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ABSTRACT 

This paper makes a comparison of resulting design moments for a 

particular size, uniformly loaded, two-way reinforced concrete" siab 

with various boundary conditions, using both the Central-Difference 

Operator of the Finite Difference Approximation to' the Bihaimonic 

Equation end Method 3 of ACI Bulletin 318-63. The 'attempt 'of thi 

study was to determine whether the large grid Finite Difference 

Analysis would reasonably approximate the results of AC' '318-63 

Method 3 for a uniformly loaded slab.
 

Due to the reasonably close correlation of the resultsiof the

methods the Finite Difference Analysis, with the aid of the Elastic
 

Curve Plot, was used to determine the design moments of the slab under
 

the influence of a concentrated load. A concentrated load in Finite
 

Difference Analysis is definedds being uniformly distributed over an
 

equivalent grid area, with the center of the loaded area and the loaded
 

grid point being coincident.
 



A method of estimating the maximum allowable, symetrically located 

concentrated load is presented, although the results are unproven by
 

testing.
 

A step-by-step account of the solution to each problem is presented.
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IV. LIST OF SYMBOLS 

A area of the slab over which the live load is appli 

Atota1 total slab area 

C an assigned constant for the problem equal to nD 

Csubscript moment coefficient for two-way slabs as given 

in tables1, 2, and 3 of ACI 318-63, Section A2003. 

Coefficients have identifying indexes, such as 

CA neg' CA LL' CB DL' . ." 

D flexural rigidity of the plate equal to 12(i - 2) 

DL dead load 

h grid spacing 

LL live load 

m ratio of short span-to long span for two-way slabs 

M moment, in ft-lb. Identifying indexes refer to 

direction, sign, and type ef loading, such as 

Mx pos LLI 4 neg DL? . . .'th4 

P an assigned constant for the problem equal to D 

pcf lb per cubic ft 

psf lb per square ft 

q uniform load for entire slab, has identifying indexes 

such as qDL and qLL 

qa concentrated total live load distributed over one grid 

area, equal to W 



qt 
tw 

concentrated total live load distributed over nine grid, 

areas-, equal to W 
(3h)

2 
qah4 

R an assigned constant for the problem equal to D 

t slab thickness 

T allowable concentrated load 

w deflection 

W total live load 

xY rectangular coordinate axes 

X length of clear span in short direction 

Y length of clear span in long direction 

FL Poisson's ratio 



V. INTRODUCTION
 

Justification for this Study,: ACT Bulletin 318-63 has been' 

extablished as the code which "provides minimauk requirements for th( 

design and construction of reinforced concrete or compositd structural 

elements of any structure erected under the requirements of the general 

building code of which this code forms a part." It presentsthe require

ments for the design of a two-way reinforced concrete slab with varying 

boundary conditions, but only for the application of a uniform load. 

In practice, a uniform loading condition is seldom the usage condition. 

The ACI Bulletin 318-63 and authors of books of reinforced concrete
 

design occasionally mention that other techniques can be used to analyze 

a two-way slab for non-uniform loading conditions. They also indicate 

that even though, these methods give approximate answers, the answers 

are often within the realm of reasonably predicting the action of a
 

slab structure. 

A design engineer is often faced with the problem of determining 

the capability of a two-way slab to withstand a large concentrated load. 

Since ACI 318-63 does not handle this loading condition,, and since 

ACT 318-63 is.the basis for the reinforced concrete design, one must
 

be certain that any other analytical method used will produce reasonably 

comparable answers. The method used should also be fairly straight

forward so that the work may be done efficiently.
 

Intent of this Study: To a limited degree, this study will inves

tigate the use of the Central Difference Operator of the Finite 

1
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'DifferenceApproximation~to the Biharmonic Equation to ascertain whether
 

the resulting: moments are comparable to ACI 318-63 mMethod 3. A large
 

grid,,suitable for desk calculator solution, will be used to establish
 

,a suitable efficiency in the analysis.
 

This study will begin by considering a particular two-way rein

forced concrete slab of dimensions 20 ft by 20 ft, and determining the 

maximum moments for each of three cases of boundary conditions: 

Case "A," all edges fixed; Case "B,."two opposite edges fiked, two
 

' 

opposite edges pinned; Case "C," all edges pinned. The initial deter

mination will be made utilizing a uniform loading condition and ana v

zing by both ACI 518-63 Method 3 and by the Finite Difference Approxi

mation to the Biharmonic Equation. A comparison of the resulting
 

maximum moments will then be made. If a reasonably close correlation
 

exists between the results of-the two methods, then a reasonable degree
 

of accuracy can be expected from the Finite Difference Approximation to
 

the Biharmonic Equation to analyze the slab for the application-of con

centrated loads. In the Finite Difference Analysis, a concentrated
 

load is defined as being uniformly distributed over an equivalent grid
 

area (h X h) with the center of the loaded area and the loaded grid 

point being coincident.
 

In addition to a moment determination for the application of a
 

single concentrated load at the slab center, an attempt will be made 

to study the conditions that result from expanding the concentrated
 

load until full uniform loading is again achieved.
 



VI. TWU-WAX B A-A ALY81J - UNIFORM LOAD
 

Design' riteria 

-(i) The 'slabis to be two-way reinforced concrete of dimensions
 

20 ft by 20-ft.
 

(2) Minimum slab thickness (t) = greater of ACI 318-63,
 
paragraph 2002(e). (3-1/2 inches or Slab perimeter 80' = o.445 ft
 

i8o 180 
= 5.44 inches. Arbitrarily use t = 7 inches to reduce the deflection.) 

(3) 	Slab dead load = 7/12 ft by 150 pcf = 87.5 psf
 

Live load = 112.5 psf
 

Total load = 200.0 psf
 

Although ACI 318-63 Method 3 indicates that the dead load and live load
 

are combined in the determination of the negative moment at the fixed
 

panel edge, they will be used individually in the negative moment
 

calculation for later comparisons.
 

(4) Reinforced concrete will be considered as having a Poisson's
 

Ratio () 	 = 0.15. 

Boundary Conditions
 

Case "A" All edges fixed
 

Case "B" Two opposite edges fixed - two opposite edges pinned
 

Case "C" All edges pinned
 

My
 

MX 

MX.
 

12
 y F e
Figure I.- Positive External Moments.
 



Design Assumptions 

(1) Reinforced concrete is elastic, homogeneous, and isotropic.
 

Although this is a tremendous oversimplification of the exact nature of
 

reinforced concrete, to date, few (if any), of the exact characteris

tics can be defined. The reason this difficulty exists is due to the 

vast number of variables that influence its strength. For example, 

curing temperature,. water-cement ratio, strength and gradation of 

aggregate, placement of reinforcing, placement of forms, workmanship, 

etc., all control the strength of reinforced concrete to a certain 

degree. Even though the results obtained will only be an approximation 

of the exact results, this assumption normally gives a reasonable pre

diction of te'sldb action and serves to simplify the analysis. 

(2) Plain sections remain plain.
 

(3) Neutral axis is undeformed. 

(4), Defle~tions are mail in comparison to the slab thickness.
 

(5) The slab is thin in relation to its linear dimensions. 

Moment Determinati6n by ACI 318-63 Method 3 

Case "A" All edges fixed ACI Case 2 

m - 2 - 1. 00 
Y 20'
 

2
 

M = CB q X 
x 


= CA q y2 



where 

C = moment coefficient as given-in tables 1, 2, and 3 

q = uniform load 

X and Y = length of respective sides 

Positive Moment Calculation From table 2
 

D.L. = 87-5 psfqDL = 

= = 0.018CA DL CB DL 

DL = My DL = (0.0°1(87"5)(2°)2 = 630 ft-lb 

From table 

=LLL.t. 112.5 psf 

CA LL CB LL = 0.027 

=
 
Mx LL My LL .(0.027)(112.5)(20)2 = 1215 ft-lb 

Negative Moment Calculation From table 1 

qDL = 87.5 psf 

q = 1,12.5 psf 

CA neg = CB neg = -0.045 

2
8

MxDLneg MD = (-0.C45)( 7.5)(20) = -1575 ft-lb 

= -2025 ft-lb
Mx LL neg- My LL neg = (-0"45')(1-2.5)(20) 
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x 

Summary for Case "A"
 

= 

M pe= My pos = My DL + My LL 630 ft-lb + 1215 ft-lb = 1845 ft-lb 

= 

Mx neg My neg = My neg DL +-My neg LL = -1575 ft-lb - 2025 ft-lb 

= -360O ft-lb 

Case "B" 	 Two opposite edges fixed, ACI Case 5
 
two opposite edges pinned
 

Y 

M = CB • q X
2 

x 


q y2
mk = CA 


From table 2
 

=DL87.5 psf
 

Positive Moment Calculation 


"'CA DL = 6.027 

CB DL- 0.018
 

2 

Mm PL = '(0.018)(87.5)(20) = 630 ft-lb 

O v )( pO 2 

My DL = ( -nP7 7.W J = 945 ft-lb
 

From table 3
 

qLL= 112.5 psf
 

CA LL = 0.032
 

CB t = 0.027
 



=
Mx LL' (O.o27)(12.5)(20)2 =1215 ft-lb 

= 
M LL (0-032)(112.5)(20)2 1440 ft-lb
 

Negative Moment Calculation From table 1
 

qDL = 87.-5 psf
 

qLL = 112.5 psf
 

= 

CA neg -0.075
 

2 

My neg DL = (-0.075)(87.5)(20) = -2625 ft-lb 

My neg LL = (-0.075)(112.5)(20)2 = -3375 ft-lb 

Summery for Case "B" 

30 

Mx pos =Mx DL + Mx LL.=6 ft-lb + 1215 ft-lb =1845 ft-lb Middle strm. 

