for the 

present case) 

n3 n 3 /2T0t2)C3v(Z (24) 

This expression is valid for a rectangular room at high frequencies, and 

is an approximation based on the more general expression, Eq. (3. 4), on 

p. 86 of Reference 13. Note the difference in notation, and that a differenti­

ation needs to be performed to get Eq. (24). 

The space-average generalized displacementfor sound waves in 

air is 11 

€ =-t (25)
Co 

where * is the space-averaged velocity potential, while, for small periodic 

disturbances, the space-averaged pressure is: 
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° P P0- POw sin (wt); 4 = cos (wt) (26) 

o at a 

Thus, 

E3 _oV3 pc2
V ( 3 ()V 3 (Z7) 

as 

(P Z)A, L, - Sp 3() A (28) 

Similarly, 

E2 = M (y2 )/A = MjZSy() (29) 

where y is the space-averaged shell displacement. The space-averaged 

pressure spectral density of the interior, Sp3, and the space-averaged 

shell displacement spectral density, S., can be calculated from Eqs. (27) 

and (Z9) after EZ and E3 are determined from the power balance equations. 

Input Power 

Previous investigators have usually considered only one dominant 

form of energy loss in impedance relationships which affect input power 

expressions. In the present case, where energy losses vary considerably 

from one part of the frequency range to another, a more accurate approxi­

mation will be derived. We start from the normalized power Eqs. (9.14b) 

and (9.15b) of Lyon and Maidanik1 I: 
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Nr 
ImKn) + Z gmr(n - Or) = im~ m (30) 

r 

Ns
 

-r(q	Z gmr(0'- 0)= iPrOr (31) 
m 

which are the mth shell equation and rth interior air equation (effects of 

the exterior air domain will be added later), and 

/z fPmem = Fmsm;M= ((MIm)-lI pn dx" ;m) 	 (32a) 
A 

where 

Fm = (MMm)-!/2 f Ptm dx (32b) 
A 

and 1'm is the mth shell normal modal function. Since 

(S~rn) = 	 w(x) = Z S'Xm(x) Pshs /2(<s ); 

(4)r = (pVr/M)('4Z>; tx)= Z qX*r( )
 
in
 

f sh-s X=M, 	 ~ 

m n 	 =Emmn; 

= for simply-supported panel.t 

tNote that this expression will be only approximately correct in the present 
case. 
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1 

J k drk = 	Vdcr6rk; Er = if r and k 0 
V 

we have 

Es = M<¢ :- Mmsm(;'I MEmS 	 (33) 
.' 1 -') 

first term yields the dissipation, MEs. The second term is 

Mm Zr(m -Orl =M <zIna_ s r Nrl
M 2 2Xqmr(O - e;) = Rrad 2:(-Z N2 4r 

Rrad [Es Eal(35 

M [wy rj(5 

Equation (35) is a generalized definition of rlZ as a modification of the 

definition, Eq. (9. 19) of Lyon-Maidanik I 1 . The input power in the summed 

equation is then clearly 

Ns 	 N
 s

PSIN M 	 X mem 7=, (Frum) (3 6 a) 

m Am 

where 

Fm 	 M Pm dx (36b) 

By Fourier transform, similar to p. 3Z of Robsonl4: 
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x(t) =2-T I Si )ew~t (37) 
-CO 

RM 
-00 

x(t)e-wt dt (38) 
-co 

Also, the inverse traisform of Eq. (8), p. 47, of Robson 14 , yields 

(x(t)y(t + 7-)) = Rxy(7-) = (39a)- 7-yeiwt de/Z'r 
-cO 

(x(t)y(t)) = Rxy(O) = T f ,i dIZ (39b) 
-O 

Consequently, for two narrow bands of width Aw centered at frequencies I w) 

(as complex transforms are used), we have 

OD 

(AW)dxy() = (x(t)y(t)) = 1-- f 5*(w)j(w) dcZirT 
-(90 

-(Aw) [,1 )A(z) + ,( )w]OC) 

(AU)) W W,_to[0 0, A - Awl 
-=-i Lx-,-()(T) + R(o)j*(Wo)J (Aw)ReSx(o) 

JA 2eL -W() () (40a) 
i-r)TRe [i*(o) LoAt 40a 

Upon division of the last term of Eq. (40a) by AU), the power spectral density 

results: 
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_W,A.- 0 

4- Lw)]Sx~)= Re Sx(&) k[K.*(&w) R(c (40b) 

while 

=o,2 Re w¢,Ao, 

Re [ w) = Re[() ] = -xy(f) (40c)
XYZirT Zir T ZT 

Cxy(f) is the co-spectral density given in Eq. (6. 51a), p. 274 of Bendat-

Piersol 1 5 . Similarly, the quadrature spectral density is 

Qxc I= Mxty= W(-ZrA,)T (f 2*Z I ____ -0o 

(.0,Acj 
1 2- (40d) 

The cross-spectral density is,therefore
 

= 1 i,() j*(c) = Cxy- iC3y (40e) 

The Fourier transform of Eqs. (.9. la) and (9. Ib) of Lyon-Maidanik I I 

yields 

r Brmqr m 

+- .m , sm = -icsm (41) 

r Zr-n(CO) Z%(co) 

Ns Brmn~mqr- N zr m =0 (4Z) 

m z 
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Zm(W) = Wzm - W)2 + ifmw, Zr(w) = (z _ W2 + iprw (43a, b) 

Using Eqs. (3 6 a), (40a), (41), and (4Z), we have the power input 

MNNs Ns w__,AO 
AT X Fm ) Z TRe > (Flm~m) 

m m 

PIN 
PIN+ 14N Is (44) 

=lls + arads 

where arad is a radiation correction factor to be determined later. Employing 

"integral approximation" and residue theorem to evaluate band-average 

values for a lightly damped system analogous to White and Powell 1 6 , one has 

_ w, Ao 
NS FrnFE*( -i Ns . I) 

pIN M 2 e mm M Nm 
-2 (45a)I T 

m T rnZ'() 2AW 

(45b)ZMm A n s n) Sp0) 

where 

= nZAr, etc., (in = ()AF' etc., respectivelys 

Equation (45b) is the input derived by White-Powell 1 6 . Thus, the present 

problem requires the further evaluation of the radiation correction factor 

arad, which will be done shortly. 

The joint acceptance in Eq. (45b) can be derived from Eqs. (45a), 

(32b), and (40c) as: 
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(J2s- 1 Ns / Cptp" dx dx, (46a)
A2Is m A' SP 0
 

s~ A' A'
 

N 
.1 2,3 ['PI/S] 4m(x!)1(")dx' dx" (46b) 

AfA 

where 

p = p(x',t), p" = p(x",t), I s =nsZ (47a, b, c) 

The imaginary part of Gil i in Eq. (46b) has no effect due to its anti­

symmetry with respect to x', x". Let 

Gpfp0 =ka (x, W)Sp0 (w) - jk 1 (s, )Sp0(w) (48) 

It can be shown (Appendix C) that 

C I = eG = [kR(x',w")kl(X",0W) + k 1(x',cw)kl(x",41) Sp0(co ) (49) 

Consequently, for simply-supported panels and axisymmetric excitation with 

respect to an axis through the center of the speaker and normal to the 

cylindrical shell at (r, 0, x) = '(a, 0, x 0 ) 

) f2(Imn+Jmn) (50) 
h s 
 Istm n 

The first term in the parentheses of Eq. (50) is: 
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'Inn.= kR,(x,cw) 4in.) dx = 4a f 0 TxkR(g, 0, w,) 
A' 0 0 

Co. cos (nO) de dO sin 0 (5a) 

where 

emx = Rmx' Ox = sin-' (Rnx/a) (51b) 

kR(eO; w) - eA 0 RB0 cos [i0] for R< Rmx = 8.0 inches (51b) 

as given previously by Eq. (1) for the present system. Note that, based on 

experimental data, ka is assumed to be negligible for R > 8. 0 inches where 

R = gZ + a2 sin2 e; e = x -x 0 (51c) 

and A 0 , Bo, and P0 are given in Appendix A. Further, 

= = 4a f f kj( , 8;0w) 

A 0 0 

Cos cos (nO) d dO sin( 1 ) 15a) 

where 

kj(g,O; o) =- Do cos (5 2b) 

and Do, GO, and E 0 aso are given in Appendix A. 
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Returning to the correction factor in Eq. (44) with the help of 

Eqs. (41) and (42), we have for Ns t 0 (all terms are zero when N s = 0). 

