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PREFACE

This report provides the results of the Phase 2 portion of the
study, '"Comparative Evaluation of Attitude Control Systems.' This
study was :funded by the California Institute of Technology Jet Propul-

sion Laboratory (JPL) in accordance with Contract No. 952584.

ABSTRACT

#

_The study described in this report had the twofold objective of
i)} selecting a competitive alternative to the reaction wheel attitude
control system ?riginally selected by JPL for tentative incorporation
into a spacqc?aft for a multi-planct mission, and i1i} establishing an
improved basis for evaluation of the merits of the chosen alternative by
increasing design efficiency beyond that incorporated in JPL preliminary

studies of design alternatives.

Attempts to improve the efficiency of the dual-spin attitude
_control system beyond the level assuned in an earlier JPL study proceeded
in two dirvections: i) Unsuccessful efforts were made to justify
reduction in attitude control requirements involving reorientations for
midcourse metor firings. i1i) Methods were successfully developed to
improve the efficiency of propellant utilization in accomplishing
prescribed reorientations. Specifically, the problem of fuel-optimal
small angle reorientation of a dual-spin vehicle is solved, with
. dramatic improvementé over previcusly published responses to this
problem. Results are applicd'(suboptimally) to the large-angle turn
problem, and ﬁfopellant requirements ave estimated for the dual-spin

vehicle on a multi-planet mission.
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1. INTRODUCTION

Selection of an attitude control system for a flight spacecraft
must in a practical‘situation be based on many subjectivély defined
eriteria. Although scrious attempts arc always made to assign numerical
.values to such comparison criteria as weight and power requirements,
these numbers are properly recognized to stem ultimately from educated
guesses based on experience with previous components, and in many cases
the evidence of these numbers is outwéighed by even more clearly sub-
jective judgments of reliability or ease of development on schedule.
These .are the facts of engincering design of complex systems, and they

will not be changed in the immediate future.

Even within a practical contemporary framework, however, it is
recognized that quantification of design criteria is a laudable objective,
and that numerical assessments of the ingrediéntq of a design decision
should be as sound as foreknowledge permits. Yet the pressures of time
rarely permit the detailed development of numerical inputs, and the
choice of an attitude control system is congeéuantly always in a broad

sense suboptinal,

It seems a healthy exercise for an organization engaged con-
tinuously in the selection among design alternatives to pause on
occasion for an introspective period of technical‘assessment, in order
to bring under carefut studf an engineering decision made previously
under the pressures of project development. Such a decision is under

examination in this report.

The Nationai Aeronautics and Space Administration (NASA) has
funded several studies of spacecraft designed to explore the outer
planets. In such an investigation begun several years ago at the
Caltech Jet Propulsion Laboratory (JPL) it was decided on the basis
of a brief but intensive trade-off study that a dual-spin attitude
control system did not compave favorably with a reaction wheel attitude
control system. At that time a reaction wheel system was made the
preliminary choice for a particular multi-planet mission vehicle, ‘

although other options remained under study. Primary remaining

VTN



" contenders were a reaction jet control system employing newly developed

micro-thrusters, and a dual-spin attitude control system.

JPL Contract 952584 was ncgotiatcd with UCLA for cémparatiVe
" evaluation of attitude contrdl systems; it was initiated in July of 1969,
with the.objective of providing first a brief review of the full.spec-
trum of alternatives and then an intensive investigation of an alterna-
“tive to the configuration selected by JPL. Phase I of the study resulted
in a report, dated 27 September 1969, recommending deeper quantitative
investigation of the dual-spin system. It was noted in that report that
in the original trade-off study the dual-spin vehicle sustained a severe
"penalty in meeting the mission demands for commanded turns. By
sharpening the turn requirement specifications and improving the
efficiency of the reorientation maneuvers it seemed that one might
" eliminate the weight advantage originally held by the reaction wheel
system over the dual-spin system. The present report is dévoted_

largely to the investigation of this possibility.

] It may be noted that the rejection of total reliance on
‘reaction jet control in the noted Phase I report was the result of sub-
jective evaluation of flight-readiness of the required micro-thrusters,
based on examination of available literature. Since there appears to
be a substantial weight advantage with reaction jet systems when
recently developed micro-thrusters are used, the design decision must
rest on difficult questions of reliability and engineering feasibility

issues lying beyond the scope of this report or 1ts authors' expertlse

The critical questlon which determines the valldlty of the
weight estimate of the dual-spin system hinges upon interpretation of
the requirements for large angle turns. Both the reaction wheel
attitude control system and the dual-spin attitude control sfstem were
provided in preliminary studies with the capability of making nine
large angle turns, each with the capacity for changing the vehicle to
any desired orientation. Large angle turns are required for midcourse
motor firings before each planetary encounter, and after all but the
last encounter, so for a five planet "gfand tour" mission there are

nine major reorientations.



The decision to require 4r steradian pointing capability for
each turn is a conservative choice for any attitude control system, but
not uniformly so. The fuel cost associated with rotating a reaction
wheel vehicle about any axis is zero, as long as a reversal of the turn
is contemplated (assuming no violation of momentum storage requirements).
The cost for a dual-spin vehicle is zero if the turn happens to be about -
the bearing axis (rotor spin axis); but if the axis of rotation is
transverse to the bearing axis it becomes necessary to exhaust fuel as
required to rotate the angular-momentum vector. Thus for a dual-spin
vehicle it is critical that the turn magnitudes be estimated without
undue conservatism, and it is extremely important to utilize any fore-
knowledge of the rotation axis for required turns. Since the decision
to require 47 steradian pointing capability for each of nine midcourse
motor firings imposed a more severe penalty on the dual-spin system
than was imposed on the reaction wheel system, the first objective of
this study was to examine the midcourse trajectory correction require-
ments in order to determine whether or not this design constraint is

-truly necessary. This question is explored in Scction 2. -

- The second objective of this study was to develop the
analytical and computational tools necessery to accomplish-reorienta-
tions of a dual-spin vehicle in an optimal or near-optimal manner, and
then to use thgse tools to estimate fuel costs for orientation control
during a multi-planet mission. This objective received major emphasis,
and success in its achievement is the major accomplishment of this

study.

Section 3 is devoted to the selection of a base-line vehicle

suitable for studies of fuel-optimal methods of reorientation.

Section 4 summarizes the results of an extensive investigation
_of the problem of fuel-optimal small-angle reorientations of dual-spin
vehicles, a: appropriate for the cruise mede of a multi-planet mission.
Contributions to this topic constitute the Ph.D. dissertation of

V. Larson, attached to this report as an appendix.



In Section 5 the dissertation results are used to estimate
fuel consumption requirements for those large-angle turns required for

a multi-planet mission, as dictated by the results of Section 2.

In Section 6 the control system weight and power estimates for
dual-spin and reaction wheel systems are presented as originallf
developed by JPL, together with modifications of fuel requirements for
the dual-spin vehicle resulting from this study. In addition, the
weight and power requirements of improved baselinec systems studied

by JPL are presented.

Recommendations for further study appear in the final section.



2. ATTITUDE CONTROL REQUIREMENTS

A grand tour mission trajectory involves encounter with as many
as five planets, beginning with Jupiter. As the spacecraft apprpaéhe§
Juﬁiter (perhaps eighteen to twenty days prior to clesest approach), a
midcourse metor is fired to provide an incremental correction to the
vehicle velocity in order to refine the trajectory towards its nominal
state. Another velocity correction is necessary sﬁort;y after Jupiter
encounter. Similar pairs of corrections are required in the vicinity
of ‘Uranus and subsequent planets, until the mission is completed with

the final planetary encounter.

“Throughout the days and years of flight through interplanetary
'space; an antenna of the spacecraft must maintain an earth-pointing
orientation within a specified tolerance, requiring an extensive series
of small-angle turns. In the interplanetary épace beyond Jupiter, a
_tolerance of one milliradian is imposed, and this number increases
linearly with distance to five milliradians near the earth. For this
interplanetary or cruise mode of the mission, dynzmic analysis based on

linearized equations of motion is appropriate.

When in the neighborhood. of Jupiter and subsequent planets it
becomes necessary to fire a midcourse motor in the direction required
for velocity correction, the antenna lock on the earth Is temporarily
relinquished while the vehicle orientation is changed as necessary to
properly point the motor. Subsequent to motor bur the antenna is
returned to an earth-pointing orientation, which is maintained until the
next midcourse correction is required. This process repeats nine times

for a five-planet grand tour mission.

In the absence of specific information to the contrary, it must
be assumed that the velocity increment demanded for trajectory correc-
_tion is of random direction, requiring the capability of reorienting the
vehicle to “ire the midcourse motor in an, direction. This was the .
assumption adopted in JPL's preliminary selection of an attitude control

system for a multi-planet spacecraft. :

If on the other hand it could be established that velocity

{ncrementg would be required only in the ecliptic plane, they by placing



. the midcourse motor (with, autopilét} on the despun platform of a
dual-spin vehicle with rotor axis.normal to the orbital plane, one
could accomplish the necessary reorientations W1th the electric motor
of the despin control system, expending no propellant for angular

momentum vector reorlentatlon.

It is the objectlve of thls chapter to determlne by statistical
estlmatlon vhether or not a statement between the extreme alternatives
of the two preceding paragraphs would. diminish the weight penalty sus-
tained by the dual-spin attitude control system in comparison with the

* .

reaction wheel control system.

" The procedure adopted here involves the mapping of the error
ellipsoid associated with the covariance matrix of position and velocity
errors at orbit injectiocn into errors at Jupiter encounter, and
determining by a similar mapping the velocity'correction ellipsoid
(covariance matrix) required at a given point of the trajectory to

cancel the indicated target error.

) If AI is the six by six covariance matrix of position- and
velocity errors at injection, and AAV is the three by three covariance
matrix of the velocity increments required to correct the trajectory
at a given point of the orbit, then these matrices are related by
T

AA& =P AI P {1}).
vhere P is a three by six matrix available as the product of [C] and a
direction cosine matrix establishing the reference axes of matrices
~generated by the JPL computer program ANAPAR. Specifically, the matrix

P may be written

] = [CIK A KI{U) @)

where [C] is the direction cosine matrix required for transformation to

geocentric ecliptic reference axes from geocentrlc equatorial axes and

Thls objective could not have been met without the analytical and

computational support of A. Khatib of JPL.



the matrices A, K, and U represent matrices of partial derivatives

established numerically in the ANAPAR program for any point in time.

It was the expectation of the principal investigatér after .
discussions with JPL trajectory analysts that the velocity correction
ellipsoids for the several midcourse corrections would be extremely
flat, with little extension in the direction normal to the ecliptic.

If the three-sigma component of the velocity correction in this
direction proved to be sufficiently small, it would be possible to pro-
vide this trajectory correction capability independently of the mid-
course motor, thereby precluding the necessity of large-angle turns

entirely.

A numerical covariance matrix of injection errors typical of
boosters in the appropriate class was provided by JPL, and the corres-
ponding velocity correction covariance matrix was calculated for a
midcourse motor burn at 540 days from launch, approximately 20 days
before closest approach to Jupiter. The'ellipsoid for the velocity

correction did not have the desired flatness property, theredy

frustrating the objective of eliminating the large-angle turns for the

dual-spin vehicle.

Numbers used in the indicated calculation are documented in
what follows:
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1.46720253E+00
~7.20787830E-02
3.567070008-02
5.40521400E-02
1.87504959E-02
~4.32557370E-02

~-6.05011960E+04
~7.39662340E+04
3.555580600E+04
6.70069470E+07
~-1.39577520E+08
~4.21427630F+07

1.25082340E+00
-1.08379100E+01
3.18475870L-05

~-2,65005440E+07

2.42958160LE+08
-6,61353600E+02

1.00000000E+00

-7.20787890E-02
1.87511316E-01
~3.87526260E~01
1.18442682E-02
5.23838010E-03
~1.20019437E-02

4,04708980E+04
7.22347720E+04
~3.292826505+04
-2.91947810E+07
1.200437405+08
3.145323205+07

7.90575000E-02
3.69264300E+00
-8,20689920E-06

2,275370205+07
~1,64722720E+038
4,95103720E+02

0.
8 87413447E-01
-4,60974374E-01

8.56707000E-02
~-3,87526230E-01
1,32149472E+00
-4,29633300E-02
-1,79779818%-02
"4,26056790E-02

1.81426250E+04
3,13350990F+04
-2.027943105+04
~1.59280240E+07
5.54763180E+07
2.33431470E+07

-1,134933105+00
2.01739710E+00
-4.,71707610E-06

6.178513505+06
-6.96132%10E+D7
2.09161250E+02,

0,
4,60974374E-01
8,87413447E-01

5.,40521340E-02
1,18442664E-02
-4 ,29633330E-02
3.72084810E-03
1.40456466E-03
~-3.27112500E-03

~2.,79750190E-03
-3.58427040E-03
1.732344305-03
2962565605400
~6.643789908+00
-2 .00151390E+00

1.87504938E-02
5,23837920L-03
~1,797798185-02
1.40456463E-03
5,373839105~04
-1.25093625E-03

6.96135670E-04
1.01205770E-03
~5.06967030E-04
~6.67380390E-01
1.80879020E+00
5.59557670E-01

-4.325573408-02
-1.20019449E-02
4.26056820E-02
~3.27112470E-03
~1.25093625E-03
2.,91872616E-03

3.98763880E-04
5.76319760E-04
~2.45696340E-04
-3,68901220E-01
1.01082270E+00
2.512419208-01

3)

4)

(5)

(6)

(73



. The covariance matrix AAv.from Equations (1)-(7) is

———

A

Av 2.95048721E+00 8,92794381E-01 -1.78220161E+00 . (8)

,z'[.9.76255387E+00 2.95048724E+00 -5,88235777E+00
~5.88235778E+00 -1,78220163E+00 3.56300031E+00

providing orz sigma values for veloecity increments in directions Xx,y,

and z of
o, = 3,124 km/sec
&y = 0.945 km/sec . )
o, = 1.888 km/sec

Since the z axis is normal to the ecliptic plane, the corresponding
ellipsoid certainly does not:have a dimension in this direction of the

anticipated small relative size.

The conclusion of this chapter is thus disappointingly negative.
With the acknowledgment that velocity corrections imn all directions have
comparable statistical likelihood (as assumed in the original JPL
attitude control system trade-off study), the prospect of overcoming the
weight advantage held by the reaction.wvheel system over the dual-spin

system is much reduced,

There remains the possibility of reducing propeliant weight
estimates by more efficient use of fuel in accomplishing the required
turns. Determination of a fuel-optimal control law is a task of sub-
stantial analytical and computétional complexity, as may be judged by
the dissertation here attached as an appendix. Success in this
endeavor cannot be expected however to accomplish the reduction in
propellant weight demanded to overcome the weight difference between
reaction wheel and dual-spin control systems as originally estimated
by JPL.



'RECEDING PAGE BLANK NOT FILMED &

3. DUAL-SPIN VEHICLE PARAMETER SELECTION.

In this section, the values of the dual-spin vehicle parameters
used in computing the fuel-optimal controller are given. In this éork,
no attempt is made to find the optimal parameters; instead, the )
fuel-optimal controller is determined for a configuration which is
believed to be appropriate for the Nﬁlti-?lanet Mission. The parameters

that enter the analysis are

{1) h/Il, the ratio of the stored angular momentum h and the
transverse inertia of the vehicle I1

(2) o, the rotor speed relative to the despun portion

(3) KX, the ratio of applied moment M and transverse inertia I1

4) r,RFhe ratio of the rotor inertia about the spin axis

J3 and the transverse inertia of the system Il'

Estimates of these parameters depend on

(1) The inertia characteristics of the system

(2) The external torque environment

(3) The geometry of the vehicle -

(4} The assumptions‘made concerning the orbit (the
out-of-plane drift, etc.)

(é) The accuracy requirement.

3.1 Determination of the Estimates of the System Parameters

In this section, estimates of the system parameters are
determined. The inertia characteristics of the vehicle are determined
primarily by the need for a configuration which allows the mission
objectives to be satisfactorily achieved. The need for such components
as the

(1) despun platform

{2) antenna

(3) vrotor

(4) planetary encounter instrumentation
(5) jets

11



coupled with a consideration of the mission requirements determines the
weight and geometry of the system. In this analysis, it is assumed
(somewhat arbitrarily) that the transverse inertié the symmetric vehicle
is 200 slug~ft2, and that the ratio of the inertia of the rotor about
~ the spin axis (JSR) apd the transverse inurtia of the system (Il) is
0.15, i.e.,

R

- 3 _
r--I———--O.IS

i

L]

The external torque depends on the geometry of the vehicle and
its position (distance from the sun). The maximum torque due to solar
radiation for the TOPS vehicle was'previously estimated as 50 dyne-cml*
If the spacecraft (s/c) were configured 2s shown in Figure 3.1, the
torque due to solar radiation would be relatively large. An indication
of the magnitude of the solar radiation torque for such a vehicle at the

earth's surface is provided below.

Item Value of Fquation

@ Solar radiation pressure

.of 1 AU,
Absorption p. & 0.456 dyne ~ 9_7x10‘8 1b_
0 2 2
n ft
Perfect Reflection P, = 0.91 QX%E-
: m
G Parameters ‘
. Area A = (7.5)% £t°
Lever Arm L =10 ft
06 Solar Radiation Torque Ty= paAz
T = 2300 dyr1e—c:rn=1.7:':].{)"4 ft 4

*
This estimate was obtained during an informal conversation with Ed
Dorroh of JPL.

12
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This torque is over 40 times larger than that for the TOPS
vehicle.* ' '

3.1.1 Stored Angular Momentum, h

. In this section, an estimate of the angular momentum that is
stored in the rotor is obtained. First, it should be noted that the
optimal value depends on the nature of the mission. The mission con-

sists primarily of two portions, viz., the

(1) cruise portion in which & large angular momentum is
desirable
(2) 1large angle turn mode in which a small stored angular

momentum is desirable.

The angular momentum h that should be stored in the rotor, for the

cruise mode, is dependent upon the

(1) disturbance torque environment
(2) out-of-plane angle of the orbit (assumed small in the
analysis).

By selecting a range of values for h and by using the maximum
value of the external torques, the drift rate of the angular momentum
vector can be determined. The drift rate is important since it
determineé how frequently the jets have to be fired in order to keep the

"angular momentum vector properly oriented. Estimates of the drift rate
B (in the vicinity of Jupiter) based on
p = A VE L

’ . *&
are provided below (see Table 3.1) for various values of TO and h.

-

*This value could be decreased by mounting the rotor closer to the
antenna, i.e., by decreasing the lever arm associated with the solar

radiation force.

**The solar radiation torque is approxim:ted as T, =T, - 1/R2

where Tb
R

solar radiation torque near the earth

.distance from the 'sun in a.u. (R=5 for Jupiter).

13
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Table 3.1

DRIFT RATE OF ANGULAR MOMEJTUM VECTOR DUE TO DISTURBANCE TORQUES
{SOLAR RADIATION) NEAR JUPITER :

) - *  deg . **

Angular Drift Rate B day for Various TD (Dyne—Cm):
gzmgnzzz’ h T, = 50 T, = 100 T, = 500 T, = 2000
100 .0072 .0148 .0732 292
200 .0036 . .0072 - .0364 .148
300 .0024 .0048 - 0244 - .096
500 0016 .0028 .0148 .06

Based on the results of Table 3,1, a range of values considered appro-

priate for h is
200 < h < 300 ft-lb-sec

3,1.2 Determination of the Rotor Speed

The rotor speed can be determined from the assumed values of the
parameter T = J /I = 0.15 and the stored angular momentum h. For
values of h between 100 and 500 ft-lb-sec, the corresponcing rotor speed

¢ is computed fron

¢ = h _ _h
- R
r I1 J3
and is tabulated below (see Table 2.2).
Table 3.2
ROTOR SPEED VERSUS STORED ANGULAR MOMENTUM
Angular Momentum h Rotor Speed,o
h = JSRU (ft~1b-sec) (RPM)
- 100 30
' 200 60
300 100
500 150

.*The drift rate B is
. T,
B = 0.014604 — deg/day

**One ft- lb 1.35582 x 107 dyne-cm.

15



3.1.3 Determination of the Ratio of Applied Moment and Transverse

. Inertia, X

The system parameter K defined by

depends on the

(1) stored angular-momentum,,h
(2) 1lever arm of jet
(3) allowed reorientation time

(4) reorientation accuracy.

From the expressions

AB
MA = h it
. MA = FA r

_the required thruster capability is

The term A8/At, the reorientation rate, provides a measure of the
desired response time. The’orientation tolerance is approximately 0.06
degrees.* An estimate of the reorientation rate can be obtained by
requiring that an angle corresponding to 100 times the tolerance (con-
sistent with small angle approximation) be nulled within 30 seconds.

Using this criterion, the response rate for the cruise mode becomes

Ag 6 deg _ 0.2

A8 deg 3 M
At ~ 30 sec SeC sec

e
This tolerance applies for the Jupiter to Neptune portion of
the mission.

16
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The values of K are provided below (Table 3.3) for reasonable ranges of
the rotor radius, the stored angular momentum, and the reorientation

rates. As seen in Table 3.3 a reasonable constraint on X is

0.001' < K < 0.005 —
. sec
3.2 Values of Parameters Used in the Numerical Work

. . Based on the discussion provided above, the values of the
dual-spin vehicle parameters to be used in the numerical determination

of the fuel optimal controller are

. T = 0.15 (dimensionless)

h - 300 ft-ib-sec = 1.5 ;gg )
Il- 260 slug—ftz- sec
M
K== 0001 2=
sec
1
g = 10 rad *
sec

*
One rad/sec = 9.549 rpm.

17
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.Table 3.3

. *
RATIO OF APPLYED MOMENT AND TRANSVERSE INERTIA

Rotor Radius, T

Angular Momentuni, h

Thrust, FA (m1b)

Ratic of Applied Moment and

Transverse Inertia, K( 1?)’
sec

(=) (€2 # sec) A6 omr | A6 gmr |l A8'_ . omr Ao - omr
At~ " sec | At sec At 7 sec At T 3 sec
2 200 100 300 0.0010 0,0030 )
300 150 450 0.0015 0.0045 .
4 200 50 150 0,0010 0.0030
300 75 225 0.0015 0.0045

i
Computed for the case in which

!

F =

= 200 slug-ft’

R
I3

= 0.15
L




4. FUEL-OPTIMAL CONTROL IN THE CRUISE MODE

In this section, the fuel-optimal control of the symmetric
dual-spin vehicle described in Section 3 is briefly discussed (see’
Appendix 1, for a.detailed treatment of this topic). The control con-
-cegt is a hybrid attitude control scheme consisting of (see Figure 1.1

of Appendix 1)

(1) =an active phase in which the angular momentum vector H
is aligned to the desired direction ED (angular momentum
control, AMCO},

(2) a passive phase in which the nutation damper is used to
complete the control objective of aligning the rotor spin

' gxﬁs and the desired angular momentum vector Hp.
In the cruise mode, the objective of the attitude control

system is to maintain the desired orientation of the rotor axis (and

‘hence the antenna}. Since the tolerance on the antenna pointing

accuracy 1s stringent (0.06 deg at Jupitér and beyond), the deviations

from the desired orientation are perforce, small. This implies that the
attitude angles of the rotor axis can validly be assumed to be small
during the cruise mode. A 3-axis control scheme is, of courses, needed
to accomplish the control task. The control of the despun portion about
the spin axis is considerably simpler than the control of the vehicle
about the other two axes. Essentially a motor-controlled closed-loop is
used to ensure that the antenna tracks the earth. The emphasis of this

study is on the control of the pitch-roll motion of the spacecraft.

The fuel-optimal control problem {L, 4, Q, XO, Xl, J} for the
symmetric dual-spin vehicle in the cruise mode simply stated is as

follows. Given

(1) - the linsar plant*

(L) % = A x(t) + B(t) u(e) in ¢’ in RV

*
See the List of Symbols of Appendix 1 for a definition of symbols used.

19

97



(2} the class of, admissible controllers A
(3) the control restraint set
{4) the initial set Xo

Xo¥k§§):§ﬁb)¥§o'ﬁtw®}

(5) the target set Xl

X = fet) 1 g5loty) =0 V3, € frec) -

(6) the cost functional J (that appropriate for

. fuel-optimization),

the problem is to find the controller u(t) C @ which

(a) takes x, to X, such that the pair

1
(E‘(tl)’ tl) € Xl

(b) minimizes the cost functional J(u).

In the above problem statement, it is important to note that the
control restraint set @ is chosen after carefully considering the
'practical aspects of the problem. It depends on the type of jet used
for control, the number of jets used, etc. The target set Xl is
determined from a consideration of the implications of aligning the
angular mﬁmentum vector H to the desired direction ED' The cost func-
tional is that appropriate for fuel-optimization and depends on the con-

trol restraint set Q.

4.1 Nature of the Elements of the Control Problem {L,Q,XO,XI,J}

In this section, the elements of the fuel-optimal control problem
{L,Q,XO,XI,J} are briefly discussed (see Chapter 3 of Appendix 1 for move
details).

Plant

The plant which characterizes the dual-spin system is described
below (see Figure 4.1 for the definition of the elements of the state
vector). The plant is obtained as a special case of a general and

powerful formulation suitable for an elastic constant mass system (see

20
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~Notes:

1. Aa form basis for Newtonizn frame

o

2.

[T

o, form basis for body frame A

form basis for rotor frame

-
1

W
.IQ-t> |

4. Rotation sequence: 1—-2-3

i Figure 4.1 Coordinate Frames for

the Dual-Spin Veh_ig!g__
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- Chapter 2 of Appendix 1).. The equation representing the dual-spin

vehicle in the cruise-mode is

x = A x(t) + B(t) u(t)
vwhere 0 S L,
- ] .
A=1%° 0 P
-------- - 4.1) -
I T o (4.1)
cot
B(t) u(t) = | 59t | ¢y
0
“1
R
- - 62

The coordinate frame used in writing Equation (4.1) is the despun body -
A and the angular velocities w0y 0, refer to the indicated components of

the angular velocity of frame A relative to the inertial frame N.

Control Restraint Set D

The control restraint set suitable for the application at hand
depends on the type and the number of jets used. The notion of control-
1ability is used to demonstrate that the minimum number of jets required
is one (see Chépterr4 of Appendix 1) and the notion of system normality
js used to demonstrate that the preferred location of the jet is the
rotor (see Chapter 4 of Appendix 1). The implications of the necessary
conditions for optimality (see Chapter 5 of Appendix 1) are used to
demonstrate that the preferred type of jet is a one-way jet; 0f course,
a two-way jet could be used withone side of tﬁe.jet providing‘thé neces-
sary redundancy. , The main advantage of the one-way jet é’as compared to
the two-way jet ¥ is that of greater relisbility. This follows because
the number uf switchings (firings) of the one-way jet is one-half that
for the two-way jet (see Chapter 5 of Appendix 1). It follows therefore

that the control restraint suitable for the problem at hand is

g = {u(®): 0-§_u(t) < 1} (4.2)
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Initial Set Ko

The initial set xo consists of the particular pair_(go, to)
which exists at the time that the relationship

. . . *’
-H2”={<§,2> <eé

is not satisfied. The value8 refers to the tolerance on the antenna
pointing accuracy; the optimal control sequence must be initiated when
the norm of B becomes as great as ec.‘ The value of'ec is approximately
5 mr near the earth, and 1 mr near Jupiter and beyond. It is tacitly
assumed that appropriate sensors for measuring X, would be provided for

in the event the optimal scheme were to be implemented.

. Target Set Kl-

The target set X for the AMCO concept used for the symmctrlc

dual-spin vehicle in the cruise mode is
Ex
=t gx(t)) =0, = 1,2} (4.3)
where

g(x(t,)) = (t;)
=1 0 1 -ra 0 = 1

This target set .is said to be a smooth two-fold in R". Examination of
Equation (4.3) reveals that it is a linear menifold and hénce is convex,
In addition the set X is closed. However, the compactness of % is
guaranteed only if the set Xl is bounded. From practical considerations,
it is clear that the control problem would not make any sense if the

elements of the state were not bounded. The fact that x(t) is bounded

*The comporents of 8 are the attitude angles 61, 62.
**The components of g refer to the components of H transverse to

ED'
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¥ t guarantees that xl islbounded and hence is compact.*. Stated in
another way, the boundedness of the initial state X, and the fact that
the optimal control sequence is such that the resulting state

x(t) f-Klfo’ it follows that the state is bounded‘Vt(K1 is some

arbitrary constant).

Cost Functional J

The cost functional J associated with fuel-optimal controller,
having determined that the control restraint set appropriate for the
application at hand is as given in Equation (4.2)

- tl

e =S

It should be noted that this differs from that usually associated with

¢ Kut)de (4.4}
0

"fuel-optimization of nonspinning vehicles. For spinning vehicles, the
spin itself provides the direction of control and hence ensures that the
requirement that both positive and negative moments be available for

control is satisfied.

4.2 Necessary Conditions for Local Optimality

In this section, the necessary conditions for local optimality
are provided. These conditions can be obtained either from the calculus
of variations or from Pontryagin's maximum principle (see Chapter 5 of

Appendix 1). The necesSary conditions

(1) provide information concerning whether the problem is
normal or singular, . . .

(2). provide information concerning the nature of the optimal
controller so that the most appropriate controi restraint
set can be selected,

{(3) aid in the selection of a computational technique,

&
Even for practical problems it is necessary to demonstrate the com-
pactness of the target set X, to ensure that there is even a chance that

an optimal solution exists.
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{4) provide the basis of every computational technique

save the gradient method.

The necessary conditions for the symmetric dual-spin vehicle in

the cruise mode are:

(1) Hamilton's canonical equations
X(6) = £60u,t) = 55 Gowp,t) = AX() + b(t) u(®)

. (4.5)
. | T :
cpE) = - = - A p(t)
. (2) The boundary conditions
x(t)) = x, , g
ag T (4.6)
Rty =15l ¥
t=t, - —
wvhere v is a constant vector to be determined.
(3) The condition on the Hamiltbnian+
) * *x
H (tl =0 (4.7)
(4) The optimality condition
w (t) = heviq () -1} = hev{< b(t), p (£)>-1} (4.8)

vhere .-
0 if q(t) < 1
hev{q(t)-1} =

1 if q(t) » 1

The Heaviside function (see Figure 4.2) is appropriate in this case
because a one-way jet is used instead of a two-way jet. Conventionally,
the fuel-op:cimal contxoller is expressed as a dez function (in this

case, the control is constrained according to [uj|‘§_1).

'TThe Hamiltonian is defined as

_H= <p, é? »fo

where fo is the integrand of the cost functional.
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4.3 _ Computational Algorithm

The computational algorithm used in computing the fuel-optimal

controller is briefly described in this section (see Chapter 6 of

Appendix 1 for more details). The algorithms that are suitable for this

task are

(1) the gradient technique,

{2) ° the generalized Newton—Raphsén (GNR) technique or the

method of quasilinearization,

(3) the classical Newton-Raphson (CNR) technique,

The advantages and disadvantages of these techniques as well as others

are provided in Table 6.3 of Appénéix 1, The iterative nature of the

computational ‘techniques can be seen by examining Table 6.1 of Appendix

.1 vhich is provided below for convenience (see Table 4.1).

Table 4.1

ITERATIVE NATURE OF COMPUTATIONAL TECHNIQUES

Computational technique

Equations nominal
Solution satisfies

Equations iterated on

Direct methods

Gradient

State equations:
Adjoint equations

Boundary conditions
Optimality conditions

Second variation

Indirect
Classical Newton-
Raphson

State equations
Adjoint equations
Optimality conditions

Boundary conditions

Generalized Newton-
Raphson

Quasilinearization

Bounda;y conditions

Optimality conditions

State equations

Adjoint equations

With due consideration to such aspects as

(1) the nature of the optimal controller and the relatively

large number of switching times,

(2) the normality of the fuel-optimal problem being studied,

{3) the relatively low dimension of the problenm,
(4) the fact that the final rather than the initial

adjoint variables‘are involved,
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(5} the theoretigal disadvantage concerning the violation
of the differentiability hypothesis for both the
gradient and GNR techniques (for fuel-optimal problems
in vwhich two-way jets are dsed),*

(6) the ease in which the control constrainfs are handled
in the CNR technique,

(7) the computer storage requirements,

(8) the fact that only very §ma1i'deviations from the

nominal trajectory are allowable,

the CNR algorithm is considered suitable for the determination of the
fuel-optimal controller for the symmetric dual-spin vehicle in the
cruise mode. Concerning item (8), for the application under consider-
ation, the antenna pointing accuracy requirement is such that the
-.optimal control sequence would be initiated when the pointing error is
greater than one mr.** This implies that the values of the state
variables must be kept close to the nominal or desired values. This
aspect is very important when the CNR technique is used (because of

the nature of the iterative scheme},

The use of the CNR method appears appropriate for the problem
beiﬂg investigated. In general, however, the CNR technique is seldom

appropriate for optimal control problems.

4.3.1 Iterative Nature of the CNR Algorithm

In this section the iterative nature of the CNR algorithm is

briefly discussed. Inherent in this technique is the equation

Fy =20 . (4.9)

which must be solved iteratively for y. The n and n+1th elements of the

vector sequence {Zn} are related by

| *Initially toth two-way jets and one-way jiets were considered. 1In
addition, if the spin rate of the vehicle were slow and the forque
capacity low, then two-way jets might be desirable for certain problems.

**The pointing accuracy requirement is one mr ncar Jupiter and beyond;

near the earth 5 mr would be allowable.
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_ "oF
A e ) Ely) (4.10)

The iterative procedure consists of the following steps:

(1) guess an initial value qf the constant vector y
and call it Yoo )
(2) wusing Yo sclve simultaneously the.state equation,
the adjoint equation, and the optimality equation
and obtain Eﬁzo),
{(3) evaluate 3F/3X.(Zo) numerically and compute its inverse,
(4) obtzin b4} from Equation (4.10),
(5) repeat the process until ]Ifjxn)lij_é.

For the symmetric dual-spin vehicle in the cruise mode, the
- . o F
vectors F and y have components (dngl, Hz) and (vl,vz,tl),

respectively.

4.4 Fuel-Optimal Controller

In this section the numerical results obtained for the problem
being investigated are provided (see Figures 7.1 through 7.4 of
Appendix 1). The results are obtained for an initial condition of
special significance in the fuel-optimal control problem pertaining to
.the symmetric dual-spin vehicle in the cruise mode. The initial con-
dition refers to components of the initial state vector P the
numerical results are obtained for the case in vhich the components of
X, are (0,0,5 mr,0) where 6,= 5 mr refers to the allowable tolerance on
the antenna pointing near the earth. The results for this carefully
chosen inifial condition can be used to estimate the fuel consumption

during the cruise mode of the mission.

- * - . - a 1] - -
The optimal controller u (t) obtained for the initial condition

" described above is shown in Figure 7.1 of Appendix 1. For this case,

+3fis the Hamiltonian and HI’HZ are the components of the angular

. . . A
momentum transverse to the desired direction ED'
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the controller is tﬁrned on for one half of a rotor revolution and
turned off for the other half, The number of switchings involved is 74
and the time used to drive the initial state x, to the target set is 22
. seconds. The value of the cost functional

- tl .
@ =f 2 rua
. 0
associated with the minimum fuel problem is
T J(u) = 0,0109 1/sec

By using the mass flow properties of the jet used, the amount of fuel
consumed in accomélishipg the control objective can be computed. That

is, by using the relation involving the cost

C t
J () =ft1 —%-i—u(t]dt
. [ 1
and the relation between the maximum jet thrust F and the specific

impulse I_ of the cold gas
Fes I_W,

the weight of fuel in pounds is given by
t ) 1 .

g - =2 4.11
Fuel = tho W u{t)dt = st T J() ( )

For a system having the values

I, = 200 slug-ft’
is = 70 sec ]
r.= 4 ft (lever arm, the radius of the rotor)

LVIl = 0.001 rad/sec

the‘relationship between fuel and the cost functional J(u) is

* 5
W = = X J{u)

The fuel used in driving the Initial state X, to the target'set-x1 for
the case discussed sbove is ’

* .
W %-x (.0109) = .00779 1b.
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For the dual-spin vehicle .being studied, the initial antenna misalign-
ment of 5 mr corresponds to an initial transverse component of angular

momentum of
Ahc =ho = 300 x 5 X 10"3 = 1,5 ft-1b-sec.

In Figure 7.2 of Appendix 1, the transverse component of the
angular momentum vector is showﬁ versus time. It is seen that each
firing of the jet reduces the magnitude of the transverse angular
momentum., During the off peried, the transverse angular momentum is

“constant. This xesult is as it should be since H is conserved in a
torque-free environment. The behavior of the transverse angular
momentum depiéted in Figure 7.2 allows the fuel consumed for other
initial conditions (compatible with the small éngle approximation) to
be estimated. That is, if a value of Ah is known, the fuel consumed in
counteracting this angular impulse ir

* A‘h *®

A ) 4.12
W Ahc x W, ( )

It is of interest to compare the estimate of the fuel based on Equation

(4.11) with that computed according to the approximate relation

' t t. . '
L =f1pdt:xf1wat=1xw (4.13)
T mp t, s/t s
where Imp refers to the total linear impulse, and

#h refers to the total angular impulse.

From Equation (4.13), an estimate of the weight of fuel consumed in

counteracting an angular impulse of 4h is given by
¥=bh 1 (4.14)
. & Is'

In particular if Ah = Ahc then

1‘;5 X =% = 00536 1b.

=?
n

0
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This estimate is smaller than the optimal value; this indicates that the
approximation is not sufficiently conservative. The ratio of the two

estimates is 1.45, i.e.,
- - X
W = 1.45W (4-.15)

Figure 7.3 of Appendix 1 shows the trajectory in angular momen-
tum space. Initially, the transverse components of the.angular
momentum are '

(HI’HZ} = (0, -1.5) ft-lb-sec.

Each time the jet is turned on, the I, component is decreased. The
half waves correspond to the on-cycle of the contreller. During the

off-time, neither Hl noxr H2 varies,

4.5 Estimates of Fuel-Consumption for the Cruise Mode

A

The estimate of the fuel required for attitude control durihg
the cruise mode is provided in this section. This estimate depends on

estimates of the contribution made by

(1} Solar radiation torque,
(2) Micrometeriods,

(3) Gravity gradient effects,

to the total angular impulse. In addition fuel is required for fine

turn control and for tracking the variations in the earth clock angle.