The ACI Code provides that at discontinuous edges the bending moment 

in the coluin strips shall be gradually reduced from the full moment 

value of the middle strip to 1/3 of these values at the pael edge. 

Therefore,
 

(1

'Mx.pospanel edge = 1 845 ft-lb) = 615 ft-lb 

= 

'Mypo = Mr pos DL, My pos LL 945 ,ft-lb+ 144o ft-lb = 2385 ft-lb 

=
 
my neg DL + My neg. -2625 ft-lb - 3375 ft-lb = -6000 ft-lb
MY neg = 




8 

Case "C" All edges pinned ACI Case 1 

x m = =1.0 

M = CB •q •X2'
 x 


MY= CA '. Ya 

Positive Moment Calculation From table 2 

= qDL 87-5 psf 

qLL = 112.5 psf 

CA = CB = 0.036 

M, DL MY D= (o.036)(87.5)(20)2 =1260 ft-lb 

MX LL My LL (o.o36)(112._)(20)2 11620 ft-lb 

Sossary for Case "C" 

MX pos = My pos = M DL + My LL 12601 ft-lb + 1620 ft-lb = 2880 ft-lb 

Middle strip 

For the discontinuous "edges the moment is i/3 of the middle strip 

moment. Therefore, 
8 

Mx pos panel edge = My os p~nel edge = 3(28 0) = 960 ft-lb 

3 

There are no negative moments in'volved in this problem. 



Moment Determination by Finite Difference Approximation
 

to the Biharmonic Equation
 

Pinite Difference Approximation to Case "A" (see Appendix) 

Boundary Conditions
 

h-	 X Y All edges fixed
 
41
 

Therefore
 

w-! 'y =lY]
3 


due t o
 4 	 X 
I I Irotation 

I I w_ w5 restraint 

I c ib ' I_Tx,5 : 

-II -43 -l, I , also 

.,2- 'a Y - - _ Oy= Wx,4:= w4y= 
2212 12 4 512 due to translation 

!b 	 70i ---tib -- lb 0vwXo= 0 

Ic lb Ic c restraint 

0,3L . I_ 4
I1I I I In applying a uniform 

IJ I iload over the entire-- I I~ (q) 


surface area, conditions
4 CiI, ----14' 31 41 - ---
Ii I of symmetry become
 

I__ - I c I I >apparent.Due to these
 
, 151 5 5 45 5 5 symmetrical conditions-1.5 1[Li 	 small alphabetic letters
 

will be assigned to
 
X points of common deflec

tion, to cut down on
 

writing and make
 
symmetry more obvious.
 

Superimposing the Finite Difference Approximation to the Biharmonic
 

Equation over each .point of differing 
deflection: Let C = q h4
 

D
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At gria poinT c 

20a,- 8b -,8b 8b -8 + 2c + 2c + 2c + 2c = C 

gr6uping common terms 

20a  32b + 8c =c (i) 

At grid point 2,2;' game 

20b- 8a.-c 

for 1,2; 2o-3 and 3,2 

8c + 2b,+ 2b +b +b= C 

grouping comon terms 

-8a + 26b - 16c = C (2) 

At grid point 1,1; 

20c - 8b 

8ame for 1,3; 3,1 and 3,3 

- 8b + 2a + c + c + c + c = C 

grouping common terms 

2a - l6b + 24c =C (3) 

Placing the simultaneous equations in matrix form 

Sum 

N- 2 -16 241c :io10+C 

{A C) (2) -8 26 -16 c' 2+c: 

(1),,2o -32 8 C J C 

The Cholesky or Crout solution yields '(see Appendix) 

Check 

F2 -8 12 .500Cc 5+.5000C 
LT K) =(2) -8 -8 -. 05 .160 -l1-.15

(1) 20 128 37-4784 .2093C 1.0+.2093C 



Back substitution yields 

c = .2095C' 

b - 2.1053c = - .1316c 

b = 2.1053(.2093C) - .1316c = .44o6c - .1516C
 

b .3090C
 

a - 8b+ 12c= .50
 

= 8(.5090C) - 12(.2093C}+ .5C = 2.4720C + .5000C - 2.516C 

a = .460C 

Subdtituting back into original equations 

(a) o(.4604c) - 32(.3090C 	4 8(,2093C) should 1.ooc 

°
 
9.2080C - 9.888o0c + 1.674.4c	 = + 10.88240 - 9.888o0 

= •9944c - 1.00c 

(2) -8(.460Cf) + 26(,3090C) -16(.20930) should = 1.00C 

.3.6832C + 8.0534c - 3.5488c + 8.034oc - 7.0320C 

= l.0020C' 1.OOC 

(3) 2(.4604C) - 16(.3090C) + 24(.2095C) should = 1.00C 

.9208C - 4.9440C + 5.0252C = 5.9440 - 4.9440C 

= 1.00c 

Therefore the solutions satisfy the original equations fairly well.
 

2
 
The equations or bending moments are
 

=-n-2 2)
 

The Central Finite Difference Approximation for the second partial
 

derivative is
 

http:1.674.4c


12 

or in modular form
 

2
2 

6x h


2 wij modular form U2, 
2 

h2 i, y2 h 

•Ui' J+13
 

The Maximum Positive Moment occurs at the center of the slab, point 2,2.
 

Therefore superimposing the Central Finite Difference Approximation to
 

the second partial derivatives over point 2,2
 

S
(b 

- 2a + b) = -L(2b - 2a) = 2L(.3090 - .4604)C 
2 2 2 
x h ' h


22(- .1514) = - .3028C 
2
 

2 h
h


_ 1 2a + b) = -L(2b - 2a) = - .3028C 
-
 2
 

2 2 h
6y h


Mpos ,Mx pos - DI(_ .02bC + -(. )( .3028c)) 

h
h2 

3028 22(1.15) =.3482 D q 0 35482 qh
2 

h
2 

h2' D
 

Since
 

= 
=
 
IDL 87.5 psf S4 qLL 112.5 psf h 4Y =204 = 5'
 



pos DL = Mx pos DL - 3482(87.5)(25) = 762 ft-lb 

My pot L = Mx pos L - .3482(112.5)(25) = 979 ft-i-b 

The Maxinum Negative Moments occur at the center of each fixed panel 

edge, points 0,2; 2,0.; 4,2 'and 2,1. 0. 

.Mkxmeg. ,2 M neg 1,2 = My neg 2,0 My neg 2,4 +- -_ 

_ .6180C62 --(b - 2(0) + b) = 2 2 (.3090C) 22 

h
2 

h
6y h

2 2 h
 

Therefore
 

4 
 2
h
 h
 

Mneg' D .
6
1
8
0 q- .... 6180 qh
 

h2D
 

Mx neg DL = My neg DL - .6180(87.5)(25), - 1352 ft-lb 

Mx neg L 
= 
My neg LL - 6180(112.5)(25) = - 1738 ft-lb 

Summaryr for Case "A"
 

= 

Mx neg My neg 7 My neg DL + My neg LL - 3090 ft-lb
 

mx pos = My pos = My pos DL + My pos LL - 1741 ft-lb 



lk 

Finite Difference Approximation to Case "B" (see Appendix)
 

Boundary Conditions
 

h = X = Y Two opposite edges

4 4 fixed, two opposite
 

edges pinned 

Therefore
 

due to 
d c d Y Yallowing

I 1 Frotation =-w- of 
-pinned edge 

-10 0 10 2 10 3 1 5 -4
I I LT WX, lW duetto 

-d Id Ic Id ' r.tation 

' b bia b -b4 
-,-- --- - -- -I Wx, =wo, restraint 

i-b b b -I 

12- i_ 42 512 > x,0=oO,y 'x,4='W, y0 
IdId d I I Id -d II'It I -al43 due to translation 

-I3 - d IT7 d - 4r - restraint
 
II II
 

I 4 I I I I In applying a uniform 
II*--- ' _1__----load over the entire"f (q) 

", ~ I " surface area, conditions 
I I II of symmetry become 

. -..... - ..-- -- apparent. Due to these-1I.5 051 ,,5 . , 355 4 55 symmetrical conditions 

small alphabetic letters
 
X will be assigned to
 

points of common deflec
tion, to cut down on
 
writing and make 
symmetry more obvious.
 

