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A LIMITED STUDY OF THE APPLICATION OF
CONCENTRATED LOADS ‘TO FIXED EDGE AND DISCONTINUOUS ‘TWO—WAY SLABS
OF REINFORCED CONCRETE, USING THE CENTRAL DIFFERENCE OPERATOR OF
THE FINITE DIFFERENCE APPROXIMATION TO THE BMONIC EQUATION

By

Ronnie Ray Henk
ABSTRACT

This paper makes a comparison of resulting design moments for a
particular size, uniformly loaded, two-way reinforced concrete ,sj.ab
with various boundary conditions, using both the Central tﬁif:ference
Operator of the Finite Difference Approximation to;‘ the Bihaﬁ]Emoniag
Equation and Method 3 pf ACT Bulletin 318-63. The “abtempt -of this
study was to Qetemine whether the large grid Fizii:ce‘ 'Diﬁfei'en’ce:‘ ’
Ana:J;wéis would reasonsbly approximate the rest'z;‘l.ts “of )\Ci i518-63
Method 3 for a uniformly loaded slab.

Due to the reasonably close correlation of ﬂfl? résultsyof the-
methods the Finite Difference Analysis, with the aid of the Blastic
Curve Plot, was used to deter;nine the design moments eof‘the Qsilab under;
the influence of a concentrated load. A concentrated load i£1 F;Lnite
Difference Analysis is defined &s being uniformly distributed over aln

equivalent grid area, with the center of the loaded area and the loaded

grid point being coincident.



A method of estimating the maximum allowable, symmetrically located
concentrated load is presented, although the results are unproven by
testing.

A step-by-step account of the solution to each problem is presented.
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V. LIST GF SYMBOLS

A areg of the slab over which the live load: is appli
Atotal total slab area O
c an assigned constant for the problem equal to g—g—
Csubscrip’c moment coefficient for two-way slabs as given

in tables 1, 2, and 3 of ACI 318-63, Section A2003.

Coefficients have identifying indexes, such as

Caoneg Ca1ic CmoLe v - ¢

BED
D flexural rigidity of the plate equal to m
L dead load
h grid spacing
LL live load
m ratio of short span-to Long span for two-way slabs
M - moment, in f£t-1b. Identifying indexes refez" to

direction, sign, and type of loading, such as

My pos 10 My neg DL2 ¢ ¢ ¢ .
P an assigned constant for the problem egual to
pef 1b per cubic £t
pst 1b per square ft
qQ yniform load for enbtire slab, has identifying indexes

such as dpy, and gy,
Qg concentrated total live load distributed over one grid

W
area, equal to 1’-1—2-



concentrated total live load distributed over nine grid

areas, equal to

(3n)2

an assigned constant for the problem equal to

it

slab thickness

allowable concentrated load
deflection

total Iive load
rechbangular coordinate axes

length of clear gpan in short direction

. length of clear span in long direction

Poisson's ratio



V. INTRODUCTION

k! :
Justification for this Study: ACT Bullebin 318—63'I—has been

extablished as the code which "provides mlnlmutm requirements .for the
design and construction of reinforced concrete o:(..‘ compo;ité. structural
elements of'any structure ereéted‘ under the requ:?.remen:ts of tﬂe general
building code of which this code forms a part." It presents.the réq_uire-
ments for the design of a two-way reinforced concrete slab ﬁth varying
boundary conditions, but only for the application of a rmiform Load.
In practice, a uniform loading condition is seldom the usage condition.
The ACI Bulletin 318-63 and authors of books of reinfofced concrete
design occasionally mention that other techniques can be used to analyze
a t;«'o-way slab for non-uniform loading conditions. They also indicate
that even though these methods give agpproximate answers, the answers
are often within the realm of reasonably predicting the action of a
slab structure.
A design engineer is often fs.ceq with the problem of determining
the cepability of a two-wey‘ slab to withstand a large concentrated load.
_ Since ACI 318-63 does not handle this loading condition, ?nd since
"ACT 318-63 is the basis for the reinforced concrete design, one must
be certain that. any other analyticel method used will produce reasonably
comparable answers. ‘The method used éhoulq also be fairly straight-
forward so thé.t the work may be done efficiently.

Intent of this Study: To a limited degree, this study will inves-

tigate the use of the Central Difference Operator of the Finite



'leference Approx:.ma.tlon,to the B:Lharmonlc Equation to ascertain whether
’ the resul‘blng momen'bs are compa.:;'able to ACT 318-63 Method 3. A large
grld,, su_'l.table for 'desk calcu.-lator Asolutlon, will be used to esbablish
a sul’cable eff:.clenc:y' in the a.r;a]:)rs:.s .

This study w:u_l begln by cons:l.d.erlng a particular two-way reln-

. forced concrete slab of dimensions 20 ft by 20 £t, and determining the
maximum moments fo.r each of three cases of boundary conditions:

- Case "A," all -edges fixed; Case "B,." two opposite edges.fij{ed, two
opposite edges pinned; Case "C," all edges pinned. The initial deter-
mination will b.e made ﬁtil;'.zing a uniform loading condition and analy-
zing by both ACI 518-63 Method 3 and by the Finite Difference Approxi-
mation to the Bihammonic Equation. A comparison of the resulting
maximum moments will t}len be made. If a reasonably close correlation
exists between the resuits of -the two methods, then a reasonable degree
of accuracy can be expected from the Finite Differerice Approximation to
the Biharmonic Bquation to analyze the slab for the application of con-
centrated loads. 1In the Finite Difference Analysis, a concentrated
loa.d is defined as be:.ng u.n:.formly distributed over an equivalent grid

area (h X h) w:.th the center of the loaded area and the loaded grid
point being coincident. '

In addition to a moment determina.tlion for the gpplication of a
sir;gle concentrated load at the slab center, an attempt will be made
to study the conditions that result from expanding the concentrs.teé.

load until full uniform loading is again achieved.



Vie LWU-WAY SLAB ANALYSLS - UNIFORM LOAD

Design’ (‘)rﬁéria
(1) .The slab is to be two-way reinforced concrete of dimensions
20 £t by 20 ft.

(2) Minimm slab thickness (t) = greater of ACT 318-63,,

. Slab perimeter _ 80°'
aragraph 2002(e). -1/2 inches or =22 £ =00 = X = .0.445 £
paragrap (e)e (3-1/ e 18 5

= 5.4h inches.' Arbitrarily use t = 7 inches %o reduce the deflection.)
(3) Slab dead load = 7/12 £t by 150 pef = 87.5 psf
Live load = : 112.5 pst
Total load = 200.0 psf
Although ACT 318-63 Method 3 indicates that the dead load and live load
are combined in the determination of the negative moment at the fixed
panel edge, they will be used individuwally in the negative moment
calculation for later comparisons.
(%) Reinforced concrete will be considered as having a Poisson's
Ratio (p) = 0.15.

Boundary Conditions

Case "A" A1l edges fixed
Case "B" Two opposite edges fixed - two. opposite edges pinmed
Case "C" A1l edges pinned
Yy
b — x

- = A e

Figure 1.- Positive External Moments.
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Design Assumptions

(1) Reinforced concrete is elastic, homogeneous, and isotropic.
Although this is a tremendous oversimplification of the exact nature of
reinforced concrete, to date, few (if any), of the exact characteris-
tics can be defined. The reason this difficulty exists is due to the
vast number of va.ria'bies that influence its strength. For example,
curing temperature, water-cement ratio, strength and gradation of
aggregate, placement of reinforcing, placement of forms, woxkmanship,
ete., all control the Astrength of reinforced conc;‘ete to a cerbtain
degrge.' Evenl though_ -the results'"obtained will only be an approximation
of the"e’xact"rc_esults, this asspmp'lﬁi:c.an noma.]_'iy gives a reasonable pre-
dictic;n of the’ sléb» action and serves to simplify the analysis.

,(é) Plain‘seétions remain plain.

‘ 3) Neui:ré.l axis is 1;ndef02'1ned.
(&), Deflettions are small in comparison to the slab thickness.
‘('5')‘ The slab is thin in relation to its linear dimensions.

»

Moment Determination by ACT 318-63 Method 3

Case "A" All edges fixed ACI Case 2
m=%=20 -1.00
I 20



where
¢ = moment coefficient as given -in tables 1, 2, end 3

uniform load

Q
i

X and ¥ = length of respective sides

Positive Moment Calculation From teble 2

apg, = D-L. = 87.5 psf
C pr, = Cp pr, = 0-018
Moo T Yy 51, = (0.018(87.5)(20)2 = 630 £o=1b,

From table 3

9y, = L.L. = 112.5 psf
Cp 11, = Op 1g = 0027

My 1 = My 1, = 0.027)(112.5)(20)2 = 1215 £t-1b

Neéa:bive Moment Calcula.tién From table 1

Apg, = 87-5 psf
qLL = 112.5 psf
Ca neg = CB neg = -0-O5

% 1 neg ~ M DL neg = ('-0'-04'5)(87-5)(20)2 = -1575 £t-1b

Y 11 neg™ My IL neg = (-0.045)(112.5)(20)% = ~2025 £t-1b



Summaxy for Case “A"

M¢ pos = My pos = My D, + My 1L = 630 fE-1b + 1215 £t-1b = 1845 £t-1b

My neg = My neg = My neg DI * My neg 1z = ~1575 Tt-1b - 2025 £t-1b

-3600 ££-1b

1

Case "B" Two opposite edges fixed, " ACT Case 5
two -opposite edges pinned

Positive Moment Calculation i From table 2

T

apy, = 87-5 pst

+Cy pr, = 0-027

‘

Cp o1’ = 0.018

(0.018)(87.5)(20)2 = 630 £t-1b

My DL

I

(0-097V(B7.51 (2012 = Gh5 £H-1b

My 1L,
From table 3

drg, = 112.5 psf

Cp 17, = 0-032

Cp 14, = 0.027



My 7= (0.027)(112.5)(20)2 = 1215 rt-1b
T (0.032)(112.5)(20)° = k0 £t-1b
Negative Moment Celculation From table 1

apy, = 87-5 psf
qgg, = 112.5 psf

1

Ch neg = =0+0T5
My neg DL = (-‘0-075)(87-5)(-20')’2 = 2625 Ft-1b

My neg 11, = (~0-075)(112.5)(20)2 = -3375 £-1b

Sunmary for Cage "B"

My pos =My D, + My 11,=630 £-1b + 1215 £6-1b=1845 £5-1b Middle struy

The ACI Code provides that at discontinuous edges the bending moment
in the column strips shaj.l be gradually reduced from the full moment
value of the middle strip to 1/5 of these values at the .pa.tiel edge.

