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ABSTRACT
 

Optimization problems involving linear systems with retardations 

in the controls are studied in a systematic way0 Some physical 

motivation for the problems is discussed. The topics covered are: 

controllability, existence and uniqueness of the optimal control, 

sufficient conditions, techniques of synthesis, dynamic progranmming. 

A number of solved examples are presented. 



1. Introduction
 

Optmal control problems involving systems with delays in the 

state variables have been studied extensively and the difficulties 

encountered in such problems have been well documented [1, 2, 8, 15, 

17, 25, 24, 27 and the bibliographies of 2, 24]. Recently, more 

sophisticated models with systems containing retardations in both 

the state and control variables have come under investigation [2, 4, 

6, 7, 12, 14, 17, 24]. In [2] Banks and Jacobs presented the mathe­

matical foundations necessary for the study of very general control 

systems modeled by equations of the type
 

0 t 
1(t) = f x(t+s)dsF(t,s) + f h(u(s),s)dsG(ts) 

-T -T 

where F and G are Stieltjes measures. The purpose of this paper 

is to investigate the effect (from both the theoretical and
 

computational points of view) of lags in the control variables. We
 

shall attempt to do this in a number of ways, but our aLm always 

will be to point out the pathological differences between systems
 

with delayed controls and those without. In order to isolate the 

effect of delays in the controls, we shall consider only the simplest 

models with lags in controls, and ignore any retardations in the 

state variables. Indeed, the examples of section 7 below illustrate 

very well the novel behavior of solutions to optimal control problems 

with these types of models. 

In section 2, motivated by models arising in current applications, 
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we formulate several different types of systems which appear to be 

of interest. Controllability of these systems is considered in 

section 3 where results involving controllability matrices analogous 

to those for non-delay linear systems are presented. In the next two 

sections the questions of existence, uniqueness, aid sufficiency 

conditions for time optimal problems are considered in the spirit of 

In section 6 we extend to our systems a synthesis technique
[11]. 


A number of solved examples are presented in
due to Neustadt [21]. 


section 7. These fundamental examples, governed by systems which at 

time t depend on the control at tames t and t - h, are intrinsically 

more complicated than those involving systems which at time t depend 

on the control only at time t - h and give rise to prediction 

problems. Finally, the paper is concluded with a section concerning 

the applicability of dynamic programming techniques to certain cases
 

of the systems under study, including mention of a Riccati type theory
 

for quadratic payoff problems. 

We have tried to present numerous examples throughout the paper 

in order to provide the reader with an insight in regard to limitations 

of our results. 



2. Notation and Formulation of Problems 

We shall denote by ;q the real vector space of all p x q 

matrices. If A e 40q the transpose of A will be denoted by A*. 

We shall not distinguish a column vector from its form as a row 

vector since it will always be transparent which form is intended 

by the order of multiplication in any matrix operations. 

In order to facilitate the discussion of several types of problems
 

involving various different system equations some special notation
 

is required. We denote by h(A Bo B1) the system
 

(t) = .x(t) + BOu(t) + Blu(t-h) 

where A e znal P0 B1 e M and h is a positive constant. The 

system 

= Ax(t) + Bw(t) 

is denoted by S"(A,B) where A C -, and B e Cr" 

The term control means a triple {ult 0,tlj where u" [t 0 -htl] 

-->I is a function and t0,t1 are real numbers. 

Definition 2.1. Given U C R the symbol VSI(A,BOBl) denotes
 

the system Sh(ABoB 1 ) with constraint
 

u(t) e U t C [t 0 -hptl] 
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on the controls fuyt 0,tI), t0pt E R.
 

Definition 2.2° Given U C Im and a bounded measurable function 

Vo. [-hO] - U, we use Y2 (A B, B) to denote the system 

Sh(A,B0, B) with constraints 

u(t) e U, t G [tOtll
 

Ut0o =Vo
 

on the controls, [u,tot, tO0t1 R where ut(s) = u(t+s),
 

s e [-h,O]. 

Definition 2.3. Given U C Em and bounded measurable functions 

V [-h,0] -4 U, i = 0,1. we denote by Yh(ABo0B!) the system 

S§(ABoB 1 ) subject to constraints 

u(t) E U, t E [tot 1 -h] 

nt0 = '0' 1 t =v 

on the controls (ugt 0,t1} t0t c R. E 


In the problems considered in this paper we shall often take 

Em
U = Rm or U = Km. where is the unit cube, 

m(u = (ul,...u) c RjI ull _, iI = 1,...m), in R . Whenever, 
h, A, BO0 B1 are understood 9i will be used instead of 

-VA, B; B1),: = 1,2,5­
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Systems of type S" 2 with v0 = 0 are models for physical 

problems where at initial time t there is no delayed control 

effect, but after some time t0 + h there enters a non-negligible 

effect on the system at time t by the control given previously at
 

time t - h. This is exactly the case which occurs in the study of 

lossless transmission lines when one reduces a linear hyperbolic
 

partial differential equation system with boundary controls to a
 

linear differential-difference equation of neutral type in which 

control terms u(t), u(t-h) also appear linearly [14].
 

Day and Hsia [7] have recently proposed a modification involving
 

delayed controls for a model [18] of a gas-pressurized bipropellent
 

rocket engine. In addition to being of type Y2 , this modified 

model also provides motivation for study of systems in which the
 

kernel of B0 and the kernel of B1 are complementary subspaces. 

S"/-type systems are also models for continuous stirred tank reactors
 

as studied by Ray and Soliman [24]. Although the example studied in 

[24] is non-linear, linearization about a nominal yields a system 

which satisfies kernel (2c kernel(B) (see section 4 below).
 

Problems with systems of type 5 with v0 = v I = 0 are 

motivated by air traffic control models currently under study [26]; 

one such model has system equations k(t) = -A(t,x(t)) + u(t-h),
 

y(t) = q(t) - u(t), where P is a landing rate, q is a queing or
 

scheduling rate, and u is a takeoff rate. These models also in­

volve systems in which kernel B0 and kernel B are complementary 

subspaces. Systems of type 7 with v1 = 0 are of importance in 
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so-called "settling problems"; i.e., problems in which one desires 

to attain the equilibrium state x(tl) = 0 in such a way that the 

system will remain at this state without further control if other 

disturbances are absent, 

We note that all three types of systems defined above are quite
 

different from systems such as those modeling remote earth control 

of deep-space satellites studied by Foerster [9] and others [10, 

12, 23] which contain only control terms with a delay (i.e., B0 = 0). 

A control fu~tot 1 ] will be called admissible for the system
 

Yh(AIB0,B 1 ) (or simply kil-admissible) if u: [to-htl] - Rm is
 

bounded, measurable and satisfies the constraints detailed in the
 

definition of _, i =1,23. Given xox 1 c Rn and t0 R. we 

shall denote by P i= 1,2,3, the problem of finding an 9"-­

admissible triple [WtorV) with U = l satisfying x(7; to,xo,) 

= x1and t = min [tl fu~t 0 ,t 1 ) is '1-admissible with 

x(tl; to 0 = x(-; to 0xu) is the response (solution)pxu) X1), where 

of system Sh(AB 0 ,B 1 ) to control u with x(t0 ; t 0 ,x 0 ,u) = 

That is, P denotes the time optimal problem from x 0 to x I for 

mthe system YI(A0,BQBl) with U = K . The special case of problem 

P with v I = 0 will be denoted by P0 " Finally, we shall3 0 3 
denote by P the special time optimal problem as studied in [11]; 

i.e., the minmm time to origin for the system 9'(AB) with 

U = .Km 

Necessary conditions in the form of a maximum principle for the
 

problem P1 are a special case of the general necessary conditions 
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derived previously by the authors [2]. Using similar proofs one
 

can derive necessary conditions for the problems P2 and P(P ). 

Use of these conditions yields that an optimal control [Wto t ) 

for problem P1 must satisfy 

sgn [t(t+h)BI] te [t0	 -h,Th], 

(2.1a) 7(t) = 	 arbitrary, t T-h t 0 ) 

sgn ['V(t)B0] t 6 [t0,t], 

if 0 - t - t0 < h, and if h t - tol then [Wt 0 ,ot must satisfy 

sgn [(t+h)B] , t t e [t 0 ,))
 

(2.1b) 7(t) = sgn [iV(t)B0 + *(t+h)B1]2 t c [t0,t-h)
 

sgn [*(t)B0] t E [t-ht] 

where 1(t) = exp(E-t)A, and the vector 1 # 0 is an outward 

normal to a support hyperplane for the attainable set at tume 

passing through the boundary point x I . It is understood that when 

a,b e Rm. the relation "a = sgn b" is to be interpreted using the 

same convention as in [11, pg. 50]. For the problem P2 one obtains 
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the corresponding necessary conditions from (2.1a) and (2.1b) by 

deleting the requirements in the first two lines on the right-hand 

side of (2.1a), and the condition on the interval [t0-hit 0 ) in 

(2.1b). For problem (P3) one always has 7 1 h so that the 

situation in (2.la) never occurs. Thus the necessary conditions 

for problem P3 are obtained from (2.lb) by deleting the require­

ments on the intervals [t 0 -h, t 0 ) and [T-ht]o 

Any admissible control in problem P satisfying the above1
 

necessary conditions for P
1 

will be called an extremal control 

for problem P, i = 1,2,3. Evidently, when computing extremal 

responses (i.e., responses to extremal controls) what one uses is 

what might be termed an extremal "effective control", i.e., V(t) 

B0(t) + B 1 (t-h), t C [t 0 ,t] where (U,t 0 ,t is an extremal 

control. This 7 is easily computed from (2.1a) and (2.1b) or 

their appropriate modifications for problems P2,P3. 
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Controllability
 

In this section we shall derive necessary and sufficient conditions
 

for controllability of the systems Y1 as defined above. These
 

conditions will be analogous to the well-known rank condition on the
 

controllability matrix for systems .Y(AB).
 

Definition 3.1. The system Y(AB 0 ,B 1 ), i = 1,2,53 is controllable 

on [totl] if for every x0 x1 e R
n there is an YMI-admissible 

triple [u~tot 1 ) such that x(tl; to;Xou) = x1 .
 

Remark 3.1. We shall find that the necessary and sufficient con­

ditions for controllability are actually independent of the interval 

[tOtl] as long as tj > to + h. Hence one could define the
 

equivalent concept of a "controllable system" in"addition to a
 

"controllable on [t 0 ,t 1 ] system!' For the systems Y(A,B) it is 

well-known that these concepts (and others) are equivalent [11,19]. 

Since we are mainly interested in obtaining the form of the necessary 

and sufficient conditions, we shall not pursue that aspect of the
 

development here. 

Let us denote by ' Cnn X £;nr Cn(nr) the usual controllability 

matrix _ '(AB) = [BAB,..oAnI]. 

Theorem 3.1. A necessary condition that Yh(ABoQB 1), I = 1P2,3 

be controllable on any [tOtl] with t, > to + h is that 

[.r(A,Bo), c.'(A,BI)] have rank n. 
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Proof: Yh(A,Bo,B1 ) controllable =>M(A,(Bo,B1)) controllable => 

c '(A, (Bo, B1 )) has rank n => [S4(A,Bo), '(A, BI) ] has rank n. 