The contribution made to the total angular impulse by solar

radiation torques is approximately given by

t ~t S
. f (£ L 1
BH = fo Tp e _fo R (4.16)
vhere T, js the solar radiation torque near the earth's
‘surface,

R is the distance from the sun in a.u.

The distance R can be approximated as

R.~-1

t _(4.17)
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- where t. is the final valye of t (mission time) and R is the distance
from the sun at the end of the mission (Rf = 30 a.u. in this analysis).
Substitution of Equation (4.17} inteo Equation (4.18) yields

t t
£ 1 _ £
AH Todl.o 5 dt =T [—————~—]

1l

SR (1+KE) o | 1+K tf
te ty :
= TO Rf—l = TO 5 ff-lbisec. ) (4.18)
1+ te .
tf £
4

The value of T, was estimated previously as 1.7 x 107" ft-1b (see
Section 3) and the value of te at Neptune is approximately 3.36 x 108
sec, Substitution of these values of 'I‘0 and tf into Equation (4.18)

yields

AHSR = 1900 ft-1b-sec. (4.19)

However, since no fuel is required in counteracting the effects of solar
radiation torque about the spin axis, the effective angular impulse that
must be counteracted can be taken as

~ ._1 _
AHSR =z X AHSR = 950 ft—1b~sgc.

This value is roughly the same as that given in Reference_l. In

Reference 1, the contributions made to the total angular were estimated

as
Item Angular Iﬁpulse (ft-1b-sec)
Solar radiation torque (pitch) 700
Earth tracking (pitch) 200
Fine turn contrel 80
Micrometeriods 60
Gravity gradient 40

The amount of fuel required to counteract such an angular impulse is
(from Equation {4.12))

£ ph * 1100 _ o )
W K}—l: X WC 1.5 x (.00779) = 5.7 1b.
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' . 2
This estimate is slightly'less than that calculated by Mankovitch.
Mankovitch's estimate is

W= 8 1b.

This implies that only 2.3 1b of fuel cousd be saved furing the cruise
“mode for utilizing an optimal control scheme for the pitch-roll motion
of the S/C. This comparison is not completely valid because the
vehicle considered in this work is not exactly the same as investigated
by Mankovitch. .Nevertheless, .the comparison provides an indication of
the fuel savings that could be realized by using an optimal control

scheme.

The calculation discussed above does not include the fuel
required for spin maintenance nor dues it include that required for

large angle turas.
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5, FUEL-CONSUMPTION ESTIMATES FOR LARGE ANGLE TURNS

In this section, the estimate of the fuel required for the
large angle turns is provided. As stated in Section 2, the large angle
turns are required because the desired velocity correction that must be
jmparted to the vehicle by the midcourse notor is not necessarily in the
yav plane. Hence, the only way the large angle turns could be avoided

is by using two midcourse motors.

The duration of the study was-not sufficiently great to allow
for the deiermination of the fuel-optimal controllex for the large angle
turn mode. Nevertheless, an estimate of the fuel required for this

task can be computed from

~ Ah 1
W-= -'-':Q'-X I

s
where £ is the lever arm of the bipropellant system.

‘In this work it was determined that the use of a bipropellant system
located on the despun platform in such a way that the lever arm is maxi-
mized is more suitable (in regard to weight savings) than the use of

rotor-fixed jets for accomplishing the large angle turns.

_ The midcourse motor is located on the rotor (along the spin
axis), since an autopilot is not reqﬁired for this location of the
motor. - The bipropellant system could be located either on the rotor
or on the despun portion. In this work, it is arbitrarily assumed that
it is located on the despun platform in such a way that the lever arm

is maximized.

Since the direction of the thfust can be oriented in the yaw
plane by turning the despun portion to the desired direction, the maxi-
mum orientation angle for which mass expulsion is required is 180°.
However, after the correction has been made the vehicle must then bé

. reoriented to the desired direction. The Ah associated with a 180°

turn is

th = h,- hy = 300-(-300) = 600 ft-lb-sec

assuming that the stored angular momentum is nominally 300 ft-lb-sec.

. . . o .
The angular impulse associated with ten 360" turns is
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Ah = 12000 ft-1lb-sec.

"The value is roughly one half that estimated in Reference 1. This is
probably due to the fact that the stored angular momentum in Reference
1 is twice as great as that used in this work. As pointed out in
Section 3, it is desirable to have as small a value of stored aﬁéular :
momentum as possible for the large angle turn mode. From Equation
(4.14), the fuel required for importing a total angular impulse of
12000 ft-lb-sec is '

12000 _ 1 _
—- 7 x—5—0—6.861b

for the case in which the lever arm is 2= 7 ft. By scaling this result,

W

according to Equation (4.15}, an estimate of the fuel required if an
optimal controller were used is

o ~ :
W =1.45 x W =10 1b.

According to Reference 4, an estimate of -the weight of the bipropellant
system {(not including the propellant) is 20 1b. Hence the total bipro-
pellant system weight is 30 1b. This estimate is 3 1b less than that

given in Reference 2.
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6. COMPARISON OF ALTERNATE CONTROL SYSTEMS

In this section, a brief comparison of alternate control systems
is provided. The potential methods of attitude control for the
Multi-Planet Mission (MPM) were discussed'qualitativelx in the Phase I
report of this study (see Reference 5}. in that report, the most suit-
able methods of attitude control vere identified (see Table 6.1) and
the relative suitability of various attitude control systems having the
most potential for the MPM was qualitatively discussed (see Table 6.2).
From Table 6.2, it is seen that the systems having the most potential
for the MPM are ) )

(1) the momentum wheel system using mass expulsion
for unloading the wheels,
{2) the dual-spin vehicle using reaction jets for

attitude control.

The main objective of this phase of the study, the determination
of the optimal dual-spin system, has already been discussed (see
Sections 4 and 5). A sccondary objective is the comparison of the-
optimal dual-spin system with alternate control schemes (in particular,
the momentum wheel system using mass expulsion for unloading the wheel).

A qualitative discussion of the attitude control schemes based on

(1) mass expulsion only,
(2) solar radiation for a secondary means of control,
(3) spin stabilization,

(4) @G's for momentum storage

was provided in Reference 5 and hence will not be repeated here. In
this report the momentum wheel system and the dual-spin systems are
first qualitatively compared, and then quantitative estimates of the
system weight and the power requirements are provided. The estimates of

* the system weight and power requirements are based on Reference 2.

6.1 Implications of the Mission Requirements on the Momentum

Wheel System

In this section, the implications of the mission requirements

(see Reference 5) are qualitatively discussed in relation to the
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Table'é 1

CLASSIFICATION OF METHODS OF SPACECRAFT CONTROL IN REGARD TO SUITABILITY FOR THE
MULTI~PLANET MISSION (MPM)

Item Representative examples Suifability
Relatively Unsuitable Suitable
System Categories Passive X
Semipassive X
Semiactive X
Active x
Hybrid x
Actuation Methods '
Incident momentum Solar radiation pressure
Interaction with Gravity gradient effect X .
ambient fields Magnetic torque X
Expelled momentum
Gaseous propeliant Cold gas (N,} reaction jet X
Solid propellant Subliming solid (hot tip) X
Liquid propellant’ Hydrazine plenum : X
Electrochemical Resistojet x {flight worthiness not
sufficiently demonstrated}
Internal momentum * Reaction wheel X

storage Fluid flywheels b
Reaction sphere X
CMG's . .
Dual-spin vehicles , X
Stabilization Technique Spin x
Environmentably stabilized X




“Table 6.2

CLASSIFICATION OF SYSTEMS HAVING MOST POTENTIAL IN REGARD TO
THEIR SUITABILITY FOR THE MPM

Potential Systens

Suitability for MPM

Relatively Unsuitable

Suitable

0 Actvation Methods

Combination of incident
momentum (solar radiation
pressure)}, internal
momentum storage {reaction
wheels) and expelled
momentum (reaction jets).

Expelled momentum (mass
expulsion} alone. .

Combination of internal
momentum storage (reaction’
wheels) and expelled
mementum (reaction jets).

Dual-spin vehicle

© Stabilization Technique
Spin stabilized

Environmentally stabilized
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momentum wheel system. The main factors to be considered include

(1) antenna pointing accuracy,

(2) . trajectory corrections,

(3) orientation of the planetary instrumentation
. package,

(4) high reliability.

In regard to the requirement for accurate anterna pointing, no
mass expulsion is required to track tﬁe garth. In addition, the amount
of fuel consumed is not dependent on the deadband size as it is for
attitude control systems using mass expulsion only. 1In achieving the
desired antenna pointing accuracy, mass expulsion would be required only
in the rare event that the system is subjected to a continuous
disturbance.

Concerning the trajectory corrections that are required, no
mass expulsion is needed for orienting thé S/C to the direction of the
desired Av. This factor is one of the most important considerations in
the qualitative comparison of the momentum wheel system and the
dual-spin system. An active autopilot is necessary for TVC (Thrust
Vector Control).

Concerning the precise orientation of the planetary dnstru-
' mentation package, no problem areas are expected. In addition, no mass

expulsion is needed for counteracting reaction torques.

Concerning the requirement for high reliability, the momentum
wheel system is considered adequate since a redundant set of momentum

wheels can be easily incorporated.

6.2 Implications of the Mission Requiiements on the Dual-Spin System

In this section, the.implications of the mission requirements
* are qualitatively discussed in relation to the dual-spin system. The
same factors mentioned in connection with the momentum wheel system

are considered.

In regard to the requirement for accurate antenna pointing,

mass expulsion is not required for tracking variations in the earth's
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cone angle, but mass expulsion is required for tracking variations in
the earth's clock angle. If the reaction jet is rotor-fixed, only one
jet is required for two-axis control. In addition, if the "jet is

rotor-fixed, leakage torques average out.

. Concerning the required trajectory corrections,_é relatively
large amount of fuel (10 1b) is needeﬁ for making the ten large angle
turns. However, this value is somewhat conservative since it is based
on 360° turns, in some cases, thé required turn may be considerably
less than this. If the midcourse motor is mounted along the spin axis
of the rotor, no autopilot is required. It will be seen later- that it
is not the weight of the fuel requ1red for the large angle turns that
‘1s cr1t1ca1 1t is the weight of the blpropellant system as a.whole

that is the cr1t1ca1 factor.

Concerning the precisely oriented planetary instrumentation
package, no problem areas are expected. .In fact, the -dual-spin vehicle
is espec1a11y suited for missions in which there is a simultaneous

‘requirement for earth communication and planet observation.

Concerning the requirement for high reliability, a problem area
exists in that it is difficult to achieve redundancy for a critical
component — the spin bearings!

6.3 Comparison of thé Weight and Power Requirements Associated
With Attitude Control

In this section, estimates of the weight and power requirements
associated with attitude control-are provided. Estimates of the fuel
consumed for the dual-spin vehicle ;n the cruise mode and that consumed
jn the large angle turn mode have already been discussed (see Sections
4 and 5). Tables 6.3 and 6.4 (based on Reference 2) provi ide the weight

and poweT requlrements associated with the attitude control task.

Usirg the fuel optimal controlle: for the dual-spin vehlcle it
is estimated that the fuel weight can be reduced by 2.3 1b during the
‘cruise mode (5.7 1b rather than 8 1b). 1In addition, the estimated
weight of the bipropellant system used for accomplishing the large angle
turns is 3 1b less than that given in .Table 6.3, (30 1b rather than
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33 1b). Hence, the estimate of the total weight associated with the
attitude control task determined in this work is 5.3 1b less than that
given in Table 6.3. Assuming the weights of the other items to be

those given in Table 6.3, the weight of the optimal dual-spin spacecraft
system becomss 143.2 rather than 148.5 1b.

The weights of the momentum vheel systems are given in Table
6.4. Using the-weight associated with (option 3}, the weight of the

momentum wheel system is 17.2 1b less.than that for the optimal
dudl-spin vehicle.

Concerning the power requirements, the continuous power is
considerably less for the dual-spin vehicle than for the momentum wheel

system (34.5 compared to 91.5 watts).

6.4 Improved Baseline Systems Versus Dual-Spin and

Momentum Wheel Systems

" This section provides a comparison of the weight and power
requirements associated with attitude control (A/C) for the dual-spin,
the momentum wheel-gas jet, .and the improved baseline systems. The
improved baseline systems include the

(1) momentum wheel-hydéazine systen

{(2) pulsed plasma—hydrazine system.

The use of an hydrazine system instead of gas jets for desatur-
ating the momentum whecls is advantageous because of the accompanying
weight savings. The hydrazine used for desaturation is pumped from the
midcourse engine supply. Compared to the original baseline system
(momentum wheel-gas jet), a wéight savings of 12 to 20 1b is-realized
by using the momentum wheel-hydrazine system. For this reason, this
system has replaced the momentum wheel-gas jet system as the baseline
system for the MPM. '

A proposed baseline system which results in-a substantial
weight savings is the pulsed plasma — hydrazine system. A pulsed plasma
(an electric propulsion system) has recently been flown on the LES &

gatellite. Although the flight worthiness of this system has not been
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-Tabfe 6.3

. WEIGHT AND POWER REQUIREMENTS FOR THE DUAL-SPIN SYSTEM USING
. REACTION JETS FOR ATTITUDE

POWER (watts) -
WEIGHT | SIZE CONT PEAK .
ITEM (ib) .
--ATTITUDE CONTROL 5. 4.
ELECTRONICS .
(REDUNDANT)
~-CANOPUS SENSORS 16. 4.
(STANDBY REDUNDANT)
--SUN SENSORS 1. 1.
(REDUNDANT) -
__DESPIN CONTROL 0. 6.
ASSEMBLY (REDUNDANT)
--COLD GAS PRECESSION SYSTEM .
NTTROGEN 8. -
TANKS 12.8 |48 rAD:| 24
VALVES (2) - 1.2 :
REGULATORS 2.0
PLUMBING & MISC 2.5
._SOLID PROPELL SPINUP “10.
& SPIN MATNTENANCE SYSTEM _
* %
__B1-PROPELL PRECESS SYSTEM 33, 21
| _SCAN PLATFORM ACTUATOR 10. 4. 14
& ELECTRONICS
| _ANTENNA POINTING 4. 3,
ELECTRONICS
_ -ACCELEROMETER 2. 2.5
__GYROS 8. 10.
_-NUTATION DAMPER 3.
- *EE
TOTAL: 148.5 34.5 18

* .
The estimate of this item obtained in this study is 5.7 ib.

The estimate of this item obtained 1n this study is 30 1b.

EEE

The estlmate of this item obtaxned in this study is 143.2 1b

43



Table 6.4

WEIGHT AND POWER REQUIREMENTS OF THE MO
MASS EXPULSION (GAS JET) FOR UN

MENTUM WHEEL SYSTEM USING
LOADING THE WHEELST

POWER (watts)

91.5

WEIGHT| SIZE CONT PEAK
TTEM (1b) '
~~ATTITUDE CONTROL ) 6
. ELECTRONICS (TRIPLE
REDUNDANT)
--CANOPUS SENSORS 16 4
(TWO-STANDBY REDUNDANT) \
--SUN SENSORS (REDUNDANT) 1 1
__MOMENTUM WHEELS 30. 6" DIA. X
(6-Vheels) 39 HIGH 2W/WHEEL
--GAS SYSTEM (TRIPLE
REDUNDANT) 1.3
*NITROGEN : .
*TANKS (2) - 18 5.1% RAD,
VALVES (12) & THRUSTERS 6.4 . 2W/AXIS
REGULATORS 2.5
PLUMBING & MISC 3.1
|-~SCAN PLATEQRH 10. 4 14
ACTUATOR & ELECTRONICS
~-ANTENNA POINTING 4.5 4
ELECTRONICS (OPTICAL) -
--ACCELEROMETER (AV SHUTOFF) 2.5
"I-—GIMBALLED AUTOPILOT .2 60
ELECTRONICS & ACTUATORS :
(2 AXES) _
--BYROS (STANDBY REDUNDANT) 1Z. ) 10
TOTAL (OPTIONS 1,2,4) 131.
*OPTION 3- : 5
NITROGEN 9.5
TANKS 15.2
TOTAL (OPTION 3) 126.

7

The weight of fuel consumed could conceivably be

' different type of mass expulsion were used.
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completely established, neﬁertheless, it is considered a likely candidate
because of the conspicuous weight savings associated with its use. It has
been estimated that a weight savings of 48 lbs and a power savings of

11 watts (relative to the momentum wheel-gas jet system} can be realized

by using this newly proposed system.
6.4.1 RTG Weight

An important parameter associated with the RTG (radioisotope
thermoelectric generator) is the quantity of power (watts} that can be
realized per pound. In the development of the RTG, a design goal is that
this parameter havé a value of 1.5 watts/lb. Hence, the power require-
ments of a system affect the system weight. The RTG weight and the
combined RTG and A/C system weight associated with the various systems

are provided in Table 6.5.

- “Table 6.5

RTG WEIGHT AND COMBINED A/C SYSTEM
AND RTG WEIGHT FOR VARIOUS SYSTEMS

A/C SYSTEM  RTG WEIGHT COMBINED RTG AND

WEIGHT (LB) A/C SYSTEM WEIGHT
(18) . uB)
DUAL-SPIN _ 143.2 23, —166.%
MOMENTUM WHEEL-GAS JET 126. 61. 187.
MOMENTUM WHEEL-HYDRAZINE 106. 61. 167.
PULSED PLASMA-HYDRAZINE 78. 53.5 131.5

*This weight can potentially be reduced by replacing the cold gas and
bipropellant systems by a hydrazine system.
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7. RECOMMENDATIONS FOR FURTHER STUDY

In this section, recommendations for further study are provided.
One of the main objectives of this'study was to determine to what extent
optimization techniques could be used to eQaluate the relative merits of
attitude control systems. In this vein in order to determine the

accurate weight of the fuel required for attitude control, further study )
would include the

{1} determination of the eri—optimal controller for the
large-angle case,

(2) determination of the optimal parameters for the
dual-spin system,

(3) examination of additional initial conditions.

It is expected, however, that the weight of the fuel saved by
using a fuél-optimal controller throughout the entire mission will not

" significantly change the results provided in Table 6.5.
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The dynamms and fuel- op’clmal control aspects of a class of dual-spin
vehicles appropriate for deep space mlssmns are investigated. A.
dual-spin spacecraft typlcal_y congists o7 a spinning rotor providing
‘sufficient stored angular momentum for s’cablllza‘tlon and a despun
portion which provides a platform for an antenna and planetary
_encounter instrumentation. This dissertation deals primarily with
the cruise mode of the mission; in  this mode the fuel-optimal
i c0ntr011er has thé task of mai malmng the desu'ed orientation of the
rotor spin axis relative to ihertial space, so thatthe antenna can be
‘.dlrected toward its targe:. by an electrlc motor of a single av;ls

- control system.

-

The linearized rotational e‘cﬁzluations of motion for the class c;f dual-spin
vehicles of concern are developed. These equations characterize the
.plant or the control process {S). The other constituents of the optimal
control problem include the class of admissible controllers A, the
control resiraint Se-'i: (2, -the initial set XO the 'F:arget set Xl‘ and
the cost functional J;these elements are systematically discussed
.. mth emphasis on the practmal aspects. ']-?‘he nature of the control
restraint set 2 and the larget set Xl are de..errnlned by carefully
"considering the physical and practical aspects of the problem. Once
 the fuel-optimal control problem {8, A,Q, X, Xy, J}is formulated,
a solld theoretical framework is provided. The cornerstones of this
foundation consist of such concepts as controllabﬂlty, normahty, and
their connection with the existence and uniqueness of the fuel-optimal
" controller. The necessary conditions for local optimality are obtamed
by using the calculus of variations and are verified by appealing to the
maximum principle, Sufficient conditions for optimality are also

discussed,

iii
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The compu’ca’uonal algorrthm used for determmmd the fuel-optimal
controller belongs to the family of the so- -called indirect menhods in

general and to the class of Newton-Raphson techniques, in partlcular.

The basic achievemént of this dissertation is in the introduction of

practically motivated innovations in the selection of the target set 'Xl
and the control restraint set €. The.result is a Substantlal improve-
ment over previous "fuel- optlmal" controllers, both in terms of cost

in fuel and ease of implementation.
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Section 1

INTRODUCTION
1.1 Dual -Spin Spacecralt

This dissertation deals with the determination of the fuel-optimal
controller for a class of dual-spin spacecrait appropriate for deep-
space missions. A dual-spin vehicle has been the subject of several
recent inVes’Li;gat-ions (see, e.g., [1]-). Considerable attention has
been focused on the important question of the attifude stability of
these vehicles (see, e.g., [2] - (5]}, Typically, a dual-spin vehicle
consists of a spinning rotor which provides sufficient stored angular
momentum for stabilization, a despun portion which provides a plat-
form for planetary encounter instrumentation, a nutation damper,. and
an antenna for tracking the target. The dual-spin vehicle is especially
suited for applications requiring gimulianeous earth communication

-and planet obser-va‘::é;on {see Likins and Larson [61).
1.2 Fuel -Optimization

Because of its great practical importance, the notion of fuel-
optimization has received considerable zttention in the aero:::‘upace
industry (see Refs. '[Tj and [8]). However, the application of optimi-
zation techniques specifically‘ to attitude control problems is still
relatively rare (see Refs. [9] and [10]). There have been even fewer
studies Wwhich have dealt with the fuel-optimal control of spinning

vehicles,
1.3  Fuel-Optimal Control of Spinning Vehicles

Sohoni and Guild [11] investigate the fuel-optimal control of the spin
axis of a spinning symmetric vehicle. Athans and Debs [12] investigate
the analytical aspects of the problem concerning the control of the

angular velocity of a spinning symmetric vehicle. Porcelll investigates



the sub-fuel-optimal control of both a symmetric spinning vehicle [13]
and a.symmetric dual-spin vehicle [14], In his Wori{, optimization
techniques are not utilized: instead, an intuitive and graphical approach
is used. _ '
1.4 Fuel-Optimal Control Using an Angular Momeﬁtum Control
Concept T
None of the preceding studies makes’use of a properly placed nutation
demper, although such a device is an integral part of every dual-spin
spacecrait. Ina sense, the previous studies are not practically
oriented. Since the objective.of this dissertation is the applicatif.m of
optimization techniques to a meaningful and practical problem, a
nutation damper is included in the control problem formulation. " The
use of a nutation damper results not only in a practical irflplementation
but has a considerable effect on the optimal control concept. I not
only affects the theoretical aspects of the problem formulation and the
cqm.puta.’cional algorithm, but more importantly it affects the amount

of fuel required to achieve the conirol objective.

The inclusion of a nutation damper in the control concept leads to what
is called a hybrid control scheme. The hybrid control scheme consists
of both an active phé.se and a passive phase. Dur:'_n-g the active phase,
the angular momentum vector H is aligned to the desired direction in
inertial space. HD. The notion of aligning H 1o HD is called an
angular momentum control (AMCO) concept in this work. Durmg the
pasgive phase, the nutation damper is used to complete the task of
aligning the antenna axis to -IiID' In previous investigations, an active
phase is used to accomplish the entire control objective. The notion

- of aligning the spin axis (antenna axis) to the desired direction in ;

inertial space by using an active controller is called a spin axis control

(SACO) concept in this work,

ot



The differenrces bet-ween the practical concept (AMCO) and the _
previously investigated concept (SACO) can ‘be‘ diécérned by examining
Figure 1.1, Figure 1,1 illustrates thé torque-free motion of a -
symmetric body The trace swept out bv the angular velocity vector
on the energy e111p801d is called the polhode and that swept out on the
invariant plane is called the herpolhode [15]. The motion is charac-
terized by the rolling of the body cone on the space coné without slip.
Tor the SACO concept, it 18 necessary to apply a moment (control) in
order to align the spin axis 2qs the angular velocity vector. w and’
the desired angular momentum vector -ED' In the AMCO concept,
the angular momentum vector H is aligned to the desired direction
_in inertial space -I;ID during the active phase. The alignment of thé
. bearing axis to the desired direction _I-l =H is accomphshed during

the passive phase by the properly designed nutation damper.

In regard to the optimal control problem, the significant difference
between the AMCO and SACO concepts is the target set }sl. For the
SACO concept, the target set consists of a fixed point in R" (in’

particular, the null vector) that is, the target set is given by

= {(x,t):xt,) = x;, =0,t, freebut finite }

On the other hand, the target set for the AMCO concept is a smooth

two-fold in R~ and is given by

Xy = {(x, 0 él(z(t'l)h 0 and g,(x(t;N=0, t, free }

where gl(x) and g (x) refer to the components of the inertial
angular momentum transverse to —HD , the desired angular mom enium

vector.

Another importiant difference between the optimal-control problem

formulated in this work and that discussed by previous investigators
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is in the nature of the control restraint set . The control restraint
set should be chosen primarily on the basis of practical rather than
mathematical considerations. ‘Previous investigators have invariably

used the compact convex control restraiut sel
@ ={u(t): !uj(t)l <1 i}

in formulating the fuel-optimal aititude control problem for spinning
vehicles. This sel is mathematically correct and even physically
appropriate for the attitude control of nonspinning bodies. However,
when the vehicle is spinning, the.spin rate itself provides the means
for satisfying the requirement that both positive and negative moments
_ be available for control. The compact convex conirol restraint set

used in this work is given by

o ={ult) : 0= uj(t) <1 Vit
" B will be seen later that this seemingly slight difference has some
significant practical implications. '

1.5 Scope of the Dissertation

" The fuel -optima-l control problem formulated in this work evolved from

the previously cited investigations. The use of a fuel -optimal con-
troller for a ballistic spacecraft for deep-space missions is extremely
important since only a limited eimount of fuel can be carried. The
determination of the fuel-optimal controller for a class of dual -spin
vehicles, including symmetric spinning vehicles as special cases; is
one of the primary aims of this work. The compai:‘ison of the AMCO
concept introduced in this work with "che SACO concept studied by

other investigators is of special concern.

An equally important objective of this work is to demonstrate the

utility of optimization theory in the preliminary design of competitlive

A-5
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spacecraft configurations. By determining the nature of the optimal |
controller for various control restraint sets'ﬂvand for various target
gets Xl’ the most practical'design can be chosen. The use of optimi-
zation theory for such purposes is not accompanied by the customary

lirnitations concerning computer storage and computer speed.

Although practical rather than theoretical coﬁsidérati.ons are empha-
sized in this dissertation, nevertheless, a solid {heoretical framework
is provided. This framework emphasizes the structure of a general
6ptirﬁa1 control problém and provides the machinery for attacking a .
general pro'blem- even though only the fuel-optimal controller for a

dual-spin spacecraft is determined herein.

"Chapter 2 provides a powerful and extremely useful development
concerning the rotational motion of an arbitrary elastic c.onstant mass
system., With slight modifications these eguations would be appro-

. pr1ate for variable mass systems as well. The rotational equations

of motion for the dual-spin spacecrait and the symmetric spinning

vehicle are obtained as special cases of the general result. The
damper terms are discussed for completeness even though they enter
into the control problem only during the passive phage. Such effects
are of great importance when the question of stability is being con-
sidered (see Likins [4]) but are insignificant in comparison to the
relatively large applied control forques. Nevertheless, the damper

plays a significant role in the AMCO concept.

In Chapter 3, the formulation of the fuel-optimal control problem
pertaining to a class of dual-spin spacecraft is discussed. This
chapter sets the stage for the ensuing discussion of the long step-by-

"step procedure for determining the fuel-oplimal controller.’

The concepts of Chapter 4 are extremély important in the determina-

tlon of the fuel-optimal controller not only because they strongly
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affect the computational procedure but also because they affect the
interpretation of the computational results. For e};ample, if it cannot
be proved or demonstrated that a control problem is normal, then-
special attention must be givento the ﬁ)ossibility that a singular
optimal solution exists. The investigation of the notions of Chapter 4

constitutes the first step in the determination of the optimal controller.

Chapter 5 provides the necessary conditions for optimality. For
completeness, the necessary conditions for optimality for.the i;roblems
of interest are developed using the calculus of variations rather than
just stated. Cc;nsequentlj)r, the treatment tends to be self-contained.
The necessary conditions obtained irom Pontryagin' s Maximum
Principle under weaker differentiability assumptions are stated

without proof. In addition to providing a discussion of the necessary
conditions, Chapter 5 also provides sc.an.le gsufficient conditions for ‘

optimality.

Chapter 6 provides a discussion of the computational algorithm used
to determine the fuel-optimal controller. The algorithm chosen in
_this work belongs to the family of indirect meth;)ds in general and to
the class of Newton- Raphson techniques, in Dartlcular, This algo-
rithm is considered suitable for the apphca’clon at hand, especially
when due concern is given to the practical considerations. In general,
ﬂ’-lé seléction of a computationaf algorithm is made after con- -
gidering the nature of the optimal con’croﬂe;, the practical unph-
catlons the simplicity of the formulation and nnplem entation, and
estimates of the computer- storage requirements, convergence
sensitivity, and convergence time. Ideally, it would be desirable-to
compare such factors as computer storage requirements, converg-
erce sensitivity, and convergence time associated with the Newton-~

Raphson algorithm with those associated with the use of several

25



other algorithme. In this way, the most suitable algorithm for this
class. of problems could be determined. Such an undertaking, however,

is not within the scope of the present work.

Chapter 7 provides a summary of the significant results obtained from
this study. The most important results arc those that pertain to the
comparison of the angular momentum control coﬁcept_ with the spin
axis control coz-lcept. Chaptexr 7 also provides the conclusions drawn

from this study.
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Section 2
ROTATIONAL EQUATIONS OF MOTION
FOR A DUAL-SPIN VEHICLE
This chapter provides the rotational equtions of motion for a genéral
elastic (constant mass) body. The rotational equations of motion for
a dual-spin vehicle and a spinning vehicle are then obtained as special
cases of the general result. The derivation iarovided below is based

solely on fundamental notions of Newtonian mechanics.
9.1  Rotational Equations of Motion for a General Flexible Body

In this section, the rotational equations of motion for a general
_ flexible body are obtained. The resulis are obtained by étraight—

forwardly manipulating the basic definitions of Newionian mechanics.

In this development, the following well -known vector relationship

will be frequently used [16]

Rl RZ R R

d d '
% 4 Fat Tuw x4 (2-1)

where q represents any vector

R..R. represent any Fuclidean frames having the same origin

72
R, . R, : _
T 4 % 4 refer to'time derivatives of g relative tg
frames R,, R, respectively
R, R

w 2 refers to the angular velocity of frame Rz relative to Rl.
When frame R, is the Newtonian frame, and RZ is some body-fixed
frame, the time derivatives and the angalar velocity veclor will

sometimes be written as
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4 4 -
x L 72
R
"4l

xd "3
N R,

W = W

for notational convenience., The notation first introduced by Dirac [17)
to distinguish between column and Tow vectors will occasionally be
used. Dira.c used the symbols > and < 1o represent column and row
vectors, rgspectively. Using this notation, the common operations
known as innetr and outer products become <, > and > <,
" respectively. The inner product < , > is used frequently in this
work: sometimes it is defined on the space En while at other times
it is defined on a Hilbert space. When the space is E" the elements
_are underscored to make it clear that the elements are vectors in

E" (the underscoring is, of course, redundent). -

. The outer product u >< v defined on a finite-dimensional space

has ag its matrix representaiion

.U.l Vl ul V2 « s 'L'l.l Vn -
112 Vl U.Z Vz « s . 112 Vn
U.n Vl 'l.ln VZ e e un Vn

A result similar to that of Equation (2-1) applies to the operation
u> <Vv; this result is obtained from ihe chain rule for differentiation

and is given by
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(u><v) —u><v+u><v

e

><v+u><(

]
)
{ge
| <o

+w X +wx v)

1<
£

><y+u><¥+

| <o
1=

XE><X }_><gxw__

1
[cle

b

1

-‘% (P:><X) tuxu><yv ~u>< VX (2-2)
In particular, when ihe inertia dyadic QD is involved, the result is
N g 2 g '
wJ= g Irexd-Jre (2-9

Since operations involving vecltors and operations involving dyads
“can be_represented as matrices, the matrix representation of these
operations are used frequently in this chapter. Tor example, the

inertia dyadic QD written as a sum of dyads is
=J ’é > 2 8
J = Topa” "5

where é\a s _/é_ belong to the space E,. A typical dyad él > < §3

B
is simply
1 o 0 01
o0t{001)=10 00
¢ 0 0 O

Hence, the matrix representation of the dyadic Q-D is

et

-
T i i3
To1 Jaz Jas
51 32 33

A-11



Other common operations involving vectors that are frequently
represented by matrices in this chapter are. w x g and W X (w xg).
The operation w x ¢ (wherew and g are vectors in E‘3) can be

written as

0wy Yo 9
W 3 0 :w 1 q2
-wz, wl 0 q3

N
and the operation w X { W x g) canbe written as

2 . 2 _ 7 -
Ay Fug) w0y B - T DU
2 -2 |
Vo ¥y ~yteg) vy g 1%
. 2., 2
L“’s“’l WaWg Wy +wy) 93 ]

9.1.1 Newtonian Approach

Tn this section the rotalional equations of motion are obtained from
‘the so-called "Wewtonian'' approach. Later the same regult is

" obtained by recasting the equations in such a way that the "kine-
matical™ nature of the problem is revealed. The ‘notion of relative

angular momentum plays a central role in this development.
7

Definition Relative Angular Momentum

The relctive angular momentum in a frame R with respect to any

point P is given by (see Figure 2. 1)

. Rd
= gr x -~ 1 dm (2-4)

R ~p dt -p

..llIP
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' CONSTANT 'MAéstsif_s'Té_nﬂn'

\yy Figure 2-1 Pictorial Representation of a General Elastic Body
. NOTES: s -
1. Point P is the origin of freme A
2. Point C is the center of mass of the body

-In‘particular, when the point P is the center of mass C and frame R
is the Newtonian frame, the angular momentum is given by

N.c S‘ . N
H =\p X d _
| c” . 3 Pe dz:n (2-5)

. Equation {2-5) is the starting point for the-derivation.
For convenience, introduce a frame A containing the point P which
coincides with the nominal or undeformed center of mass and par-

ticipates in the motion of the corresponding point of the material

system, if such exists, Unlike the center of mass (point C), point P '



ig fixed in frame A. The vector £, expressed in terms of vectors

measured relative to point P is given by

Ec = .:Ep - .C—Ipc (2-.6)
Substituting Equation (2-6) into Equalion (2~5) and differentiating

relative to the Newlonian frame yields

B - S(Ep i ng) g (?—p "'épc. ) o (2

Expanding Equation (2-7) ylelds
I'-IC=Sr x ¥ dm -d ng dm+d xMd ~Sr dm x d
= =p -p =pc " ) =P ~pc —pc  J =P ~pc

(2-8)
2

The temporal operator %:— {} and the-distribution operator S.( } dm

are clearly commutative and, hence,
dZ
S‘i‘ dm = ——— Sr dm | (2-9)
P a? 7P

By definition, the first moment relative to the point -P is

,up = S.r dm =M d {2-10}
= -p ~pc :
It follows, therefore, that,
. P
-d__ x gr dm =~ d, x i
—pc -P —Bc £
. . P .
~-Sr dmx d =-pu x4 (2-11)
-pP —pc - —pc
a xMd = ,uP x d
~pc ~pc = —pc

Substituting the results of Equation (2-11) into Equation (2-8) yields

fl’c = -S'r X ¥ dm + d X (—MEI ) (2~12)
- -P pc —Ppc
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The integral term can be rewritien as
Na ..
S‘r x ¥ dm= = Sr x r_ dm (2-13)
-Pp P dt P P .

Using the resulis of Fguation (2-1) in Equation (2-13) yields

N - -
Sr x ¥ dm = 4 S‘r X [?' + W X r]dm (2-14)
=p P ad J=p " [-p - P

Bxpanding Equation (2-14) yields

N Nd
T ¥ dm = —~—Slr x % dm+ — \r x{wxr )dm 2 -15)
g *Zp -p " =p &) Iprry (

Combining all the terms, the resulting equation is

Nd Nd
H = —-S‘r x ¥ dm + -—Slr % (% r Ydm
= d J-p -P tJ-p = P
’ . (2-18)
+ d X("M d }
“pc —pc

From the definition of relative angular momentum, it follows that

r xr dm= — H

NES’ o NdA P=AI‘_IP
dt J-p - at - -

The second integral term of Equation (2-16) can be expanded as

Ng

s \%Ep’zp>9>h£p><£p’g>]dm - (2-17)

This form is convenient since it leads naturally 1o the notion of
dyads and to the definition of the inertia dyadic., Rewriting Equation
(2-17) as an operation on lhe vector w yields

Ny

—_ <r ,r > -r ><r )dm,w>] {(2-18)
dt[g( ~p’ ~P E “p 7P -

From the definition of the inertia dyadic, Equation (2-18) can be

written as

A"‘lg
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N .
8 (0 )

The final equation is thus

Jox

N
¢c_ AP T4 (P, g _
=257 2 (J E')+ipc"(M9pc (2-19)
From the definition of _I_ic, it follows thatl

rc o _ TR .
H = S\E.cx g_)cdm~§£cx (E{_ _l:c>dm (2-20}
Substituting the relationship
Bam= dF+ df

where dF, df ‘refer to differential external and internal forces, '

respectively, into Equation (2-20) yields

I.-IC=S‘D x (dF + dﬂ—S‘p dm x R
- et = = e e

. (2-21)
5C

c C o oas
- - B (% a

It follows from the definition of the mass moment aboui the center of
mass that y_c = 0.._ Hence, for a system in which the moment about
the center of mass due to the internal forces is zero (one that obeys
Newton' 8 thir-d law), the following relationship holds _

7%= m° ' (2-22)

Equations (2-19) and (2-22) represent the desired rotational equat:ions
of motion for any constant mass system. The term A_I';IP when

expanded becomes

N A
AI—IP= -g-gr x ¢ dm = —qgr X T dm+wa‘rxf‘dm
- . da J=p -p dt J=-p -p = -p P
. “ (2-23)
AEP_AEP+EX B
A-16
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N
From the results of Equation (2-3) the term Eic.ljc (QJJP . B) becomes

N, ° ' ‘
%’E(CDP'B):QUP'E%*EX-'CBP'E"QUPXE'B (2-24)
L P c i
Note, however, that the term (‘:D xw * v is identically zero as

can be seen by exé;mining the following identity

QD xww=J & ><8,xu, w> (2-25)

Collecting all the results together the final expanded equation is

MC=QDP-u+w§cQDP'w+S’r x T dm
. - P ~P

-I—wa x r_ dm (2 -26)
- P P

4 +2wxd +oxd F+wux{wxd )
c pe =pc =" =" —pcC

2.1.2 Kinematical Approath

I this section, the same result obtained in the previous scction is

obtained in such a way that the "kinematical" nature of the problem
is more evident. Starting with the relative angular momentum with
respect to point P; a.rela.‘tionship between "_H_P and _I;Ic is easily

obtained and is given by

NP Ly xi am- L
E _LEpxzpdm"g(£c+§pc)x(3c+gpc)dm

N

(2-27T)

gf =5%+d xMd
= 7= "“pc ~pe

where

711



G d _
gpchQCdm— dp dt L, dmm =0

Examina’cic;n of the term EIP reveals

NI—IP Sr X T- dm S‘rx(r + @ xr)dm HP+§r x(uxr)
-p P =P - JP - P

—

(2-28)

- As shown previously,

EXNCEENE JF - o (2-29)

The term QJP * w can be viewed as the angular momentum of the

total system rotating with the angular velocity of frame A, N_I—IA .