SAcz 

+1 Ns Nr BrmqrF;m(-iw) 

Re A 2 Z Z Ic~Tadj O Re 

Re *, Sr .(BMrmFm+ t B-P1m

(BMZTmf + BmrBkrOk'm)F(ti) 

RL (53) 

Again, from integral approximation, but summing first with respect to r in 

a procedure entirely analogous to that for Eq. (11-1) of Lyon and Maidanik I I , 

the first double sum in Eq. (53) is 

Ns Nr -B 2 m f~F i N S 
a Re r mrm m RL 

m-4Nr()Zo) .­

l2r
SBmr nr(CO) s m =l)sm
 

Tr Rrad 
 (54 
= ('3 TAM+1 zl)(54) 

Considerable effort would be involved in determining ak if k # m, which is 

Qk =Rl:Le NBmrBkrSkli ti.l} Rez (55) 
mr Zr(O mo ' 
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N s
 

crad = 	 Z ci (56) 
k 

For N s t 0, the minimum possible value of ck may be am while the maximum 

possible value may be Nsctm. As an estimate of the correction for later 

discussion, we shall use 

' + 1 = i + (A + 1 
1 + aradAF i +( 

(57)(T1Z3AF 	 + TzlAF)T 

Note that arads is negligible for other than acoustic fast modes. 

Coupling Factors 

The radiation coefficient l rad for a flat panel was derived by 

Maidanik 1 7 with some simplifying assumptions. However, there is some 

ambiguity and apparent inapplicability. Some revised forms were given 

zin Crocker and Price1 which do not seem to be entirely consistent with 

Maidanik's statements, thus requiring new interpretation. Nevertheless, 

a detailed mathematical rederivation ofEqs. (Z-39a, b, c) of Maidanik will not 

be performed here due to limitation of time available and may not necessarily 

be needed. Therefore, we apply the given fornis to the present case directly. 

The coincidence frequency fc for our experiments is 23, 300 Hz, which 

is much higher than the maximum frequency in our tests. Thus, we shall 

apply equations for this range f < fc, i.e., Eqs. (Z. 39 a, b, c) of Maidanik 1 7 . 

This is based onMaidanik's statement above Eq. (2. 38) that 'We shall 
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therefore confine our attention to frequencies below the coincidence frequency. 

In Maidanik's notation list, he defined kp as panel wave length and fp as 

coincidence frequency of the panel, which will be replaced by fe-

Equation (2. 39a) of Maidanik is then 

RradAs = Apoco {ZcLZ(Xaxc) GI(flfc) + (Pr Xc/A) Gz(flfc)} 

for kp > ka, i.e., cp < co or AS modes (58) 

where 

a = (59) 

Gl(flfc) = (4/r 4 )(1 IZc 3 )/a(1 - L2)I/2 f < 1 fc (6 0a) 
1 

Of(f/c) = 0, f >. f (60b)
 

= kp c o (6 0c)Cp - ka 

Gz(f/fc) 1 {(1 - ct 2 )k [(I+ a)/(I - a) + Za}/I(I a2)3I2 (61) 

c
0
 
= 


O

0c I (6Za) 

c 

ka = -0 (6Tb) 

The factor Za2 in the first term inside the brace of Eq. (58) was first corrected 

by Crocker and Price1 2 and confirmed by Maidanik through a private 

communication. The range of applicability has been modified and is con­

sistent with all known usage in the literature, i.e., for AS modes. 
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In our case, the perimeter of an equivalent plate is 

Pr = 41ra + Z (63) 

Equation (Z. 39c) of Maidanik 1 7 is then 

Rrad = A poc 0 [[ I - f/fc]-/2 = RradAF for kp< ka, i.e., 

i.e., Cp > co or AF modes ( 6 4a) 

Maidanik's branching condition of f > fc is inapplicable since the square root 

becomes imaginary, while the modification by Crocker and Price 12 is inconsis­

tent with the stated range f < fc- As in our problem f < < fc, Eq. (64a) 

yields 

RradAF =Ap0 c0 for AF modes (64b) 

which has been used for panels and is apparently justified. Similarly, 

Eq. (2. 39b) of Maidanik could be for kp = ka which shows a discontinuity in 

radiation coefficient from AF to AS modes. In any event, this equation has 

not been used in practice and will not be discus sed further. 

As pointed out by Crocker and Price Z , Eq. (58) applies for AS modes 

which are edge modes, thus proportional to its effective edge. The resistance 

for radiation from the cylindrical shell to the exterior through AS modes is 

then 

R21AS = A 3/4 space =Z zAkS _ 27a- (5'radAs = I/Z space3 2 -a- -1)IradAsRr5A
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The additional idea of edge modes being inversely proportional to the 

relative value of the space the edge "looks into" was first introduced by 

Lyon 1 8 . It might be justifiable by an integral equation approach, as the 

contribution or residue of a source at the edge is directly proportional to the 

solid angle of the space it looks into. Thus, the local potential would be 

inversely proportional to this angle. This alternative approach might yield 

an improved result or provide a check on Maidanik's 1 7 result based on Lyon 

and Maidanik's approximate formula. Similarly, the resistance for 

radiation from the cylindrical shell into the interior through AS modes is 

P. = R 1/4 space - /Z space 2 Za R2 3 AS radAs _ AS = Zwat + Z2) radAs (66) 

The AF modes, however, as discussed by brocker and Price 1 Z are 

surface modes; therefore, they are independent of the total length of the 

edges and the space they look into. The radiation resistance is approximately 

the same for the cylinder and a rectangular plate, that is 

RZIAF = RZ3AF = RradAF (67) 

Finally, the coupling factors as indicated by Eqs. (15), (16), and (35) are 

RZs 
 (68) 
71zj s= Mw (68 

where j = 1,3 and s stands for AF, AS modes, respectively. For non­

radiation modes, the radiation is negligible. 
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Loss Factors 

Viscoelastic Structural Damping 

The structural damping depends on the physical mechanism of 

.the material during loading and unloading 19 There are viscoelastic 

damping and hysteresis damping, macroscopically. For an aluminum beam 

with simple-edge conditions, Baker, Woolam, and Young Z 0 have found that 

the hysteresis damping is negligible compared with viscoelastic damping. 

Their results are in agreement with experiments which account for the 

contribution of air damping. Thus, a similar theory will be applied in the 

present problem. 