Therefore,

My pos panel edge = %(1845 £t-1b) = 615 £t-1b

My pos = My pos b + My pog 17, = 5 £-1b + IO £5-1b = 2365 £5-1b

H

My neg = My neg DI * My neg 13, = -2625 £t-1b - 3375 £t=lb = ~6000 £5-1b



Case "C" ATl edges pinned ACT Case 1

My =y - q- Y2

Pogitive Moment Calculation From table 2
apy, = 87-5 pst
G, = 112.5 psf

Cy = Cp = 0.036

(0.036)(87-5)(20)% = 1260 £t-1b

Mo =¥ pp

I

MW g, = My 1z, = (0.036)(112.5)(20)2 = 1620 £4-1b

Summary for Case MC"

My pos = My pos = ¥y pp, * My 17, = 1260 £6-1b + 1620 £E-1b = 2880 £6-1D
’ Middle strip
For the discontinuous ',fadges the moment is l/3 of the middle strip

moment. Therefore,

My pos paﬁel edge = My 'pos. panel edge = §(2880) = 960 ft-1b

There are no negative moments irvolved in this problem.



Moment Determination by Finite Difference Approximation

+t0 the Biharmonic Equation

"inite pifference" Approximation to Case "A" (see Appendix)

Boundary Conditions

-X_X
h = i A1l edges fixed
Therefore
. v w_liy=wliy
C* v v Cc 3
TR T TEA T TN T Wy, 1 =W, 1| due o
:‘ o { . } ! %-1 %1 rotation
e . ' W, = trai
1 H L o x 5,y w5’y restraint
|;o zio 30 4o 50 v
=W,
| ] I I < x,5 %3
1e __ib___.e -4
h PR TR (AT also
[ ! ' . - - -
b ___‘:a I ‘ . V%,0= Yo,y = Vb= Wy, y—O

due to translation
restraint

In applying a uniform
load (q) over the entire
surface area, conditions
of symmetry become
apparent. Due to these
symmetrical conditions
small alphabetic letters
will be assigned to
points of common deflec-
tion, to cut down on
writing and meke
symmetry more obvious.

Superimposing the Finite Difference Approximation to the Biharmonic

. 4
Equation over each point of differing deflection: Let C= ——-——qI};



At gria point

K 2~Oa‘

gréuping

20a

At grid point
200
éx.*oupin.g

-8a

At grid point
‘ éOc

grouping

2,2
-8b—~,8(b‘-8:bl-8b+2c:i~20+2c+20=0

N .
common terms
; E

- 32 + 8 =C

2,T;' same for 1,2; 2,3 and 3,2

R L
- 8a<Be -8c++2D+b+Db=C

common terms

4+ 26b - 16c = C

1,1; same for 1,3; 3,1 and 3,3
-8 ~8b+2at+tctetetc=0C

common terms

2a - 16b + 2he = C

Placing the simultaneous eAquations in matrix form

Sum
(3}] 2 -16 2k ic|:10sC:
fich=(2)|-8 26 _1650'._ 2+c§
(1)|20 32 8:c|: e

The Cholesky or Crout soclution yields (see Appendix)

LT i K) -

Check

(3)] 2
(2)| -8

12 . .5000C| - 5+.5000C

38| -2.105% L136e |

(1)j20 128 5;7.&78&5 . 2093C 51.o+.2093c

-1.1053-.1316€

10

{1)

(2)

(3)



Back substitution yields

¢ = .2093C

b -~ 2.1053%¢ = - .1316C

b = 2.1053(.2093C) ~ .1316C = .MhO6C - .1316C

b = .3090C

a - 8b. + 12c!= .5¢

é = 8(. 50900) - 12( 20950) + 5c 2.4720C + .5000C - 2.5116C
a = .460hC ' ‘

Substituting béck intp original equations
) 20( h6ohc) - 32(. 50900) + 8(.2093C) should = 1.00C

9. 20800 - 9.8880C + 1. 67uhc + 10.882kC - 9.8880C

. 99khC ~ 1.00C
(2) -8(.h6okc) + 2$(T509oc) - 16(.2093C) should = I.00C
23.6832C + 8.0340C - 3.5488C = + 8.0340C - 7.0520C

1.0020C = 1.00C

(3) 2(.k60kC) - 16(.3090C) + 24(.2093C) should = 1.00C

.9208C - &.94hOC + 5.0232C = 5.9440C - 4.94koC

1.00C

Therefore the solutions satisfy the original equations fairly well.

‘The equations {‘or bending moments are L2——

The Central Finite Difference Approximation for the second partial

derivative is

P
e = —(wl"l:J "HLL,g Vi, 3


http:1.674.4c

12

or in modular form

%20 © O)

- ©)
W .
i,4-1 . 1
or in
ﬁgzi -2wi,j" modular form _8__2_\727%__1_ @
oy’ n? w2 12

N @]

The Maximum Positive Moment occurs at the center of the slab, point 2,2.

Therefore superimposing the Central Finite Difference Approximation to

the second partial derivatives over point 2,2

3w 1 1 2
¥ d(b - 22 +b) = =(2b - 2a) = £(.3090 - .h60k)C
x2 2. w2 12
- _ _ 3028C
2 L1514) —h2
9 o Lip L 2a s ) = Lo - 2a) = - ‘50280
h h

dy= he

30280 | 4 .3028¢) \
My pos =¥ pos ¥ - D’(‘ "BhT + ('15)(' 3}1—2»

5028 %(1.15) = .3482 5—2 a h_];i = .3482 gn?
o h2

Since

O, = §7.5 psf; qI,'L = 112.5 psf h=m===2522 =5}



13

My pos BL = Mx pos mr, = -3482(87.5)(25) = 762 £3-1b
My, pog IL = My pog g, = -3482(112.5)(25) = 979 fo-Ib

The Maximum Negative Moments occu':c at the center of each fixed panel

N 0

edge, points 0,2; .2,0; 4,2 and 2,k o
N A .
e - . B

.- ity . _ _ _ > 9
M neg 0,2 = M neg %52 = ¥y neg 2,0 = My neg 2,4 = - D(é%zz 1 Xé’
; # ' X

By ~l(b -200) +b) =R =2 (.3000C) _ .6180C
32 n? T2 02 n2

Therefore

b
Mneg ~ - .6180 g h; - .6180 g b

ne

M¢ peg DL = My neg DL =~ - .6180(87.5)(25) = - 1352 £t-1b

Mx neg IL = My neg 11 =~ - .6180(112.5)(25) = - 1738 f£t-1b

Summary for Case "A"

My neg = My neg = My neg DL * My neg 11, ¥ - 3090 ft-1b

My pc;s = My pos = My pos DL * My pos LL ~ 1741 ft-1b



L

Finite Difference Approximation to Case "B" (see Appendix)

X Y
h==Z£=X
T
-|~Fl_—__()T-_I__—IT-T-—_2FI %1(-1 I
r I X i
! I A |
Mrems °

Boundary Conditions

Two opposite edges
fixed, two opposite
edges pinned

Therefore

W_p,y ==wp N due to
¥ 23 allowing
W, = W, rotation of
2 33 pinned edge

due to
rotation
Vx,5 = Vx,3 restraint

Vg, .17V 1

Wx,0= W0,y =¥y, b =¥l y=0

dve to translation
restraint

In applying a uniform
load (q) over the entire
surface area, conditions
of symmetry become
apparent. Due to these
symmetrical conditions
small alphabetic letters
will be assigned to
points of common deflec-
tion, to cut down on
writing and make
symmetry more obvious.

Superimposing the Finite Difference Approximation to the Biharmonic

.- ' .
Equation over each poiq'b of differing deflection: Tet C =

g nt
N



At grid point
20a
grouping

20a

At grid point
20b

grouping

2,2

-8 -8 -8 -8 +24 +24 + 24

common terms

- 16b - 16c + 84 =C

1,25 same for 3,2

-8 -81-8+2 +2 +Db-D

P

common terms .

%

84+ 20b+le - 164 %C

At grid f:oint 2,33 same fof 2,1

20c -82-81-82+2+%+c+c

|
gréuping common terms
.

.

'~ B+ kb + 22¢ - 164 = C

- At grid point 1,3; same for 1,1; 3,1 and 3,3

204 -8’ -8 +2a+d+d+da-d=

grouping common terms

23 -8y -8 +22d4 =2¢C

Placing the simultaneous

G

S

(k)
@
(3)

(2)

+2d =C

equations in matrix form

-8
-8

20

-8

-8

2 1
a6
a6

Sum

- T¥ o I

LG

(1)

(2)

(3)

()



e vnolesKy or

Back substitution yields

Substituting back

(1)

(2)

‘a < kb - be +111d =" .5000C.

