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ANALYSIS OF HEAT  TRANSFER IN A BOUNDED TWO-DIMENSIONAL POROUS 

REGION AND  APPLICATION TO  A  POROUS SQUARE DUCT 

by M a r v i n  E. Goldstein  and  Robert Siege1 

Lewis  Research  Center 

SUMMARY 

A finite  two-dimensional  permeable  porous  region is considered  bounded  by  four 
surfaces.  Two of the  opposing  surfaces  have  no  fluid flow o r  heat  transfer  across  them 
and are consequently  along  the  direction of the  fluid  and  heat  flows.  The  other two sur -  
faces  are  each  in  contact  with a reservoir  at a different  constant  pressure,  and this pro- 
duces a flow toward  the low pressure  reservoir.   The flow is assumed  to  be  governed by 
Darcy's  law,  and  hence,  the  pressure  acts as a velocity  potential. As a result of the 
boundary  conditions  the  porous  region  occupies a rectangular  region  in a complex  poten- 
tial plane.  The  energy  equation  for  the  temperature  distribution  in  the  medium is shown 
to be transformed  into a separable  equation  when its independent  variables are changed 
to  the  coordinates of the  potential  plane.  The  general  solution is obtained  in  the  potential 
plane  for  the  cases  where  the  side of the  porous  material at which  the flow exits is either 
maintained at an  arbi t rary  temperature   or  has an  arbitrary  imposed  heat f l u x .  Confor- 
mal  mapping is then  used  to  relate  the  solution  to  the  physical  geometry.  The  method is 
illustrated by  obtaining  the  heat-transfer  characteristics of a square  duct  with  porous 
walls of finite  thickness. 

INTRODUCTION 

A method  for  extending  the  use of a metallic  structural  material  to  higher  temper- 
ature  applications is to  provide  transpiration  cooling.  The  metal is made  in a porous 
form,  and  coolant is forced  through it from a reservoir  toward  the  boundary  exposed  to 
the  high  temperature  source.  Some  possible  applications are for  cooling  turbine  blades, 
rocket  nozzles, arc electrodes,  and  portions of surfaces  during  either high speed  flight 
or reentry  into  the  Earth's  atmosphere. 

The  energy  equation  governing  the  temperature  distribution in the  permeable  porous 



material  contains  the  velocity  distribution.  The  velocity is generally a complicated 
function of position,  which  makes it difficult  to  solve  the  energy  equation  analytically. 
The  solutions  in  the  literature  have  consequently  been  limited  to  one-dimensional  situa- 
tions.  However, in many  applications,  the  geometries are two- o r  three-dimensional. 
Solutions  can  be  obtained  numerically,  but it would be  desirable  to  have  some analytical 
results  to  check  numerical  and  approximate  procedures. In addition,  formulas  derived 
from  analytical  solutions  can  be  used  for  calculating  results at the  porous  boundaries 
without  obtaining  detailed  calculations  for  the  interior of the  region as in a numerical 
solution.  This is convenient fo r  coupling  the  heat  transfer in the  porous  medium  into  the 
overall  heat  transfer  system  such as coupling it with  an  external  thermal  boundary  layer. 
Analytical  results are also  useful  in  evaluating  the  importance of the  governing  param- 
eters  and  in  helping  to  determine  conditions  when  two- or three-dimensional  effects  be- 
come  significant s o  that a locally  one-dimensional  solution  will not apply. 

For these  reasons  the  present  authors  devised in reference 1 an analytical  method 
for  obtaining  the  heat-transfer  behavior  in a two-dimensional  porous  medium.  The  the- 
ory  was  developed  for a porous  wall of arbitrarily  varying  thickness but of infinite  length. 
The  purpose of the  present  report is to  extend  the  theory  to  finite  two-dimensional  re- 
gions.  The  example  used  to  illustrate  the  general  solution  that is obtained is the  heat 
transfer in a square  duct  with  porous  walls of a finite  thickness. 

The  following is a brief  outline of the  analytical  method  derived  in  reference 1 that 
will  be  further  developed  and  applied  herein. As stated in reference 1, it will  be  assumed 
that  the  fluid  and  solid  matrix  are  locally  in good thermal  contact s o  that  the  local  fluid 
and  solid  matrix  temperatures  are  equal. As a consequence, a single  energy  equation 
can  be  written  that  includes  the  heat  transport by  conduction in the  matrix as well as by 
coolant  convection. 

The  velocity  in  the  convective  term of the  energy  equation is a function of position 
and is proportional  to  the  local  pressure  gradient  for  the  slow  viscous flow often  en- 
countered  in  porous  media.  The  pressure  can  therefore  be  regarded as the  velocity  po- 
tential.  The  equations  governing  the  problem are transformed  into a potential  plane. 
Since  two  boundaries of the  porous  medium are at constant  pressure,  these  become par- 
allel  lines  in  the  potential  plane.  The  other  two  boundaries  have  no flow across  them  and, 
hence,  are  perpendicular  to  the  constant  potential  boundaries.  Thus,  in  the  potential 
plane  the  porous  region  becomes a rectangle. 