Based on viscoelastic theory, the effective modulus of elasticity, 

Lv, and Poisson's ratio, vv are 2 l 

3kvI v 

Ev = 3k11 (69) 
kv +iLv 

kv -
Vv= ( + v (70) 

2 (k + iLv) 

The effective bulk modulus kv is assumed to be independent of viscoelastic 

effects; thus 

k v = k (71) 

In terms of Lame constants k and , the elastic modulus, Poisson's ratio, 

and bulk modulus are, respectively: 
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E1 k+J1p' Ve _z(x+ ) , kX=k++ z ± _3 ( 1 E-2Zv) (72a,b,c) 

The viscoelastic Lame constants in terms of the Laplace trans­

form variable s are 

snbn +. .. +50 

4v= sn + +b0 (73)
2(smam + . + ao) 

v Z (74) 

For periodic motion proportional to ei tt, 

s = iW (75) 

For standard linear solids, only first derivatives exist; thus 

1 + i7(E'E)6)
 
v I + iC'(
 

which becomes [i in the .limit of zero frequency. From Eqs. (69), (70), 

(71), (7Za, b), and (76), one finds 

Ev = E - ( + rie) F,)[' + ( - ) ] 1ve) 

(I- v) ( Tv 1 + iwO;' 3(1 Ze 

1 1 [l i4(E'IE)]l7+3 (1 +ve)L 1 + iwO' i (77) 
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V = 22 "2Ve) 3 1 1 +wC' ](1 +veJ1 (I ZVe) 

2(1 + "e)} (78) 

In general, the vibration of a viscoelastic shell can be obtained 

from vibration of elastic shell with simple damping term correction. 

I
However, for nearly incompressible medium ve- , the limit of Eq. (78) 

1yields v =Z = e as expected, and that of Eq. (77) yields 

E = F [1 + i C(E/C'] (79) 

As an approximation, we shall use actual values of Ve for Vv and EV given 

by Eq. (79). Then, the equation for the vibration of cylindrical shell in terms 

of normal modes Wmn becomes 

1 + i(E'I/E) n mnnrnn (80)
1 + iwC' 8t 2 

Since ic is equivalent to the operator L, this actually means
at 

W W 82 W 8 3 Wren 
mn--m mn nmn+ 2 at 3 0 (81)E Et -nt 

To get an effective damping, let the solution be 

Wmn = e(i - 6)t (8Z) 

Then, the real and imaginary parts of Eq. (81) yield: 



47 

2n -Z6 z + + 3C' z 63=0 (83a) 

a0c - 2w - C'o)2 + 36 20'co = 0 (83b) 

where 

_ E' Z (84) 
p, mn 

For a small damping constant 5, the 8z term in Eqs. (83a,b) probably can 

be neglected, and 

~ [a0 - C'(02 (85) 

Similarly, Eqs. (84) and (85) yield 

W2 =-CZ + 2Cow w - + 2Cn2w 
mn, -

6 2 mn mn 

+ ZC(25 (86) 

Substituting Eqs. (82) and (86) into (85) and solving for 28, one finds 

26 2 imn 87)Prmn = (87)
1 + (C1)2 O 

which agrees with Baker-Woolam-Young's results for a beam. Finally, 

the logarithmic decrement is 

(Zc( 16 rAlcmn (88)Wdec W 1+ C\o/:mn~ 1 moZn 
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where 

zA 1=- C', C = (C') (89) 

Since these constants depend on thickness, known experimental 

values z 0 are not applicable to our shell of thickness 0. 0Z inch. Therefore, 

air, results of whichlogarithmic decrements were measured for our shell in 

are shown in Figure 8. Matching of the theoretical and experimental 

logarithmic decrements was made at f = 200 Hz and f = 4000 Hz in order to 

determine A1 and C as 

A1 S 5.33 X 10 - 6 sec (90a) 

C = 2.Z8 X 10- 7 (rad (9Ob)/ \see/ 

The theoretical curve of Figure 8 was then computed by using these values 

in Eq. (88). The above two frequencies were particularly appropriate for 

matching the damping data, as preliminary investigations showed no acoustic 

fast modes in both frequency bands, so that the air damping due to radiation 

is relatively insignificant at these frequencies. Further, the resulting 

theoretical damping allowed good general agreement with experimental 

results for shell response, and plausible explanations for some discrepancies 

to be discussed later. 

Since only resonant modes in the narrow frequency band 

are needed in the prediction, cmn-Co. Thus, the effective damping 
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coefficient for all modes in the frequency band centered at w is 

approximately 

zA~oJ W( - CI) W

s == 
PsP = 2 =1 + c u)? I + (C ) ? W? (91) 

When C' = 0, Eq. (81) reduces to second order and Eq. (91) yields (E'/E) 

a
(7) and (Z1),mn' which is the correct damping coefficient. Comparing Eqs. 

the loss factor is is then 

Ts = -0a = Ps/W (9z) 

which is non-dimensional, as it should be. 

Air Damping 

When there is negligible dispersion of sound due to wind and 

turbulence, there are two properties of the medium causing combined attenua­

tion of a wave propagating in a "free space. " The first is the molecular 

absorption and dispersion in polyatomic gases involving exchange of trans­

lational and vibrational energy between colliding molecules, and the second 

is dissipation due to viscosity and heat conduction in the medium. 22 The 

attenuation due to the first is aM and that due to the second is a., which is 

the sum of a,, due to viscosity, and ai, due to thermal, conductivity. The 

total theoretical attenuation is 

aA = aM + Uc (93) 
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Graphs are available to determine aM and a 0 directly and 

indirectly (see Figures 3d-i and 3d-Z of Reference ZZ). However, some 

difficulty was encountered, and the resultant damping appeared to be of 

wrong magnitude to check the measured pressure spectral density at 200 Hz. 

Fortunately, ah empirical equation which describes the measured values 

of Knudsen and Harris with good accuracyt for relative humidities above 

30 percent and at temperatures near 20CC is also given, and is valid for 

our experimental conditions.. This equation states 

/ f ft 1 l (0/3120.085 (94) 
+ T
1000 

where f is the frequency in Hz and
 

T= z0( + 0.067) AT (non-dimensional) (95)
 

SZ0 is the relative humidity at 200C and AT the temperature difference from 

Z00C. Since Eq. (94) is insensitive to small differences in temperature and 

humidity, we have taken AT 0 and ta0 = 0.5; thus, the denominator is 

approximately 20. 5. 

-ax 
The attenuation factor is given as e- ; hence, a one-dimensional 

theory is used to correlate the damping coefficient, i. e., 

z 21 (82+ 8p p I 8zp +Pa .p _zP 0 (96) 

12at +ac cO0t a = 'J '-=0 j ' x 
0. 0 0 ­

tThis is true if the unit is 1/ft instead of dB/ft. 
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The attenuated solution for small damping is 

-i - COi(x+iWt 

p =poe 0 

1 Pa 
~ co Co 

- pOe (97) 

Therefore 

Pa = ZcOcnA (98) 

Analogous to the relation between Eqs. (91) and (92), the loss 

'factor in air is 

T3 =1 a = Pa/ = 2 aA co/w (99a) 

where 

aA- (i0 Hzl 3/ 0.085 
(99b) 

Based on Figure (3d-3) of Reference 2Z, the frequency range for the validity 

of Eq. (94) and thus of Eq. (99b), seems to be 10, 000 Hz, beyond which the 

accuracy of approximation would be unknown. In our tests, the frequency of 

interest was below this value, and the use of Eq. (94) or Eq. (99b) seems to be 

well justified. 
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RESULTS AND DISCUSSION 

Comparison of Theory and Experiment 

In effect, results for structural damping have already been presented 

in Figure 8. This, of course, was desirable for describing the method utilized 

to determine material constants. However, at this point, it is appropriate to 

discuss some of its limitations. As can be seen in Figure 8, considerable 

scatter resulted in the experimental data. Such scatter occurs with either 

method usedto determine damping. With the free-decay method, scatter 

results from nonuniformity of decay curves which is caused by the beating of 

modes in proximity to each other. On the other hand, with the half-bandwidth 

technique, an erroneous damping usually results from the spatial shifting 

about of modal patterns, as well as coupling between nearby modes. With a 

fixed point for response observation, spatial shifts of modal pattern with fre­

quency have a strong influence on the damping estimate. A much better 

determination of structural damping in cylinders is badly needed for the pre­

diction of response to not only random, but to all forms of forced excitation. 

