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PERTURBATION THEORIES OF WEAK INTERMOLECULAR FORCESW
Phillip Robinson Certain

Under the supervision of Professor Joseph 0. Hirschfelder

ABSTRAGT

This thesis is a contribution to the development of a workable
exchange perturbation theory for intermolecular forces. It is divided
into three parts., The first part develops a perturbation formalism
for degemerate and aimost degenerate emergy states, The formalism is
related to methods of Van Vleck, Kato, Bloch, Hirschfelder, Kirtmau,
and Lowdin and can have a greater range of validity than the Rayleigh-
Schrgdinger perturbation theory. The second part extends the formalism
to exchange problems and leads to the Hirschfelder~Silbey perturbatién
theory. A method of solving the first order equation is developed
which reduces the many electron equation to one and two electron
equations. The third part applies four different perturbation ..
formalisms for exchange forces to three model problems: the hydrogen
molecule at interuuclear separations R = 4, 6, 8 a2 harmonic
oscillator model of the hydrogen molecule ion; and the delta-function

médel of the hydrogen molecule iom.
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FOREWORD

This thesis. is a contribution to the development of a_workable
"exchange'" perturbation theory for intermolecular forces, which starts
from the isolated molecules as the unperturbed state, but which takes
accou;t of the full s&mmetry of the interacting system; including the
Pauli exclusion principle.

In Chapter One the mathematical difficulties associated with
exchange perturbation theory are discussed, and it is shown that many
different expansions of the wavefunctiom are possible. ‘A brief his-
torical survey of the formalisms which have been proposed is given.

In preparation for exchange perturgation theory, a pertﬁrbation
fgrmalism for degenerate and almost degenerate energy states is devel-
oped in Chapter Two. The formalism is related to methods of Van Vleck,
Kato, Bloch, Hirschfelder, Kirtman, and- Lowdin. It has the feature
of giving the energy as the root of a secular equation. Tﬁe matrix
elements of the secular equation are assumed to be analytic in the
perturbation parameter, but not necessarily the energy. Thus, the
treatment can have a greater range of validity than the Rayleigh-
Schrgdinger perturbation theory., The connection of the formalism with
Lowdin's partitioning technique is-investigated. It is shown that if
the two methods are truncated at the same order, they give the same
results for the energy and wavefunction, except for higher order terms.

In Chapter Three the extension of the formalism of Chapter Two
to exchange problems is shown to be equivalent to the Hirschfelder-
Silbey perturbation theory. It is also shown that the first order

perturbation equation can be separated into a polarization equatiom,
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which introduces van der Waals correlations, and an exchange equation,
which introduces ionic terms. In the many electron case, these equa-
tions can be reduced to one and two electron equations.

In addition éo the Hirschfelder-Silbey (HS) procedure, exchange
perturbation formalisms have been proposed by Eisenschitz and Loudon,
van der Avoird, and Hirschfelder (EL-HAV); Mutrell and Shaw, and
Musher and Amos (MS-MA); and others. A Sternheimer (RS) expansion is
also possible for one and two electron problems. Assuming convergence,
each perturbation expansion yields the exact emergy and wavefunction if
carried to infinite order. In any practical application, however,
the energy is computed to low order only, and at this level of approxi-
mation, tﬁe different approaches give different results. It then
becomes of interest to ask the question: "Which formalism provides
the hest second order energy and the best expectation value of the
hamiltonian using the wavefunction accurate through first order?”

In Chapter Four an attmept is made to answer this question on
the basis of model calculations. The energies of both the ground state
(12:;) and the first excited state (92:1) of the hydrogen molecule
are computed at internuclear separations R = 4, 6, 8ao, using the
EL-HAV, MS5-MA, HS, and RS formalisms. The results, discussed in detail
in Chapter Four, do not show that any of the schemes is outstandingly
better than the other three. The second order energy in the EL-HAV
expansion, however, appears to approach one-half of the second order
polarization (dispersion) energy at large values of R . The other
formalisms give good values for the energy in the region of the van

der Waals minimum for the 32:: state, although at shorter distances
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the error inecreases. Also considered are-a harmonic oscillator model
and the double minimum deltaefunction model of the H; problem.
These calculations verify the long-range behavior of the EL-HAV

second order energy.
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I. INTRODUCTION

The study of intermolecular forces is essential to the under-
standing -of most of the -physical properties ‘o-f matter, such as equa-
tions ‘of state, transport properties, scattering cross-sections, and
-80 on. For intermolecular forcesl govern allk of the attractive 'and
repulsive interactions Abe;:ween ‘atoms .and molecules, as opposed: to
chemical forces, .which hold a singlt molecule together and prevent. it
fro.m separating into its .comstituent atoms. Of course, there fs no
precise difference between these two kinds of force, excei:t in orders
of'magni‘tude. According to Pauling,2

there .is a chemical bond between two atoms or groups of
atoms in case that the forces acting between them are such

as to lead to the formation of an aggregate with sufficient

stability to make it convenient -for the chemist to consider

it as an independent molecular species,.

Intermolecular forces, on the-other hand,.are sufficiently weak so
that any aggregates that are formed, are tramsitory in n.a_ture and
easily destroyed by thermal mopion. It is best, however, not to em-
phasize the difference between intermolecular and chemical forces too
much.,

Quantum mechanical perturbation theory has.long’been used: to:
systemize the study of intermolecular forces.3 Although it is .con-
venient to speak of .forces, a more basic theoretical quantity is. the
electronic interaction energy, (E - e“”)u (The Born-Oppenheimer
separationll' of the nuclear and electrdnic motions is assumed: thr:ough-

out this. thesis, and relativistic effects are neglected.) The. force.

-1 -



on a particular molecule is the negative gradient of the interaction
energy with respect to the nuclear coordinates of the molecule.
‘The electronic energy [E 1is obtained as an eigenvalue of the

Schrodinger equation

(H-E)® =0, .1

where the total hamiltonian H is a sum of “#53 the electronic
‘hamiltonian for the isolated molecules (i.e. separated from each other
by infinite~@istances), and bﬁﬁ), the -sum of all of the coulombic
interactions between electrons .and nuclei belonging to different mole-
cules. The energy €(°> is the electronic energy of the isolated
molecules and is an eigenvalue of the Schrgdinger equation

( H(.o) _ é(o) ) q>(o) = 0 (1.2)

3"

where qﬁﬁv is a simple product of isolated molecule wavefunctions.
The simplest application of perturbation theory to the -calculation

N : : . 5 . . .
of (g - €‘°)) is the polarization expansion,” which is a straight-

forward application of Rayleigh-Schrgdinger per turbation theory. The
unperturbed problem is Eq. (1.2), and the theory -leads to an -expansion
of the interaction energy in powers of the -perturbation F{(n = }1"&*«%
If the terms are further expanded in inverse powers of the separations
between the molecules, each term may be given a classical or quasi-
classical interpretation as arising -from interactions betwéen either
permanent or instantaneous multipole moments of the separated mole-

cules. In this way are identified electrostatic fofces, due to the



permanent moments of the molecules; induction forces, due to the
permanent moment of one molecule inducing a moment in the other;
dispersion forces, due to the instantaneous moments of the molecules;
and resonance forces, which can arvise if the level 6€°)is degenerate,
and which behave as electrostatic forces. Such a classification is of
unquestioned utility in understanding a wide variety of experimental
results on a qualitative basis, and in providing a starting point for
sémi-empirical theorieso6

The polarization expansion is applicable only when the molecules
are well sepa;ated,.however, and does not predict chemical binding
between molecules. As Heitler and London7 showed, binding is obtained
with an approximate wavefunction which is an antisymmetrized product of
isolated molecule functions, and which satisfies the Pauli exclusion
principle; i.e.gwhich changes sign upon the exchange of any two electron
labels. The added terms in the expression for ( E — €%) are
called exchange forces; from the standpoint af perturbation theory,

such terms result from a first order treatment.

Mathematical Complications. Difficulties arise when perturbation

theory is applied to the accurate, ab initio determination of inter-
molecular forces in case that it is necessary to go beyond first order
and also to take explicit account of the exclusion principle. At
internuclear separations short enough so that the electronic clouds

of the molecules overlap, the total wavefunction % is required to
have symmetry properties corresponding to the total hamiltonian H,
vwhich is symmetric with respect to the exchange of any pair of electrons

between the two molecules. The most natural choice for the unperturbed



hamiltonian, Hw), is the sum of the hamiltonians for the non-
interacting molecules. However, this implies associating particular
electrons with definite molecules. Hence the symmetry of H with
respect to electron permutations is greater than that of Hlo). The
difficulties to which this gives rise are known as the exchange problem.
Another basic difficulty is that the order of the perturbation
terms is not uniquely defined. 1If A is the operator which projecté\
the component with the symmetry of the desired .total wavefunction,
then A commutes with ™} . However, A does not commute separately

with' either H®06r the perturbation H“), but rather.
[A, H@l = Lu®, Al (1.3)

In any conventional perturbation scheme, the left hand side -of Eq. (1.3)
is zeroth order and the right hand side is first order. This equation
means that "order in M’ is not a well defined concept, and that
the apparent order of various terms in a perturbation expansion can be
arbitrarily shifted.

Related to the nonuniqueness of order is the difficulty'of de-
fining a symmetrized basis set for the expansion of W . A natural
choice consists of the set A#’é” , where the qSl:o) are the complete

set of eigenfunctions of H¢

(o) (o) _,
(H@ - E'Ez )4,& = 0, (1.4)

: [¢
where H(O) is the isolated molecule hamiltonian and <h:) is a simple

. : . ©)
product of isolated molecule wavefunctions. The: basis Aﬁi is



nonorthogonal, however, whereas nondegenerate eigenfunctions of a
hermitéan hamiltonian are necessarily orthogonal. Thus it is impos-
sible to define a single, hermitean unperturbed hamiltoni.an', of which
eveéry A‘l’:» is an eigenfunction. In particular, since H‘c) and A fail
to commute, the A‘fj:o) are not -eigenfunctions of H‘?)

Another lack of uniqueness is due to the f'ac;t that the complete
set of symmetrized functions A‘#,f) are linearly dependent. To
prove this, consider a funetion £ which has symmetry different from
A, ie. A =0 . Since the 75:» are complete, §3s has the
unique expansion

[CD)
£ = %: % ; (1.5)

where the 'Ck are constants. By hypothesis, AL vanishes, so that

AL =0 Z A4S ¢ €.6)

which is a statement of linear dependence of the set A‘#{:o). For a
simple example of Eq. (1.5) and (1.6), consider the interval ~1€ X &}
and let A project the symmetric .component of any function if'(X) :
Afeo = éf{x) + -%:f‘(—x) . A complete set of unsymmetric functions
on this interval is ¢(°) (X~% )k 5 8o that Cp = -;;I dxk ]x_ /z
1f 2= X% , then L2 = <{>‘°> + 2 4,“’) + 1¢¢u) _,_.L+4o>

3 - = . ¢ . &
ad AXP =0 = A4D+ 3 AL+ F ALY + £ AR

(o) . .
Moreover, the linear dependence of the Aqﬁh is non-trivial in

case that it is possible to find a function & such that A . =0



and each Cp in Eq. (L.5) is nonvanishing. (In the previous examp le
put 2= SUnTH/2), Then it follows that it is impossible to conmstruct
: : : s o)
a linearly independent set by excluding a finite number of Aqﬁk from
. . (o) I -
the original set. For example, A‘ﬂ; can be eliminated from Eq. (1.6)

by the expansion
o) _ o) _ (o)
A¢[ = kZ ¢k ap = kz A 4>k Qg g

or

© Q .
Aﬁélm) = Z A<#/€ [[—ka_ R (.7
k#1 !

Substituting Eq. (1.7) into Eq. (1.6) yields

= ©> ¢ a
- kZ Ade [Ck * /I—oi
#1

Thus the set A4>k‘°’ s R#1 , is also linearly dependent.
This means that no unique expansion of the total wavefunction of

the form
w o= 2 AT ¢ (1.8)
kR

is possible.

The above considerations do not imply that it is impossible to
develop a perturbation expansion for intermolecular forces that takes
full account of symmetry, but rather that many“different approaches

are possible.



storical Survey of Exchange Perturbation Theories. The oldest

perturpation theory which takes the exclusion principle into account
was developed by Eisenschitz and London,,8 The formalism v;as recently
put int-o a more modern notation by van der Avo:l‘.rd.9 These authors
;ssumed the expansion Eq. (1.8). Of course, they recogni;ed the lack
of uniqueness of such an expansion, but neverthéless resoived the
‘Schrgdinger equation into-an infinite set of perturbation equations
W;hich can be solved in a well defined, though arbitrary, way. Their

expression for the first order interaction emergy agrees with the

Heitler-Tondon result. The second order energy is expressed in a sum

H .

over states form, .which when evaluated by the Unsold methodlo gives

t:ne second order polarization emergies, modified by the effects of
e;:change.

Dalgarno and Lyrm11 have introduced the Unsold approximation to
t,he second order energy of a Brillouin-Wigner expansion and obtained

t'he same result as Eisenschitz and London.

Van der Avoird']'2 has recently given an elegant wave operator
formalism which gives the same expression for the first and second
o.rder energy as the Eisenschitz-London expansion. H:i.rst::h“felder13 has
ahlso derived van der Avoird's equatioms without the introduction of
the wave operators.

Musher and-SalemM have also assumed the expansion of P given
by Eq. (1.8). These authors used a Feenberg15 iteration technique to
evaluate the coefficients, however, and obtained a different expression

for the second order energy. This approach has the feature of not

‘s . y ¢
requiring H to be separated into H® &+ K



Other examples in which the expansion Eq. (1.8) is used is the
work of Murrell, Randi& and Williamsl6 and of Salem, 17 The former
authors assumed .that Eq. (1.8) consists of a finite number of terms
which includes both covalent and ionic type functions; This allows
questions of over-completeness to be avoided, and is equivalent to
solving a finite dimensional secular equation by a perturbation expan-
sion; Salem makes the assumption that (A‘if’k&) 1 Aﬁ‘”): SM’ which
does not hold for the functions defined by Eq. (1.4), but which is
useful in assessing the significance of various terms in Eq. (1.8).

A different type of expansion of W was assumed by Murrell and
Shaw, 18 who used a wave operator approach, and in an equivalent19

- treatment by Musher and Amos,zo who started from an infinite secular
equation. These authors assumed that the zeroth order component of
¥ has 'proper symmetry, but that the remainder can be expanded in the

unsymmetrized functions ¢,:°) . Hence
- (o) 7 (o)
-Ly = A ¢ + Z :,Ji! C ”
R

The expansion in this set of functions is unique, although the higher
order terms do not have definite symmetry properties, order by order.

A different class of approaches to the exchange problem involves
different ways of defining and computing a “primitive function” whose
projection onto the space of desired symmetry is the total wavefunction
1 , in the same sense that the zeroth order function A#"O) is the
projection of 95“’). Hirschfelder and Silbeyz1 propose that there

is a physically significant primitive function whose symmetry



projections .correspond to all the wave functions for the family of
states arising from a single electron conf:‘uguration; Related ap=~
proa.ches have been discussed by Herving, 22 Musher and-Silbey, 23 and
Kirtman.24 ‘
‘Ja‘asen25 {see also Byers Brown26and Ritcbie27) has explicitly
constructed an operator A, which operates on a symmetrized function
Al to produce -a function in which specific electrons are assigned
to particular atoms, With A_ he is able tc; construct an unperturbed
"label free" hamiltonian whose eigenfunctions are Aqbéol.
Corinaldesizs replaced the Schrgdinger equation by a "modified
Schrgdinger equation" in which the wavefunction is represented by a
vector, each component of which represents a different assignment of
electrons to molecules. The modified equation is then solved by a
perturbation expansion and the true wavefunction is obtained as a linear

combination of the vector components.

Applications of Exchange Perturbation Theorieg, Numerical

applications of sorxie of the formalisms have been rveported previously.
In theilr original paper Eisenschitz and Londom8 congidered the inter=
action of ground state hydrogen atoms. More recently, the hydrogen
molecule has been congidered by Alexander and Salem, 23 who used the
formalism of Musher and Salem, 14 and by Corinaldesi.zg Jangen and
cormi:kersSO have applied his theory to the calculation of a wide
range of crystal properties. Van der Avoird?’l has treated adsorption
on metal surfaces by his method. Murrell and Shaw32 have computed the

interaction energy of two helium atoms; and Duijneveldt and Murre1133

have treated problems involving hydrogen bonding.
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In all of these treatments, however, approximations have been
made to various terms in the perturbation expansions, thus obscuring
the efficacy of the exact perturbation series. Also, for most of the
applications the exact answer to the problem is unknown, so that it
is difficult to judge the convergence properties of the expansions.
Exceptions to this are the calculation of van der Avoird31 of the H;
potential, the solution of a spin model by Johnson and Epstein, 3 and

2

the application of the Hirschfelder=Silbey procedure21 to H+ by

McQuarrie and Hirschfelder. 35
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I1. PERTURBATION THEORY FOR DEGENERATE AND AIMOST DEGENERATE STATES

In this Chapter, a formalism is developed for treating the effect
of a perturbation upon a set of degenerate energy states .of an un-
perturbed hamiltonian. The formalism, which is related to methods of
Van Vleck,36 Kato,37 Biocﬁ,ss Hirschfelder,39 Kirtman,40rand ngdin?5
has the feature of giving the energy as thé root of a secular equation.
The matrix elemgnts of the secular equation are agsumed Fo be analytic
in the perturbation parameter, but not necessarily the energy. Thus
the treatment can have a -greater range of validity than the Rayleigh-
Schr8dinger perturbation theory. If the formalism of this .Chapter
is expanded in powers of the perturbation parameter, however, the
usual Rayleigh-Schrgdinger theory is obtained. The connection of the
formalism with the partitioning technique65 is established in

Appendix C.

2,1 Brief Review of Ravleigh-SchrSdingg; Perturbation Theory.

Consider the solution of the Schrgdinger equation
(Hoy - B¢ ) Bem =0, 2.1)

where the hamiltonian is the sum of two terms,

Hoy = RO L o5 y® (2.2)

()]
The Y{L is the hamiltonian for the unperturbed system, and the
'
H is a perturbation. The parameter X in some cases has physical
significance (e.g. field strength), but otherwise is a formal ordering

parameter with physical value of unity.
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The unperturbed hamiltonian is assumed to possess a complete set

of eigensolutions,

b © )
(H” - 7)) W =0.

. ©)
The perturbed wavefunctions 1}’1 can be expanded in the set 1‘!’? »

P

_ (D]
v, = % P by (2,
where b,M (A=0) = S'F‘if .

The fundamental assumption of Rayleigh-Schrgdinger perturbation
theory is that both 7@% and E1 are analytic functions of the

parameter X - ; hence,

_ < n =0m
B = &7 + 2 E” (2.3)

n=

=S
n (™)

and
[e4]

) y n )
IP,,GLu) = Lk‘” * 2 LP% , 2.4
n=1
where

() , (M
g" = ; h,” by

Substituting the expansions (2.2), (2.3), and (2.4) into (2.1), and

setting the coefficient of each power of A to zero yiélds an
e e s N . - ) (n}
infinite set of inhomogeneocus .equations for the '(/é and Ezi, :
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n-2

( H(O)_ elr» Y q,(h) " (H(\) Ec;n )Lh;m—n) - Z E:lfh—M)Ll"(w;) 2.5)

m=0

For n = |, the upper limit of the sum in Eq. (2.5) is greater than
the lower limit. The convention adopted in this thesis is that when
this occurs, the sum vanishes.
The perturbation energies are determined by multiplying Eq. (2.5)
{o) % . . . .
from the. left by 1«% and integrating. Then by a series of algebraic

manipulations involving the perturbation Eqs. (2.5), it is possible

to show“’ that

(Zh) <4](n I RN ‘l)(h)) Z E(k) Z <~4/(Y\1-3.—k) i 4(h-4)>
=4
(2.6)

_g'%(zn ) Z <4,61)| 4)(k-g)> ;

k=1 3=0

(ln* O_ sy pw k (n+1+y-R) w=3
™ | )y - ZE’Z(LP R
2.7
n k N .
Z (znti-R) N (PP | 4,(k—3)>
— Ec‘, & $ ti R °

k=l ¥
Egs. "(2.6) and (2.7) are completely general regardless of the degeneracy
and the normalization of the wavefunction. These equations demonstrate
the Wigner theorem that a knowledge of the wavefunction accurate

through ((X")is sufficient to determine the emergy through (J(AZ"*Y).
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Normalization conditions are required to complete the specifica-
tion of the perturbed functions. There are two types of normalization
in common use. For full normalization, the exact wavefunction 7 is

required to be normalized to unity. Substituting the expansion (Z.4)
ipto (é?il%}:u yields

2 (n—k) b

7 < {g™>=0, nz1. (2.8)
k=0 7/ ‘1

For intermediate normalization, the requirement is that

<.4)$(o) I §1> - <¢{°’]Ll)1(0)> = | , or, expanding in powers of A,

(B2 1™ =0, n21.

In practice the series (2.3) and (2.4) are computed up to some

finite order only. Tt is, convenient to define the partial sums

N
()]
= A"
Qoo = AT,
and (2.9)
N )
E,i'(N) = 2 " .
h=o

The radius of convergence of the expansions (2.3) and (2.4) is,
in general, difficult to ascertain. In many cases the E;{m and
{);,;) are finite for all n, even though the expansions do not
converge for required values of A . Then it can be shownl"2 that the
perturbation series is an asymptotic expansion of both the energy and

the wavefunction. Since the error in truncating an asymptotic ex-

pansion is of the order of magnitude of the last term fetained, the
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expansions (2.3) and (2.4) are expected to provide good approximations
to the true energy and wavefunction of a state 9 if the quantities

(n
me) are small, For wn=1, the solution of Bq. (2.5) gives

o _ LD TR 1)

(2.10)
9 > _ o>
€ é,P 5
so that a rough criterion for accuracy is
o (O] (3] ©
K4 THP TP & 165 & b, (2.11)

When the states 4 and 9, -are degenerate or -2lmost-degenerate,

the right hand.side of the inequality (2.11) is-small, whereas the
left side can be large, so that the expaneions (2.3) and (2.4)

become unreliable. If the closely spaced levels are well separated
from ‘the remaining states, however, it is possible to modify the
Rayleigh-Schrgdinger ‘treatment to avoid the -expansion of b?,;(;\) if
—f: and q are degenerate or almost degenerate, while retaining the
expansion flor widely separated levels, This modification is developed
in the next Section. An alternative approach, the partitiocning

65
technique, :is discussed in Appendix C.

2.2 Geperal Formulation.

Consider the linear manifold /5 which is spanned by S’ eigen-
functions 7~Ph 5 18 k€8 , of the total Schrodinger equation (2.1).
,S is defined to have the property that if state R in ,& has the

(o) / .
zeroth order energy €k , then all states R which have zeroth
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order energies Ell:} that arve degenerate or almost degenerate with
6‘;) , are in/g . The sequential labelling of the states by R is
for convenience and does not imply that they are the S lowest energy
states of H .,
The @k constitute an orthonormal bazsis for manifold /X . Any

other basis in ’X may be defined by
s
& = I; ©, Cpy ) (2.12)

where the numbers (;ek are elements of a2 non-gingular transformation.
The basic idea in introducing the ék is to choose the coefficients
Cﬂk in such a way that, when %k().) is expanded into powers of A
analogous to Eq. (2.4), such terms as Eq. (2.10), with —F and 7/ both
belonging to/g , do not occur. Thus the expansion of ék in powers
of X, can be expected to have a greater range of validity than the
expansion of ‘lpk .

The basis functions éh satisfy the coupled equations

g g
Hék = ;él E, %, = ,}Z;J: éé é@h ) (2.13)

where

and (2.14)

Given the basis functions C__hh, the eigensclutions (Eh,) ﬂlk)

are recovered by solving the secular equation
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‘|(<§k\H—E\¢§l>Y=O; (2.15)

Thus, Eq. (2.13) and (2.15) are equivalent to the S uncoup led
Schrgdinger equations for (Eh 5 ﬂéh) Although, 51& and 6‘212 will
1‘ater be expandc;d in powers of A, it isAnot assumed that ‘the roots
of Eq. (2.15) are analytic in X . This is, it is assumed £hat the
matrix ;lements of H are analytic, but not necessalrily the e;lergy
eigenvalues. An example where such an assumption. is valid occurs for
the interaction of two 24 or 24 hydrogen atoms, as discussed by
Kim and Hirschfelder.59 See also the example in Section 2.5, - -

At this point it is convenient to introduceé 'a more ¢ompact nota-

tion. Matrices will be denoted by "fat" symbols; e.g.,

€ = (€,),

‘@ = (ik): (é,,éz, veo éq)

See Appendix A for a full explanation of the notation. In this nota=

tion, Eq. (2.13) and (2.15) become
HG = @ € (2.13)

and

(@ | H=-eld) =10 2.15)
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Alternative Derivation of Equation (2.13)., 1In order to clarify

the meaning of Eq. (2.13) it is useful to give another derivation,
based on Kirtman's treatmentl"o' of Van Vleck degenerate -perturbation
theory.36

Consider a comple‘te set of functions, which is split into two
classes, <4>(°) and kw), and which spans the Hilbert space of. the
hamiltonian H{X\) = H & H‘u) . One class, to which special

attention is given, consists of the finite set of S fanctions,

<(i)to) = (43(0)’ 4’2@, . <é;c>)

(o)
Each q‘)k is assumed to be an eigenfunction of the unperturbed

hamiltonian - (,0),
(KO~ €22 49 =0, ches.

¢ .
If the .eigenvalue él:) is degenerate, then it is assumed that all of
the corresponding eigenfunctions are included in ¢‘°) . Further, it

{0)
kR

is assumed that the are -orthonormal,

(3 | ¢9) = 1,

where 4 is the unit matrix.
The remaining functions (in general, infinite in number) which

complete the set are denoted by

X(O) = (Xl(o’), X:&) .. >-
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Without loss of generality, it is assumed that

<%(°) l X(c)> — ﬁ

and
(K| @) = O,

where © is the null matrix. ©No other assumptions are made regarding
XLO) o)
s in particular, the Xk is not necessarily an eigenfunctioan
of Hw)o
o) | . .
The ‘set @ is a basis of unperturbed furnctions for the ap-
proximate calculation of § eigenstates ( Ek(*:\) 5 '@R(m) of the

total hamiltonian H (), where

E, (h =0) = € \<k €9

In general, to complete the (Ek 5 @k) exactly, it is necessary
()

to consider both 4’ ) and Xw’ since the interaction elements

<‘4’(°) = T 'S el > are ron-vanishing. Then the Ej are

roots of the infinite-dimensional secular equation

(O u-e g (dIH-EIX>

= 0. (2:16)

CEDUH-EIR@) (XOIH-EVX™D

&
Following Van Vleck36 and Kirtman, 0 the solution of Eq. (2.16)

is obtained by transforming the initial basis inte the new set
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@(N) = @(O)_‘_ )‘q>(l)+_.. +>\.N @(N)

7

and
Ko = K e AXD 4 o w2 X

The functions d#(k), X(k) are chosen s0 as to make the overlap and
hamiltonian matrix elements .connecting @(N) and K(N) vanish

through terms O(XN):

(G | H-E L& m>= O0M),

Then the leading contribution of the functions X(N) to the energies

E'k , sk 8 ,is proportional to

(B LH L XoadlE= O0N*2y

Hence the roots of the SXS’ secwlar equation,

(@M IH-E1@ W)= 0, (2.17)

are accurate through O (2 2Nt2 ) .

To obtain equations for q&“% X‘k‘), it is -convenient to

introduce the projector onto the set @(N):

@ =0t = @*;
OGS = @ N).
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The perturbation terms of K(N) are given by
)
Xy = (-0)XK",

which assures orthgonality between @(N)and k(N) through 0(}”)0

The perturbation terms of @(N) are vdetermiped by

(Bt vl XmD= OOM). e

The X(N) is a.complete set of functions in the space orthogonal to
@(N) If overlap of H@WY) with all of XIN) vanishes, then
HE (N) wust be expressible as a linear combination of the GP(N).

Thus, Eq. (2.18) is equivalent to

BN = @W)EWNY+ O (>\N+l) (2.19)

where the elements of @(N) are numbers to be determined. 1In the

limit N-> o0 , Eq. (2.19) clearly becomes Eq. (2.13).

Perturbation Expapsion. Viewed as equations for the &k and
EKJL 5 Eds.(2.13) and (2.15) are not well-defined, however, since
all reference to the particular linear _manifold/(( has been lost.
That is, Eq. (2.13) has solutions in any S-dimensional linear manifold
defined by the exact eigenfunctions of H. Furthermore, within any
particular linear manifold, there is an infinite number of solutions

of Eq. (2.13) corresponding to different choices for the coefficients

Coe



22

The lack of uniqueness in Eq. (2.13) is obviated by a perturbation

approach to its solution. The following expansions are assumed:
W
H= H + 2 H
>
< ¢
h n
@ = ZA"P™ (2.20)
h=o >

2o e
€ =2

The linear manifold/£ is uniquely determined by specifying the

zeroth order energies

(s)

© = ék@ (2.21)

Sk

Substituting the expansions (2,20) into (2.13) and setting the
.coefficient of each power of A, equal to zero yields the infinite

set of equations

o - ©) (o)
H«P() — <Cl>° G:

and " (2.22)
(o), ¢ (n— {n—-m) :
HO ™ H04>h')=—m2>@ € pu,
=0

It is convenient to define the sequence of partial sums,
N
i D (M)
S =2\
. n=o >
(2.23)

N -
& = 7. A" € g

=0
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and the sequence of secular equations

(D I H-&\ @(N)N = 0, (2.24)

The perturbation equations allow Eq. (2.24) to be written

0= | <@WIH-E| S (0> = .