Since  the  geometry in the  potential  plane is simply a rectangle  regardless of the 
physical  shape of the  porous  material, a solution  in  this  region of the  potential  plane  will 
apply  to all geometries. An important  factor is that,  when  the  energy  equation is trans- 
formed  into  the  potential  plane, it becomes a separable  equation,  and  hence,  the  general 
solution  can  be  obtained for the  rectangular  region.  This  solution can then  be trans- 
formed  into  specific  physical  geometries by conformal  mapping. If the  geometry is too 
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complicated to map  analytically,  the  mapping  can  be  performed  numerically;  one  tech- 
nique  for  this is given  in  reference 2. 
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SYMBOLS 

half-width of outside of square  duct  divided by wall  thickness 

half-width of outside of square  duct 

coefficient  defined  following  eq. (48) 

specific  heat of fluid 

incomplete  elliptic  integral of first kind 

function  in  specified  heat f l u x  distribution 

function  in  specified  temperature  distribution 

reference  length in porous  material 

complete  elliptic  integral of first kind; K'(k) = K ( 4 2 )  

thermal  conductivity of porous  region 

quantities  defined  in  eq. (A8) 

dimensionless  coordinate  along  boundary S,  Zs/hr 

coordinate  along  boundary s measured  from  left  side 

heat  flux  parameter  (q2 - ql)/ql 

temperature  parameter (t2 - tl)/(tl - t,) 
unit  outward  normal  vector 

pressure  

heat f l u x  

bounding  surfaces of porous  region  in  dimensionless  coordinate  system 

bounding  surfaces  of  porous  region 

dimensionless  temperature  defined  in  eqs. (11) and (12) 

temperature 

dimensionless  velocity, hr 
K Po - Ps 

velocity 
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intermediate  mapping  plane, Q! + iP  
dimensionless  velocity  component  in  Y-direction 

velocity  component  in  y-direction 

complex  potential, z,h + icp 
dimensionless  coordinates,  x/hr  and y/hr 

rectangular  coordinates 

dimensionless  physical  plane, X + iY 

real  part of u-plane 

separation  constant  in  solution  for 0; imaginary part of u-plane 

quantity  defined  in  eq. (48) 

nondimensionalizing  quantity  defined by eq. (12) 

imaginary  part of o 

variable  defined in eq. (38) 

permeability of porous  material 

fluid  viscosity 

real   par t  of w 

fluid  density 

function of (D in  solution  for 0 

potential (Po - p)/(po - ps),  imaginary  part of w 
function of + in  solution  for 0 

real par t  of W 

quantity  defined  in  eq. (Al5) 

intermediate  mapping  plane, 5 + iq 

dimensionless  gradient  defined  in  eq. (18) 

Subs  cripts : 

I at left  boundary 

0 at lower  boundary 
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r at right  boundary 

S at upper  boundary 

1,2 values on upper  boundary at left and  right  sides 

03 coolant  reservoir 

GENERAL ANALYSIS OF TWO-DIMENSIONAL POROUS COOLED REGION 

Governing  Equations 

Consider  the  two-dimensional  porous  region  with  effective  thermal  conductivity  km 
(based  on  the  entire  cross  sectional  area)  and  permeability K shown  in figure l(a). The 
lower  surface of the  region  whose  unit  outward-drawn  normal is fi0 is denoted by so 

and  the  upper  surface of the region  whose  unit  outward-drawn  normal is fis is denoted 
by s. The  left  and  right  surfaces of the  region  whose  unit  outward-drawn  normals are 

Impermeable 
insulation  (or 

symmetry  l ine) 

(a )  Cross  section i n  physical  plane. 

(b)  Dimensionless  physical  plane. 

Figure L -Two-dimensional  porous  region  with  no fluid or  heat flow through two  opposite 
sides. 

5 



fiz and i$, respectively, are denoted  by sz and sr, respectively.  There is a fluid  with 
constant  density p , constant  heat  capacity C and  constant  viscosity ,U which is flow - 
ing  through  the  region.  Assume  that  the  thermal  conductivity of the  fluid is very  small  
compared  with k;n and  that  the  pore size is so small  that  Darcy's  law  holds.  Let 3 
denote  the  Darcy  velocity  (local  volume flow  divided  by  entire  cross  section  rather  than 
by  open area) of the  fluid. We suppose  that no changes  occur in the  direction  perpen- 
dicular  to  the x, y-plane so the  situation is two-dimensional. 

P' 

Below the  porous  region (see fig. l(a)) there  is a reservoir  which is maintained at 
constant  pressure  and  temperature po and tm, respectively.  There is no  heat or mass  
flow across  the  surfaces s I  and sr. The  pressure of the  fluid  above  the  wall is con- 
stant  and  equal  to  ps. We suppose  that  po > p,. Then  the  fluid  flows  from  the  reser- 
voir  through  the  porous  region  and  out  through  the  top  surface.  Since po and  ps are 
both  constant,  the  fluid  velocity at both the  upper  and  lower  region  surfaces  will  be  in a 
direction  perpendicular  to  these  surfaces. 

If the  thermal  communication  between  the  fluid  and  the  matrix is sufficiently  good, 
the  local  fluid  temperature  will  be  approximately  equal  to  the  local  solid  matrix  temper- 
ature.  We denote  this  common  temperature by t. When these  assumptions are made, 
the  heat  and  mass flow within  the  porous  material  are  governed by the  equations  given  in 
reference 1. Thus, 

k m V t - P C G * V t = O  2 
P (1) 

+ K u = - - V p  
P 

v . i i = o  (3) 

Boundary Conditions 

As the  fluid  in  the  reservoir  approaches  the  porous  region,  the  fluid  temperature 
will  rise  from  the  reservoir  temperature too to  the  region  surface  temperature to 
which is an unknown variable  along so. Since  the  thermal  conductivity of the  fluid is 
assumed  to  be  much  less  than  the  thermal  conductivity of the  matrix  material,  the  thick- 
ness  of the  fluid  layer  over  which  this  temperature  rise  takes  place is very  small  com- 
pared  with  the  porous  region  thickness  provided  the flow is not  very  small. We can, 
therefore,  assume  that  the  liquid  layer is locally  one-dimensional.  Since  the  velocity is 
perpendicular  to so, there is no flow along  this  thermal  layer.  Hence,  applying an 
energy  balance  to  the  thermal  layer  shows  that 
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kmG0 * V t  = PC P (t - to3)ii0 - 51 
P = Po I 

