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ABSTRACT

Opbimization problems involving Linear systems with retardations
in the controls zre studied 1n a systematic way. Some physical
motivation for the problems is discussed, The topics covered avel
controllabilaty, existence and uniqueness of the optimal conbrol,
sufficient conditions, techniques of synthesis, dynemic programming,

A mumber of solved examples are presented,



1. Introduction

Optimal control problems involving systems with delays in the
sbate variables have been studled extensively and the difficuliies
encountered in such problems have been well documented [1, 2, 8, 15,
' 17, 23, 2k, 27 and the bibliographies of 2, 24]. Recently, more
sophigticated models with systems containing retardations in both
the state and control variables have come under investigation [2, 4,
6, 7, 12, 14, 17, 247, 1In [2] Banks and Jacobs presented the mathe-
matical foundations necessary for the study of very general conbrol

systems modeled by equations of the Type

t
x(t) = fOX(t+S)dSF(t;S) + [ h(u(s),s)a G(%,s)
-T -7

where F and G are Stieltjes measures. The purpose of this paper
18 to mvestigate the effect (from both the theoretical and
computational points of view) of lags in the control variables. We
shall attempt to do this in a number of ways, but our aim always
w1ll be to point cut the pathological differences between systems
with delayed controls and those without, In order to isolate the
effect of delays in the controls, we shall consider only the simplest
models with lags in controls, and ignore any retardations in the
state variables. Indeed, the examples of section T below illustrate
very well the novel behavior of solutions to optimal control problems
with these types of models,

In section 2, motivated by models arising in current applications,



we formulate several different types of systems which appear to be
of interest. Controllability of these systems 1s considered in
section 3 wheve results involving controllability matrices analogous
to those for non-delay linear systems are presented. In the next two
sections the questions of existence, uniqueness, and sufficiency
conditions for time opbimal problems are considered in the spirit of
[11]. In section 6 we exbend to our systems a synthesis technique
due o Neustadt [21]. A number of solved examples are presented in
section 7. These fundamental examples, governed by systems which at
time t depend on the control at times © and t - h, are intrinsically
more complicated than those involving systems which at time t depend
on the conbtrol only at time t - h and give rise to prediction
problems, Finally, the paper 1s concluded with a2 section ccneerning
the applicability of dynamic programming techmniques to certain cases
of the systems under study, ineluding mention of a Riccati type theory
for quadratic payoff problems.

We have tried to present numerous examples throughout the paper
in order to provide the reader with an insight 1n regard to lLimitations

of our results.



2, Nobation and Formulsbion of Problems

We shall dencte by "qu The real wvector space of all p X g
matrices. If A e ipq the transpose of A will be dencted by A¥.
We shall not distinguish a column vector from its Form as a row
vector since 1t will always be Lransparent vhach form 1s intended
by the order of multiplication in any matrix operations,

In order to facilitate the dascussion of several types of problems
involving various dlffz;_rent system equations gsome special notation

15 required, We denote by .Sﬁ(A,B

O’Bl) the system

%(t) = Ax(t) + Bou(t) + Blu(t-h)

where A ¢ £

o’ BO’ B, e Lom and h 1s a positive constant. The

1

system
% = Ax(t) + Bu(t)

is dencted by S(A,B) where A €2 , ond B es£ .
nn nr

2

The term control means a traiple {u,t 'tl} Where u. [‘to-h,is

0 1]

-aRm is a function and % are real numbers,

o? tl

Definition 2,1, Given UC R© +the symbol VIJ;(A,BO,BI) denotes

the system _S{I(A,BO,B with constraink

1)

u(t) e U, t e {to-h,tl]



on the controls {u,‘bo,tl}, tys By € Re

Defination 2.2, Given UC Rm and a bounded measurable funcition

. 2
v, [-h,0] — U, we use yh(A,BO,Bl) to denote the system

S (8,B,,B;) with constraints

u(t) € U, toe [,,%]
on the controls, {u,to,tl}, to’tl € R vwhere ut(s) = u(t+s),
s e [-h,0].

Definition 2.3, Given UC Rm and bounded measurable functions

- 5
v, : [-h,0] = U, 1 = 0,1, we denote by yh(A,BO,Bl) the system

%(A,BO,B:L) subject to constraints

u(t) € U, t e [t,,t,-h]

on the controls {u,to,tl}, tO’tl € R,
In the problems considered in thais paper we shall often ‘bake

U=R" or U=ZK, where K= 1s the unit cube,

2

1 .
fu= (u ,o.,o,um) € le Iull =1, 1=1,...,0}, 1n Rm. Whenever,

h, A, B), B, are understood &' w11l be used instead of

i
yh(A:BojBl): 1= l)2:5°



Systemns of type 5/2 with vo

problems where at initial time ‘L'O there is no delayed conbtrol

= 0 are models for physical

effect, but after some time t_ + h there enters a non-neglagible

0
effect on the system at tame +t by the conbrol given previously at
tme % - h, This 18 exactly the case which occurs in the study of
lossless transmission lines when one reduces a linear hyperbolic
partial differential equation system with boundary contrcls to a
linear differential-dafference equation of neutral type in which
control terms u(t), u(t-h) also appear linearly [1h],

Day and Hsia [T7] have recently proposed a modificabion involving
delayed controls for a model [18] of a gas-pressurized bipropelient
rocket engine, In addition to being of type & 2, this modified
model also provides motivation for study of systems in which the
kernel of BO and the kernel of Bl are complementary subspaces,
5’2 ~type systems are also models for continuous stirred tank reactors
as studied by Ray and Soliman [247], Although the example studied in
[211-] is non-linear, linearization about a nominal yields a system
which satisfies kernel CBO)C }::ernel(BJ? (see sectaon 4 below).

Problems with systems of type 5/’5 with vy = v, = 0 are
motivated by air traffic control models currently under study [26];
one such model has system equations x(t) = -£(%,x(t)) + u(t-h),
¥(t) = a(t) - u(t), where £ 1is a landing rate, ¢ 18 a queing or
scheduling rate, and u is a takeoff rate, Thes_e medels also 1in-
volve systems in which kernel B

0

subspaces, Systems of type _9”5 w1th vl

and. kernel Bl are complementary

= 0 are of importance in



so-called "settling problems"; 1.e., problems in which one desires
to atbtain the equailibrium state x("ol) = 0 1n such a way that the

gystem will remasin at this state without further control i1f other

dagturbances are absent.
We note that all three types of systems defined above are gquite
different from systems such as those modeling remote earth conbtrol

of deep-space satellites studied by Foerster [9] and others [1O0,

12, 23] which contain only control terms with a delay (1.e., B, = 0).

0

A control {u tl} will be called admissible for the system

Jto’
y;l(A,BO,Bl) (or samply &' _admissible) 1f us [t5-h, %, ] SR is

bounded, measurable and satisfies the constraints detairled in the

1 . n
definition of &7, 1= 1,2,3. Given Xp¥) € R and t, e R, we

shall denote by P, 1= 1,2,3, the problem of finding an % T

admissible triple {'ﬁ,to,qt-} with U= K satisfying x(T; tO,XO,ﬁ)

=x. and T = min [tl] {u,t ig S .admissible with

1 »So0 %)

%(y; Bps¥p,W) = %}, vhere x(+] %,,x,,u) 18 the response (solution)

of system S{(A,B,,B)) to control w with x(y3 Boy¥g0) = X

0’ 0°

That 1is, P1 denctes the taime optimal problem from X to Xy for

the system y;(A,BO,Bl) with U= K", The gspecial case of problem
P5 with Vo=V = 0 will be denoted by P;. Finally, we shall
denote by P ‘the special time optimal problem as studied in [117];
1.€., the minimm time to origin for the system S“(A,B) with

U= K"

Necessayy conditiong in the form of a maximum principle for the

problem P, are a special case of the general necessary conditions

1



deraved previously by the authors [2]. Using samiler proofs one
can derive necessary conditions for the problems P2 and P5 (P_;.)).

Use of these conditions yields that an optimal comtrol ({u,+

b Oit}

for problem Pl must sabasfy

sen [Y(t+h)B, ], t e {to-hﬁ_h]
(2.1a) u(t) = arbitrary, t e t-h,to)

sgn [V(t)B,], t e [to,Ej,

1f 0s%-t,<h, sndaf h=T .ty then (§,t,,5] must satisty

JO’

sen [ﬂr('b-kh)Bl], t € [to-h,'bo)
(2.1b) W) = | sen [¥(£)By + ¥(t+h)B,], b € [t,5-)

sgn [¥(%)B)], © ¢ [t-h,%],

where (%) = n exp(¥-t)A, end the vector 0 # O 1s an outward
normal to a support hyperplane for the athtainable set at time T

passing through the boundary point x It 1s understood that when

l.
*a,b e Rm, the relation "a = sgn B 1s to be interpreted using the

same convention ag in [1ll, pg. 50]. For the problem P2 one obtains



the corresponding necegsary condations from (2,la) and (2.1b) by
deleting the requirements in the first two lines on the right-hand
side of (2.1la), and the condition on the 1uberval [to_h,to) in
(2.1b). For problem (P§) one always has T 2 h so that the
satuation 1n (2,1a) never occurs, Thus the necesgary condations
for problem P5 are obtained from (2.1b) by delebting the reguire-
nents on the intervals [to-h,to) and [E..h',%'],

Any admwissible conbrol in problem P1 satisfying the above

necessary conditions for Pl will be called an extremal control

for problem Pl, 1=1,2,3. FEvidently, when compubting extremal
responses (1,e., responses 1o extremal controls) what one uses 1s
what might be termed an exiremal "effective combrol", i.e., ¥(t) =

Bya(t) + Bju(t-h), t e [t,t] where (W,t,,F} 15 an extremal

O,
control, Thas V 1s easily computed from (2,1a) and (2.1b) or

P L

their appropriate modifications for problems Pg, 5



3. Controllghilaty

In this section we sghall derave necessary and sufficient conditions
for comtrollsbility of the systems &  as defined above. These
conditions will be analogous to the well-known rank condition on the

controllability matrix for systems (A,B).

Defination 3.1. The system y;(A’BO’Bl)’ 1=1,2,5 21s controllable

on [t,t,] if for every x.,x, € R" there 1s an &/ -admissible

traple {u,‘bo,tl] such that x(tl,' to,xo,u) =X

ln

Remark 5,1, We shall find that the necessary and sufficient con-
ditions for controllability are actually independent of the interval
£t0’tl] a8 long as tl > to + h, IHence one could define the
equivalent concept of a "contrcllable system” 1n addition to &
"econtrollable on [to,tl] system"., For the systems GS4A,B) 1t 1s
well-known that these concepts (and others) are equivalemt [11,197,
8ince we are mainly interested in obtaining the form of the necessary
and sufficient conditions, we shall not pursue that aspect of the
develomment here,

Let us denote by % inn X inr -—>£n (nr) the usual conbrollabality

matrix  Y(A,B) = [B,AB,...,AN 8],

Theorem 3.1, A necessary condabion that yl(A B.,R 1=1,2,3
————t i h 3 0.’ l 2 32

be controllable on any [to,tl] with %, >t.+ h 1s that

17 "o
[£(4,By), %(4,B;)] have rank n.
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Proof; y;l(A,BO,Bl) controllable => 4, (BO,Bl)) controllable =>

%A, (By,B)) has vrank n = [¥(4,B)), ¥(4,B))] has rank n.