(@w | S (ew) -—E)

N-{
o Z Xn{<¢£‘h)l H")IGP‘N)>
n=e n Nep-n-d

—'Z. pat <¢(1o)lq,m+l=1>+1)>&(~-g)}

p=0 1::0 (2.25)

‘ N1 )
+lzu+|§o /\,“{_ <@(N> | H ¢<~)> Sio

N-n-i
- Z Z <¢(n+1a+|) i ¢(N—1a+g)>&(u-g)}
‘P:o c}=o

This formula is derived in Appendbix B.

Thus, the total Egs. (2.13) and (2.15) are replaced by the
perturbation equations (2.22) and the secular equations (2.24), The
eigenvalues and eigenvectors of Eq. (2.24) for successively greater
values of N provide a sequence of eigensolutions which, assuming con-
verge;lce, approaches the exact solutions (Ek*: @h)

Normalization conditions and the choice of the transformation @,

0
must be given to fully specify ¢(")and @( ). The normalization

of §b is completely determined by € and Eq. (2.12), assuming that
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the original functions -QER are normalized. According to Eq. (2.14)
the rows of € are -eigenvectors of € corresponding to the eigen-
values E’k . Thus, if none of the .energies ER is degenerate, the
specification of & uniquely fixes C and, hence, the normzlization
of @ .

Relations to fix & are given separately for degenerate and
almost degenerate problems in the next two Sections. It can be antici-
pated that € _camnot be chosen in a non-arbitrary manner, since
any set of S functions which satisfies Eq. (2.13) and (2.21) is
sufficient to .determine the solutions (Eks <Ih) . Ihis is not to
say that the choice of € does not have important consequences., A
particular choice is €= 4 , in which case the formalism reduces
to a Rayleigh-Schrodinger development for each state ( Ep, ®) ’
separately. As the previous discussion has suggested, and as later
discussions will make explicit, other choices of € are advantageous
in  treating ,glegenerate -and almost degenerate problems.

Nevertheless, in case that the Rayleigh-Schrgdinger expansgion of
(Eh, lIll) is possible, the present formalism, based on Eq. (2.13),
(2.15), and any non-singular € , is equivalent. More precisely, it

can be shown that the roots of the secular equation (2.24) are the

exact energies E'!:z , plus terms 0(12’“.?') . regardless of the
choice of O . Thus, if the eigenvalues and-vectors -of Eq. (2.24)
are expanded in powers of A for successive values of N , the
unique asymptotic expansion of (Eg, ¥,) is obtained.

The proof of the underlined statement is contained in the deriva-

tion which led to Eq. (2.17). 1f H B (N) = S 09) €y + OGV)
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and XiN) is any basis for the space orthogonmal to é(N), then the
interaction elements <P BIKOD) are O(aN*), irrespective
of the values of @&(N) . Hence if the dimension of the secular
equation (2.24) is incressed to include X(N), the original
eié?nvalues are affected by 0(3\2N+2). Since the inclusion of X.(N)
leads to exact energies of 4 , it follows that the roots of Eq. (2.24)
are accurate through (20 XZNﬂ).

Eq. (2.24) can also be thought of as arising from the use of the
variational method with the linear vaviational function

g
P o= D B &,

where“the a& are variati_onal parameters. In this.comnection, the
Hylleraas-Undheinm i:heoremg’l ig relevant: if the roots of Bq. (2.24)
are arranged in ascending order, they provide successive upper bounds
to the corresponding -exact energy eigenvalues of H of the same
symmetry., Thus, in case that the states :Ln/g are the lowest states
of H c:orAresponding to particular symmetries, bthe roots of Eg. (2.24)
are upper bounds to the energies which they approximate.

An alternative way to obtain energies which are accurate through

0(}"‘““) , but which are not necessarily upper bounds to exact

eigenvalues, is to solve the secular equation

{E(envy)y —E V=0, (2.26)

-where ({2N41) is defined by Eq. (2.23). The roots of Eg. (2.26) are

the exact energies bw , \SR$§ | accurate through O (AT

regardless of the choice of (L _. This follows from Eq. (2.25) with
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N replaced by AN+ | Then the sums in Eq. (2.25) are () () 2N*%)
and hence may be neglected without affecting the roots except in

O (32, Factoring @ (2N+) | @ @NHDD from Eq. (2.25) yields
Eq. (2.26).

The analog of the secular equation (2.26) in the usual Rayleigh-
Schrgdinger theory is the partial sum of the perturbation energies,
as defined by Eq.(2.9). The secular equation (2.24) corresponds to
the expectation value of ™ with the wavefunction accurate through
O0N) . "Even in the Rayleigh-Schrodinger theory, it is difficult
to say which way of computinig the energy is more accurate,69 In any
case, the roots of Eq. (2.24) differ from those of Eq. (2,26) by
O (PN '2) .

With these general results established, it is convenient to con-
sider separately the degenerate and almost degenerate cases in order

to derive relations to fix the elements of (& .

2.3 Degenerate Perturbation Theory.

For a degenerate perturbation problem, the special set or states
G#‘o) is defined to be any linearly independent set which spans
precisely the same space as the s eigenfunctions of the S-fold

degenerate level of the unperturbed hamiltonian

(H(o) - E(m)c#:’):o) \sh@g_ (2.27)
It is convenient to choose the G#“» to be orthonormal

<(¢ (o). ‘@ (o’)> - j’ (2.28)

but it is not necessary to assume any other special properties.
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Eq. (2.27) implies that in Eq. (2.22) ﬁ“): €4 . The knowl-

edge of &c&

)G#“) allows each term (E(m) @‘") to be determined suc~-
cessively. The energies @(m) are fixed by requiring each perturbation
equation (2.22) to be mathematically consistent: for a general inhomo-
geneous partial differential equation to possess a solution,_ the
inhomogeneity must be orthogonal to all solutions of the homogeneous

-equation. In the present example, the homogeneous equation is (2.27),

so that the consistency condition is

<¢(o) | Hu)l q,(n—l)) = i <¢‘°)\ @(n-lz)) @(k)g
k=)

or

G = (| p Ly - (e
k=1

with the €™ thus defined, the functions <¢¢h) are obtdined
by solving the Eqs. (2.22). It should be noted, however, that the
components € @ ) @p'™) are not fixed by any of these equations.
This is analogous to the non-degenerate case where the indeterminancy
is due to the ‘arbitrariness of the normalization and phase of the
total wavefunction.52 The underlined theorem on page 24, that the
roots of Eq. (2.24) are invariant to C through 0().2““), implies
that <d{ @ [(Cl? m’} may be fixed in any consistent manner. A
general approach is to leave the integrals <<l>é°) \thqc'“)> as undeter-
mined parameters in é(N) to be fixed by minimizing the roots o.f the
secular equation (2.24)., This procedure is developed in more detail

in Section 2.4 in connection with the almost degenerate case.
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In the present Section it is convenient to fix <GP(°7|¢("7>

by -the full normalization condition (cf. Eq. (2.8)),

i <¢(kz)l Cq,czni—t—k)\ =0
R=o

n>o,
(2.30)

-1 <¢CR) l@(zn—lz)> - ”Jé' <¢(ml¢m2>

[o]

NS

&
i

This choice of normalization has the ‘properties that

i) <@l<§> = A ; this follows simply by expanding <@l@>
in powers of A and using Eq. (2.28) and (2.30);

ii) & is a hermitean matrix; this follows from i and

Eq. (2.13), i.e, s

(BIHIE)= (D@ = &, (2.31)

The first member of Eq. (2.31) is hermitean; hence the last is also.
In Appendix B, it is shown that the perturbation terms @(h) are also
hermitean. Intermediate normalization, <¢‘°)I@>= Z 5" leads to a
nonhermitean € ;

iii) the knowledge of @ accurate through O CA") is
sufficient to compute & accurate through 0(}\3’“"'?‘) . This

is the analog of the Wigner theorem and follows from the formulas
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&(zm-l) = (d,(m YLD Laptm )
&% n l{&(k)<‘¢ (n+2+a—la)lq,£n—a)>+ (q,(n-g)lq,(m,m h)>@(h)}
k=t f=0
n {%} () (n+4+1-K) (h=g) n=2) | T2 i~k |
4% 2e®fce 1By (D] b}
k=2 =0
o 181
o5 Z {<&#m#ﬁ+!ulz) [ DY o (ap Cn-D)|gfnste lvh)>}@(!2)
k=2 f=0 s
(2.32)
h"g k even
where E {k—a » k. odd;
@ - "i{(dk D D Y 4 (b I¢(y;-‘)>}
n k-l
i ®) ne —kt - -
;z;: a{& (‘ﬁ" 3] | abln-k 2)} + {pink .Q)qu xz)><€(k)}
n [£]
-4y e P (D iRy _ (g kD ¢(n—i)>}
k=t f=0
nt 18
+5 (G2 Ry _ (ptn-kert) ltsi,(h—sz)>} &(k)
PETRN £
(2.33)

feez k even
- 2 3
where [_-%—] = {h;

» R odd.
For N = 0,1, recall the convention stated following Eq. (2.5).
These formulas are derived in Appendix B by algebraic manipulations
of Eqs. (2.22), (2.29), and (2.30) in a manner completely analogous

to nondegenerate theory.52
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It is at first sight surprising that Eq. (2.32) and (2.33)
depend on a particular choice of normalization, in view of the proof
on page 24 that @(N) is sufficient to compute the energies Ek 5
accurate through OZAZN”), regardless of the normalization. There
is no conflict in the two results, however, since, for example, the

. zN+1) .
off-diagonal elements of & do not contribute to the roots of
Eq. (2.24) through O(AaN'H),

Solution of the Perturbation Equations. The n~th order ;;erturba-

tion equation (2.22) may be solved exactly in terms of the eigen-~
functions of the unperturbed hamiltonian H(O)., This is facilitated

by the introduction of the reduced resolvent,

Z/ l ¢;o}>< Chéo)l

R e(o)__ éée)

(o)
R

where the prime on the summation means that all the members in @ﬁ)
are to be excluded from the sum. Otherwise, the sum is over a complete

]
set of eigenstates of Hé ). It may be readily shewn that

R‘a) ¢(°) —_ O 5

<HL0)_ é‘c') > R(C’) = l¢(o)><@l>l°), -

(&
In terms of R > the solutions of the perturbation equations which

satisfy the normalization conditions (2.30) may be written

L}

§™= RO {HOGI Y RO+ GIND 2
R=1
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where the matrix E\l(") is determined by requiring that 4)(") satisfy
the normalization conditions Eq. (2.30). The explicit formula for

™N s » in terms of lower ovder functions,

)
(2n+t) -
N D kzﬂ <<¢(k)ﬂ c:l>‘2““ k)}s
and (2. 35)

n=4
N(zn) - “%(@‘“)ﬂq’m’} _; <4,th) | <¢<'zn—»h)>v
=1
That @(h) defined by Eq. (2.34) actually solves the petrturbation
equation (2.22) and the normalization condition (2.30) is easily
verified by substitution.

Except for simple examples, the expressions given above are of
formal interest only, since the summations over excited states cannot
be evaluated. In general, however, it is possible to obtain varia-
tional approximations to @tm. For example, the first-order
functions may be determined by finding the stationary points of the

functionals

:]'k[%;n] = (%:u) I Hm-“’ 6(0)}4‘;&!)}*(&;!)!&_&0)‘ d‘);o)}
g _ | ) |
+ (4;;’)' WY %:n} _ﬂZ {<¢é.» l%‘m}"'(#”lﬁ“}} eg;i,
= §

Fad
where 4:2) is a trial function corresponding to the exact function
@)
d,"  vhich belongs to @, It is evident that if  §Jp
Ty T e
vanishes for arbitrary variations S+h in 4;2 » then '¢k

satisfies Eq. (2.22) for WMi=] . This is analogous to the Hylleraas
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variational method in non-degenerate Rayleigh~SchrBdinger perturbation

t:heory.ss’s2

Calculation of the Enmergy. Given the solutions of the first N
22N )

perturbation equations (2.22), energies accurate through 0(
are obtained by solving either the secular equation (2.24) or the
secular equation (2.26).

As discussed previously, in case that the states in/{s are t
lowest energy states of H , the best approximations to the exact
energies ER obtainable from Eq. (2:24) result from minimizing the
roots with respect to the integrals (G},(ﬂ)ﬁq)ch)}' It was also shown,
howevér, that these roots differ by 0(,\‘7'"“'2) from the roots
cbtained using the full normalization condition Eq. (2.30). Then in
particular cases, Eq. (2.25) simplifies considerabiy. For N=1 and

full normalization, the secular equation (2.24) becomes

0 = |[(DMWIH-ElD D] =

(i + Az(@“’ﬁ@‘”}) (G(o)+x@ll)_E)
(2.36)

+ ?«2 §(z) + )«3 @(3?

443 Le™, (B pw>]

The roots of Eq. (2.36) are accurate through O(Ag).

Alternatively, the energy may be obtained as a root of Eq. (2.26),
which is easier to apply than Eq. (2.24) because the matrix elements
are simpler and E appears only on the diagonal. The macrix & (2H#1)

may be diagonalized by a unitary transformation @.(N) to give &
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eigenvalues ER , accurate through O()‘ZN*I), and correspouding

eigenfunctions &P (N) = @(N) ¢ (N)f , accurate through O(AN)
For N=1 , it may be verified explicitly that -the roots of

Ea. (2.24) differ by- O(AzN-"Q)' from the roots of Bq. (2.26).

Factoring (ﬁ + A"(@“’l@“’» from Eq. (2.36) yields

0= IKEWlH-ldMm)l=

&1 €D XEP - E
I 1+ )z<4,u)|<4>ﬂ’)l
v d 3 [@ma < q,ww,u&] + OL*)

oY

e -k + 423 [, (®|pp] + 06H| = O.

2

When @“) is diagonal; the-diagonal elements of the commutator
vanish, so that the commutator does not contribute to the eigemvalues
through 0(/\3,). Hence the roots of Eq. (2.36) agree with the eigen-

values of (€(3) through 0(/\3)¢

Connections with other Degenerate Perturbation Formalisms. The

first order perturbation equation (2.22) is equivalent to the first
order equation of Van Vleck degenerate perturbation theory36 and of
the treatments of Kato37 and Block.38 For example, in Kato's method,

one solves

1< | Hp = EKa | PD=0,
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where

e,(o) + ) H(l) -+ AZ H“) R(O)H(l) b osee

x
g
|

and

b= 2% HY (RO HY v e

Ka

3

which is seen to be equivalent to Eq. (2.36) through O(N%) Thus
the present formalism représents an extension of these methods to
arbitrary order.
If the secular equation (2.24) or (2.26) is solved by expansion
in powers of X , the usual Rayleigh-Schrgdinger perturbation theory
for the states in/éf is obtained. One must then determine the correct
zeroth order wavefunctions, which depend on the order in which the
degeneracy is lifted. Hirschfelder41 has given a very thorough dis-
cussion of the complicated equations which result. The present
formalism is much simpler -because it does not contemplate the expan-
sion of the secular equation, which may be solved by other procedures?o
The connection of the present formalism with the ﬁartitioning
technique for degenerate problems is considered” in Appendix C. It is
shown that the secular equation (2.26) results from a factorization
of the corresponding partitioned secular equation which 1e;ves the

+f
roots invariant through CJCAZN ).

For WN>| 3 Eq. (2.26) is
simpler to solve because the partitioned secular equation contains

the energy E in a nonlinear fashionm:
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2.4 Almost-Degenerate Perturbation Theory.

For an almost-degenerate perturbation problem, the special set
of states @ °) is defined to be S states (6‘0) 4’1;”) of the

unperturbed hanp‘_ltonian,
() b) )
(H'? - €™) oy

which are almost degenerate in the sense that the ratios (see Eq.{2.10))

£0)

(OO | )
€4 — éto) s Y kRS

J

are large. For simplicity, it is assumed that each of the levels éi,:o)
is itself non-degenerate and that < 4"") | @w)} =

Again the general equations to be solved are Egs. (2.22) and
(2.24) or (2.26). These equations are similar to the degenerate
case, except that now @(o) is diagonal but it is not a multiple of
the unit matrix. Furthermore, the perturbation energies are not
fixed by requirements of mathematical comsistency. To see this,

(s
consider the first order equation (2.22) for the component ¢k )

(R - (o))¢(u) + HO (o> Z ¢("> “) (2.37)
]

{
The only general condition to fix the 6Jk) is that the inhomogeneity

must be orthogonal to the eigenfunctions of Hw) with energy é;:)

By assumption, this consists of the single function 4>é % ; hence,

multiplying Eq. (2.37) by ;o)* and integrating yields


http:Eq.(2.10

36

ek(;: - <¢éa)' H(,) ! ¢I:OJ>0

That is, only the diagonal elements of @u) (and, in general, & )
are determined.

T_hus the off-diagonal elements of & are not fixed by the
formalism. Each choice of these numbers results in a different ex-
pansion of § and €& . Although the roots of the secular equation
(2.21) obtained by different choices differ only by "higher-ordexr
terms", it is of interest to examine .various ways of fixing the off-
diagonal elements of & .

The DE-FOP-VIM Formalism.39 A general method of handling the

indeterminancy in & is to solve for each GPM) as an implicit
(n
function of the off-diagonal elements ejk) . Then these quantities
can be determined by minimizing the roots of the secular equation
. X n)

(2.24) with respect to variations in the €jl2 .

To gain insight into this procedure, consider the solution of

W .

Eq. (2.37) with é;k . 3# h, arbitrary. The general solution may

be written

S D [DIPRC) (&)
G o g0, 3 4@ LA "E |y o4
=% * q ©) (o) ’
R . & €7 ~ €]
+k J

o)
where ¢k satisfies


http:Formalism.39

37
5
o - ’ () ©) °
(&t)_ eé))c#éa) + Hu) Iio) 2;4’3 <¢J01Hml¢};)>§

<4le ‘i’;}m> =0 , g\gégs’

)

(1
and ak is an arbitrary normalization constant. Then the

S~dimensional variational basis set
A
—- () ) A

which leads to the SxS secular equation (2.36) with <¢(” replaced

A
by d:m, is clearly equivalent to the 2S-dimensional basis

¢k(°. 3

(15} 3
R

This leads to the ‘ZSx2S secular equation

sk €,

<4lo)‘ H-El@“’» <¢‘°)|H—E\§?“)>

0 - ' (2.39)

(@) uoE e (D) - G|’

8 roots of Eq. (2.39) are identical to the roots of Eq. (2.36)
if in the latter equation the é:t‘: and Qéu are varied freely

and independently to a stationary point.
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The Eq. (2.39) appears also in Hirschfelder's DE-VOP-VIM
formalism39 for degenerate and almost-degenerate perturbation problems.
It is easily seen that the extension to N-th order of this method of
choosing ¢ leads to an (N+))S % (N‘H)S secular equation, H
roots of which give the desired emergies accurate through '0[)«'%,“).

The DE-FOP-VIM method is simpl'est to apply in case that the
states & in'é are the lowe‘st energy states of H corresponding to
particular symmetries. Then, by Hylleraas-Undheim theorem, the S
smallest roots, of the DE-FOP-VIM secular equation can be identified
as the approximations to the' corresponding exact emergies. In case
that there are lower energy states of H than the states in ,5 s
the interpretation of the roots of the DE-FOP-VIM secular equation
can become ambiguous. Clearly, the DE-FOP-VIM procedure cannot be
applied to the secular equation (2.26) since this equation cannot be
derived from the variational method.

The Kirtman Formalism.40 Another methed of choosing the off-

diagonal elements of € is by analogy with the degenerate case. The
full normalization counditions (2.30) unique?.y fix all elements of & R
just as in the degenerate case. Furthermore, in the present case €
is hermitean and the formulas (2.32) and (2.33) for (ﬁtm continue to
hold if the wavefunction is required to satisfy Eq. (2.30).

This method of fixing & was first di;cussed by kirtman40 in his
extension of Van Vleck.degenerate perturbation theory to the almost
degenerate case. Kirtman considered in detail the calculation of the
energy through third order, which in his formalism is given as a

root of the secular equation
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39

& + e -g

%’):"{(@(n)m@)l@u» “'}‘_&W@W)!@m> __ji (@“4@‘”) &(9]
0= {3 O | + (G | U g @D }

(2.40)

% { @E@mgo\«%m)ﬁé ENGMGMD 30\ DY € cu} :

The first order equation (2.22) and Eqs. (2.32) and (2.33) can be used

to simplify Eq (2.40) - to
Y —
\ @ 42 eMr 2e® L W& l' O, (.41

which is Eq. (2.26) for N = |,

Hence the Kirtman formalism will denote the treatment of almost
degenerate perturbation problems by the secular equation (2.26) with
the full normalization conditioms (2.30).

The modified Kirtman formalism will be used.to label the treatment

based on the secular equation (2.24) with the full normalization
conditions (2.30).

The advantage-of the Kirtman or modified Kirtman formalism is
that the energy is obtained as z; root of an SxS secular equation,
rather than the eI x (N*%)S secular equation for the DE-~FOP-
VIM formalism. The roots of the DE-FOP-VIM secular equation are

necessarily more accurate than the coxrresponding roots of the modified
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Kirtman secular equation in case that the lowest energy states of %@
are being treated. In any case the corresponding roots of the three
different equations differ by C)(AaAhﬁz) . Thus, if the almost
degenerate block of states is well separated from the remaining unper-
turbed states, the energies obtained by the three methods differ by
terms which are, by hypothesis, negligible.

Transformation to an Exactly Degenerate Problem, The lack of

uniqueness of the off-diagonal elements of & can be avoided by
defining a new split of ¥ into an unperturbed hamiltonian and'a
perturbation, such that the unperturbed limit is exactly degene%ate.
In some cases there is a natural choice for the new unperturbed

hamiltonian and eigenfunctions. In general it is possible to define

B o e (@03 [E - @] (P,
and

Em = Hu) X \@(o)>[&la)__’é(o)] <q£@)52

where

EO = E@ 4
s

and €' is an average unperturbed emergy; e.g.

s
E® = g"’" Z €é°)
k=i
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Then all of the states @(o} are exactly degenerate with respect to H’(o)

(gco) _ é_ta)) < ©_ o , (2.42)

so that the formalism of Section 2.3 can be applied. This method of
handling almost-degeneracy is suggested in most textbooks .48
Let a bar denote perturbation terms in the expansion of é and

@& . based on Eq. (2.42);

P = 4 @?m e
and

e = E(a). + é(l) _,_é‘z) 4+ os o

Through first order, E® does not contribute to & since, by

Eq. (2.32),

ew = (] H®) G @ = Ve + @@ — &

so that

E® + &M = & +re%

With the normalization (2.30), (@ ted \&3“)> = © , the first

order equation (2.22) can be written

( TR g(w)@u) + 2 Hm d,(o) =)\ q,co)' e
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Comparison with Eq. (2.37) reveals that g () enters into GT>(“,
and hence é‘z) , in a non~trivial way, so that the latter quantities
are not simply related to ¢U) and G(Z) . For this reason,
development along these lines is not considered further here.

Solution of the Perturbation Equations. A formal solution to

Eq. (2.22) may be given in terms of the resolvents

ZI ldfe(")><dfe(a),

'SR €
Y, eéo) — 51(0) 9 \\k\ S’?

o
Rk

- where again the prime means that no state belonging to GF(") is in-

cluded in the sum. This set of resolvents has the properties

(Ol <¢ )
7

( H(o)__ ééo) ) ,R:.:) — gq)(o) ><a:#7<°)| _

The solutions of the perturbation equations which satisfy the normaliza-

tion conditions (2.30) may be written

d;(a) — R(O) H“) 4:(0)
. =

‘:Pkm': (o){ Hu) D) ﬁ;a) u)} Z (°7<<§(ﬂl¢‘({-)>§

o 2 o6

3

n-t S
o - (=4 () fo} (h)
4 = R THOGE™T ST g 7 - Z Ni

m=\
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where N(n) is given by Eq. (2.35). As in the degenerate case,
variational principles may be given to allow the approximation of
@(n) in praétical calcula’tions.éo

The relationship among the DE-FOP-VIM, Kirtman, and modified

Kirtman formalisms is best understood by means of an exampie.

2.5 Example of Almost-degenerate Perturbation Theory.

The system61 of two coupled simple harmonic oscillators described

by the hamiltonian

provides a nice illustration of the formalism developed in the pre-
ceding sections. The Schrgdinger equation for this case is exactly

solvable, and the eigenenergies are

Eppe = (pvd)w, + (m+4 ) w
' (2.43)

= L (meme) (W) + 40— (w,-wd

where n,m= o,‘u,z,,“.and

w, ;-,\/ b+ a® & 4/ 4a% 57

The theory will be applied to the almost degenerate h=1 m=©
and W=0, m=} states. By squaring the sum and difference of (A0S

and .. , and then taking the square root of the result, one can derive
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W, W = A 201+ 8% 2 2/ (mam2 =22, (2.45)

Perturbation theory corresponds to expanding the radicals in
Eq. (2.44). Assuming that A << (1=A%) allows the immer radical to
be expanded in powers of A . For the upper sign, this assumption
also permits the expansion of the outer radical. To expand the outer
radical for the lower sign, however, requires a knowledge of the rela-
tive magnitude of A , the perturbation, and A , the splitting
bétween the frequencies. This is the characteris;:ic feature of almost
degenerate perturbation problems. At this point, the most general

expansions possible are

)»Z
Ew = 2 -3y + 00O

(-1}

+,\/q, pXa + A% 6
- A - T - T 00x)

where the upper sign corresponds to 10; the lower, to O},

The Rayleigh—Schrgdinger treatment of this problem corresponds
to expanding (3~ (W_ in powers of X , which clearly converges
only for A < A Jevertheless, through order As , the energies

are given by

EL(RE) = 5 ——A 4 4 +_ A% (2.45)
b9 4(t-p%) — Tea(ima® C

ol
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For the application of the formalism developed in the last

section, the unperturbed hamiltonian is taken to be
© R > \ 2 2 2 2
= - (25 + 2 L(4A +4 (-
H z(x?— 5> +5 48y x z O A)‘g.j
and the perturbation

H“) = ng

The eigensolutions of the unperturbed problem are

()

€pm = N+ ) (+A) + (me ) (1 —a),
and
(o)
b = Uy (0 Uy, (),
where WUy, is a simple harmonic oscillator eigenfunction.
The theory w11 be applied to the states h=1] , mMm=0 and
n=0 ,wm=Il Hence,
) 2+ A O
& =
o 2- A
and
@# ©) . ( €0 ()
o v ot

The choice of the normalization condition Eq. (2.30) implies

(491 ) = 0,
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and the solution of the first' order equation (2.22) yields

-1 @) e
<q}[l) = __[2 2({1~a2) —_l L 5 43:2) )3

o —t

e = NT=pe
] )
2{1=a2 &
L W
2 TS (&
(g = N g
© T 4 (1 —a%)
]
o I
() ‘e [ = a2l
(3 = ) ' .
WLt —a21%2 o

To this order, the energy of the f(irtman formalism is given by

the roots of the secular equation (2.41) which yields

, M2
e (k)= 2- 4»(& 40-55) "'\/ [2(\— ")””— w(s—&?‘)"ﬁ;} *

(2.46)

Alternatively, the modified Kirtman secular equation (2.36)

reduces for this case to

| (4+ 32¢oeny) (€@ + A€~ E) + 2%€D + ¥eP| = o,
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which has the roots

. L.
, - A
EZﬁ (M) = 2 gU=a2)+ 2%

(2.47)

3
+ 2 2 a3 )
N/A’ + l:z(t,—'az)"z * z,(,a«,;a)“/z.[g(\—&)mﬂ_l

Since the 10 and 01 states are the lowest energy states with their
symmetry, the roots (2.47) are upper bounds to the exact energies.
Clearly, the roots (2.47) differ from the roots (2.46) @y’terms of
order X4.'

For the application of DE-FOP-VIM to this example, the secular
equation to be solved is Eq. (2.39) which'can be shown to be -equi-

valent to

lH-ES| =0,

where

@m-&-’a\@(n 2e 2)

“‘l %[&°°’+1Gm }(@m \4’ Cu>

Xi @62) + "i <¢(\) \@i,m> [; & ®) ¥ A&CD—]
—32€® 4 3 €™
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Substituting in the proper quantities.and transforming to an -ortho-

normal set of functions yields

0= 18$"HS$ " - Fd|=

A - A 0
2+48 ~E 21-at)ia Y2 (1-p2)t2
— 9-p—E 0 cs'————&“'—a" {2.48)
201-42)%= Y2 (1-a7)te
A 0 4+ A-E —
Yz (1-a2) e ‘ Ci-a2)e
Y A
0 _Z(K‘_Aq_)llg_ € 1-p2)h 4-A—-E

If this secular equation is now solved by the matrix version of the
same formalism that was used to obtain Eq. (2.46) and -(2:47) it can
be verified that the i@entical result is obtgined, except for
"higher-order terms'". Thus if the perturbation expansions (2.20)
are rapidly couverging, the é4x4 secular equation (2.48) yiélds only
a small improvement 1n the accuracy of the energy over the 2x2
secular ~equations.

The various perturbation treatments are-compared numerically
in Table 2,1 for the splitting of the unperturbed frequencies A= Ou.f. -
As expected, the 'Rayieigh-Schr'o'dinger result, Eq, (2.45), is very
ir{accux:ate: for l A>A . Of ,t'he other methods, the Kirtman formalism
provides .t'hé.‘b:est approximation, although the roots are not neces-

sarily upper bounds to the exact enmergies. The DE-FOP-VIM results


http:and.(2.47

must be more accurate tham the modified Kirtman results since the
states under consideration are-.the lowest energy states of the same

symmetry.

49



TABLE 2.1: Errors im Perturbation Energies of Coupled Harmonic Oscillators.