Since  there is no flow of heat   or   mass   across   the  s ide  surfaces  s, and sr, the  normal 
derivative of both the  pressure  and  the  temperature  must  vanish at these  surfaces. 
Hence, 

ii, - vt = 0 

fo r  (x, Y k S ,  
* 
nz Vp = 0 

W e  shall  consider two different  types of thermal  boundary  conditions  for  the  upper SUI" 

face s .  First, we shall  suppose  that its surface  temperature is specified so  that it 
varies  along  the  surface  from a temperature tl at the left end  to a temperature t2 at 
the  right  end.  Let I s  be  the  distance  measured  along  the  upper  surface  from its left 
end.  Then  for  this  case  the  boundary  conditions on the upper  surface of the  region are 

P = Ps J 
where H is a given  function  equal  to  zero at (Zs/hr) = 0 and  equal  to 1 when (Zs/hr) is 
a maximum.  The  constant  hr is an  appropriate  reference  length. 

We shall  also  consider  the  case  where  the  heat  flux  into  the  wall is specified  along 
the  upper  surface  and it varies  from a value of q1 at the left end to  a value of q2 at 
the  right  end.  Under  these  conditions  the  boundary  conditions on the  upper  surface  be- 
come 
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P = P, J 
where G is a given  function  which is equal  to zero at Zs/hr equal  to  zero,  and  equal to 
1 when zs/hr is a maximum. 

Equations (1) to  (3) together  with  either  boundary  conditions (4) to  (6) and ("a) or  al- 
ternatively  the  boundary  conditions (4) to  (6) and (7b) completely  determine  the  solution 
to  the  heat  transfer  and flow problems  within  the  porous  wall. 

Dimensionless  Equations 

It is now convenient to  introduce  the  following  dimensionless  quantities: 

t2 - N =  

92 - 91 

91 
M =  

8 



Y=- Y 
hr 

zS 

hr 
L = -  

S 

Po - P 

Po - ps  
cp= 

t - t, 
T = -  J 

A 

where 

- t,) i f  boundary  condition  (7a)  applies 

Upon substituting  these  definitions  into  equations (1) to (3) and  boundary  conditions 
(4) to (7b) ,  we  obtain 

= O I  
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nr . VT = o * 

T = 1 + NH(Ls)l 

cp=l 1 

for  (X, Y ) d z  

for (X, Y)&, 

fo r  (X, Y)& 

o r  

Gs * VT = 1 + MG(Ls) 
for (X, Y)ES 

o = l  

where 

and  the  porous  region in dimensionless  coordinates is shown  in figure l(b). 
The  second  equation (13) can be  used  to  eliminate v' in the  other two equations (13). 

Thus, 

and 
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-2 v v = o  

Since q is constant on both So and S, it is clear that 

and 

Using  these  results  together  with  the  second  equation (13) in  the  boundary  conditions 
(14) and (l'i'b), we  obtain 

and 

Porous  Region in Potential  Plane 

Since  equation (20) shows  that q satisfies  Laplace's  equation,  there  must exist a 
harmonic  function z,b and  an  analytic  function W of the  complex  variable 

Z = X + i Y  (23) 

such  that 



Physically  the  change  in zl, between  any two points is proportional  to  the  volume flow of 
liquid  crossing  any  curve  joining  those two points.  Hence,  since  there is no flow across  
either  surface Sl  or  Sr,  the  function zl, must  be  constant on both of these  surfaces.  
Since  W is determined  only  to  within  an  arbitrary  constant,  we  can  always  arrange 
matters  so that 

We shall  denote  the  constant  value of z+b on Sr  by z+br. Thus, 

h w  = 0 fo r  ZES, 

9mW = 1 fo r  Z E S  

Rew = 0 f o r  Z E S ~  

Rew = z+b r for Z E S ,  

This  shows  that  the  mapping 

z - w  

transforms  the  region  occupied by the  porous  material in the  dimensionless  physical 
plane (Z -plane)  shown  in  figure  l(b)  into  the  rectangular  region in the  W-plane  shown 

Figure 2. - Porous  region in complex potential  plane W = 0 + icp. 
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in figure 2. The  boundaries So and S in  the  physical  plane are transformed  into  the 
lines (o = 0 and (o = 1, respectively,  in  the  W-plane,  and  the  boundaries Sz and Sr 
in  the  physical  plane are transformed  into  the  lines q9 = 0 and q9 = q9r, respectively,  in 
the  W-plane.  The  mapping Z - W  can  be  found by using  the  techniques of conformal 
mapping  once  the  shape of the  porous  wall  in  the  physical  plane is specified.  This  gives 
the  solution  to  the  boundary  value  problem  for  the  mass flow. (An example  for a spec- 
ific  wall  geometry  will  be  worked  out  subsequently. ) 

Since q9 is constant on  both S and S,, it is clear  that z 

Using  these  results  together  with  equation (25) in  the  boundary  conditions (15) and 
(16), we  obtain 

and 

Transformation of Boundary  Value  Problem  Into  Potential  Plane 

The  boundary  value  problem  for  the  temperature  in  the  physical  plane  can  be  solved 
if we  use  the  Boussinesq  transform  (ref. 3) to  transform it into a boundary  value  prob- 
lem  in  the  W-plane.  Thus,  the  independent  variables X and  Y  in  equation (19) and 
its boundary  conditions  will  be  changed  to  the  variables q and $, and  the  resulting 
boundary  value  problem  will  be  solved  in  the  rectangular  region  in  the  W-plane  shown 
in  figure 2 .  Once  this  solution  which  gives  T as a function of cp and $ has  been  found, 
the  mapping W - Z (which is completely  determined  once  the  geometry of the  region in 
the  physical  plane is specified) can be  inverted  to  give Z as a function of (D and q9. 
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Thus,  T  will  be known parametrically (in t e r m s  of the  parameters 9 and $) as a func- 
tion of X and Y. This will complete  the  solution  to  the  problem. 