Superimposing the Finite Difference Approximation to the Biharmonic
 

Equation over each point of differing deflection: Let C - q 



At grid point 2,2 

20a - 8b - 8b - 8c - 8c + 2d + 2d + 2d + 2d C 

grouping common terms 

20a - 16b - 16c + 8d = C 

At grid point 1,2; same for 3,2 

20b - 8a - 8d - 8d + 2c + 2c + b - b C 

grouping common terms 

-8a + 2b +4 - 16d 'C (2) 

At grid point 2,3, same for 2,1 

20c - 8a- 8d -'8d + 2b + 2b + c + c = C 

gr6uping common terms 

8Ca+ 4b±+22c -Ed ='C (3) 

'At grid point 1,3; same for 1,1; 3,1 and 3,3 

20d - 8'- 8c 2a + &+ d + d'- d C 

grouping common terms 

2a - 8b - 8e + 22d =C (4) 

Placing the simultaneous equations in matrix form
 

Sum
 

(4) [2 -8 -8 22:01 :C+c: 

(2) -8 20 4 -16 c C 
(3) -8 4 22 6c 2+C 

1 20 -16 -16 8 c :-4+C 
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une uno±esay or urouz soluzion yielas ksee Appenaix) 

Check 

2 -4 -4 11 .5000. 4.5o0o 

LT -8 -1 2-3333 -6.0000 -.4167C -2.,6667-.4167C
 

-8 -8 55.3324, -1.7350 -.l205Cj -.7350-.1205C
 

20 64 -85.3312 23.9504 .308461 1.0+.3o84c
 

Back substitution yields,
 

d = .3o84c 

c - 1.7350a = - .12050 

c =i7350(.3084C) - .1205C .5351C - .1205C 

c = .4146c 

b + 2.3333c - 6.,o =-.4167C 

b-= -2.333-(.,4146C) + 6..0(.3084C) - .167c = 1.85C4c -1.3841c 

b =,'.4665c 

,, -4b - 4c +ild,='. 5000C, 

a 4(.4663C) + 4(.4146c) - 1'(.3084C) + .5000C
 

a = 4.0236c0- 3.3924c 

a .6312C
 

Substituting back into original equations
 

(1) 20(.6312C) - 16(.4663C) - 16(.4146c) + 8(.3084C) should = 1.,OOC 

12.6240C - T.4608C - 6.6336c + 2.4672C = 15.0912C - 14.0944C
 

= .9968c 1.OOC
 

(2) 	-8(.6312C) + 20(.4663C) + 4(.4146c) - 16(.3084c) should = 1.OOC 

-5.0496C + 9.3260C + 1.6584c - 4.9344c = 10.98440 - 9.9840C 

. = l.ooo4c - .OOC 
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(3) -8(.6312c) + 4(.46653o) + 22(.4146C) - 16(.3084C) should = 1.OOC 

-5.o496C + 1.8652C + 9.1212C - 4.9344C = 10.9864c - 9.9840c 

= 1.0024C - 1.0CC 

(4) 2(.6312C),-8(.4663C)'- 8(.4146c) + 22(.3084C) should = 1.00C
 

1.2624c - 5.7504C - 3.3168c + 6.7848C = 8.0472C - 7.0472C
 

= 1.0000C
 

,

Therefore the soiutions satisfy the original equations fairly well.
 

The equations for bending Moments are (see F.D. Approx. for Case "A") 

)\x2 y2 0 T-x2S 

The Maximum Positive'Moments occur'at the center of the slab, point 2,2.
 

Therefore, superimposing the Central Finite Difference Approximation to
 

the second partial derivatives over point 2,2
 

2
2 

x2 

(b 
h
2 

- 2a + b) = (2b 
h
2 

- 2a) 2 (.r63 
h 

- .6312)C 

20(
-C(- .1649) -

.52980 
2 

h 

62w 1 c 2a+c) (2c - 2a) -L.44 - .3 ) 

-2C(- .2166) 2
 
2 2


h




- 3298C + (.15)(- ."2C))h2
M o - h2 /j
 

- D(- .3298 - .0650) - .3948 Dq

h2 h
2 D 

2
 
.3948 q h


MY po - + (.15) .-298o-) -c .4332'- .0495) 
s 


4
 h2h 

q h
4 2 

h2 


.4827 - .4827 qh
 
2 Dh

Since
 

qDL = 
8
7.5 psf qLL =11

2
.5psf h X Y .20' _5'
 

4 4 4
 

' " (

Mk pos DL --5948(87 5) 25) 864 ft-lb
 

Mx pos LL .3948(112.5)(25) = 11 ft-lb 

My pos DL- .4827(87.5)(25) = 1o56 ft-lb 

poL .4827(112.5)(25") = 138 ft-lb15 tl
MY pos LL 


The Maximum Negative Moments occur at the center of each fixed panel
 

edge, points 2,0 and 2,4.
 

0.
 

My'neg D(62"2, ,2
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1 (c - 2(0) + c) = 2c 2 146c) 
h

22 h
2 

hy 

C 
_.8292 -c 

2 
My neg - - Dn 8292 8292 D q 8292 

MY neg DL - .8292(87.5)(25) -1814 ft-lb 

My neg LL .8292(i12.5)(25) = - 2332"ft-lh 

Summary for Case "B" 

My. neg = My neg DL + M eg LL - 4146 ft-lb 

Mx pos-= Mx pos DL + Mx pos 1!; 1974 ft-lb 

My pos ='MY pos DL + My pos LL 2414 ft-lb 
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Finite Difference 'Approximation,to Ca~e "C" (see Appendix)-

Boundary Conditions
 

h = X Y All edges pinned 

Therefore
 

-C -b - -
y 

I due to 

-- ,-w allowing 
i ,- rotation of 

-1 
0 

I 
I-c 

S=,
0 11 ~20 

,'
ic 

o 

30 

c 

4 
o 
0) 51 

I- 1 

_-c'_ _T 

-, pinned edge

J5x,% 

31rV 4 1 I 

II I0y 7xxc.= = Vx,4 =W4,y 
= 0 

-b Ib a b -b 
0 I - -12 due to translation 

I I I I restraint 
i-C Ic lb [b -c I 

-- I 53 In applying auniform 
I load (q) oyer the entire
 
II___ -surface area, conditions
 

3 4N 5 4 of symmetry become 

1- -bI I apparent. Due to theseI 

- -c symmetrical conditions
 

-'l 0 15 
- 2 5 -5 4 small alphabetic letters 

will be assigned to 

X points of common deflec
tion, to cut down on 

writing and make 
symmetry more obvious. 

Superimposing the Finite Difference Approximation to the Biharmonic
 

Equation over each point of differing deflection: Let C = q.-


At grid point 2,2
 

20a - 8b - 8b - 8b - 8b + 2c + 2c + 2c + 2c = C 

grouping common terms 

20a-- 32b + 8c C () 
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At grid point 2,1; 

20b - 8a 

same 

- 8c 

for 1,2; 

- 8c + 2b 

2,3 and 3,2 

+ 2b + b - b = C 

grouping common terms 

-8a + 24b - 16c =C (2) 

At grid point 1,1; same for 1,3; 3,1 and 3,3 

20c - 8b - 8b + 2a + c + c- c - c 

grouping common terms 

2a - 16b + 20c = C 

= C 

(:3), 

Placing the simultaneous equations in matrix form 

Sum 

(3) 2 -16 20: ', :- 6+C: 

(1) 20 -32 - 46:+C 

The Cholesky or Crout solution yields (see Appendix) 

Check 

2 [8 10 5ooo0C 3+.5000 

(T _1.6000 -.125o -.6ooo-.1250 

20 128 12.8000 .5469C 1.0+.5469C 

Back substitution yields 

c = .5469C 

b- 1.6000c = - .1250C 

b = 1.6000(.5469C) - .1250C = 

b = .7500C 

.8750C - .1250C 
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a - 8b + 10c .5000C 

a = 8(.7500C) - 10(.5469c) + .500CC = 6.5000C - 5.469C 

a = 1.0310C 

Substituting back into original equations 

(1) 20(1.0310C) - 32(.7500C) + 8(.5469G) should = 1.0C, 

20.6200C - 24.000CC + 4.3752C = 24.9952C - 24.000C
 

= .9952C - 1.ooC
 

(2) 	-8(i.0310C) + 24(.75OC) - 16(.5469C) should = 1.00C
 

-8.2480C + 18.000c - 8.7504C = 18.000C - 16.9984c
 

= 1.0016c 1.0CC 

(3) 2(I.0310C) - 16(.7500C) + 20(.5469C) should = 1.O0C
 

2.062C- 12.000CC + 10.9380C = 13.000CC - 12.000C
 

= 1.000C
 

Therefore the solutions satisfy the original equations fairly -ell.
 

The equations for bending moments are (see F.D. Approx. for Case 'A")
 

+ 	 - •2H)M
 

The Maximum Positive Moments occur at the center 'of the slab, point 2,2.
 

Therefore superimposing the Central Finite Difference Approximatiqn to
 

the second partial derivatives over point 2,2
 

... - 2a + b) =-. 2a) .(b= -(.7500 - 1.0310)C 
2 2 2


h h =xh 2
 

h2h
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1 ( -2a+b) -(2b-2a) .562002= = 

,2 ;2 2 1 h2 
-~C((.152'b).56 (0
 

MposMxpos,- - D .562o + (.is) 5620 ) 

.5620 h2(l.15) .6463 D q 0 

2 
.6463 qh 

Since 
q 11.,s x Y 20' _5 

T. .= 112.5 ,ps= h = T = - 5 

Mos DL = x pos DL - .6463(87.5)(25) = 1414 ft-lb 

My pos LL = Mx pos LL - .6463(112.5)(25) = 1818 ft-lb 

There,is no negative moment involved in this case.
 