The above condition will be shown sufficient for systems s9A
 
2e m
 

and y2 whenever U = R, but a much stronger condition will be
 

necessary and sufficient for systems 5"o Note that the condition
 

does not depend on h, the lag size. 

Theorem 3.2. Let U = tP. A sufficient condition that 

Ih(A, B,I) and Yh(ABO,B1 ) be controllable on every [t 0 ,t!] 

with t I > t + h is that [,(AB0), .e(A, B1 )] have rank n. 

Proof: It suffices to give the proof 	for the system Y2(AB 0 ,B 1 ). 

We shall give a proof that is a slight modification of that given 

for the systems S(AB) in [19]. The usual constructive proof 

(see [13]) using a special symmetric matrix can also be made. Assume 

that [-e(AB 0 ), .e(AB 1) ] has rank 	n. Let [totl] with 
2 

t1 > t0 + h and 
v0 be given for -h(A o Bl)° Define x0(v = 
e- (t!l-to)A t o (t-1 -h)Alo(tO)d 

-e ( e BV tt)dt and consider oM(x0(v,)), the 

tO -h 

attainable set at time t I for the system -Vh(ABoB1 ) with 

x(t 0) =x0(v0 ) and U = (u e ImI Jull 9 M, I = -,...,m. The set 

SM(xo(V0)) consists of all points z of the form z = 

t-h tlth A tl t~) 

f e BlU(t)dt + f e Bou(t)dt where u: [t 0 ,t l ] -R 
tO tO 



l1 

is bounded measurable with juI(t)j _ M. We claim that (Xo(Vo) ) 

C Rn has dimension n. If not, there is a vector % / 0 such that 

Xz 0 for all z e HM(x0(v0)), or 

(3.1) 	 % f e (t1-t-h)ABlu(t)dt + e (t-t)Au(t)dt 

tO 


to0
 

for all bounded measurable u with u'(t)l - M. Taking u 0
1 (t!i-t)A 

on [t 0 ,t 1 -h ] an (3o1) yields %e B0 = 0 for t C Et1 -h~tl]o 

It follows by the usual arguments that ?A B = 0 for 

k= 0,1i2p ...; thus X''(AB0) = 0 and XeAB0 = 0 for e R. 

(t 1 -t-h)A 

Use of this latter result with (3.1) yields 6e B 0 for 

t E [tot-h]. It then follos that X[f5(A,Bo), -S(AB1 )] O, 

contradicting the rank condition hypothesized above. 

That the n-dimensional set &QiM(x0(v0)) is compact and convex 

in Rn follows from previous results by the authors [2]. Further­

more: it is easily seen that JQ M (x0 (v0 )) is symmetric about the 

Rnorigin in and hence must contain a neighborhood of the origin. 

Since 2 M (x0 (v0 )) cg 2 M(x0(v0)) we find that the attainable set 

Rmg (x0 (v0)) at time t, for k 2 with U = and x(t 0 )= x0 (v0 ) 

must be all of R The conclusion of the theorem then follows from
 

the fact that
 

-/(Xo) = e(tlto)A[xoxo(vo)] + Q(x(Vo)) 

for anyx o 

0 
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We remark that an obvious modification of the above proof will 

show that the condition of the theorem is also sufficient for con­

trollability of systems of type Y2(AB0,B 1 ) where one has a 

boundary condition* Ut v1 in place of uto = v 0 . As one would 

expect, if U is a proper subset of Rm, then the condition of 

Theorem 3.2 is no longer sufficient for controllability (see examples 

7.3, 7.4 below). An immediate consequence of Theorem 3.2 is that 

systems Lx = bou(t ) + blU(t-h ) will always give rise to -l and 

72 type systems which are controllable. Here L denotes the
 
th 

usual real scalar n order differential operator with constant co­

efficients, Lx = x(n ) + an-ix(n-1) + .. o + aox. 

Remark 3.2, In a recent note [5] D. H. Chyung considered the con­

trollability question for systems of type _2 . He obtained as 

necessary and sufficient for controllability the condition that 

[2'(AB 0 ), A(A,e-hB 1 )] be of rank n. Note that from this con­

dition one might suspect that lag size h could affect controllability. 

However, it is not difficult to show that [_'(ABo) (Ae-hAB1 )] 

has rank n if and only if [_(AB 0 ), ((AjB 1 )] has rank n. From 

a practical point of view, use of the second matrix is more desirable 

since it can be computed without computing e-hA 
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In practice when delays are small in a problem one sometimes 

chooses to ignore them and work with an approximate system obtained 

by setting h = 0 in the original system. For I = 1,2, the sys­

tem Yh(ABOB 1 ) is thus approximated by the system Y(AB 0+B). 

In connection with this approximation we make the following observa­

tion. 

Theorem 3.3. For i = 1,2, Y(AB 0 +B1 ) controllable implies 

R' (ABo,Bl) controllable when U = Rm 

Proof: Y(AB 0+BI) controllable => _'(A, B +B) has rank n => 

[B0+BI,A(B0+BI),...,An-(B 0+B1), -B0;-ABoQ...,-An-B 0] has
 

rank n => [fC(A, B0 ), L'(A,fB1 )] has rank n. 

It is easy to give an example to show that the converse of 

Theorem 3.3 is not true, e.g., take B1 = -BO . Indeed, even in 

situations where the approximation might seem more reasonable, con­

trollability can still be lost by use of the approximation. 

Example 3.1. Consider the system
 

x(t) = fy(t) + au(t) + bu(t-h)
 

y(t) = gx(t) + cu(t-h)
 

where abcfgh are not zero, One finds that
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f 0o(AB), 	 (AB)] has ranX 2 while det r(AB+B1 ) -­

.g(a+b)2 _ fe2 Thus by using the approximation one destroys con­

2 2 
trollability if (a+b) = fc /g. For example, if a = 1, b = -9 

and c = (g/f)l/2 (lg) where g/f > 0, one would probably not wish 

to ignore the lag h. 

We remark that the results of this section can be extended to 

systems with multiple delays and even to systems with certain types 

of time variable delays. For example, for systems with dynamics given by 

V 

(3.2) k(t) = Ax(t) + BWIu(t-h1) 	 t e [t0 tl] 

with 0 = < < h< and u(t) G U, t e [to-h ,tjl, oneh0 < hI V 

can modify the previous proof to obtain the following theorem.
 

Theorem 3j4. Let U = Em. A necessary and sufficient condition that
 

(5.2) be controllable on any [t 0 ,t1 with t, > t o + h is that 

[_W(ABo), '(A, B),O..,S_'(A, BV) have rank n. 

As a corollary to this theorem we obtain a sufficient condition
 

for controllability which does not involve A.
 

Corollary 3.1. For the system (3.2) with U = Rm and (v,4l)m _ n. 

a sufficient condition for controllability on any [to,t] with 

t1 > tO + hVis that [Bo>BI... B ] have rank n. 



Once one has obtained necessary and sufficient conditions for
 

1 ) 2 
controllability of systems Yh(A, B and Y h2(A;B0,BI) in 

terms of a rank condition on a "controllability matrix". one should 

be able to prove many theorems for these systems analogous to those 

for the system k(AB) which involve the usual controllability 

matrix. We shall present one such result involving the domain of
 

null controllability, the proof being developed in a manner similar
 

to one in [19].
 

We define the domain of null controllability for SI(A;B 1
 

by 

i Rnthr
 

x0 = - Rx0 there exists an M -admissible triple 

[u~t0 tl) with x(tl; toPXOu) = 0 o 

In a similar manner we define for _Vh(ABOBl) the set 

2 nI2 
0(Vo) X0 R there exists an Y2 -admissible triple 

[ujtot 1 ) with ut --v0 such that
 

x(tl txo,U) = 0o
 

Note that for a given U, _2(v0 ) C for any v0. We shall be 

especially interested in the set _2(0), i.e., v0 2= 0. 



Lemma 3.1. Suppose 0 c U C EP and A is asymptotically stable. 

If O4(o) contains a neighborhood -1Y of the origin in Rn0, then 

o(O) = Rn. 

n
Proof: Given x0 e , let T > 0 be such that x(,[; o,Xo0 ) = e Ax0 

is in # (c Then let fult 0,t1 ) be -admissible withC 0 ). k 

ut0 = 0 such that x(tl; t e x0u) =0. Defining
 

0 E [-h,-r]
 

I u(q-T+t 0o ) E (,'r,+tl-to], 

it is easy to show that x(t+tl-t 0 Oxo,) = 0 which implies 

X0 G (0). 

Lemma 3.2. Suppose 0 E nt U and [e(A,B0), -(A,B 1 )] has 

rank n. Then 92 (0) contains a neighborhood of the origin in Rn,
0
 

Proof: Let 5'tl (y0) denote the attainable set at time t, corre-. 

sponding to y(O) = 30 using the system 

(t) = -Ay(t) - B1 w(t) - BOw(t-h) t E [O t 

wt = 0, w(t)e U, t E[-h,tl]. 



17
 

This system may be thought of as the system "Y 2 (A, B B1 ) with 

v 0 -OT" run in reverse time. Since rank [SW(-A,-B 1 ),J(-A,-Bo)] 

= rank [i'(ABo), 5'(ABl)], arguments similar to those in the 

proof of Theorem 32 may be used to show that i tl(0) contains a 
t1
 

neighborhood 	of the origin in Rn for t > h whenever 0 E mnt U.
 

It remains only to show -Qf- (0) C 9--20(0) for t > h. Since
 
t1 1
 

x, c e (0) is of the form
 

xt = e [-BA) (S) - Bow(s-h)]ds 
0 

where wt =0, one can easily obtain
 

Wt 

tlA t

1l (t1-t)A
 

0 = e lxI + 	f e [B0u(t) + BlU(t-h)]dt 
0 

with u(t) 	 w(t!-h-t) for t e [-h,t], yieldingthat x e 2 (0). 

Combining the two lemmas one obtains the following results.
 

Theorem 3.5, Suppose A is asymptotically stable, 0 e nt U and
 

[ (A,Bo), £(A,B!)] has rank n. Then 9_2 (0) (and hence -i) 

is all of 0. 

Obvious modifications of the above arguments yield the following
 

corollary.
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Corollary 3.2. Under the hypotheses of Theorem 3.5, we have 

(v)= Rn for any v 0 . 

Remark 3.3. 
One can obtain a result similar to Theorem 3.5 for the
 

systems Yh(ABoB 1 ) with the conditionUto = v 0 replaced by
 

Utl = v1 . However, the rank condition of the hypotheses must be
 

replaced by the, in general, stronger condition "-'(A e-hABl+B0) 

has rank n". The reason for this change will be apparent after our 

discussion on the controllability of systems of type Y3(A,B0 B1 ) 

which follows.
 