Combining the results of Equations (2-27) through (2-29) provides
N ' . .

N, N_P NHA + AHP

H H -d xMd = -d xMd (2-30)
= - ~pec —pc - = —~pec ~pc

Taking the time derivative of Equation (2-30) yields the desired

resuli

1

Nee - Ny AugP o g xmd
= = = = —pc =pc

N :
Nye - 4 (- 9_,)+AHP ~d %M (2-31)

e — o

Equation (2-31) is a convenient and concise statement of the general
result. Yor the special case in which che elastic body is rigid and

the point P is the center of mass, the result is

—M—c :Na% (Dc . 9) (2_32)
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2.2 Rotational Equations of Motion for A Dual-Spin V ehicle

In this section, the rotational equations of'rnoi:ion for the dual-‘spin
vehicle (éee Figure 2-2) are provided They are obtained by appro-
prlately 1nt°rpre«.1n0‘ the general result given in Equatlon (2-31)., The
dual-spin vehicle being considered here is es.;entlally the same as that .
' dlscussed by Likins [4;] As shown in Figure 2-2, ‘the vehlcle consists of

(1) an asymmetrlcal portionT.

(2) a mass-spring-dashpot damper

{3) a syminetrical rotor
The frame A is chosen as that frame established by the asymmetrical
body. The rotor axis is assum ed to be that established by the bearings
‘which permit relative rotation of the two primary bodies. The mass
centers of the two primary bodies are c'onstrained against relative.
translation. It is also sssumed that a closed-loop control system
governs the behavior of the motor used to maintain the rotor speed or

the single axis control of the despun plaiform.
N

5.2.1 Evaluation of the Term = (A gP)
' N

Both the rotor and the damper contribute to the term por (A HP

The contribution to Aﬁp made by the rotor is

APzRJ‘\

Hp =Jd3 024 (2-33)
where )
g 22\:3 = the angular velocity of the rotor relative to the frame A

J? is the axial moment of inertia of the ;:otof.

The contribution to A__I-}P made by the damper mass m is

1The equations of motion are obtained for the general case in which
the despun body is asymmetrical even though a symmetric vehicle
ig of concern in this work.
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/— SYMMETRIC ROTOR R
/ SYMMETRIC ROTOR 2

: SYMMETRIC BODY A __

DAMPER
_q\%k

o -léi_g:lr.e 2':_2-___ Pdi;t;;%-l'_é;;;reser‘&a’&c;; of a General Duél—'épiﬁi\jfi{if_le' -

NOTE :

+ 4: The damper mass is constrained to move in the a3 direction and is located relative to the point P by

rp=d a1+zas
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B . A .
A_P P A d (. A A.
Hpamper ~ (a8, +Z—@3)"m 3 (@ El-1*“2553)

A FAS * A
' (d§1+z§3)xng3

-mdz Qz (2-34)

1]

Differentiating and collecting the terms of Equations (2-33) and (2-34)
yields

N A
d /A P4 AP A_P
S G(PE ) rex"H

- A

= dt(J Ga-—mdzez)—!-wx(:f cr dZaz)'

=JRc'f/a\ -m;I'zf{a\. +J cr{-w B.+w, 8.}
3 =3 -2 3 1-=2 2 =1
— JA —-—
mclz{u1 8s - 331 _(z 35)

Ng /a_p
The termm — ( H )\vritten as a column matrix is

~ -

R .
J30w2+mdzw3

L

R
J-mdz J36w1

@

(2-36)

R . .
JS o*-mdéwl

bt -

" 2.92.2 FEvaluation of the term d x| -M d )
—pc —pc

Oljlly-the damper contributes to the term -Elpc x {~-M :ije ) Since
the dainper mass m is constrained to move in the direclion %3‘ it
follows that

~3
where M = the total system mass.

M_c_lp =m z & (2-37)
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- From Equation (2~37), the veéctor gpc is given by

O A -
gpc M % -%3 (2- 38)
o zéo .
and _c_Ipc > 9pe are given by
g c nﬁl 3 @3
P (2-39)
[-1-3 - E}. . A
-d—-pc: M~ 23
Substituting Equation (2-39) in the expanded form of gpc X (-M .—d.pc:)
yields
a x{-md ) =
-pC. —bC
Jmo A A CA Lt A
M zZag x [m Z 33+ 2pxm ?'33+9 XM Za,
+u X (Lgme%:s)J (2-40)

- Simplifying Equation (2-40) and writing the term épc b4 (" M _.tip c ) as a

column matrix yields

(|2 2 2 A
{mz) W W, -2 Z B, - (mz)
M 23 M "1 M 1
2 2. 2 (2-41)
L Amz) W, -2z W - (mz) -
| M 173 M 2 M 2
o J
Nd P
2.2.3 Evaluation of the term & (Cﬂ ) ‘g)

N
The term E%. ((DP “w ) is the time rate of change of the angular

momertum of the total system rotating with the angular velocity of

frame A, The inertia matrix for the total system about point P is
designated by J, the principal axis moments of inertia of the unde-
formed system about point P are designated Ia The equation for

this matrix J is
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I 0 % 0 -dz
1 9
J = I2 +mi{0 =z 0 {2-42)
0 JS ~dz 0 0
P . . .
The term (D * © is equivalent to the matrix
I1 0 22 0 -dz
o1, Hupemo 2 of{v} (2-43)
0 I, |-az 0 0

3

The form of the contribution made by the term involving Ia is well

known and is given by (Euler' s equation). In malrix notation the ferm

Nd
) 3 (1o becomes

-

I Wy —(Iz- 13) v, Vg

i
I2 Wy - (IS— Il) W Wg (2-44)
13 0g -(Il- IZ) wy W,

The remaining term due to the damper mass is given by

N >
- %@i E’_)zQDm 9‘+9 X(gm. w .5_(,_.Um- . In-matrix notation

this is written as
2

9z% 0 -dz 0 - w itz 0 *~dz w
. 3 2 9 1
m 0 22z 0 |{fw}tm g 0w 0 =z 0 ,
-dm 0 0 —w2 wl 0 li-dz O 0 w3
B -
22 g0 .-dz Gy
+m |0 ZZ 0 0, (2-45)
_:dZ 0 0_ &}3
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After performing the matrix multiplications mda.ca‘ted in Equation

(2-45), the matrix representation of the term (qD __) becomes
- - r e - - -
Zziw-déw-zzww~dzww+zzd)—dz;J
1 3 23 1Yz 17 Y3
m< 272w +z2w W, - dz wz-i-dz L-;z-i-zz : g (2-486)
I - Bl 1 “2
—dzw -zzww + dz w, W +z2w - dz O
i 1 1%2 " 273 1%2 1
With the combination of the results of Equations (2-44) and (2-46), the
; N ; ’ o
ferm = K(\_U ) becomes

N
af{ P N4 S N PO -
5 (QD X w).. al[@lwl (I2 13)w2w5)+ m(Zzzwl dzm3 Z Wyl g dzw1m2

Al o o 2 2 2
32[(12"32 (I Il)wlws). m(242w2+ 27w W, -dzw, + dZwy

‘ + z2 652>]

N . L -
+§3[(13w3 -1 )w w2)+m( dzw dzw 93 dz o 1)]
' | ' (2-47)

92.2.4 Rotational Equations .

The combined terms of Equations (2-38), (2-41) and (2-47) represent

three of the five equations required to characterize the motion for

the system. These scalar equations are
M 1w (I*I)uw-i-JRcrw
1 1M1¥17 e e e s 2
+2mzé.(1—--—) —mzz( -I—I})w W
1 M/ 7273

2
+mz (1 —-—) 1 -mdzwsv»mdzwlwz] {2-48)
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- . _ LR
MZ = [12 ©, (IS_ Il) w0 Jscwl]
.. 2 my . 2 m
+[ masz +m % (1 I\—E)wzkmz (1_3_/1)_{’)1(’)3

+2mz% (1—~Iv-m-i> -Loz-kmdz-ﬁo? hwg)]

T R,
Ms‘[ls g (I - ) vyw, + 33 “]

+ [— 2 Indzw1 + dethwB - :m.dzml]

To obtain a complete set of equations in the five unknowns (wl, Wos Vo5
o, z), the preceding equations must be supplem ented by some internal

specification of the behavior of the rotor and the damper mass.

Supplementary Rotor Equation

The supplementary equation for the rotor is

O R,. ..
MR = J3 (w3+ G) (2 -49)

where MR is the rotor torque about the @S axis.

The torque M, is due to the combination of bearing friction and the

R
applied motor torgue. Inthe present application, the motor torque
would be determined by a closed loop conirol system designed to

maintain the desired rate wS.

Supplementary Damper Equation

The damper mass motion is governed by the equation

F'.g3=m3 2

—CQ. ag (2-50)

where :c'_lc ig the inertial acceleration of the mass point Q
QCQ ig the position vector of the mass m located relative
o the center of mass of the system (point C).
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The component of the force applied to the damper in the @3 direction

ig that due to the spring and dashpot. Consequently-, Equation (2-50)

becomes
A Ndz'

“kz~-cZ =1m 3g° -CQ_ m a3 -(;;z— éCP-!- QPQ\ (2-51)

The position vectors —C}CP s QPQ a-re given by
- - .m oA

dep = " gpc M “ 23

—QPQ = c?al +z a3 (2-52)
.the vector ECQ is given by

LT QA '_

deg = gCP+ d A+ z(l ) & (2-53)
The term :c'_Ipc is evalua‘l:ed according o

-QCQ: gCQ+ 20 X El‘CQ+ W X éCQ-!-w x {w x dCQ) (2 -54}

The @S component of d cQ is obtained from the following partitioned

matrix equation

| 0 d
‘#a—::\ (1- ) i Wy 91 O (__H) e, ‘;’1_ 0 Z(l——-;%)
[ : _] d (2-55)

0
2 2 I
TWgy T Wgkg Q*’l +“’2) Z(l' M)

Combining Equations (2-51) and (2-55) yields the desired resul;c

m
0= m( z+cz+kz~mdw2+mdw1w m(l— ) w1+u2)

(2-586)
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Equation (2-48), (2-49), and (2-58) providg the set of five scalar
_équatidns which go-verns the motion of the system.
2.3  Simplified Rotational-Equations of Motion for Dual-Spin
Vehicles :
- In this section, the rotational equations of motion for a specific class
of vehicles designed to perform specific mission objectives are -
‘obtained. As stated in Section 1, the dual-spin vehicle was selected
f_or the deep-space mission because of the requirement for simul-
taneous earth communicalion and planet observation. In this disser-
tation, it is assumed that the 2g axis is an axis of symmetry. The
main function of the control system is to maintain the desired orien-
tation of the angular momentum vector during the cruise‘mode and to
reorient the angular momentum vector during the large angle turn
mode,  In comparison with the applied moments, the torques due to
the presence of the damper can be neglected. Under these assumptions

the approximate rotational equations become

T R
M—-—-l = _11“13 W0 +JSGw
Il‘ 1. I1 23 Il P
. | R
AT e S L
L 2 I 173 Il_ 1 |
' o - : 2-56)
M ) JR -
3 . 3 .
T = ws + = 0O
3 .73
Elimb +6-
JR 3
3

As stated previously, a closed loop control system for'the 2q ‘axis

will ensure that the angular velocity about that axis is mainlained at
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“fhe desired value. Consequently, inthis work, the control of the

and the angles ., 6, is of chief concern

angular velocities Wy and w )

2
(see Figure 2-3).

2.3.1 Rotutional Equations of Motion in Terms of Attitude Angles
(Symmetric Vehicle)

In this section the rotational equations of motion for a symmetiric dual-

spin vehicle are obtained in terms of the atti.tude angles 81, 82, 63. In

ferms of 8, 82, 83 the angulé.r velocity NEA expressed in the 2,

basis can be obtdined directly from Figure 2-3; expressed as a

column matrix this result is
- 91 C92 C63+ 92 893
N A} = ; . S _
{ w 92 C63 81 883 CBZ {2-5T7)
93 + 918 92

The Euler rates -expressed as a function ofw 2 Uy Wy aTE given by

ré 9 093 - 593 o rw "
1 C92 C92 1

9 92 g .593 083 ol Jd 92 - (2-58)
93 —093tan 62 -893tan92 ZL [03

Assuming that the angular rate of the despun body about the §3 axis
is precisely controlled to its desired small and constant value, it

follows that w, = 0. Combining the results of Equations (2-56)

3 .
through {2-58) one may obtain a set of equations for Wy g, 91, 62, 93

aé follows
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Ifigure 2-_3' ) -Cc-););‘dvine'l‘te Frames for .th'e-Dual-—SpIn -\-/el:ic!qe-

- - - - [Ipp - -t mm— e

. NOTES:

Long from basis for Newtonian frame
2. a, from basis for body frame A

3. 1 from basis for rotor frame

4

‘A-29




[~ . - [~ -
. 1 -1 el ! W My
Wy 0O 73 _ 3 1 1 —_
I Y37 I : !
1 1 :
R "0
3] - ...I..}..E - i.s_.(_)- 0 i [ ] ﬁf‘[——g—
2 -y 3 I1 . 2 I;l‘
I T T - P = = = - - -- -~ =
91 = CSS EQE : é + 0
C8 Cceo | -
) 2 2 i 0
92 863 CBS : 92 0
by - C, tan 92 -6, tan g, l: L b wg
L. ) - — . — -
_ (2-59)
For notational convenience, Equation (2-59) can be writlen as
%= Alx, 1) x (&) + B ult) = 1(x, u, t) © (2-60)

wl.vhere x cén be considered the state and u the con’crol.— In general,
the rotational equations of motion are characterized by a set of non~
linear time-varying ordinary differential equations. The control u
is produced by appropriately located jets. For this formulatioan_. a
singularity would exist in the direction cosine formulation when

92 = (2n+ 1)—5— forn=0, £1, £2,... . However, if it is known
that the allowed range for 92 does not include these values, this

potential problem is of no concern.
2.3.2 Small Angle Case (Symmetric Vehicle)

In this section, the rotational equations of motion for the small angle
case are obiained, Because of the precise pointing requirements for
the mission being considered, deviations from the desired orientation
are accurately represented by small angles, The small angle case is

the one of chief concern in this dissertation. The linearized rotational

TBy using a 3-2-1 sequence, the potential singularity problem can be
avoided for the problems being studied in this work.



equatlons under the assumption of small angles (56 = 9 CB =1

for j =1, 2, 3}, become

B ’ M

0 NN W _1

¥y I, 1 )
' 0

. J. o ! M
. 0 i w 2
“9 I - 2 L ).
I i Rl Pom = m = -+ F - (2-61)
6 1 0 : - 6, 0
92 0 1 - :"' 92 0

2.3.3 Rotational Equations of Motion for the Small Angle Case as
’ Expressed in the Coordinates of ihe Rotor Frame (Symmetrlc
Vehicle)
In the preceding sections, the equations of motion were expressed in
the coordinates of the "despun' frame A, In this section, the equation
correspondmg io Equation (2 -61) is obiained for the case in which the

'reference frame is the rotor, In rotor coordinates', Equation (2-31)

becomes

R .
d P AP
N e TCUARI R N o R T
(2-62)

A ; ne . b e il

Since the axis 2, 1s an axis of gymmetry, QD is constant in the
rotor frame as well as in the A frame., The vectors AI_—IP, Nw R,

and N__ui A are given by

N R_NA A . (2-63)
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Examinalion of Equaiions (2-62) and {2-63) indicates that Equation

" (2-62) can be written as

R " R
c_ E@P_NER)+NQRX(CDP_NLOR)+ iAHP N R AEP

5 (QJJ o B) + + MR ) I | (2-64)

The bracketed term in Equation (2-64) has ithe same form as that of

M

Equation {(2-56). Hence, the equations written relative to the rotor.

frame are

=

' R N R
Mo vr ST Ny Ry r, T3 wRr| T8 e
E T R R T 2 I
i R N R
M e "W nrwr J3NR| T 1
P R T (T A I,
. (2-65)
R :
I_VEi: NL;JR_[.:T_S_ 53 _E.e_)f
I, | Y8 T I,
R _N.R, .
;ﬁ—*— bJS + 0
3

For the small angle case, the linearized equations for the control of
NR N R

Wiy Wy, 91, 8.2 are glve1.1 by



J, =~ I M

. 1 1 iy 1
w 0 - Oy 0 ) -
1 Il . i Il

R 1

J, -1 '
632= 31 LI 0 | w2+ M,

L ! I

R e I — 5l -8
6,\ | Cot “Sot | o o \ [0
. 1
6,1 | sot cot e K 0

where the Supersqcripts on w are dropped for notational convenience,
and where the nominal value of w.;,) has been selected as zero to
-correspond o the case of inferest.

. 2.3.4 Rotational Equations of Motion for a Spinning Symmetric
Vehicle (Small Angle Case)

The rotational equations of motion for a spinning symmetric vehicle

- are obtained as a special case of those obiained fo:c“ a dual-gpin vehicle.

These equations can be obtained by interpreting the results provided

m the last section, viz., the case in which the equations are expressed

in the coordinates of the rotor frame. If the "despun” portion of the

dual spin vehicle is spun up to the rotor speed, a spinning symmetric

vehicle results. Hénce, substituting I, (the moment of inertia of the

3

total system about the spin axis) for JI; (the moment of inertia of
the rotor about the spin axis) and Ch for ¢ in Equation (2-66), provides

the rotational equations of motion
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B I‘;i ! ] M
“y 0 T v oy [
Il 1 6 1
b
. hoI K My
“a\ T, Vs 0 Y28 VI,
O e D A I N A U R0
p = 1
5 Cugt Sugt! o, \ | o
; - . .
92 _?w3t ) CwSt 11 : i 92 0

Although this equation is correct, it has the relative digadvantage
that the system matrix A is time-varying. However, it is felt
intuitively that such a system can be characterized by a set of

linear time-invariant differential equations,
% =Ax+Bu . (2-68)

"The problem is thus fo define a new X .Which results in the desired
property. In particular, a more suitable rotation sequence is sought.
Geometrically, it is clear that if the attifﬁude angles ¢ 1’ ¢2,'¢3 of
Figure 2-4 are chosen instead of the attitude angles of Figure 2-3,
theﬁ the desired result is achieved (keeping in mind that ¢ 1 ¢2 are
small angles but q’;s ig, in general, large). Inthis case, the rela-
tionship beiween the rates _q’)l, ¢2’ ¢3 and the angular velocity of the
~despun body relative to the basis vectors ga can be obtained by
inspection of l"«‘igure 2-4: the desired relationship is -
o\ (L0 ®¢ 1%
, Tce,  Ch, o %2 (2-69)
Wa 0 -Sgﬁl -C¢>1 Cgbz ¢3

€
u
o

The rates q:)l, ‘52’ 63 are thus given by
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Figure 24 Coordinate Frameémfor'a'Spiﬁﬁing"S\fﬁ'n_:ﬁetrié Vehicle

NOTES: N

Rotation sequence 3—2—1
Newtonian frame N with basis ngy
Body frams B with hasis by
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‘51 Lo ~ Sty Vg
éy] 10+ Coy Cé,5¢,1 [w, (2-70)
$o] 10 1 ~Séy Co,Chy| \vg

Because of the presence of the identity and the null matrices in

* Equation (2-70), the inverse can be immediately obtained. The
notion of obta;i;lix;g the inverse of a matrix by partitioning is useéi '
-f-réquenﬁly in this work. In gener:alll the inverse of the partitioned

matrix T is given by

- - T _g
-1 -1 -1 R T T b ]
Ty1 Tz [Tl.l“leTzszl] ! “T11f12[ 22 T21%117 12
-—I--—-' =l---=-=-=-==--=--- _-il--. —————— - —-—1——-
T, T cplp e op alle '[T - Tt ]
21, 22 | Teatail i 1222l 227 “21711 12 ]
[ [ R p-— _...__._......_.- e ————— = —— e ..--—-(2.-71)- ——
Using Equation (2-71) the inverse of the matrix in Equation (2-70)
1 3 & = = -1 = ’
bec'omes (noting that Toy 0 and T, Ty I)
I T T’lﬁ H1 Sé. tan ¢, Co, t p¢"
12 “22 e 0 P9 1 AR P9
TR A S F -
GOy 50y (2-72)
0 T/ ke s
0 1 —— —_—
2
B 22 | | %% Cé,
The final expression for él and q‘;z is given by
ZAU L T
¢,/ - 0 1w, O W, (3-7'3):
ot s i1
¢1
L¢24

The rotational equations of motion in terms of the newly defined x

become
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(5] t] 11—13 W l 5 E{-l—

1 Il 3 : 1 I1

0
- !

’2 I s : 2 I
w2l T o ek e e e e, - [ S - -1+ R (2"74:)
5 ' o - 0
‘?1 1 . 3 21

Equation (2-74) is in agreement with the equivalent result provided
in Reference [11]; in Reference [11], since dual-spin vehicles are

of no concern, the result is obtained by using Euler! s equation.

A-37

{
i



PRECEDING PAGE BLANK NOT FILMED

Section 3

FORMULATION OF THE FUEL-OPTIMAL CONTROL PROBLEM

This chapter provides a discussion of the formulation of the optimal
" control problem. The general structure introduced in this chapter
provuies a convenient framework in which the fuel-optimal control

_problem concerning the dual-spin spacecraft can be imbedded.
3.1 .Statement of the Optimal Control Problem

An optimal control problem is characterized by the composite of the

following elements

.{1) the plant or process 5

- (2) the initial set X_ containing the initial state x  and the initial,
time t

(3 the targeu, set Xl contammg the final state x, and the final time
t

g
(4) the class of admissible controllers A

(5) the control restraint set

{6} the cost functional or performance index J

Briefly, then an optimal conirol problem is completely specified in

terms of the composite
s, A, @, X, X, I}

A statement of the general optimal conirol problem is as follows.

Given
(1) the dynamical system S having the state equations

% = 1w i=1,...,n

.y

n m 1
where x e R , 1 eR , teR
and x belongs to the class of contlnuous functions having continuous

flrst partlal derivatives with respect to X, u, t, i.e.,
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_:i eCl in R%x R™ R1
(2) the initial state x_ and initial time t
(3) the class of admissible controllers A

(4) the control restralnt Set Q,

the problem is to fmd the controller u(t) C Y W’thh

(1) takes X io X such that the pair (‘{ (t ) tl) € X or equivalently

the pair ( (tl, alt b, x _0), t1> <X,

where ¢ is a vector function {transition function) which maps the
cartesian produci space R1 % Rm x R into Rn, i.e.,

4: R*x R x R"» R

(ii) minimizes the cost functional J( Xo’ to, u) where J(xo, to’ u) maps

the cartesian product space R x R x R into R

- A
* As used here Rl refers to the extended real number system defined
by [18] '

A
gl=r'v {-w, +w}

The control function u(t). which accomplishes the task described
above is called the 'opt'im al controller E*(t)_'f'
3.2 Formulation of the Fuel-QOptimal Control Problem for the Dual-
Spin Spacecraft
"In this section, a specific optimal control problem for a specific class
of vehicles is discussed. In this work, the fuel optimal control of

dual-spin spacecraft and spinning vehicles will be treated in detail.

1A controller E*(t) belonging to the admissible class A is called
optimal relative to the cosi functional J (go, to, u(t)) if the relation

7(x, to, ¥(®) =3 (2, to, u)

is satisfied Y B(t) € A.
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Once formulated, the problem under consideration can be compared to
similar efforts discussed in the literature. To be specific this work
will be compared with pubiished works dealing with the fuel optimal

attitude conirol of spinning vehicles.
3.2.1 Class of Admissible Controllers A

In this work, the class of admissible controllers is taken as those
functions u(t) which are measurable! on various intervals t ¢ [to,’t ]
and'which steer the initial state X to the target set Xl. An
important example of a measurable function is one that is piecewise

continuous.
3.2.2 Control Restraint Set Q

In this section, the nature of control restraint sets @ which could
conceivably be applied to the fuel-optim al control of dual-spin and
spinning vehicles is discussed. Later, it will be seen that the conirol

restraint set Q for a particular problem should be éarefully chosen.

Many text books and journal publications give the erroneous impression

that the control restraint set Q which applies to the fuel-optimal

_attitude control probiem in which magnitude limited jets are used is

always given by
Q = {E(‘c):[uj(t)ISI j=1,2,...,m}
The "optimal solution which results from the use of a model which is

not "best" from a physical and practical pint of view should be cau-

- tiously interpreted,

VA real-valued function u(t) defined on a real interval (, is called
measurable if for all real « and 8, the set

{tlt el and a <u{l) <8 } is measurable.
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In general, the control restraint set @ is defined in terms of the
functions u{t) (belonging to the class of admissible controllers A)
Which' gatisfy some appropriﬁte constrainis. Frequently (and perhaps
too frequently), the comtrol restraint set 2 is assumed to be that
described above. _ In-this case Q -is. known as an m-cube and is

both compact and convex, |

For ihe problems of interest in this work, the controllers u(t) are
defined as
w0 =55
1
where M is the applied moment {control) and 11 ig the transverse

ynoment of inertia, The control restraint set 2 depends on

(1) the type of reaction jets used

(2) the number of reaction jels used to generate the applied moment M.

'Later, it will be seen that the number of jets needed for control

depends on their location.

) ‘A‘gopologicél ‘space X is saidto be compact if every open covering
(L of X has a finite subcovering, that is, if there is a finite collec-
tion ) )

. . . N ~-
{01202:"':On}CU3 X = i&{[ Ol

o

In particular if the space xXC R" then X lis compact if it is closed
and bounded.

A subset K of a vector space X 1is said fo be convex if whenever it
contains x and v, it also contains A X+ (1-0)y for 0= =1.
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Magnitude limited two-way jet

For magnitude limited two-way jets the control restraint set Q is

given by

o ={u@:|u®mls1  j=l2...m

For this case, the components of u(t) are indepeﬁdenj: of each other

and belong to a hypercube. For the case in which m = 2, @2 is geo-

metrically depicted by J up(t)
R
1

::_1_ B
>=- uy (t}

In this work, a two-way jet is designated by . Inatwo-way

jet, either side of the jet can be separately activated by a valve.

Magnitude limited one-way jet

Magnitude limited one-way jets have a control restraint set charac~

terized by

Q={ul: Otiuj(’c)ii, j=1,...,n}
This type of jet is I‘ep‘resented by \1:/ and is a Spec-:ial case of the two-
way jetl.

Gimballed-jet

A gimballed-jet is one 11_1 which both the magnitude of thrust and its
direction are controlled, The salient feature of a gimballed-jet is
that it can simultaneously ﬁroduce torques about two axes rather

than one as in the case of a fixed-jet. {he components of u(t) for a
gimballed-jet are dependent and belong to a smooth hyperspher-e. The

control restraint set © is given by
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@ ={uw: [ uw]=1}
where H uft) | is the norm of the vector u(t)

Rate~limited coniroller

In order to more realisticélly consider the inertia of the control
mechanism, the controller is sometimes asswmed to have a limited
rate of variation. In this case, instantaneous switching is eliminated.
The admissible controllers belong to the class of al.asolutely contin-
wous| functions on various finite time intervals with 05t = tl. In

this case the control restraint set is defined by
Q ={ult) : [ ﬁj(t}lﬁ 1V ae., uj(t) are measurable,
and u(0) -“—11_(1:1) = 9}
3.2.3 Discussion of the Plant 5

'In this section the plant or process S is discussed. The rotational
equations of motion for both the dual-spin vehicle and the spinning
vehicle are derived in Chapter 2. As shown there, the plant can in

general, be characterized by
() 2=A(x,D x () +BD ult) (3-1)

This characterization accurately represents the large angle turn
mode of the deep-space mission. In the phase of the mission of
chief interesl in this work, the cruise phase, the plant can accurately

be represented by

TA real-valued funciion u(t) defined on{a,b] is said to be absolutely
continuovs on [a,b] if givenan e>0 36 >0 2

E |1_.1 (t’i) - u(ti) I < ¢ for every finite collection {(ti, t'i)} of
i .

nonoverlapping intervals with ), ]t'i - til <& [18].
i

A-44



(L) & = A x() + B uft) (3-2)

with an intial state X at time to. Hence, for the problem‘s of
chief concern, the plant is characterized by a linear time-varying

set of ordinary differential equations.

The exact representation of (1) depends on the location of the jets.
As mentioned previously, the number of jets required to accomplish
the control objective depends on their location. In this section, the

forms of the matrices A(t), B(i) are given for various jet locations.

Plant for the Dual-Spin Vehicle Using Rotor-Fixed Jets

When the rotational equations of motion are expressed in the "despun’
. frame (as was done in Chapter 2) and the jets are rotor-fixed the

plant for the cruise phase is given by

(L) &@® = Ax® +BE b

or . -
o] T ' 1 o] Teot -sev
Wy “B, 0 vy ot -So
o B 0t W Set ¢+ Cot Yy
21 _ 240 __
Yol ety (3-3)
1 Lo 1 ! 2
92 1 t ‘0__1 92 ] 0 0 ]
h 4 - -
J?G _
where B = = ro
I
1
T = the identity matrix {2 x 2) -

.Clearly, if only one rofor fixed jet (e.g., the one generating {11), is

used then the matrix B(t) becomes
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[Cot]
sm = 57 L
0

L 0 .
Plant for the Dual-SDm Vehicle Using Jets Located on the ”Despun
Body

If the jets are located on the despun portion of the spacecrait (S/C),
the plant is given by

() E=Ax®)+Buld)

or
. » _ s 1 - i
0,7 0 B, wl'} )
r 0 I ° 7
@2 B G vyl | _ 1
q“é"v- = - - - ":"_ - -e"‘e""" + "l-__ P, L (3-4)
1 1 1 u2
b I t 01 . 0 L J
592,4 — ! — LBZJ —_—

In this case the system (1) is time-invariant. Optimal control
theory for such systems has been intensively studied. It will be
shown later when the notion of controllability is cuscussed thai two
jets would be requlred for this case.

) Plant for the Dual -Spin Vehi cle with the BEquations of Motion Expressed
in the Rotor Frame

For the case in which the linearized equations of motion are expressed

in the rotor frame and the jets are rotor-fixed, the plant is given by
x = Ai) x(t} + B uft)

or
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'(',_)lﬁ 0 -y 1 —‘ "wl‘ﬁ
4
O 0 :
2 v o ) I uy
B R TN ittt i Vom = = b - - -
6. " |cot 8ot 6 +[ 0 }{u} (3-5)
10 ' 2
- I .
L—62‘ _Sat Cot | | _92_
where w© = NQR ;
R
y T3 7h
I1 )

In this case the matrix A is time-varying and B is time ~invariant.'

* If only one jet is used, the time~invariant matrix B becomes

[ I o e B

This formulation has no advantages over that given by Equation (3-2).
In fact, it has the disadvantage that the transition matrix cannot be

evaluated as easily. Although the solution is given by
t

. . 1 i .
x) = o x, + o0 {673 BlY w ar, (3-6)
) t

o

where & (1) is the transition matrix satisfying

&) = AlD) @ (1)
CeO=1 .,

(3-7)

the fact that the matrix product

A(tl) A(tz)

is not commutative implies that the transition matrix is not simply
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o) = S

as it was for the formulation given by Equa’ci'on (3-2).
Plant for a Symmetric Spinning Vehicle

The plant for a spinﬁing vehicle can be viewed as a.special case of
that for a dual-spin vehicle. A spinning.vehicle-i's of special interest
in this work because the fuel-optimal spin-a¥is control (SACO) of
cuch a vehicle has been discussed in the literature [11]. By com-
paring the results given in [11] with.the new results obtained for

the same vehicle when the angular momentum control (AMCO) concepi
is used, the relative merits of the new concept can be ascertainea..
The rotational equations for this vehicle are provided iﬁ Equation

(2-14). The plant can be represented By the time~invariant linear

system
(L) %@ =Ax® +Bub (3-8)
or
o, 0 rw, ] (0.
1 3 0 1
W -Tw 0 ! 9 u
ot _ “'3 | 2|, |t 1
T" -y = |- - T =T !'" bl R e, N I
9 , 0 V3] 9 ' Uy
I -t 0 0
6 L3 $
\ 2.« il _‘ - L 2
.
I.-1
where r = -—1—1--§— .

3. 2.4 Initial Set XO and Target Set X1

In this section, the initial set X and the target set X, as they
pertain to the fuel-optimal control of a dual-spin 4/C and a

spinning vehicle are discussed. As stated in the introduction



it is the target set :Xl and the control restraint set  which
distinguish the present work from that which has been discussed

in the literature. In Reference [11], the fuel-optimal cont:_r:ol problem
for a Sj‘pinning symmetric vehicle is discussed. Inthat case, the

is givén by . ‘ .

target set Xl

Xy {=., B: E('tll) = 0, tl free }

“This type of fuél-optiraal problem can be conveniently classified as

one of spin-axis-control (SACO).

hlthis dissertation, emphasis is placed on the practical aspects of
the control problem. It is not considered praci-:ical, especially when
- the objective of the control problem is to minimize fuel, to drive the
final sta.te to zero (or even to a small neighborhood of zero -- i.e.,
the déad‘ band region). Instead, the no’cion of angular momentum
control (AMCO) is introduced. In this concept, the angular momen-
tum vector H is oriented to its desired direction in irertial space
by applying the control u in such a way that fuel is minimized. A
properly designed damper then aligns the spin axis with the angular

momentum vector. Inthis case the target set Xl is given by
X [( ®(t), t): gy EO tl) gz(}—‘(tl)’ tl) 0]

where gl( x,t)=H" 1

-1

s

A
gz(}_c, t=H 2y

and {\13 parallels the desired angular momentum

vector _I;ID
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In this case, the target set is a smooth 3-foldl in R™ X Rt (if the
functions g4 and g, are not explicit functions of time, then the target
set is a smooth 2~fold In Rn) It is noted that the iransverse compo-
nents of the angular momentum in inertial space, gl(:_c) and g2(§), are
smooth functions. The set of points for which gj(§) = 0 is said o _be
a smooth hypersurface, Hence, the target set can be viewed as ithe
intersection of the smooth hypersurfaces associated with gl(E) and

gz(g). Tor the dual-spin vehicle, the functions gl(g) and g2(§) are

given by
-
1 0 0 ro g
glx) = _ } 7L =Cx
0 1 ~ro 0 1
62
R L o (3"8) .
where r = ——
1

and T o =8

_I—Ience, the target set Xl for the AMCO is convex and closed, Note
that as defined in Equation (3-8) it is not compact since it is unbounded.
However, when due consideration is given to the fact that both & and
w are bounded, then the set X1 is compact. The targei set Xl in

terms of the w'1~ 9, and w, - 6, planes is depicted in Figure 3-1,

The initial set X congists of the pair (}s o’ % ) where x is the 1n1t1al

state and to is tne initial time. The 1n1t1a1 state, for the problems

I’ZII'he set of points X 1 defined by

~{x; g(m =0 j=1,4,...,n-k}

is said to be a smooth k-fold in R" if for every point X, € Xl the
2g. . _
n-k vectors —EBE:L { _x_o) are linearly independent [20].

A-50



of interest in this work, is that v;rhi'ch exists at the time the optimal
control sequence is initi:ated. The cc;mponents of X are sensed

by appropriate sensors and when the initial state is such that the;
antenna pointing error is too large, the optimal control sequence is
initiated. Hence, the elemenis of the initial state provide a criterion

for initiating the optimal control sequence.

.hZo{'

S 8_1

s 0,

Hy(x) = g;(X)=0 Hylx) = gpfx) = 0

“fig_ur_e_ 3-1: ) 'iII‘u stration of the Ta rgét “Set for th e AMCO -C-tor;g:hé})t_

3.92.5 Cost Functional

The cost functional J(EO, to, u) is, in general, the quantitative
criterion for the efficiency of the controllers u(t) on tos t= tl in
the class A. Inthis work, the cost functional is related to the
fuel used in driving the initial state X to the target set Xl'. Hence,

the cost functional is given by
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.t
J (50, t. g) = S 1ho (E(t), t) dt (3-9)
._t - i
. O -

where ho (\E(t): t) is related to the flow of fuel. For coﬁvenience,
J (Eo, to, w will frequeqﬂy be written as ;(E). The exact form of

h (E (1), t) depends on the control restraint set @. The form of

. hy (_1_1_ (1), 1:) for various control restraiﬁt sets Q@ of iﬁteregt for the

dual-spin S/C is discussed below.

Magnitude—Cons{rained Controller

The control restraint most commonly used in regard to attitude

control problems is given by

“o o= {ult): 1uj(t)ls i1 j=1,...,m}

The cost functional corresponding to this © for the fuel-optimal
. problem Is -given by
t m o
T K, lui(t) | (3-10)

i=1
o

J(-}Eo’ to, E) = S;

A special case of the above category which is especially suited for

the dual-spin vehicle is given by

Q= {EA(t):Oﬁuj(t)Slu j=1,...,m}

In this case, the cost functional becomes

t

T : 1 m i
Jx , to, 1) '='Sl

K, u(t)d (3-11)
FolE |

Norm-Constrained Controller

As mentioned in Section 3, 2.2, the use of a gimballed jet results in

a control restraint set given by
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http:given.by

o ={u®: [ u®]=1}

The cost fqnctiénal corresponding to this Q is

. ’ t
J(x,, to, u) =S' Kfulla " (3-12)
\ .