Ap~opos of these  remarks,  recall that (ref. 4) 

and 

Notice  that 

* 

Hence, upon taking real and  imaginary parts, we find 

and 

This  shows  that 
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and 

Finally,  notice  that  since 50 is constant on S, the  distance Ls along S is a function 
of I I ,  only.  (This  functional  relation is known once  the  mapping  W - Z  which  solves 
the flow problem is known. ) Thus, 

Now, using  equations (28) to  (32) in  equation (19) and  the  boundary  conditions (22a), 
(26), (27), (17a),  and (22b) yields 

" aT 2hT = 0 for  cp = 0 
acp 

" 
- 0 for + =  0 

a+  

T = 1 + NH(Ls($)) fo r  cp = 1 

o r  
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It is convenient at this  stage  to  introduce  the new dependent  variable 0 defined  by 

In t e rms  of this new variable  equations (33) to  (3%) become 

or  

@ = 1 + M(Ls($)) at (D = 1 

+ MG(L~($))) at cp = 1 
acp 

Equation (39) together  with  the  boundary  conditions (40) to (43a) (or alternatively 
(40) to (42) and (43b)) constitute a boundary  value  problem  for 0 in  the  rectangular  re- 
gion of the  W-plane  shown  in  figure  2  which  completely  determines @ (and therefore T) 
as a function of (D and $. Notice  that  the  particular  relation  between Z and W (which 
depends  only upon the  geometry of the  porous  wall  in  the  physical  plane  enters only 
through  the  boundary  condition (43a) (or alternatively  (43b))  since Ls and ldZ/dW I 
must  be known functions of + in  order  to  completely  determine  these  boundary  condi- 
tions. It is, however,  possible  to  solve  these  boundary  value  problems  for  arbitrary 
Ls and ldZ/dW I (as well as arbi t rary H and G) , and so  the  particular  geometry  and 
boundary  conditions  can  be  substituted  into  the  general  formulas  once  this  general  solu- 
tion  has  been  obtained. 
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General  Solut ion of Boundary  Value  Problem in W-Plane 

The  boundary  value  problem  posed  by  equation (39) and  the  boundary  conditions (40) 
to  (43a) (or alternatively  the  boundary  conditions (40) to (42) and (43b)) can  easily  be 
solved by the  method of separation of variables.  To  this  end  we  substitute a trial solu- 
tion of the  form 

into  equation (39) and  obtain 

This  implies  that  there  exists a constant P such  that 

9'" p2 
" - 
9 

and 

Hence 

9 = c3  sin P$ + c4  cos P+ (46) 

where c1 to  c4 are arbitrary  constants of integration. 

this  boundary  condition  will  be  automatically  satisfied if  
Upon substituting  equations (44) to  (46) into  the  boundary  condition  (40),  we  find  that 

c1 - c 2 4 m  = X(Cl + c2) 

or  
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Using this  expression  in  equation (45) gives 

The  boundary  condition (41) will  be  automatically  satisfied if we  put 

c3 = 0 

and  the  boundary  condition (42) will  be  satisfied i f  we set 

P = -  nlr for n = 0 ,  1, 2, . . . 
$r 

Hence,  the  solution  to  both  boundary  value  problems  must  be of the  form 

0 = Cn[ h sinh(ynv) + yn  cosh(yncp) cos - sl, 1 ;: (4 7) 

n=O 
A 

where 

and  the  constants Cn can  be  determined so that  either  the  boundary  condition  (434 o r  
the  boundary  condition (43b) is satisfied. 

Solution to Boundary Value Problem for Specified Temperature 

First suppose  that  the  boundary  condition (43a) applies. Put 
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N 

X sinh yn + yn cash yn 1 for n = 0, 1, 2, . . . 

Then  equation (47) becomes 

03 

X sinh  ynq + yn cosh  ynq 
X sinh yn + yn cosh yn ] cos(; .) 

n=O 

Substituting  this  result  into  the  boundary  condition (43a) yields 

o r  

N 

Bo = 1 + m0 I 
B = N B n  for  n = 1, 2,  . . . N 

n 

(49) 

where 
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Bo = f " H(Ls($))d$ 
'r O 

(5 1) 

B  n E-? i'r H(Ls(+))cos (+r) n.rrll) d$ for n = 1, 2, . . . 
+r 

Substituting  equation (50) into  equation (49) yields 

Thus,  equation (52) with  the  constant Bn  defined  in t e rms  of the  dimensionless  temper- 
ature  distribution H by  equation (51) is the  solution  to  the  boundary  value  problem. 

In  this  case, it is of interest  for  practical  applications  to  have  an  expression for  the 
conduction  heat  flux qs flowing - into  the  surface s. This  can  be  obtained  from 

q = k  n * V t  for (x, Y)ES 
A 

s m s  

Hence,  for (X,Y)ES (by the  use of eqs.  (21b),  (29),  and (30)) 

By using  equation (38) and  the  fact  that cp = 1 on the  boundary s, we  find 

Upon substituting  equations (43a) and (52) into  this  expression,  we  obtain 
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Solution  to  Boundary  Value  Problem  for  Specified Heat Flux 

Now suppose  that  the  boundary  condition (43b) applies. Put 

E n = C, [(A2 + y i )  sinh yn + 2hyn  cosh yn fo r  n = 0, 1, 2 ,  . . . 1 
Then  equation (47) becomes 

03 

X sinh yncp + yn cosh yn‘p 
~~ ]cos($ 

sinh yn + 2Xyn cosh yn 
n=O 

Substituting  this  result  into  the  boundary  condition (43b) yields 

(54) 