Although controllability conditions for systems Y3(A,B0B 1 )
 

h 0' 1
 
can be derived from basic principles as was done above for systems
 

9l and 9 2, we shall make a simple observation about systems of 

type 9)5 which will yield the same results immediately by applying 

known theorems [1., 19] for certain non-delayed systems. For 

3(AB, B1 ) on [to,tl] and v, v 1 given, a straightforward 

calculation shows that the response x('; toixoU ) to Y 3(A B BI) 

satisfies
 

x(t 1 ; tox 0 ,u) = x(t 1 h; to,ou) 

is the solution to system 0+B1)
where i S"(AAe on [tot 1 -h]
 

subject to x(to) 0 e + e A with A =A(vovlt 0 ,t l ) 
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defined by
 

t 
A~vv 1 0t 0 , 1 ) 0 (tl-t-h)A 

L(Vo, VltO, tl) f t0e BlvO(t-to)dt 
t -h 

tl (t!_t)A 

+ 	 f e B 0 vl(t-tl)dt. 
t -h 

Therefore, it is not difficult to verify that -9*3(A B B is 

controllable on [t 0 ,t] if and only if Y(A,elAB +B1) is con­

trollable on [tot 1 -h]. It follows that studying controllability
 

of systems V3(ABo, B1) is equivalent to studying that of systems 

Y(AeehAB0+BI). Since the matrix -'(A, ehABo+Bl) is rank equivalent 

to e(A,Bo+e-hABl), we have the following theorems. 

Theorem 3.6. A necessary condition that Yh(A B0B ) be con­

trollable on any [tOt 1 ] with tI > tO + h is that V(A,Bo+e-hABI) 

have rank n. 

Theorem 3.7. Let U = Im . A sufficient condition that 

S5A (ABoB 1 ) be controllable on any [totl] with t, > to + h is 

that S&(A, Bo+e-hAB) have rank n. 

Remark 3.4. The rank of c(9'(ABo+e-hAl) equals n implies the 

rank of [.9'(AB o ); .Z(A;B 1 )] is n. but not conversely (see 

Example 3.2 below). Thus the rank condition of Theorems 3.6 and 3.7 
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is, in general, stronger than that of Theorem 3.1. Furthermore,
 

the dependence of the rank condition here on the lag size h is
 

not illusory (see Remark 3.2) as the following example demonstrates.
 

Example 3°2. Consider the system
 

i(t) = my(t) 

(t) = -rw(t) + u(t) + u(t-h). 

For h = I we find SW(A,Bo+e-hAB ) = 0 while for h =2 

(A,B 0 +e-hB1 ) = In addition, [c(AB 0 ), £'(A,B)][ ]. 
has rank 2,
 

The above example also shows that the systems Lx = b0 U(t) + 

blu(t-h) n1 = v0 , Utl = vl, need not be controllable (see the 

comments preceding Remark 3.2). It is also easy to see that con­

trollability of Y3(A, BoB) is not, in general, implied by 

controllability of either Y(ABo) or Y(A, 1 

That a result on approximation similar to Theorem 3.3 does not 

hold for y3 type systems can be seen from Example 3.2 above. 

Finally, defining the domain of null controllability 3(v0 vl) 

for Yh'(ABoB 1 ) in the obvious way, we do obtain the following 

analogue to Theorem 3.5° 
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Theorem 5.8° Suppose A is asymptotically stable, 

k(ABo+e-hAl) has rank n. Then, _(vo, vl) = 

v0' 10 

0 E int U, 

for any 

and 
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4. Sufficient Conditions for the Special Tine Optimal Control Problem 

In this section we prove sufficient conditions for problems of the
 

form P1 1 P or P0 where ? Rm (see

f2 3 

U Z', the "unit cube" in 

section 2) and the terminal condition x(tl; t0 ox0 2u) = 0. Actually, 

in sections 4 through 7 we always take to = 0 so t O will be 

suppressed in the notation x(t; to x0 u) and in the notation 

[u~t0 t1) for an admissible triple, The sufficiency condition in 

this section is an extension of a sufficient condition given by Hermes 

and LaSalle [11, pg0 72]. The discussion is facilitated by introducing 

the concept of the set of reachable states at time t [11] for 

problems P. Pl P and P0. We say that a point (or state) x e Rn 

is reachable at time t _ 0 in problem P if there is an admissible 

u for problem P such that 

(4.1) x te-ASBu(s)ds.
 
0 

We say that x is reachable at time t _ 0 in problem P., P2 P0 

if there is an admissible [ut] for problem P1, P2, P
0 respectively
3 

such that
 

(4.2) 	 x = te-As [B0u(s) + B1u(s-h)]ds. 

0 

The symbols .(t), -l(t), .9 2 (t), -Q(t) denote respectively the 

set of all states x reachable at time t in problems P, PI P2; P0 

Properties of A(t) have been carefully studied in [11]. The 
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behavior of A 1 (t) and A (t) is somewhat more complicated. In 

fact, we shall see that some of the basic properties of Q(t) 

simply are not true for Aj(t) and A(t) without making special 

assumptions on B0 and BIO 

If x~y E EP, then we use <xy> to denote the usual scalar 

product in RPo If S C RP then S denotes the orthogonal comple­

ment of S, ioe., -SE (x c RP <x,y> = O, y e S). If M is a 

p x q real matrix, ie., M E Xpq! then we reserve ker (M) and 

Im (M) for the kernel and image respectively of the linear trans­

formation x I-.xM, x E Rp , i.e., ker (M)= fx e RP xM = 0) and 

Im (M) = (yeRql y = xM for some x e Rp). The following norms 

will be used for vectors x = (x ...x p ) e RP 

jjxjj - max Ix11, i . .p 

p

lxi - Zlxil. 

We also use the symbol IIMIL to denote the matrix norm subordinate 

to the vector norm l1ii on RP and R1 i.e., 

IIMIi. max [LlxMI!] lxii g 1, x CRp) 

p 
=max [Z ImJ j :q], 

i=l
 



where M = (mij), i= , a l,.oo,q. The matrix norm hMI 

subordinate to the vector norm j is similarly defined and is 

likewise easy to compute.
 

Some hypotheses which will be invoked to obtain various results
 

in the sequel are now iasted for future reference.
 

-i 
(HI) Matrix B0 has a left inverse BL and 

C = B B1OL1 
satisfies ICII - 1. 

(H2) Hypothesis (Hl) with IC < 1 instead of 1101 . 

(B13) For any t1,t2 satisfying 0 < t 1 < 

f 2 e-AsBolds > f 2 e Asllds 

tI t1
 

whenever I E Rn and 5 B0.
 

(H4) Ixoj > IxBl, x e [ker (Bo)] =Im [Bo], x 

x(H4) I10 1 I lxB1,e Rn. 

Proposition 4.l. There is an m X m real matrix G such that 

B1 = BoG if and only if ker (B0 ) C ker (B1 ). 

Proof Evidently, B1 = BOG implies ker (Bo) C ker (B1 ). Conversely, 
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ker (Bo) C ker (B1) implies [ker (B0)] D [ker (Bl)]1 or 

equivalently, Tm (Bo ) I (B*). The existence of G with the re­

quired properties follows at once from the last inclusion and some 

elementary matrix operations.
 

Proposition 4.2. (a) (H4') implies ker (B0)C ker (B1 ). 

(b) (H4) and ker (BO) C ker (Bl) imply (H4'). 

(c) If M(A,B0 ) is proper', ker (Bo) C ker (BI), and (H4)
 

is satisfied, then (H3) is satisfied.
 

(a) If (B3) is satisfied, then k(A,B0 ) is proper, and (H4')
 

is satisfied,
 

(e) (H4,) and (H2) imply (H4).
 

Proof: Statements (a)and (b)are obvious. Suppose (H3) is 
n 

satisfied. Then for 8 > 0 q e R n 0 we have 

tl+8 tl+1­

1flee-ABolds > f h~e-ABlIds, t, > o. 
tS t1 

Hence there results
 

he-B T n a 00 ASBI-As E R", 


and (H4') is satisfied. Evidently (H3) implies Y(A Bo) is proper.
 

ISee [11] for the definition of a proper system Y(ABo).
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Now assume (H4), ker (B0 ) C ker (B1 ), and k(A,B0 ) is proper.
 

Observe that
 

= ker (Bo) ( fker (Bo)J = ker (B0 ) e im (Bg). 

Rn ad ~eAt
deine 

-Choose r 0, e and defne *(t) = 7e Then V(t) = 

v(t) + p(t), where v(t) c ker (BO) and p(t) e Im (Bo). This de­

composition is unique and t and v are continuous. Choose
 

0 < t I < t2' then (H4) implies 

]L(t)Bo] > lp(t)B1j 

on [tl,t2] with the possible exception of a finite number of
 

points since Y(A,Bo) is proper. The assumptions ker (Bo) C
 

ker (B1 ) implies
 

]*(t)BoI > IW(t)B!1 a.e. on [tlt 23
 

and (H3) follows at once. 

Suppose now that (H4') and (H2) are satisfied. Then B1 = BoC 

by Proposition 4.1. If x e [ker Bo]l, x 0, then iXBoj > 0. 

Whence ]xB!f = !xBoCI - fxBol ICj < IxB0], and (H4) is satisfied. 

Corollaxy 4.1. If 9'(A,B0 ) is proper, ker (Bo) C ker (B1 ), and (H4) 

is satisfied, then INe-AtB0I > IHNe-AtB1 1, T 0, G Rn for all but 

a finite number of t on any compact interval. 
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Example 4.1. Let L denote the linear differential operator
 

Lx=x ( n ) n l ) ++ anx( - -. + ax 

where al, i = O,...,n-l are real constants. Consider the control
 
system Lx = bou(t) + blu(t-h) where bo,b are real constants.
 

Since we refer to this example several times in the sequel we write 

this explicitly in the form -Y(ABo,B). Let 

0 ~ 0 

01 . n 

0a 0l 1a.... 0-

Then Lx = bou(t) + blU(t-h) is equivalent to the system 

5<h(A, BoB1 The condition that matrix B have a left inverse is 

equivalent to b0 0. Hypothesis (HI) is satisfied if b 0 0 and 

b3o1-1. Clearly ker (B0 ) C ker (B,). Moreover, b0 0 implies
 

9(A,Bo) is proper. Finally (i4) is satisfied if fbof > Ibij. 

Let r(t) denote any one of the reachable sets at time t (i.e.,
 

Q(t), &l(t), p02 (t), -;(t)). Then r(t) is increasing if 

0 ;9t$ t2 implies P(tl) c I(t. We say P(t) as expanding if 
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i(t) c Int (r(tl)) for 0 < t < t1 . Let K. denote the character­

istic function of a set S C X. Define 

(4°3) u(s; t,r) - sgn [e-AsBoK[o,t](s) + je'A(s+h)BiK[_h,t-h](S)]
 

for -h - s 6 t and rj e 00. When u(s; tT) is referred 

to with -h - s - t it is understood that we are referring to 

problem P1 . The corresponding u(s; t, ) for problem P2 merely 

requires u(s; tq) have the form (4.3) for 0 - s ­ t and 

u0(o; t,71) = Vo. In problem P3 we do not invoke this symbol. The 

notation v(tu) where fut} is admissible in PlP 2 , or P3 is 

defined by
 

(4.4) rp(tu) fte-AS[Bou(s) + Blu(s-h)]ds.
 
0 

It is also convenient to take the following definitions,
 

(4.5) z(t,l) _-- (t~u(.; t,O)), 

Proposition 4.3. Q(t) and .S(t) are increasing. 

Proof: The statement concerning A(t) is obvious. Note that
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-Qo(t)t h is merely Q(t-h) for problem P with system 

Y(A,B0 +e-Ah3). For 0 - t - h, 0(t) = (0), so _;(t) Is in­

creasing. 