Summary for Case "C" 

M =0
 
neg
 

=
=
 
pos , pos = M pos DL + Mx pos LL 3232 ft-lb 

http:C((.152'b).56
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Comparison of Results for Uniform Loading Condition
 

Central Finite Finite Elastic 
Maximum Grid ACI 318-63 Difference Difference Curve 
Moment Point Method 3, Approximation, Approximation, Plot 

ft-lb ft-lb percent of ACI ft-lb 

Case "A" 

Mx 2,2 +1845 +1741 94.4 

MY 2,2 +1845 +1741 94.4 

Mx (0,2

-3600 -3090 85.8 --800 

2,4 J 

Case "B" 

Mx 0o,2
Q2 +615 0 

Mx 2,2 +1845 +1974 107.'0 

MY 2,2 +2385 +2414 .101.2 

My (2,.0 
2,4 -6000 -4146 69 "5587 

Case "C" 

Mx 0o,2
Q2 +960 0 

MyM 2, 0
(2,4 +960 0 

Mx 2,2 +2880 +3232 112.2 

My 2,2 +2880 +3232 112.2 

Table 1. 'DesignMoments for Uniform Loading Condition
 



The results compare quite favorably with the exception of the maximum
 

fixed edge moments in both Case "A" and Case "B". This indicates that
 

the grid chosen was too large to closely approximate the deflections that
 

influence the maximum negative moment. However, since halving the grid
 

intervals approximately quadruples the amount of work necessary to obtain
 

the solutions to the simultaneous equations, it would appear that a more
 

simple method, of approximating these controlling deflections is in order,
 

This can bedone by sketching the elastic curve of the slab section
 

through the point-of interest, using the calculated deflections. The
 

inflection point in the elastic curve is then approximately located and
 

the deflection and distance from the point under consideration is scaled
 

off the curve. (Note - a thin spring steel wire with straight pins at
 

plotted deflection points works wonders in approximating the elastic
 

curve). The second partial derivative is then recalculated using the
 

new values obtained and the moment is modified accordingly.
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Elastic Curve Plot for Case "A' Negative Moment 

b _ 
w 0 0,o b 

-b 
0, 
cc)

y 

0 

II 

b1 

II II 

From elastic curve 

h' -.-172Y 

- .18C 

Therefore 

y 
2 

2 (2w') 

(h') 
2 

=2(.18C) 

(172Y) 
2 

='12.17C 
y 
2 

Mmneg = y feg = 2(dy2)' 1.7 
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with
 

C = q-Y= 20', h = 
II= 


Since
 

qDL = 87.5 psfi. 

D(12.17) (87K5)y)-14.& -e (256)D
x&y neg L 

- .0475(87.5),(,400) = -

M

x&y neg,LL :b (12.17). (112.5)y 

y2 (256)D 


- .0475(112.5))(4o0) = 

M
M 
x& neg ' My neg DL + y neg LL = -

L='
q 256D
 

= 

q 112.5 p
 

(12.17)(87-5)Y 2 
256
 

1662-ft-lb
 

2 
= - (12.17)(112.5)Y 

256
 

- 2138 ft-lb 

800 ft-lb 
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Elastic Curve Plot for Case "B" Negative Moment
 

I II 

V 0 -0 

o S, 

0 n-

From,elastic curve 

h'  .177Y 

-' .2,3C 

2 
w 1(h. (2w,) = 2(.23C) - 17.88C 

2 2 y2
2 (.177y)
)y (h')
 

Therefore
 

My neg D2 - y2 ] 



with 

Y= 20', h , C = q-D-

Since 

qDL = 87.5 psf 

DL -negD (17.88) (87.5)Y
4 

y 2 (256)D 

- .06984(87.5)(400) = 

Mneg LL D (17.88) (112.-5)y + 
y 
2 

256D 

- .o6984(112.5)(400) 

1neg = My neg DL + My neg LL 

q2-4 

qLL = 112.5 psf
 

= _.06984(87.5)y
2
 

-2444 ft- lb
 

.06984(112.5)y2 

= - 3143 ft-lb 

- 5587 ft-lb
 



VII. TWO-WAY SLAB ANALYSIS - CONCENTRATED LOADS 

An examination of the preceding Table 1 indicates that the results
 

obtained by the Central Finite Difference Approximation to the Biharmonic
 

Equation along with the Elastic Curve Plot compares well with the results
 

,obtainedby the analytical, emperical or experimental lethods used to
 

establish Method 3 of ACI 318-63. Therefore, the Finite Difference
 

Approximation can be used to analyze a slab for the'application of
 

concentrated loads and a reasonable degree of accuracy can be expected.
 

This study will now explore the application of concentrated loads 

on the three cases previously examined. It will attempt to investigate 

how the maximum moments are affected as the load is expanded from 

application over an area X by 1 to fill uniform loading. The full live 

load (q-X-Y) applied to the slab under the uniform loading condition
 

will still be used, only it will be applied over the smaller area. For
 

this study, the load will be located such .that the symmetry of the, 

deflections is maintained. The assumptions previously stated still
 

apply. 

30 



Finite Difference Approximation to Case-"A"
 

Concentrated Load Over Grid Point 2,2 (see Appendix)
 

Boundary Condlttions 

h=X=Y 
4 4 All edges fixed 

c b c 

--- -- -IT -- 2 4 -- -- - 4-4 I Therefore 

I 0 11 2= 3l ,;4 5 y0 

-I -
_ Ic 

[I--

I_ ' 
Ib 
b------

, 
IS 

, Ix due to 
rotation 
restraint 

-,ri - --. ---. -T - - wx,5 =Wx.lb lb * Ia x5 w,3 
2

-2 ,1 VI I [L 1/4 ---I---2, 4 2 2ls also 

Ic Ic Ib I Ic 

I ' h" I

- I I due to translation 

Vr4 5"4 restraint61-4 14" 4 -
I' 

I - -c - Since the deflection 
-I.4.015 [11 4 5symmetry conditions are 

retained by the load
 
X 
 placement, the same 

small alphabetic letters 

The total live load previously placed can be assigned to the 

on the slab will now be concentrated points of common 

over an area h X h at point 2,2. deflection. 

Previous total live load = 112.5 psf X 20' x 20' = 45000 lb - W 

qa= w 
2

h .
 

Superimposing the Finite Difference Approximation to the Biharmonic
 

4Equation over each point of differing deflection: Let R = qa D Lh2Dh
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At grid point 2,2 

20a - 8b - 8b - 8b - 8b + 2c + 2c + 2c + 2c R 

grouping common terms 

20a - 32b + 8c (1) 

At grid point 2,1; same for 1,2; 2,3 and 3,2-

20b - 8a - 8c - 8c + 2b + 2b + b + b = 0 

grouping,common terms 

-8a + 26b - 16c =0 (2) 

At grid point 1,1; same for 1,3; 3,1 and 3,3 

20c - 8b - 8b + 2a + c + c + c + c = 0 

grouping common terms 

2a - 16b + ,24c = 'O (3) 

Placing the simultaneous equations in matrix-formn
 

Sum 

2 -16 24i:0110 
(A c) =(21 -8 26 -16 2 

(1) o -32 8 R - 4 +R 

It should be noted that a similartiy exists between the preceding
 

simultaneous equations and those obtained under the uniform lodiing"
 

consideration. The only dIfference is in the value of the load placed
 

on the grid points. Therefore, a large portion of the. L(T K)..matix
 

remains the same.
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Check 

[2 -812 0 5 

L( -8 -38 -2.1033 -1.1053 

2 120 37.4784 .02670j 1.0+.0267R 

Back substituting yields
 

6

c = .02 7R 

b - 2.1053c 0 

b = 2.105-(.0267R) 

b = .0362R 

a -8b + 12c= 0 

a = 8(..0562R) - 12(.0267,) = .4497R - .3204R 

'a= .1293R 

Substituting back into original equations 

(1) 20(.1293R) - 32(.03620) + 8 (.0267,) saou-LC i-u 

2.5860R - 1.7987R - .2136R = 2.7996R 7 1.,7987R 

= 1.0009R I.o 

= 
(2) 	-8(,.1293R) + 26(.0562R) - 16(.0267R) should' 0' 

-1.0344R + i.4615R -..4272R = 1.46150 - i.4616F 

- .0001R0'0 

(3) 2(.1293R) - 16(.o562R) + 24(.0267R) should = 0 

.2586E - .8992R + .6408R = .8994R - .8992E 

= -.0002R 0 

Therefore the solutions satisfy the original equations fairly well.
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The equations for bending moments are (see F.D. Approx. for Case,"A"
 

uniform load) 

\7x2 \Sx2 

The-Maximum Positive Moments ,occur at the-center of the slab, point 2,2.
 