. .E(approximate) = E(exact)
Rayleigh- Modified
A E(exact) Schrbdinger Kirtman Kirtman DE-FOP-VIM
Eq. 2.43 Eq.2.45 *Eq.2.46 Eq. 2.47 ‘BEq. 2.48
2.10000 0 0 b 0
~.._| 0-00000 1.90000 0 0 0 0
.‘6 03980 2.10158 0.00002 0.00000 0.00000 0.00000
A<l e 1.89762 -0.00002 0.00000 0.,00000 0.00000
0.07960 2.10611 0.00029 0,00000 0.00000 ©.00000
) 1.89068 -9.00028 0.00000 0.00000 0.00000
2.10941 0.00069 0.00001 0.00001 0.00001
x=4| 0.10000 1.88552 -0.00067 0.00001 0.00001 0.00001
0.11940 2.11306 0.00134 ‘ 0.00002 0.00002 0,00002
' 1.87971 -0,00131 0.00002 0,00002 0.00002
0.15920 2.12177 ©.00383 0.00005 0.00007 * 0.00006
) 1.86532 -0.00372 0.00006 0.00008 0.00007
0.19900 2.13166 0.00834 0.00012 0.00017 0.00014
' 1.84809 -0.00809 0.00014 0.00019 0.00017
| 2,14222 0.01538 0.00025 0.00034 0,00028
> . :
4 0.23880 1.82844 -0.01484 0.00029 0.00040 0.00036
0.27860 2.15311 0.02529 0.00045 0.00063 0,00052
' 1.80668 ~0.02428 0.00056 0.00076 0.00069
0.31840 2,16405 0.03835 0.00077 0.00107 0.00087
* 1.78300 -0,03660 0.00098 0.00132 0.00120
0.35820 2.17483: 0.05477 0.00124 0.00171 0.00139
. 1,75753 -0.05193 0.00161 0,00217 0.00199

* A =0.1; For each A , the upper entry gives results for n=T.m=@ stata: rhe lower entry,,

for thé n=0,m=1 state.

0s
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ITI. EXCHANGE PERTURBATION THEORIES

The mathema£1031 difficulties associated with the development
of exchange perturbation theory have been discussed-in Chapter One.
It was shown that the concept of order of perturbation terms is not
rigorous and that many different expansions of the wavefunction are
poésible.- In Chapter Two the perturbation formalism for degenerate
and almost degenerate problems was developed with the intention of
using it as a guide for exchange perturbation theory in the present
Chapter. The essential idea is to construct, by perturbation methods,
a finite basis set for the expansion of the wavefunction. The basis
is defined to have small hamiltonian matrix elements coupling the
basis with any function which is orthogonal to the basis. The energy
and properly symmetrized wavefunction are obtained by diagomnalizing
the hamiltonian in the finite basis. The advantage of this procedure
is that the basis functions are mot required to have the symmetry of
the total wavefunction, but simply form a basis for a reducible rep-
resentation of the symmetry group of the hamiltonian. This approach
to exchange perturbation theory leads to the ﬁirschfelder-Silbey
formalism.

To avoid the added complications which arise when even the
separated atom wavefunctions are unknown, the treatment'developed in

this Chapter is limited to the interaction of hydrogen atoms.

3.1 The Interaction of Ground- State Hydrogen Atoms.

)
Consider the interaction of two ground state hydrogeun atoms, a
and b, separated by a distance R. There are two molecular states

. L] X3
which arise from this separated-atom state: %E k] "*E , the Z
} ]

3
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) +
ground - state; and (,uE ’u IE) s the 3Z‘m repulsive excited

state. The exact spatial wavefunctions for these states satisfy

i ¥ =
(B -E)*® =0,
and
Z - 2 s
Ai @ b @ 3 e = 3 e U,
The hamiltonian M is defined by

Lo 2y _ L L . R
H = 2(Vl ""V@,) or Yaz T Yoo Y Rs

and Az' is a symmetry projector defined by

A :(liﬁz)(lim)(l'ﬂ’f)@
3 2 Z 2 P
w
The upper sign is for q symmetry; the lower, for & . —P@ permutes
the electron labels, q%b permutes the nuclei labels, & reflects
the electronic coordinates across any plane which includes the inter-
nuclear axis, and (.% is the projection operator for the M =0

eigenfunction of the total azimuthal orbital angular momentum xg

co —52;
g =TI ==

M>0 M
A

H The first factor in Ai projects onto the space of either

z is seen to be a compound projector for the symmetry group of

singlet (upper sign) or triplet (lower sign) functions; the secound,



53

onto either gerade or ungerade functions; the third, onto + functions;

and the last factor projects onto the space of 2 functious.

Zeroth Order Primitive Functions. When-the atoms are infinitely

separated (R-%-O@) s an exact wavefunction for the system is

¢,M = @, 60(2)5

where @, i$ a 1s orbital centered about ndcleus a, and bo is a 1s
orbital centered about nucleus b. 'The subscript "1'" indicates the
arbitrary assignment of electron 1 to atom a and electrom 2 to atom b.
. s e s 5 cqs (o
Because of the physical indistinguishability of electrons, ?g

is degenerate with the configuration 2",

H

(o)
% =R 3

in the sense that

b a, (2)

{HPTRIGDY = <47 H1 47}

This is a different type of degeneracy from that discussed in

o
Chapter Two in that <f,(°)9 2( ) are not degenerate eigenfunctions

of the same unperturbed hamiltonian. In particular,

(H? - €2)4® =0, 3.1

where

H,(°) - ﬂa,“) " ﬁb(z) 5 €= 2g,; G
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and
= -4 g2 - L 3.3

f, = -tV -% , 3.3)
and €, is the energy of a ground state hydrogen atom (= - % Hartree),
but

(€] . (o) (o) _
(Hy —€®) 4 =0,

where

(5] (o>
HZD = Paz H,O Pm_ = -ﬁb(u) + fa(@) . (3.4)

. € [£] . § J
Eq. (3.2) and (3.4) give H‘ d -~ Hz = i; + ;é‘:z— };n - ’TE;,_)"
In group theoretic language, 4),(0) and 1(0) are "primitive
functions", i.e., they are a basis for reducible representation of the
symmetry group of H . since Ch(o) and 4>le) do not have pure
symmetry, there is no Rayleigh-Schrgéinger expansion of 922 B “Q
which starts from ¢fa), ¢;°) as the unperturbed states and pre-

duces a wavefunction that has the symmetry of the exact functions,

order by order.

Heitler-London Wavefunctions.43 The projectors A‘i s Au. allow
the construction of zeroth order functions which do have the symmetry

of the exact wavefunction., Putting

Ip®@ . Ag 4, Cothy(2) + bolt) O (2)

T (agdPIad Y (D1 R, 14
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and (3.5)

A ¢§‘(c) G () b(z) — b, () Gy (2).
= = o\ ihe ?
<Au<W°)!Au ¢u(°)>”2 12 <<E(°)l I=Re | ¢5‘ )> :

uli?(o)

yields the Heitler-London approximation to the wavefunctions. In
perturbation theory, the energy through first order is simply the
expectation value of M computed with the zeroth order wavefunction.

Thus
e 4 TED = (Ige|n] Tge),
Eq. (3.1),(3.3), and (3.5) yield

gE(o>.= ug @ = g

and

(2 1 (H-u (1 £ R | @)
<4,,(o) |1+ B, | chw)>

% EE(‘)

(3.6)

/
= Ve Vo
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where

\éa = ff ['a,a(u)bé(zﬂz v - “‘él*ﬁ]‘h‘adhﬁ

12 vh;

! Lo LT
Voo = ”Qa“”’a"’ CTIE A \fzh‘*ﬂe]“’-‘J"‘Zz}

S

(1]

= faotn b, € q!'cl . .7

The integrals in Eq. (3.7) are all well knotm,43’53

It is not possible to proceed in a straightforward manner to

TR T o) . .
higher order, however, since szku), ul;,_!f' are not eigenfunctions

te>
of Hﬁ or H'éa) .

.Exact Primitive Functionms. On the other hand, given the exact

spatial wavefunctions 92& and "‘7} , it is possible to construct
two exact primitive functions §' and éz which have precisely the

same transformation properties as 4’:@) and 4);@’ . That is,

@2 = B, @U (3.8)

where

@:&E@, (3.9)
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and
@ = (% ,%,),
T = (%g, vm),
Eq. (3.8) and the requirement that §a and éa be normalized

implies

cob 6 cew 8

il

C

awn © - auné
As R increases without limit, é approaches
2 25 (e

90=a/fofam.l_-(l*scg)/(d—%¢ﬂ and éd approaches ’

Exact primitive functions have been discussed previously by

; 22 . . 21 44 ‘s
Herring, Hirschfelder and Silbey, and Musher. Intuitively
one expects i' to have'electron 1 localized about atom a and
electron 2 about atom b. Herring, who calls é! the "home base'
function, enforces this intuition by asserting a set of .auxiliary con-
ditions that @n must satisfy, such as the requirement that én

) - - - .

approach % when Yg(=0 or Tp~O0 . (It is not obvious
that this condition can be satisfied.) By .contrast, Hirschfelder and
Silbey enforce their intuition only in zeroth order by setting up .a
perturbation sequence for él which starts from {#@l(o‘) . This is
the approach followed here.

The set of coupled equations satisfied by @ is

H& = & &, @10



where

¢ = C'EC

E )
0 b

It is convenient to define two energies, the Goulomb energy

1]

E

Eteow) = 5 (%E + “E ),

and the exchénge energy

E(exew) = (B — “E).

Then,
E (coul) E (exch)
€ = ~
E (exch) E (o))
Given él s iz , the exact wavefunctions ﬂ@ L@ ar

obtained by projection

2 — A; ‘is
F T T A BT

The energies are given by

= (el H 2@,

58
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Perturbation Expansion. The formalism developed in Chapter

Two suggests itself as a means of solving Eq. (3.10). It must be
extended somewhat, however, since the previous analysis assumed that
all of the unperturbed functioms are eigenfunctions of the same
hamiltonian. This assumption is no longer valid in exchange per-
turbation problems.

The zeroth order equations correspouding to Eq. (3.10) are

defined to be

(o) [Z-)) ()
(R - €)@=

and (3.11)

(o (o) (o)
(H” - )¢ = 0.

Corresponding to ©)  and ) are the perturbations
g 7 5 p

F{:l)

!

H - H (o)
LY
and
1) (o)
respectively. 'The superscripts are used in a loose semse to denote

the order of perturbation. As discussed in Chapter One, "order" is

not a well defined coucept, however, since

“) P ] ERl aH(ﬂ)] (‘,a‘ - L ——\—-)Pac(3.12)

‘-b?. \raz Tb|

(3.12) states that a "zeroth order" quantity is equal to a "first
order'" quantity, so that the apparent order of terms can be arbitrarily

shifted.
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Nevertheless, Eq. (3.~10) can be expanded into different orders

in a consistent, though arbitrary, mauner by definiung
o5
- (o) h n
E = €9 + ), \e™
and (3.13)
- (
(o ) n
@ = 4’ ) -t Z pY ch ))
h=1

where \ 1is a formal ordering parameter whose physical value is zero.
The hamiltonian can be resolved in two ways, either as Hgs Hﬂ(g);;AHf“)
- (o) @) = =4 =

or as Hz"’“ H?; £ A H'L . Only for A=l does H, .'H?:- H.
The convention adopted here is that when M acts on @k , 1t is
replaced by HR ,}k = for 2 .

Substituting the expamsions (3.13) into Eq. (3.10) and equating
the coefficient of each power of )\ to zero yields, in addition to

Eq. (3.11), for R= tand 2,

2
o) _ e® m (u) (0) (o) (a)
(Hy Y + H, =2 % .
(3.14)
(HO- ) 4 B 4l (n=1) _ Z Z (h-m (m) s n,

m=1 4=
Given the solution of the first N perturbation equations (3.14)

“the energy is given by

i . (A0 H I AB, 0D
CA; Eno | A S, (0
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where
3 N
Sy = 2. $™
i h=o ! "

The justification for this protedure.has been developed in €hapter
Two., If X is any wavefunction which is orthogonal to §°(N) and %N}
then the han;iltonian midtrix elements < Ai @h(ﬂ) I+ IAi X >
vanish through OCAN*"), Hence the additien of X. to the basis
@(N) affects the energy only by 0(12N+2) terms.,

Equivalence to Hirschfelder-Silbey Peri;urbation Theory. It is

easily -verified that Eq. (3.10) is identical to the equation solved

in the Hirschfelder-Silbey exchange perturbation theory for the inter-
action of ground state hydrogen atoms. Nevertheless, the solution of
first order Eq. (3.14) is discussed in detail below in order (1) to
demonstrate that, in analogy with almost degenerate perturbation theory,
the off-diagonal elements of & are not completely fixed by the
formalism; and (2) to develop a method of solving Eq. (3.14) which
reduces the corresponding equation for many-electron systems to oane

and two electron equations.

Solution of the First Order Equation. Eq. (3.8) implies that

4)2(') = ‘14#‘),30 that it is sufficient to comsider .only k:p in
Eq. (3.14), which may be written

(o) ! b >} ) (o) @ {2,

(HP = @) + HV™ =E (cgud)q%"-a_ E “exci)d 2,

(3.15)
*—
Multiplying Eq. (3.15) from the left by 4’{6) and integrating yields
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V,, = EV () + S5 E Plech), (3.16)

00

where Vw is defined by Eq. (3.7). Thus, in énalogy with almost
degenerate perturbation theory, the requirement of mathematical con-
sistency gives only one equation to determine the two unknown first-
order energies.

In the Hirschfelder-Silbey procedure’,21 a further relation

€4) (7] . . . .

between E (C’ca/) and & " (exch) is obtained by arbitrarily
imposing the requirement that the energy through first order agrec

with the Heitler-London result, Eq. (3.6). This yields

4

%o "So:‘%o
/- &F 2

and (3.17)

EP (Cout) =

N
E (”( exch) = Voo Soo v°°
/! - S’of 3

which c¢learly satisfy Eq. (3.16).

Another way to fix the unknown coustants is by a variational
method analogous to that introduced in the almost degenerate perturba-
tion theory (see page 36). It was shown there that such a procedure
can be expected to have a small effect upon the energy in a rapidly
converging perturbation expansion. Thus, the question of applying
the variational procedure to the present case cannot be answered with-
out testing the convergence properties of the formalism with numerical
examples. For the present, it is assumed that E§{l)(Cbal) and

El"(exch) are fixed by Eq. (3.17).
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)
With the coustants in Eq. (3.15) fixed, the 4f ) can be obtained,
To this end, it is convenient to separate Eq. (3.15) into a polarization

equation
(o) iy ‘
(HI _ém) %m +* (Hﬂ 4) _ Veo )%ecu - 02 (.18

and an exchange equation

(H2-e)wir = §° - 52 4, e

where

0 NG 1) ¢4 :
= J d
43 % + @ E texch) .

i The polarization equation is the first order equation in the un-
symmetrical polarization expansion5 of ﬁlg or u.@ . For the case
of F{e , it has been solved to high accuracy by variational methods
by Hirschfelder and ngdin55 and by‘Kolos.56 The primary effect of
qg(l) is to intfoduce correlations between the electrons which give
rise to van der Waals-interactions. The solution of Ea, (3.18) will
not be considered further.

The solution of the exchange equatien will be considered in

detail. 1In terms of ‘the orbitals Q¢ and 60 > Eq. (3.19) may be

written

. 2
{ {; - e, + ﬁb 2y -e,) w2 = b g- S, Gyt 69 3-29)
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Thus, Eq. (3.20) is a coupled, two electron, two center equation.

Introducing the complete set of eigenfunctions of {a and % 5

(%a—ek)aksa 5 (f,g—ek)z’%:())

the solution of Eq. (3.20) is

Wi = ), 2<% Mh}%m %/%M’ew
s k#o A#e g + g
(3.21)

o $Blbp2 2 5+ Z o, Seeleed buty

e/
4 )
kto 2% e,e

where 82 = ek_eo; = g-e,.
The infinite sums in Eq. (3.21) may be evaluated by a technique
Which45 has been used successfully for the calculation of atomic
polarizabilities, van der Waals Cé coefficients, etc, The first sun
in Eq. (3.21) is analogous to dispersion energies in the polax;,ization
equation and the last tv‘vo sums are analogous to induction energies.

‘ The sums for of> ©  and /5>0 may be evaluateri.u's":‘.'ﬁgif:vﬁe‘:‘j':de.ntity,

= (3.22)
°(+/3 //;-v-;a a!-—au][*zu ,s-zu]d“

which can be shown to be an application of the residue theorem.

. o _ N .
Putting 'o(- & , /3 =g/, substituting Eq. (3.22) into
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Eq. (3.21) and interchanging the order of summation and integration

yields

) - (@ 1b,> Cay, 1bo>
w0, g”/£6k+a@()+zek~e Qv |

X[;; b fac> 4 +Z {b /Qo>é o du

es+in

<q b, 7
+\§;o Z’, é/ >akwl, (2 +£%ZD <é’m">aaa)é aj}

oxr

u),“.) = 3;‘,-‘[[&:(/) + é_@u}][é:.@) -+ é_l’(z)]dm

(3.23)
+ S, [é;“’é") by ¢2) + aou)éj (z)] .

where

( 710@ —-e?# éu.)é:’ = téa - S0 @,

and (3.243
(e cru)tt = @ =S b,
and %‘a’ = (g‘;@)% , gf = (g_é)%- : The é:}' and éf

are the solutions of Eq. (3.24) for .u=¢ In the application35 of
o+
the Hirschfelder-Silbey formalism to ffz the first order exchange

a
function tufv is simply %L defined by Eq. (3.24).



65

Thus, it has been shown that w‘a) can be obtained by solving the
one electron, two center Eq. (3.24) and performing the quadrature,
Eq. (3.23).

Eq. (3.24) is still a coupled two-dimensional partial differential
equation, and an exact solution in closed form does not appear possible.
Variational approximations to the exact solution may be obtained by

finding the extreme points of the fl‘u-u:t:;'.onal46

(E | by, riu [E, D
(3.25)

—(é‘: / bc'“ Soc Qo> - <bo_ SC?Q’Z’/%}

where = = = (&’ * are trial functions.
P -

&)

‘
The insight into the -nature of ¢, " is provided by the Unso6ld

a,
approximationlo to § . The trial functiom is
6¢> — Soo a.

Ya  _ (3.26)
éi# A +~ T

where /3 is a parameter determined from the extreme peint of Hq.

(3.25). A short calculation reveals

1 "<£o/—é/3§o>
L - §2

co

i -
= i—ﬁ _/_@(e ae/)o (3.27)

. Substitution of Eq. (3.27) into Eq. (3.23) and integration

gives
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3—‘/; bma,cz) + a/é a,w a, (z)d—é(:)é{ﬂ
3.28
e (3.28)
— % a, () b(2) .
25
{0
The first and last terms in 6?;,‘0 yield multiples of /4,: ?‘, 4
upon symmetrization, so that the primary effect of é};”) is to intro-
duce ionic terms into the wavefunction.

The approximation corresponding to Eq. (3.28) for the polarization

A
{
function % ? is

~t
~ :
47") = ‘[oz (¥a) X%, + Y Yso ) + &' 20,2y, (@, 0> b, (), (3.29)

where )Q‘)gal’”’ are the cartesian coordinates of the electrous.
The o and o// are variational parameters which vary as ./‘\f-‘3
Eq. (3.29) results from evaluating by :the Unggld method the lead term
in the multipole expans:l.on of 42’“

With the approximations Eq. (3.28) and (3.29) for % , the

wavefunction through first order is given by

A’i (¢I(a)+ %‘(I)) =, (/"&f)fa)[exoé)‘
e

+A; [dtx, Xt by

Ay a,t bolz)
(3.30)

Go2) +ot' 20, z,n]ao @ byl)

Sueo E a)(ex

%

OA)A (o8, 2> + byen b, (2))
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Eq. (3.30) has precisely the form of the Hirschfelder-Linnet1:53 (HL)
variational wavefunction, If ol , olland F are fixed by the total
variational principle, rather than a first order calculation such as
Eq. (3.27), the wavefunction Eq. (3.30) yields the HL energy. With

f; ‘fixed by Eq. (3.27), however, the coefficient of the ionic term
«in the wavefunction is too small since Soo Em(exck) varies as
exp(- 3R ). The HL calculations show that the correct coefficient

( Y in their notation) varies as roughly (4 exp (“ R).

@ accurately. There

3}

s ; R 29 :
is reason to believe that polarized ionic states occur in £, .

Work is currently in.progress to obtain &

In Chapter Four, a good variational approximation to the total first
order wavefunction %f“ (denoted there by g}( +_“X ) is obtained,
although the form of the basis set does not make it comvenient to

3 @ i
separate out ﬁ") and &y, . The energies (labelled HS) reported
in Chapter Four demonstrate that both good cpulomb and good exchange

{0, [
energies can be obtained with the wavefunction At: (?é ) 4}! ’)a

3.2 Extension to Many-electron Systems.

The method of solving the first order perturbation equation
developed in the preceding paragraphs may be extended to the case of
interactions involving many electrons. To avoid the complicafions
which arise when the eigensolutions of the separated-atom system are
unknown, consider the interaction of N groundé-state hydrogen atoms.

A zeroth order primitive function is

%(ﬁ) = QD éolz) s N, (N)a
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This function is degenerate with A/! =~ { other functions

PEY < 4,044 2 lh) e My (),

where P is one of the A/! permutations of the electron labels.

The first order equation analogous to Eq. (3.14) is

{
(HP-e@)4D 4 44 = 7 P4 ¢
This may be solved by puttin

o = «) N
& <,2$ + PZ{: W, e,

which yields the polarization equation

[ ) n © e, ¢
(H,o)"é”)‘fjw - (H/w"‘ (4}()IHl(ﬂ)’#bl()>)¢a°)=0)(3.31)

and the exchange equations
. . : ¢o) ).
(Ho- e = PEO= EOIREDD, )

In these equations

Tt + %le)_-f- cee # f,,,(/s/)9

i

(o,
H,

(—L- I ) A _,—L_.+_L)
Y2 TYaz Vbl }2 Yiz Yaz Ya, R/¥°C

il

()
H,

and & ) = Neo .
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The solution to the polarization equation (3.31) has the form

qS(o) célé)

Iy ? > 3)
-+ 2 praa—
& bytz) fac Qo i} 0, (3D 9

é;(!)_: ﬁb(a’z)

where

A
/ { ! 1{_-_/_ )
— - —— e ah m—y - C“
(Zi“) G F )6 )?Zb 4 (lnh_ Yz Y%, 2 Léo A )ééd
== CZ
et
which is precigely Eq. (3.18). Thus qé in the many electron case
is obtained by solving a set of two electron equations.
The exchange equatiomn (3.32) is a coupled é—electron equation if
}D permutes the labels of Ai electrons. However, the identity for

CpyQgeeey >0, &

I — (—‘)kjdu! Jd‘ CL,Q:ZD,.(Z,&S(L{,N—‘Q#.“#Q&)
QutQptertly oy 24 a3 @i il) - e (Qé‘%u‘%} S

permits the reduction of‘Eq. (3.32) to k oneielectron equations of
the form of Eq. (3.24). This identity-follows from Eq. (3.22).

Thus, in the many ‘electron case the first order perturbation
equation may be obtained by solving one and two electron equations.

Summary. The extensiog to exchange perturbatiou problems of the
formalism developed in Chapter Two leads to the Hirschfelder-8ilbey
perturbation theory if the undetermined elements of & are chosen to
yiéld the Heitler-London first orvder energy. The first order wave-
function may be solved as the sum of the first order polarization
function, which introduces van der Waals correlations, and an exchange
function, which introduces ionic terms. In the many electron case, the

first order equation reduces to a set of one and two electron equations.
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IV. MODEL EXCHANGE PERTURBATION THEORY CALCULATIONS

In this Chapter four different types of perturbation theories
for exchange forces are applied to three model problems:

1) the ground and first excited state of the hydrogen molecule
at internuclear separations R = 4, 6, 8 ap ;

2) a double minimum harmonic oscillator model oﬁ }4;

3) the double minimum delta-function model of F{:A

Since much of this Chapter has already appeared in print, the
published articles are reproduced here ‘with Addenda where appropriate.

The delta<function calculations have not been published previously.
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2.1 Interaction of Two Hydrogen Atoms.

Reprinted from THE JourRNAL oF CREMICAL Puysics, Vol. 49, No. 1, 24-34, 1 July 1968
Printed in ¥ 8. A, -

Exchange and Coulomb Energy of H. Determined by Various Perturbation Methods®

P. R. Cerramnt Anp J. O. HirSCEFELDER

7

s,

ical Chemisiry Insiiiute, Uiy

ity of W Hadison, Wisconsin

AND
W. Korost anp L. Wormewrcz§
Laboralory of Moleculor Strusture and Spesira, Department of Physics, University of Chicago,
Chicago, Hlinois
(Received 15 December 1967)

Four different types of perturbation theories for the exchange forces

between two atoms are applied 1o
at lear scparations R=4,6,8a. The

the ground and first excited state of the hyd

g
encrgy through sccond order and the expectation value of the Hamiltonian using the wavefunction accurate
through first order are ealculated to compare the theorles, The results for the Hirschielder-Silbey procedure
are satisfactory, The Murrell-Shaw or Musher-Amos results are equally good with the exception of the
Hamiltonian expectation values for both states at R=6 and 8a,, which are bad. The Eisenschitz-London,
van der Avoird, or Hirschicider (HAV) results are good at small separations but at large separations they
give a second.order energy which appears to be about one-half the correct dispersion energy, The Rayleigh—
Schrodinger treatment using a Sternheimer type of zeroth-order Hamiltonian gave the best energy for the
ground state hut not very good energy for the excited state. At the separations considered, deviations from

the virial theorem are unimportant.
I, INTRODUCTION

In a previous paper,! the mathematical problems
associated with the development of a satisfactory
perturbation theory for the exchange forces between
two atoms were discussed. Many formalisms have been

*This work was supported in part by the U.S. National
Aeronautics and_Space Administration  Grant NsG-275.62,
Nationa} Science Foundation Grant GP-7774, and by Advanced
Rescarch Projects Agency through the U.S. Army Research Office,
Durham, N.C., under Contract No. DA-31-124, ARO-D-447,
ARPA ORDER 368,

1 National Science Foundation Graduate Fellow.

$ Permancnt address: Department of Theoretical Chemistry,
University of Warsaw, ul. Pasteura 1, Warsaw 22, Poland,

§ Permanent address: Departiment of Theoretical Physics,
Nicholas Copernicus University, Torun, Peland. .

% J. 0. Hirschfelder, Chem, Phys. Letters 1, 326, 363 {1967).,

proposed during the past few years and mosi of them
give different results for the second and higher order
energies. From the mathematical standpoint, each of
these treatments is equally satisfactory. Thus, we ask
the question: “Which formalism provides the best
second-order energy and the best expectation value of
the Hamiltonian using the wavefunction accurate
through the first order?” In the present paper, an
attempt is made to answer this question on the basis
of accurate numerical calculations.

We consider both the ground state (*Z;*) and the
first excited stale (%8,%) of the hydrogen molecule at
the internuclear scparations R=4, 6, and 8as. The
energy through the second order and the expectation
value of the Hamiltonian corresponding to ¢(1, \) =
Yo W (where the constant A is either set equal to
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one or else energy optimized) are caleulated using four
different types of perturbation treatments (EL-HAV,
HS, MS~MA, and RS). A rather large basis set was
used together with vibrational principles to determine
the first-order wavefunction ¥, The accuracy of the
caleulations was Himited by the rounding ervors which
resulted from the single-precision computational pro-
gram.

The results, discussed in See. IV, are very interesting,
but they do not show thit any of the four perturbation
schemes is outstandingly better than the other three.
The Rayleigh-Schrédinger (RS} is best for the ground
state but is not very good for the first excited state,
The Hirschiclder~Silbey (IIS) rosults are afl satise
factory. The Murrell Shaw (MS) or Musher-Amos
(MA) energies are equally good, with the exception of
the Hamiltontan expectation values for B=6 and 8a,
where the values are exceptionally bad, At small
separations the Eisenschitz-London, van der Avoird,
or Hirschielder HAV {BL-HAV) epergies are com-
paratively good, but at large separations the EL-HAY
second-order energy becomes approximately one-half
of the accurate dispersion energy.

The energy of the triplet state, added to or subtracted
from the energy of the singlet state, yields the Coulomb
or exchange energy, respectively. A surprise to us is
that the perturbation procedures give better values
of the exchange energy than of the Coulomb energy.
To test whether this result Js a property of the per-
turbation expansions or is due to pur use of inaccurate
approximations to the firstorder wavefunctions, we
have also corputed total energies using the Rayleigh—
Ritz variational principle and the same basis sets as
were used in the perturbation calculations, These com-

putations show that the perturbation expansions of _

the Coulomb energy are slowly convergent.

In terms of computational efficiency, none of the
perturbation schemes offers any advantage over a
standard Rayleigh~Ritz variational calculation of the
total energy, especially if it is necessary to use the
trial wavelunction ¢ to obtain 2 reliable estimate of
the energy. The n‘gtjor portion of computing time is
spent in calculating matrix elements. Since the same

elements appear in hoth methods, a more accurate -
energy can be obtained by varying the total wave °

function than by varying the first-order wavefunction.
The matrix elements for the EL-HAV, HS, and MS-
MA second-order energy calculation are significantly
simpler, however, since the integrands are not sym-
metrized. Pevturbation techniques are useful in diag-
nosing the defects in approximate wavefunctions, in
caleulating accurate expectation values of properties
other than energy, and in determining upper and lower
bounds. Their practical value in determining the encrgy
depends upon our ability to determine sufficiently
accuxate solutions to the perturbation equations with-
out recourse to the use of large basis sets.
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II. PERTURBATION FORMALISMS USED
IN THIS PAPER

The oldest perturbation theory which yields an ex-
pansion of the exact wavefunction in terms of sym-
metrized products of atomic orbitals is that of Elsen-
schitz and London (EL).? More modern theories which
have the same frct-order wavefunction and second-
order energy have been developed by van der Avoird®
and by Hirschiclder' (FIAV). We alse consider the
recent poerturbation formelisms of Hirschivlder and
Sitbey (HS),* Murrell and Shaw (MS),5 and Musher
and Amos {MA)S as well as the usual Rayleigh-
Schradinger (RS} procedure using a Sternheimer-type
zeroth-order Familtonian,’® The MS and MA formal-
isms arc equivalent? so that we are dealing with four
independent perturbaiion procedures.