The above condition will be shown sufficient for systems _9”1
2 -
and &  whenever U = Rm, but a much stronger condition will be
necessary and sufficient for sysbems _‘/?, Note that the condition
does not depend on h, the lag saze,
Theorem 3.2, Let U= R", A sufficient condition that
L 2

yh(A’BO’Bl) and yh(A,BO,Bl) be controllable on every [tO’tl]

with t >t  +h 1s that [K(A,BO), K(A,Bl)] have rank n.

Proof; It suffices to give the proof for the system yi(A,BO,Bl).

We shall give a proof that 1s a slight modification of that given
for the systems S4A,B) in [19]. The usual constructive proof

(see [13]) using a special symmetric matrix can also be made. Assume
that [SK(A,BO), %(4,8)] has rank n., Let [ty,t,] with

2
tl > ‘50 + h and Y5 be given for yh(A’BO’Bl)“ Define XO('V‘O) =

~(b~t )Ato  (by-t-h)A

-e [ e B,V (t~t_.)dt and consider _QJM(X (v.)), the
! 0\ ""% ot
0
. . 2 R
attainable set at time t, Tor the system < h(A’BO’Bl) with

x(ty) = x,(vy) and U= {ue Rmi |w'] =M, 2= 1,...,m}. The set

MM(XO(VO)) consists of all points 2z of the form =z =
Ch (6,-t-n)A by (t
e B.u(t)dt + [ e

. %

0 O

I,F."t)A . m
Bou('t)dt where ul [to’tl] - R

t



15 bounded measurable wath |u' ()] = M. We claim that JZ?M(XO(VO))
CIRF has dimension n. If not, there i1s a vector A % ¢ such that

Az =0 for all z e “Q{M(XO(Vb))’ or

S (4,-t-n)A 51 (5 -t)a

(3.1) v e Bu(t)db + A [ e T Bou(b)at =0
£ £

for all bounded measureble u with }ul(t)l = M, Taking u= 0
‘ (b,-b)4
O,tl-h] 1 (3.1) yields 2e By=0 for % e [t ~h,t

Tt follows by the usual arguments that XAkBO = 0 for

on [t 13

k= 0,1,2 : thus ;LK(A,BO) =0 and xe§ABO =0 for & eR.

3t3Cs000,
(t,-t-h)A
Uze of this latter result with (3.1) yrelds ie B, = 0 for

1
t & [§),t,-h]. It then follows that h[ﬁng,Bo), EffA,Bl)] =0,
contradicting the rank condition hypothesized above,

That the n-dimensional set Jxﬁm(xo(vb)) is compact and convex
1n R© follows from previous results by the authors [2]. Further-
more, it is easily seen that szM(xO(vo)) 1s symmetric sbout the
origin in Rn and hence must contain a neighborhood of the origin,
Since 2§¢M(xo(vb)) C;;%EM(xo(vb)) we find that the attainable set
Ax.(v.)}) at tme +. TFor .5/2 with U=R" eond x(t.) = x.(v.}

o' 0 1 a o7~ ToMo
must be all of Rn. The conclugion of the theorem then follows from
the fact that

(By-,)A
2(xg) = e By (V)] + 240, (v))

for any x. € Rn.



We remark that an obvious modificabion of the above proof will
show that the condation of the theorem is also sufficient for con-
2
trollability of systems of type _Vh(A,BO,Bl) where one has a

boundary condition® v, = v, 1n place of v, = v_, As one would
’ol 1 to 0]

expect, 1f U 1s a proper subset of Rm, then the condition of
Theorem 3.2 1s no longer sufficient for controllability (see examples
7.3, T.4 below), An immediate consequence of Theorem 3.2 ig that
systems Ix = bou(t) + byu(t-h) will always grve rise o _S/l and
N 2 type systems which are controllable, Here L denotes the
usual real scalar nth order differential operator with constant co-

(n-1)
lX 4+ eeo + 8 X,

efficients, ILx = x(n) + a
n (@]

Remark 3,2, In a recent note [5] D. H. Chyung considered the con-
trollability guestion for systems of type & 2. He obbained as
necessary and sufficient for controllability the condition that
[_Sf(A,BO), Zl(a, e"hABl)] be of rank n, Note that from this con-
dition one might suspect that lag size h could affect controllability.
However, it 1s not difficult to show that [ yg‘(A,BO) , ¥ (A,e_h&Bl)}

has rank n 1f and only if [fg’(A,Bo), _%(A,Bl)] has rank n. From

a practical point of View, use of the second matrix 1s more desirable

since 1t can be computed without compubing e"hAo
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In practice when delays are small in a problem one scmetines
chaooses to 1gnore them and work with an approximate system obtained
by setbing h = 0 1in the original system., For 1 = 1,2, the sys-

1
tem & (A,B,,By) 1s thus approxumated by the system y(A,BO-i-Bl)a
Tn connection with this approxamation we make the following observa-

tion.

Theorem 3.5, For 1= 1,2, y(A,BO-!-Bl) controllabhle implies

1 m
S/h (A, BO’Bl) controllable when U= TR ,

Proofy Sf(A,BO+Bl) controllable = fg(A,BO+Bl) has rank n =
1
(

n- n-1
[By#By,A(By B ), 00,48 BO+Bl), ~By, -AByy -+ s,-A7 B ] hes

o

rank n = [fg(A;Bo): Z(AJB

l)] has rank n,

1% 18 easy to glve an example to show that the converse of

Theorem 3.3 1s not true, e.g., hake Bl = -Boo

situations where the approximation might seem more reasonable, con-

Indeed, even in

trollability can st1ll be lost by use of the approximation.

Example 3.,1. Consider the system

%(t)

it

fy(t) + au(t) + bu(t-h)

It

¥(t) = ex(t) + cu(t-h)

where a,b,c,:f‘,g,h are not zero, One finds that



IS

[ £(4,3,), %(8,B))] has rank 2 while det Sf(A,BO+Bl) =
g(a+b)2 - fce, Thus by using the approximaiion one destroys con-
trollabilaty 2f (a.+b)2 = fcz/g. For example, 1f a=1, b= -
and ¢ = (g/ f)l/ 2 (1-€) vhere g/f > 0, one would probably not wish
to i1gnore the lag h,

We remark that the results of this section can be extended to
systems with multiple delays and even to gystems with certain types

of time varigble delays. For example, for systems with dynamics given by

v
(3.2) (t) = ax(t) + L B u(t-h_) toe [t,t]
1=0

with 0=hy<h <--e<h and u(t) eV, t e [b,-h 5], one

can modify the previous proof to obtain the fellowing theorem.

Theorem 3.%. Tet U= R . A necessary and sufficient condition that
(3.2) be controllable on any [to,tl] with &, > to + hv 1s that

[£(4,B,), %(A,Bl),o..,fg(A,Bv)] have rank n,

As a corollary to this theorem we obtaln a sufficient condibtion

for controllability which does not invelve A,

Corollary %.1l, For the system (3.2) with U= R and (Wl)m 2 n,

a sufficient condition for controllabilaty on any [tO’tl] with

o>t +hv 1s that [B

1 0 O’Bl"”’B‘v] have rank n.
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Once one has obbained necessary and sufficient conditions for

controllability of systems y;(A,BO,Bl) and &2 (8B B)) 1n

bl OJ
terms of a rank condition on a "controllability matrix", one should

be able to prove many theorems for these systems analogous to those
for the system G7A,B) which i1nvolve the usual controllability
matrix, We shall present one such result involving the domain of
null controllability, the proof being developed in a manner similar
to one in [19].

We define the domain of null controllability for & l(A

b] 0: _]_)
by

gé = {xo € 'Rn' there exists an S/l-a.dmlss:v.ble triple

{u,% 1 with x(t XOJU.) =0

’O’l

In a similay manner we define for 5’ (A,B ) the set

JO}

2
D (vy) = {x € Rn1 there exists an /> admissible triple

0
{u,t 0 l} with uto = Vs such that
(b5 LN ,u) = O} .

. 2
Note that for a given U, QO(VO) C gé for any vgj. We shall be

OI

especially interested in the set 93(0), 2.8, V,
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Lemma 3.1, BSuppose O € U'CZRm and A 1s asymptotically stable,

if gyg(o) contains a neaghborhood _4# of the origin in Rn, then

gyg(o) = R

TA

Prooft Given %, € Rn, let 7> 0 %be such that xz(T; O,XO,O) =& X,

Loy 2
18 1n A C 5@2(0), Then let {u,%,,%,] be 5 -admissible with

~ . TA e
uto = 0 such that xz(t,; t,,¢ X4} = 0. Defining
0 t e [~h,T]
(e) =
u(g-r+t,) £ e (7,m8, -t ],

1t 18 easy bo show that x(¢+tl-to; O,xo,ﬁ) = 0 vhich mplaies
2
&
X, € AJO(O)o
Lemma 3.2, Suppose O € int U and [ﬁf(A,Bo), ﬁfﬁA,Bl)] hag

rank n. Then Eﬁg(o) contains a neighborhood of the origin in Rnu

Proof. Let _Qf; (yb) denote the attainable set at time tl corre-
I

spondang to y(0) = y. using the system

0]

v (%)

Ay (t) - Blw(t) - Bow(t~h) t € {O,tl]

0 w(t) eU, t e ["h’tl]°

2

d_ii
|



N

2
This sysbem may be thought of as the system "_S/h(A,BO,

v, = 0" run in reverse time, Since rank {fg(—A,nBl),%(—A,-BO)]

Bl) with

o =
= rank [ £(a,38,), %(A,B))], erguments similar to those 1a the

proof of Theorem 35,2 may be used to show that _Qf_; (0) contains a
1

neighborhood of the origin in R" for tl >h whenever O € i1nt U,

It remains only to show M; (0) C _@2(0) for t, >h. Since
1
x, € - (0) 1s of the form
1 tl
"1 (t,-8) (-a)
% = é e [-Blw(s) - Bow(suh)]ds
where Wt = 0, one can easgily obtain
1
T
A 1 (t,~t)A
O=e x + [ e [Byul(t) + B,u(t-h)]jat

I

with u(t) __W(‘bl-h-t) for % e [-h,% ], yieldingthat x e @g(O)