Hence,  the  theory of Fourier  series  shows  that 
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Thus,  equation (54), with  the  constants  En defined by  equation (55) in   terms of the di- 
mensionless heat f l u x  distribution G and the te rm IdZ/dW I q=l (this will be shown by 
eq. (64) to be the reciprocal of the surface  velocity), is the solution  to this boundary  value 
problem. In particular, the upper  surface  temperature  distribution is obtained  by  using 
equations (54) and (38) evaluated at cp = 1 to  obtain 

03 

(ts '..)km = X E n [ (  X sinh 2~ yn + yn cosh yn ] cos (F) (56) 
hrqs h + yn sinh yn + 2Xyn cosh yn 

n=O 

HEAT-TRANSFER CHARACTERISTICS FOR A POROUS SQUARE  DUCT 

To illustrate  the  use of the  general  solution,  heat-transfer  results  will be obtained 
for a square  duct  with  porous  walls as shown in figure  3(a).  Cooling fluid is flowing  from 
an  outer  reservoir at temperature tco through  the  duct  wall  and  into  the  duct  interior. 
The  thickness of the  duct  wall is used as the  reference  dimension hr so that a quarter 
of the duct  appears in the dimensionless  physical  plane as shown in  figure 3(b). 

Conformal  Mapping  Relations  Between  Physical (Z) and Potential (W) Planes 

The  general  solution  was  obtained  in the W-plane, and  hence, the heat-transfer 
quantities  along  the  duct  interior  boundary are given  in  terms of the  variable +. The 
function L, of + which  relates the physical  distance  in the X, Y-plane to  zl, must be 
determined.  Also the quantity IdW/dZ I q=l must be found as a function of zl, since it 
appears  in the general  solution.  These  relations  can be obtained  from  the  mapping h c -  
tion z W  between the regions  in  figures 3(b) and  4(a).  This  mapping has been  carried 
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Figure 3. - Porous cooled square  duct. 
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out in  appendix A. The  relations  between z) and X, Y along  the  duct  interior  boundary 
are given by equations (A16). 

The  term ldW/dZ 1 m=l can  be found  by using  the  relation 

dW - dW dw 
dZ dw dZ 
“” 

It follows  from  equation (Al) of appendix A that 

WK’ - K =  d o  J d(1 - w )(1 - k w ) 2 2 2  
- 
”” . 

0 

s o  that 

The  term dw/dZ is given  by  equation (A2), and the result  of combining these  relations 
into  equation (57) is 

The  relation  between w and W is given by equation (Al) and  the  constant C by equa- 
tion (A7). Hence, 

Since W = $ + i on the  boundary  where UI = 1, the  identity 

sn($K’ + iK’ - K) = 1 
k sn( $K’ 1-K) 

shows  that  when  equation (60) is evaluated on this  boundary  the  following  result is ob- 
tained: 
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The  absolute  value  signs are needed  under  the  square  root  sign  because $ < K/K' on 
part of the boundary  (between  points 6 and 5 in  fig. 4(a)). 

Exit  Velocity  at Inside Surface of Porous  Duct 

It follows  from  equations (13) and (18) that  the  local  velocity  in  the  porous  medium 
is given by 

The  surface 4?6 in  figure 3(b) is at constant  potential,  and  hence,  the  exit  velocity  from 
the porous  medium is normal  to  this  surface.  It  can  be  seen  from the symmetry of the 
problem  that  the  magnitude of the  velocity is the  same  function of distance  from  the 
corner  5  along the boundary 54 as a l o n g g ;  so  only the  former  will  be computed.  Be- 
cause ? c n / ? X  = 0 on the  boundary s, it  follows  that  the  exit  velocity  which is in  the Y- 
direction is 

- 

Since  along  the b o u n d a r y 3  

it  can  be  seen  from  equations (62) and (63) that 

= S 

By using  equation (61) the  exit  velocity  distribution is found to  be 
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The  mapping  in  equation (A16b) relates z) to X: so that Vs can  then  be found as a 
function of position along=. 

Solut ion With Specified  Uniform  Temperature on Each Surface of Inter ior   Duct 

Equation (53) provides  the  dimensionless  heat  flux  along  the  surface on  which  the 
wall  temperature  variation  has  been  specified by equation  (7a).  To  demonstrate  the  ap- 
plication of this  solution,  consider  the case where  one  surface of the  duct  corresponding 
to  side 2 jn figure 3(b) is at the  uniform  temperature t l  while  side= is a t  a different 
uniform  temperature  t2.  Then  in  the  boundary  condition  (37a)  the  function H(Ls) of $ 
becomes a unit step  function  that is equal  to  zero  when $ lies between 0 and K/K'(O to  
Qr/2) and is equal  to  unity  when $ is between K/K' and 2K/K' (qr/2 to  z,br). 

The  coefficients Bo and Bn given  by  equation (51) now become 

Therefore,  equation (53) becomes 
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M 

n=1,  3, 5 , .  . . 

For  large  n,  equation (48) shows that yn - na/Gr and  the  nth  term of the series in 
equation (63) behaves like 

so that the  formal  Fourier series in equation (67) does not converge. To remedy  this, 
we  add  and  subtract  the  divergent  part of the series to obtain 
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I 

2N - -  
71 

m 

n=l ,  c 3, 5 , .  .. 

(y: - x 

X sinh yn + yn cosh 

The last series  in  equation (68)  now converges,  but  the  series 

does  not. 
It is shown  in  appendix B that  this  series is the  formal  Fourier  series  for  the  func- 

tion ( 1 / 2 ) / ~ 0 ~ ( 7 r + / + ~ ) .  Hence,  when  the  divergent series is replaced by the  singular  func- 
tion  which it represents,  the  solution  becomes  in its final  form 
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The  manipulations  carried out above  were  purely  formal  since it is not in  general  proper 
to  add  and  subtract  divergent  series  or  to  allow  them  to  represent  functions.  However, 
these  manipulations are justified  in  the  case of Fourier series by  the  use of the  theory of 
distributions.  This  justification is given,  for  example,  in  reference 5. 