Therefore superimposing the Central Finite Difference Approximation to
 

the second partial derivatives over point 2,2
 

_ (b- 2 2a) -2L(.0562 - .1293)R2a + b) ='-L(2b- = 
2
2 h


6x h


2
= --R,(-.0731) = - .1462- hh


2
2 ,hh 

My pos LL= Mx pos LL - .1462 V+ (.15) .1462 

-. 1462 (1.15) = .1681 D2 Rh0 


- .1681 2 
Wh 2 .1681w

h D 

.1681(45000)
 

7565 ft-lb
 



The Maximum Negative Moments occur at the center of each fixed panel 

edge, points 0,2; 2,o0; 4,2 and 2,4. Although the Finite Difference 

'Approximationanalysis for the uniform loading condition indicated the
 

grid spacing to be too coarse to closely approximate the maximum
 

negative moments, the negative moments will be calculated for an order
 

of magnitude determination and then checked with the Elastic Curve Plot.
 

14xneg 0,2 = M~xneg 4,2 MY neg 2,0 MY neg 2,4 D +y2 

(b - 2(0) + b) - 0562) 1124E 
2 

h
2 2

y2 h h 

D7 - ,Nxy h2 .1142WMegegLLLL D(-124h)\h2 = .I142 D- wh2 
= 

- .1142(45000) 

- 5139 ft-lb 

0 
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Elastic Curve Plot for Negative Moment.
 

b 
00
 

Pw 

' . , -z,,b 

w=0~~ .o I
 
-- t DCU 

- 0I l.lYb 


0 0 

The Elastic Curve Plot indicates that the inflection point is very near
 

Sthe grid point. Therefore the negative moment calculation is approxi

mately correct.
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Finite Difference Approximation to Case "A" (see Appendix)
 

Concentrated Load Over all Internal Grid Points
 

X Y Boundary Conditions 

4 4 All edges fixed 

c b c -

- F Ti---IFT---

-1f o0i Q0 

-

io2 3o0 

F --

40  50 ' 

Therefore 

"IX 1 Vx due to 
M- '/- rotation 

w3Y restraint

-Ii __ IT . 

Ib b b wx, wx,31
 
r "442YId/ XA - also
 

=
= 

-- -j - 3 - 5 	 .x,wO = Wy= wx4 4y 0 

-14 04-24 	 4 due to translation 
I ,I restraint
 

- - Jo b 1c 

-IL5 015 If.j 
5 

35 4 Since the deflectioni
 
X 	 symsetry conditions are 

retained by the load 
placement, the same 

The total live load previously placed on the small alphabetic letters 

slab will now be distributed over an area can be assigned to the 

3h.X 5h, effectively concentrating a portion points of common 

of the load over each internal grid point, deflection.
 

Previous total live load = 112.5 psf X 20' X 20' = 45000 lb = W 

W = 45000 = 5000
 
2 2
qt = (3h) 9h h

2
 

Superimposing the Finite Difference Approximation to the Biharmonic Equa

4 = 

tion ever each point of differing deflection: Let P = qt ! 5000 --


D D
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At grid point 2,2
 

20a - 8b - 8b - 8b - 8b + 2c + 2c + 2c + 2c = P

grouping commonterms
 

20a - 32b + 8c = P '(1) 

At grid point 2,1; same for 1,2; 2,3 and 3,2 

20b - 8a -
8

c - 8c + 2b + 2b + b + b P 

grouping common terms
 

-.8a'+ 26B - 16c = P
 

At grid point ll;-same for 1,5; 3,1 and 3,3 

20c - 8b - 8b + 2a + c +.c + c + c = P 

.grouping common terms 

2a - 16b + 24c = P '(.) 

Placing the simultaneous equations in matrix form
 

Sum
 

-16 24 P'. 10+P 

(A?- =-8 26 '-16 P 2+P 

'[0 -52 8 P -4+P 

Note that the {A:C) matrix above is identical with that of the original
 

uniform loading consideration. Therefore the solutions to the simulta

neous equations and the deflection coefficients are identical. The
 

difference in the moments will come from the different load applied at
 

the grid points.
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Therefore
 

a =. 4604P 

b- . 5090P 

c = .2093P
 

The equations for bending moments are (see F.D. Approx. for Case "A",
 

uniform load) 

The Maximum Positive Moments occur at the center of the slab, point,2,2.
 

)2w_ .3028P 

x 2 )y2 h2 

poos , = M pos LL8t, - + (.15)( .5028 

h
2 

.3482 50 D.3482 DE = D2 ( 5 h_ 

1741 ft-lb
 

The Maximum Negative Moments occur at the center of each fixed panel
 

edge, points 0,2; 2,0; 4,2 nd 2,4. Although the Finite Difference
 

Approximation analysis for the uniform loading condition indicated the
 

grid spacing to be too coarse to.closely approximate the maximum negative
 

moments, the negative moments will be calculated for an order of magnitude
 

determination and then checked with the Elastic Curve Plot.
 



0 

4o
 

.x neg 0,2 = Mx neg 4,.2 My neg 2,0 = My neg 2,4 - -2 4 $ 

:618op
 
6Y2 h2_
 

2w .


Mx&y neg LL - 680 h2000 

309q ft-lb
 

The 'Elastic Curve Plot for-this loadingcofiditon is the same as -that 

previously shown for Case 'V uniform load. .ThirLfge,the curve data 

at the inflection oint is: 

'hn:- .172Y 

:8P
w' 1-

2

6 w _ 12.17P
 
7y2 y2
 

Therefere
 

- n$2)- o2.7P)
&y neg LL = 

with 

- 2222L2 - =00012 
D 16D 

7j'2.g soo'-2 - 3803 ft-lb
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Finite Difference Approximation to Case "B"
 

Concentrated Load Over Grid Point 2,2 (see Appendix)
 

X _Y Boundary Conditions 

4 4 Two opposite edges fixed, 

two opposite edges pinned 

-1 0 -
d 

1 T-T 
c d 

1 R- Therefore, 

I I I I I ueto 
o


10 o 10 '- .... - '°Aallowing 

'_ - .' rotation of 
La id Ic d 5Y , pinned edge 

1 4 1x i5dueto 

LbJ lb~ ae/i bO _d-, ' , oato 

' 0
 
I 3 +-!du e to translatiOn
- "+"["" .. 

--I--
 " a- a n 

, Id cc ,id 'I -ILb Ib
 
-5, , 35 ---- 5 .Since the defection
 

L - symmetry conditions are 
1 

retained by the load
x 
placement, the same
 
small alphabetic letters
 

The total live load previously placed can be assigned to the
 

on the slab will now be concentrated points of common
 

over an area h X h at point 2,2. deflection.
 

Previous total live load = 112.5 psf X 20' X 20" = 45000 lb = W 

qa 
 W 2 

Superimposing the Finite Difference Approximation to the Biharmonic Equa
2
 

tion over each point of differing 
,deflection: Let R = qa 0-- Wh
 



At grid point 2,2 

20a - 8b - 8b - 8c - 8c + 2d + 2d + 2d + 2d R 

grouping common terms
 

20a - 16b -16c + 8= R (1) 

At grid point 1,2; same for 3,2 

20b - 8a - 8d - 8d + 2c + 2c + b. - b = 0 

grouping common terms 

-8a + 20b + 4c - 16d = 0 (2) 

At grid point 2,3; same for 2,1
 

20c - 8a - 8d - 8d + 2b + 2b + c + c 0
 

grouping common terms
 

-8a + 4b+ 22c -16d = 0 (3)
 

At grid point 1,5; same for 1,1; 3,1 aad 3,3
 

20d - 8b - 8c + 2a + d + d + d -d 0
 

grouping common terms
 

2a - 8b - 8c + 22d = 0
 

Placing the simultaneous equations in matrix form
 

(4) 2 -8 - 2- 2. 

(2),L 2 0- 8- -6:0, 

(3-) -S 4,'' PP -16: o1 : 2 



It should be noted that a similarity exists between the preceding
 

simultaneous equations and those obtained under the uniform loading
 

consideration. The only difference is in the value of the load placed
 

on the grid points. Therefore, a large portion of the L{T:K matrix
 

remains the same.
 

Check
 

-812 2-3333 -6.0000 o -2.6667. 

K)28 -8 55.33P4 -. 35' 0 :-. 7350 

20 64 -85.3312 23.95o4: .0418R 1.O+.0418R
 

Back substituting yields
 

d =-.0418R
 

c - 1.7350d = 0 

c = 1.7350(.0418R) 

c = .0725R 

b + 2.3333c - 6.0000d = 0 

b = -2.333(.0725R) + 6.ooo(.,o4i8R)
 

b =.0816R
 

a - 4b - 4c + lld = 0
 

a = 4(.0816R) + 4(.0725R) - li(.0x418R), 

a = .1566R
 



Substituting back into original equations
 

(1) 20(.1566R) - 16(.0816R) - 16(.0725R) + 8(.04l8R) should = 1.0R 

3.1320R 	- 1.3056R - 1.1600R + .3344R = 3.4664R.- 2.4656R 

. = 1.0008R - 1.OOR 

(2) -8(.a566R) + 20(.o816R) + 4(.07251)- 16(.o4l8R) should = 0
 

-1.2528R + 1.6320R + .2900R - .6688R = 1.9220R - 1.9216R
 

= .oo04R - o
 

(3) -8(.1566R) + 4(.0816R) + 22(.0725R) --16(.0418R) should = 0
 

-1.2528R + .3264R + 1.5950R - .6688R 1.9214R - 1.9216R 

= - .0002R- 0 

(4) 	2(.1566R) 8(.0816R) - 8(.0725R) + 22(.0418R).should = 0
 

-3132R - .6528R - .5800R-+ .9196R = 1.2328R - 1.2328R
 

= 0.0000R 

Therefore the solutions satisfy the original equations fairly well.
 