16

Urout SOoLutlon ylelds \See Appendix)

Check

2 . 11 .5000C]. & k+.5000¢ :

. {-8 -6.0000 5 - here ‘é -2.6667-.4167C g

B -8 28 55.3%2h|  -1.7350 é -.1205C" é - T350-.1205C -
20 6 85.3512  23.9504 ¢ .3084C) ¢ 1.0+.308kC

a = .308kC

¢ - 1.7350d = ~ .1205C

¢ = 1.7350(.3084C) - .1205C = 53510 - .1205C

c = .41&60;

b4 5.553% - 6.0d =~ MI67C

b= + 2.3533( H1b6C) * 6.0( . 30846) - .B167C = 1.8504C - 1.3841C
b =’.ué6jc

a = B(.1665C) + h(.LIN6C) - 11(.3084C) + .5000C

a

4.0236C -~ 3.3924C

a = .6312C

Il

into original equations
20(.6312¢C) -

12.6240C - T.4608C - 6.6336C + 2.4672C

-8(.63120) +

16(.4663C) - 16(.4146C) + 8(.3084C) should = 1.00C

15.0912C - 1k.o9klkc

.9968¢ ~ 1.00C

20(.1663C) + 4(.4146C) - 16(.3084C) should = 1.00C

-5.0496C + 9.3260C + 1.6584C - 4.9344¢ = 10.98kkC - 9.9840C

. = 1.0004kC ~ 1.00C



N

(3) -~8(.6312¢) + h({.L663C) + 22(.41&60) - 16(.3084¢) should = 1.00C
~5.0496C + 1.8652C + 9.1212C - 4.934k4C = 10.9864C = 9.98%0C

1.0024C ~ 1.00C

I}

[CO =TGN 65120) 8( l+665C) - 8( L1k6C) + 22(.3084C) should = 1.00C

1.2624C - 3 T304C - 3.3168¢C "+ 6.7848C = B.0MT2C - T.04T2C

1l

= 1.0000C

Therefore the soiut::.pns satisfy the original equations fairly well.

The equations for bending doments are (see F.D. Approx. for Case "A")

WL (axw{ui) iy = - (%*“:?)

ifhe Maximum Positive Moments occur 'zt the cemter of the slab, point 2,2.

Therefore, superimposing the Central Finite Differencé Approximation to

the second partial derivatives over point 2,2

aaw~i(b 23 + b) = (20 - 28) = 2(.466
QW ~ L (p - = = - 2a) = Z(. 4663 - .6312)C
32 ne . n? ne

= 2. L1609) = -

.5298¢
n® n?

Q/ o/
g%

z—J-'-(c -2 +¢c) = i(2(': - 2a)
2 h2

2.(.h146 - .6318)C
b n

= 2-(21(- .2166) = - —Lﬁaeﬂ
h n



My pos ¥ - D(" ii?g + (.15)(. __QL'I*}FZC))

N
~ o DC(_ . - = . _l)_ h'
h2( 3298 0650) %0h8 = R

~ .30k8 q 1

My pos ~ - D(-r%igzg + (.15)(— ———'32280» =~ %(- 4332 - L0495)
n b

L
~ - D LRt 2
4827 > qf = b7 an

Since

'
dpr, = 87.5 psf ’ ary, = 112.5 psf h = X_Y¥Y._.2 _ 5!

My nos DL = --3948(87.5)(25) = 864 £t-1b

M, pos T, = -3948(112.5)(25) = 1110 f&-Ib

My pos DL = 4827(87.5)(25) = 1056 fH-1b

My pos 1~ -4827(112.5)(25) = 1358 f£t-1b

The Maximum Negative Moments occur at the center of each fixed panel
edge, points 2,0 and 2,4.

23

| ' —.- aaw : %)
= -« D{=/—% + M-
My neg <Bv2 x2
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&5\‘:
E'e

1 -2 _2
géxc - 2(0) +¢) = 3 h2(.41460)

iy
My neg ~ - D~<'8292 c_2> = - .8292 ;% q 13D— = - .8292 q h®
b

My neg pp ~ - -8292(87.5)(25) = - 181k fo-Ib

My neg IL ~.- -8292(112.5)(25) = - 2332 ft-In

Smaw for Caseé uBu

.

My neg = My neg DL + My neg 1L, ¥ - 4146 f£6-1b
My pos.= ¥y pos r t Mx pos 1L 197h £t-1b

My pos =My pos DL + My pos 1L © 2h1l £1-1b
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Finite Difference Approximation to Gase "¢" (seeﬂ Appendix)

Iéoundary Conditions

h=2=X All edges pinned
4 b
Therefore

‘ . . Vl,y*© WLy

. due to
W. = =W, allowing
=1
* %\ rotation of
= i d. ed;
w5,y - w5,y pinned edge

= a7 3
. WX;AS %]

Vo=V g =V b =W = 0

due to translation
restraint

In applying a uniform
load {q) over the entire
surface area, conditions
of symmetry become
apparent. Due to these
symuetrical conditions
small alphabetic letters
will be assigned tor
points of common deflec-
tion, to cut down on
writing and make
symmetry more obvious.

Superimposing the Finite Difference Approximation to the Biharmonic

. by
Equation over each point of differing deflection: Iet C=gq %

At grid point 2,2
“ 208 - 8 - 8b ~ 8> - 8b + 2 +2 +2 +2 =C
grouping common terms

20a- - 32b + 8¢ = C @



At grid point 2,1; same for 1,2; 2,5 and 3,2
20b -82 -8 -8 +2b+2b+Db~b=C
grouping common terms

-8a + 24b - 16c = C

At grid point 1,1; same for 1,3; 3,1 and 3,3
20c -8 -8 +2a+c+c-c=-c=C
grouping ‘common terms

2a - 16b + 20c = C

Placing the simultaneous equations in mabrix form
* Sum

(3| 2 -16 20 : ¢f - 6+c'§

b ) = ()-8 20 -16 ‘el o« E

(2) 20 -32 8¢l w6 :

The Cholesky or Crout solution yields (see Appendix) .

Check

10 © .5000C| : 3+.5000C

20 128 12.8000 : .5469C ﬁf 1.0+.5469C

Back substitution yields .

.5k69C

[e]
I

b - 1.6000c = - .1250C

o
1t

1.6000(.5469¢) - .1250C = .8750C - .1250C

o’
n

.7500C

~1.6000 : -.1250C| . -.6000-.1250C .

21

(2)

(3,
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a - 8b + 10c = .5000C

a

8(.7500C) - 10(.5469C) + .5000C = 6.5000C - 5..4690C

a

1.0310C

Substituting back into originel equations

(1) 20(1.0310C) - 32(.7500C) + 8(.54690) should = 1.00C
20.6200C - 24.0000C + 4.3752C = 2k.9952C -~ 2L.0006C

T = .9952C ~ 1.00C

(2) -8(1.0%20C) + 24(.7500C) - 16(.5469C) should = 1.00C
-8.2480C + 18.0000C - 8.7504C = 18.0000C - 16.9984C

= 1.0016C ~ 1.00C

(3) 2(1.03100¢) - 16(.7500C) + 20(.5469€) should = 1.00C

2.0620C - 12.0000C + 10.9380C = 13.0000C - 12.0000C

1.0000C

Therefore the solutions satisfy the original equations fairly well.

The equations for bending moments are (see F.D. Approx. for Case tat)

1
#

2

The Maximum Positive Moments occur at the center of the slab, point 2,2.

Therefore superimposing the Central Finite Di‘ffé;ence Approximatiqn‘ to

the second partial derivatives over point 2,2

2
OV o Llip-2a+b) = L(2m - 2a)
a2 n? n?

2.(.7500 ~ 1.0310)C
ne

oc, . o
= Z%(~ .2810) ='- .5620 =
12 n2



2
a—wz—l-é-(b -2 +b) = (2 - 2a) = - .5620 &
B’ n2

3y2 he

_ ~ ' ¢’ : c
M pos = Mx pos ¥ - ‘D<- .5620 " + (.15)<- -5620 h—§>>

h
= 5600 DC(1. =, D 4 ho
5620 112(1 15) = 6463 2 a3
~ 6465 g 1
éince . .
apr, = 7.5 psf qpp = 112.5 pst n=f-1-20

My pos DL = Mx pos DL ~ .6463(87.5)(25) = 1b1k £H-1b

r&y pos IL = My pos IL = .6463(112.5)(25) = 1818 £t-1b

There is no negative moment involved in this case.

Summary for -Case "C"

M g =0

'y posv= My pos * My pos DL * Mx pos IL T 3252 f5-1b-

23
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Comparison of Results for Uniform Loading Condition

ok

Céntral Finite " Finite Elastic
Maximum Grid | 323,1328;63 | Difference Difference Curve
Moment  Point ft-1b ’ Approximation, | Approximation, Plot
; ft-Ib percent of ACI | f£t-1b
Case "A"
My 2,2 +1845 +17hL ol
My 2,2 £1845 F17hL ghh
My 0,2
{4)2 )
. -3600 ~3090 85.8 - -3800
M 2,0 | - o
¥ {2,&
‘ﬁ.
Case "B"
e 0,2
b2 +615 0 \
M, 2,2 +1845 +19TL 107.0
My 2,2 +2385 2kl oL v
My, {2,.0 " ) _
. 2,4 -6000 -b1k6 69 - +5587
Case "C"
T, g0,2
{4,2 +960 0
Ng, {2,0
2,% +960 0
LM, 2,2 #2880 +3232 . 112.2
M 2,2 +2880 +3232 112.2
Table 1. TDesign Moments for Uniform Loading Condition




The results compare quite favorably with the exception of the maximum'
fixed edge moments in both Case "A" and Case "B". This indicates that
the grid chosen was too large to closely approximate the deflections that
influence the maximum negative moment. However, since halving the grid
intervals approximately quadruples the amount of work necessary to obtain
thelsolutions to the simultaneous equations, it would appear that a more
simple method of approximating these controlling deflections is in order.
This can be :done by sketching the elastic curve of. the slab section
through the point.of interest, using the calculated deflections. The
inflection point in the elastic curve is then approximately lo;:ated: and
the deflection and distance from tiqe point under consideration is scaled
off the curve. (Note - a thin spring steel Awire with straight pins at
plotted deflection points works wonders in approximating the elastic
curve). The second partial derivative is then recalculated using the

new values obtained and the moment is modified accordingly:.



