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ABSTRACT

Optimization problems involving linear systems with retardstions
in the controls are studied in a systematic way. Some physical
motivation for the problems is discussed. The topics covered are:
controllability, existence and uniqueness of the optimal control,
sufficient conditions, techniques of synthesis, dynemic programming,

A number of golved examples are presenbed,



1, Inbtroduction

Opbimal control problems involving systems with delays in the
state variables have been studied extensively and the difficulties
encountered in such problems have been well documented [1, 2 8, 15,
17, 23, 24, 27 and the bibliographies of 2, 24]. Recently, more
sophisticabed models with systems conbaining retardations in both
the state and control variables have come under investigation [2, &4,
6, 7, 12, 1k, 17, 24]. In [2] Banks and Jacobs presented the mathe-
matical foundations necessary for the study of very general control
systems modeled by equgtions of the type

o} t

%(6) = [ x(t+5)d F(%,8) + [ n(u(s),s)d 6(t,s)

-7 -T
where F. and G are étieltjes measures, The purpose of this paper
is to investigate the effect (from both the theoretical and
computational points of view) of lags in the control varisbles., We
shall attempt to do this in a number of ways, but our aim always
will be to point out thé pathological differences between systems
with delayed controls and those without. In order to isolabte the
effect of delays in the controls, we shall consider only the simplest
models with lags in controls, and ignore any retardations in the
state fariables, Indeed, the examples of section T below illustrate
very well the novel behavior of solubions fo optimal control problens
with these types of models.

- In section 2, motivated by models arising in current applicatlouns,



we formulate several differeﬁt types of sysbtems which appear to be
of interest. Conbrollability of these systems is considered in
section 3 where results involving conbtrollability mabtrices analogous
to those for non-delay linear systems i;fpresented, In the next two
sections the questions of existence, uniqgueness, and sufficiency
conditions for time optimal problems are congidered in the spirit of
[11j. In gsection 6 we extend to our systems a synthesis technique
due to Neustadt [21]. A number of solved examples are presented in
section 7, These fundamental. examples, governed by systems which at
time t depend on the control at times + and t - h, are intrinsically
ﬁore complicated than thoge involving systems which at time + depend
on the control only at time % - h and give rise to prediction
problems. Finally, the paper is concluded with a section concerning
the applicablility of dynamic programming technigues to certain cases
of the systems under study, including mention of o Riccalti type theoxry
for quadratic payoff problems.

We have tried to present numerous examples throughout the paper

in order to provide the reader with an insight in regard to limitations

of our results.



2, Notabtion and Formulabtion of Problems

We shall denote by ;Cpq the real vector space of all p X g
matrices. If A € ipq the transpose of A will be denoted by ¥,
We shall not distinguish a column vector from its form as a I‘O‘W
vector gince it will always be transperent which form is intended
by the order of multiplication in any matrix operations,

In ord.e;r to facilitate the discussion of several types of problems
involving various different system equations some special nobtation

is required, We denote by %(A B

" O’Bl) the system

x(t) = Ax(t) + Bou('b) + Blu(t-h)

where A ¢ £

i’ BO’ By e :Cnm and h is a positive constant,” The

s‘ystem
% = Ax(t) + Bw(t)

is denoted by S(A,B) where A ¢ £

,end B e .
nr

The term control means a triple [u’tO’tl} where 1. [to'h’tl]

-—>Rm is a function znd to,t are real nhumbers,

1

Definition 2,1, Given UC R~ the symbol y}J;(A"BO’Bl) denotes

the system %(A,B Bl) with constraint

OJ

u(t) €U, b e [tyh,b,]



on the controls {u,to,tl}, to’tl € R.

Definition 2.2, Given UC Rm and a bounded measurable Tunction

. 2
Vo: [-h,0] - U, we use yh(A’BO’Bl) to denote the system

S{I(A

280 B)) with constraints

u(t) e U, t e [t5,%]

on the controls, [u,to,tl}, to’tl € R vhere ut(s) = u(t+s),

& € [-h,0].

Definition 2,5, Given UC Rm and bounded' meassurable funcbtions

- 3 o 3 1
v [-h,0] - U, 1 = 0,1, we denote by yh(A’BO’Bl) the systen

%(A,BO,B]_) subject to constraints

u(%) e U, t e [toftl"h]

on the controls {u’tO’tl}’ to,tl € R.

In the problems considered in this paper we shall often take
U= Rm or U= Km, where Ifn is the unit cube, '
fu= (ul,“.,,-um) € Rm| EREE 1, i=1,,..,m, in R, Whenever,

h, A, BO’ BJ. are understood S will be used instead of

i .
Fa®By,By), 1= 1,25,



\A

2
Systems of type & with v

problems where at initial time tO there is no delayed control

= 0 are models for physical

effect, but after some time to + h there enters a non-negligible
effect on the system abt time + by the control given previously at
time t - h., This is exactly the case which occurs in the sbudy of
losgless transmission lines when one reduces a linear hyperbolic
partial differential equation system with boundary controls to a
linear differential-difference equation of neubral type in which
control temms wu(t), u(t-h) also appear linearly [1h].

_ Day and Hsia [7] have recently propcsed a modification involving
delayed controls for a model [18] of a gas-pressurized bipropellent
rocket engine., In =zddition to being of type & 2, this modified
model zlso provides motivation for study of systems in which the
ke:t:nel of BO and the kernel of Bl are complementary subspaces,
.Sf?-type systems are also models for continuous stirred-tank reactors
as studied by Ray and Soii.ma.n [2h7. Although the example studied in
[24] is non-linear, linearization -a'bout a nominal yields a system
vhich satisfies kernel _(BO)C kernei(BJ} (see section 4 below).

Problems with systems of type _9”5 with Vo = vl = 0 are
motivated by air traffic control models currently under study [261;
one such model has system equations x(t) = -£(%,%(t)) + u(t-h),
y(t) = a(%) - u(t), where £ is a landing rate, g 1is a queing or
scheduling rate, and u is a takeoff rate, These models also in-
volve systems in which kernel BO and kernel B, are complementary

1

subspaces., Systems of type 5’3 with v, = 0 are of importance in

1



so-called "settling problems"; i.e., problems in which one desires
to attain the equilibrium state x(tl) - 0 in such a way that the
gystem will remsin at this state witlgtout Turther conbrol if obher
disturbances are absent,

We note that all three types of systems defined above are quite
different from systems such as those modeling remote earth contbrol
of deep-space satellites studied by Foerster [9] and others [10,

12, 23] which conbain only control terms with a delay (i.e., B, = O).

0

A control {u,t will be called admissible for the system

9”(A

JO.?

eV ]_]
B)) (or simply & _admissible) if wus [ty-h,b,] SR is

bounded, measurable and satisfies the constraints debailed in the

i s i . n
definition of &7, i = 1,2,3, Given Xyo%q € R* and %, &R, we

shall denote by P, i= 1,23, the problem of finding an (2

sdmissible triple (U,t,%} with U=X satisfying x=(Es LNEIY
="x, and T = min {t |{u, bt} s St aamissible with

x(ty5 55X, ,u) = x,}, where x(+; © b01%gs 2 u) is the response (solution)
of system _V(A: BBy, ) to conbrol u with X(‘bO; to,xo,u) = X5
That is, Pi denotes the time optimal problem from X4 to xy 1.?or
the system L LA, B, B,) with U= K", The special case of problem
P5 with Vo=V = 0 will be denoted by P;c. Finally, we shall

denote by P +The special time optimal problem as studied in [11];
i.e., the minimm time to origin for the system S/(A,B) with
U= K

Necessary conditions in the form of a maximum principle for the

problem Pl are a special case of the general necessary conditions



derived previously by the authors [2]. Using similar proofs one

can derive neceggary conditions for the problems D and P5 (P;).

2
Use of these conditions yields that an optimal control {E, to,‘t}
for problem Pl must sabisfy
_ sgn [V(b+h)B,1, b € [t;-h,T-h]
(2.1a) u(t) = arbitrary, t e ﬁ_h,to)

sgn [V(£)B,], © € [t5,%],

if 0s % - ty <h, and if h s T - ty, then (u,t.,t}) must satisfy

270?

| sen [¥(th)B 1, t € [t h,t )
(2,1b) W) = | sen [U(E)B, + W(t+n)B 1, b e [to,%'-h)

sgn [¥(6)B,], © e [t-h,%],

where ¥(t) = q exp(%-t)A, and the vector 1 # O is an outward
normal to a support hyperplane for the attainable set at time %
passing through the boundary point X0 I+t is understood that when

a,b € R, the relation "a = sgn b" is to be interpreted using the

same convention as in [1L, pg. 50}. For tThe problem P2 one obtains



the corresponding necessary conditions from (2,1a) and (2.1b) by
' deleting the reguirements in the first two lines on the right-hand

side of (2,la), and the condition on the interval [to~h,t in

o)
(2.1b). For problem (P3) one always has T z h so that the
situation in (2,la) never occurs., Thus the necessary conditions
for problem P5 are obtained from (2°lb)_by @eleting the require-
ments on the imtervels [t,-h,t,) and [t-h,%].

Any admissible control in problem Py satisfying the above

necegsary conditions for Pi will be called an extremal control

for problem Pi’ i=1,2,3. Evidently, when computing extremal
responses (i.eo, responses to exbremal controls) what one uses is
what might be termed an extremal "effective control", i.e., v(t) =

Byu(t) + Bl-ﬁ(t'h,)’ t e [to,_t-] waere (u,%,,%} is an extremal

control., This ¥ is easily computed from (2.1a) and (2.1b) or

their appropriate modifications for problems P2,P5.



3. Controllability

In this section we ghall derive necessary and sufficient conditions
for controllability of the systems & * as defined above, These
conditions will be analogous to the well-known rank condition on the

controllebility matiix for systems & (4,B).

Definition %.l. Tae system .C/;(A)BO,B]_), i=1,2,5, is controllable

OJ

triple {u,to,tl} such that X(tl; -bo,xo,u) = %y

on [by,%] if for every x.,%, e R" there is an 5 .admissible

Remark 3.1, We shall find that the necessary and sufficient con-
ditions for controllab.ility are actua._lly independent of the interval
[to,i;l] as long as tl > t.O + h. Hence one could define the
equivalent concept of & "controllable system" in addition teo &
"controllable on [%,,%, ] system", TFor the’systems S14,B) it is
well-known that these conr::epts (and others) are equivalent [11,19],
S8ince we are mainly interested in o'b‘taltining the form of the necessary
and sufficient conditions, we shall not pursue that aspect of the

development here.

1

Let us denote by %. £ X &£ = the usual comtrollability
nn nr n(nr)

metrix ¥YA,B) = [B,AB,.“,An"lB]a

Theorem 3,1, A necessary condition thafc %;(A,BO,B:L), i=1,2,3

be controllable on any [to,tl:l with . >+, + h is that

1 0

[%(8,By), %(A,B))] have rank n.
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Proof? y;l(A,B controllable => G4, (BO,Bl)) controllable =>

051)
%(b,(8,,B,)) has rank n => [¥£(8,B,), £(A,B,)] has rank n.