1

Combining the two lemmas one obtains the following results.,

Theorem 5.0, Suppose A 1s asympbobically stable, 0 ¢ 1nt U, and
[Z(4,B,), %(A,Bl)] has rank n. Then 93(0) (and hence 93)

18 &1l of Rno

Obvious wodifications of the above arguments yield the following

corollaxry,
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Corollary 3.2, Under the hypotheses of Theorem 3.5, we have

2 _ph
EEO(Vb) = R" for any Ve

Remark 5.3, One can obtain a result gimilar to Theorem 3.5 for the

systems ,Vi(A,BO,Bl) with the condition u =V, replaced by
O

u, =V However, the rank condition of the hypotheses must be

tl 1
replaced by the, in general, stronger condition ”ﬁfTA,e_hABl+BO)
has rank n", The reason for this change will be apparent after our
discussion on the controllabiality of systems of type & i(A’BO’Bl)

which follows,

Although controllabalaity conditions for systems &7 i(A,BO,Bl)

can be derived from basic principles as was done above For systems

j;;l

type _9/5 which will yield the same resulis mmediately by applying

z
and & , we shall make a simple observation sbout systems of

known theorems [1), 19] for certain non-delayed systems. For

)
_S/’h(A,BO,Bl) on [to,tl] and Vs Vy given, a straightforward

.s 3
calculation shows that the response x(*; tO,XO,u) to _S’h(A,BO,Bl)

satigfies
(15 Boy%g,u) = X(t,-h; s Xy, 1)

where X 1s the solution to system _S/(A,ehABO-&-Bl) on [to,tl-h]

- (t,-h-%)A

subgect to x(to) =% = ehAx + e A with A= A(vo,vl,to,t

0 0 1)
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defined by
%o (6, h)A
A(vo,vl,to,tl) =f e (t t )dt
t.-h
6]
B (b,-t)a
+[ e B v, (t-t, )dt.
01 1
tl—h

Therefore, 1t is not difficult to verify that yi(A,BO, B,) 1s

coentrollable on [t o Pyl 2f and only 1f Aa, ehA'.BO+Bl) 18 con-

trollable on [t -h]. It follows that studying controllability

o’ l

of systenms 5”3 (A,B 18 equavalent to studying that of systems

B.,B,)
Aa, eh'AB +B,). Since the matrix ¥4, ehABO—I-Bl) 1s rank equivalent

to _E:f(A,B +e hA.Bl) , We have the following theorems.

B ) be con-

Theorem 3.6, A necessary condition that _Vi(A, 0,
trollable on any [ty,%] with &, > %, +h 1is that S(A,B re hABl)

have rank n.

Theorem 3.7. Let U = Rm. A sufficient condition that
5,
y (A'}' O}

that K(A,Bo+e-hABl) have rank n.

) be controllable on any {to,tl] with 5, > to + h a1s

Remark 3.4, The rank of ¥4, Byte hAB equals n aumplies the
rank of [K(A,BO), ¥(A,B;)] 1s mn, but not conversely (see

Example 3.2 below), Thus the rank condition of Theorems 3.6 and 3.7
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1s, 1n general, stronger than that of Theorem 3.1. Furthermore,

3

the dependence of the rank condition here on the lag size h 1is

not 11lusory (see Remark 3.2) as the following example demonstrates.

Example 3,2, (onsider the system

(%)

(%)

my (%)

-mx(t) + u(t) + u(d-h).

1

For h =1 we find E(A,BO-!—e"hABl) = 0 while for h=2

0] 2T
_%KA,BO+e"hABl) =

—l . In addation, [Z(A,BO), ¥(4,B,}]

2 0

hag rank 2,

The above example also shows that the systems Ix = bou(t) +

> ;
0 tl 1

comments preceding Remark 3.2)., It 1s also easy to see that con-

blu(t-h), v, =V, w =V, need not be controllable (see the
0]

trollability of yi(A’BO’Bl) 1s not, 1n general, amplied by
controllabilaty of either y(A,BO) or y(A,Bl).

That a result on gpproximation similar to Theorem 3,3 does not
hold for & 3 type systems can be seen from Example 3.2 above,
Finally, defining the domain of null controllability 93 (vo,vl)

for VE(A,B Bl) in the obvious way, we do obtain the following

O}
analogue to Theorem 35.5.



21

Theorem 3.8. Suppose A 1s asymptobically stable, 0 € int U, and

- 3, n
Sf(A,BO+e hABl) has rank n. Then, QO(VO’VJ_) = R~ for any



k., Sufficient Conditions for the Special Time Optimal Control Problem

In this section we prove sufficient conditions for problems of the

form P,, Py, oOr P; where U = Km; the "unrt cube" 1 R (see

section 2) and the terminal condition x(t;; to,xo,u) = 0. Actually,

1n sections 4 through 7 we always take to =0 so to will be

suppressed in the notation =x(t; © u) and an the notation

0o

{u’tO’tl} for an admissible triple. The sufficiency condition in

this section i1s an extension of g sufficient condirtion given by Hermes

and LafBalle [11, pg. 72]. The discussion is facilitated by introducing

the concept of the set of reachable states at tmme ¢ [11] for

problems P, P, Py, and Pgo We say that a point (or state) x e R-

18 reachable at tume +t 2 0 an Prdblem P 1f there i1s an admaissible

u for problem P such that

® A
(4.1) x = [ e *®Bu(s)ds,
0

We say that x 1is reachable at time + 2z O in problem P, By, Pg

1f there 1s an admissible {u,t} for problem Py, By, Pg respectively

such that

t
(k.2) x=f e_AS[BOu(S) + Blu(s-h)]ds.
O

The symbols Z2(t), £%i(t), R, (t), £%§(t) denote respectively the

set of all states x reachable at time % 1in problems P, Py, Py, P§,

Properties of Z(t) have been carefully studied in [11]. The
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behavior of _@l(t) and _@2(1:) 15 somewhat more complicated, In
fact, we shall see that some of the basic properties of Z(t)
sumply are not true for @l(t) and _@2 (t) without meking special
assumptions on BO and B;.

If x,y € RP, then we use <x,y> to denote the usual scalar
product in Rpo If §cC Rp, then S‘L denotes the orthogonal comple-
ment of 5, 1.e., S'L ={x ¢ Rp] <x,y>=0, y € 8). If M 1s a

P X q real maitrix, 1.e., M ¢ ;:’P then we reserve Kker (M) and

q’
Im (M) for the kernel and image respectively of the linear trans-

formation x |>xM, x € Rp, 1.e,, kex (M) = {x ¢ RPI xM = 0} and
Im M) = {y e Bq| v =xM for some x € Rp}., The following norms

w1ll be used for vectors x = (xl, ...,xp) e BP:

[lx]| = mex (=", 1=1,...,9
=l = <, x>

b
x| = 2 |xY].

1=1

We also use the symbol ||Mf| ~ to denote the matrix norm subordinate

to the vector norm |.f|  on R’ and Rq, 1.e

")

A

Il = mex (e | f=h_ =1, = e8")

P
max { L |m | l 3=1,.,0],

1=1
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vhere M = (mlJ), 1=1,000,0; 3= 1,000,d. The matrix norm |M]
subordinate to the vector norm |] 1s similarly defined and 1s

likewise easy to compute.

Some hypotheses which will be invoked to obtain various results

in the sequel are now lasted for future reference,

(FfL) Matrix B, has a left inverse BE)?_‘_. and
C=BB satasties ol s 1.
(H2) Hypothesis (HL) wath |¢| <1 instead of [l¢f = 1.
(H3) For any tl,'bg satisfying 0 <1, <%,
tg -As t2 -As
[ [ne™TBylds > [ |neTB |ds
tl tl
whenever 7 € R© and 1 # O,
L
(1) |xB,] > |#B;|, x e [ker (B,)T" = Im [Bg], x # 0.

() [xB,| = [xB |, xe&".

Proposition 4,1, There s an m X m real mabrix G such that

By = B,G 1f and only 2f ker (BO) C ker (B).

Proof; Evidently, By = B\G mplies ker (B,) C ker (B;). Conversely,
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ker (BO) C ker (Bl) amplies [ker (BO)]‘L D [ker (Bl)]'L or
equivalently, Im (BZ;) D Im (Bi)° The existence of G with the re.
quired properties follows at once from the last inclusion and some

elementary matrix operations,

Proposition 4.2. (a) (Hl') umplies ker (BO) C ker (B, ).

(b) (H4) and ker (BO) C ker (Bl) wmply (HL').

(¢) If S/(A,BO) 18 proPerl, ker (BO) C ker (Bl), and (HE)
1s satisfied, then (HJ) 1s satisfied.

() If (H3) 1s satasfied, then S4,B,) 1s proper, and (H4')
is sagtisfied,

(e} (H4') and (H2) mply (Hb4).

Proof. Shatements (a) and (b) are cbvious. Suppose (H3) 1s

satisfied, Then for &> 0, 1 ¢ Rn, n# 0 wehave ——

tl+8 tl+8

1 -As 1 -As
Ei | ne BO]ds>-S£ | ne Bl|ds, t > 0.
1 1

Hence there results

]ne_ASBOI z ]"qe'ASBll, neR, sz0

and (H4') 18 satisfied. Evidently (H3) implies y(A,BO) 1% proper.

Lsee [11] for the definition of a proper system V(A,BO).
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Now assume (HY), ker (BO) C ker (B;), and £VTA,BO) 15 proper.

Observe that

n L %
R = ker (BO) ® [ker (BO)] = ker (BO) ® Im (B).
n -At
Choose 1 # O, n € R~ and define ¥(t) = 1~ . Then ¥(%) =
v(t) + p(t), where v(t) € ker (BO) and u(t) € In (Bg) This de-
composation 1s unique and p and v are continuous., Choose

0 <t <1%,, then (HL) implies

0
le(6)B,] > [u(t)By]

on [tl,tgj wath the possible exception of a finite number of
points since y(A,BO) 18 proper, The assumptions ker (BO) -

ker (Bl) amplies
[ (€)B,l > [¥(t)B,] a.e. on [t,,%,]

and (H3) follows at once,
Suppose now that (HM') and (HR) axe satisfied. Then B, = B,C
by Proposaition 4.1. If x ¢ [ker BO]‘L, x # 0, then IXBOI > 0,

Whence |xB,| = [xBC| = |xBO] ¢} < |xB,|, and (H#4) is satisfied.