The cylinder and interior air cavity responses, parameters for which 

are given in Figures 9 through 11, are the central results for this entire study. 

Several kinds of data are shown in each figure. Part of the results will be 

discussed in this section, while the rest will be discussed along with additional 

supporting data in the next section. In general, details of theoretical computa­

tions will first be presented, and then their results will be compared with 

experimental data. 
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Figure 9 presents the system energy distribution obtained by means 

of the percentage method only, and is useful for studying some details of the 

statistical energy method. These results are purely theoretical and include 

the assumption of an ideal 1/3-octave filter. On the, other hand, response 

results for cylinder displacement and interior air cavity can more readily 

be compared with measured values. Correlations for these parameters are 

shown in Figures 10 and 11. In these figures, the dashed theoretical curves 

(for both separate group and percentage methods) are based on the assumption 

of an ideal rectangular 1/3-octave filter, the solid lines represent theoretical 

curves (for percentage method only) which have been corrected for the real 

filter characteristic, while multiple experimental values are given at the 

various frequencies. In Figure 10, measurements are shown for three 

different observation points for broadband equalized excitation through 2500 Hz, 

and 1/3-octave excitation throughout the entire frequency range. In Figure 11, 

the pressure measurements represent maximum and minimum values observed 

along the centerline of the cylinder, as well as the absolute maximum or mini­

mum value measured anywhere in the tank, for 1/3-octave excitation in the 

respective frequency band. 

For convenient reference, the governing equations, on which the 

theoretical calculations are based, are listed in Table IV, along with their 

coefficients and the determining equations for these coefficients. The four 

basic Eqs. (15) through (18) for the percentage method must be solved 

simultaneously to determine the four unknown responses EZAF EZAS E NR, , ,
 

and E 3 in terms of the reference excitation power spectral density Spo* The
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TABLE IV. EQUATION REFERENCE FOR CALCULATIONS 

Unknown Variables Determined By Equations 

Percentage Method: (15), (16), (17), (18) 
EZAF, EZAS, EZNR, E 3 

Separate Group Method: (8), (9), (10), (11) 

Coefficient 

r1 (92), (91), (90a), (90b)Z 


(99a), (98), (99b)
73 


'7Z3AF (68), (67), (64b) 

(68), (67), (6 4a)721AF 


IZ3AS (68), (66), (58)
 

721AS (68), (65), (58)
 

Ez (19)
 

nz (Z0)
 

n3 (Z4)
 

nZAF (23) 

nZAS (Z3) 

nZNR (23) 

PZAF (44), (45b), (50), (51a), (51b), (51c),IN 

IN (52a), (52b), Fig. 6, andPZAS 

IN
PZNRJ (57), (68), (67), (64a) 
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results are then plotted as in Figure 9. Subsequent use of Eqs. (27) and (Z9) 

then allows a determination of the response ratios as they appear in Figures 10 

and 11. Similar calculations are performed for the separate group method, 

except that Eqs. (8) through (11) are used as the governing equations instead. 

A matrix inversion scheme on a digital computer was used for the 

above solution. Several comments must be made to clarify some of the details 

of this procedure. Calculation of input power coefficients requires the evalua­

tion of joint acceptance functions by means of Eqs. (51a) and (5Za). A numerical 

integration scheme employing a mesh size of 0.4 in. was used for this purpose. 

Further, identification of specific wave numbers, m and n, for each of the 

modes in the respective l/3-octave bands also had to be included. This 

identification, along with a mode count, was done from the modal diagram in 

Figure 6. All computations then included several parameters which were 

based on some form of 1/3-octave average value, which was usually a value 

determined at the band center frequency. These were: 

(1) Spatial distribution of excitation pressure 

(2) Viscoelastic structural damping 

(3) Air damping coefficients 

(4) Radiation coupling factors 

(5) Modal density of interior air cavity. 

It is interesting to look at the results of Figure 9 with one major 

assumption of the percentage method in mind. In particular, the respective 

energies are combined with the modal densities to provide the tabulated 

energy densities per mode given in Table V. It is apparent that the assumptions 
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TABLE V. ENERGY DENSITY DISTRIBUTION 

f, Hz EZAF/IZAF EZAS/IzAs EZNR/IZNR E 2 /1 2 E3/N3 

125 .... 90.5 90.5 0
 

160 .... 54.0 54.0 0
 

zoo .... 40.9 40.9 0
 

250 .... 12.2 12.2 0
 

- 2 -2315 .. 5.29 X 10 5.29 X I0 0 

400 .... 3.95 3.95 0 

500 .-- 0. 1192 0.1192 0 

630 -- 28.3 0. 286 1.22 Z. 25 X 10-2 

800 ..-- 0.138 0.138 0 

1000 2.92 1.96 0.297 0.1225 8.04 X 10-2 

31250 2.15 0.1475 4.76 X 10 - 6.06 X i0 - 2 3.35 X 10-2 

1600 0.229 0.1813 1.955X10 - 4 1.820X10 - 2 8.26X10 - 3 

2 - 2 - 22000 0.281 0.296 1.812 X I0 - 3.77 X i0 1.635 X i0 

- 22500 0.2156 0.1111 2.46 X 10-3 6.03 X 10-2 1.890 X 10 

- 4 - 43150 -- 2.35 X I0 2.56 X I0- 5 1.023 X I 5.41 X 1O- 7 

- 3 4 3 6
4000 -- 3.30 X 10 3.28 X 10 - 6.55 X 10 - 1. 39 x 10 ­

5000 .... 
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of Eq. (12) are not very well satisfied by the final results. Nevertheless, 

as will be shown hereafter, the overall comparison of theoretical and experi­

mental results for the percentage method is still quite good, and is better 

than that for the separate group method. This apparent contradiction simply 

emphasizes the dire need of further study in the application of the statistical 

energy method. 

It must be borne in mind that the theoretical results represent space­

averaged values. Measured results in Figure 10, which are taken at three 

rather arbitrarily selected points on the cylinder, indicate that the shell 

displacement response becomes reasonably uniform in space only for fre­

quencies above 300 Hz. This, then, is the most practical frequency region 

where use of the statistical energy method becomes appropriate for the 

cylinder. That is, the actual response values at any point on the tank do not 

deviate appreciably from the average values, so that predicted values are of 

practical use. On the other hand, uniformity of air pressure in the-three­

dimensional interior air space never approaches that experienced by the 

cylinder, and only settles down to about a 6-dB spread above 2000 Hz. It 

appeared in this case that a measurement of maximum and minimum pressures 

was more useful than some average value since such an extreme spread is 

experienced throughout most of the frequency range. Consequently, theoretical 

values which represent a spacewise average should fall within the spread at 

all points. This does not occur near 2500 Hz. Thus, each part of the cylin­

der and air system independently reaches a state of relatively uniform spatial 

response, which corresponds to a diffuse sound field. This result is probably 
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influenced to some extent by the non-diffuse spatial distribution of the 

excitation. 