The general structures of the various theoles have
been fully treated clsewheret~® Here we simply intro-
duce a notation that is suitable for treating the lowest
12+ and 32" states-of Hy. The exact energy and wave-
function are denoted by *E and %}, respectively, with

i=g for the gerade state and {=u for the ungerade;

state, The functions % and Y are eigenfunctions of
the projectors

A= (141 (1 P}, (1)
Ag=}{1~D (1~ Pu), (1b)

where Py permutes the electronic coordinates and 7
inverts the wavefunction through the midpoint of the
internuclear avis,

The unperturbed Hamiltonian is defined to be

e}

with eigensolutions {, ¢w). The functions ¢ are thus
products of hydrogen atom wavefunctions. The per-
turbation ¥ is .

Ve ROb gl g —ras 3

The exact energy and wavefunction are resolved
into perturbation serfes:

B g B B e @
P Ao b YO4een 5

* R, Eisenschitz and F. London, Z. Fhysik 60, 401 {1930);
A. van der Avoird, Chem. Phys. Letters 1, 24 {1967).

¥ A, van der Avairc{iigj,yfhcm. Phys. 47, 3649 {1967); Chem.
Phys. Letters 1, 411 {1567},

}?;. O. Hirschicider and K. Silbey, J. Chem. Phys. 45, 2188
1966},
¢ g}. }N. Murell and G, 'Shaw, 3. Chom, Phys. 46, 1768 {1967},
¢ 1. Musher and A, T, Amas (Prepeint); AL Amosand I L.
Musher, Chom. Phys, Letters 1, 119 (1967,

TR, M. Steraficimey, Phys. Rev. 96, 051 (1954),

* 1. O. Tirschfelder, W. Byers Brown, and S. T. Epstein, Adean.
Quant. Chem. I, 255 (1964).. . o . .

*R. E. Johuson and S, T. Epstein, University of Wisconsiy
‘Theoretical Chemistry’ Institute Report WIS-TCL268, §
November 1967,

Ho= =3V R— 3Vt =,

¥
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Tabte L Definition of the operator T appearing in Eq. (7).

Formalism T,

A (V=B

EL-HAV
HS Ay (V=0 EW) HALV—ez)

MS-MA

Since our present calculations are limited to ‘E through
the second order and expectation values of the Hamil-
tonian for A-++®, we do not need to determine the
wavefunction beyond the first order.

The zeroth- and first-order energies are given by the
same expressions in all theories considered:

FEO=(po | VAspo)/ (b0 | o). (6)

It is in expressions for the second-order energy that
we encounter differences. The most direct way to
compare the EL-HAV, HS, and MS-MA results is
to employ the spectral expansion of *E®, which may
be written

AV —IEW
{E®= (¢ | Am)"‘Z (A
=

o=—1;

AR AR ).

€€

)

Here T is an operator which depends on the formalism
considered. The explicit expressions for 7 are given
in Table 1.

Because of the form of ‘E®, we find it advantageous
to define a function

‘X=k§ [{AV—E®) g | ¢ )*/ (@—a) Itr. (8)

Note that ‘x depends upon the symmetry of the state
considered through the projector 4, although ¥ itself
bas no simple symmetry properties. The second-order
energy in each formalism may be obtained by a single
sintegration involving . That is,

SED= (x| Tugo)/ (g0 Aio). (9

The function  is related in a simple way to the first-
order wavefunction in the various formalisms.
For the Eisenschitz-London or HAV scheme, 3

HWO(EL-HAV) = Aix~ ({po | Ax)/ {$o | Aigo)) Asho.

_ (10)
The second term on the right in (10) assures the or-
thogonality of Y (EL~HAV) to 4,¢,, which is the
normalization condition of van der Avoird® and Hirsch-
felder.!

In the Hirschfelder-Silbey expansion, 4® is ob-
tained by projecting a function of the proper symmetry
from the sum ox+x: -

YO(HS) = A (rx+%0).

Finally, the Murrell-Shaw’ and Musher—-Amos®

(1)
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first-order wavefunction is ¥ itself,
SO (MS-MA) =¥y, (12)

Note that this formalism has the unique feature that
the first-order wavefunction does not possess proper
symmetry, .

The contribution of continuum states makes the
sum (8) difficult to evaluate. We shall therefore resort
to a variational principle for fx. It follows from (8)
that % satisfies the differential equation

(Ho~e0) x+A:{(V—ED) ¢y=0. (13)

Since we are considering the states which arise from
the ground state of Hy, the Eq. (13) is equivalent to
the variational principle §'7=0, where

=% | (Ho—eo) %)+ (% | A(V—3ED)g0)
o] (V—EM A%), (14)

and % is a trial solution of (13). Note that *J docs
not depend on the component of ¢ in %%. We use this
freedom to satisfy the normalization condition
(% | ¢o)=0. ’
We choose the trial function %! to have the form

. N
F= Z iCixs,
7

x5=expL—F R} (Er-+botne—ma) Jorim b inaipp4,

where £ and 7 are the usual elliptic coordinates (&=
(ra+rs)/R and 9= {(r.—1)/R); p=2r/R, where 7y,
denotes the interelectronic distance; 7, s, 7, § are in-
tegers in the range 0-4; and p=0, 1, 2. The lincar
coefficients ‘C; are variational parameters, and we
have taken V=30, 50, 70 for R=8, 6, 4aq, respectively.

For one- and two-electron systems where the wave-
function is a product of a space function times a spin
function, it is possible to"use standard Raylcigh—
Schrodinger perturbation theory in which a Stern-
heimer type of zeroth-order Hamiltonian Hy;, corre-
sponding to the zeroth-order wavefunction A;, ¢, is
employed. Here

(13)
(16)

HyApo=edpo and [Hy, 4;]=0. (17)
The perturbation is then
V=H~Hq. (18)

The Sternheimer Hamiltonian is the only Hamil-
tonian which satisfies Eq. (17) and can be written as
the sum Ho,=K+-Us; where X is the kinetic encrgy
operator and Uy; is a local potential energy function.
Jansen!® and Corinaldesi® have developed Rayleigh—
Schrédinger-type treatments which might be applied
to many-electron systems but their zeroth-order Hamil-
tonians are non-Hermitian and involve nonlocal poten-
Y, Jansen, Phys. Rev. 162, 63 (1967).

B E, Corinaldesi, Nuovo Cimento 25, 1190 (1962); 30, 10§
(1963); E. Corinaldesi and H. E. Lin, ibid. 28, 105 (1963)
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tials. The Sternheimer potential energy function is
Un=e— (KAwpo)/(A:do). If now we remember that
Hypo=eopo, that Ho=K-+U,, and that K commutes
with 4;, it follows that

Hyy=K-+(A.Upo) /(A isho). (19)

Then using our previous notation, V=U— U,, and
remembering that U commutes with 4, it follows that

Vi=U~(AUoo)/(Aido) = (4:Vo)/(Aido). (20)

Following the usual Rayleigh-Schrédinger pro-
cedure, the equation for-iy® (RS) is

(Hoi=eo) YO (RS) +(Vi—E®) Aigp=0, " (21)

where FE® is given by Eq. (6). Because of Eq. (20),
we may also write Eq. (21) in the form
((Ho—eo) +{[ 4+, UsJdo/ 4o} YO (RS)
+A(V—ED)ge=0. (22)
Equation (22) may be compared with Eq. (13). Again
making use of Eq. (20), the Rayleigh~Schrédinger,
second-order energy is_ . '
SED(RS) = (Ao(V—SED) o | YO (RS) )/ {bo | Asho).
o (23)
Of course we cannot solve Eq. (21) exactly, but we
can use the Hylleraas variational principlei?$ to deter-
mine an upper bound for the second-order. energy
fE® (RS) and an approximation to the first-order .

wavefunction 4@ (RS)..By.virtue of Eq..(20), the
Hylleraas principle can be written

{BORS) o] Auho)
= (FORS) | (Hoi—e) FOI(RS) )
+{FO(RS) | A(V—ED)g0)
{4V =) g0 | PO(RS)). (24)
By varying M(RS) to make ‘@ (RS) a minimum '
we obtain the best approximation to %®(RS) and the

best appro:iimation {E@(RS). Since' Hy; and ¥; com-
mute with 4;, we can choose the-trial function to have .

the form ~
PORS) =3 iCidix;
7

(25)

where the x; are defined by Eq. (16) and the s;+5; are
restricted to be even integers. Because out trial func-..
tion varies linearly with the variational parameters
iCy, it is casy to show that for the optimum values of
*Cy the *E®(RS) of Eq. (24) is equal to the second- .
order energy of Eq. (23) if the exact %W (RS) is re-
placed by Y@ (RS). In our calculations the number
BE A, . il 3 dbi
(1930); alm}}'y'lll'eﬁemvénitif:fgﬁ:gbﬁg éigaﬁl’m’%cfféiczs?g
Rept. No. 1, Inst, Theoret. Phys., University. of Oslo, 1961.; "-..
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of basis functions used was N'=50,:35, and 20 for R=
4, 6, and 8aq, respectively. .

Thus, for all four types of perturbation procedures
which we discuss, the first-order wavefunctions are
expressed as linear: combinations of the x; The sub-
stitution of Eq. (15) into Eq. (14), or Eq. (23) into
Eq. (24), together with the variation of the ‘C; leads
in the usual way to a set of simultaneous inhomogencous
linear equations. The solution of these equations is
hampered by the near linear dependencies in the set’
(16) when the expansions (15) or (25) contain a large
number of terms. Since the calculations were done in
single precision, round-off errors became significant
before convergence to the true solutions of (13) and
(21) was obtained. At large values of R, accurate values
of the integrals were difficult {o éalculate. Neverthe-
less, it is believed that the second-order energies ob-
tained possess at least two significant figures (which is _
sufficiently accurate for our purposes). The calcula-
tions were made on the University of Chicago Com-
puting Center IBM 7094 Computer.

Having obtained the approximate first-order wave-
functions %W, it is useful to construct a trial function
for the total Hamiltonian He+V of the form

F(1L, N = Ao bAFO,

where A is- a varia:tional“-pa.ran{eéerl .The e_:'(pect'atiot
value of the"Hamiltonian corrésponding to %,
LN

= (LN TEP N /N [9L,N), (26b)
should then give the ehergy accuraté ‘through the

rd order of the perturbation and give an upper
und to the true energy of the system.

IO, PREVI(')US PERTURBATION CALCULATIONS
o *  FOR H,

In previous papers by Liu, Lyon, anc R
Goodisman®; and Matcha ‘and, Byeis_"Brown,'s the
wavefunction and energy for the ground state of the
hydrogeni molecule have been “calculated by pertur-
bation procedures. However, in this previous work the
zeroth-order wavefunction was nof taken to be the
symmetrized: product of the. separated atom wave-
functions and therefore the mathematical problems
were quite different from those which we encounter.
Liu, Lyon, and Byers Brown' and Goodisman¥ take
Yo=exp[—c(fi4-£) ] and consider, the range from R=
1.35a-1.45a. Matcha and Byers Brown® take the
zeroth-order wavefunction to be the product of the
ground-state wavefunction for II* for each electron
and consider the range from ‘R=0-2.2q,. With a five-

(26a)

13.

3B, Liu, W. D, Lyon, and W. Byers Brown, J. Chem. Phys. 44,
562 (1966},
1 1. Goodisman, J. Chem, Phys. 47, 1256 (1967).
(1195618{) L, Mz}t.cha,and. W Byers Brown, J. Chem. Phys. 48, 74
v
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Tanry II Dissociation results ofs )Matcha and Byers Brown

(Ref. 1
" Errors in D—Dy
1 +2.7509 eV~ 22189 cm™
2 —0.2683 -2164
3 4-0.0293 236
4 -+0.0041 33
§ -+0.0011 9

term basis set (with oplimum scaling) Liu, Lyon, and } ]
Byers Brown® determined the energy through second

order at the equilibrium separation which corresponded
to an energy of dissociation equal to 4.988 eV=40233
e or 105% of the experimental value; whereas this
same basis set gives a Rayleigh-Ritz variational energy
corresponding to 95% of the experimental value.
Goodisman® used a 10-term function to calculate the
energy through the third order to obtain a dissociation
energy equal to 4.617 eV=37 241 cm™ or 97.2% of the
experimental. Matcha and Byers Brown™ used a 50-
term basis set and caleulated the energy at R==1.4a
through the fifth order. The accurate Eolos and Wolnie-
wicz?® variational caleulation for the dissociation energy

D= E( o) — E=4.7474 ¢V=38 293 cm™. If D, is equal

to E( «) minus the Rayleigh-Schrodinger perturbation
energy calculated through the uth order, then Matcha
and Byers Brown® obtained the results shown in Table
II. Thus, it appears that the Rayleigh-Schrédinger per-
turbation sequence converges very rapidly under con-
ditions where the zeroth-order wavefunction has the
same symmetry as the perturbed wavefunction.

1V, DISCUSSION OF RESULIS

The results of our calculations are given in Tables
IIT-XIIT. Let us examine separately each of the tables.
The first two tables show how the second-order
energies of the ground state and the first excited state

vary with the size of the basis set. In the remaining-

- tables, the numbers quoted correspond to the largest
values of N listed. ’

Tables V and VI compare the accurately caleulated
variational energies® *Z, with §@ =g EV--1E®
and *E(1, ) as determined from the various pertur-
bation procedures. We note the following. (We classify
an energy as “good” if it is within ~10%, of the accurate
energy.)

Ground-state energy through second order, RS is very
good, and gives the best energy at 4ae. HS and MS-MA
are both good and give virtually the same values, These
schemes give the hest resulls al 6 and 8ag, KL-HAV is
fair at dao, but is bad at 8ap, Examination of Tuble
11T shows that this is due to *E®@ (EL-HAV) being
equal to approximately oneshalf of the second-order
energgy of the other schemes at 8a. This is discussed

. in detail below,

W, Kolosand I;.Wclniewicz, J. Chem; Phys. 41, 3663 (1964).
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Expectation volue of the Homiltonian for ihe ground
state. RS is good at 4 and Gap, but poor at 8ag. The
energy is almost unchanged when A is varied since the
optimum A is nearly unity. HS is quite good at all
separations, The optimum A is nearly unity, MS-MA
is almost as good as HS at 4aq, but is bad at 6 and 84,
Again, M is nearly unity. EL-HAV with A=1 gives
values between those of HS and MS-MA. Variations
of A give considerable improvement in the energy,
espectally at 8z, where the optimum ) is almost 2. This
jis related to the behavior of the second-order energy.
Excited stale energy lhrough second order. RS is not
good at any separation. This is a result of the pertur-
bation ¥, of Eq. (20) being very large due to the node
of Aupe? HS and MS-MA again give virtually the
same results, which range from bad at 4ao to very good
at 8a;. EL-HAV is bad at all separations, We again
note the factor of § in the second-order energy at 8a,.

Expectalion value of the Hamiltonian for the exciled
slale. RS is poor at all separations and not improved by
variations in A. HS is fair at all separations. The
optimum A is nearly unity, MS-MA ranges from fair
at dag to bad at large separations. Variations of A fail
to improve the energy. EL-TAV exhibits behavior
parallel to that in the ground state.

Tables VII and VIII compare the accurate'®’$
Coulomb energy, Ecou=3{(*E4-+E}, and the exchange
energy, Fwn=%(PE—"E), with the results of the
various perturbation schemes. The exchange energy
is very good in all of the methods, especially the
Rayleigh-Schrédinger. Surprisingly, the Coulomb en-
ergy (which is essentially dispersion energy) is much
less accurate for all of the treatments.

It is possible that the poor results for Coulomb energy
are a consequence of the limited size of the basis set
used to compute the second-order energies, rather
than of slowly convergent perturbation expansions.
Thus, we have computed the folel energy of the ground
and excited states using the Rayleigh-Ritz variational
principle and the seme basis sets as were used in the
perturbation calculations, The results are given in
Table IX and show that very accurate values of the
Coulomb and exchange energies may be obtained if
total energies are computed with the basis sets listed
in Tables X and XI, Thus we believe that our com-
puted second-order energies are similarly accurate.
Note that using the same basis set as in the perturba-
tion caleulations, at R=8a, we calculated the Rayleigh~
Ritz variational energy e--¢L1=11.74 cm which is
0,15 cot better than the best previous energy as de-
termined by Wolos and Wolnicwicz®

Tables X and XI give the coeflicients *Cy {or the
wavefunctions fy and YO (RS), respectively.

1 We wish to thank Professor 5. T. Epstein for stressing this
point to us, N '

1. O, Hirschfelder and W. J. Meath, Advan. Chem, Phys. 12,
66 {1967). ) - .
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Taste II. —2E® (in atomic units) as a function of &, the number of terms in the basis set,
N
R 10 20 30 40 50 60 70
4 EL-HAV 0.0014217 0.0024212 0.0027206 0.0028814 0.0029628 0.0030960 0.0031377
HS 0.0018221  0.0028701 0.0030362 0.0030805 0.0030831 0.0031350 0.0031898
MS-MA 0.0018903 0.0029819 0.0031994 0.0032347 0.0032586 0.0033050 0.0033533
RS 0.0026307 0.0034559 0.0036736 0.0037517 0.0037973
6 EL-HAV 0.0000784 0.0001459 0.0001577 0.0001700 0.0001897
HS 0.0001459 " 0.0002465 0.0002585 0.0002673 0.0002797
MS-MA 0.0001459 0.0002466 0.0002589 0.0002676 0.0002803
28 0.0001811  0.0002510  0.0002782  ©0.0002784"
8 EL-HAV 0.0000062 0.0000159 0.0000181
S 0.0000121 0.0000312 0.0000350
MS-MA 0.0000121 0.0000312 0.0000350
RS 0.0000272 0.0000334
* Obtained with 35 terms.
TABLE IV, —“E® (in atomic units) as a function of &, the number of terms in the basis set.
N
R 10 20 30 40 50 60 70
4 EL-HAV 0.0005320°  0.0007929 0.0009977 0.0011131 0.0012329 0.0013658 0.0013952
HS 0.0009621 0.0012752 0.0013367 . 0.0013271 0.0013622 0.0014077 0.0014511
MS-MA 0.0009553 0.0012682 0.0013161 0.0013036 0.0013113 0.0013467 0.0013775
RS 0.0010077 0.0011602 0.0012020 0.0012091 0.0012483 .
6 EL-HAV 0.0000650 -0.0000867 . 0.0000907 0.0000927 0.0000973
HS . 0.0001328 0.0001877 0.0001920 0.0001905 0.0001877
MS-MA - 0.0001328 0.0001878 0.0001922 0.0001906 0.0001878
RS 0.0001432 0.0001684 0.0001753 0.0001785+
EL-HAV 0:062)0057 0.0000148 0.0000161
HS 0.0000116 0.0000301 0.0000331
MS-MA 0.0000116 0.0000300 0.0000330
RS 0.0000263  0.0000312

* Obtained with 35 terms,

TasLe V. Comparison of perturbation energies with accurate variational energies, (in cm™). iZ,+ ground state, z»

_ Exact
R ceo—~E «EN—oE EL-HAV HS MS-MA RS
0ED et
4 3592.6 1115.7 427.0 415.6 3719.7 282.2
6 178.9 67.1 25.46 5.70 5.58 5.99
8 1.6 7.8 3.78 0.06 0.06 0.37
vE(1,1)~oE
4 3592.6 - 1115.7 243.8 301.8 338.5 168.4
6 178.9 67.1 13.93 7.56 27.13 7.51
8 11.6 7.8 1.87 0.14 3.88 1.36
9E(1,\) —°E
4 1592.6 1115.7 177.8 278.1 323.5 151.1
(1.36) (1.20) (1.16) (1.16)
6 178.9 67.1 9.41 7.51 27.07 7.48
(1.39) {0.97) (0.96) (0.98)
8 11.6 7.9 0.12 0.14 3.8 1.29
{1.92) 0.99) - (0.97) (0.90)

* Here 9E is the accurate variationally calculated emergy (Ref. 16)3
78 ig the energy calculated through the second order of perturbation;
PE(1, 1} is the expectation values of the Hamiltonlan caleulated with the

wavefunction through the first order taking M=1 [sce Eq. (26)1; and
9E(1, M) is the same as PE(I, 1) except that) is optimized to make
9E (1, A) 2 minimum, The values of A are given in parentheses,
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Tasre VI. Comparison of perturbation energies with accurate variational energies, (in em™). 3%,* excited state, Fe

Exact
R o—*E v EV =L EL-TIAV HS MS-MA RS
[T Ry 4
4 ~1453.3 475.8 169.6 157.3 173.4 201.4
6 —41.2 4.8 23.47 3.62 3.61 5.66
8 4.3 7.3 3.77 0.05 0.06 0.42
wE(1, 1) ~*E
4 —1453.3 475.8 78.1 131.3 145.7 219.7
6 —41.2 44.8 13.40 4.35 23.69 + 6,87
8 4.3 7.3 2.01 0.31 3.87 1.0
vE(1,\)—vE
4 —1453.3 475.8 39.6 129.4 .6 218.7
(1 42) (1.08) (1.09) (() 94)
6 —~41.2 44.8 4,33 3.69
(1 89) (0.98) 0.99) (0 97)
8 4.3 7.3 29 . 3.86 0.99
(1 98) {0.96) {0.97) (0.94)

® Here “E is the accurate variationally calculated energy (Ref. 16);
¥g s the energy calculated through the second order of perturbation;
“E(1, 1) is the value of the with the

Table XIT gives the expectation values of the kinetic
energy K for the EL-HAV and HS schemes using the
trial wavefunction %(1,\) of Eq. (26a) with the
optimum value of A. This permits the determination
of a scaling constant s for the approximate wavefunction
so that the virial theorem is satisfied. However, as can
be seen from Table XIII, even at 4a,, the values of s
are so near to unity that the improvement in ‘E(1, ))
is very small. At larger separations, the improvements
is negligible. The algebra involved in this scaling process
is discussed in the Appendix.

Taste VII. Comparison of perturbation Coulomb energi

wavefunction through the first order taking A=1 [see Eq. (26)); and
“E(1, A) is the same as “E(1, 1) evcept that A is ontimized to mahe
“E(1, A) a minimum. The valtes of A are given in parentheses.

TFinally, we consider the behavior of ‘E® (EL-HAV)
noted above. From Tables IIT and IV, we see that at
8a,

_eF® —uF®
EL-HAV 3.97 cm™ 3.53 cm™!
HS 7.68 7.26
MS-MA 7.68 7.24

RS 7.33 6.85.

At R=8a,, the accurate value of the sccond-order
dispersion energy® (not considering the exchange of

es with accurate variational Coulomb energics (in cm™) =

Exzact R
R €0— Ecout eo+Econ™—Econ  EL-HAV HS MS-MA RS
8coat®— Egout

4 1069.6 796.1 298.3 286.4 276.6 242.0

6 68.8 55.9 24.47 4.66 4. 5.83

8 8.0 7.6 3.78 0.06 0.06 0.40
Ecoui(1, 1)~ Ecoal

4 1069. 6 796.1 160.9 216.6 242,1 194.0

6 68.8 55.9 13.67 5.96 25.41 7.19

8 8.0 7.6 1.94 0.22 3.88 1.19
Egau(1, \) = Econt

4 1069.6 796.1 108.7 203.7 233.5 184.9

6 G8.8 55.9 6.91 5.92 25.38 7.17

8 8.0 7.6 0.20 0.22 3.87 1.14

* Here Egoul =4 (°E-+YE); the Coulombic energy through the second
order of perturbation {8 Ecoul®; and the Coulombic energy obtained from
the values of the jan using the ion through

the first order is Ecoul(1. A). The values given are half the sum of the
corresponding values in Tables V and VI,
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Tapre VIII. Comparison of perturbation exchange energies with accurate variational exchange energies (in ¢m1).»

Exact

R —Euy Eua®—Ena  EL-HAV  HS M5-MA RS
Eysoh™ = Boxet

4 2423.0 320.0 128.7 - 129.1 103.1 .2

6 110.1 11.2 1.00 1.04 0.99 0.17

8 3.6 0.3 0.01 0.01 0.00 -0.03
Bosot (1, 1) = Buzets

4 2423.0 320.0 82.9 85.3 96.4 —-256

6 110.1 11.2 6.27 1.60 1.72 0.32

8 3.6 0.3 —0.07" -0.09 0.01 0.18
Eoxan(1y A) = Fuxen

4 2423.0 320.0 69.1 74.4 90.0 -33.8

6 110.1 11.2 2,50 1.59 1.69 0.32

8 3.6 0.3 -0.09 —0.08 0.01 0.15

* Here Egeh=3$(?E—~YE); the exchange encrgy through the second
order of perturbation is Sezon; and the exchange energy obtained from
the jon values of the i using the ion through

electrons between the atoms) is —8.0 cm2. Thus, the
values of *E® calculated by the HS, MS-MA, and RS
are approximately equal to the dispersion energy
E®(dis). However the *E@(EL-HAV) is only about
half as large. This raises the question as to whether
the *E@(EL-HAV) can be expected to approach the
correct E@ (dis) values in the limit of large separations.

Rigorously, the relation between SE® (EL-HAV) and
E®(dis) for large values of R is not a simple one, as the
following arguments demonstrate. We first substitute
(1) into (7) to obtain

2
SE@(BL-HAV)~3 Zl ol Veu) |
k0 €€

2
+1 Z M@l , @D
=0 € €x
where the symbol ~ indicates asymptotic equality. The
first summation is 3E®(dis). Although each term in
the second summation is exponentially decreasing
in R, the series may not be.”” For example,

SRR /nl=1,

n=0

A. Arguments That ‘E®(EL-HAV)~LE®(dis)

In their otiginal paper]! Risenschitz and London
used the Unstld approximation to evaluate SE®(EL~
HAV). Taking average energies Aet and Aef from the
first (direct) and the second (exchange) series, respec-
tively, in (27) and using the relation =1 and the
completeness of the states ¢y, we obtain

FE®(EL-HAV)~—3 (A2 (o | V280).  (28)

the first order is Fozoh (1, A). The values given are half of the differen
between the corresponding values given in Tables V and VI,

Eisenschitz and London chose (Aet14Ae*) so that
the coefficient of R-% in (28) equals the cocllicient ot
R~ in E®(dis). In this way they obtained the result,
J(Aet14-Aet1) = (0.925)~*, This result appears plaus-
ible since the average excitation energy must be greater
than 0.75, the energy required to excite the two hydro-
gen atoms from the 1s to the 25 or 2p states. In this
way it would appear that at sufficiently large values
of R, so that only the R~5 term makes appreciable con-
tributions to the second-order energy, the ‘E®(EL-
"HAV) becomes approximately equal to the E®(dis).
" Van der Avoird® has calculated for Hyt the values
of *E® and ‘E(1,1) using his method (which is

. equivalent to the EL-HAV scheme) for R<7a and

obtains excellent agreement with the exact values.
However, for Hy* at R=7 the exchange energy is still
large so that he obtains

SE®=—252cm,  E®=-79 cml,

For this separation Dalgarno and Lynn® obtained the

TasLe IX. Comparison of the Rayleigh-Ritz variational cnergies

(in cm™) 2
Eleam Ela
R eE'—sR E'wE  —Bow  —Laa
4 14.1 9.6 11,8 2.2
6 1.3 2.7 2.0 —0.7
8 -0.1 0.0 0.0 0.0

* Hlerg 9F, YE, Egoul. Zexeh are the accurate variational energies (Ref.
163; 21, “BY, E¥gou, E¥eson are the variational energies obtained with
the same basis sets as were used in the EL~HAV, HS, and MS-MA per- ~
turbation calculations.