The equations for benhing moments are (see F. D. Approx. for Case "A"
 

uniform load)
 

-yW)
2
+DL7+ 

The Maximum Positive Moments o6Oeur 	atthe center of the slab, point 2,2.
 

Therefore superimposing the Central Finite Difference Approximation to
 

the second partial derivatives ov'er'point 2)2
 



62 w, 
8x

2 

1-(b -2a+b) 
L
2 

1 (2b -2a) =-L208l6 -
Li h

2 

2 1(_ .0750) = - .1500-_ 
hh
2 

.1566)E 

pos L1 

= 2(.0841) = - .1682 

- 0 + (.15)(- .1682) 

_~.1500 .0252) Dwh2 = .1752W 
N Li2 D, 

i(.:682' 

.1907(45000) 

8582 ft-Lb 

-.0'225:) h2D 1907 
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The Maximum Negative Moments occur at the center of each fixed panel
 

edge, points 2,0 and 2,k . Although the Finite Difference Approximation
 

analysis for the uniform loading condition indicated the grid spacing to
 

be too coarse to closely approximate the maximum negative moments, the
 

negative moments will be calculated for an order of magnitude determina

tion and then checked with the Elastic Curve Plot.
 

0 

My neg - D( 2
 

~(e - 2(0).+ e) =c (.0725R), 

h
2 

Myneg LL 0-Dl450--) = - 5 - D Wh
2 

- .1450(145000) 
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Elastic Curve Plot for Negative Moment
 

,c . . . o 
C0 

b F. 

+;0

, 

IIIII4I'I 

From elasticr 

h' - .255Y
 

W' . 078R'
 

2('.078R). ' 2.40R
- - '- (2,') 

2 2
 
'Y(h,) (.2 5) y 'y2
 

with 

~2 w 2 ' 

*D 16D
 

MynegLL 
-
D(2.40' F 2..4o0 DWY

2 .150W 

- 6750 ft-lb original calculation close enough 



Finite Difference Approximation to Case "B" (see Appendix)
 

Concentrated Load Over All Internal Grid Poitts
 

Boundary Conditions
h = X = Y 


Two opposite edges fixed
 

d e d two opposite edges pinned
-,iFc--T w--,T-----F'-Q'
n--% 

1 ItiI , I I I I Therefore
 

4 K - due to
 

1 0---o o 310 4 8--- 510 7 l = -W- allowing


J1rotation-i- d d of 
I-c-- -d -- WSy =-w5Y -Y
j pinned edge

-1 x 1, \3 I V451 

w =wxfl due to 

A---, - rotation 
i-b b-b j1 4 

I w =wresrestraint 
- d5 Wx, 3I-dd 

-I 3I 4 d 

I1 04 f1 ', i'4h.1 '1 due to translation 
restraint
I L II3 

Ii -',cI 
Since the deflection
112 ' 

symmetry conditions are
 
- X 

retained by the load
 

placement, the same
 

The total live load previously placed on the small alphabetic letters
 

slab will now be distributed over an area 
 can be assigned to the
 

3h X 5h, effectively concentrating a -portion points of common
 

of the load over each internal grid point, deflection.
 

Previous total live load = 112.5 psf'X 20' x 20' = 45000 lb = W 

w = 150oo = 5000 

_(3h)2 9h
2 h

2 

Superimposing the Finite ifference Approximation to the Biharmonic Equa
4 h2
h = 

Let P = qt = 5000
tion over each point of differing deflection: 
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At grid point 2,2 

20a  8b - ,8b  8c -
8 

c ** 2d + 2d + Pd + 2d = P 

grouping common terms 

20a - 16b - 16c +,8d P (1) 

At grid point 1,2; same for 3,2 

20b - 8a - 8d - 8d + 2c + 2c + b - b = P 

grouping common terms 

-8a + 20b1 + 4c - 16d = P (2) 

At grid point 2,3; 

'20c - 8a 

same for 2,1 

- 8d - 8a + 2b + 2b + c + c P 

grouping common terms 

-8a + 4b + 22c - 16d = P 

At grid point 

20d 

1,5; same 

- 8b - 8c 

for 1,1; 3,1 aud 3,5 

+ 2a + d + d + d - d = P 

grouping 

2a-

common terms 

8b - 8c + 22d = P ) 

Placing the simultaneous equations in matrix form 

Sum 

[P 

-8 

-8 

20 

-8 

4 

22:P] 

-16 P 

8+P: 

o+P 

-8 

L20 

4 

-16 

PP 

-16 

-16 

8 :P] 

2+P 

-4+,P 
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Note that the (A6\ Tatrix Aboe is ideniical with that of the original
 

uniform loading coisideration. Therefore the solutions to the simulta

neous equations'and the deflection coefficients are identical. The
 

difference in th m6ments willlcome from the different load applied at
 

the grid points.
 

Therefore
 

a = .6312P
 

b = .4663P
 

c = .4146P
 

d = .3084P
 

The equations for bending moments are (see F.D. Approx. for Case "A'
 

uniform load)
 

M, Dt2w + 

The Maximum Positive Moments occur at the center of the slab, point 2,2
 

432
3.98-


MX pos LL - -D .3298 1 + (.15)(- .4332) P 

.5948 P =. 948 2 -(0 00o 2) 

- 1974 ft-lb
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Mpoe LL D(- .4332.~ (.15)-. 298Wj 
D1t Pr%= .4827r
 

.4827 7D .427 50.2 

2414 ft-lb
 

The Maximum Negative Moments occur at the center of each fixed panel
 

edge, points 2.0 and 2,4. Although the Finite Difference Approximation
 

analysis for the uniform loading condition indicated the grid spacing to
 

be too coarse to closely approximate-the maximum negative moments the
 

negative moments will be calculated for an orderof magnitude determina

tion and then checked with the'Elastic Curve Plot.
 

My neg D + j2)
 

6w 1 (c -2(0) + c) 2Lc 2(.4146P) = 2 2 .8292 P
 
2 2 h2
 

- h h6x h


000MY neg LL D(8292 _8292 L~SC 


- 4146 ft-lb 

The Elastic Curve Plot for this loading condition is the same as that
 

Therefore, the curve data
previously shown for Case "B" uniform load. 


at the inflection point is:
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h
,
' :177Y 

.23P 

with 

4 

32w 
3Y 

-

17.88P 
y2 

D - 16D 

MY neg LL - Df(7.88 D (5000) 

- 5588 ft-lb 
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Finite Difference Approximation to Case "C"
 

Concentrated Load Over Grid Point 2.2 (see Appendix)
 

h X - Y Boundary Conditions
4 4
 

All edges pinned
-c -b -c 


-IF 
 F-" I ThereforeI I I I I 
'~~ ~ ~~4 - 1 - = , 

.,,---o 1 y l due to
 

'allowing
Tx,.i -wxl
I-c Ic lb -c 

311 .- pinned edge
 

a --- -4rttino 
1-b lb 

32 4 bX. W,5 -Wx,3 

'
--,5,I-13 4-- =o,ywx,4r- _, Ic .I b Ic - -c3--Iw-xI,owxoWyWI=1 =-4,
lbh 'I 

I I I due to translation
 

I - 4 i -- 5i4 restraint
I l I
 

I -- I -


L 115-c c - Since the deflectionb 0 -1 
conditions are
jsymmetry
.15 O5I 

retained by the load
 X iplacement, the same 

small alphabetic letters
 

The total live load previously -placed can be assigned to the
 

on the slab will now be concentrated points of ,common
 

over an area h X h at point 2,2. deflection.
 

Previous total live load = 112.5-psf X 201 X 20 45000 l'b = W 

W
 
qa =h

-h 

Superimposing the Finite 'Difference Approximation to the Biharmonic Equa
h4 W h2
 

tion over each'point of differing 
deflection: 
 Let R = qa =

- D 



At grid point 2,2
 

20a - 8b- - 8b - 8b + 2 + 2c + 2C + 2c =R c 

grouping common terms 

'-0a - 32b + 8c = R (i)
 

At grid point 2,1; same for 1,2; 2,3 and 3,0 

20b - 8a - 8c -
8

c + 2b + 2b + b - b ='0 

grouping common terms 

-8a + 24b - 16c =0 .(2) 

At grid point 1,1; same for 1,3; 3,1 and. 3,3 

20c - 8b - 8b + 2a + c + c - c - c = 0 

grouping, common terms 

2a - 16b + 20c =0 (3) 

Placing the simultaneous equations in matrix form 

Sum 

(3) F2 -16 20 0]:6 

A 2)-8 -16 0I:0
C)= 24 


(1) 20 -32 8 R -4+R 

It should be noted that a similarity exists between the prece-e, 

simultaneous equations and .those obtained under the uniform loading
 

consideration. The odly difference is -in the value of the load placed 

on the grid points.. Therefqre, a large portion of L{ matrix 
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Check 

-8 10 0 3 

-8 -4+0 _i.Eoo: 0 -6oo 

20 120 12.80, C781Rj 1 -0-07y8iR 

Back substituting yields
 

c = .078TR K. 
b - 1.600Cc 0 

b = 1.6000(.0781R)
 

b = .1250R 

a - 8b + 1Cc = 0 

a = 8(.1250R) - 10(-.07iR) = 1.0000B - .7812R 

a = .2188R 

Substituting back into original equations
 

(1) 	20(.2188R) --52(.1250R) + 8(.0781R) should = 1.OOR 

4.3760R - 4.O000R + .6248R = 5.0008 - 4.O000R 

= 1.O008R 1.00R 

(2) 	-8(.2188R) + 24(.1250R) - 16(.0781R) should = 0 

-1.7504R + 3.O000R - 1.2496R = 3.0000R - 3.0000R 

= O.000R 

(3) 	2(.2188R) - 16(.1250R) + 20(.0781R) should = 0 

4376R- 2.0000R + 1.5620R = 1.9996R - 2.0000R 

= - .00o4R- 0 

Therefore the solutions satisfy the original equations fairly well.
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The equations for bending momsents are, (see-F.D. Approx. for Case "A" 

uniform load) 

M D(01 +x \5y2 9x 

The Maximum PositiveMoments,occur at tfe cenTer or ne S±aD pulnu ,c. 