The above condition will be shown sufficient for systems &7
2
and & vhenever U= Rm, but a much stronger condition will be
necessary and sufficient for systems 5’3, Note that the condition

does not depend on h, the lag size.

Theorem 3,2, Let U = Rmn A sufficient condition that

&’IJ;(A,B B,) ard S’E(A B

o 270
with t, >%,+h is that [%(4,B,), ¥(2,B))] heve rank n.

Bl) be controllable on every [to,tl]

o)

Proof. It suffices to give the proof for the system yi(A,BO,Bl).
We shall give a proof that is a slight modification of that gi{ren
for the systems S4A,B) in [19]. The usual constructive proof

(see [13]) using a special symmetric matrix can also be made. Assume
that [%(4,B,), £(A,B))] hes rank n, Let [t,t ] with

- 2 &3 =
t) >ty +h and v, be given for yh(A’BO’Bl)" Define XO(VO) -

- (6,-5,)A to (t,-t-h)A it
—e I e B,V (t-1.)dt and consider o (x.(v.)), the
t n 17000 o''o
0

attaineble set at time +t, for the system _C,-’i(A,BO,Bl) with
x(to) = xo(vo) and U= {ue Rm\ ]u1| =M, i=1,...,m}. The set

MM(XO(VO)) .consists of all points z of the form z =
-0 (t,~%-h)A 2 (t
e Blu(‘-:.)dt + [ e

%o %o

:I_"t)A m
Bou(t)dt where u: [tO’tl] =R



1

is bounded measurable with |u1(t)] £ M. We claim that _QZM(XO(VO))
C K" bas dimension n, If not, there is a vector A # O such that

Mi=0 for all z ¢ _QfM(xO(vO))) or

- B (6)-b-n)a *1 (b,-6)4
(3.1) A e Bia(t)at + » [ = Bou(t)dt = Q

% %

for all bounded measurable uw with ]ul(t)} £ M, Taking uw=0

. (6,-%)A
on [to,tl-h} in (3.1) yields e B, = 0 for t e [‘cl~h,t

It follows by the usual argmmwents that )uAkBo = 0 for

1l

k=0,1,2,..., thus xff(A,BO) = 0 and ?\.egABO =0 for £ €R.

} . (trt-h)A
Use of this labbter result with (3.1) yields Ae B, =0 for

1
t e [6,5y-h]. It then follows that [ (4, By)s %(A,Bl)] = 0,
contradicting the rank condition hypothesized above,

That the n-dimensional set ,QZ'M(XO(VO)) is compact and convex
in’ B follows from previous resulbs by the authors [2]. Further-
more, it is easily seen that & M(XO(YO)) is symmetric ebout the
origin in R® and hence must contain a neighborhood of the origin.
Since 29 (x,(v)) c.oF (xo(vo)) we Tind that the attainable set

; 2 tal ;
H(x,(v,)) at time % for & with U=R and x(tg) = %,(7g)
nust be all of Rn. The conclusion of the theorem then follows from

the fact that
(6,-6,)8

z) = e (5%, (Vo)) + 0%, (V)

for any Xq € Rn.



iz

We remark that an obvious modification of the above proof will
show that the condition of the theorem is also sufficient for con-

2
trollability of systems of type Vh(A,BO,Bl) where one has a

'F:,l 1 to

expect, if U is a proper subset of Rm, then the condition of |

boundary condition w, = v, in place of u, = VO' As one would

Theorem 3.2 is no longer sufficient for controllability (see examples
" 7.3, 7.4 below)., An immediate consequence of Theorem 3.2 is that
systems Ix = bou(t) + blu(t_h) will always give rise to _9’1 and
s 2 vype systems which are controllable, Here 1. denotes the
usual real scalar nth order differential operator with congtant co-:

efficients, Ix = x(n) + & x(n_l) 4+ ewe + 8 X,
? n-1 ¢)

Remark 3.2, TIn a recent note [5] D. H, Chyung considered the con-
trollability question for systems of type & 2. He obtained as
necessary and sufficient for controllsbility the condition that
[Z£(4,B,), %4, e"hABl)] be of rank n, Note that from this con-
dition one might suspect that-lag size h cowld affect conbrollability.,
However, it is not difficult to show that [ _f(A,BO), “(a, e‘hABl)]

has rank n if and only if [jg’(A,BO),' %(a,8,)] has rank n, From

a practical point of view, use of the second matrix is more desirsble

-hA

<@

since 1t can be computed without computing e
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In practice when delays are small in a problem one scmetimes
chooses to ignore them and work with an approximate system obtained
by setting h = 0 in the originsl system, For i = 1,2, the sys-

tem SK;CA,B Bl) is thus approximated by the syssem j?TA,Bd+Bl)°

O’

In connection with this approximation we make the following Observa-

tion.

5 controllable implies

Theorem 3.5, For i = 1,2, j?TA,BO+Bl)

i m
yh(A,BO,Bl) controllable wvhen U= R ,

’BO+BZL) has rank n =

n-1
ceey-h BO] has

Proof; &4 (A,BOJrBl) controllable = (A
n-1
[BytB ,A(BGHBy ), e e , AT (

rank 0 > [¥(4,B,), L(4,B

BgtBy)s ~Boy-ABy,

l)] has rank n.
~. It is easy to give an example %o show that the converse of
Theorem 3,35 is not true, e.g., take Bl = "BO° Indeed, even in

situations where the approximation might seem more reasonsgble, con-

trollability can still be lost by use of the approximation,

Example 5.1, Consider the system

x(t) = fy(t) + au(s) + bu(t-h)

V() = gx(t) + cu(t-h)

where a,b,c,f,g,h are not zero, One finds that



[Z(A,BO), ¥(4,B))] hes renk 2 vhile det %(A,BO+Bl) =

g(a+b)2 - fc2o Thus by using the approximation one destroys con-
2

trollability if (a+b)2 = fc /g. For example, if a=1, b= -&

and o = (g/2)"7%

(1-€) where g/f > 0, oae would probably not wish
to ignore the lag h.
We remark that the results of this section can be extended +to

systems with multiple delays and even to systems with certain types

of time variable delays. For example, Ffor systems with dynamics. given by

Vv .
(3.2) X(t) = Ax(t) + :_EOB.lu(t-hi) t e [4,,%;]

with 0= h, <) < eex < b, - end u(t) e U, t e [_to-hv,tl}, one

can modify the previous proof to obtain the following theorem,

Theorem 3.4, Let U= K. A necessary and sufficient condition that
. (3.2) be controllable on any [6,,8,] with & > LN L, is that

[55‘(14,130), g(A,Bl), o..,fg(A,Bv)] have rank n,

As a corollary to this theorem we obtain a sufficient condition

3

for controllability which does not involve A,

Corollary 3.1, For the system (3.2) withk U= R° and (wl)m z n,

a sufficient ‘condition for controllability on any [to’tl] with

. tl > tO + hv is that [BO’B1’°'°’Bv] have rank n.
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Once one has obtained necessary and sufficient conditions for
controllability of systems 9";(1;,}30,31) and yi(A,B:O,Bl) in
terms of a rank condition on a "controllability matrix", one should
be able to prove many theorems for these gystems analogous o “those
for the system y(A,B) which involve the usual conbrollability
matrix. We shall present one such result involving the domain of
null controllability, the proof being developed in a menner similar
to one in [19]. ‘

We define the domein of nwll controllability for i(A,BO,Bl)

by

0

[u’tO’tl} with x(tl: tO’XO’u) =07},

T = {x € Rn| there exists an & -aduissible triple

Tn a similer mammer we define for yi(A,BO,Bl) the set

gi(vo) = ixo € Rn\ there exists an ye—admissible triple

[u-’tO’tl] with U =V, such that

0
x(6)5 B ¥ %) = O} .,

Fote that for a given U, @g(vo) C 9; for any v, We shall be

O.

i

especially interested in the set _@'(2)(0)_, le., v,
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Lemma 5.1, Suppose Q0 ¢ UC B and A is asymptobically stable,

It 9?(0) conbains a neighborhood _#  of the origin in Rn, then

93(0) = R",

Proof: Given X, € Rn, let 7 >0 Dbe such that x(71; O,xo,f)) = eTAxO

2 ~ 2
is in A4 C @o(o)° Then let (u,%,,t,] be & _admissible with

~ . TA o~ P
uto = 0 such that x(by; By & xo,u) = 0. Defining
0 £ € [~h,7]
8(e) =
u(g_'r+t0) E ¢ (T’T+tl"to]’_

it is easy to show that x(wt,-%,; o,xo,ﬁ) = 0 which implies

X, € 93(0).

Lemma 3.2, Suppose O ¢ int U and [Sf(A,BO), %(A,B,)] has

rank n, Then 9?‘3(0) contains a neighborhood of the origin in R .

Proof. Let .Qf,; (yo) denote the attainable set at time t, corre-
1 .
sponding to y{0) = ¥, using the system
7(t) = -Ay(t) - Blw('i;) - Bow(t_h) t e [0,%,]
w = 0, w(t) e U, T e [-h,% 1.

1
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This system may be thought of as the system 'Vﬁ(A,BO, Bl) with
Vy = 0" run in reverse time. Since rank [ Z(-A,- 4 )5 _%(_A,_BO)]
= rank [¥(a,B,), £(4,8,)], arguments similar to those in tfu_a

proof of Theorem 3.2 may be used to show that ,Qf; (0) contains a
1

neighborhood of the origin in R* for tl >h whenever 0 ¢ inbt U,

Tt remains only to show _Qi’% (0) _@3(0) for %, >h, Since
1

x, e &, (0) 1is of the form
o]

"L (b,-5) (-A)

X, =jo' e [-Byw(s) - Bow(s-h)]ds
where Vv, = 0O, one can easily obtain
1
T
t. A 1 (t,-%)A

1

O=e X'f'fel
10

_[Bou(t) + Blu(t-h)]dt

with u(t) EW(‘blv-h—t) for t e [-h,%,], yieldingthat x € 93(0)

1

Combining the two lemmss one obtains the following results,

Theorem 3.5, Suppose A is asymptotically stable, 0 € int U, and
[Ef(A,BO), %(A,Bl)] has rank n, Then .@i(o) (and hence 93)

is all of R%,

Obvious modifications of the above arguments yield the following

corollary,
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Corollary 3,2, Under the hypotheses of Theorem 5.3, we ha_.ve

2 i
g@o(vb) = R* for.amy Ve

Remark 3.3. One can obtain a result similar to Theorem 3.5 for the

systems & B(A B.,B.) with the condition u, = v, replaced by
h¥v270 Tl . tO 0
u,o= V. However, the rank condition of the hypotheses must be

1
. . ~ha
replaced by the, in general, stronger condition " (a,e Bl-I-BO)

has rank n". The reason for this change will be apparent after our
discussion on the controllability of systems of type & i(ﬂ, BO’Bl)

which follows,

Although controllability conditions for systems j?ﬁzﬂA,BO,Bl)

can be derived from basic principles as was done above for systems

& Y oand & 2, we shall make a simple observation about systems of

type 5/5 which will yield the same results immediately by applying
knowvn theorems [11l, 19] for cerftain non-delayed systems, For

3 . .
_S/h (A, By, Bl) o [t, ’tl} and  v,,v, given, a straightforward
. e 3
caleulation shows that the responie x(; tO’XO’u) to :9fh(A,BO,Bl)

sabisfies
. o A i s
x(ty; tO’XO’u) = X(b-h; t,,%g,0)

where X is the solution to system _S/(A,ehABo—kBl) on [to,tl-h]

" - (t,-h-t A

subject to x(to) =X = e x, +e A with A= A(VO’vl’tO’tl)

0 0
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defined by

0 (bt h)A

A(v v, tl)zf e (tt)dt
t
ke (t,-%)A
+f e Bovl(t-tl)d.t.
t,-h
1
Therefore, it is not difficult to verify that (A, o ) is

controllable on [t,,t,] if and only if 44, elrlA‘BoHS:L is con-
trollable on [‘t £ _h]. Tt follo.ws that studying conbrollability

of systems /3 (A,B_,B ) is equivalent to studying that of sysbems

2TQ0
A4, ehABo-l-Bl . Since the matrix Z(a, ehAB0+31) is rank equivalent

to Z(a, Bo-f-e"hABl) , we have the following theorems,

Theorem 5.6, A necessary condition that _9’5 (4,B.,B ) be con-

JO’

trollable on any [t »5,1 with 5 > t, * 1 is that ¥(a,B ote hABl)

have rank n,

Theorem 3,7, Let U = Rm. A sufficient condition that
il & _
_9”3 (A,B B;) be controllsble on any [*b 5] with £ > % 5y + +h is

that %(A,B +e Mg ) have rank n.