Proposition 4o4. Al(t), . 2 (t) are both increasing if any of the
 

following three conditions is satisfied:
 

(1) ker (Bo) C ker (B1 ) and (Hi) is satisfied.
 

(2) ker (Bo) C ker (B1 ) and a matrix G satisfying the con­

ditions of Proposition (4.1) also satisfies JIGII, _ 1 

(3) (H ') is satisfied.
 

Proof: We shall prove only that 1 (t) is increasing is implied 

by (2) or (3). The remaining situations are similar. If 

ker (B0 ) C ker (B1), then an m X m matrix G exists satisfying 

B1 = BoG (Proposition 4.1) If (2) is true we may take IG,1. 1. 

If p = v(tl,u) and 0 < t 2 - t 1 < h. then w(t) - -Gu(t-h), 

t1 9t _ t2 is measurable and satisfies 

II ( t ) 11. - 1 

B0w(t) + Blu(t-h) = 0 

im
on [tl,t2 ]o Define Ul' [-h, t 2 ] - by the conditions 

uj [-h,t1 ] = u, and U.I (tl,t 2] = w. Then cp(t 2 ,ul) = CP(t 1,u) = p 

l(t2) and we infer that A1 (t) is increasing. 

Suppose that (H4') is satisfied. Choose t I and t 2 such that 
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- - t2 and pick q e Rn , 1 0. There are support hyperplanes 

and 72 to Ql(tl) and Ql(t2 ) respectively with outward 

normal T1. Thus there exist P1 G A1 (tl) and p2 e lt 2 ) such 

that <1,pl> - <T1q> q e j(tl) and <j,p 2> _ <%q> q eAN) 

Hence <n,pg' = g(tl, ) and <np 2> = g(t2,9). Now g(t,j) as 

defined in (4.6) can be written in the form 

(4.7) g(t,) = f lne-A(s+h)BIds + f je-sB0 + e-A(s+h)B ds
 
0
-h 


+f ie -ABoids if t -;h. 
t-h 

From (4.7) and (H4') one deduces that .- (tq) - O, t _ h and 

t -*g(t'j), t - h is nondecreasing. Therefore, if t1 - h, then 

H - f[q . Rna <j,q> g(tln)J C H2q [i G I <qq> g g (t 2)] 

and since Al(tl) = fl H and -q(t2 ) = flH we have 

TI#0 TI#2O 2q 

itl) C -L(t) for t 2 t 1 _h. If 0 :- t1 , t 2 _h, then 

q (t 1 ) c . (t 2 ) is clear. The fact that A1 (t) is increasing 

is now a simple deduction. 

It is easy to construct examples that show that (1), (2), and 

(3) in the preceding proposition are in general independent. We
 

give below two examples showing that the conclusion of Proposition
 

4.4 need not be true if some of the assumptions of Proposition 4.4 

are dropped. 
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Example 4.2. Consider the scalar control system = x + u(t) + 

Ku(t-1) 	where 1 - 2e < K < -e. Using this system with problem P1 

we see 	that
 

t-1
 o 


- s
g(tl) = 	 fKle-(S+1)ds + f le + Ke-(S+l)Ids 
-1 0 

t 
+ f e-Sds t > 1. 
t-l
 

Since 	 l(t) = [-g(t~l), g(t~l)] is a compact interval and since 

(tl)< 0 for t > 1, it follows that l(t) is not increasing. 

Example 4.3. Let A= 	 and B = ) in 

problem 	P2 with v0 =-0. Then ker (B0 ) t ker (B1) and A2(t) 

is not 	increasing0 For example, for t > 1 define p(t) to be
 

max [x e 	 RI (xO)E 9 2 (t)). Then 

t 
p(t) 	 f e-Sds
 

t-l
 

so that 	p decreases for t > 1.
 

Proposition 45, A0(t) is expanding t h if and only if 

Y(A B 	+e-ABl) is proper. 

Proof: This follows at once from [11, pg. 73] and the remark in the 
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proof of Proposition 4.3.
 

Proposition 4,6. If (B3) is satisfied, then (t), i = 1,2, are both 

expanding. Moreover, if ker (B) C ker (B1 ) and pl(t) or A(t) 

is expanding, then Y(AB 0) is proper.
 

Proof: Note that Ai(t)j n = 1,2, are increasing (Propositions 4.2d 

and 4.4). Choose t1,t2 satisfying 0 < t < t2 Pick q r 1 (t) C 

(t) If q A It ( t)), then q e Bd(A.(t)), the boundary 

of A!(t ). Consequently, there is an O0 which is an outward
 

normal to a support hyperplane for 1 (t 2 ) through q; i.e., 

<,p-q> 0, p E 6P 

The point q has the form q = cp(tlu) where [u,tl is admissible 

in Pl. A function u2: [-h t2] -4?K is defined by 

1(t) -h t t1 

- sgn [ e-AtBo] ; t < t - t 2 

o
Then fu2,t2 is admissible in P1 If p - 9(t2,u2 ), then 

t2
 

<%p-q> f [IJe-ASB0 I + e-AsBlu2(s-h)]ds 
t1
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f [Ile-ASB01 - le-ASBlI]ds 

ti 

>0
 

by (H3). This is a contradiction. Hence .l(t) is expanding, 

The same proof works for 

Now suppose ker (Bo)C ker (B1) and A'(t) is expanding, 

nIf Y(ABo) is not proper, then there is an j / O l e such 

that e'AtB0 = 0, and consequently re AtB1 00. Now the control 

function u =- 0 has the form u(s; tl) (see Equation 4.3). 

Hence 0 c Bd-l(t), t > 0 so that p1 (t) is not expanding. 

Analogous reasoning holds for the case where A (t) is expanding. 

It will be pointed out in section 7 when some solved examples 

of problems of type P P axe presented that hypothesis (H5) 

cannot be omitted and still obtain (t), i = 1,2 are expanding. 

Indeed, as we shall point out in the discussion of those examples, 

the hypotheses of the first part of Proposition 4.6 cannot be 

weakened, and there does not appear to be an analog of Theorem 17.2 

in [11]. The sufficient condition of Hermes and LaSalle [11] can now 

be stated. 

Theorem Kolo Let P(t) be any one of the reachable sets at time t. 

(t), .(t),a 2 (t), '(t). If r(t) is expanding, if (r t) is 

an extremal control for the corresponding problem, and if 

x(E; xoj0 ) = 0, then [,T) is a time optimal solution to the problem 
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associated with P(t).
 

The proof of this theorem is obvious0 Of course, the result is 

not of much interest without computable criteria for showing I'(t) 

is expanding0 Propositions 4.5 and 4.6 in conjunction with 

Propositions 4o2, 4.3, and 4°4 give us such criteria. 

Example 4.41. Consider problem with A=(g 1) ,BO 0 ) 

and o Then Y'(AIB ) is not proper, and it is easy to 
see B! 1 0
 
see O 1(t) is expanding. Moreover, (H3) is not satisfied.
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5. 	Existence and Uniqueness for the Time Optimal Control Problem 

It is easy to modify the uniqueness theorem in [11, pg. 69] to 

apply to problems PiV I = 1.2.3. Two admissible controls 
[ul~t1)1[u2lt2) are regarded as equivalent if t = t2 and 

ul(t) = u2 (t) a.e. on [-htl]o An admissible control [utl1 for 

PI is said to be bang-bang if Lu(t)l m aeo on [-ht!]. 

Similarly, an admissible control fu,t9 for P2 (respectively 

P3) is bang-bang if the above condition is satisfied ace. on 

[O,t1 ] (respectively [O,tl-h]). The following extension of a 

result in [11] is obtained 

Theorem 5.lo If RUT) is an optimal solution to PI implies 

tuT is bang-bang, then there is at most one optimal control for 

problem P, a = 1,2,3. 

Proof: One merely supposes there are two optimal controls (Wl']) 

[u2 ,tJ in problem PI which daffer on a subset of [-hT] of 

positive measure, Then x(TI xo7 1 ) = x, = x(%; x 0 , ). If we 

d n- by W)(t) +72(t)-in 


define w' [-h, w(t) = 2 . then [wt is 

P °admissible in Moreover, it is clear that x(t Xow) = xl, and 

(w,t} is not bang-bang. This is a contradiction. 

One never obtains uniqueness of the optimal control problem P! 

if 0 < t - h since the control [t:} is not effective in 

h(A,BoBI) for t - h =<t - 0. For this reason when we discuss 
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uniqueness of the solution to problem P1 we assume t - h. This 

is only a manor point and the situation 0 - t - h can essentially 

be treated as in [11].
 

The next result is a reformulation of a general existence
 

theorem obtained in [2]. Actually, problem P3 was not discussed
 

there, but the existence theorem easily extends to this situation.
 

Theorem 5.2. If there is at least one admissible control [u,tl)
 

for problem P s latisfying M X1x(t1; x0pu ) then there is an 

optimal solution+ to problem Pi. 1 = 1,2,3. 

Proposition 53. There is at most one solution to problem F1 if
 

Y(ABQ), S(A,B 0+e- 1 ), and Y(A,.B) are normal (see [11] for 

the definition of normal). The statement of uniqueness holds for
 

problem P2 if Y(ABo+e-A B1 ) and Y(A,Bo) are normal, while 

for P3 the normality of Y(A Bo+e-AhB) suffices. 

Proof: We consider only problem P,. Clearly, the necessary con­

dition (2.1) and normality of the three systems imply that the 

hypothesis of Theorem 5.1 is satisfied. 

+The problems Pi. i = 123 were formulated so that the admissible 

controls were in the class of Lebesgue measurable functions. The
 

results in [2] when specialized to the present situation reveal 

that we could just as well have restricted our attention to piece­

wise continuous controls.
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If AB 0 , B1, and e - Ah  are known, then computable conditions 

assuring the normality of Y(ABo), "(AB 0+e-AhB1), and Y(AB 1 ) 
-Ah 

are given in [] o In general, e is difficult to determine so 

we would like to obtain conditions that can be directly computed 

from ABo0BIO (In this connection it should be observed that, in 

general, the normality of any two of the systems Y(A, B0 ), 

Y(A, B0+e-AhB), Y(AB 1 ) does not imply the normality of the 

third. For instance in Example 5.2 .Y(A,B 0 ) and 9(AB1 ) are 

normal but 9'(ABo+e-AhB1 ) is not normal if h = 1.) Some results 

are possible in this direction0 For example, let us consider the
 

control system V(AB0,B1 ) discussed in Example 4.1. Along with 

the differential operator L in that example we consider its ad­

joint I given by 

nl(n-1)+.. 

L*x = x(n) - an+ oo. + (-i) a0X. 

It is now assumed that lb0 1 + Ibll 0 in Example 4.1. 

Proposition 5.4. System 4(AB0 ) is normal if and only if b0 0. 

System k(AB1) is normal if and only if b1 0. If b0 = b 

and if Lx = 0 has no nontrivial solutions of period 2h, then 

(A;B0+e-'B1) is normal. On the other hand if b 0 = -bl, then 

AB+e ) is normal if and only if Lx = 0 has no nontrivial 

solutions of period h. 

Let X(A) denote the eigenvalues of A, and let Re %(A) denote 

the real parts of X(A). 
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01 < Re X(A) 

YSA,B+Fe-)hB is normal. 