The results from the separate group and percentage method (both 

based on an ideal filter) can readily be compared in Figures 10 and 11. For 

the shell response, the two methods give identical results except between 

about 630 and 2500 Hz. This is to be expected since no radiation occurs out­

side this range. However, within this range, the percentage method can be 

seen to provide a better comparison with experimental results. Similar 

behavior is apparent in the interior pressure response. Except for the single 

point at 630 Hz, the interior air pressure should be negligible below 1000 Hz 

since only non-radiating modes occur below this frequency. However, sig­

nificant pressures with wide scatter obviously do occur. An attempt at explain­

ing these observed pressures by means of so-called mass laws proved to be 

futile. Therefore, additional investigations were performed to try to explain 

this discrepancy, as well as the very obvious discrepancies between measured 

values and those predicted by means of theory based on the assumption of an 

ideal, rectangular 1/3-octave filter. The results are given in the next section. 

Supporting Results 

In order to provide a more detailed idea of the frequency variations in 

both shell displacement and interior air pressure, more resolved spectra 

were measured. The results appear in Figures 12 and 13, shown on a relative 

scale. These data are useful to provide a better idea of the respective shell 

and air modal densities. With the apparently wide variations in parts of the 

frequency range, it becomes obvious that measurements with real 1/3-octave 
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filters that have some finite roll-off can be in error. Further, when the exci­

tation is filtered through such a device, low-level noise in an adjacent band can 

often cause a greater response than that in a particular band under concern, 

because of the non-flatness of the acoustical speaker. In order to allow for 

the non-ideal filter characteristic, a filter factor aF and a speaker factor 

asp will now be derived. 

The effective input is obtained from a noise generator passing the 

actual filter and speaker. Thus, there is additional power outside the 113­

octave band. It is seen from Eq. (44) that PIN is proportional to the total
I 

joint acceptance and the integrand of the joint acceptance isimplicity related 

to (p(x',t)p(x", t)) which, in turn, is related to PNG from the noise generator. 

We have, in general, analogous to Eq. (40a) 

( _xx',t)p(,-", t)) T p x', t)p(x", t) dt
 

0
 

dd
1Z-' f *(C, x') N(w,x ') 
-00
 

1 f 00T F(, ~CO)NGux)Go."dc (100) 

Therefore, the effective P(w,x) is lI/z Analogous to Eqs. (44) 
F (ccO)PNG(',X)
 

(46 a), and (49), we now have 

1 :JN M 2 F Fmb (-io)
pi = M. Ae (101a)I Zw T z* (co)
 

b mb m 0
 



66 
Tr NbN sM 1 (w o R(x,COb;Acob)kR(X" ,ub; Acb) 

m b mb A' A" 

+ kI x" cob; Ab)k(.x" cb; Awb)] SPo(cb, coo)Acob 

m(X')(x") dx' dx" (101b) 

Tr Nbs 

Mm X aF((ombcio)aSp(wb o)Spo(M)A[iZ bm b mb 

Nbs 

IS(co)AWZ {a(obcoo)-sp((bcOo) Z + mb}I o-271 M(d) (M11 

where 

SSp (CblO0)Awb0 b SP "190 (b rO/Io ,Ab b 
aSP(Ob' cO) = -SPO/l ( A) (10z)' 

S (co0)Acc r0/%, 

Subscript b is for bandwidth number b, and the rO / I are given in Appendix B.SP
 

It is, in our case, sufficient to include the upper and lower neighboring band 

+ and -. However, the average damping associated with comb in bandwidth b 

takes the value at cob. Therefore, it is more accurate to separate the equa­

tions for +, 0, and - bands and calculate the corresponding mean square shell 

response
 

00 

(YZ) f Sy(o) dw Sy(O , wO)Ao + F(w+, oS y(O)+, W+S AW+ 

+ aF(W-, CO0)S y(W-, co_)ACO_ (103) 

0 
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(y 2 ). (y') Sy(0M S Y(CO+) 
(pz Spo (eO)A, Sp(O) QF(+s 0o)s 1 +, WO)'S( +)

0 p0 

+ aF(W-' c 0)aSP(U-' W0 
) y(_ 

Sp0 (O_ ) (104) 

which is the Sy (W)/Sp 0(O) using a real filter with factor aF and speaker with 

factor a p. For 1/3-octave filters utilized in the present study, aF(o., 0) ­

0. 16. Eq. (104) then yields the solid line shown in Figure IQ which repre­

sents a corrected percentage method, and supports the reliability of measured 

data, as well as the applicability of the theory. A similar correction was 

applied in Figure 11. Additional measurements showed that the significant 

interior pressure response below 1000 Hz was being excited principally by 

motion of the top plate. Acceleration distribution of the top plate at various 

frequencies is shown in Figure 14. The plate apparently is excited by off­

resonance longitudinal motion of the cylinder in its symmetric modes. 

Further, measurements also indicated that the pressure response was axi­

symmetric throughout the low range, which tended to confirm its excitation 

by the top plate since axisymmetric cylinder modes occurred -in this frequency 

range. Some approximations will now be given to confirm further this 

behavior. 

For a flat top plate moving with a constant or average amplitude Wav , 

the solution for its jth axisymmetric mode is 

-p 0w 2 a cos [7(1-ig3)(a/Co)2 - Xx/a] 

7(- 3) )2 X Zsin - (15)'ig a/ c - -[g4(1, 



68 

t._ 

32.0 

28.0 

CENTER FREQUENCY 
0 200 

0 400 
A 630 

(Hz) 

S 24.0 -

0 
-o 20.0

24.0 _ _ _ _ 

a, 

C 

-
0 

81.0 

-

0A 

4.0 
0~ 

_ _ 

0 2.0 4.0 

PLATE RADIAL 

6.0 

POSITION, 

8.0 

RP( in. ) 

10.0 12.0 

P836 

Figure 14a. Top Plate Response Ratio ( 200 Hz to 630 Hz 



69 

0 

N 8.0 

C) 

"-) 4.0 
c, 0 

I--i CETRFEUNYH
 
CA 

LU 
-8.
 