1 A, van der Avoird, Chem. Phys. Letters 1, 429 (1967).
‘(129”51;5 Dalga.mp and N. Lynn, Proc. Phys. Soc. (Lu)}Qo!\)'70}j223
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Taste X. The €Cy for the function /%,
g e

por s 73 R=4 R=6 R=8 R=4 R=6 R=8
000 00 ~—0.051793 —0.013709 -0.071657 0.15228 0.10664 —0.063921
10000 0.45177 0.43402 0.18830 0.0069318 0.12027 0.15467
01010 —0.11001 ~0.031741 .  —0.,43256 0.099046 ~—0.018047 ~0.037959
10101 —0.3531 —0.67385 0.60628 0.20964
00110 ~0.16695 —0.23975 0.26337 0.11657
00001 0.091648+ . -0.34809 —0.21667
006 1 0 ~—0.11157 + —0.032870 —0.12545 ~0.068830 ~0.024074
01000 —0.084751 —0.11369 —0 065128
00101 1.0504 —0.19732 —~0.95234 ~0.64999 —0.17513
6 00 0. 2 0.02836% 0.057268 0.31171 0.082430 0.040280
01100 —0.33335 —0.093795 —0.33512 —0.25195 —0.066610
002 01 0.60210 —0.18095 -0.55453 ~0.22399 —0.14659
0010 2 ~—0.577067 0.23027 0.55846 0.17938 0.17494
00011 0.,14224 0.055254 0.35575 0.17420 0.042859
10100 0.59150 0.18317 —0.25092 0.037367 0.14738
10001 =—0.63361 —0.17661 0.23356 -0.020123 —0.14436
00100 ~—0.23905 0.33933 0,31067
00200 —0.0853 0.29472 0.15239
00210 —0.14806 0.028112 0.30545 0.12946 0.17588
01002 —0.1807 0.014502 0.29755 0.14846 0.0072865
0 0.1 1+1 =0.1412¢ 0.075088 0,10264
00300 0.05218L 0.0059048 0.2561 0.010843 0.00040308
00600 3 —0.082322 —0.26058 —0.017253
01200 0.10710 ~0.24275 ~0.11048
000 1 2 —0.014495 —0.25695 —0.069458
10200 0.24485 ; 0.061095 —0.19842 -0.027291 0.060231
110601 0.015407. —0.0300% 0.018071 0.038845 0.035779 0.01015]
10110 0.012253 —0.06406! 0.0092641 —0.020150 —0.037781 0.0072177
10002 0.28491 0.34072 . 0.019744 -0.19044 ~—0.016595 0.033411
11010 0.014898 0.026726 0.011230- -—0.014249
00030 0.015919 0.023200 0.0010312 ~0.0000181
000 21 ~—0.05994 ~0.039295 —0.00020925 , 0.0020093
01001 0.23606 0.19028 —0.26170 ~0.16341
01011 0.12773 1 —0.0014177 ~0.14794 0.017456
00120 0.011025 0.035926 —0.036119 ~0.0093768
02010 ~—0.02932 —0.00052429 —0.010982 —0.0037828
02001 —0.03506 ~0.012967 . 0.029166 0.020017
01101 ~0.094705 —0.14723 0.068493 0.077427 0.16682 0.043811
01111 0.14525 4 0.077035 ., —0.14725 —0.034027
0020 2 —0.1864 —0.043066 0.21009 0.35176 --0.026340 0.14416
630600 0.011425 0.0053026 0.0010916 —o 0030360
01201 0.0026651 —0.079804 0.011013 0.054345
10020 —0.0198382 —0.022990 —0.0059394 ~0.00068379
1100 2 0.011149 ~-0.010324 -—0.038701 —0.0419;
10102 0.11888 0.36121 —0.12376 ~0.35296 —0.11629 —0.075821
12010 0.0069946 —0.0037171 0.0013877 0.0023460
10210 0.0080525 —0.013398 —0.038144 —0.036215
10201 —0.11708 -0.32618 0.086687 0.35172 0.10579 0.054464
20100 ~—0.05238 ,0.049678 0.0067828 —0.0054071
20101 ~0.0023228 0. 076542 —0.047024 0.0023889
00022 0.074855 —0.039671
00013 —0.070934 0.19798
0000 4 0.083193 0.023867
0011 2 —0.020887 —0.011937
01110 0.14127 0.14244
00303 0.11344 —0.12287
02200 0.031675 —0.044026
01300 0.092418 ~0.19611
004900 0.083328 . . 0.023846
10021 0.0048235 0.0049736
160 1 2 -0.064391 . 0.023862
1000 3 -0.039594 ~0,012946 —0.00032689 ~0.013326
10111 0.025114 0.040709
11101 0.0047199 0.041727
10202 0.010608 -0.11516 —0.28168 ~—0.066636
12100 0.0022431 —0.0062230
11200 -0.040334 -0.00085946 0.025800 —0.00093048
1030.0 0.038687 0.013830 0.000079602 0.015427
20001 0.046280 —0.0099149
2100 0. -0.021116 =0,0076620
02000 -0.021504 —0.016327
11000 +0.0060540 0.0077624
1001 0 '0.0072332 0.0057015
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Tasre X1, The coefficients *C; for the wavefunction %® (RS).

e He
uor s 78 R=4 R=6 - R=8 R=4 R=6 R=8
000600 1.0795 0.47203 0.34930 0.46901 0.11475 0.23760
080010 -2.4267 —1,2169 —{.80202 -~0.59911 —~0:5946% —0.64864
10600090 —0.025480 0.50379 0.28219 -~(.77282 0.393560 0.23453
00020 0.50808 6.21295 0.22413 ~0,50208 0.063150 0,16335
01010 0.75202 0,24268 0.12079 ~0,18459 0.14579 0.067388
00101 0.20340 0.71649 —-0.17025 -0, 59061 0.18736 —0.19483
0400 2 —0.87846 —0.84960 —~0.56734 ~0.70433 ~{,44423 —(.48116
20000 ~0.29769 ~—0.13494 —{.083826 ~0.40648 —0.096717 ~0.057912
00012 0.86379 0.76862 0.42837 $.46724 $.69628 0.36722
0100 2 1.1605 0.66784 0.39023 0.59328 0.40433 0.34132
00111 0.41920 —0.99775 0.36429 0,65109 —0.30486 0.34082
10101 0,012387 0.50529 0.020496 ~0.057532 0.27165 0.065340
20010 0.014939 0,005643¢ 0.027311 0.18825 0.047829 0.019018
20101 -—0.46478 —0.,22085 —0.023530 ~0.006753 —0.075474 —0.015719
16012 0.012780 —0.0085408 —0.12639 ~{1,21729 0.11233 ~0.11726
01030 0.047405 —-0.022361 —0.030178 -~(,038742 —0.0079197 ~-0.021086
02002 —0.45030 --0.068766 —0.14566 -(1.39949 -~0.099838 ~0.16418
11002 0.32757 0.071650 0.031499 (.10156 0.13111 0.056315
1620 2 —0.6054 -0.3284% 0.027198 0.00034635 0.14522 0.034654
00121 0.2411 0.43031 ~-0.060443 0.026398 0.11720 ~0. 091280
1001310 1.3183 2.4656
00030 —0.02092 0.17192
01062¢ ~0.32184 0.41337
100 2 0. —0.25421 ~0.62435
10002 —0.40164 ~{0.14205 £.25896 —0.41729
110160 —~0.3773¢ —G.028536 (3, 76601 —0.073163
000 2 2 —0.076728 0.0052492 0,15498 —0.096497
0000 4 0.017466 0.12185
0101 2 ~—0.70930 —0.51504 ~0.4310t —0.32188
02020 0.0086381 —0.040965 —0.065316 ~0.022744
090202 0.78541 0.78985 0:094660 —0.057522
0 1111 -0.39479 -0.062413
11020 0.042381 0.068055 0,19837 0.039404
10111 0.59609 0.042480
20020 0.020309 —0.030833 0.021284 ~0.026549
210190 0.064036 0.0001210
0100 4 —0.032020 —(.094058
0113 —0.20691 0.064291 0.50592 0.31121
00131 -—0.087062 -0.039437
00230 0.040929 0.069411
00212 0.061907 ~0.20895
2102¢ —0.014838 —-0.012007
21090 2 —0.028208 0.0044078
26111 0.10815 0.045803
02022 0.057438 0.037841
00222 0.26402 0.085560
01113 —0.094076 ~0.32568
01131 ~-0.015374 -0.00086511
¢ 123¢ 0.0065240 0.013058
2280 2 ~0.0015669 ~0.0084985
00040 ~0.028163 —0.0092040
00103 —0.21286 -0.53014
1 08¢ 30 (.055089 0.025084
10303 0.014101 0.047087
2024862 0.000080012 ~~3.018930
110630 —0.00373950 0.0010645

Tasie XIL Expectation value of the kinetic energy corre-
sponding to {1, A}, Here 'wgl A} Is given by Tq. {26n) and
(L )= G, N RREL X))/ G

LA (LN

theorem, R=dqq

TapLe XIIL Scaling parameter s for (1, A} and improve-
ment in ‘E{1, N\) resulting from the sntisfaction of the virial

2K (1, wEK{L, N CE(L,N)
- N ~ {1, A sontod
R EL-HAV  HS EL-HAV  HS

12+ EL-HAV 0.995 7 et

w)

4 0.03973  0.95241 10330 1.0368 S 0.987 25 e
6 0,99540  0.99612 10036  1.0028 3t EL-HAV 1.001 o
8 199570 0.99970 10002 1.0001 HS 1.000 o
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second-order polarization (or dispersion) energy
E®(pol) = —222.61 cm™.

Actually, we would not expect a meaningful compari-
son between the ‘E® and the E®(pol) for separations
smaller than the van der Waals’ minimum for the 1oy
state which occurs? at R=12.55¢. (For Hy, the van
der Waals minimum for the 32,* state occurs at R=
7.85a. Thus for Hy* much larger separations are re-
quired for comparable behavior.) Thus, we hope that

van der Avoird will extend his calculations to mauch’

greater separations.

Our calculations indicate that ‘E@(EL-HAV) ap-
proaches 2E®(dis), however. We point out that we
have evaluated the second-order energy with a trun-
cated basis set and we cannot state with certainty that
we have converged to the true value of *E® (EL-HAV).
It may be necessary to use a set of terms in the basis
set which has the behavior of continuum wavefunctions.
Thus we can only say that it appears that the Eisen-
schitz—London or HAV second-order energy is asymp-
totically equal to one-khalf of the second-order disper-
sion energy.

B. Arguments that ‘E@(EL-HAV)~3E®(dis)

In a companion paper® a model for exchange forces
is constructed which consists of a particle moving in
the one-dimensional potential

U(2) = (8R) (s~ R)*(s+R)%

The potential U(«) roughly corresponds to the
potential, with the nuclear Coulomb attraction re-
placed by a harmonic oscillator attraction.

In a manner completely analogous to the molecular
case, the application of the various perturbation
schemes to the model leads to an expansion for the
energy consisting of a power series in R plus terms
exponentially decreasing in R2 In this case the sum-
mations in (27) may be carried out exactly and it is
found that

E®(dis) = — (11/32R2) — (21/512R%) -+ - ,

(1"] M. Peek, Sandia Corp. Research Rept. SC-RR-65-77
2P, R, Certain, J. Chem. Phys. 49, 35 (1968), following atticle.
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and
O (EL-HAV) ~— (11/64R2) — (141/1024R5) 4+ -+

Thus the exchange series in (27) is of higher order in
R-! than the direct series for this model, so that
{E® (EL-HAV)~3 E®(dis).

APPENDIX: THE VIRIAL THEOREM

If a scaling parameter s is introduced into the trial
function 9(1,)) and optimized, the resulting encrgy
(1, \) satisfies the virial theorcm 2,24 The equation
which determines s is

WK () +sV () +e@F/e) =0,  (29)
where g=sR, K(g) and V(g) are the expectation
values of the kinetic and potential energy, respectively,
computed with % for R=g, and

E=sK(g)+sV(9)- (30)
For simplicity we have deleted the superscript ¢ desig-
nating the symmetry of E.
The last term in (29) may be estimated by

9(05/ag) =[(E—e)/(E—e) IR(E/dR),

where E and R(dE/dR) are accurate variational
values.® Since s is nearly unity for internuclear dis-
tances considered, we can solve Eq. (30) by expanding
(29)-(31) in power series in (1—s) through quadratic
terms, holding ¢ fixed at go(=4, 6 or 8ao). This ¥iclds
the scaled energy at R=gqo/s. To obtain the scaled
energy at R=g¢o, we expand this result in a power
series in [R—(go/s)] through linear terms, assuming
that s remains constant over the necessary interval.

We used this procedure to estimate s and the improve-
ment in ‘E(1, ) (» optimized) at the threc inter-
nuclear distances considered in this paper. At R=6,
84y we obtained s=1 for all schemes; i.e., the unscaled
encrgies satisfy the virial theorem. The results for R=
4ao are giyen in Table XIII. We conclude that the
energies *I(1,A) are not significantly improved by
scaling.

(31

7, O. Hirschfelder and J. F. Kincaid, Phys. Rev. 52, 638

(1937).
2P,-0, Léwdin, J. Mol. Spectry. 3, 46 (1959).
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Addenduni to "Exchange and Coulomb Energy of H2 Determined by Various

Pervturbation Methods'.

III. Previous Perturbation Calculations for H,

Other recent perturbation treatments of H, are the &ingle center

2
expansion calculations of Dvo¥d&ek apd Horék,S4 wﬁo'obtéineg a dis-
sociationnqnefgy of 4.207 eV; and. the calculation of Kirtman and

Decius,57‘which employed the same approach as Matcha and Byers Brown

with similar regults.

IV. Discussion of Results.

As He:ringzz has émphasized; the Heitler-London wavefunction
A'f 750 for the hydrogen molecule predicts the impossible result
thét the 32:: energy crosses the 123%* energy at large’Kkﬂz 50362
internuclear separations. The physical reason.for this is easy to
understand iﬁ terms of electron correlations: the eiectrons are
prevented by the "exclusidn principle fram getting tao close td each
other in the H;itler—London wavefunction for thé Efiplet?étate; but
the singlet wavefunction gives a small, but finite, probability for
the elebérAné to coaleshé:' Thié results in.an errar in the Heitler-
London enérgf'for the sihglet state @ﬂich is greate% thaq the error
for the friplet Stété. At large distances, where the error is greater
than the splitting between the levelsé a crossing occuys. As Table VIII
shows, and as haslbeen foﬁnd by Alexander and éalem,29 acéurafg
numericgl values of E(exch ) can be obtained by a second order Fa}cula«
tion, even though it is not likely that thé perturbation theory (in

low order)- gives the correct analytical R-dependence of E(exch ).
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- [ .
A. Arguments that ZE(z)(EL"H'AV) ~ & .(d"s)-

Van der Avoird has extendedsiL his calculations to R = 20 50.
At R=15 a s he also observes the second order emergy being too small
by a factor of two, but suggests that it could be due to a lack of

continuum functions in his basis set.
z 7 f2). , 4.n
B. Argpments that - E 2> (Lt~ Ha v) v é E (z)édi.soz'
; i . : u
In Section 4.3, the double minimum delta~function model for H;l
is solved exactly for the various schemes. In this case it is found

that

EXUs) = - e 2R L 0le k) ;

and
7(‘ 2V, . - - - I ,-—,2 - - .
E @(ei-puav) = -Le™R + Ofe3R).
s -3R.-
Thus, for 1'a~r;ge distance. where €& can be negtected,

E D (e trv) ~ F EO (IS

Thus, a].‘tkfoughit has not been provedzth’at the EL~HAV secopd order
energy ap.proa‘ch(f_s on‘e-half, the second order dispersion energy at large
distances, th‘is ﬁzz.scrgpangy has appeared in every application t‘hus
_far- reported. Thg,pos.sibil_ity of modifying the EL-HAV procedure to

remove the discrepancy is considered in Appendix D.
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Summary of Exchange Perturbation
Calculations for H, at Largc Separations®

JOSEPH O. HIRSCHFELDER AND PHILLIP R. CERTAINY
The University of Wisconsin Theoretical Chemistry Inslitute, Madison, Wisconsin
and
The University of Florida Department of Chemistyy, Gainesville, Florida

Abstract

This paper is a summary and appraisal of the recent work of the authors together with
Kolos and Wolniewicz which applied four types of perturbation procedures to the cal-
culatian of the energy of the ground state and first excited state of the hydiogen molecule at
large seppeations.  All of the perturbation techniques gave good values for the exchange
encrgy but less accurate values for the Coulombic energy. The reasons why the second-
order Eisenschitz~London (or van der Avoird or Hirschielder niav) encrgy approachcs
onc-half of the correct limit at large scparations are discussed, There secms to be no unique-
ness to the orders in an exchange perturbation problem.

“There is considerable interest in the development of perturbation procedures
for exchange forces where the molecular wave function and the basis set have differ-
cny symmetries. Different formalisms give different results for the second- and
highey-order energies. The mathematical problems have been discussed elsewhere
[1]. A basic difficulty is that the order of the perturbation terms is not uniquely
defined, Thus, if 4 is the operator which projects the component with the
symmctry of the desired molecular wave function, then 4 commutes with the molec-
wlar Haniilionian H. However, 4 does not commute with ecither the zcroth-
order Hamiltonian H, or the perturbation ¥ = H — Hy. Thus, we have the
seeming paradox,

(1) AHy — HAd = VA — AV
Zcroth order  Tirst order

In any-conventional perturbation scheme, one would suppose that the leftshand
side of'this equation is zeroth order and the right-hand side is first order. By the use
of (1), the apparent orders of various terms in a perturbatjon expansion can be

* This work was supported in part by National A ics and Space Admini: ion Grant
NsG-275-62 to.the University of Wisconsin.
+ National Scicnce Found Grad Fellow.
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arbitrarily shifted. How subtle are these shifts in the order may be scen from the
following derivation. .

Let @, be the zeroth-order wave function and let the set of functions @, Qy ,
«++ span the Hilbert space of H. The exact wave function can then be written

@ Y= Q + 369,
fex
The Schrédinger equation bétomes
. . I,
(3y (H — E)Q, +‘§ e(H ~ E)@; =0
i

Multiplying (3) by a function y* and integrating,

 WHIR | U H=EQ)e
@ BTy T2 GToy

But multiplying (3) by @} and integrating gives

P {G H — E Q) _ O H~ E Qg
U QUE-EIR) i QITH-EIQ)

Substituting (5) into (4); and iterating,

(5

® E=E® L ED L & 4 ...
where
- Sl H, 1) {2l ViQo
Eo o K e (9e) E@ o ML 10l
(Z} Q- ! ¢4 ! (2]
(Ul H —~ E1Q,XQ) H — E 1y
3#0 (Zl QNG H~ E )
The convergence of the seo\que_nce‘ depends upon the non-diagonal elements
(@] H — E |Q;) being small compared with the diagonal elements (@) H — E
1Q). If x = @y, (6) is the familiar Brillouin-Wigner series. For the present
examples, let @, = A4f; and Q; = f; for § 5 0, where
® {Hy — €olfo = (H, — &M =0

The lowest orders of the mr-tuav (Bisenschitz-London 2], van der Avoird
[8], or mav[1]) perturbation procedures correspond tosettingy = ¢y = 4f;. Then

Q)

E® =

(ol V145
E® = (1 o o Y 10
o RN AP
Ul (7 = EO)A |3 AV — B9) 1y
EQ R
=2, Gal 41tes — <0 o
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Here O(V3) are terms which appear to be “third order” or higher in the pertur-
bation. In any case, the O(V?) terms do not appear in the eL-HAV second-order
energy.

The lowest orders of the ms—vMa (Murrell-Shaw [4] or Musher-Amos [5])
procedures correspond to setting g = f, . In this case, £ and EW are the same
as before, but

10 0 = s SV LU AY = B9 1y

P AEETAV s e

Here the O'(V?) apparent “third order” and higher terms do not appear in the
Ms—Ma second-order energy.

Although the derivation of the Ef y,v and the E{ 3, are very similar,
the resulting formulae are quite different. The difference between these two
“second-order” energies can be traced to “‘third-" and higher-order terms in the
perturbation sequences.

There have been many other types of perturbation schemes proposed for
calculating exchange forces. One of the most curious is the ms (Hirschfelder—
Silbey [l, 6]) scheme which proposes that there exists a physically significant
““primitive function” whose symmetry projections correspond to the wave functions
for the family of quantum states arising from a single-electron configuration. The
function f; is the zeroth order of the primitive function.

Intuitively, the ideal perturbation treatment would seem to be the straight
Rayleigh-Schrédinger (rs) procedure. For one-or two-electron problems where the
wave function separates into a space function timesa spin function, Sternheimer [7a]
showed how to form a satisfactory zeroth—order Hamiltonian. If K is the kinetic
energy operator and 4f; is the zeroth-order wave function, then the “Sternheimer
Hamiltonian” is P

an Hi =K+ [‘°_If§ﬂ

Clearly, Hidfy = €4fy. The Sternheimer Hamiltonian together with 4f; forms
the basis for sctting up a Rayleigh~Schrodinger perturbation procedure. The
Sternheimer Hamiltonian is the only possible zeroth-order Hamiltonian corre-
sponding to’ the zeroth-order wave function 4f, which has a local potential.
Unfortunately the Sternheimer Hamiltonian cannot be generalized conveniently
to many-electron systems [7b].

Since there is no way of-telling a priori from the formalism which of the various
perturbation schemes gives the best second-order energy or gives the best expecta-
tion value of the Hamiltonian corresponding to the wave function accurate through
the “first” order, we must resort to mathematical experimentation. The hydrogen
molecule would seem to be the best “guinea pig”. Recently, Certain, Hirschfelder,
Kolos, and Wolniewicz [8] have made calculations for both theZ} ground state
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and the 3%% first excited state using a basis set of Coolidge and James type func-
tions (70, 50, and 30 terms for R = 4, 6, and 8a,, respectively, for the EL-HAV,
us, and ms-Ma procedures; and 50, 35, and 20 terms for R = 4, 6, and 84, ,
respectively, for the rs). The first-order wave functions were determined by
varying the coefficients of these basis functions so as to satisfy a variational prin<
ciple. The zeroth-order wave functions are the usual Heitler—London cxpressions.

i
TabLe I. Accurate variationally determined energies of the ground state (g) and the first
excited state (u) of the hydrogen molecule. Egqy and Eyyop are given by (12) and (13).

Rja, & — B VE — ¢ €0 — Ecout —Eoxeh
4 3592.6 et 1453.3 cm™? 1069.6 em—! 2523.0 cm™*
6 178.9 41.2 68.8 110.1
8 11.6% —4.3 8.0 3.6

¢ In the new variational calculations given in [8] the improved value of 11.74 em™ was
obtained.

Table I gives theaccurate binding energy of the ground state *2¥ of the hydrogen
molecule, ¢, — 8E, and the accurate energy of interaction of two hydrogen atoms
in the first excited 3%} state of the hydrogen molecule, "E — &, . These values
were previously determined by Kolos and Wolniewicz [9] using the Rayleigh~Ritz
variational principle together with a very large basis set. The corresponding
accurate Coulombic and exchange energies are respectively [10],

(12) €0 — Egou = tl(e — %E) — ("E — )]
(13) —EBoxon = (% — *E) + ("E — «)]

Itshould be remembered that €, — 8E = 38293 con! at the equilibrium separation
R = l.4q,. Also, the minimum in the "E — ¢, occurs at R == 6.85q, .

TasLe II. Contribution of the first-order energies to the interaction,
Coulombic and exchange energies.

Riay EE@ (o — E) YED[(E — ) — ((J}J)ul/ (0 = Egom) — Eélx)ch/ = Eoxen
4 0.69 1.33 0.26 0.87
G 0.62 2.09 0.19 .90
8 0.33 0,70 0.05 .92

Table II shows the fraction of the interaction energy which is given by the
first-order contribution. Here, in accordance with (9), ¢, + 8E® and ¢, 4 “E®
are the expectation values of the Hamiltonian for the molecule using the Heitler—
London wave functions for the &% ground state (g) and the 3Z% first excited

state (u), respectively, The first-order Coulombic and exchange energies, 8E{),
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and E$), are given by (12) and (13) with the first-order energies replacing the
total energies of the system. This definition of Coulombic and exchange cnergics
is slightly different from the one which chemists have used in connection with
Heitler-London wave functions. Writing

(14) € + BV = (J £ L)/(1 £)

the chemists have regarded J and L as approximations to the Coulombic and
exchange energies. With our definition, the corresponding Coulombic and
exchange energies are (J — SL)/(1 — §%) and (L — SJ)/(1 — §%), respectively.
The two definitions differ since the overlap integral § is not zero. There is a
considerable body of evidence from the theories of many-clectron systems, the
solid state, and ferromagnetism which shows that our definition is the more
meaningful [11]. AtR = 4, 6, and 84, the value of §'is 0.0357, 0.0022, and 0.0001,
respectively. Because the value of § is small, our conclusions would not be changed
if we had changed our definition of E .y, and Eg,y -

From Table IT it appears that the interaction energy as determined by the
first-order energy is, for the ground state, too small and, for the first excited state,
too large. The first-order energies give only a small fraction of the Coulombic
energy and indeed —EW/[(e, — Eg,,) should approach zero at large separations
where the Coulombic energy becomes equivalent to the second-order dispersion
energy. Itisindeed surprising that E, g, gives 90 % of the exchange energy with-
out any appreciable variation with the separation.

Tables IIla and IV give the results of the Certain, Hirschfelder, Kolos, and
‘Wolniewicz calculations corresponding to various types of perturbation procedures.
Let us examine separately each of the subsections of Table III.

(a) Ground-state energy through second order.

®s is very good, best at R = 4q, .
us and Ms-Ma are both good and give virtually the same values, bestat R = 8q, .
EL~HAV is good at R = 4a, , and becomes bad at R = 84, .

(b) Excited-state energy through second order.

Rs is not good at any separation.

us and Ms-MA again give virtually the same valucs, slightly better than rs at
R == 4 and 6a, but still not good, and very good at R = 84,.

EL~HAV is the same as Hs and Ms-MA at R = 4, but is very bad at R = 6 and
8a,.

(c, e, and Table IV) Expectation value of the Hamilionian for the ground stale wave
Sunction through the first order.

rs is good at R = 4 and 64, but poor at 8a, . The energy is almost unchanged
when 4 is varied since the optimum 2 is nearly unity.
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89

Tapre I1I. The energy through the sccond-order, 165 the expectation value of the

Hamiltonian corresponding to the wave function through the first order, !E(1, 1); the

SE(1, 1) improved by optimizing the normalization of the first-order wave function, WE1, 2);
and the corresponding Coulomb and cxchange cnergics.

R/ﬂo EL~HAYV HS MS—MA RS EL~HAV HS MS-MA RS
(a) (o —*)f(ey — °E) (B) (" — )[('E ~ )
4 0.88 0.88 0.89 0.92 L12 1.1 1.12 114
6 0.86 0.97 0.97 0.97 1.57 1.09 1.09 1.14
8 0.67 0.99 0.99 0.97 0.12 0.99 0.99 0.90
(©) (e — *E(1, D){ep —°E) @ (EQ, 1) — /("B ~ <)
4 0.93 0.92 0.91 0.95 1.05 1.09 1.10 115
6 0.92 0.96 0.85 0.96 1.33 LI 1.57 1.17
8 0.84 0.99 0.67 0.88 0.53 0.93 0.09 0.77
(@) (e ~*E(1, M)/{eg — *E) 0 (B 1) = )/(°E ~ <)
4 0.95 0.92 091 0.96 1.03 1.09 L.10 115
6 0.95 0.96 0.85 0.96 1.11 1.11 1.57 1.17
8 0.99 0.99 0.67 ~ 0.89 0.93 0.93 0.10 0.77
(8 (e0— go)ul)/ (0 — Egou) (h)  eexon/Eoxen
4 0.72 0.73 0.74¢ 0.77 0.95 0.95 0.96 0.98
6 0.64 0.93 0.93 0.92 0.99 0.99 0.99 1.00
8 0.53 0.99 0.99 0.95 1.00 1.00 1.00 1.00
(i) (‘o — EQ, l)coul)/(‘() - ECouX) 3 EQ, 1)exch/Eexch
4 0.85 0.80 0.77 0.82 0.97 0.96 0.96 1.01
6 0.80 0.91 0.63 0.90 1.00 0.99 0.98 1.00
8 0.76 0.97 0.51 0.85 1.02 1.03 1.00 0.95
(k) (eo — E(1; Dour)l (€0 — Ecom) N E(1, Dexen/Eexen
4 0.90 081 ~ 0.78 0.83 0.97 0.97 0.96 1.02
6 0.90 0.91 0.63 0.90 0.98 0.99 0.98 1.00
8 0.97 0.97 0.53 0.86 1.03 1.02 1.00 0.96

Tante IV. Optimum value of the parameter 4 which optimizes the energy *E(1, 2).

Ground state

First excited state

Rjay
EL-HAV  HS MS-MA RS EL~HAV HS MS-MA, RS
4 1.36 1.20 1.16 1.16 1.42 1.08 1.09 0.94
6 1.39 0.97 0.96 0.98 1.89 0.98 0.99 0.97
8 1.92 0.99 0.97 0.90 1.98 0.96 0.97 0.94
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s i not as good as #s when R = 4a,, equal to 6z, and much better at 84, .
Altogether s is quite good at all separations. The optimum 2 is nearly unity so
that the energy is not improved by the variation of .

ms-MA iz almost as good as us for R = 4g; but is very bad at 6 and 84, . Again,
4 is nearly unity and the energy is not improved by variations of A,

EL-HAV with % = 1 gives values lying approximately half way between ms
and Ms-Ma; it s good at R = 4a, , fair at 6, , and poor at 8g,. Variations of 1
make a considerable improvement in the energy, especially at R = 8q, where the
optimum value of 2 is almost two. The A = 2 at large separations corresponds to
the second-order energy being one-half of the dispersion energy. For the optis
mized values of 4, the Er~sav energies are very good at all separations.

(d, £, and Table IV) Expectation of the Hamiltonian for the excited siate wave function
through the firsi order,

®s is poor at all separations and not improved by variations in 3 since the
optimum values of 1 are nearly unity.

s is fair at all separations and not improved by variations in 2 since the optis
mum values of 4 are nearly unity.

Ms~Ma Is fair at R = gy but very bad at larger separations. These energics
are not improved by variations in 4 since the optimum values of A are nearly
unity.

st-Hav with 4 = 1 gives a good energy at R = 4a, but bad energy (between
1S and Ms-2A} 2t Jarger separations. Again, the 52-RAV energies are considerably
improved by variations of & At R == 6 and 84, the optimum value of A is very
nearly equal to two, corresponding to the second-order energy becoming at large
separations too small by a factor of one half. With the optimum values of 4, the
EL~HAV energies are good,

(g, 1, and k) Coulombic energy.

®s is poor for R = 4, and somewhat better for 6 and 8¢;. The resulis for
the energy through the second order are somewhat better than is obtained with
the expectation values for the Hamiltonian at 6 and 84,

us Coulombic energies are comparable to »s at R == 4 and 84, , but become
good to vevy good at 8a, . Again the cnergy through the sccond-order gives better
results than the expectation value of the Hamiltonian at 6 and 8g;.

ms-ma Coulombic energy through the second order is virtually the same as for
the xs; however, the expectation values of the Hamiltonian give much worse
results, especially at large separations.