Elastic Curve

Plot for Case "A" Negative Moment

o
L Lo
w=0 g V19
L X Be N
e 3] o
(0] 7] B
- : B i “o'
=t , O
-+ g LDPNE=
(] g
o L i
2R, )
4 _la f‘ - A j
5 VR YT
b & ‘ @
& 2
o ;.*'
lr ( 1l X <
! | w=0 = i
A L N
] o oo
- Q=
o - ..
oo
B F
From el‘éstic curve
h' = .172¢Y
w' =~ .18C

Therefore

Pu 1 (ow') = 2(.180) _"12.17C

% ()2 (a72v)® 12

My nog = Yy feg = - D(§2_W> ~. D<12.110>
neg he ‘

By’2 ‘

172y

¥2

26
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with
I YA ’
Y h .
= 1 = = = _—= R
20, n e €=1a p ¢ 256D
Since
4pp, = 87.5 psf .. Toqgg, = 125 prT

M - m _ p{12:17) (8T _ | (32.17)(87.5)¥2
&y neg DL ¥ (256)D 256

3

+
’
<

U
)

~ - 0b75(87.5)(400) = ~ 1662 ft-1b

" ~-D (12.17). (112.5)¢* - (12.17)(112.5)¥°
*&y neg LL +2 (256)D - 256

~ - .0b75(112.5) (400) = - 2138 £t-1b

Meay neg = My neg DL * My neg £L = - 3800 f££-1b



Elastic Curve Plot for Case "B" WNegative Moment

.C »~
—————————————— g O -
S S
w=20 7! 2ZBRaE
) / % §‘ =3 / 4‘:!-‘
qa [ All (&)
b} N NN
c & o] | a é’ 2
B> -t < oKy o, i
‘ . \ S b
a 2 =
> + . [ = )
g L / 2
N - S & +H 7
i Lo % /
. 1
¥ (-w =0 ° N
il 1IN
________ c _ - I
BEEE
- o . . .
i (i} i n
BB E OB
From elastic curve
h' =~ .177¢
w' o~ 230
®w . 1 ..y _2(.230) _ 17.88¢c
oW ~ (2w ) = 5=
¥ (a) (.177Y) v
Therefore
- o u_8§g>
= -D{&¥) ~ -D )
Yy neg <ay2> ( 2




with

)+
— 1 P - h — Y
T=20% h=p C=4% =45z
Since

Ay, = 87.5 pst qy, = 112.5 psf
(17.88) (87.5)Y" _ 2
~ op el AP0 - 06984(87.5)Y

¥ neg DL ¥ (256)D -

§
[

~ « ,06984(87.5)(400) = ~2hhkk Tt~ 1b

_p {17.88) (2.5)Y" _ .0698k(112.5)Y°
¥2 256D

q

My neg IL

~ . ,06984(112.5)(L00) = - 3143 f£t-1b

My neg = My neg pr, + My neg 1L ¥ - 5587 fo-1b



VII. TWO-WAY SLAB ANALYSTS - CONCENTRATED TI0ADS

An examination of the preceding Table 1 indicatés that i;he results
obtained by the Central Finite Difference App.rO}iimafbion to the Biharmonic
Equation along with the Elastic Curve Plot compa;'es“ well w’ith the resui‘ts
obtained by the analytical, emperical or expé:rime;lta.l u‘.lethods used 1.30
establish Method 3 of ACI 318-63. Theref.q.:c'e, the Finite i)iffereﬁce
Approximation can be used to analyze a slab for'i):he'applicat;j.on of
‘concentrated loads and a reasonable degree 6f" e;ccu:.racy can be exgected:.

This stw;.y will now explore the application of cc;ndéntréted loads
on the three cases previously examined. It will attempt to investigate
how the maximum moments are affected as the load is expanded from
application over an area %by% to full uvniform loading. The full live
load (q-X-Y) applie;i. to the sleb under -tlr}e uniform loading condition
will still be used, only it will be applied over the smaller area. For
this study, the load will be located such .that the symmetry of the,

deflections is maintained. The assumptions previously stated still

apply.

30



Finite Difference Approximation to Case: "AY

Concentrated Load Over Grid Point 2,2 (see Appendix‘)

Boundary Gonditions

h==4&=21X . s
ok A1l edges Tixed :
_____________ b o Co- )
AT TR T ZFI» AT TR Therefore
| | | I ! | !
! 1 : =
—— I !f 2 J P x W-l,y Wl,y
AP ajo 1;0 210 3|o 4Y0 5{0 |
| 1 I | T = Vg, -l = Vi1 due t(?
e e b Lc ) le ) rotation
.1:]"_—6?_—7?_""@]?__—3!(’ ah 5i, V5 y = w5)yk restraint
| A | AT _ )
Fb__._,..___.%.b_._%é' ___'..l{.b._’ 4Ib >_ WX;5 - WX;5
-2 2 Uz (2127 3eal a2’ 52
| : : — } also
e c | | le c
r_—__/_—"—._'_—_-'___—r‘—_}V‘—__i‘ W, =W, =‘W = 'w' =O
e 013 13 2?1 33 4l3 5}3 | %,0 = ¥0,5 TV, " M v
I 2 : I | due to translation .
I L S 1 TE ra restraint
I | I | 1
! c b Ic ! .
-t fg—— S5 I8 "B 35 4|5 ~%s Since the deflectidn
y h ' symmetry conditions are
retained by the load
X placement, the same
small alphabetic letters
The total live load previously placed can be assigned to the
on the slab will now be concentrated points of common

over an area h X h -.at point 2,2. deflection. -

Previous total live load = 112.5 psf X 20! X 20" = 45000 1b = W

Superimposing the Finite Difference Approximation to the Biharmonic

nt _ W2
D D

Equation over each point of differing deflection: ILet R = qg
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At grid point 2,2
208 -8 -8 -8 -8 +2c+2c+2 +2c=R
grouping common terms

20a - 32b + 8ec = R (1)

At grid point 2,1; same for 1,2; 2,3 and 3,2
20b - 82 -8 -8 +2b+2b+Db+b=0
grouping common terms

-8a + 26b - 16c = O (2)

At grid point 1,1; same for 1,3; 3,1 and 3,3
20c -8 -8 +22+c+ec+ecte=0
grouping common terms

28 - 16b + 2ke =0 ) (3)

Placing the simulitaneous equations in matrix -form
Sum
(312 -16 2+:0]|:10
figd=(|-8 2 -16§_o 2
(1) 2o -32 BER';JH-RE
Tt should be noted that a similartiy exists between the preceding
simultaneous equations and thgse obtained under the uniform lodding”
consideration. The only difference ls in the value of the load place:i'
on the grid points. Therefore, a la.rée portiop of the. L{T : K}‘_mati'iit

remains the same. » v
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Check
c12 o 5
LT i K= 2.1055 © 0 § -1.io55

20 120  37.h784 : .0267R  1.0+.0067R :

Back substituting yields

o
1}

.0267R

b - 2.105% = O

o’
(]

2.105%3( . 0267R)

o'
]

.0562R
a~8b+ 12 =0

8(.0562R) - 12(.0267TR) = .MM9TR - .3204R

a

a

.1293R
Substituting back into original equations
" (1) 20(.1293R) - 32(.0562R) + 8 (.0267R) should = L.UUK

2.5860R - 1.7987R ~ .213%6R

2.79968 - 1.7987R
= 1.0009R ~, 1.00R
(2) -8(.1293R) + 26(.0562R) - 16(.0267R) should'= O

<1.03MAR + 1.46158 - . L2T2R = 1.4615§ . 1.46165

1t

- .000IR ~ O
(3) 2(.129%3R) -‘;6(.05623) + 24(.0267R) should = O

.2586R - .8992R + .6hO8R = .8994R - .8992R

. 0002R ~ 0

Therefore the solutions satisfy the original equations fairly well.



o

The equations for bending moments are (see F.D. Approx. for Case."A" l

uniform load)

Mx=-D(-gli—Z+u$> ,My=-D<£W;+'u'§ﬁ>'

dx 32

3h

The Maximum Positive Moments occur at the.center of the slab, point 2,2.

Therefore superimposing the Qen'bra-l Finite Difference Approximation to

the second partial derivatives over point 2,2

2 Ly -2+ b) = L(ob - 28) = 2(.0562 - .1293)R
7 h2( ) h2( he(

_ 2R, = _ kg B

= h_z(- .0731) = - .1462 z

ﬁ"-%-lg(b - 2a .+ D)

2 w

- .1k6e B
n2

My pos IL = Mx pos LL = - 'D(— .1h62 h%- + (.15)(- L1462 %))

13

.1h62 BR (1.15) = .1681 2. &
w2 o2

X

4 2
1681 2 WBE _ agm1w
2 D

Q

.1681(45000)

2

7565 ft-1b
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The Maximum Negative Moments occur at the center of each fixed panel

edge, points 0,2; 2,0; 4,2 and 2,k. Although the Finite Difference
‘Approximation analysis for the uniform loading condition indicated the
grid spacing to be too coarse to closely approximate the maximum

negative moments, the negative moments will be calculated for an order

of magnitude determination and then checked with the Elastic Curve Plot.