121 0 1000 
"- -16.0 

.0 01250 
I- t 1600
 

-20.0 
 __<__2000
_20.002000

0 2.0 4.0 6.0 8.0 10.0 12.0 

PLATE RADIAL POSITION,' Rp (in. ) 2837 

Figure 14b. Top Plate Response Ratio (1000 Hz to 2000 Hz 



70 

where Xj is the jth root of J1 (k) = 0. Replace J0(%jr)W0 by Wav for j = 0, 

k. = 0. By averaging over the frequency band, the contribution-of each mode 

at the center of the top is 

s Spmx pou'0 c2(2r) S for ,respectively(2/a)2 g3 (CcA'co*) forJ=
P~rn (f a)S avij93(' 0(10 6a, b) 

whe re 

C= a ACO. a A. (106c, d) 
c0 ' Co 

If we assume W(r, Q) is proportional to S-WWwe can then calculate SWav 

from SW as given in Figure 14, and by taking into account the circular domain 

of the top plate, we find, for example, at 200 Hz, with g 3 = 73 = 6.49 X 10 - 4 , 

that Swav/Spa = 2. 114 X 10 - 4 . Further, in this range, there is only one 

resonant mode with X. 0, the natural frequency of which is less than 

Therefore, we have 

SP3mx 
- 4.64 X 10 - 4 = 6.7 dB Re 10 - 4 (107)

Spo 

This value seems to agree reasonably well with measured data (Figure 11 at 

200 Hz), although it is not exactly the maximum value. 

As frequency increases, more plate modes will appear which could 

excite kj 0 modes. Strictly speaking, coupling coefficients should be cal­

culated which become increasingly more complex at higher fr encie Due 

to the rapid decrease in plate spectral density, an estimated SP3 ' of the 

order of 10-8 at 4000 Hz, which is much too low. This estimate was 
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determined by using Sw(r, Or for SW0 in Eq. (10 6 a) to calculate Sp3m for 

each mode, and then multiplying by an estimated number of fifty axisym­

metric modes. However, using the actual filter factors, the results at 3150 

and 4000 are in reasonably good agreement with measured data. 

We now consider the possibility of the rectangular room approxima­

tion as a possible source of error in the predicted values. At center fre­

quencies of 1000, 1250, 1600, Z000, and 2500 Hz, the value of nZAs/nZAF 

is 2, 1, 2, 3.77, and 5.48, respectively, while no AF mode is present in 

other bands in our present range of interest. Since YAF is much greater than 

- WAS (e. g., 7TAS/17AF is near the order of 0. 002 in some cases), the effective 

radiation coefficient when IZAF O is approximately 6 

nZAF nZAF 
Y23 n n23AF - "AF (108) 

For the above frequencies, Eq. (108) yields 

E WAFE2 - IAFEZ (109) 

3 + AF 3 3 AF N 3 

Since TAF' fl3, I Z are probably more -reliable and E Z yields correct shell 

response density, the doubtful quantity would be N 3 based on the number of 

modes present in the band in an equivalent rectangular room of the same 

volume. If the percentage method or the radiative power flow term is correct, 

the correct value of N3 should give a good value of E 3 , and the correction 

factor on E 3 and thus on SP3 is: 
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I? 
'13 + 7AF N3(110) 

aN3= 12 
073 + "'TAF 3 

where N 3 = n 3 (4)Ac and 13 is the accurate number of modes in the band. With 

roots of J(-nj) = 0 available in Reference 23 for n-rn = 0 to 8 and j - n = 1 

to 5, it is possible to find the exact value of 13 at 1000, 1250, and 1600 Hz. 

For these frequencies, 

13 = 13, 24, 56, respectively (llla) 

N 3 = 17.9, 36.5, 75.8, respectively (11lb) 

However, with these values used in (110), the correction factor was less than 

1 dB and insignificant. At 2000 and 2500 Hz, the effect is probably also 

small. Thus, the rectangular room estimate for interior air modal density 

appears to be a good approximation. 

It next appeared reasonable to question the validity of the radiation 

coefficients as used in the present "percentage" formulation of the statistical 

energy method. It may be that the reverberation effect in the crdss-coupling 

term is given in Eq. (36) may be inadequate for this purpose. As a check on 

this possible source of error, we return to Eqs. (30) and (31). Summing 

Eq. (30) with respect to m with weight M/Aoe yields 

M .Zn, ,M F ,r,', 

-A P.(m\ +PACL m 0n-O 
m 

2 

mr 
jm(r 

M em = P' (112)
A Z PM 

rn 
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The accurate expression of the radiative term is [c.f., Eqs. (9. 1Z), (9. 13), 

(9. 9a), (9.9b) of Lyon-Maidanik I I 

Ns 	 N r 

Prad M 	 Z Z gmr(m -0r) (113a) 
m r 

Ns N r .  Ns Nr Nr 

=M E z gmr F m M 2 2 Z gmrBr'm (qrlSm)/Pm 
m r m m r rl¢r 

Ns Nr 	 N s
 

-M 	 Z Z 2. gmr 3m, r(m, qr (1 13b) 
m r m'l m 

It is noted 	that the radiative coefficient as given by Eq. (9. 31) of 

Lyon-MaidanikIi is 

M Ns(o) Nr (CZ) 

Rra d - Ns() gmr(r, im) (l14a) 
m r 

N sM - Nr(()
Ns -B ) ; E n3 (co)fmnr(Wn nr(w) 

sm 

- Pm mn Nr(c) nr(	 (1 14c) 

Pocka I .Nr(O) 

(Zrc ER) fA1 fA r *m(?i)lm (X 2) dxI dx z 

which checks Eq. (11. 1) of the same reference (see Appendix D), if one 

notes that 

Nr= r1 k t "N k - hi)] 

2 r r2 (115) 
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Using this type of approximate processes, it may be possible to reduce 

Eq. (113b) to a more familiar but improved form. This remains to be a 

by 2
future task of research. Lyon-Maidanik has approximated 'm - 0 

however, they have considered only modes of one type. We have changed it 

to si- 42 in Eq. (35).. Both approximations are subject to doubt in a 

general case. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

It would appear the general results of this study indicate that use of 

the 	statistical energy method is reasonably adequate for prediction of 

response of coupled cylinder-air systems to excitation by non-reverberant 

acoustic pressure. Prediction of cylinder response is quite acceptable, 

while that for the interior air is somewhat less acceptable. It has not been 

established whether the discrepancies result from the general qoncepts of 

the statistical energy method itself, or from erroneous estimates of some 

coefficient which is used in the method. Thus, considerable additional effort 

is required before a good overall understanding of the capabilities of t4e 

method will be achieved. We will list briefly some of th steps which may 

be useful to follow in this future effort. 

(1) 	 In order to avoid estimating the errors involved in the use of 
real medium-band filters, it would be better to avoid the use of 
typical, commercially-available, part-octave filters. As a 
better approximation, measurements should be made with 
constant bandwidth, narrow band filters, and the results integrated 
electronically over the desired part-octave band. A much better 
approximation of a rectangular filter should result. Unfortunately, 
this was realized too late in the present program. 

(2) 	 Better prediction and measurements of structural damping in 
cylinders is essential. 

(3) 	 The statistical energy method should be applied to studies of 
various kinds of structural elements. It is surmised that some 
of its limitations for use on one kind of element may not be so 
severe on others. 

(4) 	 A further review and more general summary of the statistical 
energy method should be provided. Some recent attempts at this 
have already been set forth. They are particularly desirable 
since much of the earlier literature on the method is usually 
quite terse, and it is fraught with typographical errors and unclear 
mathematical steps. 
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(5) 	 As pointed out at the end of the last section, a more complete 
analysis of the percentage method should be cpnducted. In 
particular, the failure of the detailed results for energy density to 
satisfy the original assumptions, and yet the simultaneous rather 
good agreement of the overall results should be explained. Other 
forms of coupling between various modal groups may be developed. 

(6) 	 The effect of mesh size on input power coefficients should be 
determined. In this summary, all integrations were performed 
with a mesh size of 0.4 in., except for one case. Results for 
Figures 10 and 11 were also computed for a mesh size of 0.2 in. 
at a frequency of 3150 only. It was found that some individual 
joint acceptance integrals changed by as much as 40%o, although 
the net effect was negligible onthetotal for the band. 

(7) 	 In the present experiments, interior air pressures were mea­
sured at only a few selected points. Measurement at many points 
wouldallow the calculation of a space average which could more 
directly be compared with predicted results. However, in the 
presence of wide spatial variations, the practical use of the 
results is still in question. It would appear that a prediction of 
maximum response would be of more usethan that for the average 
response.
 