O

3.2.6 Statement of the Fuel-Optimal Control Problem for

Systems Being Studied
Having discussed the notions which make up an optimal control
problem,. the fuel-optimal control problem for the sysiems being
studi'ed can now be explicilly and briefly stated. In this dissertation,
the cruise phase of a deep spz‘ice mission is of prime coﬂcern. In
this phase, the task is to maintain the precise inertial orientation
of the rotor axis. Loosely, the control problem is to find the
optimal controller E:":(t) which drives the initial state X/ to the
target set (defined by requiring that the transverse c:or_nponents of
_ the angular momentum veclor in inertial space be zefo) in such a
way that 2 minimum amount of fuel is expended. The optimal control

sequence is initiated when the condition

Lol =e, _ (3-13)

where @ has cornponents 61, 62

Bc is based on the required antenna pointing

accuracy

is ‘s_atisfie-d and is terminated when the condifion

| B0l = e BEEEE

where E‘I‘ has components H- ny o, H- I,

€ represents some arbitrarily small positive

number
ig satisfied.
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More precisely, the control problem {L, A, 52,' Xo, Xl’ J} of prime

concern is the following. Given
(1} the dynamical system L
(L) % =Ax(®)+BE ) (3-15)

(2) the initial state x_ and the corresponding initial time to
{3) the class of admissible controllers A '
(4) the control restraint set  (to be carefully selected based on

practical considerations),
the problem is to find the coniroller u(t) C © which

(a) takes X to Xl such that the pair
(xteps t,) €%, (3-16)
where X, = {(x, i): gj(:f) =0 j=1,2}

{b) minimizes the cost functional J{u).
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Section 4
CONTROLLABILITY NORMALITY, EXISTENCE,
AND UNIQUENESS
In this chapter, the related concepts of controllability.and normali’cy
and their connection with ihe existence, and uniqueness of opilmal
controllers is discussed. These notions are of great importance ‘
when the computational aspects of ihe optimal control problem are
of concern. They indicate whether a problerri is well posed, whether
a unique oplimal controller can be found, and even indicate to an
extent what éomputational approach should be taken to determine the
optimal controller. As in the preceding chapters, the general theory

is first stated and then applied to the specific problems of interest.
4,1 Controllability and Normality

In this section, the notions of controllability and normality are
discussed. The noltion ?o'f-controllability, popularized by Kalman (223,
provides a convenient means for determining whether a linear conirol
p;c'oblem is well-posed. Normality is closely related to controll-
ability but is a stronger property in that normality implies controll~
ability but not vice versa. The notion of normality plays a key role
_in existence theory pertammg to optimal solutlons of linear systems.

After these concepts are defmed some pertmem theorems are

Sta’ced and apphed to the problems of interest in this work.
4. 1.1 Controllability

In this work, the concept of controllability is used to establish if the
jinear control problems bem@ studied are well-posed. If the system
is linear, the very first step in the determination of the optimal
controller involves an inve stigation of this concept. It is demonstrated
in this section that the nature of the notion of controllability is not

merely mathematical but is practical as well. In fact, controllability
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can aid in the determination of the location and number of jets

required for control.

Controllability is defined as follo\;.fs [21]). If the system
(L) % =AM x(®) + BO ub) = £, u, %) |

with initial state x(t ) = x_ admits a solution such that

x(T) = ¢(T; u(t_, T, .} =0

. n
for some finite T > to and for some measurable u for each x,€ R,

then the system (L} @s said to be completely controllable. In this

definition, the vector function ¢ is such that
§:RxE xR - R

and satisfies

¢ (tO; B(to’to]’ Eo) ~ %

g{ ¢ (’ﬁ; E(‘Co, t, 50).= il:t, u(t), é{t; u(to, 1], Eo)]

Controllability for Time-Varying Sysiems

For a time —varying. linear system, a computational check on
controllability invol';ring only the transition matrix @ (t, 1) and the

matrix B{t) is given by the following theorem due to Kalinaﬁ [22].
Theorem. The Linear System

(L) % = At x(t) + B(t} ult)
is completely controllable iff foé' every i there existsat 1 >1 such
" that the n » n gymmetric matrix

gl

C(t,tl) = g @(’sl, 7 Bl BT(’T) @T(tl, dr (4-1)
t

is positive definite.
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Because of the nature of the controllability matrix C(t,t.), the

requirement that it be positive definite is equivalent to the require- |

ment that it be nonsingular or that its determinant be nonzero.
For the dual-spin vehicle, the nature of ithe system
(L) % = A@) x(1) + B() ult) (4-2)

for various control restraint sets and for various jet locations was
discussed in Section 3.2. When the jets are rotor-fixed, the matrix
"A is time-invariant and the matrix B is time varying. For such a
system the transition matrix ¢ (i, to) can be conveniently comp;uted

by using some fundamental results pertaining to the spectral theory

of operators. The notions of this theory which are used in obtaining

o (1, ‘to) include

(1) the spectral representation of the operator A
(2) the Jordan canonical form for the operator A

(3) functions of the operator A

Spectral Representation

The spectral representation of a simple operator A is given in terms

of ils eigenvalues hi’ its eigenvectors %5 and the eigenvectors Vs
of the adjoint'i' operator A¥. That is, any vector x expressed in

terms of its eigenvectors X, is represented by

X =a X, (4-3)

the vector A x is represenied by

Ax =}, 0 X , (4-4)
i1’

and the scalars o, are represented by

TA linear operator 1.* is said to be the adjoint of L, ifforall x, ¥
belonging to the domain of L, <y,Lx > =< L* y, x> .
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a; = < x, yi> ' (4-5)

When the operator L is ihe matrix A, then the adjoint operator g
. . T . .
is simply A”. Using Equations (4-3) through (4-5), the vectors x

and Ax can be written as

X in<yi,x>
i .

I

Ax = )2 % <y,x>
i- .

In terms of dyads these results are
A= ? A % ><y;
(4-6)
> = ><
X Zi;xi Y X >

. It folEEc'm;s that the operator

213 % Z<Y;

is the identity operator. In addition, the eigenvectors of A and those’

of A* form a biorthogonal set, that is

< X ‘yj > = 6ij (’4-7)

- The representation of A given in Equation (4-6) immediately suggests
that

A=M A Mt

where the eigneveciors x, are the columns of M, the eigenvectors
y; are the rows of 1\-{[-1, and the eigenvalues Ai are the elements of
the diagonal matrix A. In the general case, the eigenvalues are not
distinct and the diagonal matrix A is replaced by the Jordan

canonical form J.
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Jordan Canonical Form

The following theorems [17] provide importaﬁt features of the Jordan

canonical form.

Theorem. Every matrix A can be transformed into its Jordan ‘Ganon-

ical form J by means of a similarity transformation.

Theorem. Let.A be an arbitrary matrix with X, as its right eigen-
vectors or right generalized eigenvectors. Let M be the matrix

whose columns are the vectors X then the matrix

JMAM

is the Jordan canonlcal form and the rows of M -1 are the left eigen-

vectors or left generalized elgenvec’corsl of A.

Hence, when the ordinary eigenvectors do not span the space, the
notion of a generalized eigenvecior is introduced. The generallzed
" eigenvector %, b belongs to the null space ofthe operator (L.-A I)
Repeated applications of (L -~ KOI) to a generalized elgenvector of
rank r generates a chainof r generalized eigenvectors. Inthis
_way, an optimal basis for the operator L is created and relative to

‘this basis the operator L has the Jordan canonical form.

For the dual-spin system, the matrix A is given by

@

.

A= 117T0T0 o (4-8)
1

——— -

3 . - k
.iA vector x. for which (L-Aol)k 1 Xy # 0, but for which (L—,\OI) X, = 0

is called a generalized eigenvector or an eigenvector of rank k
corresponding to the eigenvalue )LO.
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The eigenvalues are computed from the characteristic equation,
The determinant of A is conveniently evaluated by partitioning

the matrix A. That is,

— e am e

P
1
1
I
I
1
Ly

The eigenvalues are ;given by

Ay =0, 2, =0, A =38, Ay =3B

" For the repeated eigenvalue A =0, the generalized eigenvector 'xk

ig that vector for which
' k
(A - ?LOI) X7 0

The null space for (A~ Al) x is determined from the relation

o -8 0 0} f& BE,
B 0 0 o) f&, | | BE
1 0 0 0] 1|&, g,
0 1 0 0 \&, &,

that is, the null space is given by

-QL‘I: {x: El=0'and ?‘;‘,‘2:0}

Similarly, the null space for
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(A - PLOI)z x {s determined from

o -p 0 0\ /[BE, 8%,

g 0.0 o | BE, —Bzgz
o o o & BE,

0o 10 0/\ ‘B.%’l/

hence, the null space for (A - ;\_01)2 ig given by
My = 1x: 8, =0 and g, =0t=Ty
Since the null spaces Q’Cl and ﬂ/l,é are identical, there are no ones

* in the super diagonal and the Jordan canonical form is given by the

diagonal matrix

-
3 ]
o 0
J = ) = A
iB.
-8
[ Jﬂs-

The generalized eigenvectors of rank 1 associated with X =0 are

X:

0 0
0 0
3 1 0
0 1

The eigenvaectors corresponding to the distinct eigenvalues A = B
and X = - jf are obtained from the definition of an eigenvector and

are
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%= iB for a=jB
3 /
1!
B
x,= | 8} for A= - 3B
-]
-1

"—B B ': 0 0]
1
i L 0 0
M= (BB D
i j ':1 0
1 -1 v 0 i

. The inverse of M 1s easﬂy compu’ced by 'oartﬁlomng, that is,

;.1.

!

1
Rallanﬂlz _ (z {11 mg12\ﬂ223521) - Bﬂllnﬂl2tw Wﬂ21\£11hq12)
R PR T e ——————————————— B e e et e e
1 1 -1 =1 -1 -1
Mle M22 M 22 21(1\/I -VI12 1\'l22 NIZI) ‘(‘\/,122 IVIZ 1-\/[11“12)
— (4-10)
with M,, = [0] :

B i 1 ! ]
[ S S
-28 2B | 0
1 1. t
a0 e 1

M 128 2B . ___.

0 ST/ B -
1 t I
—_— 0 i

L i

As a check, it is séen that, indeed
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F=mlamMm

as it should;

“Functions of An Operator

The transition matrix @(i, 7} can now be easily obtained since fhe
Jordan canonical form and the matri‘ces M and M-_l are known. The
operator A is simple, that is, every cigenvalue of A is an eigenvalue
of A*, all eigenvectors of A and A% =a.re of rank one, and the eigen-
vectors c-af A or A¥ span the space. For a simple operator, the

spectral represent_ation is given by

it

x .in<yi, x>
1

Ax E?Lixi<yi, x >
1

It follows that functions of the operator A are given by
2 w2
A x= Z’ki xi<}_ri’ x>
i
n_ _ n -
AT x-= Ehixi<yi, ,-;>
i
= < x>
q({AXx ;Xi ald)) <y, x

Where g{A} is any polynomial in A.

Extending this notion of a function of an opera’cor to analytlc functions

£(\) by using the power series for f(a) it follows thau.

£{A) x = z xif(hi) < Yy X > (4-11)
5 :

‘The controllability of the system at time to can be determined by

examining the determinant of the controllabilily matrix
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.‘tl - -
Clt ,t) = S ot L, BO BLD $70_,Dat (4-12)
O A (o] o

o]

The controllability matrix can be easily evaluated analy.—t'ié:ally by
using the fundamental properties of the transition matrix. Some of

the useful properties of transition matrices are the following:
#(t,t ) = HHE )
e} o

¢(to,tl03 =1
..1 " .'_1 .
o M, t )= elt D) =olt) P (D (4-13)
Trem o o .
45(1:0, ) -?-Nto’tl) g’;ﬁ;l_’ )

. T
T _ -1 R T T
& (to,t) = [qp(to) P (t)] = ¢ () cb(to)

The transition matrix for a time-invariant system has the additional

properties
oD =a(-D)
ot +1 = ot} o()
Hence, the conirollability matrix C(to,t ) is given by
y
Clt,t)) = ¢cto)[5;

o

o) B BLE) o -ﬂTdt] ¢(to)T (4-14)

From Equation (4-13), it is seen that

qﬁ(to) =1

‘.and, hence, Equation (4-14) reduces to
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) tl . .
cit ,t) = S' @(-1) Bt) B (1) ¢(-1) 4t
o1 4

o

(4-15)

The controllability matrix can now be evaluated for the cases in whickh

(1) two rotor-fixed jets are used, i.e.,

—2301: —So{d

Set  Cot
BCt)f 0 0

| 0 L0

(2) one rotor-fixed jet is used, i.e.,
Co t]
Sot
0
0

Y o]

Bif) =

(4-16)

(4-17)

} is known that for a linear time-invariant system of differential

equations

(Ly x = A '_i;(t)

}.-—i-(to) = '}SO L4
the solution is given by

= At o
x(t) = e §o—q_b(t) N

where eAi: &(t)= the transition matrix.

The function eAJc is calculated from Equation (4-11) as
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.]-EI-}ipénding Equation (4

spin vehicle

o) =

mllt ]
e . ¢
?th
e
= Ast
e
ALt
o ey

T cpt - 8Bt :

Spt Cpt v 0
1 1 '
5 St _ -5 (1 - CBt) ! I
1,. 1 f
E(l CBt) B SBt

TwWO Rotor-Fixed Jeis

{4-18)

(4-19)

Substituting Equation (4-19) into Equation (4-14) and integrating

yields the analytical expressidn for the controllability matrix for-

the two rotor-fixed jel case.

@

The controllability matrix is given by
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. . _ SBt
t 0 . .l——(CBt ~1) -
g ; - g
0 1 :g %—t 12—(th - 1)
C(to,'t]:)-= """""""""""" nbefmhiaietdd : ———— §:‘-" - e -'B— e atulale
cpe-n £ -2-@.8.@3\ 0
; DL - A
t , Spt 1, T . 2.t " sBt
mo 2 (CRE-1), 0 R
B g2 g2 . B (B 2)
- F 2 B iy

C1q lC12
i 1 -
: = [Cnl Coa™ Czlc Clzl

Co1 1Coy

yields
i/t SBt 9 2
.\C(to’tl) Eg (E “—2—) I (1-—-051‘3

8 B : ‘tz&
1T

Tt is clear that the determinant is greater than zero for all t1> 0;

at tl— 0, the deuermlnant is identically zero. Hence, the dual-spin
system using two rotor-fixed jets is completely controllable at t .
This result is in agreement with that obtained by uSm a digital com -

puter in evaluating the determinant.

One Rotor-Fixed Jet Case

Repeating the above procedure for the one rotor-fixed jet case, it

was determined that again the dual-spin system usmg one rotor-fixed

jet is completely controllable at t o Thig result was also corrobor-

. ated by that obtained by using a dlgltal computer.
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Controllability for Time-Invariant Systems

_For time-~invariant systems, the computational effort involved in
determmmor whether the system is completely controllable is signifi-
cantly reduced. Inthis work, time-invariant Systems are of 1nterest

since

(1) if the jets are located on the "despun” body, the system is
characterized by a time -invariant system of differential equations
%(t) = A x(t) +Bul '
{2) the symmetric spinning vehicle is charamemzed by a time-

invariant plant.

'Computational techniques for determining whether a time-invariant

system is controllable are provided by the following theorems.
Theorem. The time-invariant system
(L), £=A4x® +Bul)

with X € Rn, ue R™ and having distinct eigenvalues is completely
controllable iff there are no zero rows in the matrix

M B,

where the rows of the matrix M -1 are simply the left generalized
eigenvectors of the onerator A or equivalently the right generalized

eigenvectors of the adjoint operator A%,

Theorem. The time-invariant system (L) x=A E(t) + B E(t) is

completely controllable iff the n X nmn matrix
t i ] -
G = [B aB 1A%B ..., A7 113]

has rank 1.

A-68



Jets Located on "Despun'' Body

Fror the dual-spin vehicle, with the jets located on the despun ‘pc_)rtion,

the system is characterized by
X =A§(t) +B(t) u’

(L)

The spectral representation for the operator A has already been

determined. The mairix B is given. by

1
0
0
0

00O 0O

0
"1

when two jets are used

when one jet is used

"The matrix M~ B for the two-jet case is given by

TR -

L

— we =t e e = e

-
0 0
1

t

1

1 0 0
]
i
]

I | 0
1

1

10 1
t

R
-2 2jB8
11
2% - 23
1
° B
0

(421}

-1 .
~ Since there are no zero rows of M ~ B, the syslem is completely

controllabl.:.

For the one-~jet case, the matrix Mhl B is given by
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B 1 1 [ i [~ 1 T __}__-1
28 23F ~2B
' o
1 1 0 =
28 2iB 1 ' 2p
_________ e - (4-22)
0 -1/ 0 0
H
I .
1 ' ' L
bl 0 ' 0 ' 3
B | 4L P

Since there is one zero row, the dual-spin vehicle using one jet on

the despun portion is not contrcllable. In this problem, this conclusion
can be confirmed b3-r intuitive reasoning. Intuitively, it is felt that

if the jet is; fo’cor-fixed, only one is required, but if the jets are fixed
to the despun body, two are required. - The ideal location of the Eiets

for this work has thus been determined. In the sequel, the type of

jet to be used will be determined.

" Contirollability of a Symmetric-Spinning Vehicle

The conirollability for the time-invariant system

(L) % =Ax{®+Bul)
representing a symmeiric spinning vehicle is determined in exactly
the same way as it was for the dual-spin vehicle with the. jets mounted

on the despun portion. The mairix A is given by

. i-1. -

0 :; 3w3 : 0 0
1
I-1 ;

N I 0 0 0 _

I, '3 ‘ ,
A= ' . (4-23)

1 0 0 W, '

R 0 i —w3 0_

Its eigenvalues are
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JHfISw y I—I3w y
> 2 2
I1 3 II .3 3
the modal matrix is
...j w _Ii. j © .i[g -
3 Il 3 11
- 3 1I 31
M = -1 ‘1
j -
N 1 1

23w3 13

and ;che matrix M-l B is
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0 0
0 0
i !
1 1
0 0
0 0
11
23 2
11
2] 2

(4-24)
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- —erst -;|rw3t
i€’ e
4 » ; E;]rwst €3rw3’c
.M B - 2(1“'1‘)&)3 . -t . t (4—26)
I 93
-j € €
. erst ergt
J €. “€
I1.-1
where T = — S .
. Il

Hence, for the two-jet case, the system is completely controllable
since there are no zero rows of the matrix M—1 B. If only one jet
is used'the matrix M - B is simply the first column of that given in

Equation (4-26), i.e.,

. —jrwst
je
o Jregt
S | 1 e
M "B = M2(1~r)w3 ‘ —erst {4-27)
_ S e
| Jrwgt
je

J is seen that a symmetric spinning vehicle using only one jet is
completely controllable. This result is also in agreement Wi:th that
obtained intui’c'ively. Since the ;body~moun%:ed jet rotates relative to
an inertial frame, the requirement for both negative and positive

torques is automatically met.

Relation Between Controllability and Classical Vibration Theory

It is interasting to note that the notion of conirollability has an
analogous counterpart in structural dynamics. In fact, it can be
said that the notion originated in classical vibration theory. Consider

the linear system
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(L) % = A x(t)+ B(H) ul®) (£-28)

The spectral representation for the operator A was previously given

as _
A= Z)Lixi><yi
i
x> = E<;{, yi>xi:Zcrixi=ZXini
B i , i

3
The measure members o of the vector X relative to the basis

.defined by the e{genvectors are termed the normal coordinates.

That is

‘I'ne relation between normal coordinates and the gpectral theory of

the  operator A has thus been egtzblished. The result

X = X, 1.
A1 1

is equivalent to
x=Mn " {4-29)

Interms of the spectral repregentation of the operato:é A, the malirix
A ig given by )

A=MAM (4-30)
-for the distinct eigenvalue case.

Substituting Equations (4-29) and {4-30} into Equation (4-28) yields

%(M n) = [M AM IMn + B u (4-31)
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Sﬁnplifying Equation {4-31) yields
fi= An+M B W) (4-32)
The solution. for the vector n is

At

. ) t‘ ‘
o® = & o P77 B0 u(mar (4-33)
o) ‘ : )

If the jth row of M—1 B(t) is zero, the jth coordinate nj is unaffected

by the input and the system is uncontrollable,

Knowing -n, the vector x becomes

. _ t - -
o= wnw =Mttt 2o+ (et P s aar

© {4-34)
Eque;iion (4-34) can be conveniently‘ written as

lit t )L'i(t~'r)
x(t) = Z< ¥;o :_5(0) >e xi-{- g Z<yi, Bu(7) >e xid'r (4-35)
i o i - .

In Bquation (4-35), the initial condition response is seen to be a
' At
weighted sum of the modes e t

Xi , that is

I »
Ei_‘l<yi, x(0). > e P

the forced response is

At A7)
S Z < Y;s B B(T) >e Xy dr
o i ' :

The amount of excitation of the ith 1ode due to the forcing function
- -is

t- h..(t"'f) ‘ 4_36"::

(8]

The vector Bul(7} can be rewritten as
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Bu{n = Zu. b,’ {4-37)

where _133. are the columns of B.

Substituting Equation (4-37) into Equation (4-36) yields the amount
of excitation of the it mode due to the forcing function and is

given by
t A(t-my L
S Y<y,b>ulder K
A e
RCEN

If the scalar product < Vss bj > is zero for the *! mode for all s
then the input is not coupled to that mode and cannot excite or
control that mode, The criterion for controllabilily (for the case of
distinet eigenvalues) is that the scalar products < Yo Ej > do not
vanish for all j. In vibration theory, the scalar product < Yy Ej >
is analogous to the participation factor. Hence, for time-invariant
syslems having distinct eigenvalues, the notion of conirollability is
essentially a generalization of the participation factor of classical

vibration theory.
4.1.2 Normality

In this section, the notion of normality and iis relationship io

~

controllability are discussed.

In the next section the connection between normality and the existence
of optimal solutions is discussed. The term normality has several
connotations and is used differently by various authors. In this work,

the notions of

(1) normnal sysiems
(2) normal problems

{3) normality conditions
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are discussed, The definitions of these terms and the definition of

the set of attainability are given below.
A Iinear time-invariant system

(L) %=Axt)+Buld)

with x ¢ R, u e R is said to be normal if each of the systems

X=AxX(t)+b, u

171

= A x({t) +92 u,

IMe o 1M

=Ax(t)+b u
= “m m

is completely controllable. The vectors ‘p_j are the columns of the
mairix B. If a system is normal then it is controllable with respect
to each component of the control and, hence, it is completely con-~

trollable. The normalily condition is defined as follows. Consider

the time-invariant system
(1) X=Ax+Bu+vy

with convex polyhedral restraint set QCR™ and initial state X RY
Let a nonzero vector along an edge of  be designated as w. The

normality condition is that the vectors

Bw, ABE,...,An"IBlv_

must be linearly independent for each nonzero vector W,

Problem normality is defined as follows., Consider the linear control

process
(L) %= A0 x{) +BE ult) + v(b)

with restraint set Q@ and initial state 50 at time ‘to. The problem

(L, 2, X to, tl) is salid to be normal in case any two controllers
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ul(t) and uz(t) on toé t £ t, which gtecer X to the same boundary

1

point P belonging to the set of attainability at time 1:1 must be equal

1
almost everywhere. The set of attainabilily is defined as follows.

Consider the linear control process
(L) % = A() x(8) + B wt) + v()

with restraint sel ©, initial state X and controllers u(tX_Q on
[to,tl]. The set of attainabilily K(L ., X to,tl) is the set of 2ll
endpoints x(t.) in Rn. For notational convenience the set of atlain-

ability is written as K(tl).

It should be noted that system normality does not imply problem
normality. This is as expected since in determining system normality
the control resiraint set @ and the set of attainability are not con-

sidered.

Having defined the notion of normality, some theorems in which it is

used czn now be siaied.

Theorem [24]. Consider the linear conirol process in R

(L) &= A® x(t) + BE) ult) + v(5)

with compact restraint set Q@ and initial state X at time 1:0. The
control problem (L, €2, X tO, tl) is normal iff the following unique -~

ness property holds: for each iontrivial solution of
. T
Blt) = - A" (1) p(t)
and for any two controllers El(t) and gz(’r) C Q2 satisfying

<p), B(®) ult)>=<plt), BH) u,({t) > = sup < p(t), B(t) u>
wuefl T

almost everywhere, the extremal controllers El(ﬂ and 112(t) are the

same; that is,
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El(t) =_1_1_2(t) a.e. onteg [to, t1].

In addition, if the problem is normal, and if © contains more than
one point, the set of attainability is strictly convex; hence, K(tl) is a

compact convex set with nonempty interior,

The above theorem shows the intimate connection between normality
and uniqueness and also the relationship between normality and the

set of attainability.

Although quadratic cost functionals are noi of concern in this work,

it is interesting to note that the n.ormality conditions which guarantee
the uniqueness of extremal conirollers steering (0, EO} to the boundary
point of K(tl) are automatically satisfied for linear control processes

with integral quadratic cost criteria,

System Normality for Problems of Interest in this Work

For a time-varying system there arc no useful computational tech-
niques for determining whether the Iinear system is normal, For a
linear time ~-invariant system however, the normality condition can

be used. Hence, for the dual-spin system with rotor-fixed jets, there
is no ‘.vay' to determine a priori whether the system is normal. The
normaliiy condition can be applied to the dual-spin.system with the

jets on the despun portion and t6 the symmetric spinning vehicle,

Dual-Spin System with Jetg Located on Despun Body

The matrices A and B for the dual-spin sysiem have already been
given; for the case in which the jets are located on the despun body

they are
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o -8 0 0
g 0 0 0
A= 11 0o o o
o 1 o0 o
10
0 1
B= 1o o
0 o

The normality condition implies that the rank of each of the following

matrices must be four in order for the system {to be normal:

o 2. b3 |
= 1
Gy = (R Ab A Al
L. ! 1 1 -
[ TS S
= ' t {
Gy = |by 1 Ay | 470, &7
H { i
where El and —122 are the columnus of B
The matrices Gl and G2 are given by
- - ~ R
10 8% o0 o 8 0 B8
o B o -g° 10 8 0
= - G =
G o 1 o %] " 27lo o0 -8 o
0 0 B 0] “lo 1 o - |
‘The ranl: of both G‘z1 and G2 is thiree., Hence the dual-spin vehicle

using jets located on the despun body is not a normal system.

Symmetric Spinning Vehicle

For the symmetric spinning vehicle the matrices A and B are
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? : r w3 0 0
= “tuw, 0 0 0
A= 1 0 G ms
N 0 1 - 03 0 )
1 0
0 1
B= 1o o
0 0
and the matrices Gl and G2 are
- - -
2 4
0 (rw3) 0 (rws)
-1 0 {rw )3 0
3 3
Gy = 9 2
1 0 ~w3[1+r+r 1 0
0 ) 3(l+r) 0 "’2[ 1+r+r2+ r3]
l- L
. 3 -r
0 ‘ TV, 0 *(rwS)
1 0 zw.)? 0
3
GZ =
0 0 w3(1+r) 0
2 2
L...O 1 0 w3(1+r+r L

Since the rank of both Gl and G2 is four, the system characterizing

the symmeitric spinning vehicle is normal,

Problem Normality

A sufficient condition for a restricted class of fuel-optimal problems

to be normal is now stated.
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Theorem{20]. Consider.the control problem (L, £, Xy

Xl’ I with

the system
(L) % =Ax()+Bult)

n m
eR ,uekl s

1M

with the control restraint set 0

Q = {E;luj(t)lﬂ vit .

with the initial state }_{O at time to’ with the target set consisting of

a fized endpeoint x, and fixed final time T, and with the cost func -

1
{tional

T
J(u) =y Y [uj(t) lat
t ]
Ov

A sufficient condition for this fuel-optimal problem to be normal is
that

det (G;T AT) £0 j=1,2,...,m
On the other hand, for this problem to be singular it is necessary
that

det (G;I‘AT> =0 for some j
Thus, if this system is normal and if the matrix A is nonsingular then
the problem is normal.

Using this theorem, it is seen that the spin-axis control concept
applied to the symmetric gpinning vehicle resulls in a normal fuel-
optimal preoblem for the fixed-time case. Note, however, that this
statement does not hold for the free-timme problem. The theorem

also indicales that if the spin-axis control concept were used for the
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dual-spin vehicle with the jets on the despun portion, then the

fuel-optimal fixed-time problem would necessarily be singular,

For this syste‘m, the fact that
el =0

implies that the system is not norn'lal and the fact that
|a]=0

implies that there is at least one.stage of integration. Actually

there are two stages of integration since the eigenvalue A =0

has a multiplicily of two.

A useful geometric property of a more general fuel-optimal normal
problem is given below, This definilion is appropriate when the

angular momenium control (AMCO) concept is used. Consider the

problem {S, Q, Xo, Xl’ J} with the sysiem

© %= 0(xm, )+ B (20, t) a0,

X € Rn > U € Rm
with the control restraint set 2
Q={u: l Llj(fc)lf 1, j=1,2,...,m}
with the smooth target set
X, = {(x 9 glxtl =0 , i=1,2,...,nk},

with the initial set

_}__c(io) =Z, fixed

X = {(x,1t):
@ to fixed

and cost functional
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S
J(w) = Y lemlat .
t 3

- -0

Suppose that in the interval {to, tl]' for the free time case or inthe
interval [to, T} for the fixed-time case, there is a countable set of

times 7 - {switch times) such that

ij° 7

2i
[aft] = <, (xm.t) , Bo>] -
iff t= Tyj vi=-1,2,...,m, then the fuel-optimal problem is

normal, Intihis definition, the vectors }:33. are the columns of the

matrix B, and the vecior ;3_*(%) is the adjoint (costate) vector.

A gimilar definition can be stated for a singular fuel-optimal problem.

For the problem described above, suppose that in the interval [to, t";]
or in the interval [to, T] there are one or more subintervals [Tl’ T2}

such that

[c}j':_(t)l = l<9;;(2§(t): 0,80 >] =1 vie[T,T,)].

Then, the problem is said to be singular, and the intervals [Tl’ T2]

are singularity intervals (see Figure 4-1).

e - /\éjﬂ

———im—

\_/ \ - A if q;‘m>1

SINGULARITY
INTERVAL u;*(t1= 1 if qf(ﬂ<-1

1_;|

. 0 if [q {t} [ <1
Figure 41 lllustratmn of Smgu!ar Condmon for Control!er

- —_——— e — memmaem e im =t wem AR W o e e
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4.2 Existence and Uniqueness of Optimal Solutions

The topics dealing with the existence and uniqueness of obtimal solu-
tions are of great importance and can, of course, have a tremendous
effect on tte computational aspect of the problem. In fact, the study
of the existence of optimal solutions often leads to new and betier
computational a}gorithms. Because of the mathematica} complexity
of these topics and because of the limited scope of thJ:.S dissertation,
only those aspects that appear to have a direct effect on the compu-
tational procedure for obtaining the fuel-optimal conirolier for the

dual-spin and spinning vehicles are discussed. At the same time,

however, those notions which are fundamental in the proof of a general
existence proof are noted., Included ameong these are the notions of the
compaciness of the set of attainabilily and uniform bounds on the

response.

In practice, some of the conditions required ’c‘o guaraniee the existence
and unigueness of an optimal controller are not always satisfied.
Nevertheless, the necessary conditions obtained from either the
maximum principle or from the calculus of variations are used to

find the extremal controllers in the so-called indirect method for
finding the optimal solution. The indirect methods and the direct

methods are discussed in Chapter 6.
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An extremal controller i5 one which satisfies the necessary conditions
for optimalily. If i’c.can be shown that- an optimal control exists and in
addition that the extremal control is unique then the unique extremal
controller g the unique optimal control. For the general nonlinear
system, however, it is difflé:ult to prove that an optimal solution exists _
and even more difficult to prove that the extremal control is unique.
The procedure for finding the optimal solution (if it exists) for this
case entalls an examination of the cost functional associated with the
computationally -determined exiremal controllers. The extremal con-
troller which results in a minimum value of the cost functional

is then considered the'optj;rnal solution. A global search is

.required, perforce, to find all the extremal controllers; this ensxnn:‘es

1t

thal the solution termed "optimal® is indeed optimal and not merely

"Mocally -optimal. !
4,2.1 Existence of Optimal Controllers

Existence theory for systems represented by ordinary differential
equations has been extensively studied (Reference [25] through [35]).
The theorems presented in this section are based primarily on [24],
{34], and [35]. The pl‘"OOi'S of the theorems stated herein can be found
_i{l_ the cited references. Inthis work, emphaasis is placed on the .
determination of the applicability of the available existence theorems
for the fuel-optimal control of d&abspin and spinning vehicles.
First, a generzl theorem for linear systems is stated. Next

the basic existence theorems for nonlinear systems are given.

Linear Systems

In this seclion, some existence theorems which are applicable for
linear systems with general integral cost criteria are provided. Fo:
linear systems the notions which are fundamental for the existence

of optimal solutions include
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(1) convexity of the integrand of the cost functional

- (2) problem normalily (compaciness of the set of attainability)

A theorem concerning the compaciness of the sei of attainability is

now stated [24].
Theorem. Consider the linear system
(L} % = A x(t) + B u)

with compact convex restraint set 2, initial state % at time to“
and controllers u(i) on t e[to, tl]. Then the set of attainability
K(t 1} is compact and convex and varies continuously with 1 1 for
1:12 to.

The following theorem provides the hypotheses necessary for the
existence of optimal conirollers for linear systems with general

integral cost criteria.
Theorem. Consider the system

(L) %= AWM x() + B ul®)
with the integral cost functional

J(B) = (-:,E(T)) + ST [fo(_}g_, 1) + ho(t, E)] dt
t
- 0]

Assume that A(t), B{) are real continuous matrices on the fixed
finite interval [to, T, that ¢ (x), fo(t,t), ho(t, u) are continuous for
all values of their arguments for x ¢ r" and u € Rm, that fo(t, _:sg)
and ho (t,u) are convex functions for each fixed value ofi ¢ [to, Ti,
that the controller g(t) onte [’co, T] belongs to a compact convex
restraint set 2 C Rm', and that the problem {L, Q, Xo’ Xl’ J } is

normal, Then there exists an optimal controller,

It is noted that there is no mention of the compaciness of the target

set in this theorem. However, the assumption of problem normalily
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is sufficient, in this case, to guarantec that the get of attainability
R(T) in RV is a strictly convex compact sel with nonempty interior,
It is also noted that this theorem applies to fixed-time problems.
Hence, the theorem, cannot be applied to time-~optimal problems.
Existence theorems for time-optimal problems are more prevalent
than for fuel-optimal problems and are not discussed in this work,
It is not to be asswmed that existence theorems can be proven only
for the fixed final time case, Inthe general existence theorems for
‘ nonlinear systems, the final time is allowed to be free.

Applicability of the Existence Theorem to the Fuel-Optimal Control
of Dual-Spin and Spinning Vehicles

First, it is noted that for the fuel-optimal problems of concern in
this work both free and fixed final time are being considered. The
existence theorem applies only to the fixed -time case. This faci
Nlustrates that linear fixed-time problems are more attractive from
a theoretical point of view than free-time problems. This point will
‘be re-enforced when the question of uniqueness is discussed., Of
course, a free-time problem can be treated computationally as
several fixed time problems. The particular fixed-time problem

which minimizes the cost functional is considered the oplimal solu-

tion to the free-time problem.

The hypotheses concerﬁing A(t), B(t), fo(t, x} and ho(t, u) are
satisfied for the fuel-optimal problems being considered. In particu-

lar, the cost functionals being considered are
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The integrands of each of these cost functionals are convex. The
hypothesis that the control restraint set be compact and convex is

also Satisfie&; the sets O of interest in this work include

Q

{u: [ uj(’c)[S 1 v}

LY’

fn: 0=ult) = 1 vj}

@ ={u: fulsm}

The crucial hypothesis is that concerning the normalily of the problem.
Problem normality was considered in Section 4-1., The conclusions

drawn considering normality are repeated here for convenience:

System and Control Concept Problem Normality

Spin axis conirol of symmetric Yes
spinning body using either oune

or fwo jets

Spin axis control of dual-spin No
vehicle wicth jets located on

despun-portion

Angular. momentum control of Depends on nature of the

symmetric spinning vehicle switching function
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Angular momentum control of Depends on nature of the

dual~spin vehicle switching function

Using this theorem the following statemrents can be made

(1} the existence of the fuel-optimal controller for the SACQO concept
applied to a symmetric spinning vehicle in which the {final time is
fixed is agsured '

(2} no conclusions concerning the existence of the fuel-optimal
controller fOI: the AMCO concept can be drawn until the nature
of the switching function is investigated

(3} the theorem does not assure the existence of the fuel-optimal
controller when the SACO concept is used for the dual-spin

vehicle with the jets located on the despun body

Nonlinear Systems

In this section, the basic existence theorems for nonlinear systems
are stated. Tt is noted that certain notions are fundamental in any
general existence proof. For linear systems the notion of problem
normality in conjunction with a compact convex restraint set resulied
in a compact set of attainabilily K(tl). For nonlinear systems the
notion of a uniform bound in conjunction with a compact convex
restraint set Q results in a2 compact K—(ILI) .'1' The definition of a uni-
form bound, the statement of a theorem relating a uniform bound and
E(t_;)-, and two existence theorems (one due to Markus and Lee [24],
'the other due to Neustadi [34] are provided below. Consider a non-
Hnear process
() % =flx, u,t) in R”

where £ is in Cl in Rn-km-!—l and where the admissgible controllers

TK(t 1) refers to ithe closure of the set of attainability K(tl),
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u(t) defined on [to, T| constitute a certain family of measurable '
m-vector functions. Assume the inilial point X, lies in a given
compact .initial set Xo in B> and that the respone x(t; X to) = x(t)
for u(t) € .F exists on [ty T]. Suppose. for each u(t) ¢ & there is
a bound ’ )

Ixi(t) l <b
and

= m(i)

of.
I, (= 0 ou®) + [ 5;2; (=, t, utt)

T
for i,k =1,2,...,n with 5 mit)dt < «, then u{t) admits a
1

. o
bound for the response. If, in addition, the bound b and the

integrable function m(t) can be chosen independently of the
controller u(t) €, then the problem {S, J, XO, Xl} has a uni-

form bound.

A theorem relating the notion of a uniform bound and the compactness

of the closure of the set of attainability is stated below.