2w | 3\
Yx neg 0,2 = Mx neg 4,2 = My neg 2,0 = My neg 2,1 = - D<gy—2+ u/gé>

v . _l_é.(b - 2(0) + 1) = @,:} 2 (.0562R) = +2124R
¥ n b2 nf h?
JLI2MRY _ g w2 _
Mygy neg IL ™ - D<T> = - 1142 DE - = - 11hew

h
~ - .1142(45000)

~ - 5139 ft-1b
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Elastic Curve Plot for Negative Moment.

— 5
_______ b 8
1] 3
4
w =20 0y .
/ R -
Z 74 LLLLLy - 2 .
# ,
j # 1l
/ b 4 HER 1
4 =
# N
A A N
4 (j N IN&
~
4 (¢ I
, 8% YLt
1 ! “
. 4 I =
y i 4 4339 A5
“ :
4 q
7l 4 v
4 Bl
TIITTIV r( 7T “ -
‘ w=20 . O .
A § -G B N
.BE Mmoo
8 38 3
& o . . .
§. woaouoon
BB B B

The Elastic Curve Plot indicates that the inflection point is very near
the grid point. Therefore the negative moment calculation is approxi-

mately correct.
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Finite Difference Approximation to Case "A" (see Appendix)

Concentrated ILoad Over all Internal Grid Points

Boundary Conditions

h = % = %
A1l edges fixed
c .
_I‘f‘_l‘“'b't‘__l‘——,'{'_T—-—zr;‘ 51|_| ZFF—_S.}-I Therefore
! ' | | |
| -
| — ! ! Yocosd Z ______I x Vl,y = wl)Y»
40 alo o 2o 3j0 4to 5|0
| % g | < Wy, -1 = Wx,1| due to
e Y& /’br,%c AF T rotation
ST TN A 72y 7 7 I B EX ¥,y = ¥3,y[ vestraint
) 1
1 2 A= . =W,
-l'la)_—_'E_"//{ia 2;7%;':"/ ak si: > %2 2
II y ! /;;/ I also
e ___/g oA e b le
SIE CERAE /2,713 3}3" afs 513 Wy, 0 =V0,y =V 4T Wy 5 =0
n -
i
-IFt ofa [§E3 2lg 3197778 4—"5—14 due to translation
| | 1 3h ! 1. restraint
o L__le b e 1__ !
<15 0}8& 115 2i5 35 415 55
y h Since the deflection
X symuetry conditions are
retained by the load

placement, the same

The total live load previously placed on the
slab will now be distributed over an area
3h.X 3h, effectively concentrating a portion
of the load over each internal grid point.

small alphabetic letters
can be assigned to the
points of common
deflection.

Previous total live load = 112.5 psf X 20' X 20' = 45000 1b = W

a4t =

(30)2  @? w2

W__ _ 45000 _ 5000

Superimposing the Finite Difference Approximation %o the Biharmonic Equa-

tion aver each point of differing deflection:

h

L ne
Let P = gy — = 5000 b=
D D.
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At grid point 2,2
208 ~ 8 - 8b -~ 8 - 8b+ 2 +2 +2¢+2 =P
grouping common,k terms

20a - 32b + 8¢ = P (1)

At .grid point 2,1; same for 1,2; 2,3 and 3,2
20b ~ 8 -8 -8 +2b+2+d+Dd =P’
grouping common terms

82+ 26B ~ 16c = P ()

At grid point 1,1;. same for 1,3; 3,1 and 3,3
20c -8 -8 +22+c+ec+ct+c=P
.grouping common terms

28 - 16b + 2he = P (3)

Placing the simultaneous equations in matrix form

Sum
<16 2k 1 PLOT0+P !
pidy-|8 26 asip|: !
120 =32 8 1P| Pt

Note that the {AiC) matrix above is identical with that of the original
uniform loading cons«id.eratic;n. Therefore the solutions to the simulta-
neous equations and the deflection coefficients are identical. The
d.i'fferer}ce in the ’moments will come from the different load applied at

the grid points.
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Therefore
a = .4604P
b= .3090P
c = .2093P

The equations for bending moments are (see F.D. Approx. for Case "A",

wniform load)

el D)
e By v e . dx2

The Maximum Positive Moments-occur at the center of the slab , point 2,2.

.a__..zw = &W. Rs o ...-'5028?
x2  ¥y? ne

_ .3028P ‘
My pos 1L = My pos 11 ~ - D( e + (. l5)<- .3028 ))
h2
= 3482 DE = 3&82 5000 2=
h2 n2 D
=~ 1741 ft-1b

The Maximum Negative Moments occur at the center of each fixed panel

edge, points 0,2; 2,0; bL,2and 2,k. Although the Finite Difference
Approximation analysis for the uniform loading condition indicated the
grid spacing to be too coarse to closely approximate the inaximum negative
moinents , the negative moments will be calculated for an order of magnitude

determination and then checked with the Elastic Curve Plot.



ko

] %
M neg 0,2 = Ng{negug Y, neg 2,0 = My neg 2,4 = - (—+u%)

é?x ~ »6180P
3y 12

ot

. ~ '16180P' _ o0 D B2
Wity meg IL = D(TE_) - - 6180 ;5(5000 _D>

3090¢ ££-1b

© The Elastic Curve Plot for ‘this loadinglc;ori'dition is the same as that
previously shown for Case "A' uniform Toad. wE[fl"xe'r"ef/cn'*e , the curve data

.osd .
at the inflection ﬁoini; is:

h'& L172Y
W' & :18p
Pw _ 12.17P
dy’ ¥°
Therefore
3%\ (12 1 P)
pf€¥} ~ _p
Ngi&y neg LL <B y2> Yg
with

n=

_ 5000n2 _ 5000%2
D 16D

. fieap) 5OOOY2> _
~-D = - 3803 £t-Ib
Yysy neg IL ( 2 )( 6D .



Finite Difference Approximation to Case "B"

b1

Concentrated Load Over Grid Point 2,2 (see Appendix)

h=%-2X
bk
-——-T—~——Tg‘——r'c“"*ﬂg——— adatet)
S E I R R S S A
1 1 | P |
BS555. 99995 IR, | x
-0 0 l:O 2;0 30 410, /510 &
R
d_pf o ld_ e oogd g ¥
Al 1 O TR DT
| 1 - _: ¥ |«
o) _in ] Lol Ll )
TR Uil s[4 5i2
T I hoa |
I N 1 T
rd la’| "le.| 14 i~ -al,
N 3*—7*3"5@7—3;3——4'%*;3}3
: = 1 . { '
N | . R :
-l}—4 o1& 7114 21r4 ‘,314 Aa " 5}‘9
| | I I ' ‘| . |
IL_______._I g__._c____!_gl__’___;J
45705 if5s 2[5 35 4 5's
X

The total live load previously placed
on the slab will now be concentrated
over an area h X h ab point 2,2.

Boundary Conditions

Two opposite edgdes fixed,
two opposite edges pinned

Therefore

- due-to
W g = =W
-1,y 1,5 allowing
rotation of

W £ =W
. 0¥, 3,7} pinned edge

4
W, =W 1 due to
X, -1 7 ¥x,1 {
i ’" Vrotation
restraint

WX\’~5 = WX’3
Wx,‘O =¥,y ='Wx,11-= 'Wll_,y =0

due to translation

" restraint

Since the deflection
symetry conditions are
retained by the load
placement, the same |
small alphabetic letters
can be assigned to the
points of common
deflection.

Previous total live load = 112.5 psf X 20' X 207 = 45000 1b = W

Superimposing the Finite Difference Approximation to the Biharmonic Equa-

nlt _ W

tion over each point of differing deflection: ILet R = g 5 = -5



At grid point
203
grouping

20a

At grid point’

20b

grouping

=8a

At grid point
20c
grouping

-8a

At grid point
204

grouping

2,2

-8 -8 -8 -8 +24+24d +24 +24 =R

common terms

- 16b - 16c + 83 = R

1,2; same for 3,2

-8 -84 -81l+2 +2 +b-Db

common terms

+ 20b + ke - 164 = 0

2,3; same for 2,1

-8 -81-8+2+2b+c+c

common’ terms

+bb 22 2164=0

1,3; seme for 1,1;

I
(o]

I
(o]

3,1 and 3,3

-8 ~8c+22+d+ad+d-~d=0

common terms

22 -8 -8 + 224 =0

S
Placing the simultaneous equations in matrix form

'{A :

¢

w2 -8 . -8
(2)| -8 20 T b

(3] -8 % . ‘22'4

(1) {20t -16 © .16

22 :',O "L o
2160 05 0
-16 10 2

b2

(1)

(2)

(3)

4)



It should be noted that a similarity exists between the preceding
simultaneous equations and those obtained under the uniform loading
consideration. The only difference is in the value of +;he load placed
on the grid points. Therefore , & large portion of the L@ZK} matrix

remains the same.