For the  special  case  when  the  imposed  surface  temperature is uniform around  the 
entire  duct  interior,  the  parameter N in  equation (70) is zero.  Then  equation (70) 
simplifies  to 

Therefore,  equation (64) shows  that  for  the  uniform  surface  temperature  case, 

Temperature  Distribution  for  Imposed  Uniform Heat Flux 

When the  imposed  heat f l u x  on  the  inner  surface of the  duct is uniform,  equation (10) 
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shows  that R'I = 0. Consequently,  equation (55) becomes  in  this  case 

In  view of the  symmetry of the  duct, it can be  seen  that  the  function  (dZ/dW 1 cp=l (which 
is the  reciprocal of the exit velocity  from  the  porous  material) is an  even  function of + 
with  respect  to  the  point Qr/2. The  quantity cos(nxQ/$,), however, is an odd function 
with  respect  to  the  point Qr/2 for odd values of n.  Hence,  En = 0 for  odd values of n. 
Therefore, upon removing  the  term  containing  Eo  from  the sum, the  solution  for  the 
surface  temperature  distribution  given by equation (56) can,  in  this  case,  be  written as 

Its - tJkm E() X sinh yn + yn cosh yn 
"- - - +  - 

hrqs 2x '..[(A2 + y:) sinh yn + 2Xyn cos11  yn 
n = l , 3 , 5 , .  . . 

DISCUSSION 

A general  analytical  solution  was  obtained  for  the  heat-transfer  behavior  in a two- 
dimensional  porous  medium  with  coolant  being  forced  through  it.  The  application of the 
solution  was  demonstrated by exmining  the  heat  transfer  in a square  duct  with  porous 
cooled  walls.  Coolant  from a reservoir  which  surrounds  the  duct is being  forced  through 
the  walls  to  the  duct  interior. 

In  the  general  analysis, b o  of the  boundaries of the  porous  region  are at constant 
pressure  while  the  other two have  no flow across  them. As a result of these  conditions 
the porous region  occupies a rectangle  in  the  velocity  potential  plane.  The  energy  equa- 
tion  for  the  temperature  distribution in the  medium is a separable  equation when ex- 
pressed  in   terms of tb.e independent  variables of the  potential  plane.  General  solutions 
independent of the  specific  geometry  can  then  be found in  this  recta.ngular  region. So- 
lutions of this  type  were  obtained for both the  case of an  arbitrary  specified  temperature 
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and  the case of a specified heat f l u x  on the  porous  material  boundary  through  which  the 
coolant exits. The  general  solutions  can  then  be  carried  from  the  rectangular  region  into 
specific  physical  geometries  by  conformal  mapping. 

Some  typical  results for the  porous  cooled  square  duct  which  was  analyzed  in  detail 
will now be discussed. First, consider  the  coolant exit velocity  along  the  duct  interior 
surface.  This is given  by  equation (65) as a function of $, which is related to  the  phys- 
ical coordinate by equation (A16b). The  parameter  in  equation (65) is k (which also 
determines kl  and k2). The  constant k is related to  the  geometric  quantity A by 
equation (A8), where  A is the  ratio of half-width of the  outside of the  duct  to  the  wall 
thickness. 

The  dimensionless exit velocity  and  duct  cross  sections  for  three  values of A are 
shown  in figure 5 .  For  one-dimensional flow through a plane  slab  the  dimensionless  ve- 
locity Vsphr/K(Po - ps) is unity  and  the  present  results  approach  this  limit  in  the  central 
region of the  duct  side as A becomes  large.  The  velocity is high near  the duct interior 
corner  because  there is less flow resistance  in  this  region as a result of the larger  out- 
side  surface  area and  consequently  larger  cross  sectional area for  the flow to  pass  
through. At the  duct  interior  corner  the  velocity  becomes  infinite. As evidenced by the 
deviation of the  curve  for A = 2. 5 from unity the  two-dimensional effects a r e  confined 
to  the  region  within  one  duct  wall  thickness of the  interior  corner. 

Next,  consider the heat  transfer  behavior  when  there is a specified  temperature dis- 

Duct cross  section 
A r 1.15 

- 0 1  
1.75 - .. 2. 5 

I I I I I !’ 
. o  1.2  1.4  1.6 1.8 2.0 2.2 2.4  2.6 

Position on duct  interior  surface, X; o r  Ys 

Figure 5. - Dimensionless  f luid  exit  velocity  or  dimensionless  heat  f lux  when  surface i s  at 
uniform  temperature. 
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Figure 6. - Heat flux along  duct  interior  surface  for  adjacent  sides  each  at  different  uniform 
temperature, N = (t2 - tl)/(tl - b) = 1. 
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tribution on the  inside of the  duct.  Specifically, it is desired  to  know for a given tem- 
perature what  heat flux occurs at the  surface.  For a uniform  surface  temperature, 
equation (71) shows  that  the  dimensionless  heat  flux qshr/2Xkm(t1 - t,) is equal  to  the 
fluid exit velocity.  Hence,  the  ordinate of figure 5 can  also  be  labeled as the  dimension- 
less heat  flux  for  the  uniform  surface  temperature  case. 