Theorem. Congider the nonlinear process

(8} #=1(x, u, H)in C1 in Rn+m+1

with initial state x_ attime t_  and admissible control family J
on {t_, T}]. Assume the process {8, J, Xo’ Xl} has a uniform
bound. Then I_i_ﬁ? is a compact, continuously varying set in R"
for t ¢ [to, T]. A general existence theorem (sometimes called
the basic existence theorem) for nonlinear-systems is stated below,
The theorem applies to minimax problems as well as to problems

with inequality constraints on the statd.,

. . . oh
Theorem, Consider the nonlinear process in R

() %=1f(x, u, § incln ¥

The problem is as follows:
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(1)

(2)

(3)

(4

{5}

"varying continuously in R for {x, 1) € R™ x [r T

the initial and target sets Xo(t) and Xl(t) are nonempty compact
sets varying continuously in R” for all t in ihe basic prescribed

compact interval t ¢ ['ro, -rl]

the control resiraint set Q@ (x,t} is a nonempty compact set
i

the stale constraints are {possibly vacuous) hl(x)?: o0,...
hr(x) z 0, a finite or infinite family of constraints, where
hl’ chey hr' are real continuous functions on R

the family & of admissible controllers consists of all
measurable functions u(t) on various time intervals t e[to,’s ]
in ['ro, 'rl] such that each u(t) has a response x(t) on

te [to,tll steering 3_{_(%0) € Xo(to) to _X_{tl) € Xl(tl) and
u{t) € (x, t) and th(t))zo j=1,...,r :

the cost for each u € F is

t1 ,
Tt =y (e + Sﬂ e, (2, w, t)a

o

+ max v (g(t)}
telt ,t.1
o
1. ntm+l

where fo eC in R , and ¢ (x) and '}f(g_;) are continuous

. I
in R .

Assume

a)

b)

c)

the family & of admissible controllers is not empty

there exists a uniform bound
|x(t)]<b on t eltt)]

for all responses E(t) to controllers u e &

the extended velocily set
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A
Vix, ) = {1 (x,u, 1), £(x,u,9]uen x,0}
: . on :
is coglvex in R 1 for each fixed (x,t). Then, there exists an
optimal controller W) on tF o ststd
= o

“

! in J minimizing J(u).

A useful corollary to this theorem which applies to the case in which
the control enters linearly in both the plant and the integragld of the

cost functional is provided below.
Corollary, Consider the process
(S} X= A(x, 1) +B(x, 1) u

in Rn with cost
31

Ju) = ¢ (E(tl))+ S. AO (§(ﬂ,t)+ Bo(E,t) u(t)di
€
o

+ ess sup-f.. % (E(t)a E(t))
telt,t,] :

where the matrices A, B, AO, B, are J‘.anL in Rn+1, ¥ (x) and
v{x, u) are continuous in Rn-%m, and v(x,u) is a convex function
of u for each fixed x. Assume that the resiraint set Q(}_{,’c) is
compact and convex for all (x, ). Then, hypothesis (¢} of the
preceding theorem is satisfied. If the problem is defined by (1}
through (4) of the preceding theorem and if hypotheses (a) and (b)

are assumed, then an optimal-control E*(t) onte [’c:;, t';] exists.

This corollary is appropriate for determining the existence of the
fuel-optimal controller for the dual-span vehicle in the large-angle

turn mode. Previously, it was shown that the plant for this case is

(S) % = Alx,1) + B(t) ut)

Note also that when one one-way rotor fixed jet is used the integrand

of the cost functional is

T’I‘he term ess sup refers to the essential supremum.



a, (=0, +8 (20, t) 2@ =i ¢ ®'

1

and the control restraint set QC R~ is

Q= {ult): 0=<uft) =1}

The final existence theorem due to Neustadt is interesting in that no

convexity hypotheses are required. It applies to the restricted class

of problems in which both the plant and the integrand of the cost

function are linear in x and nonlinear in u.

Theorem. Consider the process in R"

(8) % = A{) x(t) + Blt,u)

+ ' .
. where A(t) and B(t, u) are continuous in Rl ™ The problem is

as follows:

1,

The initial and target sets Xo(t) and X _(t) are nonempty compact

1
sets varying continuously in R" for all i inthe basic pre-

scribed compact inierval t ¢ ['ro, 'rll.

The control restraint set Q(t) is a nonempty compact set

varying continuously in R fort e 7o 1’1]-

The integral constraints (possibly vacuous)

1
S hj(t, E(t))dtzo for j=1,2,...,r
} , .

Q

. . . 14m
where hj are real continuous functions in K

The family & of admissible conirollers consisis of all

measurable functions u(t) on various time intervals

to =4 = tl in 7. 'rl} such that each u(t) has a response
< f <

x(t) on to <t = t1

such that the restraint u(t) CQ{t) in [t,-t 1, and such that

steering g(to) € Xo(to) to 5{’01) € X(tl),

the integral constraints are satisfied.
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5. The cost of ea.ch,ge?} is
Kl : .
Ju) = ¢ (g:_(il))—l— St‘ Ao(t) x () +BO (E:E(t))dt
- o

where ¥(x), Ao(t), Bo(t, W) are continuous in all (x, u, t).

Assume that the set & of admissible controllers is not empty. Then
there exists an optimal controller _q*(’c) on [t'"; s tg;} in ¢ which

minimizes J(u).
4,2.2 Unigueness of Optimal Conirollers

In this section, the question dealing with the uniqueness of the opti-
mal controller for linear systems is examined (for a more detailed
discussion of this topic see Reference [36] through [38]}). The
hypotheses guaranteeing the uniqueness of an optimal controller are,
as expected, more stringent than for existence and the classes of
problems for which uniqueness can be demonstrated are more

" restricted.

The lack of uniqueness of the extremal controllers is naturally
undesirable because of the increased computational effort involved
in obtaining the unique optimal controller. Note, however, that

the nonuniqueness‘ of the extremal controllers does not imply the
nonuniqueness of the optimal controller, but the nonunigqueness of
the optimal controller does irr:ply the nonuniqueness of the extremal
controllers. In addition, the unigqueness of the optimal controller

does not imply the unigqueness of the extremal controller,

It is possible that in cerfain instances, nomuniqueness of the

optimal controls is not necessarily a curse. In Reference {20] it

is pointed out that if the nonunique optimal controllers are examined
carefully, it may be possible to find one that has definite practical

advantages,
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Just a8 in the case of existence, the uniqueness theorems provided
in this work pertain to proplems having a general integral cost and
to fuel-optimal problems in particuiar. Similar theorems apply to
the time-optimal problem but are not included in this work., The
following thecrem describes a pro‘blem for which the extrem:al

controllers are unique [24].
Theorem. Consider the linear process
(9 D = AW x(t) + B ul)

‘With the integral cost functional

. T '
JHw) =y (E(T)) +§ l:fo(t, %) + ho(’c,}}):l at
%
[»]

Assume that A(t), B({} are real continuous matrices on.[t T,
that ¢ (x), £ (’c x), and h (t u) are continuous for all values of
their arguments for xe R and u € R , that £ (’c x) iz convex for
each fixed value of t ¢ [t T], that h (’c u) is str1 strictly convex for
each t, and that the res’cralnt set © is compact and convex in R

Assume that the problem {L, @, x_, t_, T} is normal. Then

any two extremal controllers steering (O X ) to the same boundary
point of KT must coincide al:mos’c everywhere Moreover a unigue

optimal controller exists.

Note that this theorem applies only to fixed final time problems.
The normality hypothesis was previously discussed in relation to
existence., The crucial hypolhesis in this theorem is that require-

< ing ho(t, u) to be sirictly convex. The integrand of the cost

3 A
—iIn this theorem, K refers to the totalily of all response endpoints

( x (T), :f('l"))

that is, the set of attainability for the augmented response.
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functional which is appropriate for fuel-optimal problems is convex
but is not strictly convex; hence, the theorem cannot be applied to the
problems of interest in this work. However, if the linear process is

tHime-invariant, the following theorem is applicable [37].

Theorem. Consider the linear process

(L) §'=A§(t)+BE(t), geRp‘_, EeRm"

with cost functional
o ‘
Ju) = S' 3w fae
t ] x

"with compact convex restraint set 2 cr™

o={u: [uj(t)lil V3‘=1,2,...;m},

with initiel state x_ at t_, and with the final state *x, corresponding
to the final time t = T. Assume that A and B are nxn and nxm
constant matrices, respectively, and that the problem fL.e,x.X, I}
is normal. Then any two extremal controllers steering (to, 3_:0) to

(T, 3:_1) must be same for all t ¢ {0, T].

This theorem indicates that if the plant is linear and time-invariant
and if the fixed final time fuel-oplimal problem is normal, then the
extremal controllers are unique. The relationship between uniquenes:
of the extremal conirollers and the reduced computational effort
involved in dete;.*mining the optimal controller has already been
mentioned, Of the problems of concern in this work, this theorem

applies only to the case in which

(1) the gpin axis control concept is used for the symmetric spinni.ng'
vehicle

(9) “the final time is fixed
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It follows that if the final time is free and all other conditions are
satisfied, then the theorem is still applicable if the free-time problem

"ig treated as several fixed-time problems.
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Se ctlon 5

NECESSARY AND SUFFICIENT CO‘\!DITIO\TS FOR OPTIMALITY

Inthis chapter, the necessary and sufficient conditions for optunality
are prov1ded Although necessary COIldlthI‘iS for general control
problems are known both from the caleulus of variations and from the
mammum principle, nevertheless, the necessary conditions for
optimality are develc;ped by using the caleulus of variations for the
problems of interest in this work. This tends to make this treatment
concerning the fuel-optimal control of dual-spin and spinning vehicles
self-contained. The necessary conditions obtained from the maximum
principle are stated,. compared to those obiained from the calculus

of variations approach, and applied to the problems of interest in

this work.

General sufficiency conditions obtainable from each of the major
approaches to the optimal control problem are provided. The
_applicability of these theorems for the problems of interest in ihis

work is digcussed.
5.1 Necessary Conditions for Optimality

Jn this section, the necessary conditions for op’clmahty are prov1ded
TThese conditions are obtained both from the calculus of” Varlatlons
appr'qach and from. Pontryagin! s maximum principle. “The choice of
one approach over the other, is a matter of personal taste. Each

approach has some distinct advantages. .
5.1.1 Calculus of Variations Approach

First, the necessafy conditions for a weak extremal are obtained.
Then these conditions are strengthened by finding an additional
necessary condition for a strong extremal. It will be seen that the

necessary conditions for a strong extremal result in a version of
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the maximal prihciple (see Hestenes [39]). The set of necessary

conditions obtained in this section are for local optimality.

Necessary Conditions for a Weak Extremal

The necessary conditions for a weak exlremal are’obtained by using

some fundamental notions of analyéis ; included amoné these are

él) the notion of a derivative
(2} the notion of an extremum

{3) a Taylor series expansion (TSE) of a vector function

An elegant definition of a derivative due to Caratheodory is as
follows {18]. .Consider a function {

f: v-C
where V is a neighborhood ofb e R gnd C is the complex plane. The
function f is said to possess a derivative at b provided that there
exists _ -

g: V>C
continuous at b such that

£(x) - £(0) = g(x) (x-b) » Xev:

A similar extremely useful definition of the derivative of a function
f is piven below [39]. A function f is said to be differentiable at a
point X if it is defined on a neighborhood of B and there is a
Iinear function. f! (xo, h) such that
o "
f(xo h) f(Xo)— f (}co, h)

litn =0 (5-1)
hs 0 {hi .

C of (x )
where (XO" h) = ['—'—-—a-;c——‘:|
A generalization of this definition which is extremely useful when

the computational aspects of the optimal control problem are of

concern, is now given[40]. Let X, Y be Banach spaces. Let
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T be an operator with a'domain D in X and a range in Y. The
operator T is called Fréchet-differentiable at the point f e D if
there exists a bounded linear operator.T!with a domainin D and a -

range in Y, and a real function E(Hh”) with the property

_IIT(f+h> -1(0- Tj bl = «([nl) [a]  for [n] =1,
and where 1m e(”h“) =0 ' {5~2)
Jef - o

. Equation (5-2) c‘én be rewritten as
IT(e+n -1 - Tl h
Lim . =0 (5-3)
]
Inff - o

Tt can now be seen that the definition given by Equation (5-1) is a

special case of Equation (5-3) where ’ché norm is taken to be the abso-
Tute value and the operator T is simply the function f. The Fré’chet.
derivative is sometimes called a strong derivative in contrast to the ‘

Gateau! or weak derivative [41].

1A Gateau derivative is defined as follows. Let P be an operation
mapping an open subset E of a Banach space (B-space) X into a
subset F of another B-space Y. Consider a fixed element X5 € &
and suppose that there exists a linear operation U

U:X—-%
and such that for every x e X
Plx +tx) - P(x)

lim - = U (x)
t—0 _

The linear operation U is then said to be a Gateau‘or weak derivative
of the operation P at x,, thatis

U =P (x)
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The preceding definitions of the Frechet derivative of a function and

an operator can now be applied to the functional J{u). In this develop-

ment, u and Au are agsumed either o belong to the space of
continuous functions C(to,t } defined on a closed interval[to, tl] or
to belong to the space Dl(fo, .} consisting of all functions defined on
an interval [to,tl] which are continuous and have continuous first
derivatives. The norms for the spaces C(tc-),t ) and Dl(to,tl) for

the vector Au(t) = _1.}1(1:) - Ez(’c) are

"31— u, " = sup Z Igil(t) - E(zi) (t)[ for the space C(to,t } (5-~4)
o .t 1 .

Ly~ 0, = sup B a0~ o0+ oup B0 - 5570
1 ¢ 3 t. 1
for the space D (i , ‘c‘l) (5-5)

The vectors x and Ax are assumed to belong to the space Dl(to,tl).
The functional J{u) is said to be differentizble at u if there exisis a
continuous linear functional §J(h, u) with a domain in C(’co, tl) and

a range in R, and a real function «( ”h") with the property
I+ - 3w - 53, w = <[]} [

for [nf<h_ and where 11ﬁn c(rly =0 (5 -6)
- hj~ o .

or equivalently with the property

Hm  j(u +h) - 3w ~ 83(h, u)
[l o o

o

The expression J{u +11} - J(u) is termed the increment in J(E)'

’Ijhe continuous linear functional §J (h, g) which maps the:space
C(to,tl) into R is called the strong differential (the first variation)
of J(u) at u. It follows that the increment of a differentiable

functional J(x, u) is given by
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AT(x, usAu, Ax) = T(u+Ay, x+ A - Hu, x) (5-7)
- 63z, ws Ax, A0 + e (lax | laxl,+ elaul lasl, -

for the case in which u ¢ C(to’tl)’ An easily proved theorem pro-
viding a necessary condition for the differcntiable functional J{x,u)

to have an extremum is now stated [42].

Theorem. A necessary condition for the differentiable functional
J(}_s:, u) to have an extremum for u =@ ig that its first variation

vanish for u=10,.i.e., that
§J(h, u) =0
for u = ﬁ and all admissible _r_l_

The definitions of weak and strong extremums are now given. The
functional J{(w) has a weak extremum for u = E provided there exists
a positive e such that

I -z 0

for all u in the domain of definition of the functional which satisfy
the condition
- - ~Jt * <
fw-ul;<e

The functional J(u) has a strong extremum for u = ﬁ provided there
exists a positive ¢ such that ) ) ' .

) - I >0

for all u in the domain of definition of the functional which satisfy

the condition

lu-81, <e

It is noted that every strong extremum is simultaneously a weak

extremum since if
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”u -u“ < ¢, then ”u-u“ <e€ afortlorl

hence, if J({) is an extremum with respect to all u such that
“ u - ﬁ” < e then J({) is clearly an extremum with respect

to all u such that ” u —ﬁ”l <e.

The calculus of variations approach to the optimal conirol problem

formulated in Chapter 3 can now be_discﬁsséd. Given the system

£ =f(x, u, Y With
, T fixéd and

— [a)

i free

" subject to the end constraints

glx, t) =0,

the problem is to find the necessary conditions for the first variation

of the functional

J{x, 1, u) = S. f{x, %, u, thdt
t

to vanish. By appending the constraints to the functional J through

the use of Lagrange multipliers v, p the new functional becomes

The so-called "multiplier rule ensures that the minimization of the
new functional is equivalent to the minimization.of the original one
subject to the c.onstraints. "A rié‘orous treatment of this is given by
' Hestenes IBQ]. It is clear, however, that the terms added to the

original function are identically zero, i.e.,
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since g(x,, t;) =0 and % -f=0. Rewriting Equation{5-8) as
. ’ B i fl
J{x, b w =<v, gz, t) >'+Sc

Efo(_:»_:,i:,g,t)f <pd >]+<_I_)_,§_c >t dt

< (5-9)
and de-fining the bracl;éted term as the negative of the Hamiltonian
yields - -
| - b1
3’(5, E’to) =<y, g_(gl, ’cl)> + S; [-H(}_{,’E, p, ) +<p, ;_c_>] dt {(5-10)
o )
The definition of the Hamiltonian as used above is the same as that
given in classical mechanics; in classical mechanics, the Hamil-
tonian is given by

g, p¥) = -Llg, 4,8 +<p, 4>

where L{g, §, t) isthe Lagrangian, the components of p are the
generalized momenta, and the components of g are the generalized
- position coordinates., Hence, the function fo(}_c_, %, u,t) plays the

role of the Lagrangian and the Lagrange multipliers p play the role

of the gencralized momenta. The increment in Ef(g, :_{) ig given
by B

AT(o, x5 Au, Ax) = T(a+ Au, x+ Ax, b+ 6t - Tla, %) (5-11)

- 6Ftux; Au, ax) + e ([ax])) lax, [+, (laull ) laul,

The term E(E"'é\_‘i: E-}-A_X,‘t + 6'tl) is given by
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" 3
5t 1)

Jutdu, x+Ax t;

<v, glx, + Ax

A%y t1+ 5t1)”> +"

4ot |
S' - H(zhAx, u€Aw, p, D+ <p, Z+AR>d | (5-12)
t - - -

o )
Expressing the term H(x+Ax, u -+ Ay, p, 1) .as a TS about (x,u,p, 1),

expressing the term g(x, + Ax,, tl-!-' 6t1) as a TSE about (:\El,tl) and

_solving for the first variation &J(u, x; Au, Ax} yields

i
83 (u, X;Au,AXH\Y <—QE, AX >+<——a—I_—I,Au>+<p,A}'c> dt
= 2= ox’ — du ’ — ==
° - (5-13)
og 9g .
-!‘-<__, é:.—léﬁl>+< v, 'é',c—l"étl>

‘1
14 .
The term S' <p, AXx>dt can be integrated by parts fo yield
. . .
Gl " t1 4
S <E:é1?>dt:<£:é§>L -g <p, Ax>dt (5-14)
tO ) o to

" Substituting Equation (5-14) into Equation (5-13) yields

8J(u, x, tl,Au Ax, Gt)
1
g [ —E—I_-I-p,Ax>+<--aiI, Au >]dt'
A 9x — Ju
(8]
og ag )
+<E,Ax>[t1+ <v, -a—-glAhl>+<_L_’ —é,E—lat1> 5 -15)
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* The terms Ax; and éx(i:i) are related by

N
Ax, = Ax(t,) + % (t,) oty (5-186)
Hence, the term <p, AX >l_t becomes

< E(tl), _A_.ic_‘l- g_c(tl) sty > = < E(tl), Ax, >

- < plty), &) > 6ty (5-17)

Substituting Equation (5-17) into Equation (5-15) yields

£ .
1 N
6dJ = {<—§§—B,z}.}:>+<—gIj Au >:|dt
. . o ax ou *
o]
g '
[ H{x, u, p,t]lt +<v,zo ]& (5-18)
8t 1

g .
+< (‘é‘z}_"l) y+_g(t1), Ax,>

Hence, the necessary conditions for §J to vanish are given by

% )
1) E = - g—g _(one of Hamilton! s canonical equations}
oH P o
2 Fol 0 {optimality condition)
- . {5-19)
ag T
3) plt.y=- \—5—) v (transversality condition)
=1 821 ~ .
ag
4) ~HE)+ <y, 5 >=0 {(boundary condition)
1 81‘.1 ]

5) glxy tl) =0 (end constraint)

6) x=1 (E: E,t) = oH (differential constraint, the other

P canonical equation)

TThe Hamiltonian is defined as H = <y, x> -1,
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Weierstrass B Condition

An additional condition is required in order to have a strong extremum.

The additional necessary condition is known as the Weierstrass E

condition {a convexity condition)., The -Weierstrass B -function of the

functional
) b
J(x, w) = S Flt, x, %, w)dt
’ a
is given by

B, x, X, %, 0, 0 =

-

F(t‘, X, _}:S, _u“) -F(t, X, '}‘E,E)_<'X"%:‘g—§>
- . o 5T
+F@, x, X£,0) -F, x, % 1) -<U-u,3->

v

where X refers to some arbitrary X

U refersto some arbitrary 'u.
The property

E(t, x, X, %, U, )20

for arbitrary finite vectors X, U is known as the E-condiiion.

Weierstrass B function for 1;the funetional
M, %) = <o, 8l t)>*S1
u, x)= <y, glxg, 1) >4

t
o]

[—'H(t,g, u,p +<p, ;_{>} dt

is given by
E(t,z, __5_::: u, 2._{: E) =

~-Hit,x,Up+HE x,u,p) ~<T E,—S—E >

+ < +;E’é§:>"<'+.3’ x> —‘<;&q-§, +p>

The E-condition for this functional is simply
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- H(t: X, g: _P_) +I—I(t: X, u, E) z0 (5"22)

or equivalently

H(t, x,u,p) = H(t, x, U,p (5-23)

Equation (5-23) represents a form of the celebrated maximum'prin-

ciple.

In summary, it is noted that the first or—d'er necessary conditions for
a strong extremum are of two types; these types-are designated as A
and B for convenience., The conditions belonging to Type A are
‘independent of the nature of the endnoints (i. e., fi;ced free, -c;r eon-
Stramed) and independent of the naiure of the initial and final time
(i.e. s fived or free time); those belonging to Type B are dependent on
the nature of the endpoints and on the nature of the initial and final

time, The necessary conditions belonging to Type A include

(1) Hamilton' s Canonical Equations

= =...§I_ﬂ-

B 5y
P

E .g—ap

(2) The Weierstrass E Condition

H(t,x, o, p) 2 H(t, x, U, p)

ou

(3) A condition which the extremal controller must satisfy 8H _ .
The conditions belong ng to Type B 1nc1ude

(1) -that which describes. behavior of the Hamiltom'an evaluated
along the exiremal
(2) those-which the Lagrange multipliers p must satisfy {irans-

versality condition)
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The necessary conditions (Type B) for the problems of interest in

this dissertation are provided in Table 5, 1.
I is noted that in this development it was tacitly assumed that )

1} H(x, u,p,t) -is sufficiently differentiable in both x and u

and hence, that g:? is defined.

In many practical problems these assumptions do not hold. In

addition, when the control u is constrained according to

[ gj(ﬂlﬁ 1 V]

the problem becomes more difficult, albeit tractable. For such
problems, Pontryagin's maximum principle provides a c':onveni_ent
technique for obtaining the necessary conditions for local optimality.
B will be seen in the next section that the maximum principle requires

relatively weak differentiability assumptions.
5.1.2 Pontryagin' s Maximum Principle

‘In this section, Pontryagin's maximum principle ig stated. Ths
proof of the maximum principle is given in many of the recent books
on optimal control theory (e.g., [24], [43], and [44]) and will not be
repeated here, In 'thé maxin"mm principle, the nc-)’cions of the weak

and strong extremals that were introduced in the calculus of variations
approach are no longer used. "The maxiraum principle in conjunction
with the associated transversality conditions provides a necessary

- eriterion which the optimal controller uw*(t) must satisfy.

A theorem which applies to autonomous systems is first stated. The
results which are applicable to the general nonautonomous systems

are then obtained by treating t as an additional spatial coordinate.’
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FIRST ORDER NECESSARY CO
EXTREMUM OBTAINED FROM THE CAI

Note 1.

Table 5-1

Plant {differential equation constraint), X=f{x, u, .

Initial state %, and initial time 'to, fixed,

1
Cost funciional, Ju) = S. £ (x,
; . t

i

<

X, u,t)di

Hamiltonlen, Hix,p, u,t)= <p, £> -f (x, %, u,i)

Note 2,

1) Hamiltons canonical equations

2) Weierstrass E condition

oH
3) Pl 0

—

: H{x,

Necessary conditions (Type A) include

[a>)

. H . °H
-5z X5

ox

NDITIONS (TYPE B) FOR A STRONG
,CULUS OF VARIATIONS

Nature of right end

Hamiltonlan

Lagrange multipliers p

1 fizxed

fixed, tl free

Xy fized, 1

Z1

x, free, tl fixed

t, free

%y free, %

glxg t) =0, 1y fixed

g(_z_cl, tl) =0, 1, free

No condition
H(’cl) =0

ENo condition

H(tl) =0

No condition

[a>4

g
-H.(tl)+<y'§:€;
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No condition

No condition

3(1‘5 =0
ple,) =0-

og
P_(T) = - '5%—1

=T

. o "
B("-'l) = - a—:g

8 tztl_

f=t



Autonomous Systems

Consider the autonomous control process
(9  x-fx,w

with f(x, u) and % (x, u} continuous in Rn—!—m_ The initial and

target sets Xo and Xl C R" .and tﬁe nonemply control restraint set
oC r™. Let the class of admissible controllers A consist of the
“bounded measurable funciions E(t) C $© on-some finite interval

0 =t= tl. The response associated with the controller u(t) is

?E(t-* EO); the controller u(f) transfers x(0, g_;o) =X € XO to

J_E.('ﬁ x )= X, € X.. The cost functional associated wilh the contro....

1’ ~o 1 1 ]
‘ult) on te{0,t]lin A with response x(i) is given by
tl . -
J(u) = S' £ {x(), u(t))dt
fashy O\"“ —_—
-1
o)
8fo n+m T
where fo and Fye are continuous in R T

An augmented system is formed by introducing the integrand of the

cost functional fo 2.5 an additional state equation.

The augmented state is denoted as _’}% and is given.by

=
QO

1>

1

b4

the augmented adjoiht vector _@ is given by

AN
the augmented system (S) is given by

T , of :
Note that it is not necessary to assume that 30— exists as it was
u

_ inthe calculus of variations.
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& 2={°=%-1(° (5-24)
x f (x, u
the augmented adjoint system (6_) is given by
: A \ A
A =..<_3_£-_ (x(t ):, E(t)),2>___0
{Q o] ox t
A - (5-25)
PO s S )
- {az e, w| B
or )
§ FOIS 0
A 4T A T
A ot . of
bs) - [é_;—;' (x(t), g(t)] ﬁ = - ["ﬁ (x(t), }1(‘5)] p
= = -
and the augmented Hamiltonian function is defined as

This definition (when P, is taken as -1) corresponds exactly to ihat

used in classical mechanics. The funciion M § , &) is defined as

M(ﬁ, %) = gup H(g, _@, u) (5-27)
1_169

A theorem for autonomous systems can now be stated [24].

Theorem. The control problem (S, A €, Xo’ Xl’ J) being considered
is '

(3) :

I M
n

f(x, u)

Q

2

C R {E(t): u(t) are bounded and mezasurable on
‘ various intervals 0 =t.= tl}
A : all admissible conirollers which steer some initial point of
XO to a final point in Xl
tl
J: J(w) = &; £ (x(t), -ut Nt

O
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i3 E*(t) on 0=t=t" is optimal in A with augmented response _}5*(’5),

then there exists a nontrivial augmented adjoint response é(t)

satisfying

T
A
|

@l
|p(>lh >

I

117y L

ata

__such that H( J_}%* s ﬁ* s E")

i

M(E, % ave., and (2", £ =0 and
pﬁ < 0 everywhere on 0=t= ‘cg';. In addition, if Xo and X1 (or just
o.ne of them) are manifolds with tangent spaces To and ‘I‘1 at x (0)
and ::_s:*(’cz';), then g‘(t) can be selected to satisfy the transversality
conditions at both ends (or at just one end)

E*(O) is orthogonal to T

_;3*(1&"*1‘) is orthogonal to T

Similar resulis {see Table 5-2) apply to

(1? the case in which target set Xl is all R* (the free—endpoiht
problern)

(2) the case in which the time duration is fixed and finite), i.e.,
the controllers u(t} are definedon 0 =t=T

(3) the case in which the fixed time duration is infinite.

The neceésary conditions for lecal optimality are seen.to be of two
type&‘; (A and B). Type A consists of those conditions which are
independent of the initial and target seis Xo" X1 ; Type B consisis of
those conditions which are dependent on the initial and target seis.

The necessary conditions belonging to Type A include

{1) - Hamilton' ¢ canonical equations
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Table 5-2

NECESSARY CONDITIONS (TYPE B) FOB LOCAL OPTIMALITY FQR AUTONOMOUS
SYSTEMS (OBTAINED FROM THE MAXTM UM PRINCIPLE)
Noten: .

1. The necesgsary conditions dencted as Type A which are common to all
autonomous gygtems are not included.
2, The pystem {(S) ia given by
sy & = £(x, gh

tﬁe cost functional ig given by

ty
Ju) = S £ {x, u)dt
) o'=? =
+
o
3, 'The initial’'set congists of the fired initizl slate % and the fived Initial time to.

* Target Set X, Ha.mﬂ’coniax-g B2, 5, u") Adjolxt vector p*
—{(E,t) : %, fixed, t fixed } H* = constart No condttion
{(x1) : %, fixwed, Itl infinite } I-I”_‘ =0 No condition
{{x .E'l flxed, 1, free } ‘ H =0 ' No condition
{{zt : x, free, t) free} B % 0 B*(t’;) =0 .
(2,8) 1 glxz) =0, t, fixed _ g ' T
e 1?1,_ 2,. ..’, nik} ’ g = constent pT) = - [%f?“"(ﬁ*{'m)] 4

{(x,1 : glx) =0, t free, ‘ -
: : g gy o°g e
o i=1, 2,...,1‘1"1{} = () . P (.tl) . [ a? (:-‘E ('tl))] v




. '/\‘
B = [g—jg "‘(t) u cﬂ)] B = - g (£, B, w')

"(t) =% (x (t) u (t))

(2)  the so-called "optimality condition” which characterizes the

controller u *1)

¥, pe) - (Fo, fp‘ ®, v

() p =0

The conditions belonging to Type—B (seé Table 5-1) include

(1) those which pertain to the adjoint vector
ﬁ*(’c) (the transversality conditions)
(2)  that which describes the behavior of the Hamiltonian along the

optimal trajectory

Nonautonomous Sysiem

The results for the most general nonlinear nonautonomous process
are obtained immediately by introducing the time t as an additional
spatial coordinate, i.e.,

t= Fntl
Tor this case, the system (S} is given by

(S} X = £(x, u,t) (5-28)

where f: Rn X Rm * R1-> Rn

+1-+
and§601 ntltm

and the cost functional is given by
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J(w) = gt lfo(_:g(t), ult), t) dt (5-29)

o
where
fO: Ranmx Rl - Rl
and f_e cl jp gHH

The time- augmented response E(t) ‘corresponding to E(t) is
[
R = | x®

(t)

x
n+1

and represents the solution to the time augmented system (S

(5) X = i(x, (5-30)
or 'Xo fo(§ 1 E)
£ = 2x, xpp.0)
. Xn—l—l L

The time -augmented adjoint system based on u(t) and g(t) is
. . v f o~ T
~ < oF ( £, u t)
ox )
of

0 o~ —
o "<'é‘}'g" E>=<

o - [ax (=0, u, t)]T

(5-31)

"{jo
"
=
et}
vV
I
o

.or )

o

The time augmented Hamiltonian is
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H(X, D, w =<p,i(x

X1y E).> (5-32)

The function 1 (g s ﬁ) ig defined as

1‘71(%: §)= sup ﬁ(g,E,ED (5-33)

A A
N ~ p
x= s p o -
Fntl Pp1
~ e e A A A /\
H(x,p,w=<p, £>+p f =H(E P, wb+p
. (5-34)
M(Z, B)y=M(&, 8.0 +p ., (5-35)

The theorem for the nonautonomous case can now be stated [24].

Theorem. Consider the control problem (S, A €, Xo’ Xl’ J) where

i) ~ the process (S) is given by
. (=) =8z, u, b
2) the class of admigsible functions A are all the bounded
measurable controllers u(t)(C € C R on various
finite intervals ’co =t= tl which steer poipts of Xo to Xl
(fixed endpoint, free time)

3) the cost functional is

_ ¢ :
Hu) = S‘lfo(s_c(t), u(t), t)dt
t
O

If E*(t) on t’:; =t= ’c;" with time -augmented response g*(t) is
optimal in A, then there exists a nontrivial time-augmented adjoint |

response E*(t)- of A such that
B(x*0, r0, u'm) - it (%%, B¥@) a.e. (5-36)

and
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F( % *0), pH0) = 0 < 0 (5-37)
everywhere on t":; =t= t; .
These conclusions are equivalent to

B ( Fw, 25w, ofm,t ) M (&, BH, t) a.e. ©(5-38)

and

t
M(%ﬂ:@)} ﬁ*(t),t) = S* <§(s),at (x (s), u (s) s)>ds (5 -39)
] i
8] .

The transversality conditions are

n+1(t ) = 1(f1) =0 (5-40)
S0 ) )
A ey A, 5 BN = .
(85, B, 17 ) =0 (5-41)

If Xo and X, (or just one of them) are manifolds in R with tangent
spaces T and T, at _}52 and X‘l , respectively, then 5*(1:) can be
selected to satisfy the additional transversality conditions {or jusi
one of thein) -

2*(1:9;) is orthogonal to TO

e - (5 "42)
p(t]) is orthogonal to T,

Similar results apply to the nonautonomous cases in which (see

Table 5-3)

(1)  the initial time t_ is fixed (t = ti)

(2}  the initial and target setis are time varying
{3) the time duration is fixed and finite

5 1.3 Application of the Necessary Conditions for Local Optim allty
to the Dual-Spin and Spinning Vehicles

N

In this section, the general first order necessary conditions obtained

in the preceding sections are applied to the systems being studied.
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Table 5

-3

NECESSARY CONDITIONS (TYPE B) FOR LOCAL OPTIMALITY FOR NONAUTONOMOUS
SYSTEMS (OBTAINED FROM THE MAXIMUM PRINCIPLE)

Note 1. The necesgary conditions (Type A) which are common to 211

nonautonomousd systems are not included,
Note 2. The system (5) is glvenby % = f(;‘;(t), E{t),t)

£
1 +
The cost function J(u) s glven by J{u) = fo(xm,uahga
t, OV T
Note 2. The Initial state X, at time to 19 fixed.
- s Homiltondan Adjotst vect #( 8
arget Set X DT T N - % % olnt vector, p
1 Ht) =H () +p ()
X, = {l=,1 : x, fixed, t, fixed} | No useful condition No condition
AP A
X, = {(x,1) 1 x, fixed, t, free} | H'G) =0 No condition on p*(t);p ()= 0
X, = {{x,1) : x, free, ¢, fixed} | No useful condition P =0
fpart *hy = o " =
X, = {(Evﬂ P Xy fres, 1:1 free } H*(t-l) =0 R (fl) =0 pn-!-l{ty{) ;‘0
X, = {(x,1 : g%, =0, t, fixed | Nouseful condition STy = - I: g%_ ] v
1=1,2,...,n%} “le=t
1%p e ey x=x*
= . = T T
Xl {(E’t} b gi(E’t) 0’ tl iree I‘I*(t*) 2 - o (-t* = <+ Eg— P*(t*) To- [,,,_?_—%_ ] v
i=1,2,... ,n~1t} 1 Pty ot P 1 2% !tq*
' 1 1
T




As seen in Tables 5-1 and 5-3, the resulls obtained from the calculus
of variations approach are identical to those obtained from the

maximum principle, as expected.

Target-Dependent Necessary Conditions

The target set X, which applies to the angular momentum control

1
{(AMCO} concept was given in Equation (3-8). For the dual-spin

vehicle the convex target sets X, of ’concern are given by (both fixed

1
and free finzl time tl are considered)

Xl = [(X(t): t) . g(.i_{: t)i_tz_tl: 0: tl free}

{5-43)

X1 = [(X(tL t) : glx, t) }t=1:1= 0, tl fixed

1
where _g(g,t) =]:I 10 B] x=Cx
l-—B 1]
JRO‘
. Y3 —
B:-—-I—-—- =rg
l -~

I = 2 x 2 identity matrix

The target sei for a spinning symmetric vehicle is also of interest
t-)-ec:ause the angular momentum control concept (Ai\/ICO) is later applied
to this vehicle, The results obtained by using the AMCO concept for
this vehicle will later be compared with those obtained by using the
SACO concepl {the SACO concept was studied in [11].) The target

sets X which apply to the spinning symmeiric vehicle (when the

1
AMCO concept is used) are

.

Xl = :{(Evt): glx, ) [t=t1=0 , t. free}
(5-44)

%y = {x.0: -g-‘-%:ﬂlt:tl:‘% t, fixed}
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C T [
. 0 ro, !

where g(x,1) =g(x) = I : 412 .
: —I‘{xJ3 0 (}'31

[ L('bz_‘

The target set X, which was used in [11] and which applies to the

1
SACO concept is given by

C Xy = {lx.t) s x =0, 1) free} (5 -45)

1 1

This target set is of interest in this work only in that the results
obtained when this X1 is assumed will be compared with those
obtained when the Xl given by Equation (5-44) is assumed. However,
since the results provided in[11] are not complete enough for a

thorough comparison, the SACO concept will also be simulated.

The remaining target sets discussed in Table 5-3, viz. the free-end
point problems are clearly unsuitable for the conirol problem being
studied. The necessary conditions corresponding to the specific
target seis discussed above are provided in Table 5~4. As seenin
Table 5-4, the Hamilionian evaluated at the optimal conditions when

tl is free vanishes, i.e.,

(D), o), e, ) - Ew) =o

When the final time tl is fixed, however, there is no useful condition
on H*(T)_. i.e., none except for the fact that B must satisfy its
definition,

ol
He

H =<p, 1" >-1

For the angular momenium control (AMCO) concept, -E*(t;i{) is
transversal to the smooth 2 -fold in Rn (where n = 4) at _:_c’i(tgl:), that is,

E’:‘(t’;':) can be represented as a linear combination of the linear
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2g.(x)
independent vectors S L , 1= 1,2, Alernatively, it can
ox(t) g
=0 x®=x(t)

be said that _E*(ti‘) is orthogonal to the tangent plane T 1(;_;1({';)) of the

manifold X, (t]), i.e.,
< " P S . %
P x -x ) >=0,  xeT (x40

¥or the spin axis control (SACO) concept, hc;wever, there is no
condition on the adjoint vector _E*(t;:{:)' I will be seen later that this
condition (or its absence) has = pronounced effect on the computational

aspects of the control problem. The parameters VsV that appear

2
in Table 5-4 are arbitrary constants (Lagrange multipliers); they are
determined so that the defining relationships for the manifold X1 are
gatisfied, i.e.,

gx) =0

Hamilion' s canonical equations

In this seclion, Hamilton' s canonical equations for the systems being

studied are provided. In general, these equations are given by

(5-46)
£= 1w 075

where H(x,u,p,t) = <p, x> - fo(E(t),t) .