Remerk 3.4, The rank of %74, Bte hAB equals n implies the
rank of [K(A,BO), £(4,B,)] is n, but not conversely (see

Example 3.2 below). Thus the rank condition of Theorems 3.6 and 3.7



is, in general, stronger than that of Theorem 3.1, Furthermore,
the dependence of the rank condition here on the lag size h is
not illusory (see Remerk %.2) as the following example demonstrates

Example 3.2, Congider the system

x(%) = my(t)

¥(t) = -mx(t) + u(t) + u(t-h).

For h=1 we find ﬁf(A,Bd+e'hABl) = 0 vhile for h =2

0 27
) -] . In addition, [ ¥(4,B,), Z(4,B)]
2 0

F,B,reB)) =

has rank 2.

- The above example also shows that the systems Ix = bou(t) +

blu(t-h), uto = Vo utl = V,, need not be controllable (see the

comments preceding Remark 3.2). It is also easy to see that con-

trollability of _S/ELA,BO,

controllability of either £?TA,BO) or SVTA,Bl)g

L]

Bl) is not, in general, implied by

That a result on approximation similar to Theorem 3.3 does not
hold for .9’5 type systems can be seen from Example 3.2 above,
Finally, defining the domain of null controllability E@g(vb,vl)
for _S/i(A,Bd,Bl) in the obvious way, we do obtain the following '

analogue to Theorem 3.5,



Theorem 3.8, Suppose A 1is asympbotically stable, 0 € int U, and
- ) n
fxf(A,Bo+e hA'_Bl) has rank n. Then, go(v{)’vl) = R~ for any

YorV1"
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L, Sufficient Conditions for ‘the Special Time Optimal Control Problem

In this section we prove sufficient conditions for problems of the

form Py, P,, or P; viiere U E'KP} the "unit cube" in R (see

section 2) and the terminal condition x(ty; b u) = 0. Actually,

O) XO}
in sections 4 through T we always take t, =0 s0 to will be
suppressed in the notation x(t; to,xo,u) and in the notation

{u,% tl} for an admisgible triple., The sufficiency condition in

03
This section is an extension of a sufficient condition given by Hermes
and LaSalle [11l, pg. 72}, The discussion is facilitated by introducing

the concept of the set of reachable wtates at time £ [11] for

problems P, P, Py, and Pge We say that a point (or state) x ¢ R®

is reachable at time + 2 0 in problem P Iif there is an admissible

u for problem P such that

t As
(%.1) x = [ e Bu(s)ds.
g
We sey that x is reachsble ab bime tz O in problen P, B, Pf
if there is an admissible {u,t} for problem Pl, By, 3; respec%ively
such that
- E -As
(h.2) x=[e [Bou(s) + Byu(s-h)]ds.
0

The symbols _Eg(tj, E%a(t)’ g%é(t), £%§(t) dencte respectively the

set of all states x vreachable at time t in problems P, Pl, Pé, ng

Properties of Z#(t) have been carefully studied in [11]. The
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behavier of £ (t) and Z,(t) is somevhat more complicated, In
fact, we shall see that some of the basic properties of (%)
simply are not true for _@l(t) and 9?2(1:) without making special

assumptions on BO and Bl"

If x,y e RP, then we use <x,y> to denote the usual scalar
product in RP, If S5 C RP, then S‘L denotes the orthogonal comple-
nent of 8, i.e., SJ' =[x € Rp] X, y>» =0, yes}. If M is a

P X @ real matrix, i.e., M e ;CP then we reserve ker (M) and

°2 q)
Tm (M) for the kernel and image respectively of the linesr trans-

formation x |oxM, x € RP, i.e., ker (M) = {x ¢ RPI M = 0} and
Im (M) = {y e qu v =xM for same X ¢ R‘p}n The following norms

will be used for vectors x = (xl, oo, X) € BP:

Ixll_ = mex {[x"], 1= 1,...,0)
I = V5
i
=] = 2 [=7].
i=1

. We also use the symbol ||MH00 t0o denote the mabtrix norm subordinate

p q
of, on R emd RY, i.e.,

to the vector norm |

ItA

I

I, = maxe (=] | IIxll_ =1, xe&%)

i}

T
max {i-_z-llmij] l J=1,00.,4},
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vhere M = (mij)’ i=21 00,0} §=021,.00,9. The mabrix norm |M]
subordinate to the vector norm || dis similarly defined and is
likewise easy to compute.

Some hypotheses which will be invoked to obtain various resulis

in the sequel are now listed for future reference,

(HL) Matrix B, has a left inverse B(—)i and.
C= BE)L:L'BJ_ satisfies |[clj = 1.
(H2) Hypothesis (H1) with |C| <1 instead of flcf s 1.
(13) For any t,,%, satisfying 0 <1, <1,
tg ~As t2 -Ag8
[ Ine™Bylas > [ |ne” B |ds
tl -tl

waenever n € R and 1 # O.
() | lxB,] > [xB,], x e [¥er (B)I = Im [B}], x40,
(B) |xByl = (=B, = eR

Proposition 4,1, There is an m X m real matrix G such that

B) = B@ i‘f and only if ker (BO) C ker (Bl).

Proof; Evidently, B

1 = ByG  implies ker (BO) < ker (Bl)' Conversely,



ker (BO) C ker (Bl) implies [ker (BO)]'L O [ker (Bl)]'}‘ or
equivalently, Im (Bz) D Im (B’Jx_')u The existence of G with the re-
quired properties follows at once from the last inclusion and some

elementary matrix overations,

Proposition ¥,2, (a) (HM') implies ker (BO) C ker (B).
(b) (Hl%) and ker (BO) C ker (Bl) imply (Hh').

(c) If S/(A,BO) is properl, ker (BO) C ker (B snd (HY)

1)
is satisfied, then (H3) is sabtisfied,
(@) If (H3) is sabisfied, then y(A,BO) is proper, and (Hb41)

is satisfied,

“(e) (#br) and (H2) imply (HY).

Proof, sStatements (a) and (b) are obvious. Suppose (H3) is

satisfied, Then for &> 0, 7 ¢ Rn, 1 £ 0 we have

t.+5 .+
lfl | e453 | ds >}-fl I 45 las, +
55 N 0 5 2 1 11%Es

1

1

l>0.

Hence there results

"ASBOI = |ne~Bp

|T|e ll)

and (H4') is-satisfied. Evidently (H3) implies y(A,BO) is proper.

L5ee [11] for the definition of a proper system S44,B.).



Now assune (HY), ker (BO) C ker (Bl)’ and. ﬁVTA,Bd) is proper.

Observe That

n R . . 3
R = ker (BO) ® [ker (BT = ker (BO) ® Im (Bg).
g . -AT
Choose 7 # O, 1 € R and define ¥(8) = ne” -. Then ¥(t) =
v(t) + p(t), vhere v(t) e ker (B)) and p(t) ¢ In (Bg). This de-
composition is unique and p and v are continuous. Choose

0 <%, <%,, then (H4) implies

|u(6)8,] > [u(6)By]

on [tl,te] with the possible exception of a finite mmber of
points since E?TA,BO) is proper, The assumptions ker (BO)(:

ker (Bl) implies
e (8)B,| > [W(t)B]  eece. on [by,%,]

and (H3) follows at once.

Suppose now that (Hht) and (H2) are sabisfied, Then B, = BOC

by Proposition 4.1. If x e [ker Bo]l, x # 0, then [xBO| > 0.

Wnence |xB [xBOC] s [xB,] [c] < [xBO|, and (HY) is satisfied.

1' =

Corollexry 4.1, If j?TA,BO) is proper, ker (BO) C ker (Bl), and, (HL)

-At

is satisfied, then |ne_AtBol > [ne Bll’ n#0,ne¢R for all but

a finite number of + on any coﬁpact interval,
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Example 4,1, Let 1 denote the linear differential operator

Ix = x(n) + a X(n"l) 4 oe0 + 8%

-1 O

where as, i=0,.00,n-1 are real constanits. Consider the control
system Ix = bou(t) + blu(t-h) where bo,b,  are real constents,
Since we refer to this example several times in the sequel we write

this explicitly in the form S/(A,B,B,). Let

0 0
B,= [ ° , B o=
0 o 1 5
o by
O :L O e o9 O
0 0 1 e0e O
A= -] -] -] ¢ 00 o
0 0 0 eea 1 |
-«3-0 -B.l -52 nas ha'n-l

Then Ix = bou(t) + blu(t..h)- is equivalent to the system
_S’ (A, 02 l)" The condition that matrix B, have a left inverse is

equivalent to b # 0. Hypothesis (Hl) is satisfied if b, # 0 and

s 1., Clearly ker (BO) C ker (Bl). Moreover, b, # 0 implies

SAA,B,) is proper, Finally (m4) is satisfied if [by| > |b|.
Let I(t) denote any one of the reachable sets at time t (i.e.,
R(%), A 1 (8), 2, (t}, _@ (t)). Then I(t) is increasing if

0=t %, implies I‘(tl)CI‘(te)n We say TI(%) is expanding if
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I(t) C Int (I'(t))) for 0=t <% Let K, denote the character-

1 g

i'stic function of a set S C X, Define

('1h5) u(s; t,n) = sgn fne_ASBOK[O,t]‘(s) + ne"A(S+h)BlK[_];l’t_h](s)]

for -h<ss=t and 7 an, n# 0. When wu(s; t,1) is referred
towith -~h = s =%t it is understood that we are referring to
problem -Pl. The corresponding u(s; t,n) for problem P2 merely
requires u(s; %,n) have the form (4.3) for 0= s =t and

uo(o ; B,0) = v, In problem P, we do not invoke this symbol, The

P
nota_.tion o (t,u) 1-.rhere {u,t} is admissible in P]_:Pgi or ZE’3 is
defined by
- t _As
(b.h) e(t,u) = [ e [Bou(s) + Blu(s-h)}ds,
0

‘It is also convenient to take the following definitions,
(*.5) 2(8,n) =0(5,ule; 5,1),

4.6) g(t,n) = <n,z(t,n)>.