Check
2 14 LI, Do Do
) -8 :,r'2.3553 -§.oogd‘§ o | g —2.6667
L<? : Ka T8 o8 55.532#1‘;-1;7550'é o - g -.7350

20 6k -85:5312 251956&'; LOM18R | © 1.0+.0418R :

Back substituting yields

a =" .0418R

c - 1.7350d = O

_e = 1.7350(.0k18R)
¢ = .0725R
b + 2.3333%¢ - 6.0000d = O
b = -2.333(.0725R) + 6.000(.O418RY)
b = .0816R

a -U4b -t +11d =0

%(.0816R) + 4(.0725R) - 11(.O018R)

®
]

o -
i}

.1566R



bl

Substituting back dinto original equations

" (1) 20(.1566R) - 16(.0816R) - 16(.0725R) + 8(.0k18R) should = 1.00R

5.1320R - 1.3056R - 1.1600R + .3344R = 3.M664R - 2.h656R

1.0008R ~ 1.00R

(2) -8(.1566R) + 20(.0816R) + 4(.0725R)- - 16(.O0418R) should = O

~1.2528R + 1.6320R + .2900R - .6688R = 1.9220R - 1.9216R -

.0004R ~ O

(3) -8(.1566R) + L(.0816R) + 22(.0725R) - 16(.0418R) should = O
~1.2528R + .%264R + 1.5950R -~ .6688R = 1.9214R - 1.9216R

- .0002R ~ O

(%) 2(.1566R) . 8(.0816R) - ‘8(.0725R) + 22(.0k18R) should = O
.3132R -~ .6528R - .5800R + .9196R = 1.2328R ~ 1.23%28R
= 0.0000R
Therefore the solutions sat:.sfy the or:.glnal equations fairly well.
The equations for benalng momen'bs are’ (see F. D. Approx. for Case "A"

uniform load)

- -p(Bg e ) = -n(Eren )

The Maximum Posrt:.ve Moments oécur a.t .the cen‘ber of the slab, po:Lnt 2,2.

Therefore superlmposa.ng the Central Finite leference Approxmatlon to

the second partial derivatives ovgr point 2;.2 H



B
dx2

P

3y?

h

1
ne

1
—(b - 22 + D
S(b - 2+ b)

(c -~ 2a + <)

M, pos IL =

P

-

3

Q

q

q

L(op - 28) = 2(.0816 - .1566)R
n? n

I2713(- .0750) = - .1500 'h_g

N 2, .
5 (2c - 2a) = 1?(,'0725 - .1566)R

B¢ o8u1) = - 1682 X
n? n?

- D<’. .:1500.32'+ (.15)(- .1682) h%) ‘
h .

? N ' 2
-(- .1500 - .0252) _%WL, = 1752w
+150C P ED

s
.

~1752(45000) ’

7884 £H-1b

i

- D(_f .1682 -'R—e + '('.'1‘5)'(,.;500)3,2)
. T h h

. R LN . 'v‘ 2
- (-.1682 = :0225) %w_%_ = .1907W
‘ n

.1907(45000)

8582 ft-1b

b5
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The Maximum Negative Moments occ‘:ur‘ at the center of each fixed panel
edge, points 2,0 and 2,4k. Although fche Fini'tebifference Approximation
analysis for the uniform loading condition indicated the grid .spacing‘to
be :boo coarse to closely approximate the maximum negative moments, the
negative moments will be calculated for an order of magnitude determina-
tion and then checked with the Elastic Curve Plot.

0
3w b}
My neg = = D‘(-B_y-é-l- uzé)

3%y .1 . _2c _ 2
" 1-1E(c - 2(0) + c) 2" }—15(-07253)»

1

R
L1450 h—2

_ R . D Wn?
My neg 11 ~ - D(.ll+50 h—§> = - 1450 wokn

~ - ,1450(45000)
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Elastic Curve Plot for Negative Moment
- R
________ (I Q
o /, N .
w=20 W Qq X
” = o =
\\ !
o c N
> T 5 BN
: £ 0 N
ot
a, Lol |
> - q [ [s]
e X . &
o AR
[ G F % =
> -+ < E :
5 A I
& / =
[\ .
C 8
l v=0 ATIN|
S ] e FoUN
[e < - o
g 0 N0
© 0 H A
o) . »
ononono
. EE B EE
From elastic ....- °
ht &~ 2557
w' =~ -.0T8R’
¥w L 1 (oey _ 2C.078R)." _ 2.40R
N 52 )= e 22+ g2
2. ()3 (-255)%x% * X
H
with
4
n=g !
= @g = W._Y.e_ !
D 16D ¢
M z_Dz).].O.B..:_?'_'l“QDW_Lz: 1500
y neg LL : 2 Y2 16D
~ - 6750 f£t-1b original calculation close enough
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Finite Difference Approximation to Case "B" (see Appendix)

Concentratgd Load Over All Internai Grid Points

h=%=X Boundary Conditions
T - -
Two opposite edges fixed
el & e _4a o two opposite edges pinned
I I'If-| 2l 3‘1-1 2 e e P
{ : | | | Therefore
I
o £ 4 e et ‘ - due to
o 9o ho 2o 3o 4 50 V.1,5 = V1,y| allowing
! ) N N L | < rotation of
t-d .%d NN la ] W = ,
gl ) S NN e = } —dg--F4 v 3,7, nned
-|r1 ‘%l \IQ—\\zll 3\1 4? 51 ? »¥) pinned edge
J.
I , ! X . .
o b NN RN & W =w due to
—— - t | t = x,-1" "%X,1 .
42 EANENNIINREE 52 > rotation
N q 1 . W, =W_ 3 restraint
i-é_ __§9>~\\\°.\ :g; | ia ,X’5 . .x,B, )
43 R NI NAEN NEEN I E
' AN I =Wy = W oy =W, =0
; ! a : ! V2,0 770,y 7 g, T Mhyy
EE N H ped A f ‘ - .
ST E S EE (S AT aa 54 due to ‘translation .
1 ) | 3h 4 | . restraint
[ T c _|d |
-5 05 5 " 2(8" 35 45 55
¥ l»h__. Since the deflection
X symmetry conditions are
retained by the load

R placement, the same
The total live load previously placed on the " small alphabetic letters

slab will now be  distributed over an area can be assigned to the
3h X 3h, effectively concentrating a portion points of common
of the load over each internal grid point. deflection.

Previous total live load = 112.5 ‘psf‘x 20t X 20' = 45000 1b = W

g, = —¥_ - 45000 _ 5000
()% gn2 12

Superimposing ‘the Finite Difference Approximation to the Biharmonic Equa-
’ . ko 2
tion over each point of differing deflection: ILet P = gg % = 5000 %



At grid point 2,2

208 - 8b 58b - 8¢ - 8c +2d + 24 + 24 + 2d

grouping common terms

20a - 16b - 16c + 8d = P

At grid point 1,2; same for 3,2

20b - 82 -8 -81+2 +2+b-b

=P
grouping common terms
-8a + 20b + bc - 164 = P
At grid point 2,3; sams for 2,1
20c -82 -84 -81+2b+2b+c+c=P

grouping common terms

8a + 4b + 22¢ - 16d = P

At grid point 1,3; same for 1,1; 3,1 and 3,3
204 -8 -8 +22+d+d+d-~-d="P
groupin"g common terms

22 - 8b -8 +224a="P

Placing the simultaneous equations in matrix form

-8 20 L6

20 .-16 -16 8 : P

Sum

8P
0P
24P -

4 :

L]

(1)

(2)
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Wote that the {A;q} matrix above is ‘identical with that of the original
t v
uniform loading corsidération. Therefore the solutions to the simulta-
T N } Bt
neous equations 'and the deflection coefficients are identical. The

. .
l

difference in thé x‘nél.nenfs :wil:lic'ome: from the different 1oad applied at

the grid points.”

Therefore
a = .6312P
b = .4663P
c = Jhikep
4 = .3084P

The equations for bending moments are (see F.D. Approx. for Case "A"

uniform load)

e ofBen ) - ofE e 2

The Maximum Positive Moments occur at the center of the slab, point 2, 2

P _ 5008 B P . wsme B
2 w2 72 2

My pos LL ~ - D(— .3298 % + (.15)(- -%5@%)

2
~ D o _ D R
~ .3048 = P = .3948 h-2-(5000 ‘D‘)

~ 1974 ft-1b



My pos LL =

N

l
*

> r 3 £
- D(— .4332‘;;2- * (.vlS)(-‘ '.‘5‘298,111—2) ‘

D - Cp [ 2
~ 487 2. P = .u827 = (50@0.—>
_ 2 -z )

= 2Lk fE-1b

The Maximum Negative Moments occur at the center of each fixed panel

51

edge, points 2,0> and 2,'11-. Although the Finite Difference Approximation

analysis for the uniform loading condition indicated the grid spacing to

be too coarse to closely approximate the maximum negative moments, : the

negative moments will be calculated for an order.of magnitude determina-

tion ‘and then checked with the Elastic Curve .Plot.

%~ Lo - p(0) + o) = 2 = 2 () = 8292 £
a2 n? n® 1 n?