Corollary 4.l. If V(A,BO) is proper, ker (BO) C ker (Bl), and (Hk)
“AL

. -At
1s satisfied, then |[ne BO] > |ne Bl]’ 1T#0, 1 « RY for all but

a finite number of +t on any compact interval,
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Fxample 4,1, Let L denote the linear differential operator

_ (1) (n-1)
Ik = x +an-lx +o-+aox

where al, 1=10,.00,0-1 are real constants, Consider the control
system Ix = bou(t) + blu(t-h) where b, b. are real constants,

0’71
Since we refer to this exsmple several fimes 1n the sequel we write

this explicitly 1n the form yh(A s BO 5 Bl) . Tet
0 0
B, = . s B, =1 ¢

0 0 L O
bO bl
0 L 0 <60 O
o] 0 1 .0 O

‘A' = [~ Q -1 o o9 -] o
0 0] 0 oes 1

-8, =A. .8

Then Ix = bou(t) + bou(t-h) 18 equivalent to the system
%(A,BO,B]_), The condition that matrix 3B have a left inverse is

equivalent to bo # 0. Hypothesis (Hl) 1s satisfied 1f 'bo # 0 and

l:;-(]-)'- = 1, Clearly ker (BO) C ker (Bl),, Moreover, b # 0 implies
V(A,BO) 1s proper. Finally (HY) is satisfied if ['bol > ]'bll .

. Let T(t) denote any one of the reachable sets at time + (i,e.,
(%), %, (t), Z,(%), 9?;(15)), Then I'(t) is increasing if

0=t st, wmplies I'(t;) CT(t,). We say TI'(t) 1s expending if
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I'(t) € Int (F(tl)) for 0t <t . Let K, denote the character-

1stic function of a set 8 C X. Define

-A(s+h)

<A
(L.3) u(sy t,n) = sgn [ne SBOK{O,t](S) + ne

BiK[ 417 (5)]
for ~-h=g=s%t and 1 € Rn, 1 # 0. When u(s; t,n) 1is referred
to with -h 2 s £ 1% 1t 18 understood that we are referring to
problem P . The corresponding wu(s; t,n) Lor problem F, nerely

requives u(s; t,n) have the form (4,3) for 0= s s+t and

uo(o; t,m) = v.. In problem EC we do not invoke this symbol, The

0 3
notation ¢(t,u) where {u,t} 1s admissible in P,,F,, or 35 1s
defained by
K As
(boh) p(t,u) = [ e [Bou(s) + Blu(s-h)]ds.
0

I5 is also convenient to take the following definitions,
(4.5) z(t,m) = ¢(t,u(+; %,1)),
(1.6) g(t,n) = <n,z(%,n)>.

Proposition 4.5. (%) and 9@;(t) are 1ncreasing.

Proof; The statement concerming (%) 2s obvious. Note thatb
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_@g (t), t =21 is merely HH(t-h) for problem P with system

SAa,Bge™ ). For 0=t sh, R () = (0}, so F(6) 1s in-

creasing,

Proposition 4.k, @l(%), _@2(“5) are both increasing if any of the

followaing three condations 1s satisfieds
(1) ker (BO) C ker (Bl) and (HL) 1s satisfied.
(2) xer (BO) C ker (Bl) and a matrix G satisfying the con-
dutions of Proposition (k1) also satisfies gl = 1.

(3) (H4') 1s sabisfired.

Proof: We shall prove only that _@l(t) 18 increasing is implied

by (2) or (3). The remainming situations are similar., If

ker (BO) C ker (Bl), then an m X m mabrix G exists satisfying
B, = B, (Proposition h.1). If (2) is true we may take & = 1.
If p= cp(tl,u) and 0 < &, - %, < h, then w(%) = -Gu(t-h),

tl =%t = t2 15 measurable and satisfies

[w(e)l = 1,

Byw(t) + Bu(t-h) = 0

on [t, ta]o Define ulﬂ [-h,‘bg] - K~ by the conditions
ull [-h,6,] = u, and ul[ (t,,t,] = w. Then cp(ta,ul) = cp(tl,u) =D e
@l(te) and we infer that _@l(t) is increasing.

Suppose that (H4') 1s sabtisfied, Choose tl and t2 such that
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0<% =%, end pick 1 e Rn, 1 # 0. There are support hyperplanes

ﬂin and ﬂén

normal 7. Thus there exast p, € @l(tl) and p, € @l(te) such

to _@l(tl) and _@1(’62) respectively with outward

that <n,p>2 <n,g>, q € %{tl) and <n,p,> 2 <N, 8>, 4 € K6,
Hence <n,p;> = g(tl,n) and  <q,p,> = g(te,n). Now g(t,n) as
defined in (4.6) can be written in the form

t-h As ~A(s+h)

(b.7) &(t,n) = fO] ﬂe-A(S+h)Bl]ds + [ |ne™7B, + ne B, |ds
-h 0

0]

& As
+ [ |ne” BOIdS’ if tzh,
t-h

From (%.7) and (HY') one deduces that %%' (t,n) 20, tzh and

t |- g(t,m), t 2 b 1s nondecreasing. Therefore, 1f t, = h, then

n n
Hin ={q eR| <n,>= g(tl,n)]t: Hgﬂ = {q eR'| <n,a> = g(tzpn)],
and since 2 (t,) = (H_ and 2 (t,) = (VH, we have
171 12
n#o 1 #0
Z (t)) C R (t,) for t,zt zh. If 0%, t, £ h, then

2 (6,) © & (t,) 1s clear. The fact that 991(’6) 1S increasing
18 now a simple deduction.

Tt is easy to construct examples that show that (1), (2), and
(3) 1n the preceding proposition are in general independent, We
give below two examples showing that the conclusion of Proposition
L4 need not be true if some of the assumptions of Proposition L b

are dropped.
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Example h.2, Consider the scalar control system X = x + u(t) +
Ku(t-1) where 1 - 2e <K < -e, Using this system with problem Py

we see thab

o t-1
g(t,l) = f |K|e_(s+l)ds +f JeF 4 Ke—(s+1)|ds
- 0
v s
+ [ eTds, t>1,
t-1

Saince @l(t) [-g(t,1), g(t,1)] 1s a compact interval and since

% (t,1) <0 for +t > 1, it follows that _@l(‘b) is not increasing.

0 /1 _ /0,
1 ’Bo‘(o)"""Ild Bl"(l)m

o Then ker (BO) ¢ ker (Bl) and _@e(t)

Example 4,3, ILet A =

o o

problen P2 with vo =
15 not increasing. For example, for + > 1 define p(t) to be
mex {x € R| (x,0) e 9?2(1:)}, Then

-8

t
p(t) = [ e ds
31

so that p decreases for > 1,

Proposation 4.5, 9?;('{:) 1s expanding t z h af and only af

y(A,BO+e—Ah“.Bl) 1S proper.

Proof; This follows at once from {11, pg. 73] and the remark in the
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proof of Proposition 4.3,

Proposition 4.6, If (H3) is satisfied, then _@l(t), 1 = 1,2, are both

expanding., Moreover, if ker (BO) C ker (Bl) and _@l(t) or _@2(1:)

is expanding, then _S/(A,BO) 1s proper.

Proof. Note that g?i(t) , 1= 1,2, are increasing (Propositions 4.24

and 4.4). Choose t),t, satisfying 0<%, <t,. Puck ge @l(t)c

1
g?l(tg)., If q ¢ Int (& (,)), then g« Bd(%’l(tg)), the boundary

of Ql(te). Consequently, there 1s an 1 # 0 which is an outward

normal t0 a support hyperplane for _g?l(tg) through g3 i.e.,
<n,p-0> = 0, D€ .@l(tE)u

The poant 9 has the form ¢ = cp(tl,u) where {u,tl} is admissable

in Pj. A function 112: [-1,%,] - X" 1s defined by

u(t), -h £t 5%

u,(t) = .

-A%
sgn [ne BO], tl <t =1,

Then {u2’t2} 18 admissible in Fy. If pgcp('hg’ue)’ then

“a

<n,p-9> = _{ [Ine—ASBO] + ne_ASBlue(s-h)]ds
1
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o
A -4
z [ [Ine™"B| - {ne™ "By las
by

>0

by (#5). This is a conbradiction, Hence g?l(t) is expanding,
The same proof works for E%E(t).

Now suppose ker (B,) C ker (B;) and _@l(t) 15 expanding.
If S1A,B,) is not proper, then fthere 1s an 7 #0, 1 ¢ R such
that T]e'AtBO = 0, and consequently ne-A'tBl = 0. Now the control
function w) =0 has the form u(s; t,1) (see Equabtion 4.3).
Hence O € Bdf%a(t), % >0 so that E%i(t) is not expanding.
Analogous reasoning holds for the case where £2E(t) is expanding.

It will be pointed out in section 7 when some solved examples
of problems of type B, By, P; are presented that hypothesis (H3)
camnot be omithted and still obtaain @l (t), 2 = 1,2 are expanding,
Indeed, as we shall point out in the discussion of those cxamples,
the hypotheses of the first part of Proposition 4,6 cannot be
weakened, and there does not appear to be an analog of Theorem 17.2

in [11], The sufficient condition of Hermes and TaSalle [11] can now

be stated,

Theorem 4.1, Tet I'(t) be any one of the reachsble sets at time +t,

s} - X - .
R(t), R (), R(5), E%B(t). If T'(t) 1s expanding, if (W,t} is
an extremgl control for the corresponding problem, and 1f

x(%; xo,ﬁ) = 0, then {u,T]} 185 a time optimel solution to the problem



L3

assoclabed with T(t).

The proof of this theorem 18 obvious. Of course, the result is
not of much interest without computable criteria for showing TI'(t)
18 expanding. Propositions 4.5 and 4.6 in conjunction with

Propositions h,Z, 4,3, and 4.k gave us such criteria,

. [0 1 A
Example 4,4, Consider problem Py with A = o o s BO = ( o ) s
and B = (.g ) . Then S?TA,BO) 1§ not proper, and it is easy to

see E%i(t) is expanding., Moreover, (H3) 1s not satisfied,
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5. Exastence and Uniqueness for the Time Optimal Control Problem

It 1s easy to modify the unrgueness theorem in [11, pg. 69] to

apply to problems Pi 1= 1,23, Two admissible controls

2
{ul,‘tl}, {u2,t2} are regarded as equivalent if tl = t2 and.
ul(t) = ua(t) a.e. on [-h,tl]., An sdmissible control {u,tl} for
P. 1s said to be bang-bang 1f |(u(t)| =n a.e. on [-h,t ].

1 —_—— 71

Simalarly, an admissible control {u,tl} fTor P2 (respectively

P3) 18 bang-bang 1f the above condation is sabisfied a.e. on

[0,% (respectively [O,‘tl—h])n The following extension of a

1
result in [11l] is obtained.

Theoren 5.1, If {1,%} 1s an optimal solution to P mplies
{Eﬂs_} is bang-bang, then there is at most one optimal control for

problem P, 1 =1,2,5,

Proof; One merely supposes there are two opbimal controls [ﬁl,’s—} s

{-1”1-2,%} in problem Pl which differ on a subset of [-.h,?,] of
posrtive measure. Then x(%; xo,ul) =x = x(t; XO,HB)., If we

T, () + Ty(6)

define Wi [-h,T] - K by w(t) = 5 ,

then {w,E} as

admissible ain P o Moreover, 1t 1s clear that X(-‘E; xo,w) = and

Xl’
{w .E} 15 not bang-bang, This 18 a contradiction,
2

One never obbains uniquenhess of the optimal control problem Pl

1f 0=t sh since the control ['E,"E} 18 not effective in

%(A,BO,B:L) for T -h =t =0, For this reason when we discuss
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uniqueness of the solution to problem Pl we agsume © 2 h, This
is only a minor point and the situation 0 = % £h can essentially
be treated as in [11].