Equation (70) provides  results  for  the  situation  where  adjacent  sides of the  duct  in- 
te r ior  are at different  uniform  temperatures tl and t2. For   the set of numerical re- 
sults  that wi l l  be  given, the parameter  N = (t2 - tl)/(tl - t,) was set equal  to  unity.  In 
figure 6 ,  for  each  value of X there are three  curves  corresponding  to  the  geometries 
A = 1.5,  1.75,  and  2.5.  The  parameter X = (PCp/2km)[~(p0 - ps)/p] regulates  the  gen- 
eral level of the  curves. A large  value of po - p, and,  hence,  large X ,  is associated 
with a large flow;  therefore,  the  heat  flux  imposed  at  the  surface is increased  for  the 
same  surface  temperature.  As in the case of a uniform  temperature all around  the  in- 
te r ior  of the  duct,  the  resulting  surface  heat  flux  along  each  duct  side rises toward the 
corner  because of the  larger flow velocity there. However,  very  close  to the corner  there 
is a superimposed  local  heat  conduction  effect  that alters this  trend.  Heat  flows  locally 
by conduction  from  the  side at high temperature  t2  to  the  side  at  low temperature t l ,  
where it must be carried away  from  the  surface  in  order  to  maintain  the  surface  temper- 
ature  discontinuity.  This  means  that  local  surface cooling must be provided on the low 
temperature boundary  adjacent  to  the  temperature  step.  This is the region of negative 
heat f l u x  in  figure 6 .  

Figure 7 gives  the  surface  temperature  distribution  for  the  situation  where  there is 
a uniform  heat  flux  imposed  along  the  entire  interior  surface of the  duct.  This  solution 
was given  by  equation (73) and  involves  the  two  parameters X and A. The  parameter 
A occurs  because it determines  the  parameter k through  the  relation  in  equation (A8) 
and  k  then fixes Qr = 2K(k)/K'(k). Results  are given for  the  three  values of A shown 
in  figure 7 for  each of three  values of X .  

Since  the  surface  heat  flux is uniform,  the  surface  temperature is lowest at the 
corner  where  according  to  figure  5  the  fluid  velocity is high. A larger  value of X cor- 
responds  to a larger  pressure  drop  and,  hence,   to  greater flow through  the  porous  ma- 
terial. Consequently,  the  lowest  surface  temperatures  correspond  to  the  largest  values 
of X.  
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CONCLUDING REMARKS 

An analytical  technique  has  been  developed  for  determining  the  heat-transfer  behavior 
for a finite two-dimensional  porous  cooled  medium. It was  shown  that,  for  the  boundary 
conditions  imposed  herein,  every  porous  material  configuration  maps  into a rectangular 
region  in  the  velocity  potential  plane.  The  energy  equation is transformed  into  this  plane 
and a general  solution  obtained.  This  solution  can  be  mapped  into a physical  shape by 
using  the  conformal  mapping  between  the  rectangle  and  the  physical  plane. 

duct  with  porous  cooled  walls.  Coolant is being  forced  through  the  walls  into  the  duct 
interior.  The  two-dimensional  effects  along  the  duct  interior  surface  were found to  be 
confined to  within  approximately  one wal l  thickness of the  duct  interior  corner. 

As a demonstration of the  method,  heat  transfer  results  were  obtained  for a square 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  July 17, 1970, 
129-01. 
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APPENDIX  A 

MAPPING OF QUARTER OF DUCT INTO RECTANGLE OF POTENTIAL  PLANE 

In order   to  relate the  solution  obtained  in  the  potential  plane (W-plane) to  the  physical 
geometry  (Z-plane),  the  conformal  mapping  between  these  two  regions  must  be  found. 
The  appropriate  regions  for  this  geometry are shown in  the  physical  and  potential  planes 
in  figures 3(b) and  4(a). First, it will  be  convenient  to  express  this  mapping  in  terms of 
the  variables  in  the  intermediate  w-plane  shown  in  figure  4(b).  Here  the  region  occu- 
pies  the  upper half  plane  with  the  boundary  along  the real ( E )  axis. Then  to  aid  in  some 
of the  mathematical  manipulation it will  be  convenient  to  transform  the  results  into  the 
u-plane  shown  in  figure  4(c). In this  plane  the  porous  region  occupies  the  entire  plane 
with  the  boundary of the  porous  region  lying  along  the  two  cuts on the real axis shown in 
the  figure. 

The  mapping  that  transforms  the  W-plane  into  the w-plane in  the  manner  shown by 
figures 4(a) and (b) is given in reference 6 as 

w = sn(WK' - K) (AI) 

The  mapping  that  transforms  the  Z-plane  into  the w-plane in  the  manner  shown by 
figures 3(b) and 4(b) is found by use of the  Schwarz-Christoffel  transformation  to  be  de- 
termined by 

dZ C 
" 

- 

dw i V )  
o r  

Z - C1 -Ck s; dw 
2 2 2  

(A31 
~ ( l  - o )(1 - k w ) 

where C1 is a constant of integration. 

reference 7. To  simplify  the  integrals,  the  transformation 
The  integral  in  equation (A3) is of the  type  treated by relation 596.00 on page 268 of 
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u = q u + ~ X - z )  2k 

is used. As shown  in  reference 7, equation (A3) then  transforms  into 

z - c l = - ~ - " ~ ~ ~ ~ u ~  du - " (1 + k)2] -f 6U.i 2$)[u2 "" du - ~~ (1 + k)2] ] (A5) 

The  transformation (A4) relates the  regions in the w-  and  u-planes as shown in  fig- 
ures  4(b) and  (c). 