. _ 4 P ~ D n \
My neg 1L ¥ - D<.8292 1-;) = - 8292 h—2<5ooo ;)

=~ - W1h6 f£t-1b

The Elastic Curve Plot for this loading condition is the same as that

previously shown for Case "B" wniform load. Therefore, the curve data

« at the inflection point is:



W~ 17T
W~ 23D
P 17.86P -
ay2 ¥2
with’
L oY p . 35000n2 _ 5000¢2
Ty - D 16D

12

17.888) _ . (17.88 ¥
MynegLLz"D('? >.= ( Z (5000) D><

~ - 5588 £t-1b

52



Finite Difference Approximation to Case "er

55

Concentrated Ioad Over Grid Point 2,2 (see- Appendix)

X
h = i % Boundary Conditions
-c -b -c A1l edges pinned
_||.|‘"7)T.T“'|T.T“"2E|.“ 3 L8
i : : I } ! : Therefore
i
- ‘ \V4 v ¥ ____4' x o -
4o "ofo 1o g6 30 4o 50 “Ly LY et
| | I | | o - ue ?
lac e b lo ! 2 Wx, =1 _—Wx;l ‘allowing
| Rt atetbly Iubbabeels sttty = bl ey rotation of
Apt ] 0 2. 3 a0 51 inned ed
I ! S =| { -W5’.y =-W3 | plme ge
1=b_ . __ |b___\ ay _ b S -b _
A2 olz il \27}2'\ 3Tz 4 sz 7 x5 T 7V,3
| Il .:
~c | c b c -c
B i1 oty - maly A ke Ry | W, A=W =W, j, =W, =0
|Ir3 %3 |=3 li 3=3 451_ 5:3 | %,0 =0,y Yx,b TV v
| ! : | i due to translation
o F{‘ Rz e 2(|[\4 31«_4 riva _g{ y restraint
I l } C ! b ‘ C {
4ETTeE NS 25 35 45 55 Since the deflection
y h . symmetry. conditions are
X - retained by the load
placement, the same

small alphabetic letters
can be assigned to the
points of .common
deflection.

The total live load previously placed
on the slab will now be concentrated
over an area h X h at point 2,2.

Previous -total live load = 112.5psf X 20' X 20" = 45000 ¥b = W

A

qQy =

Superlmp051ng The F:Lnl'be D:Lfference Approx1ma’clon to the Biharmonic Egua-

Let R—qaﬁ_ﬂlﬁ
D

tion over each 'p01n't of dlfferlng deflection:



Sk

At grid point 2,2
202 -~ 8b ~ 80 -8b ~8 +2¢ + 2 +2¢+2c =R
grouping common terms

20a - 32 + 8 = R (1)

At grid point 2,1; game for 1,2; 2,3 and 3,2
20b ~8 -8 -8 +2b+D+bD-b="0
grouping common terms

82 + 2k - 16C = O (2)

At grid point 1,1; same for 1,3; 3,1 and.3,3
20c -8 -8 +2a+c+ec-c-c=0
grouping. common terms

28 ~ 16b + 20c = O (3)

Placing the simultaneous equations in matrix form

3)| 2 -16 20:0]|: 6

pid=(]-8 2& -6

(@]
(e}

(120 -3 8

It should be noted that a similarity exists between the preceuruy

simultaneous equations and.those obtained under the uniform loading

consideration. The, onily difference is-in the value of the load placed
. - ¥

on the grid points.. Therefaore, & lérge portion of L{T?K} matrix



Check
“\
A
e i k) =[-8 -ho| -1.6000 1 0 [ -.6000
20 1120, 12.80 : .O78IR| : 1.0+.078IR :

Back substituting’ yie'lcis

c

b

b

a

a

1l

.O781R _:fu

1.6000c ; 0.

1.6000(.07513)
.1250R

8 + 10c = O

8(.1250R) - 10(-O0T8B1R) = 1.

.2188R

0000R - .T812R

Substituting back into original equations

(1) 20(.2188R) - 32(.1250R) + 8(.
b,

3T60R - 4.0000R + ;62h8R =

]

0781R) should = 1.00R

5.0008R ~ 4.0000R

1.0008R ~ 1.00R

(2) -8(.2188R) + 24(.1250R) - 16(.0781R) should = O

(3) 2(.2188R) - 16(.1250R) + 20(.

Therefore the solutions satisfy the original equations fairly well.

-1.7504R + 3.0000R - 1.2496R

M376R - 2.0000R + 1.5620R =

1]

3.0000R - 3.0000R

0.0000R

0781R) should = O

1.9996R ~ 2.0000R

- .O00kR ~ 0

55
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The equations for bending morments -are, "(s_ee"‘l?“.D. Approx. for Case "A"

uniform load)

a%z

il 008

M, = - D(
Jdy2 - 3

The Maximum Positive: Moments occur at the center Or The siab, point c<,z.

Therefore superimposing 'the Central F:Lnlte leference Approxmatlon to

P

the second partial derivatives over point 2,2

Pu L, éa+b) 1 (o - 2a) = 2(.12
W L Ly o =L(op - = 2(.1250 - .2188)R
xB  n? ne ne
_ 2R QY - e R
- h_g(_ .0938) = - .1876 =z
2
.a_—wziz(b -2 +D) = - .1876_32—
ay h h

) - ~ R ’ R
.My pos IL = My pos 1L = - D<— .1876 ;—2- + (.15_)(.-‘_ .1876);5)

Q

.1876 BD(1.15) = .2157 & ®
h? h

D wp2
~ L2157 w_r];_ = .2157(25000)
h .

q

9706 £t-1b

There is no negative moment involved in this case.
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Finite Difference A.pp:r:oxirﬁa‘bién to ‘Case "C" (see Appendix)

Concentrated Load .Oyer All In'berna‘l érid P'ointsz -

Boundary Conditions

All edges pinned

el
i Therefore
- x
5|0 w B ) .
-C LY LY e o
Hilee B .
L4 Wy 3 Ty 3 allowing
5! ’ %+ rotation of
5 W5,y =-W3’y 'pln.ned. edge
52 =
| WX,S WX;3
{|—c
5,3
: W, =W, =W, =W, =0
: x,0 "0,y "x,47 b,y
____{ _ due to translation
54 restraint
|
| :
55 Since the deflection
symmetry conditions are
retained by the load

placement, the same
The total live load previously placed on the small alphabetic letters

slab will now be distributed over an area can be assigned to the
3h X *h, effectively concentrating a portion points of common
of the load over each internal grid point. deflection.

Previous total live load = 112.5 psf X 20' X 20' = 45000 1b = W

Superimposing the Finite Difference Approximation to the Biharmonic Equa-

; b 2
tion over each point of differing Seflection: Let P = qt % = 5000 %



58

At grid point 2,2
208 -~ 8b -~ 8b = 8b - Bh + Do 4 2o 4 B 4+ O =P
grouping common terms

202 - 32b + 8c = P {1y

At grid point 2,1; same for 1,2; 2,3 and 3,2
20b -8 -8 -8c+2p+2b+b-Db=P
grouping common terms

-8a + 24b - 1l6c = P : (2)

At grid point 1,1; same. for 1,3; 3,1 and 3,3

20c -8 -8 +22a+c+rec-c-c=P
grouping common terms
2a - 16b + 20c = P (3)

Placing the simultaneous equations in matrix form

Sum
o )2 -6 20:P|: 6+P
@Eid-(|8 2 -6ip|: op:

(1) 20 -32 81 pf I up:
Note that the {Aic} matrixz sbove is identical with that of the original
uniform loadiﬁg consideration. Therefore the solutions to the simulta-
neous equations and the deflection coefficients are identical. The
difference in the moments will come from the different loads applied at

the grid, points.



Therefore
a = 1.0310P
b = .7500P
c = .5h469P

The equations for bending moments are (;ee F.D. Approx. for Case "A"

uniform load)

M, = - D(—— +
3x2 .

59

The Maximum Positive Moments occur at the center of the 'slab, point 2,2.

3%

— ~ - .5620 R
x2 n®

My pos 11 = Mx pos IL

Q

Q

14

Q

~ E
= - 5620 5

h

LU

- D(— .5620 __22_> + (.15)(= .5620) -%)
h h
.5620 D £ (1.15)
B2
61635 2 (5000) B2
’ he D

3232 £t~1b

There is no negabive moment involved in this case.



VIII. SUMMARY OF RESULTS OBTAINED BY THE FINITE DIFFERENCE APPROXIMATION

09

Case "A"
A = area : np!
loaded (4n)? (3n)? (n)e Case "B"
A/B gotal 1.0000 | .5625 .0625 A = area A > -
Positive Moment point 2,2 loaded i (4n) (3h) (n)
Mygy pos DL +762 +762 +762 A& 4ora1 1.0000 .5625 . 0625
Mygy pos LL +979 +1741 +7565 Positive Moment point 2,2
Y&y poe HATHL | +2505 | 48527 Mx pos DL | 406k | 86k | +G6h
Negative Moment (center of fixed panel edge) Dlﬁx pos LL +}_;$g +ég?8¥ +gsgg
M -1662% -1662% -1662% X pos + + +87
Mig ﬁié % -2138% | -3803% | -5139 My pos DL | +1056 +1056 +1036
My&y neg -3800% -5465 -6801 My pos LL +1%58 +2hah +8582
- My pos +241h +3470 +9638
Negative Moment (center of fixed panel edge)
Case "C" My neg DL 2l —2hhl* -2hhh*
A = area My neg IL =51k 5% -5588% -6525
loaded (4n)® (3n)2 (n)? My neg -5587% | 8032 ~8969
A/A $ota1 1.0000 | .5625 | .0625
Positive Moment point 2,2 B .
‘Mx&y pos DL +1h1k +1hak +1h1k
My pos IL | +1818 +3232 +9706
My pos +3232 466 | +11120

An * indicates that the results were obtained using the Elastic Curve Plot
Table 2. Maximum Moments Obtained by the Finite Difference Approximation for the

Three Conditions of Loading
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Figure 2.- Case "A" Live Load Moments Versus Ratio of Load

Area to Total Area.
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Figure 4.~ Case "C" Live Load Moments Versus Ratio of Loaded
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.

A study of the plots of the Live Load Moments versus.A/A total

[ f

leads to an interesting possibility for approximating a maximum concen-
trated live load that could be placed on the slab without exceeding the
ACT design moment.