EL~HAV gives very poor Coulombic energy through the second ovder. With
4 =1, the expectation values of the Hamiltonian give poor results. However,
with the optimum value of 4, the Coulombic energies obtained from the expecta~
tion values of the Hamiltonian are good at all separations,

9G
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(h, j, and 1) Exchange energy.

All four perturbation procedures give very good values of the exchange energy
at all separations. The values obtained using the energy through the second order
are virtually perfect at R = 6 and 84, .

Conclusions

We reach four gencral conclusions.

[13. OF all the schemes which we considered, the Hirschfelder-Silbey procedure gives the
most uniformly good resulls. Nevertheless, we.are not cnthusiastic about this method
because it is difficult to understand the physical significance of the “primitive
function” whose projections give the exact wave function for both the singlet
(g) and the triplet (u) states. Furthermore, the variational principle for the first-
order wave function minimizes

(ol 4y 1 fo) FE o+ (fol 4u] fo) "B

rather than #Ef? and "E(® separately. R

[21. Al of the perturbation procedures give good values for the exchange encrgy bul not
as accurate values for the Coulombic energy. Table IT shows that most of the exchange
energy is given by the first order but very little of the Coulombic energy is given
by the first-order terms. One would expect that the Coulombic energy should
agree accurately with the second-order dispersion energy at R = 8a; and the
agreement should still be fairly good at R = 6 and 4a,. The second-order disper-
sion energy is ’

(15) Ef =,§D|(f°| V(e — &)

In devising a new type of perturbation scheme for exchange problems, it would
be desirable to require that the g,y be equal to the gy, . One might suppose
that the error in Egq, might be due to the basis set which was used rather than
in the perturbation methods themselves. However, this notion is dispelled by
Table V where it is shown that using the Rayleigh-Ritz variational procedure with

TasLe V, Energies (designated by tilde) determined by Rayleigh-Ritz vaviational pro-
cedure uslng the same hasis set ag wad vsed-for the ri-tiav, 115, and Mi=MA perturhations,
compated to accurate encrgics of ‘'able L

S — ¢E YE — ¢ S0~ Ecoul ~Lexch

Rla,
g u
€ —°E E — ¢ 0 — Egour —&exch

4 1.00 1.01 0.99 1.00
6 0.99 1.06 - 0.97 1.01
8 1.01 1200 100 1.01
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the same basis sets gives extremely good values of both the Coulombic and exchange
energles. Thus, we would get about the same order of accuracy for the energies of
the singlet and triplet states if we followed the suggestion of Robinson {12] and
took the exchange energy to be L, and the Coulombic energy to be £, .
This would have the advaniage of greatly simplifying the caleulations, Of course,
the precision would not be improved.

{8}, At lorge seporations, the second-order BL-BAV entrgy seems o apfrooch one half
the Coulombic {or dispersion}ensrgy, "Thi¢ Is seon most dlearly in Table VI, Al of the

Tazrz VI Comparison of the secondeorder perturbation enefiies with
the acourate Coulombic cnergy.

—*EM{eg —~ Beou) ~"E (g ~ Bogur)
Rlay

EL~HAY HL ME-MA B BL-NAY 8 WE-BEA RS

4 064 .55 0.69 0.78 0.29 0.30 0.8 0.26
& 060 .89 .89 .89 0.51 8.80 a.80 057
8 0.5 .95 436 9.92 o4 i3] 0.81 0.56

other pertarbation methods gives values of —~%E™ and —"E™ which approach
{6 ~ Ecuy) at large separations. Closely related is the fact {as shown in Table
IV} that the optimum value of & for the mr~nav approaches two at large separa-
tions whereas the optimum value of 4 for the other perturbation schemes is close to
unitys Let us consider more closely the behavior of Et% (zr~av) as given by (9).

For the singlet {g) and the triplet (u) states we have the prajection operators
Ay == (U + DL + Py} and 4, == (U1 — I}{1 — Py} where Pyg permutes
the electronic coordinates and Iinverts the wave function through the midpoint
of the interpuclear axis. The £, = 05, (110,4(2) s the product of 2 hydrogen
orbital for electron “1 zbout ceater “¢” times another hydrogen orbital for
slectron “27 shout center 5, We will Tet f7 be the function £ with electrons
“1* and *2” interchanged.

At Jarge separations, there are shmplifications in {8) which can be made since
the second-order energy varies as HA® and we can neglect terms which deexcase
cxpenentially with the separation, Howaver, we must be careful since an infinite
sum of terms, each of which decreases exponentially with &, may vary a3 a power
of 1/R. Before writing down the asymplotic expression for the second-order
energy we should note that the overlap integrals, {5 j ), the first-order energics,
SEW and "B, and the second-order exchange energy all decrease exponentially
with R, Furthermore, Table IILh assures us that the zi-mav exchange energy
through the second order bohaves properly at lavge separations. Thus, at large
separations, to the acouracy which we require, #EW = 5% = ER, . Using (3)
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to obtain the equation for E&); and expressing its limit as R becomes large,

€ — €

(16) E(s1y1av) = }EE, — ,22: KAV IR
i#8 3 7y

Each term in the summation decreases exponentially with R. However, withouta .

detailed investigation we cannot reach any firm conclusions about the behavior
of the sum. It certainly scems unlikely that at large separations E(®(rL~saAv)
would have the correct limiting form equal to Ef), . Our caleulations for H,
indicate that it does not.

Van der Avoird [13a] has calculated for Hf the values of £ and 'E (1, 1)
using his method {which is equivalent to the EL~HAV scheme). TFor R < 7a, he
obtains excellent agreement with the exact values. For these scparations the ex-

change energy is larger than the Coulombic energy, however, and we would not

expect 2 meaningful comparison between £ and £, for separations smaller
than the van der Waals mini for the excited state, which occurs at 12.554, .
At our suggestion, van der Avoird [13b] has extended his calculations to distances
up to 20a; and finds that for large R, the second term in (16) vanishes with respect
to the first. He also finds that highly excited states make a substantial contribution
to the sum in (16) for large R, suggesting that accurate values are difficult to obtain
with a truncated basis set.

For an analogous double minimum one-dimensional potential, Certain [14]
was able to evaluate the corresponding expressions rigorously and in this case he
found that the sum in (16) was smaller than ), by a factor of the order of R—2.

4], If the perturbation schemes thet we have considered are to kavs practicel value in
delermining energies, new methods must be developed for solving perturbation equations
witheut recourse fo the use gf large basis sets {15]. Table III shows quite clearly that
third- and higher-order contributions to the energy must be included to obtain
accurate results. The effort involved in such a calculation would certainly be
greater than a straightforward Rayleigh~Ritz variational calculation if it were
necessary to employ large basis sets and variational principles to compute each
order of energy.

In the various schemes for perturbations involving electron exchange, for
properties other than energy, one still has “Dalgarno-type” interchange theorems.
However, the interchanged perturbation equations are themselves extremely
difficult to solve,

Further rescarch is required to develop new Lechniques for solving perturbation
equations or to establish a procedure for exchange problems which is more satis-
factory than the ones which we have considered.,
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One-Dimensional Model for Exchange Forces*
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Four different types of perturbation theories for the exchange forces between two atoms are applied to the
lowest gcrade and ungcradc state of 2 simple one-dimensional model. It is shown that the second-order
energy in one of the expansmns (the Eisenschitz-London, van der Avoird, or Hirschfelder HAV expansion)

d,

exhibits in the limit cor

to large mtemuclcar distances.

I. INTRODUCTION

The formal'—7 and computational®? aspects of the
development of a satisfactory perturbation theory for
exchange forces between two atoms have received a
great deal of attention recently. In an application® of
three different types of perturbation treatments (EL-
HAV, HS, and MS-MA) to the interaction of two
hydrogen atoms, it was discovered that the EL-HAV
(Eisenschitz~London, van der Avoird, or Hirschfelder
HAV) expression for the second-order energy apparenily
fails to agree with the second-order dispersion energy
(no electron exchange) at large internuclear separations,
where exchange forces are negligible. No-rigorous state-

ment regarding this discrepancy could be made, how-

ever, since the second-order energy was not evaluated
exactly.

In the present paper, we apply the following formal-
isms to lowest gerade and ungerade states of a simple
one-dimensional model:

RS: An unsymmetrical Rayleigh-Schrddinger ex-
pansion. The second-order energy is analogous to the
second-order dispersion energy of the H-H interaction.

EL-HAV: Eisenschitz-London,! van der Avoird,® or
Hirschielder YIAV® expansion. These expansions give
the same expression for the second-order energy.

HS: Hirschfelder-Silhey expansion?

MS-MA: Murrcll-Shaw? or Musher-Amos* expan-
sion. These two formalisms are equivalent.”

This model calculation has the advantage that the

* This work recexved ﬁnanc1a1 _support from the National
A ics and Space A ration Grant NsG-275-62.

{ National Science Foundation Graduate Fellow.
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EL~HAY second-order energy can be evaluated exactly.
The discrepancy with the analogous “dispersion energy”
is verified for this model. The results obtained here are
also relevant to the question®: “Which formalism pro-
vides the best second-order energy and the bes! expecta-
tion value of the Hamiltonian using the wavefunction
accurate through the first order?”” As in the application™
to the hydrogen-hydrogen interaction, we do not find
any of the four perturbation schemes outstandingly
better than the other three. ™

I. A SIMPLE MODEL FOR EXCHANGE FORCES

We consider the one-dimensional system described
by the Schrédinger equation

— 3" () +U (2) ¥ (2) = B (=), (¢))]
U(#) =(1/8R) (x— R)2(s+R)% (2)

The potential U (x) has minima at x== R and a maxi-
mum at £=0 of height R%/8. As R increases without
limit, U(x) evolves into two simple-harmonic-oscillator
(SHO) potentials centered at -= R. Thus, at R=« the
lowest state is doubly degenerate w1th E=3. As R
decreases, this state is split into a gerade and an un-
gerade state under the influence of two physical ef-
fects. The first, a long-range effect due to the lowering
of the barrier heiglit, increases the space available to a
particle in the lowest state and decreases its encrgy.
The gerade-state energy is affected more since sym-
metry forces the ungerade-state wavefunction to have a
small amplitude beneath the barrier. The second effect,
a short-range effect due to the decrease in separation
between the wells, restricts the particle to a smaller
region and increases its energy.

These considerations indicate that the energy of the
lowest state decreases initially as R decveases from
infinity. This statesplits into a g and a « state, with the
g state decreasing in energy more rapidly than the
u state. Finally, al short range the encrgy of both states
increases to infinity. This is the same qualitative be-
havior as is found for the lowest states of Hy* and H,,
and is the reason for the choice of the model.

In the discussion which follows, ‘E will denote the
exact energy of the lowest gerade (f=g) and ungerade
(¢=u) state. Although no closed form solution exists
for (1), the method of Secrest, Cashion, and Hirsch-

where
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felder®® can be used to obtain ‘E to the required ac-
curacy.,

III. RAYLEIGH~-SCHRODINGER EXPANSION

For R large the minimum in U(z) at x=—R is a
small perturbation of an SHO potential at x=R. To
show this we change variables to g=R—zx. Then (1)
becomes

(HotV—~E)Y(g) =0, (3

where
Ho=—4(@/dg)+ig, )
V=—(1/2R) ¢+ (1/8R) ¢\ (5)

The eigensolutions of Ho are (¢, e =k-+3), where
du=(Var2*k))~12 exp(—g¢¥/2) Hi(g),

and the H;(g) are Hermite polynomials.

The natural perturbation parameter is R-1. This
choice does not correspond to the symmetrical expan-
sions, however, so instead we expand in powers of the
total perturbation V. The usual formulas of Rayleigh~-
Schrodinger perturbation theory yield

(6)

BO=q=},
EW(RS) =3/32R,
E®(RS) =~ (11/32R?) — (21/512RY), (4]
and
YO(RS) =y,
YO (RS) =1§(¥ ¢1+\1/—§ ¢3)—‘ 1%2(33_\;2 ¢z+%: ¢4)~ .

This approach does not recognize the inversion
symmetry (%——=x) of the total Hamiltonian and pro-
duces a wavefunction which has neither gerade nor
ungerade symmetry. A simple way to obtain such a
function to act on Y@ (RS)+y¢®(RS) with operators
which project onto gerade and ungerade function
spaces. These operators are

A,=3(1+D),
Au=¢21'(1"'1): (8)

where [ is the inversion (x——x) operator, In this way
we obtain a trial wavefunction

F(RS) = 4.y O (RS) +N:4 Yy (RS), 9

where \; is a variational parimeter, and use it to com-

pute the expectation value of the total Hamiltonian-

H=Hy}V:
E(RS) = (F(RS) | ZF(RS) )/ (F(RS) | F(RS)).
(10)

2 D. Secrest, K. Cashion, and J. O. Hirschfelder, J. Chem.
Phys. 37, 830 (1962).
1

*]. O. Hirschfelder, W. Byers Brown, and S. T, Epstein, .

Advan. Quantum Chem. 1, 265 (1964)..
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It has recently been shown' that the resolvent oper-
ator for a Hamiltonian which is the sum of the SHO
Hamiltonian and a polynomial perturbation AP(x) of
degree exceeding two is not expressible in a convergent
power series in A. Thus the energy is not analytic at
A=0. This is true even if the total potential 2+?+AP(x)
is bounded from below, since in this case the potential
$a?—AP(x) is not bounded. The RS scheme is of this
type for the model considered here, and will therefore
not converge. Nevertheless, the wavefunction (9) is a
valid trial function and (10) yields an upper bound to
the true energy.

IV. SYMMETRIZED EXPANSIONS

The general structures of the EL~-HAV, HS, and
MS-MA formalisms have been fully treated else-
where.'™” The zeroth- and first-order energies and the
* zeroth-order wavefunction are the same in all three
formalisms:

B0 ==},
EW = (gy | VAigo)/ (¢0 | Aio)
= (3/82R)FHL(1+R) e/ (1) ], (11)

where the upper (lower) sign corresponds to {=g(u),
and

O =4 g, (12)

It is in expressions for the second-order energy and
first-order wavefunction that we encounter differences.
The most direct way to compare the results is with the
spectral expansions of {E® and %®:

E®= (g | A-d’o)"k;o (Txfﬁo [ @6} (x| Sidod/ (e—e),

(13)

BO=T L] S}/ (a—e) P itacdin.  (19)
Here P; is a symmetry projector, S; and T are opera-
tors which differ in the various formalisms, and e is a
constant which fixes the normalization of 4%®, Explicit
expressions for Py, Si, T, a; are given in Table I.

The sums for ‘E® and % are easily evaluated
numerically. Below we shall consider in detail the ana-
Iytical evaluation of ‘E®(EL-HAV) for large R.
Having obtained %® we construct the trial wavefunc-
tion % analogous to (9),

POy, (15)
and compute the expectation value of 77,
E= (G| I/ (B | 9), (16)

with A; optimized.

% W. M. Frank, J. Math, Phys. 8, 1121 (1967).
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Tapte I Definitions of operators and constants appearing in Egs. (13) and (14).

Formalism ‘T, St P; o
EL-HAV A(V—SEW) Ai(V—SEW) A;  chosen so that
(g0 90 )=0n
HS A (V—IEW) A (V—0ED) As 0
ALV ==ED)
MS-MA 14 A V—IEW) 1 0

 This Is the normslization used by van der Avolrdt and Hirschfelder.
V. DISCUSSION

Table II contains the exact energies ‘L, the partial
sums of the perturbation energies RO EO - E@),
and the expectation value of the Hamiltonian ‘. The
results obtained here achieve significance only if it is

expected that analogous features will be observed in
molecular calculations. The results of similar calcula-
tions! for the hydrogen molecule reveal striking paral-
lels. Thus there is good reason to believe that conclu-
sions reached here will remain valid for molecular
systems.

Taste IT, Energy of the lowest gerade and ungerade states.

A, Gerade
8 B0 40 B0 Lo f ¢ H[Eqs. (10), (16)] Optimum X in parentheses
sE

R Exact RS EL-HAV HS .MS-MA RS EL-HAV HS MS-MA

0.8 0.3308 0.0093 0.1757 0.0883 0.0273 ' 0.3469 0.3488 0.3529 0.3675
0.2254) (0.3302) (0.2391) (0.2625)

1.0 0.2940 0.2090 0.2083 0,1433 0.1008 0.3082 0.3089 0.3145 0.3305
(0.3042) (0.4528) (0.3187) {0.3427)

1.2 0.2806 0.3066 0.2337 0.1812 0.1521 0.2995 0.2967 0.3061 0,3236
(0.4023) (0.5964) {0.4124) (0.4359)

2.0 0.3502 0.4349 0.4155 0.3827 0.3815 0.4056 0.3857 0.4065 0.4255
(0.7895) (1.3935) (0.7868) (0.8723)

2.6 0.4307 0.4621 0.4780 0.4554 0.4554 0.4652 0.4579 0.4652 0.4308
0.8229) (1.6236) {0.8228) (0.9184)

3.0 0.4604 0.4715 0.4883 0.4707 0.4707 0.4775 0.4751 0.4775 0.4903
(0.8252)  (1.6077)  (0.8252)  (0.9000)

5.0 0.4895 0.4899 0.4967 0.4899  0.4899 0.4911 0.4909 0.4911 0.4972
(0.9185) (1.8314) (0.9183) {0.9366)

B. Ungerade

- v L0 fu EO e QD “ E[Eqs. (10), (16) ] Optimum X in parentheses
R Exact RS EL-HAV HS MS-MA RS EL-HAV HS MS-MA
0.8 1.1403 0.0093 0.8999 0.6178 0.60’13 1.1764 1.1829 1.1775 1.2132
(0.1849) (0.3457) (0.2062) (0.2744)

1.0 0.9314 0.2090 0.8495 0.7023 0.7089 0.9452 0.9485 0.9456 0.9690
(0.2345) (0.4523) (0.2531) (0.3378)

1.2 0.7870 0.3066  0.7527 0.6676  0.6652 0.7945 (.7958 0.7945 0,8112
{0.2778) (0.5536) (0.2014) (0.3924)

2.0 0.5232 0.4349 0.5257 0.4916 0.4918 0.5255 0.5269 0.5251 0.5390
{0.4895) {0.9494) (0.4902) (0.5850)

2.6 0.4776 0.4621 0.4915 0.4688 0.4689 0.4836 0.4832 0.4836 0.4975
{0.6946) {1.3268) {0.6947) (0.7705)

3.0 0.4740 0.4715 0.4904 0.4707 0.4707 0.4809 0.4802 0.4809 0.4935
(0.7857) (1.5031) (0.7857) (0.8533)

5.0 0.4895 0.4899 0.4967 0.4899 0.4899 0.4911 0.4909 0.4911 0.4972
{0.9185) {1.8315) (0.9183) (0.9366)
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A desirable feature to require of any symmetrized
expansion is that it produces an expression for the

energy which agrees, order by order, with that given -

by the RS scheme for R large enough 50 that terms

O(¢e#) may be neglected. The results in Table II-
show that the EL-HAV expansion fails to meet this,

requirement.
For R large we may write
$EO(EL-HAV)~ ZI (gol Vo) I*
p—
LY 2
‘zl:l (o | (VGB—E ) e} | et

where the tilde indicates asymptotic equality. The first
summation is 3 £®(RS). To evaluate the second, we
use the completeness of the states ¢ to write

$ | {do | (V—~SEW)Ig:) |2
=1

€€
=53 @l (V—Ee)
=) )

x$ @l @llte) ) (y—smmy. ()

€—¢€x

The advantage of this procedureis that {gol( V—"E®)¢;)
vanishes for [>4. The overlap integrals (¢ | I¢x)-are

given by the formula
xH‘k—Za /2
LT ] e

where min(l, k) is the smaller of J, k, and x=2R?

min(L,k)

(o] Ipn}= E (=)

Using this expression and ¢—e.=—k, the summation- -

over k in (18) may be evaluated exactly, yielding

& o It) G| Tgm) (N
& B a_(llml)

) E==&
M _1
X[Ei(x) —Ing—y—2, M
P &

+3

proer o:(l—-oz) fa _72 a(m—a)Alx"

} o

where Ei(#) is the exponential integral, 10y =0.57721- .+
is Euler’s constant, and M is the larger of J, m. The
Ei(x) has the asymptotic expansion!®

e"El(x)NE (o= 1)1 1
so that M
Al Ion) (| Ibm)  (wH\V M!
E o—e, (M) x”“" - @

The nonvamshmg matrix elements of V in (18) are

I, | 36"
@l Ven)y= 32R2 728 " 3 O em
\/3
5ta+ R 514, (23)

where 8y, is the Kronecker delta. This leads to
oLl =BT 15
= €€ 64RA
Thus, {E®(EL-HAV) has the asymptolic expansion
SE@(EL~HAV)~—(11/64R?) — (141/1024R*) +-+ -+,
_ 29)
so that for R sufficiently large so that terms O(R™)
may be neglected, ‘E@(EL-HAV) is one-half of

LE®(RS).
Tinally, it is noted that none of the perturbation

e, (20)

" schemes is strikingly better than the other three. In

fact these results indicate that perturbation theory
may not be a very efficient way of computing the total
energy of systems of this type.
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4.3 The Delta-Function Model.

In this Section the differentvformalisms discussed in Section 4.1
are solved to infinite order in the perturbation for the double minimum
delta=-function model49 of the hydrogen molecule ion. The exact
Schrgdinger equation and the polarization expansion have been con-
sidered previously.49 This model is of interest because the exact
energy can be obtained in all the methods in analytic form. Further,
all of the excited eigenfunctions of the "separated atom" problem are
continuum functions, so.that to.the extent that the model is analogous
to molecular problems, the role of the continuum in the evaluation
of second order emergies may be clarified.

The model comsists of the one-dimensional:Schrddinger equation

(H-*e Y@ = o

s (4.1)

where

L dr
H= 33 + U,
and

Uty = - 8lx-§) - s(x + &),

where X(x) is Dirac's delta function. The model has two bound-state
. * h o . e g
wmums(-E)‘QD,metMs@umesmhwmsmmmy
with respect to inversion (X-" -’)(),
As R increases without limit, *E and TE each tend to % .
+
This is analogous to the behavior of the lowest states of F{z . The

model differs from F++

2D however, in that there are no algebraically
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‘decreasing terms in i’E,(R) and, hence, the ungerade state has no
van der Waals minimum,

The following definitions are introduced:

[

H® = 54 —s(x+’)

@) o) — X+ R |
é°=—‘£z" ; qb = e ‘z;

H® = - sx- Ry s

>
£

s = %_“[l + (x—»-—x)]o

Further, the Sternheimer hamiltc:nianl‘7 for this model is

Hoy = TP 2T = %42 v& U[K)

To solve the various perturbation formalisms to infinite order,

it is convenient to introduce an interpolation equation for each

formalism. These equations are-listed in Table. 4.1. Each contains
a parameter ) in such a way that for A= O , the interpelation
equation reduces to the unperturbed problem; and for A=1! , the
equation is equivalent: to the exact Eq. (4.1). The solution of the
interpolation equation is expanded .in powers of A to obtain the

pertarbation energies and wavefunctions.
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Exact Interpolation Energies. The solutions é to the interpola-

tion equations in the regions x| 3 R/y are given in Table 4.2 in
terms of unknown constants. These constants are fixed by the con-
tinuity [é (L Ry +€) = é (2R -g) s E~2>0 J , normalization,
and cusp .conditions at .the singularities. The last are derived by
integrating the interpolating equations over the interval
,3;32,.,5 sxst’ ¢ y E> 0 , and are listed in Table 4.3.
In all cases, there are precisely enough equations to fix the unknown
constants, including & , uniquely.

The result of the above procedure is a ;ranscendental equation
for B , as given in Table 4.4.

It is noted that the Sternheimer and Eisemschitz-London-
van der Avoird procedures yield identical interpolating energies.
This is apparently a peculiarity of the delta-function model, and
not a general result.

Given the expression for the exact & , the radius of convergence
of an expansion in powers of A can in principle be determined.

49,50 o

Although this has been done for the polarization procedure,
complexity of the equations discourages the extension to other proce-
dures. At any rate, from a practical point of view, interest centers
on how well each of the E , accurate through second-order, mimics

the exact energy.

Second-order Energies. Iteration of the transcendental equation

for exact energy yields the expression

e—R + Ef_ZR

LE(1+R) €R

tE = -% 3 - te R L 0E),
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The first term is the zeroth order energy. The second is the Heitler-
London first order emergy. The third term will be taken to be the
correct asymptotic behavior of secoud order interpolating.energies.

Expansion of the transcendental equatioms for the interpolating
energies in powers of ) leads to the results in Table 4.5 for.the
asymptotic férm of the second order energies. The algebra involved
in these -calculations was checked by solving the first:order equations
directly, as discussed in Appendix E.

Discussion. It is noted that the second order emergy in the
Eisenschitz~London-van der Avoird method differs f?qm that in the
polarization expansion by a factor of two, as has been found for the
models previously discussed. TFor the delta-function model, however,
this differeﬂce is necessary-to correct the wrong behavior of the
second- order polarization energy. The correct asymptotic behavior
is also obtained by the Hirschfelder-Silbey and- Sternheimer procedures,

but not by the Murrell-Shaw-Masher-Amos procedure.



TABLE 4.1: Interpolation Equations for the Schrgdinger Equation, (4.1)e

Procedure

BEquation

Exack

Polarizations

Eisenschitz—Lomdon,S’9 van der Avoird

or Hirschfelder HAV13

EL-HAV

(RS + HY L 233P =9

( H® + A HD ~ B ) Toy=0

12

[HO - g® + A (QOH - g0y +¢ “’)] *dty=0

:t!g? = fq:f 2@2;

, Murrell—shaw18 or

Musher—Amoszo

MS-MAlg

(HD 4 AHD S Y2 Gery = (1-2) [Ag, HOT

e Az 1495 = (9] Ay [$2>

Hirschfelder-silbey21’13

(H® + AH® - *EyA, = TEMA )E0)=0
<P UIHY 1Ap SN '

* -

HS “E) = TITNEDS
Sternheimer * %0 + +

i (24 4 2 TP - FEe)) T Wen =0

BZOT



" TABLE 4.2: BExzact Solutions to Interpolacing Equations. ) E (),) - ..._f.z an‘,

" TE Oy or  BUAY
Frosedure x> ¢’z iR < W #~E/z
‘ ¥ Iy
- Vel Yo X "}fgx N &
Exact f-l;»r.: A e = 3 Be—i +Ce 9 e
-y X Yu X -¥eX - ixt
Polarization Y= Ae % 5 Be +Le 3 e
-t
Ble®* £e” =) -y ) -
EL-HAV 5. 2 U ae™ 5 \ :e ® s he
#Cle* xef)
Yo X -Yk —~ Yl
MS-MA g = A B* ; Be® +Ce ™ De I
X, o HWX)
v a-vx L | Ble L Blxt 4 o Lixl
HS é = +Ae 5 PN
re(ed Ko XY
; =¥, ] b 23 x e -o)’ i
RS tf= A T 5 Eey"’x + Ce % § e % I

49201



w
TABLE 4.3: Cusp Conditions for Interpolabing Equationss

Procedure =-a z = Ry ' azn Rz
Rxact A0k + 2%F ) =0 A Zay + 2 *Fy=o0
Polarization AP-a) + 2 Ttma)=0 AT + 2 Bwy=0
EL-BAV AEE -0y + 2 ER (-a)=0 50 + 2% () £ ) *Ela)=0
ws-MA ARE oy v 2 ¥ ooy + O "m0 AT ) + 22 B £ (4-0) =0

‘ Ea) + 22 @@)=0
H3 AR ey + 2 Et-)=0 A£(a)

15327 ® »zﬁ + M’ FEe)=o

RS AEE -a) ¢ 2 e *:E(«-a}-a N A O

’ = fon df - ﬁ ]
A E0) oyt z &%Lgma dx \M;a

201




TABLE 4.4: Transcéndental Equations for Exact Interpolating Energies. i'E,(’Zt)'; b 5’7’

2 O ¢
Procedure ’ Equation
- ¥
Exact }'_" = I £ e =R
o ~ —2¥%R
Polarization (h _))(yt —g) = e
. _ (iExeR)(ute % Ry
EL-HAV ¥ = | £ e-R
-R ’zth_b"é-Q“)?-R
. =2 R 2¢ L. .8 L
HS-MA (=¥ -1) = 2e "R & txe™ R [‘”&: Y
[m. —&Luwme—wz)l[ Y -*zuuvwﬁ“”""] = & (1=2)%
B [+ o- %R - e~ %-R i
e Ty (e R
{nwcwe"‘*“ = ey [”‘ — )}
PP A \re & t—e R

- (1£2e~R)(1 % o~ %R)
RS ‘ % = { £ e-’

POl




TABLE 4.5:

Asymptotic R-Dependence of Second Order Energies.

Procedure T2

Exact™ - e *® O (e~ 3R)
Polarization - g 2R O (E-BR)

EL;HAV -+ e 2R O (8—3/?)

HS-tiA pe " O(e™*)
HS -4 e~ R O (e—3f2)

s she™ 4 gee)

See text.

3701
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APPENDIX A. Notation for Chapters Two -and Three.

The compact matrix notation used in Chapters Two and Three is
called by Lowdin (sée, for example, ref., 62).the “fat notation'.

i) Matrices are denoted by fat symbols; e.,g. in Eq. (2.13),

€ € - -- €

is
& = €1 € L €

ve

& = (3.3, ...8,),

ii) The sum and product of two matrices is defined in the usual
‘way. The adjoint of a matrix and the qxultiplicétion of a matrix by a
scalar is élso defined in the ordinarv wav.

ii:i:) Tt}é matrix’ of -an operator (O in the space @ 1s denoted

by ‘(@ @ l@) » where (<§l@l@>)u = {@h\(gléﬂk

iv) If"fﬁ' is a set of noumorthogonal basis functions, the pro-

jector onto thé linear manifold spanned By ﬁ is

15> 15>7 <H) .
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APPENDIX B. Algebraic Manipulations of Perturbation Equatiens.