77 

ACKNOWLEDGMENTS
 

The authors wish to express their sincere appreciation to several 

colleagues who aided in the conduct of this work. Special mention should 

be given to Dr. H. N. Abramson and Dr. U. S. Lindholm for consultation, 

.to Mr. Robert Gonzales for digital computer programming, and to Mr. Mike 

Sissung for editing the manuscript. 



78 

REFERENCES
 

1. 	 Chandiramani, Khushi L. and Lyon, Richard H., "Response of 
Structural Components of a Launch Vehicle to In-flight Acoustic 
and Aerodynamic Environments, " The Shock and Vibration Bulletin, 

36, Part 5, January 1967, Naval Research Laboratory, Washington, 
D. C. 

Z. 	 Barnoski, R. L:, Piersol, A. G., Van Der Laan, W. F., White, P. H., 
and Winter, E. F., "Summary of Random Vibration Prediction 
Procedures," NASA CR-1302, April 1969. 

3. 	 Kana, D. D., "Response of a Cylindrical Shell to Random Acoustic 
Excitation, " Interim Report, Contract No. NAS8-21479, Southwest 
Research Institute, July 1969. (Also Proceedings of AIAA/ASME 
1 Ith Structures, Structural Dynamics, and Materials Conference, 
Denver, April 22-24, 1970.) 

4. 	 White, Pritchard H., "Sound Transmission Through a Finite, Closed, 
Cylindrical Shell, " Jour. Acous. Soc. America, Vol. 40, No. 5, 
pp. 1124-1130, 1966, 

5. 	 Bozich, D. J., and White, R. W., "A Study of the Vibration Responses 
of Shells and Plates to Fluctuating Pressure Environments, " NASA 
CR 1515, March 1970.
 

6. 	 Manning, Jerome E. and Maidanik, Gideon, "Radiation Properties 
of Cylindrical Shells, " Jour. of the Acoustical Soc. of Amer., 
Vol. 36, No. 9, pp. 1691-1698, September 1964. 

7. 	 Arnold, R. N..and Warburton, G. B., "The Flexural Vibrations of 
Thin Cylinders, " Jour. Proc. Inst. Mech. Eng. (London), Vol. 167, 
pp. 62-74,-1953. 

8. 	 Ungar, Eric E., "Fundamentals of Statistical Energy Analysis of 
Vibrating Systems, " AFFDL-TR-66-52, May 1966, Wright-Patterson 
Air Force Base, Ohio. 

9. 	 Zeman, J. L. and Bogdanoff, J. L., "A Comment on Complex 
Structural Response to Random Vibrations, " AIAA Journal, Vol. 7, 
No. 7, pp. 1225-IZ31, July 1969. 

10. 	 Conticelli, V. M., "Study of Vibratory Response of a Payload 
Subjected to a High Frequency Acoustic Field, " Wyle Laboratories 
Report WR 69-9, May 1969. 



79 

11. 	 Lyon, R. H. and Maidanik, G., "Power Flow Between Linearly 
Coupled Oscillators, " Jour. Acous. Soc. of America, Vol. 34, No. 5, 
pp. 623-639, May 1962.
 

12. 	 Crocker, M. J. and Price, A. J., "Sound Transmission Using 
Statistical Energy Analysis, " Jour. Sound Vibration, Vol. 9, No. 3, 
pp. 469-486, 1969. 

13. 	 Monse, P. M. and Bolt, R. H., "Sound Waves in Rooms, " Reviews 
of Modern Physics, Vol. 16, No. 2, pp. 64-85, April 1944. 

14. 	 Robson, J. D., Random Vibration, Elsevier Publishing Co., New York, 
1964. 

15. 	 Bendat, J. S. and Piersol, A. G., Measurement and Analysis of 
Random Data, John Wiley & Sons, Inc., New York, 1966. 

16. 	 White, R. H. and Powell, A., "Transmission of Random Sound and 
Vibration Through a Rectangular Wall, " Jour. .Acous. .Soc. of 
America, Vol. 40, No. 4, pp. 821-832, 1966. 

17. 	 Maidanik, G., "Response of Panels to Reverberant Acoustic Fields, 
Jour. Acous. Soc. of America, Vol 34, No. 6, pp. 809-8Z6, June 1962. 

18. 	 Lyon, R. H., "Noise Reduction of Rectangular Enclosures with One 
Flexible Wall," Jour. Acous. Soc. of America, Vol. 35, No. 11, 
pp. 1791-1797, November 1963. 

19. 	 Lazan, B. J., Damping of Materials and Members in Structural 
Mechanics, Pergamon Press, New York, 1968. 

20. 	 Baker, W. E., Woolam, W. E.,and Young, D., "Air and Internal 
Damping of Thin Cantilever Beams, " Int. Jour. Mech. Sci., Vol. 9, 
pp. 743-766, Pergamon Press, Ltd., 1967. 

21. 	 Boley, B. A. and Weiner, J. H., Theory of Thermal Stress, John Wiley 
&Sons, Inc., 1960. 

zz. 	 Beranek, L. L., "Acoustic Properties of Gases, " Handbook of Physics, 
American Institute of Physics, McGraw-Hill, New York, pp. 3-59 to 
3-70, 1963. 

23. 	 Chu, W. H., "Breathing Vibrations of a Partially Filled Cylindrical 
Shell - Linear Theory," Jour. Appl. Mech., Vol 30, No. 4, pp. 532-536, 
December 1963. 

24. 	 McLachlan, N. W., Bessel Functions for Engineers, 2nd editor, 
Oxford University Press, London, 1955. 



80 

APPENDIX A
 

SPATIAL DISTRIBUTION PARAMETERS FOR
 
ACOUSTICAL FIELD
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SPK. SPATIAL DISTRIBUTION EMPIRICAL EQUATION CONSTANTS
 

1/3-Octave 
Center Frequency A0 B0 P0 D 0 X 102 E0 X 102 Go 

100 3.47 X10-2 2.682 150.0 0 0 0 

125 3.47X 10 -2 2.682 150.0 0 0 0 

160 3.47X 10 - 2  2.682 150.0 0 0 0 

200 3.47X10- 2 2.682 150.0 0 0 0 

2.682
250 3.47 X -2 20 150.0 0 0 0 

315 3.47X 10-Z  2.68Z 150.0 0 0 0 

400 3.47X 10 - 2 2.682 150.0 0 0 0 

500 3.47X10 -2 Z.682 150.0 0 0 0 

630 3.47X 10 -2 2.682 150.0 0 0 0 

800 3.47 X 10-2 2.682 150.0 8.0 8.0 6-.0 

1000 0.00856 2.430 150.0 6.0 6.0 4.0 

IZ50 0.00172 1.906 ii.0 15.0 15.0 4.0
 

1600 0.00520 2.130 9.0 -10.0 -10.0 4.0 

2000 0.3752 0.813 3.0 -p0.0 -20.0 3.3 

Z500 0.1685 0.799 4.05 60.0 40.0 Z.5 

3150 0.0836 2.330 5.Z5 IZ.O 4.0 2.5 

4000 0.3092 0.724 2.00 30.0 -8.0 1.5 

CO 

kR = exp (-AoR B) cos 1p for R <8. Ot 

Quad 

k, = D o cos 0 E 0 for R< 8.0 

tFor f O= kx = <1.52500 1.00 for R 
tFor f = 4000 ky = 0.00 for R < 1. 0 
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APPENDIX B
 

SPEAKER CALIBRATION FACTORS
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SPEAKER CALIBRATION CONSTANTS 

1/3-0 Band 1/3-0 Band 
1/3-0 Center into Spk. No. Eq. 1/3-0 Center into Spk. No. Eq. 