Therefore superimposing the Central Finite Difference Approximation to 

the second partial derivatives over point 2,2 

-w- l(b 2a +b) - L(2b - 2a) =-L(.1250 - .2188)R 
x2 h2 h2 

=2R(- .0958) = - .1876 R 

2 (b 2a + b) - .18764 

9
 
y2 h 2h2
 

pos L Mx poe L - D 1.876 + . -.1876) ) 

h
2 h
 

.2157 h2 D 2157(45000)
 

9706 ft-lb
 

There is no negative moment involved in this case.
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Finite Difference Approximati6n to Case "C" (see Appendix)
 

Concentrated Load .Cver All Internal Grid Points.
 

h X'Y- Boundary Conditions
 

-c -b -c All edges pinned 
" V - 'I i" " v - I I" 

I I I I Therefore 

-10 0 10 210 310 400 515IZI7 due to 
. v =-Wx allowing 

-III ~ 2 N 31IN 4 i ,-rotation of 
-c c -


NN a'5 -b3 V5yY' 5y pinned edge 

~ F *R 2 3, -5
 

I-c c ~ Ic53
 

214 314 _- due to translatton1, 4 144W 1 restraint 

-1"5 015 15.215 351 415 5 5 Since the deflection
 
-symmetry conditions are
 

-X retained by the load
 
placement, the same
 

The total live load previously placed on the small alphabetic letters
 

slab will now be distributed over an area can be assigned to the
 

3h X 5h, effectively concentrating a portion points of common
 

of the load over each internal grid point, deflection.
 

Previous total live load = 112.5 psf X 20' x 201 = 45000 lb W 

W 45000 5000 
2
qt (3h) 9h 2
 

2 h


Superimposing the Finite Difference Approximation to the Biharmonic Equa

tion over each point of differing deflection: Lat P = t 14 = 5000 1



At grid point 2,2
 

20a - 8b - 8b - '8b - R4- Pr 4- Pn -i- 2c, -- 2c P 

grouping common terms 

20a - 32b + 8c = ( 

At grid point 23 ; same for 1,2;, 2,3 and 3,2 

20b - 8a - 8c - 8c + 2b + 2b + b - b P 

-grouping common terms
 

-8a + 24b - 16c = P (2) 

At grid point 1,1; same.for 1,3; 3,1 and 3,3 

20c - 8b - 8b + 2a + c 4 c - c - c =.P
 

grouping common terms

2a - 16b + 20c = P (3) 

Placing the simultaneous equations in matrix form
 

Sum
 

(3) 2 -16 2o P 6+P" 

(A C) (2) -8 24 -16P :o+P 

(1) o -32 8 "1 -4+p, 

Note that the (A)C) matrix above is identical with that of the original
 

uniform loading consideration. Therefore the solutions to the simulta

neous equations and the deflection coefficients are identical. The
 

difference in the moments will come from the different loads applied at
 

the grid points.
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Therefore
 

a = 1.0310P
 

b = .7500P
 

c =.5469P
 

The equations for bending moments are (see F.D'. Approx. for Case "A"
 

uniform load)
 

-TheMaximum Positive Moments occur at the center of the slab, point 2,2.
 

a ~ 5602
=~ . 5620.!2 h2
x2h
 

My posLL Mx pos L - .5620 + (.i5)(- .5620) 

.5620 D P- (1.,5)
2

h


S6463 - (5000)
2
h D
 

3232 ft-lb
 

There is no negative moment involved in this case.
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VIII. SUMMARY OF RESULTS OBTAINED BY THE FINITE DIFFERENCE APPROXIMATION 

Case "A" 
2


A,= area ) 1 h2 2 Case "B" 
4

h) (h)
loaded ( (h) 


A/A total 1.0000 .5625 .0625 A = area (4h (3h)2 (h)2
 
loaded
Positive Moment point 2,2 


1 +762 +762 A/A total 1.0000 .5625 .0625

Mx&ypos DL +762 

Mx&ypos LL +979 +1741 +7565 Positive Moment point 2,2
 

Mx&y pos +1741 +2503 +8327 Mx pos DL +864 +864 +864
 

Mx pos LL +1110 +1974 +7884
Negative Moment (center of fixed panel edge) 

MX pos +1974 +2818 +8748
 

Mx&ymeg DL -1662* 1662* -1662* 

+1056 +1056 +1056
 

Mx&ynag LL -2138* -3803* -5139 My pos DL 

My pos LL +1358 +2414 +8582 

Mx&y neg -380* -5465 -6801 
______________I ____ ±My poe +2414 +3470 I+9638 

Negative Moment (center of fixed panel edge) 

Case "C" My neg -2444* -2444*DL ]-2444* 

M -3143 -5588* -6525
 

A = area -8969
2 -5587* -8032

(3h) (h)2 MY ng

loaded (4h)2 


A/A total 1.0000 .5625 .0625
 

Positive Moment point 2,2
 

Mx&y pos DL +1414 +1414 +1414
 
LL +1818 +3232 +9706
 

Mx&y po j +3232 +4646 +11120
 
0Mx&ypos 


s 


An * indicates that the results were obtained using the Elastic Curve Plot
 

Table 2. Maximum Moments Obtained by the Finite Difference Approximation for the
 

Three Conditions of Loading
 



61 

0 

1000 

I 6ooo -A

3000 

3000 -

o1741 ft-lb 

2000 -

Afla _LM, 21tSif-,i 

1000 - -

0 
0 	 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

'AAtotal 

7000 

6000 Neg tive ve I)ad Mo aentota~l
_ers00/0 


t-lb 

Moant atOente of I Lxed P nel E Iges 
;5139 


5oo
 

HI3803 	 't-lb 

3000
 

w P. I Desig LaL ment 025 f-1 
2000 .
 

138 f -lb 
1000--

0 	 .1 .2 .3 .4 .5 .6 .7 .8 .9 i.O-

A/A total 

Case "A! Live Load Moments Versus Eatio or
Figure 2.-	
toaa
 

Area to Total Area. 
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9000 
8582 t-lb 

8000 
78 ft

7000 

6000
 

S5000--- 500Y 
- I L Pos lye ye ad oent4 T/
 

4000- Moment at I oint ,2
 

00- 3oo 	 AI- De sign - N 14 it-lb
 

LL Mo nt 174 ft-lb 
 1 tib
.b,'-_ -. 7 J4
2000 	 !-l _ 135 t-l1.. 

0 

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
A/A total
 

Neg tive lie ad Mo ent 
7000 623 t-lb 
 ersu 	 tO- 7tal1
 

Mome t at Centeaof Fined P; el Ecges
600" 588ft-lb 
00
 

bo ooo 
.. A I Deso I omn± 3380 ft-lb-t
 

S500--	  - _ - _
5 54ft- b-/
 

2000
 

1000 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

A/A total 

Figure 	3--
 Case "B" -Live Load Moments Versus Ratio of Loaded
 
Area to Total Area.
 



i0000 N 
9706 ft-lb
 

Positive L oad Mom,nt
8000 

Ma1 ,Iersus, A/A t, tal
 

SMoment at P int 2 2
 
7000
 

'6000- -- -

S5000-

4000 
a 5232 thl 

2000- -C I8!esignLLMoment U20 -tb

10
 

.1 .2 3 .4 .5 -. 6 .7 . .9 1.0 

A/A total 

Figure 4.- Case "C" Live Load Momenta Versus Ratio of' Loaded
 
Area to Total Area. 
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A study of the plots of the Live Load Moments versus A/A total
 

leads to an interesting possibility for approximating a maximum concen

trated live load that could be placed on the slab without exceeding the
 

ACI design moment.
 

In the cases examined the design live load is known to be 112.5 psf.
 

Therefore the total live load for this particular slab is
 

112.5 psf×x 20' X 20' = 45000 lb. Suppose we are considering placing 

a load at the center of a Case "A" type slab, to bear over an area 

5 ft x 5 ft. A/A total = (5 ft X 5 ft)/(20 ft-X 20 ft) =,. .625.. In 

Case "A", the ACI design live load moment is 1215 ft-lb. The plot of
 

Case "A" shows that a 45000lb live load, at A/A total = .0625, yields
 

a moment of 7565 ft-lb.
 