Proposition 5.50 If 1b b11,and if - 0, then 

proposition 5.6. If lbol > [b!l, and if Re ?(A) _ 0, then 

Y(A,BO e _) is normal. 

Propositions 5.4, 5 5 and 5.6 are pretty clear, so we will only 

indicate the proof for one of these (Proposition 5.5). If b0 = 0,
 

then Proposition 5.5 is true. Thus suppose b. 0. Suppose 

k-(A,BO e-ABi) is not normal. Then there is a nontrivial solution
 

of L4x= 0 such that 

b0(t) + b1 (t+h) = 0.
 

An easy induction axgument shows that
 

)()
K~bo> 


KK 

K !23...Sine (t) is nontrivial there is a sequence '
 K
 

such that t k - as K -*w and (tK)--0 as K-+oo. This con­

tradicts the assumption that Re 2(-A) = -Re ?(A) _ 0. This proves 

proposition 50. 

Example 5.1. Let Lx = x + a x + aC; h = l, b0 = 2, b, = 1,
aI 2lg;ed1 o 2 0' 0
0 
 2 2. 

-.
=2 lo ,and a 0 = (lo 2) + 7r . Then .,A = (-log 2 1- j 
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and
 

(t) = exp[t(log 2 - 7i)] 

is a solution of Lx = 0 satisfying 

2t(t) + *(t+l) = 0 

and for this system Y(A,Bo+e-ABI) is not normal. 

Example 5.2. Using the 

control system 

same notation as Example 5.1, consider the 

Lx = u(t) + 2u(t-l)o 

Then 

*(t) exp(T - log 2)t 

is a solution of Lx = 0 and. 

4(t) + 2g(t+l) = 0, 

and for this system A(AB-+e-Bl) is not normal. 
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6. Synthesis for the Special Time Optimal Control Problem
 

Neustadt's method of synthesis [21] can be extended to cover 

problems P P P0 Some rather restrictive assumptions are re­1 21 30 

quired for problems and P2" It is assumed in our discussion
P1 


in this section that xl = 0 (x is the "target"). The
 

development will be carried out only for problem 	P1 but if the
 

P0 
arguments are suitably adapted problems P2 and can also be
2 3 

treated The validity of Neustadt's approach depends on the follow­

ing condition for problem P: If (WE) is an extremal control
 

for problem P satisfying x(t. xoT) = 0, then ut) is an 

optimal solution to problem P. Neustadt [21] assumed that the
 

system Y(AB) was normal so that the above condition turns out
 

to be satisfied by the sufficient condition in [11, pg. 72]. For 

the problems we are studying, however, the optimal control fu;t) 

may be unique where all three of the systems Y(ABo),
 

Y(A,Bo+e- I), ABA, BJ) are normal and yet l(t) can fail to 

be expanding (see Example 7.1) so that the analogous sufficient 

condition for problem P1 could fail.
 

Recalling the definition of z(t, ) in Equation (4.5), we can
 

obtain the following proposition.
 

Proposition 6.1. Let the following conditions be satisfied:
 

ker (Bo) C ker (B1), -(ABo Y(A,B0 +e-AhB1), M(A,B 1 ) are
 

normal, and (H4). Let S - [r e Rn1 <,x 0 > < 0). If the optimal 

control (uiT) exists for problem Pi. then it has the form
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(°3)° Any vector T e S which maximizes the time t for which 

<11z(t,)> = -<qXo may be used in (4t3) to obtain the optimal 

control = {u(',t-r), t)0 Conversely, if defines the 

optimal control (u.t by means of (4.3), then it maximizes the 

above time t. 

Proof: Note that g(tj) defined in (4.6) can be written in the 

form (4.7) if t _ h. and if 0 - t - h we get 

(6.l) 	 g(t, ) = ftIe-ASBoI + Ike-ASBlIdso 

0 

Hence (4-7), (6.1), and Corollary 4.1 imply that .- (t'rj) > 0 so 

that t F-4g(trj) t _ 0 is strictly increasing. The function 

1(t,1 ) I-g(t, ), t _ 0, i e S is continuous. For q c Rnn # 0 
we have that 

(6.2) <11, z(t, )> > <1, x>, x C A 1(t), zt,) 

by the normality assumptions in the proposition. Define
 

f: [0) x S x Rn -*R by the equation 

f(t,%x 0) <n'Z(t'r) + xo>, 

and define
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H =E(7 e 01 q $ O, <%-x> = max - < o 3
 

ye.qI (t)
 

The set HO is convex0 Observe that 

(6°3) f(Or,x 0 ) < 0, 1 C S 

whereas
 

(6.4) f( ,1IXo) > 0, Tj e S \ HO . 

amply that A!(t) is expanding.The assumptions of the proposition 

Hence Theorem 4.1 and relation (6.2) assure us that
 

(6.3) f(t,',xo) = 0 

t = iif 71 e H0 . Hence using (6.3), (6.4) and theimplies that 

last remark it is seen that (6.5) defines t implicitly as a func­

tion of 9, for i c S. We denote the function so defined by F. 

T > F(1), qI e S\His continuous and = 

The purpose of the observation in the above proposition 
is to obtain 

which can be used in (4.3) to determine 

Then F FO]) t, q e H0 , and O 

a method for finding a vector 


g is a C function on
the optimal control. It is easy to see that 


([Oc)\h])X S by direct computation in formulas (4.7) and (6.1)
 

using standard results on the differentiation of Lebesgue 
integrals
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involving parameters [20, pp. 216-217] and the normality hypotheses 

of Proposition 6.l. Hence if t1 e S is such that F(q) j h, and 

M (F(j),rj) 0, then the implicit function theorem tells us that 

F is continuously differentiable on a neighborhood of 11. Using 

the fact that under the assumptions of Proposition 6.1 R1 (t) is 

expanding (so that the sufficient condition, Theorem 4.1, applies 

to P1) and the above remarks, the gradient technique for determin­

ing the maximum of F on S can be applied to Problem Pl. We do 

not carry out the details here, but refer the reader to Neustadt's 

paper [21]. 
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7. Examples, 

In this section we solve some examples which illustrate the
 

P0strange behavior of solutions to problems of type P1 . P 'All 

of the examples are two dimensional, Since we would like as much 

as possible to avoid using superscripts and subscripts, we shall 

= 
agree in this section that (xy) (x x )
 

Example 7010 The system equations are
 

(7.1) 	 x=y 

= u(t) + u(t-l). 

Thus A (0 	 BO = B= (O) , h= 1. Here we consider 

a problem of type P1 	 with boundary conditions,
 

(7.2) x(tl; (x 0,Y0),u) = Y(tl; (Xo,Y0),u) = 0. 

It is not difficult to see that given any (XoYo)E there 

is an admissible [utl satisfying (7.2). Hence there is 

(Theorem 5.2) an optimal solution to problem P,. Proposition 5.4 

and Theorem 5.1 assure us that the optimal control (iu ) is unique 

if t 1 and if 0 ;-t < 1, [ut) is unique where it is effective, 

ioe., on [-l,t-l] and [0,t]. The necessary condition (2.1) when 

applied to this problem 	yields
 



2 
sgn [*(t±1)] -i ;5t t-l1 

(7-3) (t) undetermined t - 1 < t < 0 
sgn [* (t)] 0 - t -t 

if 0 <t .< and if > l, then 

msgn [(t+l)] , -1- t < 0 
22 

(7.3') sgn [42 (t) + 2(t+l)], 0 _ t <t - 1 

2 

where = (i 42) is a nontrivial solution of the adjoant equa­

2 2
tion 4= -*A. Hence * (t) = [t + 8 where (t) is not
 

identically zero. Along with the optimal control [u,t} we con­

sider the effective optimal control [7,T] where
 

(7.4) 7(t) = U(t) + U(t-1). 

With problem P1 for system (7.1) and boundary conditions (7.2) we 

consider the auxiliary problem P with system Y(AIBo) only with
 

the restraint set changed to [-2,2]. The synthesis for this
 

problem except for an obvious scaling factor of 2 (i.e., the
 

switching curve is x = -y2/4, y_t0 and x = y2/4, y0-< ) is 

described in [22]. If {%t] is the optimal solution to the
 



auxiliary problem P and if 7 is expressible in the form 

u(t) + u(t-l) with tuT) admissible in P, then (u)] is the 

optimal solution of Pl. Thus P1 can be considered solved if 

0 - t A 1- 1. Figure 1 shows the reachable set jl) and the 

synthesis in case (x,Yo) C 

Figure 1.
 

Thus we now assume that (x0,y0 ) f 0l(1) so that T > 1. Here 

the situation is a good deal more complicated since the above i 

is no longer expressible in the required form. It is noted from 

(7.31) and (7.4) that the effective optimal control has 7(t) taking 

only the values in the set [-2.0.2), 0 - t - T. For brevity let 

us denote the optimal trajectory issuing from (xoyo) by i, ) 

Then (-(t),-(t)) can reach (00) only along one of the two
 

curves
 

s+:x y2/4, y-o,
 

S x = -y2/4, y 0o
 

then and from (7o3')If 0.=O, 8 /0 we see u*(t) - sgn (8), i.e., 
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there is no switching, Hence 8 > 0 implies (xo, yo) e S+ and 

6 < 0' implies (xo,yo) e S_. Conversely, (xo,yo) G S+ U S implies 

p = 0. If (x 0 Y0 ) 8+ U S-, then pg 00 It is not difficult 

to show that p > 0 or p < 0 accordingly as (x0,y0) is to the 

right of S+ U S_ or to the left of S+ U S_. Let -8/p be de­

noted by P. If one finds V(t) = 7(t) + E(t-l) using (7.3'), 

then it is clear that both V and 5U will be known completely if 

the disposition of the points _ + P, 1 + P relative to 

[Ot] can be discovered. Now the boundary conditions (7.2) impose
 

additional conditions on T and P. In fact with u = u and
 

t = (7.2) reduces to
 

t 

(7.5) x = f sOV(s)ds 
0 

y0 =-f V(s)ds. 
0 

By a systematic and laborious enumeration of the possible positions

1 1 

of - 1 + P, P, 1 + f relative to [0,7] it can be shown that 

(7.3') and (7°5) uniquely determine 7 and P as functions of 

(x0 ,y) S+ U S_. In principle at least the determination of 

t(xoyo) and P(xoy 0 ) represents no difficulty, so we shall only 

describe the results. However, it must be pointed out that when 

the possibilities are exhausted our calculations revealed the 

following: There corresponds to each (XoYo) G R2 \ A(l) exactly
 

one extremal control satisfying the boundary conditions (7.2).
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Hence an extremal control satisfying (7.2) must be time optimal.
 

(It will be seen momentarily that 1 (t) is not expanding, so 

Theorem 4.l does not apply.) 