The  origin of the Z -plane is at point 2,  which  corresponds  to  the  point 00 - i c   i n  
the  u-plane. By integrating  from  point  2 to any  point in  the  u-plane,  equation (A5) 
then  provides  the  following  relation  between  the  position  in  the  physical  plane  and  the 
parametric  variable u: 

7 

The  constant C can  be  obtained  by  noting  that  in  figure 3(b) Z4 - Z 3  = i. Equa- 
tion A(6) is then  integrated  along  the  branch cut in  figure 4(c) from  point 3 at u = l + .k - 
i c   t o  u = 2@  and  then  from  u = 2$ to  u = 1 + k + ic. Equating  the  result  to i gives 
after some  simplification 

By use of relation 236.00 in  reference 7, the  integral  can  be  converted  to  an  elliptic 
integral.  This  shows  that  the  constant  C is related  to  the parameter  k by 

(A7) 

The  quantity k will now be  expressed  in  terms of a physical  quantity.  The  only 
geometric  parameter  for  the  square  duct  configuration is the  dimensionless half-width 
A shown in  figure 3(b) and  equal to Z - Z2. Thus,  to  obtain  an  expression for A, 
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equation (A6) is evaluated  between  points 2 and 3 along  the  branch  cut  in figure 4(c). 
This  yields 

By use of relation 238.00 in  reference 7, these  integrals are expressed as elliptic in- 
tegrals,  and  the  constant C is eliminated by using  equation (A7). When this is done, 
we  obtain  the  following  relation  between  the  physical  quantity  A  and  the  mapping  param- 
e te r  k: 

where 

.ions In order  to  complete  the  solution  to  the  problem, it is necessary  to  find  the  relat 
between  the  values of + along  the  boundary Q = 1 and  the  physical  Z-plane. 

For convenience let the  coordinates  between  points 5 and 4 be  called X;, Yk while 
those  from 5 to 6 a r e  X,, Y, (fig. 3(b)). Note that Z 5  is at 1. + i and  evaluate  equa- 
tion (A6) along  the  branch  cuts  in  figure 4(c) from  point 5 to  an  arbitrary point  between 
either 5 and 4 or 5 and 6.  This  yields 

f -l* 1 
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da!  da! 
2 

~. d(a! - 2fi)[a2 - (k + 1)2] - lmi(CY + 2fi)[a2 - (k + 
.~ . 

- 00 5 CY 5 - (1 + k) (A9b) 

Yr, = 1 J 
Now it follows  from  equation (A4) that 2kw - u = 4 G .  Square  both  sides  and 

solve  for  u  to  obtain 

u = k w + -  1 
W 
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In  the  ranges 1 + k I Q! I ~0 and --03 5 Q! I -(1 + k),  for  which  equation (A10) applies, 
the  points are on the real axis of both the  u-  and  w-planes so that  equation  (All)  gives 

Q ! = k ( + -  1 
5 

This is substituted  into  equation (A 10) to  give 

x, = 1 1 

Y; = 1 

--oo 5 5 5 - - 1 (A13a) 
k 

. - 5 ( 5 -oo (Al3b) 1 
k 

Equation  (Al)  relates  the w-  and  W-planes  and  can  be  used  to  make  the  final 
transformation of equation  (Al3)  and  relate Xs, Ys and X;, Y; to $. For X,, Y, 
the  coordinates  are  between  points 6 and 5, and from figure  4(a), W = $ + i where 0 P 

?) I K/K'. Then 

5 = sn(+K' + iK' - K) 

40 



which  gives 

1  1 E = " 
k  sn(K - $Kt) 

(A14a) 
-031~5-- 1 

k 

Similarly,  between points 5 and 4 

( = -  1 1 
k sn($K' - K) 

Equations (A14) are used  in  (Al3)  to  eliminate 6. Note  that 

Substitute either (A14a) or (A14b) and  define S2 as 

2(1 + k) I sn($K' - K, k) I 
1 + k Isn($K' - K, k) I] [ 1 + I sn($K' - K,  k) I ]  I"^ 

Then  equations (A13) become 

x, = 1 7 

(A14b) 

(A16a) 
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Y; = 1 J 
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If  we cross multiply, 

(z - eqaT)y(z) = k(z  - l ) x ( z )  

divide by z, 

transform to  the discrete time domain, remembering that (1 /Z)yn = yn-1 

and rearranging, the final form  of the difference equation is obtained: 

At the sampling points, the difference equation is the exact solution for the response of the 
equivalent analog system to  a stair-step function input. Therefore, the solution does not become 
numerically unstable for large  sampling  intervals.  However, .the output of the system will  be realistic 
only if the sampling is done frequently enough to result in  a stair-step  waveform  which is a good 
approximation of the original continuous input waveform. 

For comparison, the equations for the above filter using numerical integration (fourth-order 
Adams-Bashford) are: 

The computation efficiency of the difference equation  is obviously better than  that of the 
numerical integration technique. Also, this numerical integration method becomes numerically 
unstable for large  sampling intervals, as confirmed during the investigation. 

Difference equations were  used to simulate the aircraft control  and  automatic stabilization 
systems, to replace the analog autopilot with a digital  version, and to generate the  turbulent wind 
components. 

The aircraft control system simulator consists  of a throttle servo with engine  lag and an 
elevator servo with an elevator surface lag. Both of these servos  have the same  general form, a 
second-order transfer function with 0.7 critical damping in series with a first-order low pass filter. 
The form of the total transfer function and the corresponding difference equation are shown in 
section 7 of table 8. 

The washout filter in the stability augmentation system discussed  above is simulated by the 
difference equation of section 1 in table 8. 
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1 1 

/-1 
n=O +r 

Upon combining  the  two  fractions on the left side of equation (B2)  and collecting 
te rms ,  we  find 

1 1 

Hence,  equation (B2) becomes 

TC sin - 
1 +r - - _________I_-~- 

2 
~~ 

cos - (+ + icp - i) + cos - 71C [y:, 1 +r 

O r  upon  taking  real  parts, 
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s in  - T C  

LJ 
n=O 

Upon taking  the  limit cp + 1, we  find  that  relation  (Bl)  holds. Of course  this  limit  must 
be  taken  in  the  sense of distributions,  in  which case the  interchange of the  limit  assoc- 
iated  with  the  summation  and  the  limit  associated  with cp is justified. 
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