The next result is a reformulation of a general exishence
theorem obtained in [2]., Actually, problem 1:’3 was not discussed

there, but the existence theorem easily extends to this situation.

Theorem 5,2, If there is alt least one admissible control [u, tl}
for problem P = satisfying x(tl; xo,u) = X,, then there is an

optimal solution’ o problem P, 1 =1,2,5.

Proposition 5,5, There is at most one solution to problem Pl af

y(A,BO), y(A,BO+e'Ah_Bl), and S(A,B,) eare normal (see [11] for

the definition of normal), The stabement of unigueness holds for

problem E, if A (A,Bo+e“AhBl) and y(A,BO) are normal, while
for P3 the normality of SAA, BO-{-e"AhBl) suffices.

Proof, We consider only problem Pl‘ Clearly, the necessary con-

dition (2.1) and normality of the three systems imply that the

hypothesis of Theorem 5.1 1s sabisfied.

+The problems Pi’ 1 o= 1,2,3 were formulated so that the admisgssible
controls were in the class of Iebesgue measurable functions. The
results 1n [2] when specialized to the present situation reveal
that we could just as well have restricted our attention to piece-

wise continuous contreols,
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It A’BO’Bl’ and AP gpe known, then computable conditions
assuring the normality of fyTA,BO), £VTA,Bd+e-AhBl], and f?TA,Bl)
are gaven in [11]. In general, e"Ah 1g dafficult to determine so
we would like to obtain conditions that can be darectly computed
from A,B,B,. (In this connection 1t should be observed that, in
general, the normality of any two of the systems £?1A,BO),
5/’(A,Bo+e'AhBl), V(A,Bl) does not imply the normality of the
third, ¥or instance in Example 3,2 .S/(A,BO) and SA,B,) axe
normal but SVTA,BO+e"AhBl) is not normal 1f h = 1.) Some results
are possible in this direction. ¥For example, let us consider the
control system %(A,BO,BI) discussed an Exemple 4,1, Along with

the differential operator L ain that example we consider 1hs ad-

Joint Y given by

Tt 18 now assumed that |bo| + [bl| # 0 an Exemple 4,1,

Proposition 5,4, System j?TA,BO) 15 normal if and only if T # O.

System S7A,B 15 normal if and only 2f b, # 0, If b, =D

l) 1 0 1’
and 1f Ix = O has no nontrivial solutions of period 2h, thern
i?TA,BO+e"AhBl) is normal. On the obher hend if by = -b,, then
é?TA,BO+e‘AhBl) 1s normal 1f and only 1f Ix = 0 has no nontrivial
solutions of period h,

Let A(A) denote the eigenvalues of A, and let Re A(A) denote

the real parts of A(4).
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Proposition 5.5. If ]bo| < ]bl], and 1f Re M(A) = O, then

%A,Bo—l-e"AhBl) is normal,

Y

Proposition 5,6, If [bo[ > {b,|, and 1f Re A(4) 2 0, then

A (A,:Bo+e"'AhBl ) 1s normal,

Propositions 5.4, 5.5 and 5.6 are pretty clear, so we will only
indicate the proof for one of these (Proposition 5.5). If bO = 0,
then Proposation 5.5 is true. Thus suppose by # 0. Suppose
jf(A,BO-f—e"AhBl) is not normal, Then there 1g a nontrivial solution

¥ of L™= = 0 such that
bV () + by¥(t+h) = o.

An eagy ainduction argument shows that

K
b

(5.1) p(brkh) = (-1)% B% ¥ (%)

K=2,23,,., - Since V{t) is nontrivial there 18 a sequence T
such that tK —»® as Koo and ur(tK) -0 as K -~w, Thls con-
tradicts the assumption that Re A(-A)} = -Re A(A) = 0. This proves

Propositaon 5.5,

X+ oax+ aox,h=1, bo=2, blzl,

2 2
8y = 2 log 2, and ao = (log 2) + 7, Then }\.(A) = {-lecg 2 * 'n':.},

Example 5,1, Let Ix
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and
V(t) = exp(t(log 2 ~ m1)]
18 a =oluktion of L*X = 0 satisfying
20(t) + ¥(t+l) = 0
and for this sysbtem (A,BO+eHAhBl) 18 not normal,

Example 5.2, Using the same notation as Example 591, consider the

conbrol system

I*x = u(t) + 2u(t-1).

Then
V(t) = exp(m. - log 2)%
15 a solution of Lx— =0 and

¥(t) + 2¥(t+l) = 0,

and for this system A4 (A,'Bo+e_! B,) ie not normal,
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6. Synthesis for the Special Time Opbimal Control Problem

Neusbadt's method of synthesis [21] can be extended to cover

problems P Po° Scme rether restrictive assumptions are re-

10 Fos B3

quired for problems Py and Pg. It is assumed in our discussion

in this section that x = 0 (Xl is the "target"). The

development will be carried out only for problem P.'L’ but 1f the
arguments are suitably adapted problems P2 and P;) can also be
treated, The validity of Weustadt's approach depends on the follow-
ing condition for problem P, If (u,T} 18 an extremal control
for problem P satisfying x(%"; XO,:E) = 0, then {E,.‘_c']- 18 an
opbimal solubtion to problem P, Neusbtadt [21] assumed that the
system S“A,B) was normal so that the above condition turns oub

to be satisfied by the sufficient condation in [11, pg. T2]. TFor

the problems we are studying, however, the optimal control {E,-E}

may be unique where all three of the systems _S/'(A,BO) s
y(A,BO+e"AhBl), 5’(A,Bl) are normsl and yet g?l(t) can fail to
be expanding (see Example T.l) so that the analogous sufficient
condition for problem Pl could fail,

Recalling the defaimitaion of z(t,n) 1n Equation (.5), we can

obtain the following proposition. .

Proposition 6.1. Iet the following conditions be satisfied:

), Sa,B,) are

ker (BO) C ker (Bl), S’(A,BO), _V(A,Bo+e_

normal, and (Ht). Let S = (n e Rn| <€, %> < 0}. If the optimal

control {E,"E} exists for problem Pl, then 1t has the form
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(4:3). Any vector 7 € S8 which maximizes the time % for which
<n,z(t,n)> = -<n,%,> may be used in (*.3) to obtain the optimal
control {W,%} = {u(-,%,n), 3. Conversely, if n defines the

optimal. control [E,E} by means of (4.3), then 1t maximizes the

above time &,

Proof? Note that g(t,n) defined an (4.6) can be written in the

form (4.7) af t2h, end if 0=t Sh we get

S _as -AS
(6.1) g(t,n) = [ [ne™ "By + [ne™B |ds.
0

Hence (%.7), (6.1), and Corollary k.l imply that % (t,m) >0 so
thet ¢t F->g(t,n) % 2 0 is strictly increasing. The funetion

(t,n) > g(t,n), 620, n e § is continuous. For 7 e Rn, 1% 0

we have that
(6.2) <n,z{t,n)> > <n,x>, x ¢ _@l(t), z # z(t,n),

by the normality assumptions in the proposition. Define

£2 [0,) X 8 X B> »R by the equation

f(t,q,xo) = <n,z(t,n) + X

and define



L2

n
g ={neR| n#0, <q-x,>= mNax _ <n,¥>}.
° Y e ()

The set HO 18 convexr., Observe that

(6.3) £(0,n,%,) <O, 0 €S
whereas
(6.4) f(%;n,xo) >0, neS5NHye

The assumpbions of the proposition imply that 5@&(%) 18 expanding .

Hence Theorem 4.1 and relation (6.2) assure us that
(6.5) £(t,m,%,) = O

implies that t =% 1f n € B,. Hence using (6.3), (6.4) and the
last remark 1% 18 seen that (6.5) defines + amplicitly as a func-
tion of g, for 1 € S. We denote the function so defined by F.
Then ¥ 1s conbinuous and F(n) = %; n € Hy and t >TF(n), 0 € S\H

The purpose of the observation in the sbove proposition is to obtain
a method for finding a vector 1 vhich can be used 1n (4.3) to determine
the optimal control., It 1s easy to see that g 28 2 Cl function on

([0,%)\{b)) X 8§ by direct camputation in formulas (h,7) and (6.1)

uging standard results on the differentiation of Lebesgue integrals
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involving parameters {20, pp. 216-217] and the normality hypotheses

of Proposition 6,1, Hence if 7 € § 1s such that F(n) # h, and

%%. (F{n},n) # 0, then the implicat function theorem tells us that
T 18 conbinuously differentiable on a neaghborhood of 1. Using
the fact that under the assumptions of Proposition 6.1 g?l(t) is
expanding (so that the sufficient conditvion, Theorem lL.l, applies
to Pl) and the above remarks, the gradient technique for determin-
ing the maximum of F on § can be applied to Problem Pl" We do

not carry out the details here, but refer the reader to Neustadt's

paper [21].
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To Examples,.

In thas section we solve some examples which i1llustrate the
strange behavior of solutions to problems of type Pl’ P2, P;, *AT1]
of the examples are two dimensaional, Since we would like as much

ag possible to avord using superscripts and subscripts, we shall

2
agree in this section that (x,y) = (xl,x Yo

Example 7,1, The system equations are

Mo
Nl

(7.1) ¥
v = u(t) + u(s-1).
{0 1 _ - (0) _
Thus A = o o B BO = Bl = {3 , h=1, Here we consider

a problem of type P. with boundary conditions,

1
(7°2) X(tl; (XO,YO),U) = Y(tl; (XO’YO)’u) = 0,

It 18 not difficult to see that given any (xo,yo) € 32 there

1s an admissible (u,% satisfying (7.2). Hence there is

1}
(Theorem 5.2) an optamal solution to problem P,. Proposition 5,4

and Theorem 5.1 assure us that the optimal control {E,%} is unique
1f T2l andif 05t < 1, {E,TE} 1s unique vwhere 1t is effectave,

l.,8,, O [-l,%—l] and [0,-1:,']. The necessary condition (2.1) when

applied to this problem yields
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Csgn [V (t41)] -lst 5% -1
(7.3) u(t) = | undetermined .1-',' -~-1<t <0
sgn [wa(tn 0sts=st
if 0=%ts1, and af T > 1, then
sgn [1[!2(t+3_):[ , =l=2t<0
(7.3')  W(t) = | sen [¥P(6) + ¥(5+1)], O0=t<% -1
sgn [V°(5)] , t-lsts%

vwhere Vv = (ﬂrl}llre) 1s a nontrivial solution of the adjoint equa-
° 2 2 .

tion V¥ = -YA, Hence ¥ (t) = pt + & where ¥ (&) is not

1dentically zero. Along with the optimal control {'ﬁ,:E} we Ccon-

sider the effective optimal control (v,%) where
(To4) V(t) = u(t) + w(t-1).