Proposition 1.3, H(t) and 9?; (t) are increasing.

Proof; The statemeni concerning Z(t) is obvious. Note that




T@; (t), + = b is merely Z(t-h) for problem P with system
Sn,Bgre™B)). Tor 05t sh, _@;(t) = [0}, s0 Z(t) is in-

creasing.

Proposition Uk, _@l(t), _@e(t) are both increasing if any of the

following threg conditiong is satisfied:
(1} ker (BO) C ker (Bl) and (HL) is satisfied.
(2) ker (BO) Cker (B;) and amatrix G sabtlsfylng the con-
ditions of Proposition (4.1) also satisfies ||G”m £ 1.

(3) ("b+) is satisfied,

Proof; We shall prove only that _@l(t) is increasing 1s implied

by (2) or (3). The remaining situations are similar, If

ker (BO) C ker (Bl) , then an m X m matrix G exists satisfying
By. = BG (Proposition k.1). If (2) is brue we may teke [l = 1.
If p= cp(tl,u) and 0 <t, -t <h, then w(t) = -Gu(t-h),

t, =t =% is measurable and satisfies

[w (), = 3,

BOW('E:) + Blu(t-.h) =0

on [ty,t,]. Define wu ! [-h,t,] =K by the conditions
uy[[-B,%,] = v, and v | ($,,8,] = wo Then @(t,,u,) = @(t,u) =pe
@l(tz) and we infer that % (t) is increasing.

* Suppose thet (H4') is satisfied. Choose tl and b, such that
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0= tl = t2 and piék_ 1 € Bn, n % 0. There are support hyperplanes
1Tln and 'n‘en to _@l(‘bl) and @l(“cz) respectively with outward
normal 7., Thus there exist p, e _@l('tl) and D, € _@l(t2) such
that <n,p;>2 <n,q>, q € %tl) and <n,p> 2 <N,¢>, ¢ € F4(t,).
Hence <n,py> = g(tl,n) and <n,p> = g(té,n)., Now g(t,1) as

defined in (%.6) can be written in the form

t-h

o]
(k.7) glt,n) = f Iﬂe-A(S+h)Bl]dS . [ ]qe“ASBO . HE"A(S+h)Bl]ds
~h 0
K As
+ [ |ne™Bjlas, if tzh,
t-h

From (k.7) and (HY') one deduces that %%— (t,7) 20, tzh and

t > g(t,n), t 2 h is nondecreasing. Therefore, if %) z h, then

g(tgyﬁ)}:

1A

n . n
-Hy, = {a e B| <n,0> = g(%,1)) CHy, = (A eR] <q,0>

and since .@l(tl) = nQOHln and @l('bg)_ = QQOHQT] we have
7

g'e‘l(tl) C R(t,) for t,2% 2h, If 0s%,, t,sh, then
Ql(tl) - %(t2) is clear, The fact that 9?1('[:) is increasing
is now a simple deduction,

It is easy to construct examples that show that (1), (2), and
(3) in the preceding proposition are in general i:nd.ependento We
give below two exemples showing that thej conclusion of Proposition

k.4 need not be true if some of the assumptions of Proposition L, b

are droppad.,
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Example k4,2, Consider the scalar control system % = x + u(t) +
Ku(t-1) where 1 . 2¢ <X < -e, Using this system with problem Py

we see that

o] t-1
g(t,1) = § |Kle"®*as + 1 e+ xe" P as
. 0
.t
+ [ e%as, t>1.
Bl

Since ,’J?l(t) [-g(t,1), &(t,1)] dis a. compact interval and since

%%- (t,1) <0 for t >1, it follows that @l(’c) is not increasing.

{10 /1 : _ 0) .
Exemple 4,3, Let A = o 1] BO = (O ), and Bl = (l in
" problen P, with v, =0, Then ker (BO) ¢ ker (Bl) and J@a(‘t)

is not increasing, For example, for +t > 1 define p(t) to be

max {x e R| (x,0) e Z,(t)}. Then

G 5
p(t) =) eas
-1

so that p decreases for + > 1,

Proposition 4.5. 9?;’ (t) is expending t = h if and only if

A, BO-!-e'AhBl) is proper.

Proof; This follows at once from [11, pg. 73] and the remark in the
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proof of Proposition 4,3,

Proposition 4,6, If (H3) is satisfied, then _@i(t)J i= 1,2, are both
expanding., Moreover, if ker (BO)Cker (Bl) and 9?1(*5) or _@2(1:)

is expanding, then S’(A,BO) is proper.

Proof; Note that _@i(t), i= 1,2, are increasing (Propositions 4.2d
and 4.kr), Choose +,,t, satisfying 0 < 1_-,1 <%,. Pick ge Z(t)C
.@1@2)0 If q g.Int (2 (%)), then q e BA(Z, (t,)), the boundary
of _@l(’ca). Consequently, there is an 0 # 0 which is an outward

normal to a support hyperplane for _@l(“bg) through g; i.e.,
<n,p-¢> £ 0, P e 9?1(1:2).,

The point ¢ has the form q = cp(tl,u) where {u,tl} is admissible

in P, A funcbion uyl [-h,t,] =K is defined by

u(t), chstst
u,(t) = .

-At
sgn [ne BOJ-’ ‘bl <% = t2

Then {UQ’tQ] ig admissible in Pl., If pr_:q)('t'a’ue), then

%5

- -As
<n,p-o> = £ [lne ASBOI + ne BlHE(S'h)]dS
1
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t2 i
2 [ [lne™®8,| - 7”5, ] 7as
tl ’ .

>0

by (H5)., This is a contradiction. .Hence _@1(’5) is expanding.
The same proof works for Q2(t).
‘ Now suppose ker (BO) C ker (B;) and 921(1;) is expanding,
it ,S/(A,BO) is not proper, then there is an 7 # 0, 1 € R" such
that qe"A tBO = 0, and consequently ne"AtBl = 0. Now the control
function w, =0 has the form wu(s] %,n) (see Equation L.3).
Hence O € Bd.@l(t), %+ >0 so that 9?1(‘5) is not expanding.
Analogous reasoning holds for. the case where _@z(t) is expanding.
It will be pointed out in section 7 when some solved examples
of ‘problems of type Py, B, P5O are presented that hypothesis (H3)
camot be omitted and still obbain Qi(t) , i=1,2 are expanding,
Indeed, as we shall point out in t—he discussion of those examples,
the hypotheses of the first part of Proposition 4.6 cammot be
we_aliened,, and there does not appear to be an analog of Theorem 17.2

in [11}. The sufficient condition of Hermes and LaSalle [11l] can now

be shated,

Theorem 4,1, ILet T'(t) be any one of the reachable sets at time t,

o : . - . — .
R(L), (L), RBo(%), 9?5(13)0 If T'(t) is expanding, if (H,t} is
an extremal control for the corresponding problem, and if

x(%; :{O,'ﬁ) = 0, then {u,%}] is a time optimal solution to the problem
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associated with I(t).

The proof of this theorem is obvious. Of course, the result is
not of much interest without computable criteria for showing I'(%)
is expanding. Propositions 4.5 and 4,6 in conjunction with ‘

Propositions 4.2, L,3, and 4.4 give us such criteria,
Example Ik 4, Consider problem P. with A= 0 1 B, = ( 0 )
——ern e’ 1 o 0 270 0 ?

1 1

see _@l(t) is expanding., Moreover, (H3) is not satisfied.

and B, = (0 ) - . Then .V(A,BO) is not proper, and it is easy 1o
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5. Existence and Uniqueness for the Time Optimal Control Problem

It is easy to modify the uniqueness theorem in [11, ps. 69] to
apply to problems P:i. , L= 1,2,3, Two admissible conbrole
{ul,tl} s {uz,te} are regarded as equivalent if tl =%, eand

ul(‘t) = u2(t) a.e. on [-h,t.]. An admissible control (u,t for

1)
P, is said to be bang-bang if [u($)| =m a.e. on [-h,%, ]
Sin‘lilarly, an admissible control {u,tl} for P, (respectively
P5) is bang-bang if the above conditj:on is satisfied a.e. on
[0,6;]1 (respectively [O,tl-h})., The following extension of a

result in [11] is obtained.

Theorem 5.1, IT {u,T} is an optimal solubion to Pi implies
{TJ','E} is bang-ba.ng', then there is at most one optimal control for
problem P, i=1,2,3,

:@_9‘922 One merely supposes there are two opbimal control.s ['{1—1,75] s
{w,,5} in problem P, which differ on a subset of [-h,%] of
positive measure, Then x(t! x ,'ﬁlj =% = x(%t; 2s".0,;._1.2)° If we

- = () + 1, (8)

define w3 [-h,%] —:va by‘ W(t) g »

then {w,%} is

admissible in P . Moreover, it is clear that x(.’g;' XO,W) = x,, and

{w,"-t-] is not bang-bang., This is a contradiction,
One never obtains uniqueness of the optimal control problem Pl
if 0st%tsh since the control {v,£) is not effective in

(A, 0 ) for T -hs% s 0. For this reason when we discuss
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wigueness of the solubion to problem Pl we assume t z h, This

is only a minor point and the situation 0 =T € h can essentially
be treated as in [11].

The next result is a reformulation of a general existence
theorem obtained in [2]. Actually, problem P3

there, but the existence theorem easily extends to this situabion,

was not discussed

Theorem 5,2, If there is at least one admissible comtrol [u,tl}

for problem P, sabisfying x("bl; xo,u) = X

15 then there is an

opbimel solution %o problem P., 1 =1,2,5,

Proposition 5.3, There is at most one solution to problem Py it

5/TA,BO), £?TA,BO+e"AhBl), and 571A,Bl) are normal (see [11] for

the definition of normal). The statement of unigueness holds for

problem P, if V(A,Bo-i-e—ﬁh]sl) and Sf(A,BO) are normal, while
for Py the normality of .9’(A,B0+e_ﬁh]31) suffices.,

Proof; We consider only problem Pl“ Clearly, the necessary con-

gition (2.1) and normality of the three systems imply that the

hypothesis of Theorem 5.1 is sabisfied,

+‘I‘he problems Pi’ i=12,273 were formulated so that the admissible
controls were in the class of Lebesgue measurable functions. The
results in [2] when specialized to the present situation reveal
that we could just as well have restricted our atbention to pisce-

wise continuous controls.
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If A,By, 3By, and e are known, then computable conditions
assuring the normality of S(a, O)’ s, B +e” Bl)’ and _9"(A,Bl)
are given in [11]. In general, e -Ah is difficult to determine so
we would like to obbtain coaditions that can be directly computed
from A,B,B. (In this connection it should be cbserved that, in
general, the nommality of any two of the systems (A’BO)’