Freq. (psi/Vcms) 2 X 106 Freq. (psi/Vcms)2X10 6 

100 0.989 	 630 3.04 

125 1.113 	 800 3.98
 

160 1.043 	 1000 5.66
 

200 0.937 	 1250 1.855
 

250 0.967 	 1600 1.633
 

315 i.026 	 2000 i.056 

400 1.336 	 2500 0.432
 

500 2.02 	 3150 O.244
 

4000 0.311
 

5000 0.476
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APPENDIX C 

DERIVATION OF EQ. (49) 
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DERIVATION OF EQ. (49) 

For narrow-band sampling, consider
 

R I
p1 - p1 cos (wt) + p1 sin (wt) (0-1) 

= PR cos (wt) + pi sin (wt) (0-2)
Pz 2 2 

.Define p0 as p with 900 shift1 5 We have 

pj - p sin (wt) + pT cos (wt), j = 1,2 (C-3) 

The time averages yield 

Q = p ) 2 ' 1"2 1(C-4)P29PjRPI -PfPR) = -p (po,) = (0 -4) 

= (~p) 1 (Pflf + pjpl) = (p pl) = CPP (C-5) 

Let 

p = p(x,t), p, = p(x,,t), p= p(x,t), p0 = p(0,t) (C.-6a,b, c) 

By approximating the measured data, we have 

CPO = kR(x, co) Spo). po p = k(xo)Spo(o) (C-7a,b) 

where 

Spo()) = CpOp 0 = p [(p) + (Pb) ] (C-8) 
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For convenience, 

( PP01 

Q=pp y0 

define pR = PR; then, 

10 1 R I 

PlP0 =- kl(X, 

we have 

w P() (C-9) 

0 =(pKp-piP&) kI(x",w)Sp ( (C-10) 

Multiplication of Eqs. (0-8) and (C-9) gives 

k1(x',co)k(x"c0)S0 (W) = P[p+pI) Z + (p0) 

- {PiPk+ PI')PoP] (0-l) 

Similarly, one obtains 

kR(x',co) kR(X", O)s 2 u ) = + 

+ (Pl + pipi)P0 ] (C-12) 

Adding of Eqs. 

1pI p 

(C-I) and (C-1Z) yields 

+pipil [(p[R ) + (pI] [k1 (xc)k(x,c) 

Dividing Eq. (C-13) by S with Eqs. 

+(,W)kR(x"Iw)] Sp0 () 

(C-8) and (C-5), one finds 

(C-13) 

Cp, = [k(x,c)k 1 (X',) + kR(Xco)kR(x",cz)] Sp0(wn), (Q.E.D) (C-14) 
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APPENDIX D
 

DERIVATION OF EQS. (1 14b) AND (105)
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DERIVATION OF EQS. (I 14b) AND (105)
 

We have Eq. (9. 11) of Lyon-Maidanik' I that
 

PM ~02 z 

2 (P 

B Z 

.7 + Prc m) D -1m mr +9mr (wz - co2)? + (p"m + pr)(pmwl) + prc'n (-1 

By changing summation to integration by assuming there is a large number 

of air modes as done by Lyon-Maidanik and by residue theorem after taking 

advantage of the 6-function type integrand, we found that 

NT Nr(0) W+Ac/2 (Pm)r + Pr0m) nr(or) td r 
r

B2 m 
=nr 

rr nfcc (W 2 ) + (Pr + Pm)(Pmw'r + Pro.m)oo 2 2 

1 Nr(oY) C (m"4 +pr ) d1 

nr(2)f 2)= B mr ( - cm) + (pr + prm)(pm4} + prn)2 

-0 

= i r nr(W) (D2) 
7 ir N(o 

which justifies Eq. (114b) from Eq. (l14a). Next, we shall derive Eq. (105). 

From Eq. (9.6) of Lyon-Maidanik 

Bmr = Brm = ( Mv")n 4 sr(X)$a(x) dx (D-3)Bmrrm B vverm) A 
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1/2 

mn XMVf 4 rn() dxj dx2-J-r(i)'() )m(X)
A1 A 2 (D-4) 

Since 4 'r(x) is a two-dimensional vector function on the shell surface, we only 

have two components of the surface vector; therefore, in place of Eq. (7. 13) 

of Lyon-Maidanik, we should use 

2 2 i -ikXh.1 
l - ]I JI [e kh + ekh] (D-5) 

h=l j=l 

Now, instead of 8 positions in space, we only have 4 positions on the surface 

that the exponent has minimum value proportional to the difference of x, 

and x2 such as exp [kx(xll - xZ1 ) + ky(xlZ - x2 2 ) ] . Now, we should average 

the circle of radius kj= (k Z + k2)1/2with respect to kx and ky over 

- (kz k )1/Z and average over k. from zero to ka. Therefore, with G'as 

the angle between the vector k' and x -2, we have 

1 ka 21? ix 1 xI kcos1]k 

Nr(Xl)P(w) -/ / e a z d dkz 

(D-6) 

_1ka pa _2Z 2 

0 (1 >x ka-kz) dkz (D-7)- z 

[sin (I_ -x zI kz).]ka sin (kaX 1 ­

4ka L 12F- - -o 4 ka!Z 1 -8l 
(D-8) 
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Equations (D-7) and (D-8) were derived with well-known formulas given 

by McLachlan (2nd edition) 2 4 . If We follow through the factors in Lyon­

Maidanik's paper, we can show that 

¢ _Nr(C)7 I sin (k 1 lI -z1) 
-21 ITJ X1 =8 klxz - - Z[ -?)Lyon-Maidanik 

72 -x 2 (D-9) 

as there were 8 positions in space divided by 64. The factor - should be 
8 

present in Eq. (7.16) of Lyon-Maidanik and Eq. (2. 18) of Maidanik. 

Equations (D-8) and (D-9) verify Eq. (115). The final result of Lyon-

Maidanik was correct as they had a factor 2 too large in using their 

Eq. (9.17) instead of Eq. (D-2) and a factor 2 too small by using Eq. (D-9) 

instead of the correct average Eq. (D-8). It may be stated that Eq. (I 14c) 

yields Eqs. (2. 15) and (Z. 21) of Maidanik, which rightfully yields the 

approximate radiation formulas, Eqs. (2.24), (Z. 25) in his paper with his 

approximation Eq. (A- i); namely, 

- (ky/ka)Z]/
lRra d A -p0 C[l - (kx/ka)2 1 / 5AP 0 c 0 [1 

-- AP 0 c0 [I - (kp/ka)2 1 /Z for kp < ka, AF modes 

2(Apoco/31r1 )(Ikp/kx)1/?
Rrad 


S2(AP0 c0 /31rI/Z)(hk'/k 7 )1/2 (D-i1) 

I k y )lI Z ] (Ap 0 c0 /3Trl/2)[(k2/k )1/2 + (hkz kp= ka 
p x
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Due to time limitation, however, Eqs. (2. 39a, b, c) of Maidanik have not 

been rederived. However, at least Eq. (2. 39a) was checked and corrected 

by Crocker-Price and is used for AS modes (kp > ka) in this paper. 