Therefore the approximate allowable concentrated load
 

(T) 	 .1215 Cso b 
756 (45000 1b) 

= 7226 lb, 

Since the equation for the moment has been determined in the 

preceding analysis for the load over -h X h and A/A total = .0625, the 

new moment can be checked. 

Case "A" load over h X h Ios = .1681T 

= .1-681(7220) = 1215 ft-lb
 

Therefore the ACI design moment has not been exceeded but it should
 

be noted that thir concentrated load does not allow for the placement of
 

any additional live load on the slab.
 



After the maximum concentrated load for the positive'moment has
 

been established, it is necessary to check the maximum allowable load
 

related to the negative moment.
 

In a manner similar to above, T = 2025 (45000 lb) = 17720 lb 
5139 

However, the lesser of the two allowable loads calculated would be
 

the maximum load that could be placed at the slab center without
 

exceeding the ACI design moment.
 

It is important to recall that the load placed on the slab, for the
 

analysis, produced a symmetry in the deflections'. This symmetry must 

be maintained to use the curves in determining the maximum allowable 

concentrated load. It would not be maintained if, for example3,1the
 

total load was placed one ,gridpoint away from the slab center. In . 

a case of that nature it would be necessary to use the Finite Difference
 

Approximation to analyze the slab with the load in tha6 particular
 

position.
 

The curve of the Live Load Moments versus A/A total indicates that
 

the maximum concentrated load could be determined for all values-of
 

'A/A total. For this study only three points were used to determine the
 

curve. Thus, it should be realized that,the curve between these points
 

is only roughly approximated. To obtain additional points for this
 

curve, it would be necessary to reduce the grid size. A reduction in
 

the grid size would increase the number of simultaneous equations
 

necessary to solve but it would also increase the accuracy of the
 

approximation.
 



IX. CONCLUSION
 

Although the large grid network selected fsr the anlysis tends 

to lessen the accuracy of the approximation, it also effectively 

reduces the number of simultaneous equations which are necessary.to 

solve. A further reduction in the number of siultaneous equations 

was obtained from symoetry, by identifying grid points of common deflec

tion. Table 1 shows that, for a uniformly loaded slab, the Finite 

Difference Approximation to the Biharmonic Equation and AbI 318-63 

,Method 3 yield comparable results for the positive moment. In the 

area of the fixed panel edges, the Finite Difference Approximation 

did not yield comparable answers. This was because a grid point did 

not fall near the inflection point of the elastic curve. It was 

determined that the location of the inflection- point could be -reason

ably approximated by plotting the calculated deflections and sketching 

the elastic curve through these points. The negative moment was then 

recalculated using the data from this Elastic Curve Plot. Therefore, 

the combination of the large grid Finite Difference Approximation to 

the Biharmonic Equati6n and the Elastic Curve Plot produced an efficient 

and reasonably close approximation to the ACI requirements. 

Since a reasonable comparison was obtained between the two methods, 

the Finite Difference Approximation to the Biharmonic Equation was used
 

to determine the design moments for the slab under the influence of
 

concentrated loads. Table 2 and Figures 2, 3, and 4 show how the 

maximum moments vary as the total live load is expanded from application 
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http:necessary.to


x Y 
over an area XX - to a full uniform load. In Chapter VIII, a method 

is shown for approximating the maximum allowable concentrated live load 

which can be applied to the slab without exceeding the ACI design 

moments. It should be noted that for this study the curves in
 

figures 2, 3, and 4 were drawn through only three points. Therefore, 

any value picked from the curves, other than those calculated, must be 

considered only as a very rough approximation. It should also be noted 

that although the maximum allowable concentrated load does not produce 

calculated moments which exceed the ACI design moments, the results have 

not been proven conclusively by testing.
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FINITE DIFFERENCE APPROXIMATION TO THE BIHARMONIC EQUATION 

The equation of equilibrium for a homogeneous, isotropic flat 

plate in terms of its deflection is.
 

I7D V w = q(x,y) 

where 

q(x,y) 	= loading fluction
 

Et3
 
2 

12 (1 -- L ) 

E = Young's modulus of elasticity 

t = thickness of plate 

= Poisson's ratio 

v = biharmonic equation 
2 +2 4+ = 54 

The biharmonic operator 


Laplacian, 
Operator
 

The biharmonic operator operates on the deflection (w) as does the 

Laplacian operator. Thus, 

2w 2w 
V ~2 + y? 
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Now, - is represented by the Central Finite Difference Approximation 

as 

h-2 (wi-l,j - ~ i 

and
 

2wi+
 

ww, j+l
 

Therefore, Vw is represented by
 " 'l 
1
V2~ ~ i., - wj wi+j,jjl [2] 

wi, jJ+1 

In modular form 

Q 

Now let ¢ V4w. Thus, Vw = V2 (V2w)= V20; -= + I 

Since this is the same differential equation as for the deflection, it 

can be concluded that 
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Each of the encircled modules in [3] represents the entire module 

within the [] brackets of'[2]. Therefore, [2] must be superimposed on 

each module of [3], which follows: 

1-2 i-i i i+1 i+2
 

(1)(1) =0 


(-4)(1)+
 

(-))(1)
++
 
(1)(.')(i)()-=® (1)+ jc (1) 


(-4)(1)+ (4)(-4)+ (-4)(1)+

(1) +

V4 _V0__L(1) 

(-4)(1) + 
(1)+ (i)(i)(i)(4)= ® + 

j+1
 

J+2
 

j-2 
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Therefore, the Central Finite Difference Approximation to the Biharmonic
 

Equation is represented by the module
 

0 

With this Finite Difference Approximation module centrally superimposed
 

over each point of different deflection on the plate grid system, the
 

simultaneous equations are developed in the form
 

© 

,ehl
 

D
 

" h h _ h", h 
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Cholesky or Crout Method for Solving Simultaneous Equations'Ds 

Given a set of simultaneous equations in the form 

AX - C 0, 

we want to get this set of simultsneous equations ina olved faghion 

such that TX - K 0 where T = upper unit triangular matrix 

1 t12 t13 ti4 • tl 

0 1 t23 t24 . . . t2n 

0 0 1 t .......t3n 
T 

0 0 0 0 .. 1 t(n-1)n 

0o'0 0 0 . . 0 11 

and K is a column vector 

k

2
 

K = 

To obtain this solution for the given simultaneous equations, multiply 

TX - K = 0 by a lower triangular matrix L such that 



lJJ 0 0 0 . . . 0 

Z21 322 0 0 . . . 0 

z
3
1 z32 '33 0 . . . 0 

'= z44o • o0 ' 

I zn2 zn3 'n 4 
1fllj 

A necessary condition for this operation is that both T and L must 

be non-singular. Therefore, 

or 

LTX LK = 0 

Comparing this to original problem, we see that 

LT= A
 

LK = C
 

Partitioning these matrices to aid in their direct solution
 

.(A 0) =LT K).
 

Expanding-these natrices to their coefficients
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all a13 ... ainc Ill 0 o .'.O 1 t 1 2 : tl--t:m :kil.a1 2  


a2a a23 ... a 2 n:'c 2 221 122 0 0 ,0it 2 3... t2n :k 2
a 2 2  

' 

a31 a32 a33"'.a3n3 231 '32 33 0 0 ...t3n 3 

0 1 t (n 1)0:. 

nl a.2 a3"%an n In1 2n2 n3...7nn 0 0 0 0 1 1n .-

The solution of the coefficients of the L and T matrices follows a
 

systematic procedure as shown in equation form:
 

lil = al 
 tlj =
 

Iij = aij - Ar lirtrj tij = LaJ- zirt r 

r=l r=l 

One of the great advantages to using this method for ay hand operation
 

is that it lends itself to a Check column.
 

By summing up all coefficients in each row of -the (A!C) matrix,
 

placing each sum adjacent to the row it represents, then a Check column
 

equal to all the coefficients in the (T.x) matrix is obtained by the
 

equation
 

Check. = t Zir Checkj
2ii 
 r=l
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Therefore, as a final matrix form we have
 

Sum Check 

[an a12 a.3 ... an:cl Sm I nl A1 2 t 1 3 ... tlnk Check1 

a 1a2a 2 3 ... o:2~J5p 2122t 3 . k2 ' Check 2 

231 3

* ~Li; 

2 33% " k3 Check3 > 

ann _ mn 'im: Check
n
 

Note that with this method of combining the L and T matrix th

1.0's in the diagonal of the T matrix are not written in. Therefore, 

when comparing the results of the Check column, +1. 0 must be added to 

the coefficients of the (T:K) matrix to obtain the proper check. 

By back substituting, the solution to the simultaneous equations
 

are obtained. That is,
 

Xn kn
 

X(n-1 ) + t(nl)nXn = k(n_l)
 

X(n 2) + t(n_2)(nl)X(n-1) + t(n_2)nXn = k(n2) 

etc. 

As a final check, after the complete solution has been obtained, the
 

values for Xi should be substituted back into all of the original
 