Aa, Byte AllB}_) , (4,B,) does not imply the nmormality of the
third., For instance in Example 3,2 y(A,BO) and 5/’(1;,31) are
normal but S/(A,Bon'-e'AhBl) is not noxmal if h = 1,). Some results
are possible in this direction. For example, let us consider the

control system 57 (A ) discussed in Exemple 4,1, Along with

2502 ]_
the differential operator I in that example we consider its ad-

joint LY given by

¥ (n) (n-1) n
I'x=x -8 4% + + (-1) 8%

It is now assumed thet |[by| + |b| # 0 in Exemple k.1,

Proposition 5.k, System SA,B) is normal if and only if b, # 0.
system SAA,B,) is nowmal if end only if by # 0. If by =D,
and if Ix = 0 has no nontrivial solubions of period 2h, then
.99(1&,13 +e AhB is normal., On the other hand i:E“ b 0= -bl, ther;
;S/(A,B +e AhB ) is-normal if and only if Ix = 0 has no nontrivial
solutions of period h,

Let A(A) denote the eigenvalues of A, and let Re A(A) denote

the real parts of A(A).
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Proposition 5.5, If [by| < |bj|, and if Fe A(a) s 0, then

Ry (A,Bo+e"AhBl) is normal,

v

Proposition 5.6, If ]bOI > [bll’ and if Re A(A) 2z C, then

A4, B4t e"AhBl) is normal,

" Propositions 5.4, 5.5 and 5.6 are pretty clear, so we will only
indicate the proof for one of these (Propos;ttion 5.5). If bo = Q,
then Proposition 5.5 is true, Thus suppose bo # 0, Suppose
._S/(A,Bo-l—e"Ah‘_Bl) is not normal. Then there is a nontrivial solution

v of L¥x = 0 such that
boqr(t) + blqr(tm) = 0,

An easy induction argument shows that

X

b
(5.1) ¥(tHm) = (-1)° %—;’j ¥ (%)

K=1,2,3,... . Since V(t) is nontrivial there is a ‘sequence e

such that,tKﬁoo as K- and xlr(tK) -0 as K-> w, This con-

tradicts the assumption that Re A(-A) = -Re A(A) 2 0. This proves

Propoesition 5.5.

Example 5.1, Let Ix=%+aX+ax h=1b =2 b =1,

2, 2 + _q
(log2) + 7, Then A(A) = {-log 2 = 7i},

bl

al=2log2’ and a

0
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and
U(t) = exp[t(log 2 - mi)]
ig a golubion of L*x =0 satisfyin-g
29 (t) + Y(t+l) = 0O
and for this system f??A,BO+e"AhB1) is not normal,

Fxample 5.2. Using the same notation as Example 5.1, consider the

control system

Fx = u(t) + 2u(t-1),

=
™
i

¥(t) = exp(mi - log 2)%

1

is a solution‘of Ix = 0 and
\]r(t) + 2v(ttl) = 0,

and for this system V(A,Bo+e"AhBl) is not normal.
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6. Synthesis for the Special Time Optimal Control Problem

Neustadt's method of synthesis [21] can be extended to cover

problems Pys Py, ?gb Some rather restrictive assumptions are re-
quired for problems Pl and Pé. It is assumed in our discussion
in this section that xi =0 (x, is the "target"). The
development will be carried out only for problem Pl’ but if the
arguments are suitably adapted problems Eé and P; can also be

treated. The validity of Neustadi's spproach depends on the follow-
ing condition for problem P, If {E@?ﬁ ig an extremal conbrol
for problem P satisfying x(E; xo,ﬁj = 0, then fﬁ;ff is an
optimal solution. to problem P, Weustadt [21] assumed that the
system S/(A,B) was normal so that the above condition turns oub
to be sabisfied by the sufficient condition in [11, fgo T21. For

the problems we are studying, however, the optimal control ﬁL?ﬁ

2

nay be unigue where all three of the systems E?TA;BO)
5VTA,Bd+e'AhBl), SA4,B.) are normal and yet E%i(t) can fail to
be expanding (see Example T.l) so that the analogous sufficient
condition for problem Pl could fail,

Recalling the definition of =z(t,7n) in Equation (%.5), we can

obtain the following proposibion.,

Proposition 6.1, Let the following conditions be satisfied:

ker (B,) Cker (8,), 4,8,), 5/’@,50+e'*“h31), SAa,B,) are

normal, and (H4), Iet S=(n ¢R| <n,x;><0}. If the optimal

control {u,%} exists for problem P, then it has the form
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(4.3). Any vector 1 e § vwhich meximizes the time + for which
<.n,z(t_,n)> = -<M,X> may be used in (4.3) to obtain the optimal
control f{u,t} = {}1(_-.,"3;1]) , . Conversely, if 1 defines the

optimal control [H,T{:-} by means of (%.3), then it meximizes the

above time +,

Proof; Note that g(t,n) defined in (%.6) can be writben in the

form (4,7) if t 2z h, and if 0 St s h we get

t
(6.1) g(t,n) = [ |18 | + |98 |as.
0

Hence (4.7}, (6.1), and Corollary 4,1 imply that -% (6,1) >0 so
that + o g(t,n) t 2 0 is strictly increasing, The function
(t,n) > g(t,n), 20, 1 €S is continuous, For 1 e Rn, n# 0

we have that
(602) <|,2(t,n)>><n,x>, x e -@l(t): x # z(%,1),

by the normality assumptions in the proposition, Define

£3 [0,0) X § X B" >R by the equation

>

?‘f‘(t,'qjxo) = <n,z(t,n) + X,

and define
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Hy = {n e ®RY ¢ 0, <n,-x> = max _<n,v>).

yeé%i(t)
The set HO is convex. Observe That
(6.3) f(O,'r],xo) <0, 1 €8
whereas
(6.4) f(_,n,xo) >0, n.e8NH

The assumptions of the proposition imply that é%i(t) is expanding.

Hence Theorem 4.1 and relation (6.2) assure us thab
(6.5) f(t,n,xo) = 0

implies that t =T if 17 ¢ H,. Hence using (6.3), (6.4) and the
last remark it is seen that (6.5) defines t implicitly as a func-
tion of 7, for n € S. We denote the function 80 @efined by F.
Then F 1is continuous and F(y) = %; n € Hy, and T >F(n), 1 e S\H,,«
The purpose of the observation in the above proposi%ion is o Ebtain
2 method.for finding a vector 1  which.can be used in (h.f) to determine
the optimal control, It is easy to see that g is a Cl function on

([O,md\{h})x S Dby direct computation in formulas (4.7) and (6.1)

using shandard resulis on the differentiation of Lebesgue integrals
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involving parameters [20, pp. 216-217] and the normality hypotheses

of Proposition 6.1, Hence if 1 ¢ § is such that F(n) # h, and

%% (F(n),n) # 0, then the implicit function theorem tells us that
F 1is continuously differentiable on a neighborhood of 1, Uping
the fact that under the assumptions of Proposition 6,1 %, (t) is
expanding (so that the sufficient condition, Theorem %.1, applies
to Pl) and the above remarks, the gradient technique for determin-
ing the meximum of ¥ on S can be applied to Problem Pln We do

not carry out the details here, but refer the reader to Neustadi's

paper [21].
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To Examples,

Tn this section we solve gane examples which illustrate the
strange behavior of solutions to problems of type Py, P,, P; All
of the examples are two dimensional, Since we would like ag much

as possible to avoid using superscripts and subscripts, we shall

2
agree in this section that (x,y) = (xl,x Yo
Example T.1l. The system equations are

(7-1) X=y

¥ = u(t) + u(s-1).

_fo 1 o (O) _ . .
Thus A = (O o s By =3By = (1 , b =1, Here we corfs1der

a problem of Type Pl with boundary conditions,

e

(7.2) (g3 (x,¥5),w) = (b5 (x5,¥,),0) = 0.

It is not difficult to see that given any (xo,yo) € B° there
is an admissible (u,t;] satisfying (‘?,,E)° Hence there is

(Theorem 5.2) an optimal solution to problem P;. Proposition 5.4
and Theorem 5,,1 assure us thet _the optimal controlk {'{{,E} is unique
if T2zl emdif 05t < 1, {-u—,:l:-} is uwnique where it is effective,

i.e., on [ul,%ul] and [0;‘;],. The necessary condition (2.1) when

applied to this problem yields
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Csen [V (5+1)] -lstsD -1
(7.3) u{t) = | undetermined t-1l<t<0
2 -
sgn [¥ (3)] 0=t=st
if 0s%ts1, andif t>1, then
B 2
sen [V (4+1) ] , -l=t<0
(7.3") Wt) = | sen [V (t) + (1)), o0st<T-1
sen [V (£)] , F-1sts%

2
where Vv = (ﬂrl‘,llr ) is a nonbrivial solution of the adjoint egua-
. . e 2 .
tion ¥ = -yA, Hence V¥ (t) = pt + & where ¥ (%) is not

identically zero, Along with the opbimal control {-ﬁ,%} we con-

(S

sider the effective optimal control (V,%)} where
(T.1) V(t) = u(t) + w(t-1).

With problem P, for system (7.1) and boundery conditions (7.2) we

consider the auxiliary problem P with system & (4,B only with

o)
the restraint set changed to [-2,2]. The synbhesis for this
problem except for sn obviocus scaling factor of 2 (i.e. , The

switching curve is x = ..yg/lb, ¥y20 and x = y2/lk, vy £0) is

described in [22]. If {w,T} is the optimal solution to the
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- auxiliary problem P and if W is expressible in the form

u(t) + a(t-1) with (u,%] adnissible in P, then {v,5} is the

1° Thus Pl can be considered golved if
0 s%s 1, Figure 1 shows the reachable set (1) and the

optﬂal solution of P

synthesis in case (xo,yo) € Ql(l)n

Figure 1,

Thus we nov assume that (xo,yo) £ _@l(l) so that & > 1. Here

{he situabion is a good deal more complicated since the above W

is no longer expressible in the required form. It 1s noted from
(7.31) and (7.4) that the effective optimal control has V(t) taking
only the values in the set {-2, 0,2}, 0 £ % = %. For brevity let

us d.eno_te the optimal trajectory issuing from (xo,yo) by (E,':f).,
Then™ (X(t),¥(t)) can veach (0,0) only along one of the two

cuxves

|

° 2
scx=y/h yso,

2
"y/h') b

7]
oo
W
"
%
o

If pu=0, then &# 0 and from (7.3') we see u*(t) = sen (B), i.e.,
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there is no switching, Hence &> 0 ijmplies (xo,yo) es end

5 <0 implies (xo,yo) € S_. Conversely, (xo)yo) €85 US_ implies
H=0, If (xo,yo) £ 5, US_, then u # 0. It is not difficult

to show that p >0 or p <0 accordingly as (XO"VO) is to the
right of S, U8 or %o the left of S US.. ILet -3/u be de-
noted by B. If one finds ¥(%) = u(t) + U(t-1) wusing (7.3'),

then it is clear thalb both ¥ and ¥ will be known ccmpletely if
the disposition of the points - % +B, B, 5+ B relative to

[O,%.} can be discovered. Now the boundary conditions (7.2) impose
additional conditions on t and P, In fact with u=1u and

%, =% (7.2) reduces to

1
-'t- A
(7‘5) XO = f SV(S)G.S
’ 0
%

v, == ¥(s)ds,
°© 5

By a systematic and laborious enumerati-on of the possible positions
of - -32'-4— 8, B, %‘—-l— B relative to [0,%] it can be showm that
(7.3') and (7.5) uniquely determine + and B as functions of
,(XO’YO) }é S+ u S_n In principle at least the determination 0:E:
-‘E(xo,yo) and [S(XO,yO) represents no difficulty, so we shall only
describe the results, However, it must be pointed out that when
the possibilities are exhausted our calculations revealed the

following? There corresponds to each (xo,yo) € R2 \ _@l(l) exactly

one extremal control satisfying the boundary conditions (7.2).
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Hence an extremal conbrol satisfying (7.2) must be time optimal,

(It will be seen momentarily that @l(t) is not expanding, so

-

Theorem 4,1 does not apply.)