With problem P, for sysbem (7.1) and boundary conditions (7.2) we
consider the auxiliary problem P with system (A,Bo) only with
the restraint set changed to [-2,2], The synthesis for this
problem except for an obvious scaling factor of 2 (z.e., the

switching curve 18 x = -yg/lk, vy20 and x = ye/lk, ¥y £0) is

descrabed in [22]. If ({w,%) is the optimal solution to the
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auxiliary problem P and 2f W 18 expressible in the form
u(t) + u(t-1) wath {u,:t-} admissible in P, then {u,'-b_} is the

optimal solution of Pl“ Thus Pl can be considered solved if
0<% s1, Figure 1 shows the reachable set 9?1(1) and the

synthesis in case (xo,yo) € ﬂl(l)n

Fagure 1.

Thus we now assume that (xojyo) # @l(l) 50 that + > 1. Here

the situation 1s a good deal more complicated since the gbove W

18 no longer expressible an the required form., It 1s noted from
(7.3*) and (7.4t) that the effective opbtimal control has ¥(t) taking
only the values in the set (-2,0,2}, 0t = . Tor brevity let

us denote the optimal trajectory issuing from (Xo,yo) by (E,F)o
Then (¥(%),y(t)) can reach (0,0) only along one of the two

curves

e 2
8, o =y /b, vs=

2
=-y /b vz

el
I

|

(]

wn
va
]
1
|
o
o

If p=0, then 8# 0 and from (7.3') we see u (t) = sgn (8), 1.e.,
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there is no switching, Hence 3 > 0 implies (xo,yo) €5, and
8 < 0 implies (xo,:y'o) € S_. Conversely, (xo,yo) €8, US_ implies
=0, If (xo,:y‘o) £ S, US_, then p # 0. It 1s not difficult
%o show that p >0 or p <0 accordingly as (xo,yo) is to the
right of S, U S_ or to the left of S US_. Let -8/p Dbe de-
noted by B. If one finds ¥(t) = u(t) + W(t-1) using (7.3'),
then it is clear that both ¥ and U will be known completely if
the disposition of the points - % + B, B, ;.+ g relative to
[O,E} can be discovered. Now the boundary comditions (7.2) impose
additional conditions on t and . In fact with u = U and
t, =% (7.2) reduces to

t
(7.5) X = J sv(s)as

0

E—

Yo =-[ ¥(s)ds,
O

By a systematic and laborious enumeration of the possible positions

1 _
of - %+ B, B, 5+ B relative to [0,F] 1t can be shown that

(7.3} and (7.5) uniquely determine t and B as functions of
x.,¥.) £S, US . In principle at least the determination of
¢’Y0 + -

(x0:90 02%0

describe the results, However, it must be pointed out that when

) and B(x ) represents no dafficulty, so we shall only
the possibilities are exhausted cur calculations revealed the
following: There corresponds to each (xo,yo) € 32 \ Ql(l) exactly

one extremal control satisfying the boundary conditions (7.2).
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Hence an extremal control satisfyaing (7.2) must be time optimal.

(Tt wxll be seen momentarily that _@l('t) 1s not expanding, so

Theorem %,1 does not apply.)

Let D, (respectively, DL) denote the open region to the

R

right (respectively, left) of 8 US_. Sets D, 1= 1,2,000,7T

are defined by the following relations.

|
1

1 = ((%p7,)
D, = ((%,v,)
Dy = ((x,5,)

((x507,)
D, = {(%,7,)

D5 = {(Xo)yo)

D6 = {(XO:YO)

{ (xo,yo)

Do = (x4, ;)

We define D_l, L

m

m

m

m

m

m

1]

2
1 Yo Yo
Dl % f5-=%-=%)
v, ¥ v, v
1 Yo Yo 1 Yo o
DRlu2§yo<0,g——2--——8-_xoégh—-2~+'—8-}’
v, v ¥
1 0 0 3 3 0
Dol 7420, -5 -g<%=5-5¥,+*g}U
v, ¥ v, ¥
1 Yo, Yo 3 Y9 Yo
Dl ¥ =20, 5~ 3" gEXi5- 5§
¥ vy
0 o Yo
L —— = o——
Dl ¥ -2 g =555 -—7)
v ¥ ¥
J0, 0y <2 0
DR|VO§O, St S, S5~ tp
2
¥
3 Yo Yo
and XO"E"—E"?]’
2 2
g ¥y
5 3 0 3 0
DRIogyo§2,§-§yo+_g§x0§§_T}U
2
5 Yo
=2 =2 .20
Dl 7522 x, =5 T
2
3 0
DRIyOgO’xOg'é—-_l;}U
2
3 0
éo,xoz§_2y0+_£},

L,2,c.0,7 by symmetry through the origin, i.e.,
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D, =-D = [(xo,yo)| '(XO’yO) € Dl}, 1=1,2,,0.,7. Then

i T
[LJ D %] U [ LJD%] U[s, US] s R?, and (1) = cl (D)) U

i=1 "~ 1=1

cl (D_l), where ¢l (E) denotes the closure of E. The regions

D D., 8,8, 1=12,...,7 are depicted in Figure 2,
2 M M2 A 2

-17 i

Fagure 2,

The following formulas obtain for T and B:

2
Vo * \/Eyo + 8x0

z > (p¥g) €Dy

1 Y5 1
=t -t (XO’yO)EDE

0 2
14 g+ -é-\/lkxo + yO/E + 2y, - 2, (xo,yo) € Dy

t(xosyo) = T (xo.’yo) € Dl|.

¥ e
o,1 1 2
e E\/Byo + 12y, + 2&;;0 5 (xo,yo) € D5

. o
0 1 1 2
D gV, + T/, () € Dg

TJ

¥ 2
L:.g +\/l + e(xo + yo/lp) , (xo,yo) €D
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Yo
_ 5, (¥p) €8
t(XO)yo) = v
O
-z Ep¥) €8y,
yo + 2%
-5 (xo,yo) eD U D7
yo + 0% o2
— (xo,yo) €D,
Vg * iEn
S(XO"YO) = _.__.__._8 R (XO,YO) € D5
yo + 2;
e 5 (xo,yo) € DL;
yo + 2% + 2
L ¥ €D
'VO + 4E -2
—_—, (xo,;y‘o) € Dg.

Tt 1s noted that af D N D, # @ for some a1,k = 1,2,.,.,7, then
there 1s st1ll no ambiguaty in the formulas for E(xo,yo) and
B(xo,yo). In order to complete the definition of t and B on all
of 32 we merely take advantage of the symmetry an the problem to

observe that t(xo,yo) = t(-xo,-yo) and ﬁ(xo,yo) = 53(_X03_y0) 1f
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(xo,yo) € DL" We note that t is not continuvous at points on
S, US_ and on D Nel (}:15)o However, at every other point of
DR both t and B are comtinuous,

low to see the nature of the opbtimal trajectories we describe
the optimal effective control F(t) = u(t) + u(%-1) 1f the initial
data (xo,yo) €D;, 1=1,2,...,7. We use ;;1 to denote the
optimal effective control defined on {o,'é(xo,yo)] it (x,,,) ¢
D, 2=12,...,7. Of course, if (xo,yo) €D, then ‘the optimal

effective control 1s -V, 1 = 1,2,...,7. The formulas for ¥,

are as Tollows:

-2 o=ts=p
'{T- T) = - 3
1() +2 p<t=st
0, Ostst-1
T(t)=|-2, T-l<tsp
2, p<t=st
-2, Oété-%+5
0, -3+B<t=T-1
Vz(8) = 2, T_1<tsp
‘ 2, B<tsl
.1
O, l<t_§+5
+2 %+s<ts%’
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- "0 0Ot sp
N, (6) = _
+2 p<tst
2, ogts_%+5
0, --21-+B<tga
vs(t)=]+2, p<ts1
0, l<té%+5
+2 -;‘-+B<té-£
— 1
-2, O§t§_§+g
o, _%+B<t§7€~l
-V'—6(t)= -2, t-l<t=p
0, B<tsgztp
2, F+B<ts%
- 1
2, 0sts-z+8B
- _ 1 1
vT(t)_ 0, _§+6<t§§+5
+2 5+B<t=%E

If (xo,yo) €D, UD,UD, U DgU D+T, then the optimal
tragectory, (¥(t),¥(t)), begimming at (xo,yo) can be described

in a simple geometric fashion, If (xo,yo) ecl (D UD_,) = .@l(l),
then this description ig given in Figure 1. Evidently, if

(xo,yo) & Dy, then v)_}(’c) switches from 0 to +2 as (X(t),7(t))

crosses § . Moreover, in all cases where (xo,yo ) € DR the last
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switch occurs as ('}E(Z),Sr'(t)) crosses § . Noy let C,) =

{(z,7)] x:%-%-%, -2 £y £ 0} (note C,, is a segment of
Bd, (9?1(1))). Then 1f (x,,
and then the synthesis for 991(1) obtains (Figure 1). Let

) & D,, the point (®(t),¥(t)) coasts

to 021

curves Cgy, 062’ 063 be defined as follows:

2
0612{(X’Y)| x:%-%y-{—a—rg, -l gy=1}],
2
062={(x,y)[ x=§--§2r~-y-8-, -lsys=1},
2
065={(x,y)[ x=_%+2n., -l =y =0},

If (xo,yo) @ Dg, then the first, second, and third switches of ?6(1;)
take place as (X(t),y(t)) crosses 2061’ i=1,2,3 respectively,

. = ¥
Finally, define CTZL = {(x,y)] == -, ¥ E-1). If (xo,yo) < D7,
then the first switch of 'w}',_((t) happens when (X(%),¥(t)) crosses Coy e

If (XO,:\]'O) €D ,UD, UD ,UD then by use of symmetry the optimal

-7’

trajectories are similarly described using curves C 13 = -CiJ. The

synthesis for (XO’yO) €D, UD, UD_, UD , 1s shown in Figure 3.

i

Fagure 3.