For the cruise mode of the deep-space mission, the equations for

the dual-spin vehicle are
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Table 5-4

TARGET-DEPENDENT NECESSARY CONDITIONS FOR LOCAL

OPTIMALITY FOR THE SYMMETRIC DUAL-SPIN
AND SYMMETRIC SPINNING VEHICLES
R

Jgo L-1,
NOTE: fs-——=roc; 3= W, = rw
I I, 3 Y3
ggiﬁ:ﬁ% Target Set X, Neceggary Conditions '
Dual-Spin Vehicle " Spimning Vehicle
Hamiltonlan, B' | Adjoint Vector, p* Hamiltonlan, H* | Adjoint Vector, p*
AMCO | gt |,.0.=0 None ] L0, None ooy

t = T (fixed) Ty =~-i0 1 ; pm=-lo 1}("1
0 -Bi\2 , 0 -Bi\v,
g ol LB O

g, =0 H(t)) =0 107 -1 0

1 spdty _ e o, ey v

i, free piE) =-o 1 1) H"‘(t1> =0 py=-10 1
0 -Bl\v, E -3 Vg
LB 0o (B 0.

SACO %, () =0 None None None None
t, = T (fixed)
f‘f‘l(tl) =0 * #
H*(tl) =0 None H*(tl) =0 None
tl free




@ = - 14T p®)

(L) 50 = £(x(), ul),) = A x(®) +BE ul®)

0 -
o Bl o,
- - 0
where A = _,@ ————————————— ; X = Y9 (5-47)
I 0 94
0
R 2
Iy _
B=——oc=1x0
1
cotl -sot
B(t) = _5gt 8% b st two jets are used
0
cof
B = {59 if one jet is used
0
0

For the spinning symmetric vehicle, the equations are
. + ) T -
Q) Bt = - [A]T p(t)

(L) %) =Ax(t) + B ul)
where

A, B, and x are given by

0 rws : . wl
- TR 0 1 (&
R T 2
A= o w27 ¢
1 3 1
I b 5
i 3 2
(5-48)
A-125
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if two jets are used

R T TR WP

if one jet is used

oo Q=

'
From Equations (5-47) and (5-48), it is seen that both the adjoint
system {()) and the plant (L) are time-invariant for the symmeiric
spinning vehicle while in the case of the dual-spin vehicle, the

adjoint system ((L) is time-invariant but the plant (L} is time-varying.

B Optimality Condition

In this section, the nature of the optimal controller for the dual-spin
and spinning vehiclesis determined by examining the "optimality"
condition. The optimality condition, in general, is given by
B Fw, pFw, ofm) = Fo, ) e
where M ( (0, g*(t)) = sup 'Ifr( T, TF), E(t))
ue s

. (5-49)
B30, 0, u) = 5(x0, po, w®,t)+p 0

B (x(0), p0), ule), t) =< p), £( =0, w0, 1)> - £ (=00, ut), )
It follows, therefore, that

sup 'ﬁ(_’ic_‘*(t), P, E(t)) = sup H( (1), p¥in), E(t),t) (5~50)
ue uef?

Hence, the optimal controller E*(‘t) must be such that it maximizes
the Hamiltonian., As shown previously, the function f (E(’E), u(t), t)

is given by
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b4 (E(t), H(t),’c) = A x(t) +B(t) ({t) for the dual-spin vehicle in the

cruise mode
(5-51)
1 (20, u, =4 (}_{(t),t) x() + B ult)

for the dual-spin vehicle in

= f(x,t) + B E(t} the large-angle turn mode
f ( ?E(t): E(t)) =Ax(t) +B u(t) for the spinning symmetric vehicle

Hence, for the most general sysiem being discussad the Hamiltonian
. is given by

H=<p, £{x,1>+<p, B®u) > - fo(_:eg(’t), u(t), t) (5-52)
and E*(t) must be such that

H*(g*(t), ¥, 5*(t),t) = sup [< p*(t), Blt)ult) > - fo(gg*(t),g(t),t)]
: u(t)e 2
- (5-53)

That is, the optimal controller g*(t) is that particular u(t) €2 which
maximizes the part of the Hamiltonian which is a function of u(t}.
Equation (5~58) indicates that the nature of the optimal controller is’

dependent on the control restraint set Q and the function fo'

In obtaining the fuel-optimal solution, it is often advantageous to
examine the time-optimal solution as well. This is true because the

fuel-optimal solution does not exist unless the final time involved in

i
for the free-time problem) is greater than the time-optimal solution

the fuel-optimization problem (T for the fixed-time problem andt

t*, In addition, in many cases the most appropriate cost functional
is neither time nor fuel but a combination of both. Tor these reasons,
the opiimality condition will be examined for the cases in which (see
Table 5-5) .

fo {E(t): t) =1 , time-or.imal problem

L

o (E(t),g =h (E(t)= t) , fuel-opiimal problem

fo (E(t): t) =k + h(g(t),t), combination time-fuel optimal
problem
A-127

187



33!

g1~y

Table 5-5

NATURE OF THE OPTIMAL CONTROLLERT (OBTAINED
FROM THE OPTIMALITY CONDITION)

Control restraint get
By

Integrand fo( uft), t) of
cost functional

Optimal Controller

Q ={u(t) : ]uj(t)ls 1 j=1,...m}

fo = ? [uj(t)l

£f =1
o

£ =K = %‘, )|

(1) = DEZ, {BT(t) pit)} , fuel-optimal

w8 = SGN {BT() p*(0} , ttme-optimal

E*(t) = DEZ {BT(t) p™(t)} , combination of
- fuel and time

Q ={u(t): 0= uj(’c) <1 j=1,2,...m}

fo = Zuj(’c)
J

f =1

0

=K+ %‘, Iuj(tﬂ

w¥(t) = HEV {BT(t) p*(t - e}, fuel-optimal

w9 = mEv {BT@®) pf®}, tme-optimal

wity = BV {BY(1) 5¥(0) e}, combination of

fuel and time

£

T'I‘he plent is
() &= £0x,1 +B() w®)

and the cogt functional is

) = S‘ lfo (o, t)dt
(e




Magnitude-Limited Case (lwo-way jet ‘é )

The conirol resiraint set Q for the various types of jets has already
been discussed {see Chapter 3). For the two-way jet the control

restraint szt is
Q={u: |uj(t)l5 1 vif (5-54)

The nature of the optimal controller for the functions fo(E(t)’ t) of
interest is discussed in this section. The optimal coniroller must be
chosen to maximize the expression

' =< pf0), B u > - 1_ (), t)

. (5-55)
where H refers to the part of H that is a

function of u.

Fuel-Optimal Problem

The optimality condition is examined below for the case in which

I
fo(g(i),t> - ? 0]

The term B(t) E(t) can be conveniently writien as

BE) ult) = S'u, b, 5 -56
ult) = ), B, (5-56)
J
whexre }_Jj refers tb the jth column of R{t).

Substituting Fquation (5-56) into Equation {5-55) yields
H =< pi(i), Zu. b, >~ E 11.1.(1:) [
- el | J
J ]
3 (5-57)
" E[“ <p*), b, > - |ult) I]
; . =~ J

By defining the scalar product < _E*(’c), Ej > as q;'b (t), it follows that
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g =B @ g
and that
H=) [u.(t) g () - [u. () l] (5-58)
3 J J J

The function H is maximized relative to uj(t) if

ug‘(t) =0 for Iq?(t) [=1
u';:‘(t) = -1 for q’J‘f‘(t)< -1 j=1,...m (5-59)
u';:(t) =1 for q;?(t) >1

The optimal controller E*(t) is thus given by (see Figure 5. 1}

dez q?(t) dez < b (), (D>

w(t) = DEZ{g(t} = | de qg(t) ={

N | "
dez ‘q;ri(i‘)' \dez < ?-m(t)’ p () >
. (5-80)
- pEZ {BT(H) pNH)}
0 for [q’f(’ﬂ)|< 1

where dez qi*(t) = ] 1 for q’f(f) >1

-1 for q(t) < -1

-

Equation (5-60) is general in that it applies to nonlinear systems

which are linear in E(t) and to all linear systems for which

Q={u: Iuj(t)[s1 vi}

g53ﬂ=gg=?lgﬂ
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Time~Optimal Case

In this section the nature of the time-optimal controller is détermined.
The time -optimal coniroller is actually a special case of the fuel-

optimal prcblem. Using the relations
& (E(t)’ t) =1

Blt) ult) = ) v, b,
J

in Equation (5-57) yields

H = Yu, < p¥W), b, > = ) u i) i) (5-61)
3 3 J ; ] J

- The uj(t) which maximizes H is given by
ug‘:(’c) = sgn {q?(t)} j=1,...m (5-62)

The optimal controllexr E*(t} ig thus given by (see Figure 5-1)

[sgn < b, (1), p*() >

(1) = sa{B @ p¥v} = | egn<by00, P >

»

sgn <b_ (1), p(H)> (5-63)

Combinzation Time-Fuel Problem

For the case in which the in‘cegr;.nd of the cost functional is a combi-
nation of fuel and time, the function
fo (p_(t) ; t) is given by

£ (g(t),t) =K+ ), [uj(t)l (5-64)°
3
The shape of the optimal controller for this case is the same as that

for the fuel-optimal problem since H is the same for the two cases.

In this case, the optimal solution is the one which minimizes
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u, {t)
o1
1
i ' ar (1)
-1 0 1 N
-1
{2) u;{t) = ;!ez q; (1), fuel—optimal problem
e
u, {1)
by
1
e
L 1 2o O {t)
1 1 S
1

{b) u;(t} = sgn q; {t) , time—optimal problem

tFigure 5-1  The Function u; {t) for Fucl and Time Optimal Problems in which Two~Way Jets are Used
1
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Iw) =kt; +F , (5-65)

1
where F = ‘i ZKjluJ(t)ldt

o 3

k = gome positive constant

t"i = final time tl for the opiimal solution

Magnitude-Limited Case {One-Way Jet, \‘7)

Intuitively, it is felt that since a two-way jet is essentially two one-
way jets back-to-back, the optimal coniroller for the one-way jet
case should be characterized by Equation (5-59) with the modification
that
ar@®) =0 for ()< -1
j %

It is shown below that this is indeed the case.

For the magnitude-limited one-way jet case, the control restraint
set Q is

@ ={a®: 0=u®=1 5=1,2, ...} (5-66)

The functions fo (E(t) ,t) corresponding to the fuel~optimal, the
‘time-optimal, and the optimal for a combinaiion of fuel and time for

this case are given by

i, (E(t):t) = ? uj(t) . , fuel-optimal

£ (1_1(t),t)= 1 , time-optimal

fo(p_(t), t) =k + Euj(t) , combination of fuel and time
]

Fuel-Optimal Case

The portion of the Hamiltonian that depends on u(t) is immediately

obtained from Equation (5-55) and is given by
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= 2 [U.('i:) q%(t) - u.(t)i[ = E u () ‘:q:'::(t) _ 1] (5-68)
2 L3 j G5 LY

The uj(t} which maximizes H is given by

u;f(t) =0 for q?(t) <1

o Lo (5—69) h
u'Jﬁ‘(t) =1 for q'J:‘(t) > 1

¥

‘Because of its -similarity to the Heaviside function h(t -E), the

controller satisfying Equation (5.69) is designated by (see Figure 5. 2)

: hev[ <b, (1), p{t) > - 1]
w50, - Bmv {0 - e} =

h.ev[< b_ {1}, E"‘(t) > -~ 1]
: - ' (5-70)
‘T £
=HEV{B (t) p"(t) -e}

1
1

where e= ||

-

i

The control restraint’ set 2 and the function fo given by Equation
{5-66) and Equation (5-67) have not previously been considered
‘relevant to the fuel-optimal attitude control problem. Hence, the
HEV function (unlike the DEZ funciion) introduced in this work is

new. The DEZ function is used by Athans and Falb {20].

T will be seen later that the use of the control set Q and the function

fo given by
£ = {ut): 0= i) =1 Vit
£ = ?uj(t)



is especially suitable for spinning spacecraft both from a practical
point of view (considering such items as reliability and the number of

jet firings) and from a computational point of view.

It is also .aoted that even though a few fuel-optimal control studies
pertaining to spinning vehicles have been conducied (e. g.,[11] through-
[14]), the invesitgators invariably and perhaps unwarily (from a

practical point of view) chose the control set @ and the function
fo (E(t}) given lzy

Q = {E(’c) : ]uj(‘b)l‘él ]}
fo@t)) = }3} ]uj(t)l

Time-Optimal Case

For the case in which fo ( E(t), t) = 1, the portion of the Hamiltonian

which is a function of E(’c) is

H= ) u®) gt (5-11)
j

The function H is maximized when
0 for q’Jf‘(t) <0
wit) = B
J 1 for ,q'j‘(t) >0
and hence, the time-optimal coniroller is given by (see Figure 5-2)
% S T S
ui) = HEV{ g (0} = 5BV {B (*) p ()} (5-72)

Norm-Limited Coniroiler

Norm ~limited controllers will not be trealed in depth in this work,
but it is of interest to note some of their chief characteristics. It

was pointed out previously that the control restraint set Q2 given by
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1
t{a) u;(t) = hev (q;(t} . 1) ; fuel—optimal problem

.
qj {1}

L e e e -

1
(b} u;(t)=hev q;(t) ; time—optima! problem

Zizm— q; {1}

' Figure 52 The Function u; {t) for Fuel and Time Optimal Problems in which One—Way Jets are Used
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Q ={E(t) : Juw]] =13} (5-73)

is an accurate respresentation of the gimballed-jet. In addition,
this constraint set could be used as an approximation of that for the

magnitude-limited case. It is clear that if the constraint
[uey [ =1
is satisfied, the consiraint

luto| =1y

is satisfied a fortiori. Hence, the norm-limited constraint set (a
hypersphere) can be viewed as a smoothed magniiude-limited con-

straint set (a hypercube).

In this section, it is shown that the optimal controllers belonging to
the smooth control restraint set discussed above are smooth. Later,
the smoothness properiy will be discussed in relation to sufficient
conditions for optimality and in relation to the existence of optimal

controllers,

In this work, the norm-limited case is discussed for a time-optimal

problem.

Time-Optimal Case

For the norm-limited time -optimal control problem in which

2 ={u® : [uvf=1}
£ (u,t) =1

The function H is given by [from Hquation {5~55)]
H = <B@) w®), p®) > = <ult), B p'®) >

The controller which maximizes H is given by



w*t) = — (1) 2"
- BTw ol

(5-74)

assuming that
sTw gl =o

If the relation
isf® ol =0

ig satisfied, then no information concerning _1:_1*(t) can be-obtained
(the singular case). A distinguishing property of Equation (5-74)
is that the components u}t(’c) are continuous functions of time and

are in general, smooth functions of the state.

Controller Having a Limited Rate of Variation

In section 3.2, a smooth controller having a limited rate of variation
was briefly discussed. It was stated that a constraint having such a
properiy allows the inertia of the control system to be realistically
modeled. Although this type of coniroller will not he sludied in

detail in this work, it is of interest to note that the maximum principle
is applicable. A result that applies to a specific system in which a
rate-limited controlier is used is given below. Consider the linear

. n
autonomous process in R
(L) %x=Axt)+Bult)

The problem is to find the optimal controller }_1*(1:) in Rm which
steers the initial state 3N to the target state Xy in minimum time.
The admissible controllers are those functions _q(t) which are
absolutely continuous on various finite time durations 0 =t = t1
which satisfy the constrainis

(1) ult) C @ where Q is a given closed convex set containing,

the origin of B
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(2)  ult) = (t) are measurable and

lvj(t)lfl vi=1l,...m a.e.

(3} u(0) =ult)) =0

It can be shown [84] that the optimal coniroller E*(t) on0stst
for this problem is such that either

E*(t) ¢ 82 (the boundary of the set ©2)
or

]dj('t)l =1 Vj=1,...m

at almost every instant,

A controller having this property is said to be a pang-bang controller.
The inlervals of 0=t = t"; for which

[ ﬁj(t) l =1 are known as pang

ard those for which
E*(t) € o0

are known as bang,
5.1.4 Functional Analysis Approach

In this section, elementary funciional analysis is used to determine
the nature of the f;lel ~optimal coniroller for a restricted class of
problems of interest in this work., This section is a digression and
is included to show the power and utility of functional analysis in
solving certain classes of optimal control problems. Functional
analysis will be used again in Chapter 6 in discussing the compu-

tational algorithms.

In many applications it is desirable t¢ drive the transverse compo-
nents of angular velocity to zmero while maintaining a constant spin
velocity about the third axis. Typical applications for such an

objective include



(1) ' a2 manned space station in which a congsiant artificial gravity is
established by maintaining a constant spin velocity and by
driving the transverse angular velocities to zero

(2} a srinning reentry vehicle with a spin velocity appropriate

for aerodynamic stability

Special Fuel -Optimal Problem

In this section, the problem of nulling the transverse components of
angular velocity of a symmetric vehicle so as to minimize fuel con-
sumption is considered. The equations governing the behavior of

, and v, are given by {from Equation (2-74))

= -1 + (5-175)

or

Z=Ax+Bu

I is irnmediately noticed that the matrix A is skew-symmeirie, that
is

A=-aT (5-76)
It is now shown that any system (time-varying or time-invariant)
having the property given by ]%}qua’cion (5-76) is norm -invariant.
The dynamical system )

(s) (1) = £{x, 1) +ult)

is said to be norm -invariant if the solution x(t) of the homogeneous

system satisfies the property

= =l =o

for all E(ﬂ and all t{20]. The derivative of the norm of x{t) is

given by
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_ <, &> <x), &>

Lz 2 vZsm, =S
o a I ', s a0

The homogeneous sysiem corresponding to Equation (5-75) is
(L) %) = Ax({) {5-11)

The system given by Equation (5~77) is norm-invariant if and only if .
<x(t), Ax{t)>=0 (5-78)

From Equation (5-78) it follows also that

<aT =), =) > =<x®), AT xH) > =0 (5-79)
Combining Equations (5-78) and {(5-79) yields

<(a+a) =0, x> =0 (5-80)

It follows, therefore, that for the norm -invariant system
() X=AX
the matrix A must satisfy the relation
A=-aY,
that is, A is skew-symmetric. In addilion, the homogeneous norm-

invariant system of Equation (5-75), viz.

X = A x(t) (5-81)
ig self-adjoint. The adjoint system is given by -
z=-aT x1) (5-82)

Since the matrix A is skew symmetric it follows that the adjoint
system is identical to the plant and, hence, the system is self-

adjoint.

The optimal controller for norm -~invariant systems can be found by

a direct method, viz. by using the Schwarz inequality, Tor the

norm-~invariant systems [Equation (5-75)], the norm of x satisfies

the equation
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2 sy ]| = ZED, =0 > _ <A, x>
. [0l xel

<ut), x> <ulh), x0 . (5-89)

Bl Eel
-ox(t)

The Schwarz inequality applied to the ’cerm < uft), > implies
that [

< ult), n (5-84)

” ” =l

Straightforward manipulations of Equatlons (5-83) and (5 -84) yield

the optimal controller for the problem (LNI’ AL, XO, Xl’ J) where
(Lgp x(t) = A x(t)+ uf{t), norm-invariant
A class of admissible conirollers consisting of the
smooth functions u(t) C @
Q = fuw) : fuwf =1}
X, = HERI x = g,to=o}
X, = i(;_;_,t): x(t)) =0, t, free}
t
1
= § e
o .
Integrating Equation (5-83) yields
t xr)
o] - fell + § <nn, 20 (5 -85)
[l
Evaluating Equation (56-85) at t = tl y elds
1 (1)
HIE g <ult), > dt (5-86)
o " %(7) ”

Taking the absolute value of Equation (5-86) yields
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1S lll ] = I 1 ult), ——— >at |= E(t),—i‘(—-—> at
I S lec 0] 5; (ECIN
' (5-817)

Using the Schwarz inequality in Equation (5-87) yields

t .

1 .
felf=) " [uw | u) [ a = 56w (5-88) -

5 th I So

Hence, the norm of the initial state is the greatest lower bound of

the cost functional, i.e.,

Izl = e 3w (5-89)
I follows that the optimal control is that for which

I(w = [

It is easily shown that the optimal controller is given by [20]

YOl
[EYOY

where oft) belongs to the set 0.. The set Q. is the set of non-

W) = - o)

(5-20)

negative scalar functions «(t) defined as

Q={oft): 05 o) <1 Vit and for every off)
T
24
T, > So ot at = [ £}

Substituting Equation (5-80) into Equation {5-87) yields
T

x(t) (1)
le]l = ~olt) € > dt
X; [EYO) I S (t)ll
Ta’ Ta
el = (Wdt = * = I () (5-91)
J, war={ L :

where Ta is the time required to force £ to 0 given an
aft).
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The distinguishing features of the optimal controller specified by
BEquation (5-90) are ithat

(1) the controllers are smooth _
(2) the control is oppositely directed to the state vector

(3) the conirol represents a feedback solution

5.2 . Sufficiency Condilions

T

In this section, three theorems concerning sufficient conditions for
oplimality are stated. More detailed treatments of this subject are
provided in Reference [45] through [51]. The sufficiency conditions
presented here are representative of those obtainable from each of

the three approaches to the optimal conirol problem.

Sufficient Conditions Obtained from the Maximum Principle

For an important class of systems, the maximum principle provides
not only the necessary but also the sufficient conditions for optimality.
The theorem presented here is due to Lee [47]. The control problem
(S, A,Q, XO, Xl’
The system (8) is given by

J) for which the theorem applies is now described,

(s §=Am§+§(gmg .
the cless of admissible controllers A is such that

A = all bounded measurablé m ~vector functions on the _f_uﬁgail
finite duration to =1 27T which steer the initial state 3_{0
the target set Xl,
the control restraint set © is such that
Q = a nonempty set C R,

the initial set XO is such that

Xo = {(gt),t) N fixed, to fixed },
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- the target set X1 is such.that

X:1 = a closed convex setl 5

the cost functional J(u) is given by
T
) = i [fo(zg(t), t) +h_ (E(t),t):| &
o}

Theorem. Consider the control process in e

(8) x = A(t) x(t) +h{y, B

with the initial state . and the closed convex target set ch R",
The cost functional corresponding to an admissible controller u(t)

on to =t =T lying inthe restraint at @ C R™ is defined by

J(u) = S;T[fo ( (1), t) + ho (1_1(t), t)] dt

o]

Hh % (@ = \ .
with % (8) = £ (g(t),t) +h (um,t) . 5ty =0

The quantities f0(§(t),t) s %(E(t)a 1), hO(E(t},t)_,

A(t), and 1_1(5(‘&),%) are assumed continuous in all (E(t)a E(t), 1) in
Rn+m+1. The function fO(J_E(“c), 1) is assumed to be convex in x(t)
for each fixed t e[to, T]. If the controller 11_* t) with response
?_:*(t) = (x':‘;(t), _}g*(’c)) satisfies :i:he maximum principle, then E*(t)

is an optimal controller achieving the minimal cost

Ju") = x:;(T)

As stated previously, the target set for the angular momentum

control concept is given by

TNote that compactness of the target set is not required for the
sufficiency theorem but it is for existence.
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Xy={lx, 0 g [xE)1 =0, g[x(t)] =0}
where g [E(tl)] =C _:5(1:1)
C = a time -invariant matrix .

In this case, Xl is a linear manifold and is thus convex (every linear
manifold is convex). I was stated previously that Xl is also compact
(closed and bounded). It is noted that the theorem applies only to
fixed-time problems. Both fixe.d and free time problems are being
considered in this work., The theorem is useful for both the angular

momentum control concept and the spin axis control concept when

{1) the cruise mode {small angles) is being considered

"(2)  the final time tl ig fixed

The theorem is not applicable to the large angle turn mode because
then the plant is nonlinear in x . Of course, in the problems of
interest in this work since the plant is linear in u and the integrand
of the cost functional is linear in Ej(t) or [uj(t) [ depending on the
type of jet being used, special attention must be p'aigi to the possibility

of the existence of singular optimal controllers,

Sufficient Condiitions Obtained from the Caleulus of Variations

In this section, a suifficiency theorem involving the calculus of
variations is presenied. This theorem involves the notion of the
second variation of the cost functional and provides the sufficient
conditions for local optimality. The notion of the second variation
has no counterpart in the maximum principle. The elegant theory
involving the second variation of the cost functional is important not
only because it provides sufficient conditions for optimality but also

because it provides a computational technique as well [85].
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Previously it was stated that the cost functional J(x) is saidto be

differentiable if the increment of J(‘g) can be wriiien as
AT(x; Ax) =J(x +Ax) - 3(x) = 63z ;4% + e [ax], (5-92)
where 6J(x ; AX) is a linear functional known as the first
variation (first differential)

Analogously, the functional J(x) is said to be twice differentiable if

its increment-can be written as

1]

AT(x ; Ax) J(-_:g+g§) - J(x)

63 (x; Ax) + 62J(_>§ ; AX) (5-93)

te ax |

where 62J' is a quadratic functional known as the second variation
(second differential). The form of 52J is easily obtained by express-

© ing AJ in a TSE. Given the functional

:
3(x) .-.5 P (x, %,9,
a

the increment of J is given by
t ’ t

AX(x;A%) = Hx+AX) - J(x) =SI fofu}g+é_§,§+é}g,t)dt - Sfo(_sg,g,t)dt
- (o} 0
L 2.
it~ of of d
o) o} . 1 o}
.~.r L AX D> < ——, AX >+ < Ax, —5 AX >
J ax 7 — 9x 7 — 2 8}:2 -
Q - - =
1 Bzf 82f (5-94)
oA, —2 A% >+ < AX, e AU >
z2 - 8}'{2 —_ == 8_}58_1.}. ——

—

3° &2

tey <AXAX >+ e, <Ak, AX>+e, < Ax A}'c>:|dt

P
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From Equations (5-93) and (5-94) the second variation is given by

- , -
t; aTlo% 8t
6%H§é§=%§ ox > 3os Ax) (5-95)
o \Axf | Bx =T O\AX
0%t 8%
o}
P2 ey

t
If the functional J is givenby J(u, X =S. fo(E’ x)dt, the second
e 2 (o}
variation 6 J becomes

I3

-

/ARt 18%r 9% Ax
62J(:x‘_ u; Ax, An) = 1 SI e 9 o OV dt (5-98)
=TT 2 Aw 2 axou Au
o \8X | ax® CXEB| (2R
0%t a%f
[o] O
SEBE 8}32

Before stating the sufficiency theorem the following easily proven

lemma is stated [42].

Lemma A necessary condition for the functioneal J{u,x)} to have
a minimum for x = _}5* s b= 1;1_* is that
9
§J(x, u,Ax, AWz 0
for x = X, u = _u_* and all admissible Ax, Au.

This condition is clearly satisfied if the symmetric matrix

82f 82f

o] C
8%t s

o 0
8385 822 .
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ig positive semidef1nite.| With this definition of the notion of the

second variation the sufficiency theorem can now be stated [24].

Theorem. Consider the autonomous process in R

(S)

1.

=f(x, )
with initial state x(0) = X and cost functional
T

I{u, x) = 50 £ (x, wa

. +
Assume that fo(E’E)’ f{(x, w arein C2 in R, The admissible
controllers are those bounded measurable functions g_(t) defined on

the fixed finite interval {0, T} which satisfy the restraint
u® C aC R"™
The controller y:*(t) is optimal if E*(t) ig such that

(1)  the firsl order necessary conditions for a local minimum are

satisfied, viz,

1) g%f (g®, 2w, @) -0 a
where H = ~f0(_x_, _1;_) +<p, I>
0% =5 (20, 20, @) L x0 =x

1

p = -2 (50, piv), B*0), BT =0

1
(2) the symmetric matrix involved in the expression for the

second variation is positive definite, i.e.,
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X ]
5% ¢ 574
Q
sz 858_1.1
- is positive definiie
5% 5%
(o] o]
suox 2
7T B dlxerw
u =u(t)

(3)  either of the two following conditions holds along (g"(t), f‘(t})

P e S S S
o | XL o
(ii) o _
ox =0

t is imamediately apparent that this theorem cannot be used for the
problems of interest in this work, The theorem is typically applicable
for cost functions which are quadratic in both X and u. In this

work, the functions fo(E ,t) under consideration include

£ (u 1) = };j K, |uo|

£ (u, 1 = %‘,Kjuj(t)

1o = ul
For these fur;ctions, the following observations are apparent
azf 821‘
(1)  the matri 2 = > =0
atrices ax2 50U

{2) the matrix defining the second variation is not positive definite
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(3)  the function f(u, 1) =7, K, [uj(t)l does not belong to C* in

J 9
n+m 9 f

R and, hence, the operation 20 cannot be periormed.

gu

it is also noted that the theorem as stated here applies only to

autonomous systems for which the final time is fixed and finite,

Sufficient Conditions Obtained from Dynamic Programming

In tha.s section, a sufficiency theorem based on dynamic programming

is provided. The theorem is applicable only if a feedback solulion }}0

R |
exists. Previously it was noted that if the control constraint & given by )
o= {u: fuf<1}

were assumed appropriate, then in certain cases a smooth feedback

golution exists. The advantages of having a feedback solution are
well-known to the practicing conirol engineer and considerable

effort is expended in an atiempt to obtzain feedback solutions. In

fact, in many cases, a feedback law obtained by appropriate approm«
mations is more useful than an exact open loop control law, The

control process in R }

® %= ix, w0t
with restraint set @ C R, with the cost functional
t
J(u) = 5 £ (p_(t) , }“c(t),t> dt , and with the Hamiltonian
t
O

B2, p,t) = sup H(x, p, u,t =Hx,p, 30(5, D, (1),1)
uef

The close analogy between Hamilton! s canonical equations and the
Hamiltonian of analytical mechanics and Pontryagin' ¢ maximum

principle has already been noted. A similar analogy exists between

A-151

248



the Hamilton-Jacobi theory of analytical mechanics and Bellman' s

theory of dynamic programuniing.

The quiniessence of the Hamilton Jacobi theory of classical
mechanics concerns such notions as caronical transformations and
their penerating function {52]., The distinguishing feature of the
Hamilton-Jacobi approach is that the problem of solving the entire
system of canonical equations is reduced to the problem of solving

one partial differential quotation. Consider the functional

1 —
Jx) = 5 fo(z_:, %,t)dt defined in a region R and define 5(x,1t) as
to .
the functional J(x} evaluated along the extremal joining the points

A=, %)

B ={t, x,)

The quantity S is a singled-valued function of the points A and B.
If point A is fixed and point B is variable, then S is a single-valued

function of the coordinates of point B, i.e.,

S =8(t, x) =T, x) (5-97)

By definition, the increment of S is given by

A =S(t1+ d’cl, x +£§,_3512 —S(tl, %)

1 1
= J (v} - ) (5-98)

where « = the extremal going from the point A to the point
) (t, x,)
4" = the exiremal golug from the point A to the point
+ 1S
(tl dbl‘, ) + é}-{l)

From Equation (5-98), it follows that
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ds = 6J (5-99)
The first variation 6J is given by

t of 2

§J = <=2, Ax>+< =2 Ak > |dt +f (x,%,tdt
+ a_zg o B_}g — o =’ 1
[#3

{5-100)
Simplifying Equation (5-100) yields

of of ’

i d o 0
GJ—-S{: <—a¥-'§§'—+§:}s—-,é}i?dt+

o
of

t< e, AX> | £ (x, %, 15t (5-101)

Since the Buler-Lagrange equations

d Sfo Bfo

—

are satisfied for an exiremasal, the general variation becomes

§F = -H(x, p, 1) st, + < plt,),Ax, > {5-103)
=& 1 =11
=t
1
where H$~f0(§, %, 1) +<p, x>
of
=. 2

From Fquation (5-97), an additional expression for dS is
@& = B 4t +<3§———,Ax> (5-104)
6‘t1 i 851 e

Equating the results of Equations (5-103) and {5-104) yields
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93

ﬁ; = - H(t1)
B - ' (5-105)
98
o, - Rl
=1
It follows from Equation (5-~120) that
as as \ _
S a0, ) - 00

2

where S and H are expressed in terms of the coordinates of point
B. In classical mechanics, the partial differential equation

93 ( 8S \ _ '

= +H(, x, %-) =0 (5-107)

is known as the Hamilton-Jacobi equation and S is known as the

generaling function.

The sufficiency theorem related to the Hamilton-Jacobi equation

may now be stated [24]
Theorem. Consider the control process in R"
(8) x=1{x, u,t)

with initial s.ate x and target set ch R". The admissible con-
trollers are all bounded measurable functions u(t} on [to, T] with
values in the control restraint set @ C R™ which steer the

response x(t) from _}g(to) =X to x(T) e Xl. The cost functional is

T
stw =y (xr)+ {1 (0, uw,t)a
1
- Q

where ¢ f, fo are in C1 in 2ll arguments,

Assume that there exists a feedback control 1__10(}_:, P, t} in C1 in

Rn+n+1 such that
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H(x, p, 1) = H(gg P, go(}_c, P, t):‘f)
2

I g(_}_{,t) e C" for x¢ Rn, t 2T is a solution of the H-J equation

8 |, .0 58S -
= +H (5 o t) - 0

3(5, T) = - ¢(x) for _}gexl

.

then the: control law T_}(E: t) = EO (ugg, %?; , .t) which defermines a

a response x(t) - steering (g_;o, to) to the target set att =T is an

optimal controlier provided if lies in £ and has cost

H(mw) = -Sex_,t)

<

Before commenting on the applicability of this theorem for the

problems of concern in this work, a theorem concerning a restricted

class of control problems for which a feedback control can be deter-

mined is given {24]. Consider the minimal-time problem of steering
_a given initial stale x_ to the target set X, C R". Assume that

the control restraint set @ C R" is compact and is diffeomorphict

for each fixed }_IERn with the velocity set
v={t(x, w|ucal

, “ n
Theorem. Consider the autonomous control process in R

(&  %=£(x, u) inctin R

1
with compact restraint set @ R" and cost functional J{u) =§ dt.

For each xe Rn, the velocity set is defined as t0

o
YThe map
Q~-V:ou>flx w

. AP S
. is said to be diffeomorphic if it is 1-to-1 onto V and is in C with
a nonvanishing Jacobian determinant.
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Ve ={1(x, wuea}
If for each x ¢ R
(i} there is a diffeomorphism of @ onto V
Q->V:u-f(x, n

(ii) V(x) is a strictly convex body in Rn with a smooth Cz boundary

manifold 8V having positive Gaussian curvature,
then there exisis a smooth feedback control

EO(B: x) in C1 for p 0, x e R®
describing the unique point in 2 where

Ho(_;_), x} = sup [-1+<0p, §(§: w) >]
ue 2

This sufficiency theorem does not apply to those problems being

considered in this work for which the cost functional is given by

J(u) = i Zklu|

or
1:

I(u) =S; Zk u ()t

o I

This follows because the extremal controller }f"‘(t) is neither a
feedback solution nor does it belong to Cl. However, if the control

restraint set Q given by
a={u: [u]=1} (5-108)

were used, the theorem could conceivably be used. Recall that the

smooth control constraint given by Equalion (5-108) is appropriate

(1) when a gimballed-jet is used
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(2) as an approximation of the restraint set

2 ={u: |wwl=1 v}

Besides providing a sufficient condition for optimality the theorem.
demonstrates a geometric property that was conspicuous neither in
the calculus of variations approach nor in the maximum principle.

This geometric property is that

(1}  the adjoint vector p(t) corresponding to an optimal trajectory
is the gradient of the optimal performance index (cost
functional), i.e.,

wpn BT
1) =g
(2) tihe optimal Hamiltonian " is equal to the negative time

rate of change of the optimal performance index, i.e.,

iz _ BJ;k
B =~ 5
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Section 6

COMPUTATIONAL ALGORITHMS

In this chapter, the computational algorithms that could be used for
determining the fuel-optimal controller are categorized {(see Table
6-2). A few of the algorithms considered most suitable for the
problems of interest in this work are briefly described. I is
emphasized, that a thorough treatment of this topic is not an objectivé
of this dissertation. It is also emphasized that the algorithm to be
selected in this work is not necess.arily the most suitable for an
arbitrary class of fuel-optimal problems bat is suitable for the
particular class of problems of interest. Almost all the algorithms
‘mentioned in this chapter are potential candidates for the application
at hand; however, appropriate modifications wouid have to be made

to some of them.

There are two types of optimization problems that are commonly

encountered, these types include

(1)  the general optimization problem

(2) the parameter optimization problem.

In the general optimization problem, a nonlinear two-point boundary
value problem must be solved. In the unconstirained parameter opti-
mization problem, the task is to determine the values of say m

parameters which minimize some appropriately chosen performance

index.
6.1 Parameter Optimization

A class of optimization problems of gre.t practical importance and
of relevance in this work is that associated with parameter optimiza -
tion. In this type of problem, the task is to determine the values of

_say m parameters which minimize some appropriately chosen
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performance index. This task is considerably simpler than the

general optimization problem. However, many of the computational
techniques used for this class of problems can be modified and used
for the general optimization problem. Some of the techniques which

have proven worthiness in attacking parameter optimization problems
include

(1) relaxation search [53]
(2) random search [54]
{3) direct climbing [55].

Of these techniques, the category that is currently used most fre-~
quently is that associated with direct-climbing. In the direct climbing
technique, an n-dimensional search problem is converied into a series
of unidimensional searches. Frequently employed search procedures
include the direct elimination and the polynomial approximation cate-
gories. The techniques belonging to the direct elimination category

include [55]

(1) dichotomous search
(2) Fibonacel search

(3) Golden Section search,

The climbing techniques are usually classified as

L)

(1) first-order gradient

(2) sexond-order gradient,

The most common technique belonging to the first-order gradient
classification is the well-known method of steepest ascent {(descent),
The secor.d-order gradient techniques ¢ vercome some of the con-
vergence pi‘oblems associated with the first~order gradient fechnique.