R
right (respectively, left) of S, US_o Sebs D, 1=12,...,7

Let D, (respectively, DL) denote the open region to the

are defined by the following relations’

2
- 1 Yo Yo
D, = {(x,,¥,) eDR| XS5 -3 -5},
4 YE Y, Yz
= 1. 0 0 1 0 o}
Dg—{(xo,yo)eDRE "2§y0<0"2'"’3"__8§X0§§""2+—8'
¥y YE y'2
_ 1 Yo Yo 3 3 0
¥ Y2 ¥ ;y2
1 0,70 3 Y0 D
{(xo’yO)EDR[yosoj-e-—.-g'}'-géxoé-é-m._g_._s:},
y2 :&"2 -
0 0 0
D, = {(x,¥y) € Dl ¥, = -2, hsxog_h_.._g},
¥ Y2 y2
= ) 0,7 3 0
Dj—{(xo,yo)eDRI yoéo,-_g+_¢§x0§.2__2yo+_ﬂ-
2 .
3 Y9 Y
and xoé.é--__z.-_g.],
2 2
¥ y
35 3 0 3 0
D6 [(XO’YO)eDRlo'"yO_g’E 2y0+8§X052 LI_]U
2
3 Jo
: Z £ L . 2
(gs7g) € Dpl ¥y 2 2, x5 55 - ¢ 1,
y2
= . 3 o]
D?"[(XO’YO)EDRIyo“éo”‘oz'z“"'i!}U
2
{(x,,5,) € D] ¥, 50x25_2y +.:{9}
070 R 0= Y Fo =T ot e

We define D—i’ i=1,2,...,7 by symmetry through the origin, i.e.,
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D

i -D; = {(xojyo)l "(Xo)yo) € Di]: 1=121,2,...,7. ‘Then

T 7 .
[igln'i] ’ [iglbi:l Vs, US] i X, wd D)=l () U

el (D_l) , where cl (E) denotes the closure of E, The regions

D 5 Di’ S+, 8, i=1,2,...,7 are depicted in Figure 2.

Figure 2,

The following formules cbtain for T and po

p—

2 .
Yo * \/Eyo +, _8x0

» (Bp¥) €Dy

5
X, 4 ¥
o, 1 Yo, 12
" tasmEtEs ol ¢h
15204  fix v 932 +2y -2, (x,y) eD
TTIVHE T Vo= S Vply/ €%
x ¥
[“ O o
txgs o) = Ty, E? (Xgs7g) € Dy

1 1 [ 2
“E+"2_+ .E\/Byo + 12y0+ 2le0 s (XO’yO) € D5

1 2
sty .32-'-'\/6(3:0 + yo/l'r) ; (XO’YO) € D6

¥ 2
..g +-\/17+ 2(::0 + yo/h) s (xo,yo) e D7,
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[
S
-

——p— (¥ €D

B(XO,YO) = (XO’YO) e D5

A

(xo,yo) € DlL

o
-

-_—_6-__.— H (Xo}yo) € D5

D, ) €3

It is noted that if D, N D, # § for some ik'=1,2,...,7, then
there is still no ambiguity in the formulas for -%(-XO’yO) and
B(XO,YO)u In order to complete the definition of t and B on all
of 32 we me;,rely take a@vanta.ge of the symmetry in the problem to

T = =(. - = - - if
ob;:;erve that 'i;(xo,yo) t( X2 yo) and ﬁ(XO,YO) B( KO’ Tv‘o) i
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(xo,yo) € DL. We note that t is not continucus at points on

8, US_ and on D ncl (D5)° However, at every obher point of
DR both & and B are conbinuous.

Now 'tq gee the nature of the opbimal trajectories we describe
the optimel effective control ¥(t) = u(t) + u(t-1) if the initial
data (xo,yo) €D, i=12,.0.,7. We use -{T-i to denote the
optimal effective control defined on [OJE(XO,YO)] if (XO’YO) €

D,

:LJ

i=212,...,7. Of course, if (xb,yo) €D ., then the opbtimal
effective control is "?i , i=12.,,,7. The formulas for ?i.

are as Tollows:

-2 0=t
v () = - E)
l() 42 B<t=t
"0, O0stst-1
V(t)=|-2, ®-l<t=p
2, p<tst
— 1
-2, 0sts-3z+p
0, _.%+§<t§E_l
(=] 2, T.i1<tsp
+2 B<ts=sl
1
0_, l<t_.-2-+ﬁ
+2 %’-+f3<t§:€
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|

-
™

then the opbimal

trajectory, (X(t),¥(%)), begiming ab (XO-‘yO) can be described

in a simple geametric fashion, If (xo,yo) € el (Dl ] D-l) = .‘z‘?l(l),

then tkis descripsion is given in Figure 1. Evidently, if

(x,,7,) Dy, then 'flp(t) switches from O %o +2 as (F(t),7(t))

crosses S . Moreover, in all cases where (xo,yo ) < DR the lash
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switch occurs as (x(%),¥(%)) crosses S,. Now let C, =
2
1 .
(xn] x= = - g- - E’-rg s ~2 2y =0} (note Coy is = .segment of
Bd (9’?1(3_))). Then if (xo,yo) € D,, the point (X(t),¥(t)) coasts
to C,, and then the synthesis for .@l(l) obteins (Figure 1). ILet

curves Cgys Cpns 063 be defined as follows:

i 2 :
Cgy = ((=,7)] X=§-—%y+%, -l =y=1},
. _ -2
Cop = {{(x,7)] x:%-.%-.‘—’.rg, -l 2y s 1},
' 2
Cgg = ((59)] x=-%+5, 1syso)

it (xo,yo) € D6’ then the fi:t:'s:’c, second, and third switches of ?6(1;)
take place as (X(t),¥(t)) crosses 206i’ i=1,2,3 respectively,

Finally, define CTl = {{(x,y}| x = er -¥, ¥y £ -1}, If (x ) €D

0¥’ € Pp
then the first switch of 57(1:) happens when (¥(%),¥(t)) crosses Cop e

If (xo,yo) €D, U DJL UD (U D_7, then by use of symmetry the optimal

trajectories are similarly described using curves C -C... The

-5 T TUig

synthesis for (xo,yo) € D2 U Dl} U D..6 U‘D_ is shown in Figure 3,

T

Figure 3,

For (xo,yo) € D, UD. the set of "first switching points" do not

372



54

lie on a curve and the situation is too complex o describe geo-

metrically, Some typical optimal trajectories are given in Figure L

for (xo,yo) €Dz U D, 5o

s ——

Pigure 4,

It is interesting to pote that some of the oﬁt:‘mal trajectories
initiating in li)5 or D6 can come to rest on the x-axis for a
positive time duration before continuing on to the origin‘, Tra-
jectory A in FPigure It shows an insbance of this, but this 1s not

typical,

In this example, S(A,B ), S(4,B,), and _9’(A,Bo+e“ABl) are

all normal (and all proper) and yet _@l(‘b) is not expanding al-
though % (t) is increasing. The boundary of g?l(t) for a few

values of + dis sketched in Figure 5,

Figure 5. .

This figure clearly shows .@l(t) is not expanding.
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An example of a problem of the form 3; is now considered.,

Example 7.2, The example considered here is exactly the same as
that treated in Example 7.2 except that here we impose the con-

straints
(7.6) u. =1 =0,

We give only a brief discussion of the solution to P_;,) o- The reach-~

able set 9?; (t) is the same as &(t-1) for system

y(A,Bo-PehAfBl), The control sysben y(A,BO-:-e'ABl) is given by

e
i

y - u(t)

2u(t). .

(7.7)

e
]

2 .
Now given (Xo,yo) € R there is sn admissible control {u,tl} for
P with system (7.7) such that the respouse of (7.T7) to this con-

trol satisfies
X(tl; (XO,YO),UL)’ = :Y'(tl; (Xosyo);u) = 0.

fence the same is true of (7,1) with (u,t;+l) admissible in P;’ .
his assures us that an optimal control (u,t} for P; exists and is
mique (Theorem 5,2, Proposition 5.3), We note that if wu(t) =1

in- (7.7) then we obtain the curve
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and if u(t) = -1 we obtain

2
S_! x:-z&-—g—, ¥ 2 0.

Figure 6 illustrates the synthesis for U using the auxiliary tra-

jectories from (7.7).

Figure 6,

We leb Dp (respectively, DL) denote the open region to the

right (respectively, left) of 8, US_. For this problem the

regions D, 1= 1,2,,..,5 are as follows;
2
Yo
Dy = ((5,9,) €Dl %y S5 -9, -5,
. y2 . y2
1 0 2 0
= = - - sx 52 _2
D, _[(XO’yO) € DR[ 5~ Yy - g 5% = 2 -5 Vo * -
2
Yo Yo



2 2
v, ¥ ¥
Dy = (g, € Dl 2 - =X 22 -5Vt g}

2
- _V y 2 2 d. 2 -— a— 0---_

0
X 2
((x,7,) €|y =2 amd 2-2y +IO x 52
0’70 r' Y0 7 270 KT 707
2
Yo _Jo,
-3 )
: 2 v 4
- ' 5 0 0 ‘0
Dy = ((xgo¥p) €Dl %y 22 -5y, + 4, x,22 - — - &

The sets D ., i=1,2,.,.,5 are defined by symmetry as in

Example 7.1, We have

5 5 5
[:UDi]U [_Uni} U[s, Us]1=Fg.

i=1 i=1

The regions D s i=1,2,...,5 are show in Figure 7.

-—

Figure T,

Using the boundary conditions (7.2) and the maximum principal

O
for P one caxn show

3
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0, -lstso0
_ 1, 0<tsa
WO =, a<e<Tol o
0, t-15%53%
Wwhere
¥
- B 0,1 L3
Tl V) = 1+ 9+ 5v/275 + by, + 8x_
y —
0, % -1
Mg Vo) = g+ =

if (Xo,yo) € DR° By symmetry we have

t(XO} yo) = -b("XOJ -yo).? A’(xoﬁyo) = )\'('—XO? “yo)

if (x,¥,) € D;. The optimal effective control (V,%} for

_(xo,yo) € D, is denoted by Vi’ i=+41,42,...,45. Evidently,

V.=~V ,, i=12,,,,5 The following formulas for V. are
3 L2 T390, 1

obtained;
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1, o0st<1
2, lst<a

= o, NEt<a+l
2, A+lst<i-ol
+1, T-1ls+:=%

Figure 8 shows some typical opbimal trajectories for 0 with

3
(xo,aro) €D ., i=2,...,5. Figure 9 illustrates some additional

‘curious phenomena for this problem,

Figure 8.