Let DR (respectively, DL) denote the open region to the 

right (respectively, left) of S+ U S_. Sets D, I = !,2..o.,7 

are defined by the following relations: 

2 
1 YO YO


f(x 0 'y 0 ) e DR x0 -" -Z -8 

2 2 
= ((x0WyO) e DRI -2 <yo 02 1 YO YO 1 YO YOD2 7 - -- - 0 -7 -! 7< - -x -)) 

2 2 
SYo YO 3 + Y u 

3 0(XoYo) DRI Y0 ° - -

yo 
7 0o22Yo 5 

7 Y0 
Yo 

( O yO 2R0, r- -2 - -0 - - - T 

2 2 

eDRIyo
D =((x~yo ,-YO + YO y Y
 

2 2 
D f(x 0 ,yo) D y 0 - - 0 2 -y0 --EBB O,'-.-, 

2 
Yo
an 0 7---and x 32 Yo g 

2 2 
63fx, y +--.x0 --- i]0)e
D6 =[(x0 ,y 0 ) e DRI 0 - yo 2, + - - U 

2
02 2T 82b
 

-
((xyo)E DRI yo 2, x0 -93 - Y] 

2 
D ((x D YO 0: xO 3 _YO U 

-7(xoyo) e DRI yO 0, x _ Y-
(o'oYODRI _ 2y + 4 
We define D-,, 1 = 1,2, ..o,7 by symmetry through the origin, i . e . , 
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D_i = -D =(xt 0 ,y0)I -(x 0 ,y 0 ) e Di), i = 1,2, ...,7o Then 

UiD u [u [ + U S ] is R?, and Q(l) = ci (Dl) U 

cl (D_1 ), where cl (E) denotes the closure of E. The regions 

nD,_Di S+, S- i = 1,2, o..,7 are depicted in Figure 2. 

Figure 2o
 

The following formulas obtain for r and 8: 

YO + 20 (,8xo 

2 ' (x0 yo) E DI 

x0 =7 0 1 

1 +0 J4x + yo/2 + -2, (x o)xD
 3
 

Xo YO 
t(x0'Y0) = - 0 - , (x0,y0 ) e D 

4 

YO+ 1+ 1/Yo + 12Y + 24 0 (xoyo) e D5 

Y +: + "o(x 0 + e 6 
-T 2 2 ''C) U'y ED 

O + /l + 2(x + y/4) , (x,yo) ED0-0fV 
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YO
 

t(xoYO) =;+U z :so o(X(Xo, E 

Y + (Xo'Yo) CD ,U D 

yo+4t 2 (Xo, Yo) e D2 

Yo + 47
 
0-7--, (,yo) e D3 

+ 2t (x0,yo) e D4 

yo + t + 2 

6 ) (xoyO) D 

y + 47t -2 

6 (x0,y) D6" 

It is noted that if Da fl Dk 0 for some ik 1,2,...,7, then 

there is still no ambiguity in the formulas for t(xo,yo) and 

(Xoy0). In order to complete the definition of T and P on all 

R2
of we merely take advantage of the symmetry in the problem to
 

observe that E(x0 O) = t(-X 0 ,-yo) and P(x0,yo) = f(-xo,-yo) if
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(x0,Yo) e DL. We note that t is not continuous at points on 

S+ U S_ and on D l cl (D), However, at every other point of 

DR both t and p are continuous. 

Now to see the nature of the optimal trajectories we describe 

the optimal effective control 7(t) = 7(t) + i(t-l) if the initial 

data (x02Y0 ) e D,) i = 1,2,...,7, We use V. to denote the 

optimal effective control defined on [Ot(x0oyO) ] if (x0,yO) e 

D, i = 12 ..,7 Of course, if (x0 1Yo) e D_, , then the optimal 

effective control is - 1 , 1 = ... ,7. The formulas for v3 

are as follows. 

-2 t +
 

S0 0 _t _ 1 

72 ( t ) = -2 , - 1 < t _ 

+2, <t 

-2 0 +
0_5 t _- 


0 + P < t <g
-- 1
 

+2, < tgI 

11
 
+2, _ -+< 
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) 0o 0- g t 
V4 ( t 

L+2 P < t ­

1 
--2 	 0 _ t 5__ +
 

1
 
0, 	 +1<t-<
 

0, 1 1 

+2, 1 

-2, + 1t_ 

-- 2 0 _t < _-+ 

1
 

76 (t) = T I <t p-I
-2 "-

1 

+2, +. < _
 

0 P g n-+0< t 

1 

If (x 0 ,YO) Dl+ U D+2 U D+4 U D+6 U D 7) then the optimal 

trajectory, ((t),7(t)), beginning at (x0,y0 ) can be described 

in a simple geometric fashion. If (x 0,Y0 ) G cl (D1 U D_l) = Q(1) 

then this description is given in Figure 1. Evidently, if 

(xo,yo) q D4 , then V4(t) switches from 0 to +2 as 7(t),7(t)) 

crosses S+. Moreover, an all cases where (xoy 0 ) e DR the last 
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switch occurs as ((t),7(t)) crosses S+o Now let C21 
Sx2 -2 ; y 9 0) (note C21 is a segment of(X,y) x r -7-9g ; _ 2 

Bd .()) Then if (x0 ;y 0 ) e Dl2 , the point (iR(t),7(t)) coasts 

to C21 and then the synthesis for A!(l) obtains (Figure 1). Let 

curves C611 C62 C63 be defined as folows: 

- i 
C~ y -iXY~3 


2 
c1 ((X Y) l x=3 - Y+-g, 
062= l =7 2(x,y)-- g2 

2 
= f(xy)l x =-- +-,
 

63~~ 7 7
 

If (x0;Yo) eD6, then the first, second, and third switches of V6(t)
 

take place as ( (t),7(t)) crosses 
2
O61, i = 1,2,3 respectively
 

eFinally, define C1 = f(xy)J x = "- y , y - -1), If (xoyo) D7, 

then the first swatch of (t) happens when (3(t),7(t)) crosses C 0 

If (Xoy O) e D-2 U D_4 U D_6 U D_7 , then by use of symmetry the optimal 

trajectories are similarly described using curves C 10 = -Ci . The 

synthesis for (xOyo) e D2 U D4 U D 6 U D_7 is shown in Figure 3. 

Figure 3. 

For (xoy 0 ) G D3 U D5 the set of "first switching points" do not 



lie on a curve and the situation is too complex to describe geo­

metrically. Some typical optimal trajectories are given in Figure 4 

for (xoyo) e n U D+5. 

Figure 4. 

It Is Interesting to note that some of the optimal trajectories 

initiating an 
D3 or D6 can come to rest on the x-axis for a 

positive time duration before continuing on to the origin. Tra­

jectory 
A in Figure 4 shows an instance of this, but this is not 

typical. 

In this example, -9a(ABo), 1 ), and k(ABo+e-AI ) are0)9(AB 

all normal (and all proper) and yet _(t) is not expanding al­

though A(t) is increasing. The boundary of A t) for a fewthuh 1 . 1 t e 
values of t is sketched in Figure 5o 

Figure 5. 

This figure clearly shows Ml(t) is not expandingo
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P0
An example of a problem 	of the form is now considered.
3 

Example 7.2. The example considered here is exactly the same as
 

that treated in Example 7.2 except that here we impose the con­

straints
 

(7.6) 	 u0 =u =0. 

We give only a brief discussion of the solution to P The reach­
3 

able set R0(t) is the same as .Q(t-l) for system 

Y(A,Bo+e-A 1 ). The control system Y(A, Bo+e-4 
1 ) is given by 

(77) 	 x = y - u(t) 

= 2u(t). 

Now given (x0 ,YO) 6 R there is an admissible control (u,t 11 for 

P with system (7.7) such that the response of (7.7) to this con­

trol satisfies
 

x(tl; (xo,Yo),u) = y(tlj (Xo,Yo),U) = 0. 

Hence the same as true 	of (7.1) with [u,t+l] admissible in P0 

3. 
This assures us that an optimal control [, for P3 exists and is 

unique (Theorem 5.2. Proposition 5.3). We note that if u(t) - 1 

in (7-7) then we obtain the curve 
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2
 
S+: x = -.-
 , y ; 0, 

and if u(t) = -1 we obtain
 

2
 
S : x = _y y , y 0 . 

Figure 6 illustrates the synthesis for 'i using the auxiliary tra­

jectories from (7.7)° 

Figure 6.
 

We let DR (respectively, DL) denote the open region to the 

right (respectively, left) of S+ U S_. For this problem the 

regions Di =12 are as follows:= .o..5 

2 

D = [(x0,y0) G D 0 
YO 

RI Xo - YO - -' 

2 2 

D 2 = [(x 0 ) G D 1 YO xO 92
0,y 4 

2 

and xo 2 0­
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2 2 
y)GD12 R yo YO02 0 Y3 D( 0 Y0 7 5 0Y 

2 
- 2D4 ((x0,y o )  e DRI yo R00Y0and xo 2 -O-- --} U 

2 

((x 0 ,y 0 ) (EDRI y0 2 and 2 - 2 yo + -Yg x 2
2 0 [ 0~ 

2 
Y0 Y0
 

2 2 
= C2 y + YO x022f= [(x0,yo) ~~BRI xo 2 0 7' 24
 

The sets Di. i = 1125...,5 are defined by symmetry as in 

Example 7°1. We have
 

2[5 ±] u U [_U P] =R .1 

The regions D+, = ,2,...,5 are shown in Figure 7. 

Figure 7. 

Using the boundary conditions (7.2) and the maximum principal
 

for Fo one can show3 
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0 o 

-i; O<t--x 

7(t) = + < t < - 1 

0t
 

where 

Y0O +r(x 0 ,y)0 = 1 + + //yOy0 4y0 + 8xo
 

X(x0,Y 0 ) = -1 -i 

if (xoY 0 ) G DE. By symmetry we have
 

T(XoYo) -= (-Xo,-Yo), X(Xo,Yo) = X(-Xo,-y o) 

if (x 0 ,y 0 ) E DL . The optimal effective control [vT) for 

(x 0 ,y 0 ) e D is denoted by V., i = +1 ,+2 +5, Evidently, 

= m -- 1 = 1.2,...,5. The following formulas for v are 

obtained:
 



-i 

+l 


+1 

1 (t) 0, 

+i 


-1 
-i 


+1 

+i 

3()= 0 

-1, 

2 

+i,
+1 

Si_ 
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O-t<x 
, - t <' 

xt <t 

t- t < 1 

0~lt< 

1t < X+ 1 
O t<1 

x + i tt 

0 t<l 

g t < + ! 

0 -t<6 

x+l_ 9t _<
+l1t<x+ 

t + 1
< 




6o 

-1 0- t<l
 

-2 !l9t<X
 

V5 0 %-9t<%+l
 

+2 %+ i_25 t < T ­

+1, t-1i
 

P0
Figure 8 shows some typical optimal trajectories for with
3 

(xoYo) E D+1, i = 2000,5. Figure 9 illustrates some additional 

curious phenomena for this problem. 

Figure 8. 

Figure 9. 

For example if (xo;yo) = (-2,2) E Dl then the optimal trajectory 

to the origin is simply the are pO of the curve x = -y 2/2 

connecting (-2,2) to (0,0) (Figure 9). ,However, a subarc pq 
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of arc pO is contained in D Thus if one starts at a point n
 

on the subarc pq, then the optimal trajectory does not follows arc 

no to the origin, but will go off on a rather pathological trajectory 

(curve r in Figure 9), finally coming to the origin on an arc rO 

of the curve x = y2/2. Figure 9 also depicts what can happen when 
2 2/ h
 

= +yo/2. For example, starting at point X on x =y /2 the
 

optimal trajectory is the curve o. Note that a in Figure 9 hits 
2 

0 at time t = Z bounces down and then swings back to hit the
3 

origin at time 2 = 2o Other variations of this type of behavior 

can also occur because of the boundary conditions on the controls 
in P5. 