For (xo,yo) € D3 u D5 the set of "first switching points" do not



5k

lie on a curve and the situation 1s too complex to describe geo-

metrically, Some typical optimal trajectories are given in Figure L

for (xo,yb) €D, U D 5o

Figure b,

It 1s 1nberesting to0 note that some of the optimal trajectories
matigting an D5 or D6 can come Lo regt on the x-axis for s
positive time duration before continuing on to the origin, Tra-
Jectory A 1n Fagure 4 shows an instance of this, but this 1s not
typical,

In this example, y(A,BO), V(A,Bl), and, V(A,Bo+e‘ABl) are

all normal (and all proper) and yet é%&(t) 15 not expanding al-

though Eﬁi(t) 1s 1ncreasing., The boundary of EZi(t) for a few

values of t is sketched in Figure 5,

Figure 5,

This fagure clearly shows é%i(t) 18 not expanding,
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An example of a problem of the form P; 15 now considered,
Example 7.2, The example considered here 1s exactly the same as
that treated in Example 7.2 except that here we impose the con-

straints
(7.6) u, =y =0,

We give only a brief discussion of the solution to P; o The reach-

able set 9?;(1:) 15 the same as H(t-1) fFor system

Aa,B O+e'A51)° The control system S4A,B +e'ABl) 1s given by

0]

Mo
I

(TOT) Yy - u(t)

2u(t).

e
il

2
Now gaven (xo,yo) € R there 18 an admissible conbrol {u,tl} for
P with system (7.7) such that the response of (7.7) to this con-

trol satisfies

X(‘tl; (X()J ',Y'O),'ll) = Y(tl; (XO’ YO),II) = 0.

Hence the same 1s true of (7.1) with {u,’cl-l-l] admissible in P;‘

This assures us that an optamal control (u,%) for PC  exists and is

3
unique (Theorem 5.2, Proposition 5.3). We note that 1f u(t) =1

in (7.7) then we obtain the curve
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2
. -y ¥ <
S.x—-._.E 5 s y=0

+ ’

and 1f wu(t) = -1 we obbain

2
S_-o xr--y-l;—sg—r, ¥y z 0.

Tigure 6 1llustrates the synthesis for U using the auxiliary tra-

jectories from (T.7).

Figure 6.

We let D (respectavely, DL) denote the open region to the

raght (respectively, left) of 8, US_. For this problem the

regions D, 1 =1,2,...,5 are as follows:

2
1 ¥
D, = [(xo,yo) eDRI Xoég'yo"g'} ,

=
|

1
= =3 —_—— -



2 2
v Y i
0 O 2 0
= 2 . - —= =2 .
Dy = ((%5,7,) € D =T =% R
- 2
D, ={{x,y.)eDd |y . 22 and x =2 . O_Y.Q}U
b 0’70 R' Y0 0 N
2
{(x Y)GDIY £ 2 and 2_?.3; +.3_r.gsx )
0’0 R' Y0 270 L.~ 0"
2
Yo o
-z-T},
YE ¥ Y2
5 G 0 0
= =2 .= b Z L2 o e o
D5 {(xo,yo) (—:DR| Xy 2 5V * ll.’XOZ > m
The sets D ., * = 1,2,...,5 are defined by symmetry as in

Example 7.1. We have

O, v [C 2
D.1U D UJgE, US =R,
[1=1 l] LE:L 1] e B

The regaons D, 1 = 1,2,...,5 are shown in Fagure 7.

Fagure 7.

Using the boundary conditions (7.2) and the meximum principal

for P; one can show
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0, -ls'tso

-1, 0<ts2
) = L1, a<t<¥o1 0

0, t-1sts7%

where
v S

— _ 0 1 /.2
t(xo,yo)_l+..2.+.é.\/¢yo+l;yo+8xo s

MEy ) =t

1f (xo,yo) € DR° By symmetry we have

:E(XO’YO) = -E(“Xoy'yo)} A’(xo,yo) = ?"('Xoy'yo)

1 (x,,¥,) €Dy . The optimal effectave comtrol (¥,%} for

L.
x,¥.) € D. 18 denoted by V., 1 = +1,42,,..,+5, Evidently
0’Y0 1 i? Pl Sl EE 2

?1 = ,1= 1,2,...,5, The following formulas for '17'1 are

obtained;



V(%) =

T, (6) =

(%) =

wdl

+1

-1

+1

-1

+1L

-1

+1

-1

+1

+2

+1

-1

-2

L+l

o9

>
1A

~
TIA

= > <
A 1A 1A
- ot ck
It

2|
1

ctl
!

=
A

>
A

<

A

1A

128

1

et

A
o]

IA
el

A +
2 I
|
[

1A
ol

-1

<A+l

A
o
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-1, O0st<1
-2, Lt <A

?5= o, AStE<A+ 1 .
+2 A+ 1l2t<t -1
+1 T-1=st=%

Fagure 8 shows some typical opbimal trajectories for ?; with

(XO’YO) g D+1: 1= 2,000, Figure 9 1llustrates some additional

curious phenomena for this problem.,

Fagure 8.

Figure 9,

For example 1f (xo,yo) = (-2,2) € D, then the optimal trajectory

lJ
to the corigan is simply the are p0 of the curve = = _y2/2

comnectang (-2,2) to (0,0) (Figure 9).  However, a subarc pg
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of arxre p0 18 conbained in D2° Thus if one starts at a point n

on the subarc pg, then the optimal trajectory does not follows arc

n0 %o the origan, but will go off on a rather pathological trajectory

(curve y in Figure 9), finally coming to the origin on an arc 10
of the curve x = y‘2/2° Figure 9 also depicts whabt can happen when
Xy = iyi/E, For example, starting at pomnt £ on x =y?/2 the

optimal trajectory i1s the curve o, Note that o in Figure 9 hibts

0 af time + = % bounces down and then swings back to hit the
T

origin at time = 2, Other variations of this type of behavior
can also occur because of the boundsry conditions on the controls in

The next two examples demonstrate what can happen in problems
which are not "normal" and where ker (BO) and ker (Bl) are
complementary spaces (see section 2}, For these exauples the
attainable sets at time + can be determined without difficulty,
enabling one to make a judicious choice (whenever there 18 more than
one support hyperplane at the boundary point) of an outward normal
for use darectly in the maxaimum praincaple,

Example T.5. This 13 an example of the form P The system equa-

l.

tions are
(7.8) x =u(t), 7= u(t-1)

with boundary conditions the same as in equation (7.2). For system

(7.8) the domain E@é of nmull comtrollabilaty (here U = [-1,17)

N
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turns out to be
1 2
= - z 21,
D, = ((x,,5,) €K | |xg-7p] =2

1
Thus the problem P, has a solution only f (xo,'y'o) € 90=. on
the other hand if (xo,yo) ¢ .@é, then Theorem 5.2 assures us that
problem Pl has a golution. The attainable set at time + tuins
out to be (x,,¥,) + %, (%) which we denote by A (x,,7,) and

this can be explacatly computeds

,Qé;(xo,yo) = {(x,y) € 32 Ix-xé] <, |y-yo[ s t, [xy| =2},

i .10
Figure 10 shows %1(}:0,:%), i = 1,2, for 'bl <1<t

Faigure 10.

Taking advantage of the simple geometric structure of _@l(t)
L
O.
satisfying the boundary

one finds that ?(xo,yo) = max {IXOI’ |y0]'}, (xo,yo) e D Thus

an adgmissable comtrol (u,%}, T = T:'(xo,yo)

conditions (T7.2) 18 a time optamal solution. The maximum principle

for thais problem says that 1f 79 = (nl, 1]2) 74 0 18 a vector which is
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an outward normal Lo a support hyperplane for ,Q’/-E(xo,yo) passing

ghrough (0,0) and if ¥ < 1, then

2 -
sgn [n 1], Sl=tst-1
(7.9) T(t) = | undetermined, t - 1<t <0
1 -
sgn [n ], Ostst
and 1f T 2 1, then
B 2
sgn [n ], L £5<0
- 1.2 -
(7.9") u({t) = sen [+n ], 05t<Et-1
sgn[‘ql], T-1l=sts%

Tet us consider some of the possibilitaes. Suppose—(xo,yo) is

on the line y=x -2 and y, > -x,. Figure 11(a) shows how

M_(XO,YO) is posationed at (0,0) and we see that n = (nl,n2)
t

2 2
can be chosen s¢ that ql < 0 <9 and ]nl[ > 1 . Using this 1

in (7.9') one obtains

1
}_I
o
[
ot
[N
ctl

1f ¥z 1, with an obvious modification using (7.9) if T < 1.
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Figure 11,

1
) 7 an > X X o~ 2 < X X > 1
I () € G, =nd v, o’ o SV < Fp ¥ b

then M_(xo,yo) 15 positioned at the origin as shown in
1]

— 1 1

Figure 11(b), where t = X5 > l. Hence n = (n,0), 7 <O and
(7.9') gives no information on the interval [-1,0) but (7.9')
does specify u(t) = -1, 05t =3I, In this situation it turns out
that any u such that {u,T) s admissible in P, satisfying
u(t) = -1, 0 £t 5%, and which drives (Xo,yo) 1) (xo-l,xo-l)

at tame t = 1, turns out to be optamel., Let (X,y) denote a
response inrtiating at (xo,yo) to a control (u,f} of the above

form, Then we see that X(%) =F(t), L=t sT and

(7.10) HOWIEHOIER

for 0 =%t £ %, On the other hand af Vo > % -2<y <x

0’ %o o~ o
and x, < 1(T = 1), then (7.10) 15 all that is required of the ad-
missable trajectory (.}E,‘:F) as long as the boundary conditions (7.2)

are sabisfied,
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Suppose uow that xo = yo and yo > 0, Then we Tind that

-‘E=y0 and

u(t)

A
<t

-1 -L=%

where {u,F} is the optimal control,

If y, = -x, and y, <0, then the optimal control (u

o 0 o t} as

given by

_ +1 lstsT -1
u(t) = -
-1 0stst

vhere ¢ = |y0| s 1,
Using similar techniques one obtains optimal controls (u,T} for
all (xo,yo) lying in @2}' with ¥, z X o By baking advantage of

the symmetry with respect to the origin an optimal control can then
be determined for (xo,yo) in the remainder of 930",

Figure 12 illustrates the typical situations, In this figure
heavy lines indicate pieces of optimal trajectories when {u,T} is
unigue, and the broken lines indicate segments of optimal trajechtories
where the uniqueness of the optimal control does not obbtain,.