ﬁ.l. Calculation of <é(N) lH"E ‘é(N»;

According to the perturbation equations (2.22)

(H‘°)+AH('))¢‘D) = AH(:)#M) +¢lo)@¢o),

(H‘°7+AH“) )‘k@?ﬂ)"& Y Hm@ ) o )\ZH,U)¢@‘) + A@"’(Q“’)%— A¢‘°)€(';

Y
.

-}

(R“’H«H“’),\ 4:‘”)«0—} Hmd,muu) N-H w@u«)
N
N (N-A
+ ,ez Wap® ¢
o

Adding these equations gives

I k
R @(N) - AN*’J& H'— (B (N) Z k Z GP {2) & ¢ k“l)
k=0 A=

Exchanging the order of summation over R and /f gives

Hé{’_(\l) - N—H (|)¢CN) + Z) @P(Q)Z 2 @(h)
/a—

N
~dweay+ 2" “’@%‘“’

ZA“{’Q)Z )f{@Cb)

k= N=4+
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Collecting terms according to order in A\ ,

Nel  Nel-i

hew =gmew) + A"“{H“’«b‘”’—z N e

k= =0

Hence,

(EW | H-BElB D) =
= {F & (ew-&)

N
+)n+a{ hz-) WG| D | D

N N=l N~k
T Z e 3 <) g
n=o R=s d=0 g
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Again collecting terms according to order in P yields

(@ h-Eldm) = L&) |Fw> (ew ~E) |

Nl

+)N+IZ 3 _§<ka)l Hco\d,‘”’>
h=c n N-nepo
5P RRET IS N

p=o 3'—'—0

N~
S an 5 3G LHITRITC TN So
h=o

N-n-l P :
S5 3 ey e
p=e §=o '

B.2 Perturbation Energy Formulas.

In this Section, the Eq. (2.32) and (2.33), resulting from the
full_ normalization condition Eq. (‘2.30) are proved. Also it is shown
that @‘n) is a hermitean matrix.

First, however, it is convenient to establish some intermediate
results. By taking the adjoint of Eq. (2.30) aund adding it to the

original equation, one obtaius

n
Z <¢(R)lct,t_n—h)>=o_’ n>a. 5.1
k=0
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The following.relation will be needed.later:

(G B0y = (D] e

(B.2)

= 4
_Jz?f <¢F(Q‘)l @("-ﬂ‘h)>@(k) + 2 &(a)T«qy(i-k)l@lMi\
k=0 k=0 N

“This is proved by, multiplying. the ,@eth order perturbation equation

(2.22) from the left by Q##“-l)1—and integrating,

(DL (a0 [y | G-

(B.3)

k=0 ?

= 25 a2 l"“f’ uz-;z>> @(k)
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and multiplying the (n-,Q )-th order equation from the left by c{ib('Q)T

and integrating,

<4,(,e) ,.Hw) l_¢cn—4)> + <¢<,€) l HU) l “i’ (w'&-n>>
(B.4)

<<¢ €))] [ @# (n-R-k) >@(le)

R‘L\d s
"

Taking the adjoint of Eq. (B.3) and subtracting it from Eq. (B.4)
yields Eq. (B.2).

From Eq. (2.29)
b=t
W) o <‘4"°’lﬁ“’ I#"""’)+@(°)<¢#‘°’ld¥%’> - 2 <¢4«»I¢({a-b§(&(§)
k=»

Application of Eq. (B.2) i §Ct;-l) times yields

R
€ < (PRIt + D 7 €Ol gty

f=0 k=e¢

=) %<c&><ﬂ>w‘#‘ﬂ>>¢®—E@b‘”s@b‘*‘%@‘”
; . 2

2] bk=o
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Interchanging the order of summation gives

o~k
e? = (ab C‘I,)l mn ('l)lc#(f'%-l)} + f} &(k)'f Z (@(2), eﬁ%‘h“f%
R=o 1:.¢l

i) [ () b G-~ 7B
i PG P S Ao v Z m g4 et
k=6 Q= b ?_%

The final term vanishes by the normalization cohdftioquq.iCBﬁQu

Hence,

G = (PR |GUg-0> +Z @(kﬁgz (40 | -0

(B.5)

—’f’i-l i <@i>(g) |Sb(4?f,0—lz)>@(k)
k=o - d=0

The desired proofs are given by the following applications of
Eq. (B.5):

Put p=n, g=n-1:

e~

&(m = 4>(“-l)“-\(l¢bc°)> Z ¢ (ﬁ)l@(n—z)>§

-k -1

. z@w T <@\ Uy

=9
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The coefficient of Gf&)?- is simplified by using:Eq. (2.30):

(n) <¢("")IH (u)|<+¢o)> + b @ | GEIN e®

n-d

- @®T (- l¢\>6°)>
kEo

or

&CV\) = @(V\)+ .

(B.6)

Put p=2n, g=n-1l:

&-(zh) - <4(u—u)‘ H“)l @Ln)>'

-1 n-lo-y

n
N Z @(m lZ <C¢(n)| glP(zm—h—,Q)>
k=0 =e

¢

S 3 D aplenty ¥

k=0 Q=0



Or,

&(zv\) — <4>(n—')l H () lCde‘)>

!

E—: <¢ n-k+4) *l ,@*C’:w—;q;) > @'-fih;)

!
L\{]s

h=l A=0
n-1 V_\_)le 1 '
+05 { R) ¢ b | 4 @n-k-g)
h%g O=0 & <¢b ld:t’ >

- <q,01) (cp @n~le-s) e () }

-+ géw (P v, < [ apimy @ @ lgo

In the one-dimensional case, when.all of the quantities in this

equation are scalars, the Eq. (2.6) results. In general, the

equation is simplified by using @lzh)__: "i‘(@(z") 4 @‘2"7* ) .
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& = %g (G| |G Lapi™ | H“’\@“""">}

43 :{ @ g e € R ) |
(8.7)

p=l h-k-t

D MDA GRE G SE NP ARSI EEN!
k=1 §=0
n-'n W=h-1 )

4 7 2 {camigertony _ panto) gl ¢®
k=1 =0 .

From Eq. (2.30)

a =
(¢ (z%b.) ,¢( Zn~le.)> L<G!>m hﬂ)lélm-ﬂa

b —hami

Z <4,(2)[¢(zn— -@> ) ?B@;/;?M
ot
- ,zz (i | ooy,

W

ROM e
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Suﬁstituting £q.. (B.8) into Eq. (B8.7) yields Eq. (2.33).
Put  p=2p-1, g=n:
By steps similar to those used to derive Eg. (2.33)., oune obtains

Eq. (2.32).
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APPENDIX C. Partitioning Technique Appyoach to ‘Degenerate,. Almost

Degenerate, and Exchange Perturbation Theory.

;t is the purpose of this Appendix to clarify the conmection
between the formalism of Chapter Two and the partitioning technique.
Only the degenerate case will be treated in detail,

The basic notion of partitioning goes back to Van Vleck,36
Lennard—Jones,63 Brillouin,64 and others in the early days of
quantum mechanics. ngdin and his coworkers65 have developed the
partitioning techniques into a very elegant apd powerful approach to
perturbation theory.

It is convenient to .first quote some results of ngdin.7D Let

12 and B be an eigenfunction and Aeig’envalue of the hamiltonian H,

(H-e) T =0, (c.1)

The Hilbert space of H is divided intqo two subspaces. The first is
. (o) (o) [} .

spanned by the set of functions <# s Py s qér and is

characterized by the projection operator CQ-.' The second subspace

is spanned by an infinite set of functions and is characterized by

the projector P=4-. These two operators sétisfy
(Sy1:= (9== CI71h Y T>i.= P = T>1’ } ©Op = T><9 =(,

In the partitioning technique, the Eq. (C.1) is replaced by

OCH -e)0¢ = o0, ©»
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where

ﬁ = H + H TE)H,

and

T(e) = PLleO+ Pe-wP) " P,

with o #0 but otherwise arbitrary. Eq. (C.2) is equivalent to the

secular equation

K| § - e |d=>=o, ©3

s
‘This is not an ordinary secular equation since $ 1is a function of

B . The usual.approach is to solve Eq. (C.3) by an iterative

process. For the degenerate case, writing

H= B+l

where

( (o) u») qb(‘” 1€k € &

allows M{E) to be written

-1
T(e) = P[0+ P(e2-nD)P — PARD+eP-E)P) P

Now defining

R, = PLxO+ P(e2-p)P] " P |
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and using the "fundamental identity"

(A-B) ' A" 4 AT B (A-B)

yields

T(E) = Ry + Ry (AH®+e®-g)m(e), ¥

This relation allows q’(ED to be approximated sugcessively.

, .. 66
It is possible), as L'c;wdln6 in the nondegenerate.case and as

n
Choi57 and Goscinski and Lowdin68 in the degenerate case have shown,

“to obtain the Rayliegh—Schrgdinger expansion of the energy and the
wavefunction by iterating Eq. (C.4) and expanding the roots of the
secular equation (C.3) in-powers of pY

Of course, the expansion (C.4) can have a greater radius of con-
vergence than the expansion in powers of X of the roots E of the
secular equation (C.3). Furthermore, given TT'(E) the secular equation
can be solved by techniques which avoid power series expansions.

Intermediate Normalizationm. In applications of the partitioning

technique, the natural choice of normalization is "intermediate

normalization,

(@) = (G \q@> = 4, .

rather than the full normalization chosen in Chapter Two. Thus it is

necessary to derive the expressions for. &‘h) and d*‘h) which are

applicable for the normalization Eq. (C.5).
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To avoid confusion with the results using full normalization,

subscripts rather than superscripts will be used to denote order in

intermediate normalization. It is also convenient to absorb }\ intoe

the definitions of the perturbation terms and to define
Vo= XAH®
p)

VA4 = V- (E " €a),

’ &bf@'“E 5 k=|

€y =
€ L REL

Expanding Eq. (C.5) in-powers of X yields

nzi, (€6

5

<¢@l@h> = ©

Multiplying Eq. (2.22) from the left by C@j- and integrating gives

€, = 4, \vig,, >, (.7

Eq. (C'.G) allows A\!M) to be omitted from Eq. (2.34) so that the

perturbation wavefunctions are

n
=R°Vl@h_ §R6¢ ké"‘go

o

(B4



Iterating this equation, it follows that

n=f =4
[ %d]
&, = (RoV) b, = Z‘g Eﬂ(k Vl)lRo“Fuﬂo,z-h@kv(C ®

Expaunsion of T‘(E) . Iteration of Eq. (C.4) (2N-1) times yields

Tte) = TQ—N—@ (g) + (R, V’)QH T’(E)’ (c.9)
where
o "
- v _
T2N°B(E) Re mZ:D (VIRs) (G.10)

With the neglect of the second term in Eq. (C.9) the secular equatiom

(C.3) is

l<<4’°| Ho+V+V f&N’l () V —E l¢o>l = ¢, (©ID

It can now -be shown that the roots of Eq. (C.11) are identical,

’ an+ )
through terms O [A l), to the roots of the secular equation

2.26).
This theorem is proved by using Eq. (C.8) and (C.10) ana tne

fact that Re ‘¢9= © , to obtain

=3

PO AN-1 =t p-g

Tu OV = 2 4, - EPNCADY Y

h+i-4-b k'
n=1 ©

LN
[
5
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Substitution of this result into Eq. (C.1l) and the use of Eq. (C.7)

gives

= <yl Hy v+ VT &)V — E | >

AN+

»&Z;oé”‘ - E

2=l w=1 p=f

+2 & Z < Qﬂ n+;-4=k> Céf;

n=i f=0 k=1

:j‘élwaa =t n-¢ L- f—

* 5L 6Ky, IR R Gy, Y E L
n=2 f=p k=1 2=0 4=1 d’ W+ """‘3 nei=l-R R,

earranging the order of summation in the last two terms gives

anN+t

L e

N=1 W 2N=H

D= +h=‘l 1=: <¢ l‘sbh_“_'g>z é
an-z . af-n-z P 1"‘&' AN-h=p1
+2=1 €. = ; 11=°<GPW"R°(V’ )t ]ka T ?r>Z\ &h
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It is now clear that, in the summations over E{ the upper limit

+2
may be replaced by 2N+ if terms 0()«;“/ ) are neglected,

=t n
i + nﬁZi ﬂ.:Z;(&iqu @h‘ﬂ'ﬁ—,ﬂ>
=1 282 anh-ﬁi t;t '
- L6 ; A L Ry,
an

x| 2.&, - E + O(a+2)

Assuming that the first determinant is nonvanishing yields

an4t

0=| Eoéh— E 4 O(A“’““)E ) ©.12)

Hence, the energies determined by Eq. (C.11) are identical with the
energies determined by Eq. (C.12) through O (33”7’/) .  Further-
more, it was shown in Chapter Two that the chahge from intermediate

to full normalization also. affects the roots of Eq. (2.26) by

O [ﬂ,\ aws 2-') terms. Hence, it follows that the roots of secular

equations (C.11l) and (2.26) differ by OCIA:MHZ) terms.
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A transformation of the unperturbed Hamiltonian in the Eisenschitz- London, Van der Avoird, or Hirsch-
felder HAV exchange perturbation theories is suggested, which modifies the second order energy to produce

the correct long-range behavior,

1. INTRODUCTION

In recent applications [1,2,9] of the Eisenschitz-
London [3], Van der Avoird [4], or Hirschfelder
HAV [5] perturbation theories for the exchange
forces between atoms, it has become apparent
that the second order energy in these schemes
fails at large interatomic separations R to equal
the second order dispersion energy (no exchange),
even though "exchange effects” are negligible at
these separations. In the previous calculations
[1,2], the correct long-range limit was obtained
by a variation-perturbation approach. In this note
we suggest an alternative method for obtaining
the correct limit, by introducing a transforma-
tion of the unperturbed Hamiltonian of a type ori-
ginally suggested by Feenberg [8].

2. PERTURBATION THEORIES

In this section we rev1ev/br1eﬂy the usual
Rayleigh-Schrédinger (unsymmetrlzed) theory
and the Eisenschitz-London, Van der Avoird or
Hirschfelder HAV theory for the long-range in-
teractions between atoms. The problem may be
stated succinctly by making use of the wave op-
erator formalism {4,7]. Conventionally long-
range interactions are computed from

E =Eo + {¢o|V+ VT V|¢o), 6]
where §

¥ This work was supported by tho Nationnl Acronnutics
and Space Administration. Grant NGL-50-002-001.
** National 3cience Foundation Graduate Fellow.

T =Rg + RoV'T, Vv = V-(E-Eo),
Ro = P(Bo-HoY'P,  Hobo = Eodo, &
P=1-]¢e)0,l,

where Hy is a sum of isolated atorn Hamiltonians,
$o is product of isolated atom wavefunctions, and
V contains the interatomic interactions. Substitu-
tion of eqs. (2) into (1) and iteration yields

E=Eg+€]1+€3+€3+... .
where
€1 = {po| Vido) ,
€3 = (0| VRoV| o) »
€3 = {bol VRo(V - €1)Ro V] o) -
When exchange effects are not negligible, the
above treatment is not sufficient because &g does
not have the symmetry of H = Ho + V. Let A be
the projection operator onto the subspace of de-
sired symmetry. Then the interaction energy
may be computed from
(Dol VA + VT V]oy)

E=Eo+—‘——‘—(¢olA[¢o) s

(3)

where
T = PR,P + PRUT 4)
and the former definition of P is replaced by
Alpg) (wold
(Woldloy

P=A-

and
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Table 1.

Energy of Hy (in ci-1), Here ¢= {¢o |A| q‘;c)"l and A is the value of the parameter in eg. (5) which optimizes the ex-
pectation value of the Hamiltonian in refs. {1] and {9}.

R A < Eg+E +Eg-E {exact) Eg+E1+ AEg-E (exact) Eg+ZBit+cEz-E(efach) F (exact)
Ground 4 1.36 1.93 427.0° 177.8 -214.2 3592,6
State
12+ 6 139 2.00 25.5 9.4 ~ 16,1 178.9
g 8 182 2.00 3.8 0.1 - 0.2 117
Excited 4 142 2.07 169.6 39.6 -158.0 ~1453.3
State
32+ 6 1.8 2.00 23.5 4.4 2.2 ~ 412
u 8 1.98 2.00 3.8 0.3 0.3 43

Table 2.
Energy of the One~Dimensional Model. Here ¢ = («;S’A{(j)o)‘l =2/(1 xexp (-—Rz}) and Ais the value of the parameter
in eq. {5) which optimizes the expectation value of the Hamiltonian in ref. [2].

F:4 A 4 Eg+Ey+Eg~E (exact) Eg+E1+AEg-E (exact) Eg+ By +cE2- E (exact) E (exact)
Gerade 0.8 0,3302 1.3085 - 10,1551 0.0180 -0,2351 6.3308
gt’;‘::“d 1.0 0.4528 1.4621 ~0,0857 0.0149 -0.1706 . 0.2940
1.2 0.5964 1.6169 -0,0469 0.0161 ~0.1432 0.2806
2.0 1.3935 1.9640 0.0653 0,0355 -0.0062 0.3502
2.6 1.6236 1.9977 0.0473 0,0272 0.0151 0.4307
3.0 1.6077 1.9998 06,0278 0.0147 0,0063 0.4604
5,6 1.8314 2.0000 0.0072 0.0014 0.6002 0.4895
Ungerade 0.8 0,3457 4.2310 - 0.2404 0.0426 ~1.6381 1.1408
Et’;ct:‘ed 1.0 0.4523 3.1641 ~0.0819 0.0171 -0.3749 0.9314
1.2 0.5536 2.6209 -0.0348 0.0088 -0.1908 0.7870
2.0 0.0494 2.0373 0,0025 0.0037 ~0.0316 0.5232
2.6 1.3268 2.0024 0,0189 0,0056 -0,0119 0.4776
3.0 1.5031 2.0002 0.0164 0.0062 -0.0040 0.4740
5.0 1.8315 2.0000 0.0072 2.0014 9.0002 0,4895
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Algy) ¢
;:OA :0 v

Substitution of eq. (4) into (3) and iteration yields
E =FBg+E{+Eg+Eg+... ;s

where

Ey = (o] VAl do)/ (G0 |4 ] do) »

B2 = {0l VPRoPV] ¢0)/ (b0 1A 1 60} »

E3 = {90l VPRoP(V- E1)PRoPV] 80}/ olal o) -

The difficulty is that, for the systems consid-
ered,

v=(1-

B
lim E—z—# 1,
R~

so that £ = Eg + By + Eg is a bad approximation
for R large.

3. PERTURBATION-VARIATION APPROACH

A better approximation was obtained [1,2] by
computing the expectation value of H with the
variational wave function

- 1

¥ =Ag, + APRPd, , {5)
where the variational parameter X was energy
optimized, with the result

= GlE|0/ 19 = Bo+ By + B2,
and . ’
Rlin; AEg/feg=1.

This result has been emphasized recently by
Goseingki and Briindas [8].

4, THYE FEENBERG TRANSFORMATION(6]

The computation of A requires a knowledge of
Egand B3 [8]. A procedure for removing the
long-range defect with a knowledge of Eq only is
as follows, Instead of iterating eq. {4), one iter-
ates

T = ¢PRoP + ePROUT + (1~ )T , ®

which is strietly equivalent to eq. (4) if ¢ isan
arbitrary constant, and obtains through second
order

E = Eg+ By +cEp.
This method is equivalent to replacing [6] (Ho- Bg)
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by {1/¢} (Hg-Eg) and ¥ by ¥V={1-¢/c)(Hp-Eq) in
eq. {4).

In order to obtain the correct long range be~
havior, the constant ¢ must satisfy

lim eBpfég=1. 1
R

For the systems previously consxdered the
choice

¢ ={polalagt ®

satisfies eq. (7). In tables 1 and 2 we present a
comparison between the variational approach and
Feenberg transformation.

For the systems considered, the choice of
eq. (8) is consistent if the energy is computed
through third order. Iteration of eq. (6) twice
yields

E=Eg+cl2-c)Eg +c?By .

In these examples, ¢ — 2 and E3 ~ 4Egas R — =,
so E — Ep + 2E3 which is equal to Eg + €1 + €3 for
large B,

Tn general, however, the computation of E3
requires a large increase in the number and com-
plexity of integrals over those needed to compute
Eg. For this reason the Feenberg transformation
offers a practical advantage over fhe variational
approach. The significance of the choice of ¢
which we have made escapes us, however.
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APPENDIX E. Direct Calculation of Second Urder Energies for the

Delta-Function Model.

As was shown in Section 4.1, the second order energies may be

&
evaluated by a quadrature involving the function ”7{, defined by

(H= €)X + Ap (R - *E@)p@ =0 @y

X143 =0, e

The second order energies are given by

CEY | A (RO-£E O) ()
<¢‘>c°)lA~_i:\¢‘a’> b2

+ E_c"—) (E.3)

(EL-HAV) =

CEY | RO {6)
TE® (e a) = %W 5 (E.4)

GRS EEOKELITED o
{4 | Ay \4>co)> ¢

: +
Introducing the definitions of HG") s HY, éw), "E“);

Wt
Nt

-_{:E 2) (HS) =

4>'°) , and A‘!‘. , Eq. (E.1) may be written

— | X+a]

[%; + 25 0x4a) — «jt% + L s(x-a)+ ] e

“ - lx-al
rlSxea ) + e 0 =ol = o,

where Q = RI'?—-Q
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or, omitting the (+) sub- and superscripts,
\-_i!;:; _\’lx + O xval + Emeﬂx—al\___O) Ixi#a; (5:6)
with the matching conditions .

dy| - d LI
d,XL:_M ﬁxle_af LXeayre™ =0

3 (E.7)

d d R
dxklxzu - &X\x:a_ e = o3 (E.8)
Xlav) = X(-a-) = o (£.9)
Xy =X () = o, - (£.10)

The general solution-of Eq. (E.6)
A(n)e_x _Ato) Ku) Xe.—-x s X>a
Bmex " c(')e—x

Y = ;5 IXl<a (E.11)

& BQO) BLI) XCK - ctc) }mXC-

D' X & DOy X 5 X<-a
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where
Aw) - % (e—a + 6“)}
L o
B(c) = -+- z (A 5
C(e) = 7% e
:Dlo) = "z‘ (e te™?) >
W (D) te Ry e~2R
¥oo= -k 0z
L+ (1+R) e 2
and A“), BU), (‘.uz D“) are chosen to satisfy Eq. (E.7)
through (£.10). Thus,
0 e® -e® g—o, A(n A-Xc')[lﬁﬂy?:d,e"k -_;_e-R
- - ) _
- @ e o Bt £y - "R
- = (E.12)
0 et et _e/_a cu) -a )t '
)
e? -t ¢ o pt +q¥®

These equations are not linearly independent, however, as may be
verified by comparing the sum of the first and third equatioms with
the sum of the second and fourth equations, and making use of the
definition of ’XU) Thus, one of the Egs.(E.12) must be replaced
by another which is linearly independent. This is just the freedom

required to enable the normalization condition, Eq. (E.2), ro be

satisfied. Making use of Eq. (E.1l), Eq. (E.2) becomes


http:Eqs.(E.12
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=R-a, - - -
e A 4 2Re™* BRM 4 7% (eR-eR)C

(8.13)
e Rpw o L [l £ (e e~’] Y,

Eq. (E.13) now replaces the first equation in Eqs. (E.12). ‘Then,

Au) s B“), C-cn, 'D(‘) can be obtained in a straightforward

manner. The result is
LAY = 1y0 %3 (o) ¢ (1-R)ER & (3+3R+fa’-)e”za)]

v e [i- Gerye?®]

TBW = :;:Yu)e—q [; (Z.-HL)] + _lie—2~a B

- —2p—a
e = #\6(1)8‘““\—_;—({?_(&\-3&-\‘&2)6 D‘]—Ai(‘ﬂz)e,z"z N

— —R—a&
DY =45 [14R £ (rRPeTR ] -4 RE

°

This completes the determination of tX .

In order to evaluate the second order energies, the following

integrals are needed:

CEXHPS = ¥ [-2 e 1 4 (3+3R +3r%)e 3% ]

#L ™R 1+ (1+r)e R 5
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<1X‘1Ht\)l¢,lol> - '#K“’€~R[l + (I-H'L‘PK—L)Q_K] + .!i Re-g&%

{(EX|T 1@y = F¢° [73-r% R L0 +R)(5+3R+7)e ]

v e R [I- rRr)2em2R ]

With these integrals and Eq. (E.3) through (E.5), the asymptotic

dependencies given in Table 4.5 are obtained.
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3. '"Calculation of Matrix Elements for One-Dimensional Quantum~
Mechanical Problems", A. S. Dickinson and P. R. Certain, J. Chem.
Phys., 49, 4209 (1968). .

. "Lobglizéd Otbitals for Arbitrary Molecular Wave Functions',
P. R.'Certgin and J.:0, Hirschfelder, Chem. Phys. Letters , 2, 274
(1968).
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A SINGLE VARIABLE VARIATIONAL APPROXIMATION
FOR A PERTURBED SCHRUDINGER EQUATION*

By W. Byers BrowN axp Pririir R. Cerramnt
PHEORETICAL CHEMISTRY INSTITURE, UNIVBRSITY OF WISCONSIN, MADISON
Communicated by Joseph 0. Hirschfelder, March 24, 1967
The dificulty in applying the Rs yloigh-Ritz variational method o molecular

systems fies in choosing the trial wave function, ¢. In this paper we consider a
variational approximation for the ground state of the perturbed Schradinger

equation

I+ V — By =0, o]
where the perturbation 1 is a function of the configueation varinbles, and the
ground state eigenfunction ¥ of 2 is known.  We weile the brinl wave [ unetion

b=, @

but instead of guessing a specifie form for Fwe scek the best F which is a funetion of
V only, F = F(V). This leads to a Schridinger-type equation

(ha+V —BF =0 &)
in the singie variable ¥, involving the approximate ground state eigenvalye F(2 ),
Equation (3) is an ordinary linear differential equabion which ean be readily solved
numerically.

The analogous first-order variation-perturbation theery has been derived ro-
cently by Kirtman and Benston,! and called by them the extended average energy
method. They present their derivation as an extension of the Unséld or average
energy approximation,® 3 which is equivalont to employing a first-order trial wave
function of the form ¥ = figy with = ~{¥V ~ E)/AE, where AE is an average
excitation energy. The functional minimization method used in this paper leads
to cssentially the same results as those of Kirtman and Benston.!

Perturbed Schrodinger Equation.—Consider o system deseribed by the # orthog-
onal curvilinecar coordinates ¢ = Qu¢- . @n  Let the unperturbed Hamiltonian be
{atomie units)

Ho= ~1/,9* 4 U,
where Up(q) Is a funetion of the coordinates, and
21 /h 2
- 5 (),
where the k.(q) are the metric scale factors, and & = ki, ..k, Let Yola) and
be the lowest unperturbed eigenfunction (assumed real) and eigenvalue salish ying
(T — By = 0. )

We are interested in the solution (¢, £) of the porturbed Sehrddinger equation (1)
in the ease in which the perturbation V is a function (not » differential operator) of
the evordinates g3 or more eonveniontly, in which

1206
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V = Vi(u) whereu = u(q) with-range (a,b). (6]

"The variable-« may or may not be onc of the coordinates q.
Varigtionally Reduced. Schrédinger Bgualion—~Wo scek the best {rial wave
function of the form .

¥ = Fluh(q) . ()

by means of the Rayleigh-Rits variation principle 8% = 0 with respect to arbitrary
variations 8 (1), where the functional B{F] is defined by

W (Ho+V — B =0 @

By substituting for ¢ from (6), using the unperturbed Schrédinger cquation (4)
and rearranging, equation (7) may be rewritten

(o, {Y2(VE)2 % (V + By — B)F=}g) = 0. ()
Since 7 = F(w), (VF)? = <£> (Vu)?, where (V)2 = 3 i (9'—‘> We define
- du, =1 h2 \O¢: B
two functions.of %, which involve only the unperturbed distribution:
Bsw’) = (gu, 5(u’ — ua), © -
Q(u’) = (o, 8’ — u)(Vu) ), (10)

where §(z) is the Dirac delta function. Py(u) is the probability density for the
variable u in the unperturbed ground state, and is-normalized to unity provided ¥,
has unit norm,

[ P = o = 1.

Inmany cases (Vu)? w111 be a constant, say ¢; then Q, = ¢Py; but in geneml [N
differs from P,.

Equation (8) ean now be written as the single integral

f {Qo( >+(V+J:0 4L‘)F?Pu}=0.

By carrying out a functional variation 8F(w) and setting 88 = 0 we obtain

b A
: f du‘{ 5 S0 (0(. ar ) + (V + B — B)Pu }51{ +3 [Q —51«] =0.

o

- Bince the variations 5F are arbitrary, we must have

‘—M@O )+<V+E»—E')P0F=o, . (11)

and Q@)F'(@) = GEOF'®) = 0. (12)

Equation (11) can be written in the form of the variationally reduced Schrédinger
oquation (3) where tho smg,le—vm inble unperturbed Hamiltonian is defined by

d
I'ﬂ == e 33 /’u thb ((7" i ) |- J4n.
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The factor function F of interest is the ground state solution of (11) satisfying
(12) which belongs to Ly(a,b) with weight factor Py(u); that is, L : Polf*du is finite.
Note that Py 2 0, and for the unperturbed ground state Py > 0 excopt possibly at
the limits g,b.  Equation (11) is an ordinary linear differential equation which can
be readily solved by numerical methods. In a later section we diseuss the explicit

perturbation solution.
By integrating equation (11) over the range (z,b) and using (12), we see that the

eigenvalue is given by
b b
=B+ f PV T/ f PuFi.
o a

This is a variationaily reduced form of the so-ealled integral Hellmann-Feynman
theorem.*

Generalizations—There ave two obvious generalizntions,

(n) Perturbation ¥: The best approximation ¢ = Flu)¢s may still he found
even though the perturbation ¥V = ¥(q) depends on variables other than w, and also
if it contains differential operators in the Schrodinger representation. In the more
general ease equation (11) becomes

12
2du

(@) + wr + @~ By =0,

where
W) = (b, Volu — u'l),

and may involve a differential operator with respect o .