Figure Q.

For example if (xo,yo) = (-2,2) € D, then the optimal trajectory
2
to the origin is simply the arc p0 of the curve x = -y /2

comnecting (-2,2) +to (0,0) (Figure 9). However, a subarc pg



of are p0 is contained in D Thus if one starts 2t a point n

20
on the subarc pg, then the optimal trajectory does not follows arc

n0 to the origin, but will go off on a rather pathological trajectory

(curve 1 din Figure §), finally coming to the origin on an arc r0
of the curve x = y2/2° Figure 9 also depicts what can happen when
Xy = iyi/E, For example, starting at point £ on x==y2/2 the

opbimal trajectory is the curve o. Note that o in Figure 9 hits

0 at time + = ‘bounces down and then swings back to hit the

2

5
origin at time T = 2, Other variabions of this type of behavior

can also occur because of the boundary conditions on the controls in
The next two examples demonstrate whabt can happen in problems

which are not "normal" and where ker (BO) and ker (B are

1)
complementary spaces (see section 2), For these examples the
attainable sets at time t can be determined without difficulty,
enabling one to make a judicious choice (whenever there is more than

one support hyperplane at the boundary point) of an outward normal

for use directly in the maximum principle,

Example 7.3, This is an example of the form P The system equa-

lo

tions are
(7.8) x = u(t), ¥=u(t-1)

with boundary conditions the same as in equation (7.2). For system

(7.8) the domain E@é of nill controllebility (here U = [-1,1])

O
?5.
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turns out to be
1 .2
- - = 21,

Thus the problem P, has a golution only if (xo,yo) ¢ _@éo On
the obther hand if (xo,yo) € 92, then Theorem 5.2 assures us that
provolen Pl has & solubtion, The attainable set at time + turns
out to be (X{)"VO) + _@l('b) which we denote by %(Xo,yo) and
this can be explicitly compubed;

A {(x,y) e R [x-x,| =%, [y-y,} =%, [x-y| = 2}.

Figure 10 shows _safci(xo,yo), i=1,2, for tl <1< t2,

Figure 10,

Taking advantage of the simple gecmetric structure of 9?1(1:.)
. - L 1
one finds that T(x,¥,) = mex {|:<0|J 7o), (%gs¥y) € Do Thus
an admissible combrol (U,%}, T = %(xo,yo) satisfying the boundary
conditions (7.2) is a time optima:l solubion, The maximum principle

for this problem says that if 17 = (nl,ng) # 0 is a vector which is
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an outward normal to a support hyperplane for -,Q.’Z'—E(xo,yo) passing

through (0,0) and if ¥ < 1, then

2 —
sgn [n.], L%t -1
(7.9) W(t) = | undetermined, £ - 1<% <0
1 -
sen [7],  O0stst

and if Tz 1, then

2
segn [0 ], ﬂl§t<-0

(7.9") u(t) = sgn [ql—H]E], 0st%< T - l

sgn[nl], T-l=ts7%

-—

Iet us consider some of the pogsibilities, Suppose (xo,yo) im

on the line y=x -2 and y,> -x,. Figure 11(a) shows how
_Qf__(xo,yo) is positioned at (0,0) and we see that 1 = (ql,ne)
~b -
2 1 2 . .
can be chosen so that nl <0<n eand |q]| >1 . Using this 7

in (7.9') one cbtains

_ +1, -1£%<0
u(t) = —
-1, O0sts%

if T z 1, with an obvious modification using (7.9) if T < L.
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Figure 11,

It (Xo,yo) € 92)‘ and ¥, > Xy Ky - 2 < yo <Xy, By > 1,

is positioned at the origin ag shown in

then ,Q/_’g(xo,yo)

Figure 11(b), where t=x, >1, Hemce q = (1]1‘,0)J nl <0 and

0
(7.9') gives no information on the interval ‘[-l,o) but (7.9')
does specify u(t) = -1, 0 st s T. In this situation it turns out
that any u such that {u,t} is admissible in P, satisfying
u(t) = -1, 0 £+ 5%, and vhich drives (Xo,yo) %o (xo—l,xo_l)

- at time t = 1, turns out to be optimal, Let (X,¥) denote o
response iﬁitiating at (xo,yo
form, Then we see that X(t) =¥(t), Lst =% and

) to a control ({u,T} of the above

1

(7.10) ROIEOIEE

stst if - -
for 0% =%, On the other hand if Vo > X Xy - 2 < Yo <%y
and x, = 1(% = 1), then (7.10) is all that is required of the ad-
missible trajectory (x,y) as long as the boundary conditions (7.2)

are satisfied,
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Suppose now that Xy = Y and yo > 0. Then we find that

"-t::yo and

A
ot -

u(t) = -1 1=t

Il

where (u,¥} 4is the optimal control.

If Vo = =X, and. Yy <0, then the optimal control (T,t} is
given by
. +1 Slst=%-1
u(t) = -
-1 O=st=+t

where t© = [yO[ =1,

Using similar techniques one obtains optimal controls [-1_1,55} for

all (xo,;y‘o) lying in 9; with y 2z -x . By baking adventege of
the s_ymmetry with respect to the origin an optimal confirel can tThen
be determined for (XO"VO) in the remainder of @g.

Figure 12 illustrabes the typical situations, In this figure
‘fleavy lines indica.:l:e pieces of optimal trajectories when {E,jc"} is
unique, aﬁd the broken lines indicate segments of o;_;timal trajectories

where the uniqueness of the optimal control does not obtain..

In this problem 9?1(1:) is increasing but not expanding.
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Figure 12,
Example 7.4, In this example we look briefly at the same situation

as in Example 7.3 except we change Lo a problem of type P2 where

Vo = 0. Tow the domain of null con*‘brollabilits} (with U = _[ul,l})

is
D20) = ((x,,7,) © REI [EARE

and the attainable set at time t which we again denote by

,Qéft(xo,yo) is equal to (XO’YO) + 9?2(‘b)u It‘is easily shown that
sz_t(xo,yo) = {(x,7) € R2 ]x—x0| £ %, [y—y0| =t -1 [xy] s _l‘}
for ¢t 21 and
%(Xojyo) = {(x,y) ¢ 32| IX—Xol =%, y= yo}

for 0<+t <1, These sebs are shown in Figure 13,
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Figure 13,

Again, if one takes advantage of the simple geometry present in )

the problem, then the "minimm time" T is determined to be

2

CE(x,y) = ~
0’70 2 _
%l s (T € D), v, =0,

" which is discontinuous on 9?)(0) 8t every point on the line

]
optimal combrol {u,%} exists for problem P, and % = -‘E(Xo,yo)

2 2
{(XO,YO) € R Ixol <1, y,=0} If (Xo,y,o) ¢ 90(‘0), then an

(Theorem 5.,2)., The necéssary conditions for this example axre the

same as in Example 7.3 (equations (7.9) and (7.9')) except the con-
dition on Tu(t), :l St <0 1is deleted, To solve this problem one
considers (as in Fxample 7.3) the po‘ssible 1 = (nl, n2) whicﬁ are
normal to support hyperplanes for 'M'E(XO’YO) through (0,0) and

makes an appropriate cholice when there is more than one candidate.



We now consider some of the cases, If Vo E 1 (i.e., Tz2),

then (7.9') yields

1A

c-f..

ItA

ol
t

=

(7.11) u(t) = -1, 0

If in addition to yo z 1I' we have 'YO = XO

0stsT% and the opbtimal comtrol {u,t} is unique, On the other

- 1, then 'ﬁ(t) = -1,

hand. if Yo z 1 and Vo = %, -+ l,_ then in addition to (T7.1l) we
find that U(t) = +1, T - L <t =%, and again the optimal controi
{u,t} is unique, Wow if Vo2l and x - 1<y <x +1, then
any admissible conbrol U will be optimal as long as it satisfies
(7.11) end is defined on [%-1,%] so that the boundary conditions
(7.2) are satisfied. The cases that we have just discussed are
shovn in Figure 1t (where again non-uﬁique segments of optimal tra-
Jectories are denoted by broken lines) by the trajectories initiating
at points Py s Py; and Pz D)5 p5 respectively, We note that in

many cases the optimal trajectories contain subarcs which lie out-

side the domain of null controllability.,

Figure 1k,
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it v

0= 0, then one can show that

E(t) = -1 0

112}
ok
1A
ok

if Tz=x, >0

and,

1A
ct
A

u() =41, 0O T if -1sx,<0,
so that the opbimsl control is also unique and the corresponding
trajectories are very simple. Finally, we consider one other typical
situation when optimal conbrols U are not unigque. Suppose

0 <y, < 1 and x_ -~ 1<y <x. The necessary conditions still

C 0 0

give (7.11), but in this case any admissible u satisfying (7.11)
and the boundary conditions (7.2) at time & = 1 + y <2 is
optimal, For example the trajectory issuing from po:ln’n:ip2 in
Figure 15 shows one of the many opbtimal trajectories starting at
_this point at time 0. This trajectory passes through 4 at time

t ~ 1,-arrives at =

2 at time 1, passes through S, a_t some

time %, 1<t <73, and finally arrives at 0 at time %.

1 Other optimal trajectories are algo illustrated in Figure 15,
In thisfigure once again heavy lines denote pieces of é)ptima,l tra-
jectories where the optimal control is unique, while along broken
lines the optimal control is not uhiqueq

Tn this example _@2 (t) turns out to be increasing but not

expanding.
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Pigure 15,

Finally, it is noted that if we consider system (7.8) with a
problem of type P;’, then the domain of mull conbrollability is
merely the straight line ¥y = X, This problem is easily solved and

some opbimal trajectories for this problem are depicted in

Figure 16,

Figure 16,
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8. Delayed Control Problems and Dynamic Programming

Consider once again Example "{'oll- above, If we consider the
optimal trajectory emsmating from py, in Figure 14, we notice that
this trajectory has subarcs which are nob optimal, Thus the
brincﬁple of optimality in its usual form [19] does not hold Iiereu
This is not too surprising since this principle fails even in
ordinary control problems with time d.epe_ndent restraint sets U(t)
if one interprets "state" to mean =x(t) instead of (t,x(t))

(cf, [16}). . However, in the problems we are studying this aifficulty
is more serilous, '

We also observe that in Examples 7.l and 7.2 the principle of
optimality in its ususl sense fails to be true, On the basis of
thig experience one expects the failure of thig principle of
optimality to be an inbrinsic property of opbimization problems in-

volving systems of the form .9;(A,B Bl) and not just a peculiar

o,
property redounding from the special boundary conditions in
Examples 7.2 and. T.U or the particuiar criterion for optimality.
Hence one anticipates serious obstécles to dbtaining-resultﬁ for
problems involving j%ZCA,BO,Bl) using dynamic programing,
ﬁonetheless, for certain special perfofmance-indices we are able to-
adapt the methods of dynamic programming %o éfoblems governed by
systems .5€(A,BO,B_), even %hough it is easy to construct examples

showing thalb the standard principle of optimality is also invalid

for these problems,

. The remarks below are valid for time varying systems even though
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we shall, in keeping with our practice in this paper, restrict our
preserbation to the case of constant coefficients.
. - m . 2 )
Iet o R 2R and L. REXR >R be given C functions,

Suppose U C Rm is given and tl ¢ R is fixed. For to < tl - h

we shall denote by I +the problem of minimizing

!