In this problem @l(t) 1s increasing but not expanding.
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Figure 12,

Example 7.4, In this example we look briefly at the same situation
as 1n Example 7.3 except we change to a problem of type P2 where

v, =0, Now the domain of null controllability (wath U= [-1,1])

.@i(O) = {(xo,yo) ngl ]xo-yol = 13,

and the attainable set at time + which we again denote by

%(xo,yo) is egual to (xo,yo) + Z,(t). Tt 1s easily shown that

IIA

2
4 (x5,¥,) = {(x,¥) € R Ix—xo[ < t, |y-y0] =t -1, |xy| =1}
for t 2 1 and

2
%(XOJyO) = {('X.!y) €R ]X—XO' =%, y= 'y'o}

for 0« t <1, These sets are shown in Fagure 13,
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Figure 13,

Again, 1f one takes advantage of the simple geometry present in

the problem, then the "mimimum time" %t 1s determined to be

1+ ]yol, (XO’yO) € 59%(0), ¥, #0

x|, (¥, € D50), v, =0,

which 1s discontinuocus on 9’2(0) at every point on the line
{(xo,yo) € B [xol <1, y,=0}, If (xo,yo) ¢ 9(2)(0), then an
optimal control {u,T} exists for problem ?, and T = E(xo,y'o)
(Theorem 5.2). The necessary conditions for this exeample are the
same as in Exemple T.3 (equations (7.9) and (7.9')) except the con-
ditron on u(t), -1 £t < 0 s deleted, To solve this problem one
consaiders (as in Example T.3) the possible 1 = (nl, n2) which are
normal to support hyperplanes for _Qz/_E(xo,yO) through (0,0) and

makes an appropriate choice when there 1s more than one candidate,
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We now consider some of the cases, If Vo E 1 (i.e., Tz2),

then (7,9') yields

A
ot
1A
et

f
'_..I
L]

(7.11) W(t) = -1, 0

If in addataion to Vo 2 1 we have Vo = % ~ 1, then u(%) = -1,
0sts7%t and the optamal control {u,t} 1s unique. On the other
hand 1f y, 2 1 and Vo = Xy 1, then in addation to (7.1ll) we
find that TU(t) =+1, & - 1 <t s T, and again the optimal control

ﬁ%?ﬁ is unique. Now 1f Yo z1l and x, -1<y. < X, + 1, then

0 0

any admissible control U will be ophtimal as long as 1t satisfies
(7.11) and 1s defined on [T-1,¥] so that the boundary conditions
(7.2) are satisfied. The cases that we have just discussed are

shown an Figure 1h4 (where again non-unique segments of opbimal tra-
Jectories are denoted by broken lines) by the trajectories initiating
at points pl; Py and 2% Py, p5 respectively. We note that in

many cages The optimal trajectories conbain subarcs which laie oub-

side the domain of null controllability,

Figure 14,
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It Yo = 0, then one can show that

T(t)

m

-1 Ost=s+t if lz=x,. >0

and

ut) =+, O t ir -l £x,<0,

(1
ct
I

so that the optimal control is alsoc unigue and the corresponding
trajectories are very simple, Fanally, we consider one other typical
situation when optimal controls U are not umique. Suppose

0 < Yo <1l and x - 1< 'yo < X.. The necessary conditions still

0 0
give (7.11), but in this case any admissible u sabisfying (7.11)
and the boundary conditions (7.2) at tame © = L + Y, <2 18
opbmmal, For example the Srajectory issuing from point Py in
Fagure 15 shows one of the many optimsl trajectories starting at
this point at tame 0. This brajectory passes through a9 at time
T - 1, arrives at r, at time 1, passes through S5 at some
time t, 1 <+t <%, and finally arrives at O at time +.

Other optimal trajectoriesg are also illustrated in Fagure 15,
In thasfigure once again heavy lines denote pireces of optimal tra-
Jectories where the optimal control 1s unique, while along broken
1ines the optimal control is not unique,

In this example @2(1:) turns out to be increasing but not

*

expanding,
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Fagure 15,

Finally, it is noted that if we consider system (7.8) with a
problem of type P; , ‘then the domain of null controllability is
merely the straight 1ine y = X, This problem is easily solved and

some optimal trajectorres for this problem are depicted in

Figure 16,

Figure 16,
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8. Delayed Conbtrol Problems and Dynamic Programming

Consider once again Example 7.4 above. If we consider the
optimal trajectory emanating from Dy 1 Figure lli, we notice that
this trajectory has subarcs which are not optimal. Thus the
principle of optimaliaty in ats usuval form [19] does not hold here.
This is not Hoo surprising since this principle fails even in
ordinary comtrol problems with time dependent restraint sebs U(%)
1f one interprets "state" to mean x(t) instead of (t,x(t))

(cf. [16]), However, ain the problems we are studying this dafficulty
ig more seraious,

We also cobserve that in Examples 7.l and 7.2 the pranciple of
optimalaity in 1ts uwsual sense fails Lo be true. On the basis of
this experzence one expects the failure of this prineiple of
optamality to be an intrinsic property of optimization problems in-
volvaing systems of the form _Sﬁ(A,BO,Bl) and not just a peculiar
property redounding from the special boundary conditions in
Examples 7.2 and 7.4 or the particular criterion for optimality.
Hence one anticipates serious obstacles to obtaining results for
problems involving .9§(A,BO,B1) using dynamic programming,
Nonetheless, for certain special performance indices we are able to
adapt the methods of dynamic programming tc problems governed by
systems %(A,BO,Bl), even though it is easy bo construct examples
showing that the standard principle of opbimality i1s also invalid

for these problems.

The remarks below are valid for time varying systems even though
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we shall, in keeping with our practice in this paper, restrict our
presentation to the case of constant coefficients.
. L . m . 2
et o R —-R and L. REXR —-»R be given C functions,
Suppose U C Rm is given and tl € R is fixed. TFor to < tl -

we shall denobte by I +the problem of minimizing

by

J(u; to,xo) = c(x(tl)) + [ L(t,u(t))at
tO

over the clasgs of _992-adm1351ble controls u where x( -,' ‘GO,XO,U-)
1s the solution of _Vi(A,BO,Bl) (VO is a given fixed function
throughout) subject to x(to) = X
Remark 8,1, We shall consider only the free endpoint problem;
problems with restriched endpoints x(tl) € LC i require the
usual modafications [3, 191,

An easy calculation shows that the response to & i(A, BO,Bl)

satisfies
o N L
x(tq; to,xo,u) = x(tl, tO,Txo,u)
whenever tO = tl-h, where X 1s the solubion o

(8.1) 206) = A%(6) + 2(t, b, )u(t) t e [t,%]

0

subject to }?(t =Tk with ™ =x_+ [ e—(§+h)AB v_(g)de and
0 0 8] O n 10
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BO t e [tl..h,‘sl]

Q("G:“tl) =

Bo+emBl t<t, b

We shall dencte by iy the problem of minimizing

t
1

§(u; s ,%,) = o®(6))) + £ L(t,u(t))dt
O

over all bounded measurable controls u: {to’tw] - U where

b 9
by < b and X(- -(-,O,xo,u) 15 the solution to (8,1) subgect to
:?(to) = x,. Note that the payoff T ( J ) depends only on

x(6;)  ( E(t})) and not on x(t) ( RE)) for t<t..

1

4y
Sance J(uy -‘c;o,xo) = J(u; tO,TxO) for every to < tl -h and

[a
Xy € Rn, we gee that the problems T and 1T ave equivalent when-
< . . .
ever 1:.0 = tl h, That s, if, for given initial data (‘bo,xo)
with 6, =t - h, T is optimal for II, then W, extended to

[ty-1,%,] by Baking -ﬁt =V, is optumal for I with wumtial date
0

(to, T_lxo}. Conversely, if T dis optamal for I wath initial data
{tys%y)s By & &) - B, then U restricted to [tge,] 15 opbimal for
I with initiral data (’co,ifxo).

Applyaing the methods of dynemic programming to the problem il

we obtain the Hamilton-Jacobi equation [3, 19]

(8.2} at(t,z) + mn {L{t,w) + az(t,z)f(t,z,w)} =0
well
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~
where a(t,z) = inf J(u; t,2z) and
u

f(t,z,w) = Az + g(t,tl)w., Solving (8.2) with data ¢(%,,2) = o(z),

for t <+, and zeRn,
1

one obtains 3(1}0,}:0) for &, <b,x ¢ R". since for

0 0

-~
t, £ t; -~ h we have (I)(to,xo) = cI)(tO,TxO), where o(t,z) = lﬁf J(u; +,z),
one Ghus has the optimal payoff for problem 1. It should be noted that

although (8.2) 1s valad for t < t.,, one has o(t,z) = a(t,Tz) only for

1?2

t =% -h., Tncase v, =0, one has Tz =3z and &(5,2) = a(t,z)

for all t < tl.

Let us now consider a special case of the problems II,fI for
which (8.2) can be solved using known techniques. Denote by Hq
and f[q respectively the problems II and ﬁ for quadratic psyoffs
o(x) = x8x, L{s,u) = uR(s)u where U= R'. We assume that § e L
is symmetric positive semi-definite and R(s) € Lo is symmetric
posaitive defanite for s € R . Application of knowm results to the

problem ﬁq yields the opbimal (feed'back) control

(8.3) W(s) = -R ()0 (b, b, )E(6)R(t)

for t e [to,tl] where G sabisfies the matrix Riccati equation
(8.1)  G(%) + G(t)A + A*G(%) - G(6)(t, 5 B (8)0* (&, %, )& (t) = 0

for t e [t,,%;] with boundary condition G(t,) = S. Note that

1)
~
(8.3) gives a feedback solution for the problem Hq which can be

used to solve the problem IIq in the followaing manner, Given



[

(tO’XO)’ tO £ %, - h, as initial data for the problem ]Iq one solves
the problem ﬁq with ainitial data (tO’ Txo) , c¢btaining a feedback

of the form (8.3). Wext one uses this in (8.1) to find the optimal

:?; l.€., one solves
(8.5) 2(s) = [A-Q(t,tl)R‘l(t)Q*(tJtl)G(t)}}’E(t)

for t ¢ [to,tl} with data :z?(to) = Tx_ . Using this together wath

0
(8.3) gives the optimal open loop control for Hq-

This control can then be used in yE(A,BO,Bl) wath x(to) = %,

and no= vo to find the optimal Grajectory for problem I[qg This
0

lstter step is nobt necessary to £ind the ophimsl value of the payoff

for Tys since lmowledge of X and u yields J(T; to,xo) at once
from
!
I tys%,) = (T B, Tx) = ﬁ(tl)Sx(tl) + i T(L)R(E)u(t)dtb,
0

We note that in (8.1) and the performance index 3(11; to,xo) we
couldlma.ke the change of variable ¥ = euﬂtﬁ, and then system (8,1)
takes the form §= 5(’0,’51)11(13). If one carries out these sub-
stitutions, then the corresponding Riccati equation wall have the

simple form G - Gc(t,tl)(} = 0 which can often be solved by a

quadrature (see [25, p. 227]).

Remark 8.2, It is not dufficult to give a rigorous derivation
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(1ncludaing existence of the required solubtion to the Riccati equa-
tion (8.4) on the entare interval [to,tl]) of the above solubion
o the problem Hq using the maximum principle for ﬁq and

arguments similar to those by Lee and Markus [19, sections 3.2 and

3373,

Remark 8.5, The above 1deas can be applied to certain optimal con-
Lrol problems where retardations occur in both the sghate and control
variables. For the corvesponding quadrabic payoff problem Hq, one

can then use recent extensions of the Riceati theory [1, 8, 15, 17,

277.
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