Algorithms belonging to the second~order gradient technique include

(1) PARTAN [56)
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(2) FLETCHER-POWELL DESCENT METHOD [57]

(3) ACCELERATED GRADIENT METHOD [58]

{4 HESTENES-STIEFEL CONJUGATE GRADIENT [58]
(5) DAVIDON VARIABLE METRIC [60] .

Of these, the mosi promising ones are (4) and (5).

In many practical applications, it is desirable not only to determine
the optimal controller but also to determine the optimal values of
ceriain system parameters. Hence, the parameter optimization
problem is coup1~ed with the general optimizaiion problem in this case.
According to Cicala [61], it is frequently convenient to handle these
parameters as initial conditions, That is, the parameters e.-i are

" characterized as initial values of addilional state variables x, defined

i
as
X, =0
i
xi(t ) = e f=ntl,..,..
6.2 General Optimization Problem

The general optimization problem is defined in terms of the nonlinear

plant (S)

(s) ‘éﬁf(;_{, u, © ;

o

the cost functional J{u)

- tl ) L.
Ju) = w(g(tl),tl) + gt £(x, u,Ddt ;
8]

the target set X, associated with either a fixed-endpoint, a free-

1
endpoint, or a constrained-endpoint and the final time tl {(fixed or
free), the initial set XO, and the control restraint set Q. In general,
both the state variables and the control variables are constrained.

In the problems of interest in this work, however, only the control
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variables are constrained. An important consideration affecting the

_ selection of the algorithm fo be used in this work is the relative ease

in which the constraints on the control variables are handled in the

various algorithms,

6.2.1 Classificarion of Computational Methods for the General
Optimization Problem

Although the various computational algorithms for the general optimi

zation problemg do not fall automatically into distinct categories,

nevertheless, ii.is convenient to classify them (see Table 6. 2).

Frequently, the computational algorithms are categorized as [63].

(1)  direct methods

{2} indirect methods .

. In the direct methods, the equations of motion and the appropriate
terminal conditions are used as the sfarting point and an atlempt is
made to maximize or minimize the cost functicnal without using the

necessary conditions.

In the indirect methods, the necessary conditions for optimality are
used as the starting point and an attempt is made to satisfy these
conditions by using an iterative approach. Advantages and disad-
vantages of thege téchniques (based on Reference [62], [63], and [64]}
are listed in Table 6. 3.

In the general nonlinear two-point boundary-value problem, the task

is to find

(2) the n state variables x(t)
(L) the n influence functions p(t) (sometimes called the adjoint
or costate variables)

(¢} the m control variables u(t)
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to satisfy simulianeously the

{1) the n state equalions involving x and u
(2) the n adjoint equations involving, p, X, and u
(3) the m optimality conditions involving P, X, and u

(4  the boundary conditions involving x and p.

A characteristic which distinguishes the various algorithms pertains
to the equations which the nominal solution satisfies and the equations

which are iterated on {(see Table 6.1) .

Direci Methods

The direct methods have been applied successfully to many practical

. problems. As will be seen laier, the same statement cannot be made
for the indirect methods. In 1960 Kelley [65] applied the direct method
to a control problem; he called his method the Gradient Method, Since
then several modifications have been suggested to cope with the
inherent disadvantage of extremely slow convergence in the neighbor-
hood of an optimal solution (see, e.g., Reference [66] and [67]}). The
implementation of the gradient technique has varied widely because

the proper step size in the control space is not well defined. The

gradient direction, however, is well defined. Because of this arbi-

trariness in the implementation of the gradient method, considerable
care is required in selecting the proper control step size to avoid
violating the linearity constraints imposed on the problem. This
suggests that there is a certain amount of art involved in the success-
ful application of these techniques., Indeed, this staiement applies to

all known computational techniques for solving optimization problems.
The direct methods are categorized by Bryson and Ho [64] as

(1) first order gradient methods (method of steepest descent)

(2) second order gradient method
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Table 6-1
ITERATIVE NATURE OF COMPUTATIONAL TECHNIQUES

_ Computational Technique Equations Nominal Solution Satisfied Equations Iterated On
Direct Methods ‘
Gradient State equations Boundary Conditionsg
Second Variation Adjoint equations " Optimality Conditions

' Indirect Methods
State Equations
Classical Newton-Raphson Adjoint Equations Boundary Ccnditions
Oplimality Conditions

Generalized Newton-
Raphson Boundary Conditions State Equations
{Quasilinearization) Optimality Conditions Adjoint Equations




(3) second variaiion method

(4) conjugate -gradient method .

The gradient methods were developed to surmount the "initial guess"
problem associated with the classical Newton-Raphson techmque to

be discussed later. First-order gradient methods reportedly show
great improvement in the first few iterations, but have poor converg-
ence cha;c'acteristics as the optimal solution is reached. Second order
gradient methods have improved convergence characteristics as the
optimal solution’is approdched, but may have starting difficulties

associated with choosing a convex nominal solution,

The basis of the steepest descent or the first order gradient technique
is to determine the estimates of the control variables u (t} which
minimize the cost functional. The previous estimate Bi is updated
according to

T . i
El-l =El -k aJ (u?)

ou

where k is some small positive constant. The min-H algorithms
are modified first-order gradient methods which were developed io

Improve the convergence characteristics, included among these are

(1) Halkin! s method of convex ascent [68]

{2)  Gottlieb! s min-H strategy [69].

In Reference [64], a second order gradient technique in which both

) %7 - i
5 and [-——2—} must be computed is discussed, The estimate u
9 du
Is updated according to
9 -1
ui+1=ui“[§_§_:| g &y
- - 2 ou -~
du -
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A method related to the second order gradient method known as the
method of second variation {85] is based on the calculus of variations.

A significant advantage of this method is that the step size is auto-
matically determined, thus eliminating the independent search pro-
cedure needed in the gradient method. An addilional advantagel is

that the penalty functions (linear or quadratic depending on the problem)q
agsociated with the terminal conditions are not needed in the final
stages of-the computational procedurxe. Thus, the undetermined con-

stants associated with the panalty function terms are eliminated.

The conjugate -gradient method [70] attempls to combine the advantages
of both the first-order gradient and the second-order gradient methods,
- Initially, the algorithm behaves like a firsi-order method and as the
itergtion progresses, it behaves like 2 second-order method, One of

its chief advantages is that it is not necessary to compute

5 -1
[—a——g-:l . Fundamenizal to the conjugate-gradient method are such
du
ideas as :
(1)  the conjugate property of a sequence of direclions Ny Bgyeees T
2
relative to % , that is
u
2
<n, 54 n, >=90 1+ ]
A
ou

(2) determination of the optimum in each of the conjugate directions

n; by making a sequence of one~dimensional searches,

" Since this technique has not been extended to constrained control

problems, it will not be discussed further.

It is expected, however, that this extension will be made because the

method appears very promising,
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Table 6-2

CLASSIFICATION OF COMPUTATIONAL METHODS
FTOR GENERAL OPTIMIZATION PROBLEMS

Computational Techrigue

Remarks

Direct Methods

e Flrst-order gradient or method of
steepest descent {ascent)

Min~H algorithms
Gottliebt & min-H Strategy

LO1-¥

Halkin' 8 method of convex ascent

» Second~order gradient

» Developed to overcome initlal guess problem
agpociated with clasgieal indirect method

» Showe great improvement in the firet few
Iterations

s Update estimate of E(i) by

1 _ Dy 8
uoo=u 3 5a (}_:_L_i)

(g

o Gottlleb! @ method seeks to Batlsfy optimality
conditions

»Improved convergence characieristics near
optimal solution

sRequire nominal solution to be convex, i.e.,
2

Q-—Ig >0 for minimization problem
ou

«Tmproved convergence characieristics near
optimal solution

s Update estlmate E(i} by

5 [8° Tor o
o =y _[ J’] _5;(2()

——

auz -

—

H
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Table 6-2 (Continued) '

Computational Technique

Remarks

Direct Methods

o Second variation method

e Conjugate~gradient

» Developed to improve iteratlon technique

and eliminate shortcomings of gradient method

¢ Baged on theory of second variation of the
calenlns of variations

» Find Au(i) which minimizes

—

AT = 83 + 6%

« Combineg advantages of firgt~order and .
gecond~order gradient methods

e Initially behaves like a first-order method,
ag {teration proceeds it behaves like a
gecond~order method 1

2

o Not necessary to compute 91 )
o

e Currently can be applied to unconstrained
control problems but possibly can be
extended for general problems



Table 6-2 {Continued)

Computational Method

Remarks

Indirect
Perhurrbation Methods

Method of Periurbation
Tunctions

oClagpical Newton~Raphson

691~V

Method of Adjolnt Functions

Quasilinearization Methods

e Diffleult to guess appropriate initial
valueg for the adjoint variables

» Succegs depends on the dimension of
the problent

o Terminal conditiona are very sensitive
to variations in ithe initial adjoint variables

e Trajectortes are determined by integrating
nonlinear equetions of motion

o Same ag method of perturbation functions
except the system of equations adjoint to
ihe gystem equations are Integrated backwards

e Developed to overcome problems associated
with the clagaical Newton-Raphson technique

+ Rapld convergence near the optimum

» Succession of nonhomogeneous linear two-
point boundary value problemsare golved
until state and adjoint equations are satigfled



Indirect Methods

Indirect methods have not been used as frequently for solving optimal
control problems as the direct methods, despile the fact that they were
infroduced earlier. Hestenes [T1], as early as 1949, applied a calcu-
lus of variations formulation to the study of time-~optimal solutions

to the fixed endpoint problem. The differential variations method
proposed by Hestenes for ger;erating the numerical solutions is
considered the forerunner of the recently popularized quasilineariza-
tion methods., The lack of success of the classical indirect method
{(Newton-Raphson) is attributed to the sensitivity of the terminal con-

ditions to variations in the initial adjoint variables.
" The indirect methods are categorized [63] as

(1) perturbati;m methods

(2) quasilinearization methods.

In the perturbation methods, the reference trajectory is generated by
integrating the nonlinear differentizl equations of motion. In the
quasilinearization methods, the linearized differential equations of
motion are used to generate the reference trajectory. The pertur-

bation methods are further subdivided as

(1)  method of perturbation functions (classical Newton-Raphson)

(2) method of adjoint functiors.

The main difference between these two perturbation methods is that
in the method of adjoint functions, the set of equations adjoint to the
system equations (Hamilton' s canonical equations) is integrated

backwards while in the method of perturbation functions, the system

equations are integrated forwards.

A-170



The quasilinearization methods include several methods, which
although essentially the same, are known by various names; included

in this ecategory are

(1) Hestenes' method of differential variations [71]
{(2) Bellman and Kalsba! s quasilinearization [72]
(3) MecGill and Kenneth! s generalized Newton-Raphson [73] -

Kalaba [T4] studied the convergence charact'eristics of the fixed end
condition problem from a theoretical point of view, Long{75],
Conrad {76] and Lewallan (77 have extended the generalized Newion-
Raphson method to handle variable final time problems., In addition,
Lewallen [77] extended the generalized Newlon-Raphson techmque

so that it can handle general terminal conditions.

In the quasilinearization methods, the reference solution is obtained
by integrating the linearized form of the system equations. The
coefficienis used to generate a new reference irajeciory are obtained
from the previous reference {rajec"co—ry. Under appropriate conditions,
the successive solution of the linearized equations converges to the
solution of the original set of nonlinear equations. Being linear, the
boundary conditions can be satisfied on each iteration. Note, how-

ever, that the oplimalily condition %g = 0 is satisfied only when

convergence occurs,

Although the quasilinearization methods have not been extensively

used, all indications are that the methods appear promising.

6.2.2 Brief Description of Most Suitable Algorithms for the
Problems of Interest in This Work

In this section, brief descriptions of the method of steepest descent,

the generalized Newton-Raphson method, and the classical Newton-

Raphson techniques are provided. It is felt that these techniques

are the most appropriate for the problems of interest in this work.
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Table 6-3

ADVANTAGES AND DISADVANTAGES OF VARIOUS
COMPUTATIONAL ALGORITHEMS

Compulation Technique

Advantages

Digpdvontages

Direct
rrst-ovder gradient

« Conceptually gimple
» Bngy to program

» Secks out relstive minima rather
than stationary solutiona

»Control constrainis are eapily
Implemented

«Tgeful for starting a pohetion

*» Pogaible to determine aingular
golutfons with this algorithm

s Pennlty functions required for terminal
boundary conditions

+ Poor convergence characterietics near
optimal solution

= Step slze determined by an independent
genreh procedure

Second-ordex gradient

»Conceptually slmple

s Faat convergence near optimum,

» Seeky out relative minlma rather
than stationary soluticds

* Relotively difficult {o program
2 L

s -1
»Must compute [auz] = 'T}_xg

» Initially .T;J;‘ mey not exiet or regermble
value near optimum
» Reruires nominal sohition to be convex

« Method must be modified to handle
control constraints

Second Variatlon

* Penplty functionsg not required in
finnl phage for satlagfying terminal
boundary conditions

» Quadratic convergence rear optimum
+ Step aize automatlcally determined

¢ Improvement In each slep

« Convergence not contingent upon s
good atovting function

« Control corgtralma eannot be ensily
handled

s Relatively difficult to program

« Method seels out stationary value
rather than relative minfma
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Table 6-3 {(Continuved)

Computationsl
Algorithm

Advantages

Digadvantages

Direct

Conjugate ~gradient

Indirect

Clasalosl Newton=
Raphson {CNR)

Quasgilinearization
Methoda

* Conceptually gimple

« Good convergence charscterieticn
« ot necegsary to compute .T;J{l ad

in the second-order gradiest method

* Conceptuslly simple

*Easy to program

«Control conpiralnts are egaily
implemented

« Neiphboring optimal solutions
obtained in addition to optimum

s Convergence of method {2 quadratic
noar optimum

» Step size 18 automatically determined

» Potentinl savings in computer -
running time

* Penalty functions are not required
for the treatment of terminal
boundary conditiong

« Hag not been extended to apply to the
general control problem

« Control conmtraints are not easily
handled

s Terminal boundary counditions very
gensiiive to variations in initial
adjoint varlables

sSnuecess depends on dimension of
problem

sMethod zeeks out slationary values
rather than relative minbma

= Method seeks out gintionary values
rather than relative minima

« Relatively difficull to program



Ideally, it would be desirable to determine the fuel-optimal controller
by using each of these methods and to compare such factors as con-
verge.nce characteristics, computer rumning time, sensitivity to
starting function, etc. "Degpite the importance of such a task, it is
not within the scope of the present work and must be delayed until a

future time.

Method of Steepest Descent

The method of steepest descent is important not only as a computa-~
tional technicque iﬁn its; own right but also because many of the available
algorithms for computing optimal controllers are based on it. For
example, a iypical modification to the steepest descent technique

" centers around the notion of using the gradient in an appropriate space
(one that ensures that the gradient exists for all elements in the space).
In another modificatiori, the geomeiry in the function space is changed
by introducing a locally linear transformation; this modification results
in the Newton-Raphson method., The mathematical theory of this
method is discussed in Reference [78] through {81] and in an Appendix
of [24].

In this section, the me.athod of steepest descent for functionals defined
on a function space is discussed. The resulis for the case in which
the space is R are obtained as a spectal case of the general resulis.
Fundamental notions involved in this development include such con-

cepts as

(1) arc length in a Banach space
(2) Frechet derivatives

(3) the Riesz representation theorem.,

Let u(t) be a smooth function in a real complete normed linear
space (i. e., a real Banach space or simply a real B-space). The

arc length s is given by

A-174

>33



1
=S " ut (o*)”do* '
o

(6-1)
where u'{a) = g%(cr) ]

If the curve is parameterized by arc length, it follows that the norm

of ut(t) is unity, that is,
[ww] -1

For the case-in which the real B—Spa;ce is the space of square-
1megrable functiions on [0, 1], that is L [0 1], and the funciion
u(s,o) with 0= ¢ = 1 is a smooth curve in L [O 1], then the following

ig true

1 5 . 2
S [-B—E-(S 0'):\ do =1 (6.2)
o

where s = arc length, (s,0) = w (s).

su
98
The notion of a Frechet derivative has already been discussed in
reference to the differentiability of the cost functional J. For con-
venience, this definition is given again. Let } be a real complete
space having a scalar product (that is, J{ is a Hilbert space}. Suppose

U s h eH andlet J be a function such thal
dJd :;L(j* R

where R denotes the set of real numbers. The function J has a
Frechet (sirong) differential J*(u)h, if there is a continuous linear
functional (the Frechet derivative of J at uo) Jt (uo) on M such
that
- - 1 = .i
|3ta_#) - 3(a ) - 3 (u )n] - 0 ([lh[[)‘

'i‘ —. .
A function g(h) is saidto be O(f|h]]) as [[n]] -~ 0 it H1im e |,

hf - o e
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as Hhu - 0 with ”h“ = <h,h$1/2. Moreover, if the expression

DIu B =2 (uw +am) = 1m Tt AN - )
o oA 0 A 0 =

exists, it is called the Gateau (wezk) differential of J at u or the

directional derivative of J at uo. If the Gateau differential .has certain

properties then the Frechet and the Gateau derivatives are equal, that

is

DJ(u_,h) = gt (a )b

The following theorem due to Luisternik [82] provides the conditions
which must be satisfied in order for the two derivatives to be equal
(Luisternik uses the term weak derivative while Kantorovich [41]

uses the term Gateau derivative).

Theorem, [24] If the Gateau derivative D J (uo, h) exists in "u—uo “E @,
e >0 andif il is uniformly continuous in u and contimious in h then

the Frechet differential exists and
Ji{w) h =D J(u, h)

Higher order Frechet derivalives are defined in an analogous manner,
Liet ;}-[* denote the B-space of continuous linear functionals on H with

norm I If J{u) has a Frechet derivative, then J{u) is said to

|
have a second Frechet differential J”(uo) h if

[J(uo-i- B) - Jlu ) - :r"(uo).h{1 =0 (Jn]>
as [[h” - 0. The term J”(uo) is a continuous linear cperator from
Minto M¥ und is the second Frechet derivative of J ai u.

Suppose J has two continuous Frechet derivatives in H. Since the
first Frechet derivative is a linear functional ondH, it follows from

the Riesz representation theorem [17] that
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Jt{Wh = <g%(u), h > he H {6-3)

where %%(u) is a unigue element in3. The element g—%-(u) is
called ihe gradient of J at u. 'This agrees with the finite dimensional
definition of a gradient if J{ = R", that is
S h=<2(x), h>
- gu —'? ~

and
VI = g-;—(g)

n
where u, heR

. Since J{wh is also a continuous linear functional on M ,‘ it follows

that
(J“(u)h) h= < () hn> (6 -4)

where H J(u) iz a continuous linear operator on ¥ known as the

Hessian of J at u

With the co-ncepts of arc length in a B-space, Frechet derivatives,
and the Riesz representation theorem established the method of
steepesl descent can now be staled for funciions defined on a Hilbert
space H. Let J bea real-valued function defined on J{ with one

continuous Frechet derivative, let u. e H and let 4 be a smooth

1
curve in H passing through u 1 Parameterizing the curve by arc

length, il follows that

fur (s [ = 1
and
aF _ .. Jju(s+As)] - J{u(s}] _ _2aJ
Frala 1Au;n As =< . (u{s)), u! (s)>

The direction of steepest descent is found by minimizing
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oJ
— 1 )
< o (ul), ut (0) >

subject to

[t @ ]° = 2
and the path of steepest descent is found by solving the differential
equation -

du=

do

--g%(u) s 1_1(0)=u1651’ (6-5)

gz 0

The goluiion is a function with values in J—{ and along this path

J (u(cr)) is decreasing since

dil _ _8J du aJ 2 _
do _<8u da>“—” (())” <0 (6-6)
.o O
if E#O.

The following theorem due to Rosenbloom [83] indicates under what
circumstances a unique solution based on the steepest descent tech~
nique exists and also indicates the convergence characteristics of

the algorithm.

Theorem. Let J have two continuous Frechei derivatives on a

convex domain D of H{. Supposé the sphere S{u) defined by

S(u) = {u [ueﬂ Hu—u “ &

u>l

where a = [I —2—% (uo) “ and A {(chosen later) is contained in D. More-

over, assume that
<‘-}—{J(u) v,v> 2z A "V“2
forueD, velf, A >0 and fixed, and that u{c) satisfies the equation

for the path of steepest descent, that is,
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du oJ '
a'(;_'(cr) = e (u(o*)) for o = 9, u(0) = uOED

Then

a. Hm wo) =u_ exists in ' (that is, the minimizing element,
o>

is unique and the path of steepest descent u exists),
b. lim J(u(o)) =¢c existg for o2 0

o -0
c. ﬂu(cr) -u_ [ = K exp (—A o) and
. 2
0= J(ule)) -c = 2—5 exp({-2A o)
-
and ¥ ueD J(u)ZC""z“”‘l"uw"

For the control problem, it is frequently necessary to minimize a
function J on H subject to the side conditionthat g = 0. In this

casge, the path of steepest descent is defined by

du _ _3J 8g -
do du + Au) du (6-7)
8.]‘ og
811 * Bu >
Alu) = 5
[ og/ou |

provided that ][-g-%- [ > 0. With this choice of path, it foliows that

8
o (1N IE - <Lk
do .
| bll k
(6-8)
dg(w) |
do =0

Thus far it has been shown how the steepest descent path can be
constructed based on the gradient information of the functional J{u).

In practice, however, a diserete version of the differential equation
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representing the path of steepest descent is implemented, that is,

the value of u at the k+ith step is taken as

“u =1

k1™ Y T Py VJ(uk) for p, >0 k=0,.,....

Application to Fuel-Optimzal Problems

It is of interest to note that the existence theorem stated above could
be directly applied to the fuel-optimal problem in which the cost

functional is given by
ty-
J(w) = S:c

k. u.{t)dt ;
, 5 :

it cannot be directly applied, however, to the case in which the cost

n
=iy

e 1

functional is given by
tl . Y3
I(u) = S' k. |u,lat (6 -10)
ol
to 3

Since the hypothesis that J have two continuous Frechet derivatives

is violated,

It was demonsirated in this work th‘at the cost functional

:
Hu) = Yl ij uj(t)dt (6-11)
l.t 0

o 1
is appropriate for the fuel~optimel control of spinning and dual-spin

vehicles even though in the literature the cost functional for such

problems is always taken as
Y
Hu) = 5 Y k. |udt)]at
- 3 J J
o 4

It is possible that even though the differentiability hypothesis is

violated, a solution could still be found for the cost functional given
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in Equation (6-10). That is, the nolion of a Gateau derivative could
be used in lieu of the Frechet derivative and could be evaluated

numerically,

Generalized Newton-Raphson Method

In this section, the rudimentary notions concerning the generalized

Newton-Raphson Method are discussed. As in the method of steepest
‘ descent, it is 'convenient to discuss this method for functions defined
on a function space. Kantorovich [41] was one of the first to disguss
this technique. Kenneth and McGill [73] applied it to an optimal

control problem.

Let F be a nonlinear operation mapping a B-space X into another

B-space Y. Consider the task of finding a zero of the equation
Plx) =0 (6-12)

Kantorovich [41] showed that under certain conditions the soluiion x*

to this equation can be obtained from the sequence {xn} defined by
x, =x_ - [P 1P
x, =%, - PG 7 Py
X %% - tf?‘@xn)l"l Plx) (6-13)

In this technique it is assumed that the inverse of the Frechet
derivative £'(x) exists, that the initial guess X is sufficiently close
to the solution x*, and that the operatior © is bounded. These

conditions are summarized in the fundamental theorem of Kantorovich

1411,

Theorem. Consider the operation P defined above and suppose it is
defined on the open sphere {xe X ”3;—};:0 " < r} and has a continuous
second derivative on the closed sphere fx €X l ux~x0 ” = ro}. Assume

that
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(1)  the linear operation ro= [‘P'(xo)]-1 exists
@ rPen] =n
@ frpel=x

1 -N1-
If h=kn= 7 and r= r, = _1__.’_4_1_11_&1{_1_ n thenthe sequence {xn}

defined by Newton' s melhod
-1
- 1
*nt1” *n TP (Xn)] P(Xn)

converges to the solution % of the equation P(x) = 0. Moreover,

the solution will be unique provided that the following condition is

satisfied
1 _ 1+N1-2h
for h<2 r<r1—-——=—-—ﬁ~——~—ﬂ
for h=1/2 rS:c‘1

" Furthermore, the speed of convergence is characterized by the

inequality

Note that the differentizbility hypothesis of this theorem is violated

for fuel-optimal problems in which the cost functional J{u) is given by

t :
1

3(u) =£ ? k, luj(t) |ai
(8]

The implication of this has already been discussed in reference to the

method of steepest descent,

This theorem immediately suggests a method for solving two-point

boundary value problems. Consider the system
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(9 &=£(x,8 'incl i RO

with fixed endpoints s X If the system equations are rewritten

-1 *
as

é—i;c x-1(x,1) =0 =P

where P is defined formally as
d
P T f 3

then heuristicaily, the following sequence is obtained

-1
_ a  of a
En-{-i - E:n h [d’c '—5—}2 (-}—in):l [dt 1—{n _f_'(_%n,t)] (6-14)
' . d of .
By formally applying the operator [;ﬂ - é.-_ (xn)] to both sides of
X

Equation (6-14), the following iterative sequence results

d of

i Borr ™| 5 5| (a5 + 19 (6-13)

with the boundary conditicons as previously prescribed. Since the

.. of X . .
matrix _agﬁ(gn) is the .Zfacoblan matrix of the system, the system
described by BEquation (6-15) is linear and thus can be readily solved.

It has been shown previously that the standard optimal control prob-
lem involves ‘

(1) n system differential equations , X

n
I+
———

u,t =

“

Q2 oa
v

1]
!

(2) n adjoint differential equations , P

@
I

(3) 1 differential equation describing the cost funciional
(4 r algebraic equations of the form

G(x, u, 1) =0
(3) Dboundary conditions
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Designating the 2n+l differential equations corresponding to (1}
through (3) as

X=FX, b= Flz,b
and the r algebraic equations as

G(x, u,t)=0=G(=z,1),

it follows that the generalized Newiton-Raphson sequence is given by

(assurning u can be determined as a function of x)
V4

. BF
-}Sn+1 N l: -8_-_;23(§n’ ﬂ] (En-l-].—%n) + _B:‘( En: 1) (6-162a)
0=|28 & oz X))+ (6-16b)
~ |BX =n"]'=n+l =00 o
- -‘1'1:0, }_, 2.

The computational procedure entails the following steps

(1) guess a trial solution }fo satisfying the boundary conditions
(at least as many of them as possible)
(2)  obtain z, from Equation (6-16b) using the initial guess X

{3) substitute z_ into Equation (6-16a) and obtain the estimate Xl

(4) obtain =z, from Equation (6-16b) using the updated state }_{:l

i
(5} repeat the process until
- <
“}-En—i—l 2{—n“ =9
where the norm could be taken as
{i)

”Egn-l-ln—}gn" - z’ max }—§n+1
i te[to,tl]

(i)
£ -
() -x (1)
In this method some of the necessary conditions for optimality were
used so singular trajectories and solufions cannot be found wiih it.
Recall that, singular solutions could be found with the method of
steepest descent since none of the necessary conditions were used.

Kenneth and McGill {73] show that this method can be used for
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problems in which there are inequality constraints on the state and
on the control. An important factor to consider in potential applica-
tions of this technique is that pertaining to computer storage require-
ments., Depending on the application, the storage requirements could

be relatively great.

Classical Newton-Raphson Technigue

The classical Newton-Raphson (CN:R) technique is a special case of
the generalized Newton-Raphson {(GNR) technique., Important differ-

ences between the two include such items as

(1) the CNR technique uses the optimality conditions while the
GNR technique doesn't

(2) the reference trajectories are generaied by integrating the
nonlinear equations in the CNR fechnique while in the GNR
technique they are generated from the linearized eguations

(3) inthe CNR technique the boundary couditions are iterated on
while in the GNR technique each estimate satisfies the boundary

conditions

Using Kantorcvich! 8 result, the solution to the equation
P =0
for the case in which the B-spaces X and Y are each in ®™ and the

operator P is simply a vector funciion F, it follows that the

solution to

F(x) =0 {(6-17)
is obtained from the sequence

OF -1
X%, ['2_3% (;_in):l F( §n), Hence, if the optimal control

problem can be cast in the form of Equation {(6-17), then the solution
can be obtained iteratively. It is easily shown that even the most

general optimal control problem with inequality constraints on bolh
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the state and the control variables can be readily cast in this form.
The necessary conditions for the problems of interest in this work
were previously obtained and were designated as Type A or Type B;
Type A included the necessary conditions common to any optimization
problem regardless of the target set and Type B included those that
were target-set dependent. In the.CNR technique, only those condi-
tions designated as Type B are uged to form the vector F ; the
vector y is composed of either the initial adjoint variables p(o)

and the finaltime t, for the fixed-end poini free-final time Problem

1
or ihe Lagrange multipliers p due to the presence of the end-con-
straints and the final time ’cl for the constrained right end problem.

The control problem now hag the form

F(y) =0
and the solution y is obtained from
1
_ °F ]
Tn1™ Iy [8,1 (ln)] Fy) (6-18)

The iterative procedure consists of the following steps

(1)  guesg an initial value of the constant vector y and call it y

() using Y, Solve simultaneously

the state equation

()

I

184

|
S |3

Q2

the adjoint equation

0%

o
i

:the op’ci{n ali’cy‘ egquation ~g(t) =u (x, p, 1)

" and obtain :F_(Zo)

oF

{8)  evaluate 5y

(XO) numerically and compute its inverse

(4) obiain ¥4 from Equation {(6-18)

(5) repeat the process until
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lEcr)l=o
where l[ [I is some appropriate norm.

The method is conceptually simple and intuitively appealing. The
control constraints are automatically taken into account because only
extremal controllers are allowed. The problem areas are encoun-
tered in steps (2) and (3). The simultaneous solution of the state
equations, th;e adjoint equations, aﬁd the optimalily conditions is ot
as straightforward as it appears when the control function gft) is

the on-off type and matters are even worse when the control function
takes on the values -1, 0, 1, Ir; step (3), an accurate determination
of [%(Xn)] B is difficult because the vector F is exiremely sen-
sitive to perturbations in Zn (this is especially true if Zn is based

on the lzgilg_l_ adjoint vectors). However, the method can be made to
work satisfactorily and perhaps it mnay even be the best method for
certain problems, As stated previously, there is a great deal of

art involved in any of the computational methods.
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Section 7
RESULTS AND CONCLUSIONS

The preceding chapters provided a discussion of a methodology which

ig appropriate for handling a large class of optimal control problems.
In essence, the preceding chapters describe a step-by-step procedure -
which can be followed in the ﬁetermination of the optimal controller,

Briefly, these steps include

-—

{1) the derivation of the equations of motion for the systems being
investigated (see Chapter 2) “

{2)  the formulation of the optimal control problem {S, A, ©, XO’
Xl’ J} (see Chapter 3)

(3) an investigation of such concepts as controllability, normality,
and the existence and uniqueness of optimal solutions (see
Chapter 4)

(4)  the determination of the necessary conditions for local optimality
and an investigation of sufficiency condilions {see Chapier 5)

(5) a categorization and qualitative comparison of the various
computational algorithms and a selection of the most suitable

algorithm for the problems of interest (see Chapter 6).

In this chapter, the final aspects in the determination of the fuel- )
optimal controller for the problems formulated in this work are dis-

cussed; these aspects pertainto

(1)  the selection of a suitable computational algorithm
(2) the numerical determination of the fuel-optimal controller
(3) the esvaluation of the relative merits of the proposed control

- conczpt.

The evaluation of the relative merits of the angular momentum control

concept is of special importance in this work. As stated previously,
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" the emphasis in this dissertation is on praciical rather than theoretical

considerations. In fact, the entire problem formulation is based on

such practical considerations as

(1)  the importance of fuel-optimal attivude control for deep-gpace
missions using a ballistic spacecraft

(2) the relati\-re advantages of a dual-spin vehicle when compared
to a spinning vehicle .

(3} the advaniages of the implementation of a properly placéd
nutation da;r-nper

(4) the physical significance of controlling the angular momentum
vector rather than the spin axis

"(5) the use of the minimum number of jets for achieving the control

objective, the most appropriate type of jet (i.e., one-way, two-

way, gimballed, etc.), and the most appropriate jet location.

In this chapter, the resulis of all the preceding chapters are synthe-
sized so that the final steps can be efficaciously executed. In the
preceding chapters, various control restraint sets, various jet
locations, and various cost funciionals were considered and their
effects on the optimal confrol problem were noted. Now, onily the
most appropriate cont;c'ol resiraint set, the most appropriate jet
location, and the most appropriate cost functional are considered in

the numerical determination of the fuel-optimal controller,

Before executing the final steps, the resulls obtained in the preceding
chapters are summarized. WNext, a discussion of the results obtained
in this chapter is provided. PFinally, the conclusions drawn from the

study are given.
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7.1 Summary of Results Pertaining to the Theoretical Aspects

of the Conirol Problem
In this section, the resulis that were obtained in the preceding chapters
concerning controllability, normality, the control restraint set, the
existence and uniqueness of the optunal solutions, and the necessary

and sufficient conditions for optimality are summarized,
7.1.1 Controllability and Normality

It was shown in f:hapter 4 that controllability can aid not only in the
determination of the nmumber of jets required for the control objective
but also in the determination of the most suitable jet location. The
use of either one or two jets resulted in a completely controllable
system for the spinning symmetric vehicle. For the dual-spin vehicle,
if the jets are fixed to the despun body iwo are required for complete
conirollability; if the jets are rotor-fixed, only one jet is required
for complete controllability. Concerning system normality, the
system characterizing the symmetric spinning vehicle is normal
when either one or two jeis are used. Concerning the dual-spin
vehicle, the system is singular when either one or two jets are

fixed to the despun body. If either one or two rotor-fixed jets are
used, the system is time-varying and the normality condition dees

not apply.

@

The connection between problem normality and the existence and
uniquencss of the optimal controller was discussed in Chapler 4.
Concerning problem normality, when the final time is fixed, the
fuel-optimal control problem in which the spin axis control concept
is used for the symmetric spinning vehicle is normal. On the other
hand, the fuel-optimal control problem in which the angular momen-
fum control concept is used for ithe dual-spin vehicle with jets fixed

to the despun body is singular. However, if rotor-fixed jets are
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used, problem normality depends on the behavior of the switching

function

g = < p¥(1), bt >

The above considerations reveal that only one body—m;)unted jet is
required for the symmetric spinning vehicle and that only one rotor-
fixed jet is required for the dual-spin vehicle, The fact that the sys-
tem representing the dual-spin vehicle with the jets fixed to the
despun body is singular is especially Important, There is still little
known about the exislence of singular optimal solutions. In addition,
only the gradient computational algorithm could be used for the
determination of the singular optimal controller. Singular solutions

. are not uncommon whnen the system Is linear in u and the Hamiltonian
is linear in [EI or u. Note that if the necessary conditions alone
were used {or at leasta computational algorithm which makes use of
the necessary conditions were programmed) and no attention was

" paid to thz important notion of problem normality, then no computa-
tional results could be obtained regardless of the mathematical

elegance of the algorithm used,
7.1.2  Existence and Uniqueness of the Fuel-Optimal Controller

In Chapter 4, it was stated that for a linear time-varying system, the
fundamental hypotheses that are used in proving the existence of the

a

optimal solution include

(1) problem normality
(2) compactness and convexity of the control restraint set Q

{3) convexity of the integrand of the cost funciional.

It was also noted that (1) and (2) imply that the set of attainability
K(T) is a strictly convex compact set with nonempty inlerior, It
was determined that a fuel-optimal controller exists for the fixed

final time case in which the spin axis conirol (SACO) concept is used
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for the symmetric spinnling vehicle. It was noted in Chapter 4 that
the stated existence theorem is not applicable when the angular
momentum control {AMCO) concept is used because problem normalily

has not been demonstrated (yet).

Concerning nonlinear systems, it was stated that the fundamental

notions needed in demonsirating the existence of the optimal controllexr

include

(1)  the existence of a uniform bound on the response x{t) to
controlleks u e J(where F is the family of admissible con-
trollers)

(2 the compactness of the control restraint set-ﬂ

(3} the compactness of the initial and target sets

(4) the convexily of the extended velocity set

V(x,t) ={f0(§, u,t) f{{x, u,D]uen (_zg,t)}

where fo ig the integrand of the cost functional and f is the
function defining ihe plant

+
(5) suitable continuity characteristics of £, viz. f €C1 in RPTRHL

In regard to the uniqueness of the optimal coniroller, for linear time-~
varying systems, the hypotheses that were required to demonstrate

uniqueness include

{1) problem normality
(2) compactness and convexity of the conirol restraint set

(3) convexity of fo( %, 1) and strict convexity of ho(E’ 1) where
T
= +
J(u) S; [fo( x,t) + ho( u, t)} dt
o

Because of (3), the theorem cannol be applied to the problems of

interest in this work. However, for a time-invariant system, the
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sirict convexity of ho( u,t) can be relaxed, i,e., the convexity of
ho(g_,t) is sufficient. Inthis case, i can be shown that a unique
fuel-optimal controller exists for the fixed final time case in which

the spin axis conirol concept is used for a symmeiric spinning vehicle.
7.1.3 Necessary and Sufficient Conditions for Local Optimality

The necessary conditions for local optimality were developed in
Chapter 5. It should be noted that if the method of steepest descent
{or some other gradient meibod) is used in determining the optimal
controlier, the n—ecessary conditions are not needed. Nevertheless,
it is felt that it is desirable to have all the facls concerning the

optimal controller available before choosing a computational technique.