In the cases examined the design live load is known to be 112.5 psf.
Therefore the total live loa:d for this particular slab is
112.5 psf X 20" X 20' = 45000 1b. Suppose we are considering placing
a load at the center of a Case "A" .'b-:)z"pe slab, to bear over an area
5L X5 £t A/ a1 = (5 £6 X 5 £6)A(20 ££-x 20 £5) = .0625. In
Case "A", the ACI design live load momeni; is 1215 ft~lb. The plot of
Case "A" shows that a 45000 1b live load, at A/A total = .0625, yields
a moment of 7565 ft-1b.

Therefore the approximate allowable concentrated load

(1) -%%%%-(h5ooo )

7220 1b»

Since the equation for the moment has been determined in the
preceding analysis for the load over h X h and A/A total = L0625, the
ﬁew moment .caﬁ be checked.

Case "A" load over h X h Moos = .1681T

.1681(7220) = 1215 £t-Ib

Therefore the ACI -design moment has not been exceeded but it should
be noted that this concentrated load does not allow for the placement of

any additional live load on the slab.
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After the maximum concentrated load for the positive moment has
been established, it is necessary to check the maximum allowable load
related to the negative moment.

2025

In a manner similar to above, T = =135 (45000 1b) = 17720 1b

However, the lesser of the two allowable loads ,calcullated would be
the maximum load that could be placed at the slab' ceﬂter without
exceeding the ACI design moment.

It is important to recall that the load placed on the ’slab, for the
analysis, produced a symmetry in the deflections. ThlS synml'e’cr‘s; vpust
be maintained to use the curves in determining the maximum ‘ajllowa’t?l‘e
concentrated load. It would not be maiﬁtaine;l i%‘, for e’iampie, ‘.bhe' '
total load was placed one .grid point away ‘ffom'the slab c'entez". Jno
a case of that nature it would be necessa;:.y; to use the Finite Difference
Approximation to analyze the slab with the load in tiiéﬁ parbicular
position.

The curve of the Live Load Moments versus A/A total indicates that
the maximum concentrated load could be determined for all values- of

’A/A totgl: For this study only three points were used to determine the
curve. Thus, it should be realized that. the curve between these points
is only roughiy approximated. To obtain additional points for this
curve, it would be necessary to reduce the grid sizze. " A reduction in
the grid size would increase the number of simultaneous -equations
necessary to sol.ve but it would also increase the accuracy of the

approximation.



IX. CONCLUSION

Although the large grid nebwork selec'(‘:ed ;ﬁ‘er the -ana,:'l.y:sié tends
to lessen the accuracy of the approximation, it‘ é.lso‘ effecfivelyu
reduces the number of simultaneous equa‘l{ions vwhich are necessary to -
solve. A further reduction in the nu.m:ber of s:mﬂ_‘baneous equatlons
was obtained from symmetry, by 1dent1fy1ng grid po:.nts of cormon deflec- . .
tion. Table 1 shows that, for a wniformly loaded slab, 'the Finite
Difference Approximetion to the Biharmonic Equation and AéI %18-63
'Metixod 3 yield comparable results for the positive moment. In the
ares of the fixed panel edges, the Finite Difference Approximation
did not yield comparable answers. This' was because a grid pdint did
not fall near the inflection point of the elastic curve. It was
'detemiried that the location of the inflection point could be reason-
ably approximated by plotting the calculated deflections and sketching
the elastic curve through these points. The negative moment was then
recalculated using the data from this Elast::Lc Curve Plot. Therefore,
the combination of the large grid FEi.nite Difference Approximation to
the Biharmonic Equation and the Elastic Curve Plot produced en efficient
and reasonably close appx:oxima.tion to< the ACI requi‘rements.

Since a reasonable comparison w;as obtained between the two methods,
the Finite Difference Approximation to the Biharmonic Egquation was used
to dé’cemine the design moments for the slab u.t{der the influence of
concentrated loads. Table 2 and Figures 2, 3, and 4 show how the

maximum moments vary as the total live load is expanded from spplication
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http:necessary.to

% %X o a full wniform load. In Chapter VIII, a method

over an area
is shown for approximating the maximum allowable concentrated live load
which can be applied to the slab without exceeding the ACI design
moments. It should be noted thé:b for this study the curves in

figures 2, 3, and 4 were drawn through only three points. Therefore,
any value picked from the curves, other than those calculated, must be
considered only as a very rough approximation. It should also be' noted
that although the maximum alloweble concentrated load does not produce

" calculated moments which exceed the ACT design moments, the results have

not been proven conclusively by testing.
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FINITE DIFFERENCE APPROXTMATTION TO THE BIHARMONIC EQUATION

The equation of equilibrium for a homogeneous, isotropic flat

plate in texrms of its deflection is
I y
D Vw = q(x,y) (1]

where

q(x,y) = loading Tunction

3
D=
12(1 - 12)
E = Young's modulus of elasticity
t = thickness of plate

1. = Poisson's ratio
%w— = biharmonic equation

i PR
The biharmonic operator 7+ = %f + afzaayz + %I

PR - vz(giiz ; gf;)

Laplacian:
Operator
The biharmonic operator operatbes on the deflection (w) as does. th‘e_

Laplacian operator. Thus,

, Pu P
V2w=é—x—2-+gy—?-



T0

Now, %2"2’ is represented by the Central Finite Difference Approximation
as,
w1 - ’
527w (g T Fg Vi)
and
5 Wi,j-1
w1 o ’
&2 12 13
Wi, 3+
Therefore, ng Is represented by
. Vi, -1
1 X \ .
ol a,y g mea,g ol (2]
' Wi g4l .

In modular form

el
PO @ O
©

Now let ¢ = Yy, Tmus, e = v2(vEv) = V24, v2¢ ax2 ay2

S:.nce this is the same differential equation as for the deflection, it

can be concluded that



7L

2]

Each of the encircled modules in [5] represents the entire module

within the []brackets of I:Z:] Therefore, [2] must be superimposed on

each module of [fﬂ , which follows:

i+l

WW=®

(1)@)+

0@=@

(4)@)+

(1)(h) =

Q)+
{

1) =@

J-1

()(2)+
Feepal (20 =@ @) =
=\2)

(L) (=) +
1))+
(1)(1)+
(1)(1)+

(1)) =

(4)@)+

(L)(-h) =

L=

()(a) +
@) (4=

W)+

W=

JH1

W)= |




T2

Therefore, the Central Finite Difference Approximation to the Biharmonic

Equation is represented by the module

-

J

® .6 ©

® ©®
® ®
®

Pum D

®
®
®

®©

L o J
With this Finite Difference Approximation module centrally superimposed

over each point of different deflection on the plate grid system, the

simultaneous equations are developed in the form

®

g ® ®
EENG @-%
) © @ @ |

_%@
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¥

Cholesky or Grout Method for Solving Simultaneous Equa.tions‘l-2

Given a set of simultaneous equations in the form
AX = C = 0,
we want to get this set of simulteneous equations in a solved fahion

such that ™ -« X =0 where T = u_ppér unit trian'gtr:l‘ar matrix. i

<

M1 typ  Byz by e o e o Bm ]

0 R !

o 0 1 Byl o o 0 » oo by
rel. . .1 ?

0 0 0" 0 ...1 Hpam

Lo 0 0 0 ...0 1

and K is a column vector:

To obtain this solution for the given simuitaneous equations, multiply

TX - K = 0 by a lower triangular matrix L such that



oy lop

13 bz 33 0O ...0

1 e s T o 'm

A necessary condition for this operation is that both T and L must

be non-singular. Therefore,

Ca{m - 1),

[
2

or

LTX - 1K =0
Comparing this to original problem, we see that

LT = A

1K =C
Partitioning these matrices to aid in their direct solution

{a:c) =L'('T; k).

Expanding these matrices to their coefficients



o 0 . ro . P
. “ 3, ! .
a:!_l a1p  @1%e--8In-Cy| . 137 O 0 .«.0 1 t10. tlj".‘ <tan e .'kl .
So1 pp fpze--fpmioal |l lzp O -0 [0 1 fpzeeten ik
azy 8zp Az - -83:C3) _ 5 lsp lzmes ."O 10 0 1 ..tz _k5 }
1 I . © 0L Byt
an1 Bpo  8p3eee8pn:Cp In an, Inze -« lanl 0 0 0 0 1 -kp

The solution of the coefficients

systematic procedure as shown in

of the L and T matrices follows a

equation form:

a4
- = 13
131 = a4y et I
11
l';j-l r:j_-l
\" 1
lig = a3y - Z 1ipbrs B33 =7 ]%4g - Lixbpg
r=1 1t r=]
One of the great advantages to using this method for any hand operation
is that it lends itself to a Check column.

" By summing up all coefficients in each row of the {'A:C} matrix,

placing each sum adjacent to the row it represents, then a Check column

equal to all the coefficients in the (T:K} matrix is obtained by the

equation

Checky

1
T_S'lei—
iig

=il

r=1

Z iy Checky|
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Therefore, as a final matrix form we have

Sum X Cbeck
217 8o 83 +e-8qp:cy || Sumy | .Check,
an 8pp 8p3 +--8py1Co|| Sump Checky
' . Checks ¥
lfnl - ann:cn || Sumy, I ' Znnkn  Checky, |

Note that with this method of combining the L and T mabrix the
1.0's in the diagonal of the T matrix are not writtér; in. Therefore,
when cozrr_pax:in;g the results of the Check column, +1.0 must be added to
the coefficients of the {TK} matrix to obtain the proper check.

By back substituting, the solution to the simulbaneous equations

are obtained. That is,

Xy =ky
Ln1) * Fn-1)nfn = Ene1)

L) T B(n-2)(m-1)¥(n-1) * F(n-2)nfn = E@m-2)

ete.
As a final check, after the complete solution has been obtainéd, the

values for X; should be substituted back into all of the original

Arrindd e