The next two examples demonstrate what can happen in problems 

which are not "normal" and where ker (B ) and ker (B1 ) are 

complementary spaces (see section 2). For these examples the 

attainable sets at time t can be determined without difficulty, 

enabling one to make a judicious choice (whenever there is more than 

one support hyperplane at the boundary point) of an outward normal 

for use directly in the maximum principle. 

Example 7.5. This is an example of the form Pl" The system equa­

tions are
 

(7°8) x u(t), y = u(t-l) 

with boundary conditions the same as in equation (7.2). For system 

(7.8) the domain 3 of null controllability (here U = [-121]) 
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turns out to be
 

-- (xoyo) R Jxo-yof § 2),
 

Thus the problem P1 has a solution only if (x 0 ,YO) e -0on 

the other hand if (x 0 ,y 0 ) e 301, then Theorem 5.2 assures us that 

problem P1 has a solution. The attainable set at time t turns 

out to be (xoyo)+ A(t) which we denote by -,y(x0Y0) and 

this can be explicitly computed.
 

-
Qt (Xoyo) = ((x,y) e R2 Ij-x 6f - t, ly-Yol t, Ix-yl ;g2). 

o 2
Figurel10shows j / (x 

tO 0 ,y 0 ), ± 1,2, for t1 < 1 < t2' 

Figure 10. 

Taking advantage of the simple geometric structure of Ql(t) 

one finds that T(x0,y0 ) = max [jx0 j, y0Hol(x0Oy) E 90. Thus 

an admissible control (17,T), t = t(x 0 ,y 0 ) satisfying the boundary 

conditions (7.2) is a tame optimal solution. The maximum principle 

for this problem says that if q = (T1 2) j 0 is a vector which is 
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an outward normal to a support hyperplane for T(Xo, Yo) passing 

through (0,0) and if t< 1, then 

sgn [I ], -l it ;5_T- i 

(7-9) 7(t) = undetermined, t -1 < t < 0 

sgn [q] 0 9- t 

and if T 1, then 

sgn [q2], -1 t < 0 

(7o9') (t)= 	 sgn [ -+j, 0 -t < -l
 

sg [j 1], T- i _ t_g
 

Let us consider some of the possibilities. Suppose -(xo, o) is 

on the line y = x - 2 and y0 > -x Figure 11(a) shows how 

rj = (T 1 2 
-Ql-(XoyFO)is positioned at (0,0) and we see that 

1 2 
 1 2
 
can be chosen so that j < < and il > I . Using this TI
 

in (7o9') one obtains
 

1-+1; -1 _ t < 0
 

if T 1 , with an obvious modification using (7.9) if r < 1. 
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Figure 11, 

If (xO,y 0 and YO > -x0; xO - 2 < YO < xW xO > 1, 

then sl (xoYo) is positioned at the origin as shown in
:Ez 0), 

Figure ll(b), where t = > 1 Hence i = ( PO), 'I < 0 and 

(7.9') gives no information on the interval [-1,O) but (7o9t) 

does specify 7(t) = -1, 0 - t - t. In this situation it turns out 

that any u such that [!,T) is admissible in P1 satisfying 

!(t) = -1 0 - t ; t, and which drives (xo,y0 ) to (x0 -l,xO-1) 

at tile t = 1, turns out to be optimal. Let (x,7) denote a 

response initiating at (xoyo) to a control fiVE) of the above 0

form Thenwe see that 7(t) =7(t) 1 < t ;t7 and 

(7o10) 1Y(t)I/l (t)l -I
 

for 0 - t _t. On the other hand f yO > -X, Xo - 2 < YO < xO
 

and x0 ( 9 1), then (7.10) is all that is required of the ad­

missible trajectory (X,3) as long as the boundary conditions (7.2) 

are satisfied. 
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Suppose now that xo YO and YO > 0. Then we find that 

tOand
 

(t)-!-1 ;5 t ;9 t) 

where [.1 is the optimal control. 

If YO = -Xo and YO < 0, then the optimal control (7,T) is 

given by 

(t:F+1 -1 _ t_ - 1 

L-1 0og t_g
 

where t = ly I1 . 

Using similar techniques one obtains optimal controls [7,T) for
 
1
 

all (xo yo) lying in 9 0 with y ;>-xo o By taking advantage of 
000 0 

the symmetry with respect to the origin an optimal control can then 

.
be determined for (xoyo) in the remainder of -01
0 0 0 

Figure 12 illustrates the typical situations. In this figure
 

heavy lines indicate pieces of optmal trajectories when (uT] is
 

unique, and the broken lines indicate segments of optimal trajectories
 

where the uniqueness of the optmal control does not obtain..
 

In this problem A 1(t) is increasing but not expanding.
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Figure 12. 

Example 7.4. In this example we look briefly at the same situation
 

as in Example 7.3 except we change to a problem of type P2 where 

v 0 - 0. Now the domain of null controllability (with U = [-1,1]) 

is 

2
_oO)= [(xo,2 yo) s 1

2' 
J{ 1),xo-yol 

and the attainable set at time t which we again denote by 

-. (Xoyo) is equal to (x yo) + 92 (t). It is easily shown that 

-
-'(xo, yo) = [(x,y) E R j Ix-xo g t, ly-yo t - 1, Ix-yl -- 1) 

for t - 1 and 

t(XO, YO) -- [(x,y) E R2 IX-Xo - t, y = yo 

for 0 < t < 1o These sets are shown in Figure 13. 
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Figure 13. 

Again, if one takes advantage of the simple geometry present in 

the problem, then the "minimum time" T is determined to be 

0 yo) C 9(o), Yo1+ IYOI (Xo

(X°Y°) x(x ) e 2(0), y 01 

which is discontinuous on -(0) at every point on the line
 

f(x0,yo) e R 
2 Ixl < 1, Yo = 0. If (xoy O ) C - 2(0), then an 

optimal control (UT] exists for problem P2 and t = E(x0 Y0) 

(Theorem 5.2). The necessary conditions for this example are the
 

same as in Example 7.3 (equations (7.9) and (7.9')) except the con­

dition on U(t), -1 ;9 t < 0 is deleted. To solve this problem one
 

considers (as in Example 7.3) the possible T= ( q2) which are 

normal to support hyperplanes for .jq (x0 ,y 0 ) through (0,0) and 
t s 

makes an appropriate choice when there is more than one candidate, 
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We now consider some of the cases. If y0 1 (i.e., r _ 2), 

then (.9') yields
 

(7ol1) 7(t) ---1, 0 -gt g-T 1. 

-
If in addition to YO t 1 we have YO = Xo - 1, then 7(t) -1, 

t <0 - T and the optimal control [u.t) is unique. On the other 

-hand if YO 1 and YO = xo + 1, then in addition to (7o11) we 

find that r(t) = +i, - 1 < t - , and again the optimal control 

<(u,t} is unique. Now if yO 1 and x 0 - 1 < yo xo + l1, then 

any admissible control 7 will be optimal as long as it satisfies
 

(7.11) and is defined on [t-lt] so that the boundary conditions
 

(7.2) are satisfied. The cases that we have just discussed are
 

shown in Figure 14 (where again non-unique segments of optimal tra­

jectories are denoted by broken lines) by the trajectories initiating 

at points pl1 P2; and pY,p4, P5 respectively. We note that in 

many cases the optimal trajectories contain subarcs which lie out­

side the domain of null controllability. 

Figure 14. 
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=If yo 0, then one can show that 

Ut 1 g if 1 X0 > o0 

and
 

!(t) +i) 0 - t -t if -1 -x 0 < 0, 

so that the optimal control is also unique and the corresponding
 

trajectories are very simple. Finally, we consider one other typical 

situation when optimal controls U are not unique. Suppose
 

<0 < YO 1 and x0 - 1 < YO < xO. The necessary conditions still 

give (7.11), but in this case any admissible U satisfying (7.11) 

and the boundary conditions (7.2) at time t = 1 + y < 2 is 

optimal. For example the trajectory issuing from point inP2 

Figure 15 shows one of the many optimal trajectories starting at 

this point at tine 0. This trajectory'passes through q2 at time 

- 1, arrives at r 2 at time 1, passes through s2 at some 

time t, 1 < t <T, and finally arrives at 0 at time T. 

Other optimal trajectories are also illustrated in Figure 15. 

In thisfigure once again heavy lines denote pieces of optimal tra­

jectories where the optimal control is unique, while along broken
 

lines the optimal control is not unique.
 

In this example 2 (t) turns out to be increasing but not 

expanding,
 



70
 

Figure 15. 

Finally, it is noted that if we consider system (7.8) with a 

P0problem of type then the domain of null controllability is
3P 

merely the straight line y = x. This problem is easily solved and 

some optimal trajectories for this problem are depicted in 

Figure 16. 

Figure 16.
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8. Delayed Control Problems and Dynamic Programming 

Consider once again Example 7°4 above. If we consider the 

optimal trajectory emanating from p4 in Figure 14, we notice that 

this trajectory has subarcs which are not optimal. Thus the 

principle of optimality in its usual form [19] does not hold here. 

This is not too surprising since this principle fails even in 

ordinary control problems with time dependent restraint sets U(t) 

if one interprets "state" to mean x(t) instead of (tx(t)) 

(cf. [16])o However, in the problems we are studying this difficulty 

is more serious.
 

We also observe that in Examples 7.1 and 7.2 the principle of
 

optimality in its usual sense fails to be true, On the basis of
 

this experience one expects the failure of this principle of
 

optamalty to be an intrinsic property of optimization problems in­

volving systems of the form Y§(AB 0 ,B 1 ) and not just a peculiar 

property redounding from the special boundary conditions in 

Examples 7.2 and 7.4 or the particular criterion for optimality. 

Hence one anticipates serious obstacles to obtaining results for 

problems involving Sg(AB, BI) using dynamic programming. 

Nonetheless, for certain special performance indices we are able to 

adapt the methods of dynamic programming to problems governed by 

systems Sh(AB B), even though it is easy to construct examples 

showing that the standard principle of optimality is also invalid 

for these problems,
 

The remarks below are valid for time varying systems even though 
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we shall, in keeping with our practice in this paper, restrict our 

presentation to the case of constant coefficients. 

Let s Rn - R and L. R X R m -R be given C functions. 

Suppose UCRm is given and t1 eR is fixed. For t O < t1 - h 

we shall denote by II the problem of minimizing 

t1
 

J(u; tox O) - a(x(tl)) + 	f L(t,u(t))dt 
to 

over the class of Y 2-admissible controls u where x(.; t xU) 

is the solution of S'(ABoB1 ) (v0 is a given fixed function 

throughout) subject to x(t0 ) = xO . 

Remark 8.10 We shall consider only the free endpoint problem; 
problems with restricted endpoints x(t) C C Rn require the 

usual modifications [3, 19].
 