(b} Factor funciion F: The procedure can clearly be generalized to allow F to
depend on more than one variable, F = F(u), u == wy,us,. .., us. However, this
leads in general 1o a nonseparable partial differential equation of the form

1 o F o
2 (@ SZ) + ¥ + B BT = 0,
e Ouy,
where, in an obvious nofation,
Q’up(u) = {fo,8™@’ — (Ve Vaghto)

Perturbation Approcch.—We now turn to the firgl-order perturbation solution of
equation (11).  Ii is instructivo to derive the relevant equations from the Mylernas
variational principle for the second-order energy, £, us a function of a trial first~
order wave funetion ¥y:

By = (b, (Hy — B} -+ 200, (V — Bl 2 By, (13)

where By = (¥, Vi) is the first-order energy. We expand IF defined by equation
(2) as a perturbation series.F = 1 + f + ...., where we bave put Fo.= 1, F) =
f, so that

¥ = fyo. (14)
Then by substituting (14} into (18) and vemrranging, we oblain

132
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- 1
By = 5 o004+ 200, (V — Bifva). (15)

Wo again consider a perburbation V(u) as described by (5), and seck the best first-
order trial wave function of the form

¥ = flu)dulg). (16)

Then (15) can be reduced to

= [afia (L) +a0 - By},

where Po{u) and Qo(xe) are defined as before by equations (9) and (10). By making
the functional B [f] stationary with respeet to arbitrary variations 3f(u), we derive
the equations

(Qu a ) = 2(V — E)P, an
and Qu@)f' (@) = QG =

Equation (17) has the same form as the first-order perturbation equation for a
separable variable u (or a simple one-dimensional case), and can be integrated
directly® ® to yield

" M
) = 100) + || oy du a9
and hence,
- SO
<7 T2k e a9
where
M) = 20, (V — E)AW — w), 20}

L]

"
2 f {V — B Pudu,

where A{z) is the Heaviside unit-step function.

Eeuation (18) is essentially the snme as that devived by Kirtman and Benston?
by their oxtended averago-cnergy method; owr equation is simpler and slightly
more general in that the variable 2 need not be a member of the ¢’s.  This result

* establishes that the extended average-cnergy method does indeed give the best
first-order trial wave function of the form (16); that is, the one giving the lowest
value of Bo(> E; exact) as claimed by Kirtman and Benston.}

Application to the Two-Eleciron Atom.—In this section we apply the foregoing
theory to the ground state of the two-electron atom with atomic number Z. We
take as our single variable u = ry, the interelectron distance. The simplest
application is Lo tako the perturbation V to ho the clectron repulsion term 1/re.
Tn this enso, we have (unit of length = Z Bolw) o = w7V exp {0 — m), Jio = —Z%

By = gZ. It follows from (9) that

133
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1 4
Py = éuz <1 + 2u 4+ '?;uz) e,
and since (Vry)? = 2, Qo = 2P, Unfortunately, it does not appear easy to solve

(11) analytically (though a numerical solution could be easily obtained). We
therefore turn to first-order perturbation theory. The integral (18) reduces to

3 3 = dy 4 3
[Su + In( 2 - 2u 4 4> -+ '\/3 arctan( \/5 )] -+ const.,

I= 16Z

and the integral (19) is equal to® B, = —0.135337 Hartree. The accurate value

ish 7 B, = —0.157666 Hartree. These results agree cssentially with those of
Kirtman and Benston.! 3

A better starting point is to take the Hartree-Fock wave function ¥, = ¢(r)e(r2)
as the unperturbed condition. We therefore seck the best correlation factor /7 in
the trial wave function

¥ = Flro)dar(ryr). @1

We are even less able to solve the complete equation (11) analytically, but the first-
order perturbation theory is still tractable, and not much harder. The first-order
wave function can be written in the form ¢ = ¥,#7 4 §,°°" where ¥ = { Fae(ry)
+ Fur(rs) Yo, and §:°°7 = Fi(ri)¥p. The first-order Hartree factor is known an-
alytieally,?

2r
fup(r) = — siz [3 j; 1 — e~ df + 3(e=> — 1)/2r
) 4 2= — 57 4 23/4 — 3In 2]‘

The Hylleraas second-order energy, defined by equation (13), can be written in the
- ~ . 13 9 3

form® B, = EHF 4 I,°°7, where? B5F = — 30 + — & In (—) = —0.111003

Hartree, and .

~ 1
BT = 3 (W0, (Vfsorn) W) + 2(¢0, VS corribe), (22)

where foorr = Fi(u) and the corrclation perturbation (first-order) isV V = u~! +
(e — 1)/r + (7% — 1)/ro + e~ - e~ %2 - % Since V depends on 71,72 as

well as w = 7, we have to employ generalization (). However, the resulting
perturbation equations are again (18) and (19), with M/ defined by (20). We obtain

’ .1.'_7 puy _HZ l..'_5.'§ 5 4 24 17 .42 —4u
M= [ +27u 18,u+ u—lzu]e ——[ + +9u:|e A

and carrying out the integrations we find that

3 3 '370'; - 3
- 5 5 2., 2 ) o —
JSoare { Su+ 15 (u +out 4) V'3 are tun( 73 ) +

L
16%
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25
186 1 o723 v “TRp
e ) e e"”dx} -+ const.,
2% 27 Jo 3 3
2 + 5% + 4

and's B, = —0.032435 Hartree. This is 70 per cent of the aceurate Hartree-
TFock second-order correlation energy —0.046663 Hartree. Kirtman and Benston’s
application to the total first-order wave function yielded only 51 per cent.

It is interesting to compare the behavior of the two approximate frst-order
factors for small » and large u: .

1 5
- —_—— 2 X
Zf = const. + 2u 4Su + 0(w®
5 u -+ 1In u + const. 4 O(u—1)
16 8 ’

1 217
- —_—— 2 3
Zf sorr = const. 4 5% 1296u -+ 0(u?)

5 15
~ =2 2 1
16u+Slnu+const.-i—0(u )

We note that both satisfy the cusp condition for the exact first-order wave function
) 1 . . .
factor f = Yi/v0, Z (Ej; ) =5 The first terms in the asymptotic expansions for
u=0
large » have opposite sign, however.
Discussion—The trial wave function (21) is not the best form of its kind. Itis
better to start with a trial function

¥ = Fro)p(r) o), (23)

and to vary both the “correlation” factor F and the orbital function ¢ simultane-
ously. A function of this form was first considered by Baber and Hasse,* whose
work was extended by Green ef al.'?2 To the first order this approach is equivalent
10 employing a correlation wave function with the single excitations projected out;®
that is,

‘hcorr = [f(ﬁz) — ”(1.1) — !/(Yz) ]‘/’0: (24)

where g(r)) = [ ¢o2(ro)f(re)dr>. Roothaan and Weiss'® have performed variational
caleulations for the total energy of two-electron atoms using trial wave funetions of
the form (23). The extrapolation of their resulis for various Z t0 Z = yields
B = —0.0440 Hartree, or 94 per cent of the exact value. The interaction be-
tween the factor FF and the orbital ¢ is therefore very large and beneficial, as pointed
oub by Rosenfeld and Konowalow.

Summary—In a recent paper Kirkman and Benston® derived a first-order trial
wave funetion ¢ for a porturbed Iamiltonian 21y 4+ ¥ of the form h o= f(Fi.
Tho objeel of this paper is 4o extend thoir iden to the total Schrsdinger eguation,
and to uso funetional minimization to obtain the best trial wave funetion of the
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form ¢ = F(V)y¢y. The resulting equation for the first-order wave function agrees
with theirs. The theory is applied to the first-order correlation problem for two
electron atoms, and accounts for 70 per cent of the second-order correlation energy.

* This resenich was supported by National Aer ics and Space Ad
275-62 and by » National Science Foundation graduate fellowship.
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In regard to the papers on the perturbation
theory of forces by Van der Avoird [1,2], it is
worthwhxle to point out that #f the matrix PR P,
defined * by eqs. 5 and 14, does nof have an’ m-—
verse in the space P, then the proposed solution
will not satisfy the original Schroedinger equa-
tion. This follows since the set of equations

PROP(E-H)PT = PR,P
will not have a unique solution, and the inverse
of PRyP(E-H)P, expressed as an expansion in
eyq. 19, will not exist.

For the case when E is the ground state of
H,, the R, is negative definite so that PR, P has

* Here the equation numbers and notation are those of
ref. {1].

November 1967

413

an inverse and there is no difficulty **. For ex~
cited states R is no longer a definite operator
so that the inverse of PR, P might not exist, Al-
though a slight change in the definition of H,
would correct for this, convergence problems
due to this difficulty may occur in the application
of the theory to excited states.

REFERENCES

[1] A.Van der Avoird, J.Chem.Phys. (1 November
1967).
[2] A.Van der Avoird, Chem.Phys, Lefters 1 (1967) 411

** Preliminary calculations on the ground states of
some simple potentials have shown that the theory
gives reasonable results,



138

Reprinted from Tar Journar or Caemican Pavsics, Vel. 49, No. 9, 4209-4211, 1 November 1948
Printed in U, §. A,

Calculation of Matrix Elements for One-Dimensional
Quantum-Mechanical Problems*

A. S, Dicranson} axp P. R. Cerraini
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{Received 10 3ay 1968)

. A simple method preposed by Harrs & al. using the techniques of transformation theory for the

generation of the matrix elements of one-dimensional potential functions in a

discrete, orthonormal basis

is shown to be equivalent to Gaussian quadraturcs when the basis is constructed of orthogonal polynomials.

‘The basis exp (in8) on (~—m, =) is also discussed.

L INTRODUCTION

A method has been proposed by Harris ef al! and
employed by several authors,? for the calculation of the
matrix of a one-dimensional potential function V{(x)
in 2 discrete, orthonormal basis ¢.(x), #=0, 1, +++, IV,
where the set ¢, is complete for N—s o0, The variable
x has the range (g, 3). The implementation of the
method requires the existence of a single-valued
function #(%) on the range (a, b), in which case their
prescription for the evaluation of the matrix elements
of Vis

J
Vom0 V() ()2

N
= gTmejV[x()\;)], 0L, mLN, (1)

*This work rcccwcd F nancial sup émrt {rem the National
A ics and Space A ration Grant NsG-275-62,

t Present addrchs: Dcpm—lmcnt of Applied Mnlhcmnucs, The
Qucu\ s Univeisity of Belfnst, Belfast, N. Ircland.

t Nationnl Science Youndution Gmdimtc Fellow,

D, O. Harris, G G Engerholm, and W. D, Gwinn, J. Chem.
Phys 43, 1515 (19

% (a) D. 0. Harns, H \V Hamnglon, A C. Luntz, and W, D,
Gwinn, J. Chem Phys 467 (1966); (b) D, F. Zetik and F.
A, Matsen, J. Mol. Spec try‘ 2-}, 122 (1967) {c) P. F, Endres, J.
Chem. Phys, 4‘)‘. 798 (1967); (d) C. Schwartz, J. Comput.
Phys. 3, 90 (1 67)

where the T'; and ); are determined by

N
) [ 6@ tntsmtim ST, @
o =0

[ st pn@temsn= 2 Tl )

ie., the orthogonal matrix T==(T,») diagonalizes
== (fm )

For the case where the u is tridiagonal, Harris ¢l al.
have shown that V. Is exact for ¥, a polynomial in
% of precise degree 2N--n—m-t1 or less. Tor the
general case where only #, nes, 457, is nonvanishing, it
may be shown that Vi is exact for ¥ of precise derrree
(2N —n—m)/r+1 or less. Hence, it is desiralile to
employ a function % whose matrix is tridiagonal.

Since the formula (1) is very suggestive of an (¥+-1)-
point mechanical quadrature, it may be compared with
the Gaussian-type quadrature of the same order. In the
present paper, the relationship of {1) to Gaussian
quadratures is considered for: (i) the set ¢, constructed
{rom orthogonal polynomials on (g, b) and; (i) ¢.=
(2x)"R exp(in ) on (—=, 7).

P

II. ORTHOGONAL POLYNOMIALS

If w({ax)=x, and the basis ¢ is obtained from the
first N1 polynomials in # orthogonal with respect to


http:rantNsG275.62

4210 A,

the positive weight function w(x) on (a, 8), ie,, if

(@) =[0()/lda(s),  a=0,1, ¢, N, (&)
where
f x,fn(Dﬁ)fm(:«:)w(::a)d;»;: Babom
and
Fl@)=harFhleride e, ®)

then the equivalence of (1) and a Gaussian quadrature
may be explicitly demonstrated.

Using the Gaussian quadrature defined by w(x) on
(a, b), the formula for V,, is®

N

Vi 22 Chalin) 1037, (0500} 00) V(0%
=0
6
where the a;% are the zeros of fy.4a,
Jraa(a0?)=0,  j=0,1,+++,N )]

and

Wi = —kyyohnsa/ b frsd (%) fresa(a;9),  (8)

where f'(x)=df/dx. In the following the explicit
dependence of the ;™ and W;™ upon N will be
suppressed.

To establish the identity of (1) and (6) it is necessary
to prove the following relations:

O MEq (3)]=alEq. (7)],* where” both are
arranged monotonically;
@) Toy= (Wil ha) ().

The statement (i) follows from the recursion rela-
tion* among the f,

o= (An‘l'an)fn"“ Co foty 9)
where
- A "E‘Bﬂt(l\'nﬂ'/kmn) - (kn’/kn)jr
Bo=ku1/kn,
Co=Bultn/Bptltns. (10)

This greatly simplifies the construction of the secular
equation to determine the );,
Dyya(\)=0, . §=0,1,+¢¢, N, (11)

(12)

where
Dy (N) = (—)¥ky det(u—2r1),

and u and I are of dimension N XN,

3 A, Ralston, 4 First Course in Numerical Analysis (McGraw-
ill Book Co., New York, 1965), pp. 85-111,
4 G. Szegd, Orthogonal Polynomials (American Mathematical
ggcu%tyz Colloguium Publications, New York, 1959), Vol 23,
c. 3.2,
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Expanding along the last row of (12), we sec that
the Dy satisfy the recursion relation

Dysa(N) = (Aw+Bw\) Dy(N) —CyDy(d).  (13)

It is easy to check that Di(A) =f1(A) and D.(A) =£,(7)
so that by (13), Dv (M) =fy(7) for all N> 0, and hence
(11) is the same as (7). This demonstrates state-
ment ().

To show the validity of (if) we make use of two
identities which are easily derived from Eq. (9), The
first is a special case of the Christoffel-Darboux
identity* :

3 halafle) =0, (19
and the second is
E BV (@) fol ) AnBa = — 80 Wi
+ éfm(a,-)ma,-; I:LBf:w.-)fm(a,-)' )

where a;, a; are zeros of fyq1.
Let Spj= (W;/ka)"*f,(a;). Then (14) implies that

b4
Z SniSnk= 7% (16)
70
and (15) implies that
N N
E Z SniSmkEnm= C;S=N\,81. an

=0 m=0

Hence, the S,; are the elements of an orthogonal
matrix which diagonalizes x. Since the eigenvalues of
the latter matrix are nondegenerate? the elements S,
are unique and thus equal to the Ty;.

Thus, since (1) is & Ganssian quadiature when the
¢n tre obtained from (4) and (5), Vaw will be exact
for V, a polynomial of precise degree p, where
$Z (2N4-1—n—m), as was shown by Harrls ¢f ol.

For many of the basis sets satisfying (4) and (3}
likely to be employed in problems of physical interest
there exist corresponding quadratures with published
values® of the @;, which substantially reduces the
effort required to diagonalize x.

NI THE BASIS exp(inf)

Where the basis functions ¢, do not satisfy (4) and
(5), the transformation method may again be equiva-
lent to a Gaussian quadrature, but not necessarily to

the most eflicient choice of weight function w(x). The

$ A, H, Stroud and D. Secrest, Gaussion Quadrature Formulas
(Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966).
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basis exp[i(n—N)§], —7<6<=, n=0, 1, +--, 2N,
discussed by Harris ¢! al. may be taken as an example.

It is assumed that V is a polynomial of precise
degree p in w=cosf. Since u is tridiagonal in this basis,
the characteristic polynomials Dy, defined by (12),
satisfy a three-term recursion relation. This is easily
jdentified as that satisfied by the Chebyshev poly-
nomials of the second kind,® U (). It should be noted
that the zeros of U, can be written in closed form, and
T can ‘be obtained from statement (ji) above. There-
fore, by (6) the matrix transformation technique
evaluates the (2N+1)-point Gauss-Chebyshev quad—
rature (of the second kind) of the integral

= / V{cosd) U, (cosh) Un(cost) sin®ds, 0<Ln,m<2N,
T/

which is esact for p<4N-+1-—n~—m. On the other
hand, using the relations between the U, and the
Chebyshev polynomials of the first kind Ty, Vum may
be written

2 x
Vom= —~ / V{cos8) U, (cosb) U, (cosh) sin®0dd
aJp

~1 / i V{cos8) Tnymy2{cosd)dd.
o

The second integral on the right vanishes for p<s-+m--2
by orthogonality. The two conditions on p for V,m to
be exact may be combined to p<2N+1— | 2N—n—m |,
for a basis consisting of 2N--1 functions.

The connection between the transformation method
and Gaussian quadratures for this case may be clarified
by applying the Wang transformation.” This is equiva-
lent to choosing as a (2N-+1)-term basis, the functions

Ta{cost), 0<n<N

¢ Handbook of Math ical Functi M. Abramowitz and T.
A, Stcgun, Eds. (National Burea.u of St:mdards, Washington,
D.C., 1964), Chaps, 22 and 25 The D, distinguishes between the
Chcbyshcv polynommls of the first kind, T'x(cos8) =cosn9, and of
the second kind, Ua-i(cosd)= (sumss /sing, which ofherwise
satlsfy the same recurrence relation.

7J. E. Wollrab, Rolational Specira and Molecular Structure
{Academic Press Inc New York, 1967), p. 26. We are indebted
to the referee for bnngmg this to our attention.
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and
sinfU,(cos8), OLnlN—-1.

These are, respectively, symmetric and antisymmetric
with respect to 6——4 and hence, the matrix V factors
into an (¥V-+1) X (N-1) block and an N ® &V block.
Since the basis now consists of orthogonal polynomials,
the analysis of the preceding section may be applied
separately to each block. This leads to the same condi-
tions on p for Vi to be exact as given in the previous
paragraph.
1V. CONCLUSIONS

The matrix transformation method provides a con-
venient technique for generating integrals for a one-
dimensional variational problem using standard matrix
manipulations. As Harris ef al. point out, the diago-
nalization of u need only be performed once for a given
N, if the \; and T are retained from problem to problem.
In addition, for many cases of physical interest, a
scaling parameter may be introduced into the basis,
enabling several different basis sets to employ the same
Ajand T. For example, in the work of Zetik and Matsen®®
on the computation of vibrational-rotational energy
levels, if the matrix of #=(R—Ro) (zk/h%)~Y4, where
the parameters have their usual significance, is com-
puted, then the values of the independent variable R
may be obtained by a suitable choice of Ry and k.

The method does, however, add an unnecessary
inflexibility to the energy eigenvalue problem in that
evaluation of the matrix elements and the convergence
of the eigenvalues with increasing ¥V need not be con-
sidered simultaneously. The minimum number of
values of ¥ required for the accurate evaluation of Vam
is not independent of # and m and need not equal the
number of basis functions required for a satxsfactory
representz.tlon of the wavefunction.

Note added in proof: The properties of the matrix u
of Sec. I1 are also discussed by Wilf.? See also Golub and
Welsh.?

¢ H. 5. Wilf, Mathematics /ar the Physical Sciences (John Wiley
& Sons, Inc., New York, 19
9 G, 1. Golub and J. H. Wclsc)})x Caleulation of Gauss Quadra~
ture Rules, Computer Science Dcpartment Technical Rcfcrence
(581, Stanford U Y, , Calif,, 1967 (unpublished
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Localized orbitals are defined for arbitrary wave functions for atoms. or molecules wiih, even or odd
numbers of electrons by making a particular non-orthogonal transformation among the natural orbitals
which preserves the diagonal nature of the electron density. Different definitions of localized orbitals
are obtained by relating them to different approximate forms for the wave funclion. The equilatexal Lri~

angle configuration of Hg 15 treated as an example.

1. INTRODUCTION

Up to-now, the concept of localized orbitals
[1-3],for atoms and molecules has been limited-
to systems described by single:determinantal
wave function. In the present paper we explore
ways of extending this to molecules with odd or
even numbers of electrons described by arbitrary
wave function. The extention is not unique-and is
guided by relating localized orbitals to particular
approximate forms for the wave function. Mini~
mizing the energy obtained from a Hartree pro-
duct of localized orbitals leads to the Edmiston-
Ruedenberg criterion [2] for localization. Rela-
ting-the localized orbitals to a valence bond func-
tion leads to a different criterion. These two pos-
sibilities are illustrated by considering the equi-
lateral triangle configuration of H§

The concept of localized orbitals was first de-
veloped extensively by Lennard-Jones,. Pople,
and Hall [1] for a system with high symmelry,
whose wave function is-a single determinant of
molecular orbitals. These workers exploited the
freedom to make a unitary transformation among
the' molecular- orbitals  without affecting the value
of the wave function, and defined "equivalent or-
bitals" as linear combinations of the molecular or-
bitals which have the property of being identical
to cach other except for orientation and position
in.space.

Edmiston and Ruedenberg [2] and Foster and
Boys [3] freed the concept of localized orbitals

* This work recerved financial support from the Na~
tional Aeronautics and Space Administration Grant
NsG-275~62.

** National Science Foundation Graduate Fellow.
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from the restriction that the system be symmet-
ric, although they still required a. single deter-
minant wave function. The technique used was to
define a function of the transformation from mo-
lecular orbitals to localized orbitals, whose ex-
treme points fix the transformation. This function
provides the effective definition of "localization".

2. TRANSFORMATION TO LOCALIZED
ORBITALS .

‘We wish now to free the concept from any re-
striction on the form ‘of the wave function. This
we do by making use of the natural orbital expan-
sion of the electron density p(r):

p(r) =le/*§5(r- rvar,

=é?>~ix%(r)..

The ¥; and A; denote the éth natural orbital and
its. occupation number, respectively.

When ¢ is a single determinant of doubly-
occupied orbitals, all A; equal two and the form
of p is invariant to an orthogonil transformation
among the ¥z In the more general case, the form
of p is-invariant to the non-orthogonal Lransfor-
mation
1 1
nzg u; = JE szk]‘?)(j s

where T is unitary and'7; normalizes #t;, Then

plr) = A? n-iuzg(r) .
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An essential feature of the scheme we are consid-
ering is the preservation of the form of pas a
"sum of squares" without any cross terms. The
reason for this will become apparent in the ex-
ample discussed below.

The transformation T is thus far unspecified,
We choose T by a straightforward generalization
of the Edmiston-Ruedenberg criterion [2] for the
single determinant case. Let Vij be the electro-
static interaction energy of the charge distribu~
tions 55 and » G

(r)u
Vi = z]f—l[_F—}%l_

The total self-energyof p is invariant to 7, but
is equal to the sum of two terms, neither of which
is invariant.

%f-'—j—p(:)_"ﬁf') ardr' ——Z) v+ Z) v

{mmvariant) (maxxmxze) (mmumze)
We choose T to minimize the interaction sum or,
equivalently, to maximize the self-energy sum.

The significance of this criterion may be seen
by relating the localized orbitals #; to an approx-
imate wave function constructed from them. In
particular, for a system of 2N electrons, a Hart-
ree (rather than a Hartree-Fock)~like wave func-
tion may be constructed by doubly-occupying the
first N natural orbitals. It may be shown that mi-
nimizing the energy of this wave function is equi-
valent to the Edmiston~Ruedenberg criterion for
this case.

‘This suggests that another way to obtain loca-
lized orbitals is fo relate them to a more accu-
rate form for the wave function, such as a va-
lence-~bond function, or at least one which satis-
fies the Pauli principle. We shall explore this
possibility by means of the following example.

3. EXAMPLE: H:’; (equilateral triangle)

‘We wish to consider the electron distribution
of Hj in the equilateral triangle (R = 1.6575 Bohr)
confipuralion. The natural orbitals have recently
been given by Chrisloffersen and Shull [4], based
on Christoffersen's twelve configuration wave
function [5]. Truncating the natural orbital ex-
pansion after three terms, we can write the wave
function as

W(1,2) = K1X1(1)X1(2) - Kz[Xz(l)Xz(z)+X3(1)X3(2)],

where the representation of the x; in terms of
Slater orbitals is given in ref. [4] where aq =
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=0,993594 and X5 = 0,079906. The x; belongs to
the totally symmetric representation aj of Dgy,
whereas Xg and X3 belong to the doubly-degener-
ate representation e'.

8.1. Localized orbitals for H‘:;

Now we can transform to three localized orbi-
tals u,, 1, #, by making use of the high sym-
metry. Since the natural orbitals form a basis
for an irreducible representation of Dy, the lo-
calized orbitals form a basis for a reducible re-
presentation. If C¥ denotes a counterclockwise
rotation of 1200 about the vertical axis, and o,
denotes reflection through the vertical plane con-
taining nucleus @, then a reasonable choice for
the symmetry properties of u,, up, 1, is

upy = Ciug;  up = Ciuy; o, =u,.
The T is the similarity transformation which =
connects the representation spanned by X3, X,
Xg with that spanned by #,, u;, u,. Because of
the degeneracy of e', group theory does not com~
pletely fix T, but rather gives two possible sets
of locahzed orbxtals, which may be generated from

=By = (/25 F%g - 13) 5

by applicatlon of C3. The plus sign corresponds
to an atomic density polarized to a large extent
toward the other atoms. The minus sign corres-
ponds to a bond density polarized toward the non-
bonded atom, The orbital which is the more loca-
lized, i.e. which maximizes

Voa =fua(r)ua(r')lr - r'|'1 drdr

is uZ. Its representation in terms of Slater orbi-
tals'is given in table 1.

3.2, Valence bond form

The preceding analysis characterizes the to-
tal density as a sum of three localized densities.
A different sort of analysis is suggested by re-
lating the natural orbital expansion of the wave
Sfunction to a valence bond form, namely,

W(1,2) = M¢ab + ¢1)c + ¢ac] ’
where
bap = a(1){2) + b(1)a(2),

1 11 1 1
(A +403)% = A1xg + A3(VIxg-%g). (D)
We have simply rearranged the three term natu-
ral orbital expansion of the wave function to have
this form, and have required @, b and ¢ to have the
sanie symmetry properties as previously as-
signed to Uy gy Upe The orbital @ is an atomie
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Tabg_e 1
Expansions of the orbitals u,, a, agp in terms of Slater
orbitals for H§’ {equilateral triangle)

ry

. u, a %b

Slater orbitals (eqfl 1) ed.2) (eals)
€3/m3 oxp(=8y7)  +0.638 +1.169  +40.932

1
1s  E3/m° expt-8yry 40.376 40,023  ~0.067
3/ expl-Ey70) +0.376 40,023 +0.433
CB/m3 rg oxp(-Lyrg)  -0.116  -0.164 ~-0.142
25 €3/mF ryoxpl-Lyry)  ~0.088 <0046 ~0.040
€3/ rpompLyry) 0088 -0.046  -0.091
Ci/m} Zaexp(-Larg  +0.067 +0.140  0.107

1
2 83/mF Zyexp(Lgry)  +0.082  -0.012  -0.025
€3/mi Zyexpt-tyry)  +0.032  -0.012  0.041

§1=1.20, {5 =1.175, {3=1.80. The p orbitals are di-
rected from each nucleus to the center ofthe triangle.
Thus Z, is directed from nucleus a to the center of the
triangle.

orbital polarized to a slight extent toward the oth-
er nuclei. Its representation in terms of Slater
orbitals is given in table 1.

3.3. Christoffevsen and Shull

Christoffersen and Shull [4] have also written
the wave function in a valence bond form. How-
ever, they took the orbital @ in ¢gp to be differ-
ent from @ in ¢,.. They wrote

W1, 2) = N'[dgp + bbe+ dacls
where )
bab = Fap(Mbgp(2) + bgp(Lag(2),
EO 1 1
2 2y2 =34 “ -

(A +205)%a,, = Njxg + (5/V2) (3~ V%) (3)
The representation of agp in terms of Slater or-
bitals is given in table 1. Their resulf was a
very delocalized description. The total wave func-
tion is the same as ours, however, and we see

no advantage to allowing this added flexibility. It
does point up an unattractive feature of this ap-
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proach, namely, although the individual terms
Pgp and ¢Ezb are quite different, the total density
given by the two functional forms is the same,
due to important contributions from "overlap
densities". Preserving the form of p as we have
done in defining localized orbitals avoids this
difficulty.

3.4. Comparison

Finally, lel us compare the three orbifals #,
a, and dqgp by giving their expansion in terms of
Slaler orbituls centered on Lhe three nuclel, 1L s
clear lhat @ is the mosl localized having almost
no contribution from the orbitals of the other nu-
clei, although the meaning atlached to this is dif-
ferent from that attached to #}.

Thus we see that.by relating the localized or-
bitals to different functional forms for approxi-
mate wave functions, we can arrive at different
definitions for the localized orbitals. The inter-
pretation given the localized orbitals then follows
from the form of the wave function.
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