Necessary Conditions

It was shown in Chapter 5 that if a smooth conirol restraint set

@ ={u:ful=21}
associated with a gimballed jet were used in formulating the control

problem, then in cerlain cases, a smooth feedback controller could

be obtained. A feedback solution is almost always more desirable
than an open loop coniroller and in practice, considerable effort is
expended in an attempt to obtain a feedback scolution. The comection
between the smoolhnegs of the conirol restraint set &, the associated
smoothness of the integrand of the cost functional and the sufficiency
conditions was also noted. Despite the theoretical niceties of a
smooth control restraint set associated with a gimballed jet, the use

of a gimballed jet is not recommended for the present problem. i

"The use of the smooth control restrair. as an approximation to the
set associated with magnitude -limnited jets could prove to be very
useful, especially if the fcedback solution can be easily deter-
mined. This notion should be investigated in the future,
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Note that a high performance servo is required when a gimballed jet
is used. For the mission being investigated, extremely high reli~
ability is an important mission requirement. Hence, the theoretical
advantages of a gimbalied jet are in significant when the practical
considerations are weighed. Note also that gimballed-jets woﬁld be
more appropriately used for non-spimning vehicles, Hence, the

potential jet iypes have been reduced to two, viz.,

(1)  a one-~way jet having the control restraint set © ={u(t): 05 u(t) = 1}
(2) atwo-way-jet having the control restraint set
Q={ult): [u®[=1}.

The necessary conditions for local optimality for the control problem
{L, Q, XO’ Xl" .J'} where the system is

(L) % =Ax(t) +b(t) ult),
the compaci convex control restraint set is either

Q={ult):0=suft)y=s1}
or

Q={u®: |ut)] =1},

the initial set X  consists of a fixed X, and a fixed to; the target set

0
Xl is

X ={(x,t) : g (x{t =0 j=1,2]t free}
Lamco J ( 1) 1
or

X = {(.:g,t) :El(tl) =3_cl=g, t free} ,

1

SACO 1

t
1
and the cost functional J(u) = 5 fo(-}g,_,t')dt is
t
o

t
1
J{u) = S. K uf{t)dt for the one-way jet
t o .
or
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t
1
J(u) = S K Iu(t) [dt . for the two-way jet
t
o

are stated below, Regardless of the jet type or the target set,

Hamilton! & canonical equations are given by

. oH

£ =55 740+ b0 W)
Ea: _—g;cI:I: _AT E(t,)

where H % <p, k> —fo(_:eg, u, t)

Regardless of the control concept, the optimality ‘condition is given
by |

u*(t) = dez {< E* {t) , b(t) >} = dez q*(’t)
and - '

w(t) = hev {<p*(), b (t) > - 1} =hev {q" @) -1}

for the two -way jet and the one-way jet resﬁectively. Only the
boundary conditions are target set dependent, For the AMCO concept,

the boundary condifions are

) =x,

%% _ | 98 T
P - | gty
B () = 0

while for the SACO concept the boundary conditions are the same
xcept there is no condition on the adjoint variables, that is, the
oundary conditions are

x(t) =x,

H"(tl =0
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It might appear that the seemingly slight difference in the boundary
conditions would have no significant affect on the computational
glgorithm. Later, it will be shown that this difference can have a

tremendous affect depending on the computational technigue used.

The final selection of the most appropriate jet type will be made afier
carefully considering the practical and computational implications of

the nature of the extremal controllers’

w(i) = dex () for the two-way jet
W) = hev*{q*(t) - 1} for the one~way jet

The importance of the necessary conditions can now be appreciated;
they

{1} provide information concerning Whethér the problem is normal
or singular

(2} pr‘ovide information concerning t'he nature of the optimal
<controller sothat the most appropriate control restraint
set can be selected

(3)  aid in the selection of a computational technique

(4} provide the basis of every computational technique save the

gradient method

Sufficient Conditions for Local Optimality

In Chapter 5, sufficient conditions based on

(1} the maximum principle
(2) the calculus of variations

(3) dynamic programming

were discussed., It was noted that suff'ciency conditions based on thz

maximwm principle were the most appropriate for the problems of

T

Intuitively, it is anticipated that the one-way jet is the most appro-
priate. Nevertheless, optimization theory is used to confirm this
feeling.
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interest in this work. Concerning the control problem {S, Q, XO’

Xl’ J} in which

(1)  the plant is linear in X and nonlinear in u, i.e.,
X = Aft) x(t) +h(u,t)
(2) the target set'is closed and convex
(3) the initial set consists of the fixed point X, and the fixed
initial time to
(4) the cost functional J(w is

T
Iu) = S' [fo(g,t) + ho(E,t):I d
t

(o]

of
{5) fo(_zg,t), ho( u,t), —é-;:— , b{u,t) and A(t) are continuous in all

(Er u, 1) in Rn+m+1

(6} fo(z_;,t) is convex in x for each fixed teft , T1,

- it was stated in Chapter 5 that if a controller E*(t) satisfying the
maximum principle is found, then it is an optimal controller. All
the conditions of this theorel-n are satisfied for the fixed final time
case for all the problems of interest in this work. Note, however,
that in this work, the function h(u,t) islinearin u and ho(g,t)
is linear in u or [ul depending on the jet type. Hence, special
attention must be given to the possibility of the existence of singular

optimal controllers.
7.1.4 Computational Algorithms

In Chapter 6, the various computational algorithms were categorized
and qualitatively compared. It was stated that the algorithms most

suited for the problems of interest in this work include

- (1) the gradient methods
(2)  the generalized Newton-Raphson (GNR) method
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(3) the classical Newton-Raphson (CNR) method,

It was noted that in both the method of steepest descent and in the
generalized Newton-Raphson technique, that the existence of the
second Frechet derivative of the cost functional is assumed., For

fuel-optimal problems in which two -way jets are used, the cost

functional
t
Iw) =§ YK, |u ) fat
. &30
o

does not have a second Frechet derivative. Hence, at least from a
theoretical point of view, the violation of the differentiability hypoth-
esis is important. I was also noted that if a one-way jet were

use—d, the differeniiabilily hypothesis would not be violated.

It was stated that the control constrainis are most easily handled in
the CINR technigue but that they can be handled in the gradient and
GNR technigues. Concerning the determination of singular optimal
solutions, only the gradient techunique is suitable.
7.2 Selection of a Computatior;al Algorithm for the Determination
of the Fuel~Optimal Controller
In this section, the results obtained in Chapters 2 through 6 and
summarized in the preceding section are used in the selection of a
suitable computational algorithm for the class ¢f fuel~-optimal prob-
lems involved in this work., In general, the selection of a compu-
iational algorithm depends to a great extent on the nature of the

specific problem being investigated.

The values of the system parameters appropriate for the fuel-optimal
control of the dual-spin vehicle being investigated are

rotor speed, o =10 rad
sec
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ratio of jet torque' capacity

and transversge inertia , k=0,001 1 5
sec:
ratic of stored angular
momentum and transverse
fnertia , p=1.5 2ad
sec

Of these parameters, the one that has the mosgt effect on the compu-~
tational algorithm is the rotor speed ¢, This ig becauge the extremal
coniroller is gi\}en by

either w(t) = dez < b(t), B*(t) > for atwo-way jet

ke {7 _1)
or w (t) = hev {< b1, p*(t) > - 1} for a one-way jet

where the vector p_(t) is given by
cos ot
JJsin ot

0
0

bit) =

Using the necessary conditions for local optimality, the nature of the
switching function can be determined. From Equation (7-1), the

switching funetion ¢*(t) is given by
(1) = <p®), p*E) >

Using the boundary conditions on _E*(t) and the adjoint transition

matrix  W(t, 7} it follows that

q$(t) = [Vl vz] Zz;ﬁ (7-2)

Considering the geometric implications_ of a singular control problem
{see Chapter 4) and the result of Equation (7-2), it follows that the

dual-spin vehicle using one rotor-fixed jet is normal. In addition
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" the number of Switching§ and the switching times are obtained by

examining the functions

T cot
w*(t) = dez {¥ ot for a two-way jet
(7-8)
cot
u¥(t) = hev v -1 for a one-way jet
sot

The nuwmber of switchings 1s proportional to the rotor speed ¢ and

the switching times are simply the zeros of the transcendental equations

equations

g () - 1’= 0}

G +1=0 for the two-way jet

‘ (7-4)
q%‘(ﬂ -1=0 for the one-way jet

Note that this resultl agrees with the intuitive notion that a two-way
jet is actually two one-way jeis back-to-back and, hence, —the average
number of switchings for a one-way jet should be one hzlf that for a
two-way jet. This resull is of great p‘ractical significance because if
a two-way jet were used the probability of jet failure would increase
with the increased number of jet firings. The high reliability
required for long-duration missiens is one of the most critical

mission requirements.

The number of switchings associated with the extremal conircller is
an important factor to be considered in selecting a computational
algorithm. For example, in time-optimal problems in which the
extremal controllers turned out to be bang-bang, it has been pro-
posed by several investigators that the optimal controller can be
conveniently determined by treating the switching points as param-
eters and, hence, converting the problem into a parameter optimi-

_ zation problem. This method is unthinkable for the problem at hand!
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Fror example, if two two-way jets. were used (this jet combination is
the one previous investigators actually used in fuel-optimal control
problems involving spinning vehicles), the number of switchings' for
the case in which the rotor speed is 100 rpm would be in excess of
300, T‘rea’cing the switching times as parameters for this type of
problem is ill-advised indeed! Fven if the optimal controller were
successfully determined by such a technique, its imf)lementation

would be impractical.

The boundary condition for the adjoint variables p(t) has already
been used in determining the switching function g¥(f). An examina-
tion of the necessary conditions for both the AMCO and SACO con-
cepts reveals that this boundary condition is the feature which
distinguishes one concept from the other. For the AMCO concept,

the boundary condition is given by

(7 ]
Hooky _ og T Y
p(t) —[g: (E(tl)] rv= oo - B, - {7-5)
Bv
L

Hence, the final value of the adjoint vector is completely specified

In terms of the two unknown constanis vy and Vg This reduction
In the dimension of the problem can be very significant depending on
the algorithm used. An examination of Equation (7-5) reveals that if
the CNR technique were used, the final rather than the initial adjoint
variables would be iterated on. This could be extremely important
because the sensitivity of the terminal conditions to variations in the
initial adjoint variables is actually the only inherent disadvantage of
the CNR technique. It may be expected that the sensitivity of the

terminal conditions to perturbations in the final adjoint variables

(i. e., their values at tl) will not be too great.
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With due consideration io such aspects as

(1}  the nature of the optimal controller and the large number of
switching times

(2)  the normality of the fuel-optimal problem

(38} the relativel:;r low dimension of the problem

{4) the fact that the final rather than the initial adjoint values are
involved

{5} the theoretical disadvantage concerning the violation of the
differentiability hypothesis for both the gradient and GNR
techn_iques (for fuel-optimal problems in which fwo-way jets
are 1used)

(6) the ease in which the conirol constraints are handled in the
CNR technique

{7) the compuier storage requirements

(8)  the fact that only very smell deviations from the nominal

trajectory are allowable,

the CNR algorithm is considered suitable for the determination of
the fuel-~optimal controller for the dual-spin vehicle in which the
AMCO concept is used. Concerning item (8), for the application
under consideration, the antenna pointing accuracy requirement is
such that the optimal control sequence would bz initiated when the
pointing error is greater than one millil"?zmdialrl.."TL This implies that
the values of the state variables must be kepl relatively close to the
nominal or desired values. This aspect is very Important when the
classical Newton-Raphson (CNR) technique is used because of the

nature of the iterative scheme.

TThe pointing accuracy requirement is one milliradian near Jupiter
and beyond, in the vicinity of the earth, 5 milliradians would be
allowable. ’
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I is noted that the usé of the CNR method appears appropriate for
the problems under investigation, In general, however, this method
is very seldom appropriate for optimal conirol problems. '
7.3 Determination of the Fuel-Optimal Controller for the Dual-

Spin Vehicle Using the Angular Momentum Control (AMCO)
Concept

In this section, the fuel-optimal controller for the dual-spin vehicle
| using the AMCO concept is determined for a specific initial state X, .
The necessary conditions for local optimality and the CNR algorithm
have alread heen discussed. The only items that need further dis-

cussion are

(1) the method for determining the switching times

(2) the initial state X,
7.3.1  Switching Times

It was previously shown that the switching times for this problem are
the zeros of the transcendental equation
q*(t) -1=0-= vy c:osot-!-vz sin ot - 1 {7 -8)

for the case in which one one-way jet is used.
A convenient technique for determining the zeros of this equation is

the method of Regula Falsi. Since this ‘method is a well-known
technique of numerical analysis, it will not be discussed in this

work (see, e,g., Reference [40]),
7.3.2 Initial State
‘The boundary condifion on the system equations

xt) =x,

has not been used yet. As stated previously, the initial value of the

state 50 and the time to are the elements of the initisl set Xo'

A-204

o



The initial state % refers to the state §(t) existing at the time
the optimal control sequence is initiated at time to. The optimal
control sequence is initiated when the antenna pointing error becomes

excessive, that is, when the condition

lol =5, | (11

is not satisfied. Nominally the initial state is such that

x =40
.—-0 -y

but due to the p-resence of solar radiation torquesT and other dis-
turbances iorques, the angular momentum vector (and hence, the
antenna axis) drifts away from the desired direction. When the
condition of Equation (7-7) is not satisfied, the elements ,.)1, W, ,
81, 6‘2 are sensed {observed) and are used to define the initial set
Xo. The initial state used in the numerical work is

0

0

0,005
0

I
"

where 0 1= 5 milliradians refers {0 the maximum ‘allowable antenna

pointing error in the vicinity of the earth.
7.3.3 TIterative Procedure

In essence, the unknowns v t. are determined iteratively

v
v oUa 1
until the terminal conditicns are satisfied. That is, the vector y

is determined iteratively to satisfy the equation

TSee Likins and Larson [8] for a discussion of the external
environment relevant to deep-space missions.
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Ely) =0,

where :,_'T =(v., Vs t4) (7-8)

T
E e (H: Hl’ Hz)

In Equation (7 -8), I—I1 and ][—I2 are the transverse components of
angular momentum vector in inertial space, H 'is the Hamiltonian,
1:1 is the final time, and vy and v, are constants arising because

of the transversality condition.
7.3.4 Fuel-Optimal Controller

The optimal controller u¥(t) obtained for the initial condition pre-

viously described is shown in Figure 7-1., During each revolution

of the rotor, the controller is turned on for one half of the revolution
- and turned oif for the other half. The number of switchings involved
is 74 and the time to drive the initial state E to the target set is

22 seconds, The value of the cost functional

£
J{u) = gﬁlK u(t)dt
o

associated with the minimum fuel problem is

J(u) = 0,010 ——
s5eC

By using the mass flow properties of the jet used, the amount of
fuel consumed in accomplishing the conirol objective can be com-

puted. The relation between the fuel weight W and the cost functional

J(u) is
I

~ 1
W= ISX r Ju)

where r is the jet lever arm and Is is the specific

impulse of the jet.
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The fuel consumed in accomplishing the task described above is

only 0,008 1b.

In Figure 7-2, the transverse component of the angular momentum
“vector __I-_IT is shown vs, time, It is seen that each firing of ‘ghe jet
reduces the magnitude of the transverse angular momentum. During i
the off period, the transverse angular momentum is constant. This
result is as it gshould be since H is conserved in a torgue-iree

environment. Figure 7-3 shows the trajeciory in angular momenium

space and Figure 7-4 shows the antenna angles. Initially, the trans-

verse componeéents of the angular momentum were
(Hl, HZ) = (0, - 1.5)ft # sec

Each time the jet is turned on, the H comfponent is decreased. The

2
half waves correspond to the on-cycle of the controller. During the

off time, H 1is constant and neiiher H1 nor H2 varies.

7.4 Evaluation of the Relative Merits of the Angular Momentum
Control Concept

In this section, the relative meriis of the angular momentum conirol

concept are evaluated. The fuel-optimal control problem for a

spinning symmetric vehicle was investigated in Reference [11], in

that reference the.concept termed SACO in this work was used,

The nature of the SACO concept has been previously discussed in

this work so that it can be compared with thfe AMCO concept. By

comparing the resulis of the two concepts when applied to the same

problem, the relative merits of the AMCO concept can be deter-
mined, meeting one of the main objectives of this dissertation,

The problem that will be solved is that which was studied in Reference
{11}, viz., the determination of the fuel-optimal controller for a
symmetric spinning vehicle, In order io have a meaningful com -

parison, the same initial conditions, the same system parameters,
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and the same number and type of jets will be used in the numerical

work,

Control Problem

The comtrol problem {L, ©, Xy Xy, d
(1) the system (L) is given by .
(L) %=Ax®+Bu®  inclmp®™
(2)  the comtrol restraint set QC R™ is given by
@ ={ut®: [wiof=1 j-1,2}

(3) the initial set X, consists of the pair (go, to) where X, is

the initial state, i.e.,

Xy = {lx,0 1 xlt) =x_, t_fixed}

(4)  the target sets Xl for the two concepts are

X :{(E:t): ;_c(tl) =0,% free }
SACO

Xy ={(x,1) : glx(t)) =0, j=1,2, ¢
AMCO J

1 free }

(5)  the cost functional J(u) is given by

t
i 2

JHu) =§t ‘:Z::lKjluj(t)[] dt
o

Necessary Conditions for Local Optimality

The necessary cpnditions for optimality for both concepts have
already heen obiained. The only difference belween the necessary

conditions for the two concepts is that in the AMCO concept, the
ats 1 ke
plane (T{x(t7)) of the manifold Xl(t']‘:) ; in the SACO concept,

adjoint vector at the final {ime t7 is orthogonal to the tangent

T A-212
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there is no condition on the adjoint vector. The necessary conditions
are repeated below for convenience:
Hamilton' s canonical equations, X = g—g = A x(t) + B u(t)

. -9 T
‘ D " A" p(t)
- . . LS _ T. & 'i'
Optimality condition, w'(t) = DEZ {B" p*(t)}
Boundary conditions, SACO AMCO
=) =x, x(t) ==,
B"(’cl) =0 H (’c"l“) =0
t ke ubs, ag T
p(ty) = [Ex“:l! v
S

Tterative Procedure

The CNR algorithm is used for both concepis. As stated previously,

in this algorithm, the equation

Fy =0

Is solved iteratively for the vector y. The vectors F and y have

already been discussed; the elements of these vectors for the two

concepts are repeated below for convenience:

Vector AMCO SACO
F Fl= (0 ,H) Fr=(H, xt))
£ = 1* g = Y
T T T
y yo= (vl, Vg ’cl) vy ={pla)7, ’cl)

TTWO two-way jets are used in this comparison because they were
used in [11].
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A very significant differ'ence in the iterative procedure for the two
concepis is that in the SACO concept, the initial ad}joint vector p(0)
Is iterated on while in the AMCO concept, the constants v are .
fterated on. The sensitivity of the conditions ¥ to perturbations
in the initial adjoini variables is extremely great. This problem
Wwas discussed previously and is, in general, a characteristic of the
CNR technique. Inthe AMCO concepi, the sensitivfciy of F dueto
periurbations in v is considerably less. This follows because v
is related to the-final adjoint variables I_)(tl). Another significant
feature of the AMCO concept is the reduction in the dimension of the
problem., When the CNR technique 1s used, the probability of success
and the computer running time are inversely proportional io the

dimension of the problem.

Fuel-Optimal Controller

In this .section, the results obiained by using the two concepts for a
specific initial state are provided. The initial state is that which

was used in [11] and is given by (note that ¢, = ¢ and oy = 6)

wl(O) -0.01 rad/sec xl(O) xl(O)

w2(0) 0.008 rad/sec x2(0) XZ(O)
%o~ [ 4,0 || 0.17aa BEXOI TN

¢1(0) 0.05 rad x,(0) ¢,

Before interpreiing the resulis obtained for each concept, the nature
of the switching function g*(t) and the implication of the terminal
conditions are examined. Just as in vibration theory, it is convenient
to express the response of the system in terms of its modes. The
modes of the system were previously determined as a by -product of
the spectral theory of the operator A (the system matrix). The
nature of the switching function and the implications of the terminal

conditions for the dual-spin vehicle are also examined,
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Symmetric Spinning Vehicle

The switching function g*(t) was previously defined as

T (7 -9)

¥ =B p¥)
For the SACO concept, Eguation (7-9) becomes
b3 P:!‘:E t) )
ol [E® v,®) pio (7-10)
pg(t)
I
. Y1« Yo
where ¥ is the adjoint transition natrix |- _ . o . .
i
%1 o P
for the AMCO concept, Equation (7-9) becomes
% I, a-g T
g (t) = [y!fll(t—tl) Lﬁz(t—tl)] [8—5—] v (7-11)

<
Representing g*(t) in terms of the function space having as its

basis the modes of the system, yields

crw, t

. 3
A T Py 1Py 1 By s1w,t
plw(r1)1lZw(rl),3(r1);u(r1) ot
q*(t) - : l 1 3
= ""SACO P, | Pg i P i D SW Lt
( 4 i 3 3
Py % (r R I&)1 w (r 1));03 (r-1) {wS(r-l)
- ! b (7-12)
3 2r-1 2r-1 | r e r-j crwst
Y1 71 ; Vz[ r-1 :l :[-vl ;:fi Y9 71 8TW gt
ROy i : % st
2r-1 o 2r-~1 R T 3
Vo T ; Y171 i Yo ¥1 ! Vi 71 swst
(7-13)

An examination of Equations (7-12) and (7-13) reveal that for the

general case the nature of the switching function for both concepts

is the same.

However, for the AMCO concept,

parameters are chosen such that

LA-215
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L1

1

T = -1
2

then the modes crwst and srwst are not invelved in the rep:_c‘esen-
tation of g*(’c). In general, then the number of switch points are
.expected to be gpproximately the same and to depend primarily on
the spin rate g

Terminal Conditions

Using the modal response of the system, the terminal condition

5{1:1_) =0

for the SACO concept can be written as

wl =
("é =0
. w w -
S S 10 .20 +
0= ms(l—r) vyt 60+ wgil—r) Cugt+ (us(l-r) ¢0) 8w gt
i 1 . ‘
+ S. mj |:Ch.)3(z.—- T) ul('r) + sw3(’c—*r) 112(":‘)] dr
t 3
o
(7-14)
W w
e S .20 : 10N
0= m3(1-r) ("’2-[~ ((’60 w3(1-r)) cht N (¢o+ w3(1—r)) SuSt
t
. t ( ¢ a
St e (sus( ~7) u (1) - cwglt-) uz('r)) ,
o

For the AMCO concept, the terminal condition that
H,.=0

a—

can be written as
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G -(1 )w + I'w [(60 m” (1 =) cw t-i-(w (l—r) —qbo) swst

1
+£ Wy S cuog(t= 1) uy(n) 50 r) () d (T-15)
O

" ’ 0
=(1--F\u - .20 310
- (1 1-r) 2”3 [(éo w3(1~r)) cw3t+[¢o+w (1—r)] S0 5t
14 )
+S;5—3—(1—“1?)- Sws(t" ‘T) 111(7) - cws(t—'r) 112(T))d‘T
I is convenient to represent these terminal conditions in terms of

the modes defined in the complex plane rather than the real plane,

Letting w1+iw be w*, the terminal condifions for the SACO concept

2
become
N -irwst Y -irw (t 7
0 =p™= ui e + i e (u1(7)+1 u (-r))dfr - (7-163)
. o
i i e w (O) W ( ) iw3t
0= —r.ag(l—r)hJ + [( %" 5 (1—:(‘)) (w (l-r) ('60) €
t in(t -7 {'1 -16Db)
+S.1 §_._-.,,_i__h_ (ul('r) ~-iu ('r)) dr
t, w3( -r) 2

where w* refers to the complex conjugate of w ™.

For the AMCO concept, the terminal condition reduces to

W (0) ] ~ita t

(1__]_-_:__)&3’:‘-5-1-(,33 [ O © (1 I‘))+ (w (1-r) 95)

t -in(‘f:— T) : (7-17)
e ) :

+ S.t ————————-——Ug(l_r) (ul('r) +1i u2(7)>d'r

o
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- The nutation damper caneffectively damp out the motion characterized

by
~irp_t

*_ %k 3
v = e
o
Effectiveiy, in the AMCO concept, the vehicle is designed so that no
fuel is required for damping out the response

~irw,t
w* =¥ e 3
"0
In the SACO concept, however, fuel is required to damp out the initial
condition responge

‘ ~-irw t
& ok 3

and in addition fuel is reguired to satisfy the constraint given in Equa-
’ . : . irw3’c it

tion (7 -16b). Since the modes € and € have different fre-
-quencies, the excitation (control) which damps one to zero does not,
In general, simultaneously damp the other to zero. This implies that
more fuel is required to satisfy Equation (7.16b) than is required to
satisfy only the bracketed part of Equation (7, 16b), If the vehicle
paramelers are properly chosen, the terminzl constraint to be satis-
fied for the AMCO concept is simply the complex conjugate of the
bracketed part of BEquation (7. 16b), That is, if r = }2— then no fuel is
required to damp out the initial response

“irw. t
b * 3

W =W €
o]

_ because this term drops out of Equation (7. 17). Hence, if r = -é— ,
then it is expected that for general initiil conditions less fuel will
always be used for the AMCO concept than for the SACO concept.
Note, however, if initially w *= 0 then the two sets of constraints are

essentially the same and the same amount of fuel would be used for
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each, This agrees with the intuitive notion that fuel savings is achieved
by not burning fuel to damp out the motion

-irw t
* * 3

which can effectively be damped out by the nutation damper. Inthe
comparison of the two concepts the same vehicle studied in {11} will

be used, viz., that for which

r =

Do b=t

As noted above, this choice of 1.is especially desirable for the
AMCO concept.

It is noted that for general initial conditions in which r = %— , the
relative advantages of the inclusion of the nutation damper are not

as pronounced,

. Even though numerical resulis are provided only for the case in

which two two-way jels are used, it is of interest to determine if the
same conclusion holds for the case in which one-way jets are used, It
is clear from the above discussion that the type of jet did not enter
into the analysis. Hence, the same conclusions would hold if two one-
way jets were used. If only one jet is used the equation stated above
still holds exceptu, = 0. That is, for the SACO concept in which one

2
jet is used, the terminal conditions are

irot Aty -ire(t- )
0=0w¥ =y e 3‘*‘5 e 3 u (ndr
- (8]
B 1 -y w,(0) w,(0) gt
NG [ %t oiD (1 )1 G2 ) -4 ) (7-18)
1 i(.ds(‘[: bd
+ Shl € w/(ddr
ks w3(1—r) 1
A-219
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For the AMCO concept in which one jet is used, the terminal condition

-

- 18

w,(0) w (0) -iwt
(1__.___) w’ —J-m [(60 W (1 r)) (w (l-r) )}e ?
£ “1L:J3(’E“'T) .

1eg X . )
+ S. m"" ul(T)d‘T (7-19)
to 3 .

An examination of Equations {7-18) and {7-19) reveals that the con-
clusions drawn for the two-jet case also hold for the case in which

one jet is used,

Dual-Spin Vehicle

It is also of interest to examine the nature of the switching function
and the implications of the terminal conditions for the dual-spin
vehicle, Using the same procedure as discussed above, the switching

' funection is given {(with two jets assumed for generality) by ~

P,(0) 1 po(0) 10, (0) 1 pg(0)] feo(t-)t
pl(())— To Ep2(0) T Fo | To VU Fo so(1-1)t
(t) : i
Ssaco . py(0) 3 p, O\ py(0) | py(0)j | cot
. — - - l-n
F2(0)+ o PO To /' To ' To |\ sot
vy v2 cot (7-20)
9 pnvico =
v2 —Vl sot
oo
where r = —
1

An examiration of Equation (7 -20) reveals that the number of
switchings depends on the rotor speed ¢. I is also noted that the
modes co(1-)t and so(l -r-‘)t are not used in representing g in

the AMCO concept,
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Concerning the terminal.conditions, for the SACO concept the condition

x(t 1) = 01is given by

t: ‘
, - 1 grotte
0 =u¥= ¥ T 4 Hrotizn o] [ulf"r) i uz(ﬂ} ar

W (0)

0=- 1"71&" W (9 (0) == ) - (91(0)_“ _?2_2_) (7-21)

1 1 jor [ . 1
- e u ('T) +1u (T) d’i‘ 2
o S;O 1 2.

while for the AMCO concept, the terminal condition is given by

0=To [(9 oyt L (0)) -1 (o, (0)- -2 (O))
t
+% 5;02 10‘7' ( 1(7-) +1ilu ('r»d{‘ - (7"‘22)

An examination of Equations (7-21) and (7-22) reveals that conclusions
similar to those drawn for the symmetric vehicle can be drawn for
the dual-spin vehicle. An important difference is that for the dual-
spin vehicle, regardless of the vehicle parameters less fuel is used
for the AMICO concept than for the SACO concept for all initial condi-
tions except those for which w¥=0, When w*z' 0, the two concepts
are identical. This conclusion is in complete agreement with the

notion that the nutation damper damps out the term

« = 1irot
w“'=w'{‘; €

and if the complex mode € %t s not excited (that is w’g = 0) then
no fuel is required to damp it out and, hence, no fuel savings can be

realized. These conclusions hold also for the case in which one jet
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is used. These results can be obtained by setting uz('r) =0 in
Equations (7-21) and (7-22}.

The foregoing analysis is e;ctremely important because it shows the
relationship between the expected f.uel savings, the vehicle param-
-eters, and the initial conditions. The use of the function space
having as its basis the modes of the system, proved to be an inval-
uable tool in this analysis, Note that these conclusions could not

have been reached as easily by using the computer,

Numerical Results for the Symmetric Spinning Vehicle

Figures 7-5 through T7-7T provide the results for the SACQO concept.
Figure T7-5 shows the nature of the optimal controller p_*(t) and
the curves W, versus time and v o Versus time. It is noted each
component of E*(t) switches eight times, Figure 7-6 shows the
curves ¢ versus time and ¢ versus time., Close examination of
Figure 7-5 and 7-6 reveals that each switching of the opti;'nal con-
troller can be explained; that is, the resulis are consistent with the

terminal conditions that must be satis:fied. The terminal conditions

were previously given as (recall that ¢ 4= ¢ and ¢2;—= &

L e Tlrwgt 1 irw{t-q7)
wT=w. € +S‘ € [u {(7)+iu ('r):l dr =0 (7 -23a)
's) 1 2
t :
1 — W (0) iwa’c
ogin T T (1 r-)) (w S0 - o)te
% ims(ft'-'r)
e i - 3b
+ S; W [ul('r) - 1112(7')] dri=20 (‘7 -23b)

Initiallﬁr the swiichings are such that the bracketed term of Equation
(7-23b) is decreased. This is accomplished by applying a torque to
damp the amplitude of ¢. These initial switchings tend to get the
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modes in phase so that later they can be damped to zero
slmultancously. Once the modes are approximately in phase, there
isa 1:1 correspondence between the jet firings and the times the
cémpongnts w, and w, reach their maximum amplitudes, that is,

1 2
to reduce the amplitude of W a torque is applied slightly before w

1
reaches its crest., The same remark holds for Wy = - the jet desig-
nated U, is fired slightly before W, reaches its crest., The notion of

damping the sinusoid slightly before it reaches its crest is intuitively

appealing. -

As seen in Figure 7-5 the off-times of the controllers are very
short, Fuel, of course, can be saved only during the times the jets
are off. Tigure 7-6 illustrates the time history of the antenna point-
ing errors for the SACO concept. Figure 7-7 shows the phase plane
plots of W, VErsus w, and gézversus (i:l. In Reference [ 11}, the equiv-
alent of Figure 7-7 is provided, The results obtained in this work
suﬁpor*t those given in[11], An important observation concerning
the SACO concept is that the jet firings are not in 1: 1 correspond-

ence W1th the spin rate of the vehicle because the response is given
-irw i mst
interms of the complex modes ¢ and € .

AMCO Results

The resulis for the AMCO concept are provideé in Figures 7-8
through 7-14, Fipure 7-8 shows the controller u*(t) and the switch-
mg function q (1), It is 1mmed1ately noted that each controller is off
almost 50% of the time 1mp1y1ng that fuel is conswmed during these i
times. Figure 7-9 provides the time histories of the transverse
components of the angular momentum vector and the magnitude of
the transverse angular momentum. Examination of Figures 7-8 and
-9 reveals that the jet firings are in 1 : 1 correspondence with the

times the components of the transverse angular momentum reach
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their crests. Also, since only the modes of the syétem having a
Irequency equal to the spin rate are excited, the jet firings are in

1 : I correspondence with the spin rate. That is, effectively, two.

mpulses are applied each revolution of the body to damp out H1

and two impulses are app]z.ed each revolution to damp out H2 The
impulses are applied slightly before the sinusoids reach their crests.
This suggests that it may be possﬂale ’co devise an advantageous
‘Suboptlmal method of Syn’chesmmof the opt:.mal controller ] This result
is especially interesting because the notion of a two-impulse scheme
has been used by ﬂ:}e attitude control engineer in the past without

. giving any attention to the question of optimality. Another observation
that can be made from Figures 7-8 and 7-9 isg that the conirollers
are never off simultaneously. This implies that H cannot be
constant after the optimal control sequence ig initiated. The impli-
cation of this is that the transverse angular momentum is a strictly
monotonically decreasing function. WNote that this would rot be true
if only one jet were used as was seen previously when the dual-spin
vehicle results were e.xamined. This suggests that two jets can
accomplish the task in less time than one jet, This asseriion was
demonstrated for the symmetric spinning body by using only one jet
to accomplish the control objective. This fact implies that there is

a trade-off belween the number of jets used and the time taken to
accomplish the control task. If the spin rate is sufficiently great,
then only one jet would be appropriate. If the body is slowly-spinning
and the thrust capacity of the jet cannot be increased, then it may

be desirable to use two one-way jets. However, if a jet having a
greater thrust capacily were used, one jet would be suitable even

for siowly-spinning vehicles.

TThiS aspect will be considered in more detail at a later time.
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Figure 7-10 shows the irajectory in angular momentum space, The
initial condition (Hl, HZ) = (L’f, -1.4) ft # sec is driven to {-0.017,
0.018) ft # sec. The trajectory has a spiral shape, Figure 7-~11
~shows the antenna angles; the initial angles (¢ , qSl) ={10, 5) x 1072 rad
are driw;en to (3.1, 3) x 10—2 rad. Figure 7-12 shows the plot of w*,
The plot of w™ is circular as it shoulc} be since in the AMCO concept
no fuel is used to damp out this response. Recall that it was stated
previously that the trace swept out on the energy ellipsoid by the tip
of the angular velocity vector is circular for a symmetric spinning

body in a torque-free environment,

Figures 7-12 and 7-13 show how the target is approached, The
target set consists of the lines shown in Figures 7-12 and 7-13. It
is noted that the w1-¢2and W, ~8 ltrajectories approach these lines

tangentially at the final time.

The important conclusions drawn from the comparison of the two

concepts are that

(1}  35% less fuel is used for the AMCO concept than for the
SACO concept

(2) the fact that the jet firings associated with the AMCO concept
are in 1: 1 correspondence with the spin rate while in the
SACO concept they are not implies that there is a sirong
likelihood that the synthesis of a sub-optimal controller for
the AMCO concept would be considerably simpler than that
for the SACO concept, T

7.5 Conclusions

In this section, some concluding remarks concerning this work are
provided. Some conclusions concerning the importance of such

theoretical notions as controllability; normality, existence, and

T

This posgsibility should be examined at a later time.
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uniqueness and their effects on the computational algorithm have
already been given (see Section 7.1). The importance of these items
is evidenced by the facts that controllability aided in the determination
of the number of jeis required and normality aided in the determin-~
ation of the location of these jets. Inthis section, the conclusions
deal with the practically motivated innovations, introduced in this
work in the formulation of the fuel -op’c’imal contral problems, for

a class of dual~-spin spacecraft,

The inclusion of the nutation damper as a passive means of control
‘led to what is called in this work an angular momentum control
(AMCO) concept. The distinguishing feature of the AMCO concept
is that the target set is a smooth 2-fold in R” rather than a fixed
point. When this concept is coﬁlpared to the more conventional
formulation {called a spin axis control (SACO) concept in this
work), some dramatic differences are noted. The comparison
entailed the determination of the fuel-optimal coniroller for a
symmetric spinning vehicle for each concept. The practically
motivated scheme (AMCO concept) used 35% less fuel than the SACO
concept in achieving the identical conirol objective. This result is
startling in that the solution obtained from each method is called the
Yfuel-optimal™ controller. This experiment dramatically illustrates
the importance of practical considerations in formulating an optimal

control problem.

By expressing the terminal constraints associated with each concept
in terms of the modes of the system, it was shown that if the sym -
metric spinning vehicle is designed such that

L-Ig

1

—
=

r»r =

D=
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then for all meaningful initial conditions, fuel savings can be
realized by using the AMCO concept rather than the SACO concept.
For a dual-spin vehicle, the statement is true regardless of the

inertia characteristics of the system,

Another important- consequénce of the use of the AMCO concept
concerns the computational aspects of'the determination of the fuel-
optimal controller. The number of variablés to be iterated on in
using the AMCO concept is two less than that required for the SACO
concept. This results in a reduction in computer running time, In
addition, the convergence characteristics of the AMCO concept are
etter than for the SACO concept. Thig is due to the fact that in
using the classical Newton-Raphson algorithm, the final adjoint
variables are iterated on in the AMCO concept while ths initial

adjoint variables are iterated on in the SACO concept.

Another practically motivated innovation introduced in this work
periains to the choice of the guitable control restraint set, For

spinning vehicles, the use of the control restraint sset

Q':{E:Oﬁuj(‘t)sl vi}

has a distinct advantage over that which is customarily used for fuel-

optimal problems, viz.,
Q={u: [uj(t)l <1 vj}

These conirol sets are associated with one-way and two-way jets,
respeciively. By using the necessary conditions of oplimality, the
nature of the optimal confroller for each @ can be oblained,
Examination of the ontimal controllers for each @ reveals that if
the vehicle is spinning sufficiently rapidly then the number of firings

{switchings} associated with the one-way jet for the problems
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studied in this work is significantly less than that associated with
the use of a two-way jet, This fact has a considerable bearing on
the reliability of the system. An inecreass in the number of jet .
firings is accompanied by an increase in the probability of jet
failure.: Although'such factors as reliability are difficult o :'u‘-icorp-
orate into an optimal control problem ’formulation, neverthsless, in

the final analysis, they must be given due consideration.

bne of the impoﬁant conclusions drawn from this work is that
optimization theory can be used very effectively in the preliminary
design of competitive spacecraft. By determining the optimal con-
figurations of various systems that are considered potential candi-
dates for the given task, and then factoring in such factors as cost
in dollars, reliability, weight, power requirements, etc., the most
suitable system can be selected, It is important to recognize that
it is not always advantageous to implement the optimal controller.
Nevertheless, the optimal scheme provides a very good s_tandard
for judging the performance of the scheme that is implemented.
The writer feels that this latter application of optimal conirol

techniques has a promising future.
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