An easy calculation shows that the response to Yh(ABoB)
 

satisfies
 

x(tl; to XoyU) =x(tl; tO:TxoU) 

whenever t 0 _t l - h, where xA is the solution to 

(8.l) x(t) = Ax(t) + (ttt)u(t) t e [tOt ] 

subject to X(to) = Tx 0 	 with Tx =_x 0 + fhe,(+h)AB v ()d and ~~ -h 1 
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B~tl It [t 1 -h,%tl0 r 

( 0 + e-h3 t < t I - h 

We shall denote by f the problem of minamzing 

I t1
 

JT(u; t0,x0 ) c-(2(t 1 )) + f L(t,u(t))dt
 
t a 

over all bounded measurable controls u [tOl] -lU where 

t0 < tI and X(.; t0,xo) is the solution to (8.1) subject to 

X(t) x0 . Note that the payoff S J ) depends only on 

x(tl) ( (tj) and not on x(t) (2(t)) for t < t. 

Sance J(u t 0 0 t 0 TX0 ) t < t I hxo) J(u for every - and 

X0 , we see that the problems II and If are equivalent when­

ever t 0 % tI - h. That as, if, for given initial data (tX 0 )
 

with t o - t, - h, E is optinal for I, then I, extended to 

[toG-h, I] by taking 1to =V, is optimal for It with initial data 

(to, T-lxo). Conversely, if ias optimal for H with initial data 

(t ox), to t, - h, then i restricted to [t0,tl] is optimal for 

with initial data (tOTxo). 

Applying the methods of dnmname programming to the problem It 

we obtain the Hamilton-Jacobi equation [3l 19] 

(8.2) St(tlz) + man [L(tw) + S(tz)f(tzw)] = 0 
weU 
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for t < t, and z e Rn where S(tz) = inf J(u; tz) and 
±u U 

f(t,z,w) = Az + a(tt1)w. Solving (8.2) with data c(tl,z) = U(z),
 

one obtains $(tox0 ) for t O < tl, x0 C Rn Since for
 

t 0 _ t 1 - h we have c(toXo) = c(toTxo), where c(tz) = inf J(u; tiz),
u 

one thus has the optimal payoff for problem H. It should be noted that 

although (8.2) is valid for t < t., one has c(t,z) $(t,Tz) only for 

- t1 - h. In case vO - 0 one has Tz = z and 0(tz) = (tz) 

for all t < t 1 . 

Let us now consider a special case of the problems 21,H for 

which (82)can be solved using known techniques. Denote by HN 
A .4 q 

and I q respectively the problems I1 and JI for quadratic payoffs 

a(x) = xSx, L(su) = uR(s)u where U R . We assume that S e n 
is symmetric positive semi-definite and R(s) c £ is symmetric 

positive definite for s e R . Application of known results to the 

problem H yields the optimal (feedback) control 

q1
 

(8.3) 7(t) = -R-l(t)a*(t~tl)G(t)2(t)
 

for t E [totl] where G satisfies the matrix Riccati equation
 

(8.4) G(t) + G(t)A + A*G(t) - G(t)(tttl)R-l(t)q*(tt 1 )G(t) = 0 

for t e [totl] with boundary condition G(tl) = S. Note that
 

(8.3) gives a feedback solution for the problem H which can be
 
q

used to solve the problem II in the foflowang manner, Giaven 
q 
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(t 0 lxo), t0 ;_t, - h, as initial data for the problem Hq one solves 

the problem Iq with initial data (t0,Txo) obtaining a feedback
 

of the form (8.3). Next one uses this in (8.1) to find the optimal
 

X; i.e., one solves
 

(8.5) x(t) = [A- (t~t)R-!(t)*(t~tl)G(t)) (t) 

for t r [tOltI] with data (t0 ) = Tx0 o 	Using this together with 

(8.5) gives the optimal open loop control for Jq. 

This control can then be used in Y'h(ABoB 1 ) with x(t) =x 

and uto = vO to find the optimal trajectory for problem lqo This 

latter step is not necessary to find the optimal value of the payoff 

for Hq, since knowledge of x and yields J( t 0 ,xo0 ) at once 

from 

t1
 

J67; t 0ox 0 ) = 5 R; t 0oTx0 ) = 2(tl)SX(t 1 ) + 	f W(t)R(t)U(t)dto 
to 

We note that in (8.1) and the performance index 3 (u; toxo) we
~-At^
 

could make the change of variable y = e 	 x, and then system (8.1) 

takes the form y = 2(ttl)u(t). If one carries out these sub­

stitutions, then the corresponding Riccati 	equation wall have the
 

simple form G - GC(tt1)G = 0 which can often be solved by a 

quadrature (see [25, p. 2271). 

Remark 8°2. It is not difficult to give a 	rigorous derivation
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(including existence of the required solution to the Riccati equa­

tion (8.4) on the entire interval [totl]) of the above solution 

to the problem II using the maximum principle for HI and
 q q 

arguments similar to those by Lee and Markus [19, sections 3.2 and
 

3.31.
 

Remark 8.3. The above ideas can be applied to certain optimal con­

trol problems where retardations occur in both the state and control
 

variables. For the correspondang quadratic payoff problem IHq one
 

can then use recent extensions of the Riccati theory [1, 8 15, 17,
 

27].
 



77 

References
 

[1] 	 Y. Alekal, Synthesis of feedback controllers for systems with 

time-delay, Ph.D. thesis, University of Minnesota, 1969. 

[2] 	 H. To Banks and M, Q. Jacobs, The optimization of trajectories
 

of linear functional differential equations, SIAM Journal on
 

Control 8(1970).
 

[3] 	 L. D. Berkovitz, Variational methods in problems of control
 

and programming, J. Math0 Anal. Appi., 3(1961)2 145-169.
 

[4] 	 J. J. Budelis and A, E. Bryson, Jr., Some optimal control re­

sults for differential-difference systems, IEEE Trans. 

Automatic Control, AC-15(1970), 237-241. 

[5] 	 D. H, Chyung, On the controllability of linear systems with 

delay in control, IEEE Trans. Automatic Control, AC-15(1970),
 

255-257.
 

[6] 	 D. H, Chyung and E. B. Lee, Delayed action control problems,
 
Proc. 4th IFAC Conf., Warsaw, 1969.
 

[7] 	 K. S. Day and T. C. Hsai, Optimal control of linear time-lag 

systems, Proc. JACC (AnnArbor, Mich., 1968), American Siciety 

of Mechanical Engineers, New York, 1968, 1046-1055. 

[8] 	 D. H. Eller, J. K. Aggarwal, and H. T. Banks, Optimal control 
of linear time-delay systems, IEEE Trans. Automatic Control,
 

AC-14(1969), 678-687. 

[9] 	 R. E. Foerster, Control of linear systems with large time de­

lays in the control, Dept. Aeronautics and Astronautics Report 

No. 376, Stanford University, 1969. 

[10] 	 A. T, Fuller, Optimal nonlinear control of systems with pure 

delay, Int. J. Control, 8(1968), 145-168. 



78
 

[11] 	 H. Hermes and J. P. LaSale, Functional Analysis and Time 

Optimal Control, Academic Press, New York, 1969. 

[12] 	 K. Ichikawa, Pontryagin' s maximum principle in optimizing time­

delay systems, Electrical Engineering in Japan, 87(1967), 75-83o 

[13] 	R. E. Kalman, Contributions to the theory of optimal control,
 

BOl Soc. Mat. Mexicana, 5(1960), 102-119o
 

[14] 	 G. A. Kent, Optimal control of functional differential equations of
 

neutral type, Ph.D. thesis, Brown University, 1971o
 

[15] 	 H. J. Kushner and D. I. Barnea, On the control of a linear 

functional-differential equation with quadratic cost, SIAM 

J. Control, 8(1970), 257-272.
 

[16] 	 M. R, Latina, Some aspects of mathematical control problems 

with time-dependent control constraints, M. S. thesis,
 

Brown University, 1970.
 

[17] 	 E. B. Lee, Optimal control of systems with time delays, Proc. 

JACC (Boulder, Col., 1969) American Society of Mechanical 

Engineers, New York, 451i-452. 

[18] 	 Y. C. Lee, M R. Gore, and C. C. Ross, Stability and control of
 

liquid propellant rocket systems, American Rocket Society 

Journal, 23(1953), 75-81. 

[19] 	 E. B. Lee and L. Markus, Foundations of Optimal Control Theory,
 

John Wiley, New York, 1967.
 

[20] 	 E. J. McShane, Integration, Princeton University Press,
 

Princeton, 1944.
 

[21] 	 L. W. Neustadt, Synthesizing time optimal control systems, J. 

Math. Anal. Applo, 1(1960), 484-493. 

[22] 	 L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and
 

E, F. Mishohenko, The Mathematical Theory of Optimal Processes, 

Interscience, New York, 1962, 



79
 

[23] 	 B. Co Ragg and C. A. Stapleton, Time optimal control of second­

order systems with transport lag, Int. J. Control, 9(1969), 

243-257. 

[24] 	 W, H. Ray and M. A. Soliman, The optimal control of processes
 

containing pure time delays, Proco JACC (Atlanta, Ga., 1970) 

American Society of Mechanical Engineers, New York, 1970, 

476-484.
 

[25] 	W. T. Reid, Solutions of a Riccati matrix differential equa­

tion as functions of initial values, J. Math. Mech., 8(1959), 

221-230. 

[26] 	 R. W. Rishel, private communication0 

[27] 	 D. W. Ross and Io Flugge-Lotz, An optimal control problem for 

systems with differential-difference equation dynamics, SIAM
 

J. Control, 7(1969), 609-623.
 



y
 

IjI 

SS+ wI-

I
 

I 
 FIGUREI 



yA
 

S _ 

D_4 

D-5 D-2 D6D D7 

-3D-1D 

I s+ 

FIGURE 2
 



S _ I
 

FIGURE 3
 



V
A
 

r3
 

FIGURE 4
 



yX
 

Z SBd( 1(2s)) 

O<E<I 

FIGURE 5
 



S IJ 

yX 

++
 

FIGURE 6
 



yA
 

FIGUR 7 

FIGURE 7 



y
 

4 

DD 
DF2
 

FIGURE 8 



2 y
 

x;x
 

x=1y 
m 

FIGURE 9
 



y =x+2 

(x1t 22,Yo+ t) 
yzx.-2 

~t 

ti 0 
(XoYo) 

(x t27y0-t2 ) / 
t <I<t 

2 

/ 

FIGURE 10 



y / 
/ 

7 

y=x-2 

/ 

y 
y=x 

/y=x-2 
I/ 

lyy/// 

i (X.,/ 

/ 
(Xo 

,Yo) 

(a) 
FIGURE 

II 

(b) 



y=x+2 
/ /y~Xy // y=x-2 

/
F/ / 

/ 

/X 
/ 

_ 1±/ 


FIGURE 12
 



y y x+l 

/ y-x-l 

//tl/t 

/ 

(XoYx 
FIGUR (Xo Yo) 

qt (XolYo ) 

I_<I< 

/X 

/ / /FIGtREl13 



yyx+l
 

/
 

FIGURE 14
 



y
 

/ / y= x+!pxIy=x-I = -
/ 

q+/ 

op1/X'~+ ,_____ / / 

p4 rS 2/0 /x 
//-- ---­

/ 

5 5 / 

FIGURE 15
 



y~x
 

F 

FIGURE 16
 