J(u; to_,xo) = cr(x(tl)) + { L{t,u{t))dt
0

2 ’ .
over the class of & -admissible controls u where x(-, to,Xo,u)

is the solution of Sfl(A,B (v

o is a given Tixed function

O,Bl)
throughout) subject to x(to) = X

Remark &.1. We shall consider only the free endpoint problem;

problems with restricted endpoints x(tl) el C Rn require the

usual modifications [3, 19].

An easy calculation shows that the respomse to yi(A,BO, Bl)

sarvisfies

a ~ Q
x(t to,xo,u) = x(’a:.lJ t

12 o)

0’
whepever &, £ t; -h, where ¥ is the solution %o

o]

(8.1) 2(6) = 8%(6) + 9(t, 4. )ult) 6 e [t,t]

subject to :;(t ) = Tx, with Tx_=x + foe_(§+h)£LB\v (£)as and
A0 6] 0~ "0 n 107



[

B, t e [t)-b,% ]

Bo+eh‘LBl t<t -h

We shall denote by I the problem of minimizing

by

J(u; t,%,) = o(X(t)) + 1{ L(t,u(t))ds
0

over all bounded measurable controls ul [to,tl} -~ U vhere
ty <t, and B(: 2%} 18 the solution to (8,1) subject to

;;(to) = X Note that the payoff J - ( 7 ) depends only on

x('bl)l ( %(;)) and not on x(t) ( Q(t))r for .t < %,

Pas
Sinc:e;; J(u; to,xo) = J(u, tO,TxO) for every t_ < %, ~h and

0
X, € Rn, we see that the problems I and ﬁ are equivalent when-

ever ty = 5, ~ ho That is, if; for given init‘ia,l data. (to,xo)
with £, S %, - h, u is optimal for Ilf, then 71, -extended to
[to-h,tl] by baking 'ﬁt = Vs is optimal for I with initial datba
(tO,T"le). Conversely,oif _'ﬁ is opbimal for T with initial datae
(tgs%)s Ty € %y - b, then W restricted to [£g%] is optimal For
I with initiel deta (bgr Tx4)

Applying the methods of dynamic progrgnnning to the problem fi

we obtain the Hamilton-Jacobi equation [3, 19]

(8.2) 8. (%,2) + min (L(t,w) + & _(t,2)£(t,2,%)} = 0
. weU z



Th

~
for t<t, and ze an where 3(1‘:.,2) = inf J(u; t,z) and
o

£(t,2,w) = Az + 8(t,t,)w, Solving (8.2) with date 3(t),2) = o(z),

4 o~ n .
one obtains q)(tO’XO) for tO < tl’xO €eR, SlnC(—j‘, for
.y * .
ty & © ~ b we have Cp(to,xo) = @(tO’TXO)’ where @{t,zn) = 11r;f J(u; t,2),
one thus has the optimal payoff for problem II. It should be noted tThat
although (8.2) is valid-for % X%, one has o(%,z) = 8(t,Tz) only for

’ {

t =%, ~ h. In case v = 0, one has Tz =z and o(t,z) = fd;(t,z)

0
for all t < tl.

Let us now consider a special case of the problems H,ﬁ for
which (8.2) can be solved using known technigues. Denocte by IIq
and ﬁq i‘espectively the problems I and ﬁ for gquadratic payoffs
o(x) = x5x, L(s,u) = uR(s)u where U= R, We assume that § e Zon
is symmetric positive semi-definite and R(s) ‘e imm is symmetric
positive definite for s € R . Applicabion of known results to the

problem ﬁé yields the opbimal (feedback) control

(8.3) ;ﬁ'(t) = _R"l(t)ﬂ*(t,tl)G(t)fi(t)

for t e ['bo, tl} vhere G satisfies the matrix Ricca‘oi equation
(8.14) éft) + G(B)A + A¥e(t) - G(t)ﬂ(t,tl)R:i(t)Q*(t,tl)G(t) =0
for t© e [ﬁo;tl] with boundary condition G(%,) = S. Note that

(8.3) gives a feedback solution for the problem -Hq which can be

used Lo solve the problem Hq_ in the following manner, Given
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(t O’XO) » Ty 8t - h, as initial date for the problem qu one solves
the problem ﬁq vith initial data (% ,Tx ), obteining & feedback
of the form (8,3). Next one uses this in (8,1) to find the opbtimal

}'E; i.e., one solves
(8.5) R(6) = (0006, IR (6)0" (6,5, )G(6)12(t)

for 4 ¢ [t,t,] with data }?(’co) = Tx_, Using this together with

Oﬂ
(8.3) gives the optimal open loop combrol for Hq'

. This conbrol can then be used in Vi(A,B

O’Bl) with x(to) = X
and v, o= vo to find the optimal trajectory for problem Hq, This
O .

latter step is not necessary to find the. optimal value of the payoff
for T, since knowledge of X and U yields J(W; t,%,) ab once

from

- -;31

T(W ty,%,) = (s b TEy) = :?(tl)s}'i(tl) + [ UE)R(E)U(L)dk,
t
0

We note that in (8.1) and the performance index J (13 to,xo) we.
could meke the change of variable ¥ = e-Atﬁ, and then system (8.1)
fakes the form §'= E(t,tl)u(t), If one carries out these sub-
stitutions, then the corresponding Riccabi equation will have the

simple form & - GC(b,5,)@ = O which can often be solved by a

quadrature (see [25, p. 227]).

Remark 8,2, It is not difficult to give a rigorcus derivation
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(including existence of the required solution to the Riccabi equa-
tion (8.4) on the entire interval [tOJtl]) of the above solution
to the problem Hq uging the maximum principle for ﬁq and

argﬁments similar to those by Lee and Marxkus [19, gsections 3.2 and

3.3].

Remark 8.3. The above ideas can be applied to certain opbtimal con-
trol problems where retardations occur in both the state and control
variables, For the corresponding quadratic payoff problem II , one

a

can then use receht extensions of the Riceatl theory [1, 8, 15, 17,

271,



[1]

[2]

3]

[k

[5]

[6]

[7]

[8]

9]

[10]

7

References

Y. Alekal, Synthesis of feedback controllers for systems wibth
time-deley, Ph.D. thesis, University of Minnesota, 1969.-

H. T.,' Banks and M. Q. Jacobs, The opbtimization of trajectories
of linear functional differential equations » SIAM Journal on
Control, 8(1970).

L. D. Berkovitz, Variational methods in problems of control
and programming, J. Math. Anal. Appl., 3(1961), 1b5.169,

J. J. Budelis and A. E. Bryson, Jr., Some optimal control re-
sulbs for differential-difference systems, IEEE Trans,
Automatic Control, AC-15(1970), 237-2L1,

D. H. Chyung, On the controllability of linear sysbems with
delay in combrol, IEEE Trans. Aubomatic Control, AC-15(1970),

255-2517.

D. H. Chyung and E. B. Lee, Delayed action control problems,

Proc, o IFAC Conf,., Warsaw, 1969.

K. 5. Day and T, C. Hsal, Optimal control of linear time-lag
systems, Proe. JACC (Ann Arbor, Mich,, 1968), American Society
of Mechanical Engineers, New York, 1968, 1016-1055,

D, H. Eller, J. K. Aggarwal, and H. T.. Banks, Optimal control
of linear time-delay systems, IEEE Trans. Automatic Control,

AC-14(1969), 678-687,

R. E. Foerster, Control of linear systems with large time de-
lays in the control, Dept. Aercnautics end Astronaubtics Report
No. 376, Stanford University, 1969,

A. T, Fuller, Optimal nonlinear control of systems with pure
delay, Int. J. Control, 8(1968), 145-168,



[11]
[12]
[13]
[14]

[12]

[16]

[17]

[18]

[19]
[=0]
[21]

[22]

78

H. Hermes and J. P, LaSalle, Functional Analysis and Time
Optimal Control, Academic Press, New York, 1969,

K. Ichikawa, Pontryagin's maeximum principle in optimizing time-

delay systems, Electrical Engineering in Japan, 87(1967), 75-83.

R. E. Kalman, Contributions to the theory of optimal control,
Bol, Soc, Mat, Mexicana, 5(1960), 102-119,

G. A. Kent, Optimal control of functional differential equations
neutral type, Ph.D. thesis, Browm University, 1971,

H. J. Kushner and D. I, Barnea, On the control of s linear
functional-differential equation with quadratic cost, SIAM
J. Control, 8(1970), 257-272,

M. R. Latina, Scme aspects of mathematical control problems
with time-dependent control constraints, M. S. thesis,

Brown University, 1970,

E. B. Lee, Optimal control of systems with time delays, Proc.
JACC (Boulder, Col,, 1969) American Society of Mechanical
Engineers, New York, 451.452,

Y. C. Tee, M. R. Gore, and C, C. Ross, Stability and control of
liguid propellant rocket systems, American Rocket Socieby
Journal, 23(1953), 75-8l.

E. B. Lee and L, Markus, Foundations of Optimal Control Theory,
John Wiley, New York, 1967.

B. J. McShane, Integration, Princeton University Press,
Princeton, 194k,

L. Wo Neustadt, Synthesizing time opbtimal control gystems, J.
Meth., Anal, Appl., 1(1960), 48h-Lg3,

L. 8, Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and
E. F. Mishchenko, The Mathematical Theory of Optimal Processes,
Interscience, New York, 1962,

of



[23]

(k]

[25]

[26]
(=7}

79

B. C. Ragg and C. A. Stapleton, Time optimal control of second.
order systems with transport lag, Int. J. Conbtrol, 9(1969),
243 _257,

W. H. Ray and M, A, Solimen, The optimal control of processes
containing pure time delays, Proc. JACC (Atlanta, Ga., 1970)

American Society of Mechanical Engineers, New York, 1970,

L76.-48Y,

W. T. Reid, Solutions of a Riccati matrix differential equa-
tion as functions of initial values, J. Math. Mech., 8(1959) 5
221-230.

R, W. Riskel, private communication,

D. W. Ross and I. Flugge-Lotz, An optimal control problem for
systems with differential-difference equation dynamics, SIAM
J. Conbrol, 7(1969), 609-623,



FIGURE |




FIGURE 2



.

FIGURE 3



FIGURE 4



FIGURE 5






-'.:,.=?..:'==-\.<

FIGURE 7



S S

FIGURE 8

Ui s.!mm--%



FIGURE 9



FIGURE 10



FIGURE I



FIGURE 12



FIGURE 13



rlIGURE 14



/Y= xH
/\./ y=x-|
/ - /
+l/_{__. ___________ 7/
r |
Ll Yy S
N S £ q /
pod 2 )
O e
N | sy, -/
/54 :;\X//@ ya _
A 7 '
i’3 83 g/
Pt
/
/ //
. zh
| /
/
FIGURE 15




FIGURE 16



