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PREFACE 

This report provides the results of the Phase 2 portion of the 

study, "Comparative Evaluation of Attitude Control Systems." This 

study was:ftnded by the California Institute of Technology Jet Propul­

sion Laboratory (JPL) in accordance with Contract No. 952584. 

ABSTRACT
 

The study described in this report had the twofold objective of
 

i) selecting a competitive alternative to the reaction wheel attitude
 

control system originally selected.by JPL for tentative incorporation
 

into a spacecraft for a multi-planet mission, and ii) establishing an
 

improved basis for evaluation of the merits of the chosen alternative by
 

increasing design efficiency beyond that incorporated in JPL preliminary
 

studies of design alternatives.
 

Attempts to improve the efficieniy of the dual-spin attitude
 

control system beyond the level assumed in an earlier JPL study proceeded
 

in two directions: i) Unsuccessful efforts were made to justify
 

reduction in attitude control requirements involving reorientations for
 

midcourse motor firings. ii) Methods were successfully developed to
 

improve the efficiency of propellant utilization in accomplishing
 

prescribed reorientations. Specifically, the problem of fuel-optimal
 

small angle reorientation of a dual-spin vehicle is solved, with
 

dramatic improvements over previously published responses to this
 

problem. Results are applied (suboptimally) to the large'angle turn
 

problem, and propellant requirements are estimated for the dual-spin
 

vehicle on a multi-planet mission.
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1. INTRODUCTION
 

Selection of an attitude control system for a flight spacecraft
 

must in a practical situation be based on many subjectiVdly defined
 

criteria. Although serious attempts are always made to assign numerical
 

values to such comparison criteria as weight and power requirements,
 

these numbers are properly recognized to stem ultimately from educated
 

guesses based on experience with previous components, and in many cases
 

the evidence of these numbers is outwdighcd by even more clearly sub­

jective judgments of reliability or ease of development on schedule.
 

These .are the facts of engineering design of complex systems, and they
 

will not be changed in the immediate future.
 

Even within a practical contemporary framework, however, it is
 

recognized that quantification of design criteria is a laudable objective,
 

and that numerical assessments of the ingredients of a design decision
 

should be as sound as foreknowledge permits. Yet the pressures of tine
 

rarely permit the detailed development of numerical inputs, and the
 

choice of an attitude control system is consequently always in a broad
 

sense suboptirmal. 

It seems a healthy exercise for an organization engaged con­

tinuously in the selection among design alternatives to pause on 

occasion for an introspective period of technical assessment, in order 

to bring under tarefui study an engineering decision made previously 

under the pressures of project development. Such a decision is under 

examination in this report. 

The National Aeronautics and Space Administration (NASA) has 

funded several studies of spacecraft designed to explore the outer 

planets. In such an investigation begun several years ago at the 
Caltech Jet Propulsion Laboratory (JPL) it was decided on the basis 

of a brief but intensive trade-off study that a dual-spin attitude 

control system did not compare favorably with a reaction wheel attitude 

control system. At that time a reaction wheel system was made the 

preliminary choice for a particular multi-planet mission vehicle, 

although other options remained under study. Primary remaining 
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contenders were a reaction jet control system employing newly developed
 

micro-thrusters, and a dual-spin attitude control system.
 

JPL Contract 952584 was negotiated with UCLA for comparative 

evaluation of attitude control systems; it was initiated in July of 1969, 

with the objective of providing first a brief review of the full spec­

trum of alternatives and then an intensive investigation of an alterna­

tive to the configuration selected by JPL. Phase I of the study resulted 
in a report, dated 27 September 1969,'recommending deeper quantitative
 

investigation of the dual-spin system. It was noted in that report that
 

in the original trade-off study the dual-spin vehicle sustained a severe 

penalty in meeting the mission demands for commanded turns. By
 

sharpening the turn requirement specifications and improving the
 

efficiency of the reorientation maneuvers it seemed that one might
 

eliminate the weight advantage originally held by the reaction wheel
 

system over the dual-spin system. The present report is devoted
 

largely to the investigation of this possibility.
 

It may be noted that the rejection of total reliance on
 

reaction jet control in the noted Phase I report was the result of sub­

jective evaluation of flight-readiness of the required micro-thrusters,
 

based on examination of available literature. Since there appears to
 

be a substantial weight advantage with reaction jet systems when
 

recently developed micro-thrusters are used, the design decision must
 

rest on difficult questions of reliability and engineering feasibility
 

issues lying beyond the scope of this report or its authors' expertise.
 

The critical question which determines the validity of the
 

weight estimate of the dual-spin system hinges upon interpretation of
 

the requirements for large angle turns. Both the reaction wheel
 

attitude •control system and the dual-spin attitude control system were
 

provided in preliminary studies with the capability of making nine
 

large angle turns, each with the capacity for changing the vehicle to
 

any desired orientation. Large angle turns are required for midcourse
 

motor firings before each planetary encounter, and after all but the
 

last encounter, so for a five planet "grand tour" mission there are
 

nine major reorientations.
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The decision to require 4v steradian pointing capability for
 

each turn is a conservative choice for any attitude control system, but
 

not uniformly so. The fuel cost associated with rotating a reactibn
 

wheel vehicle about any axis is zero, as long as a reversal of the tUrn
 

is contemplated (assuming no violation of momentum storage requirements). 

The cost for a dual-spin vehicle is zero if the turn happens to be about ­

the bearing axis (rotor spin axis), but if the axis of rotation is 

transverse to the bearing axis it becomes necessary to exhaust fuel as
 

required to rotate the angular-momentum vector. Thus for a dual-spin
 

vehicle it is critical that the turn magnitudes be estimated without
 

undue conservatism, and it is extremely important to utilize any fore­

knowledge of the rotation axis for required turns. Since the decision
 

to require 47'steradian pointing capability for each of nine midcourse
 

motor firings imposed a more severe penalty on the dual-spin system
 

than was imposed on the reaction wheel system, the first objective of
 

this study was to examine the midcourse trajectory correction require­

ments in order to determine whether or not this design constraint is
 

-truly necessary. This question is explored in Section 2.
 

- The second objective of this study was to develop the 

analytical and computational tools necessary to accomplish-reorienta­

tions of a dual-spin vehicle in an optimal or near-optimal manner, and
 

then to use these tools to estimate fuel costs for orientation control
 

during a multi-planet mission. This objective received major emphasis,
 

and success in its achievement is the major accomplishment of this
 

study,
 

Section 3 is devoted to the selection of a base-line vehicle
 

suitable for studies of fuel-optimal methods of reorientation.
 

Section 4 summarizes the results of an extensive investigation
 

of the problem of fuel-optimal small-angle reorientations of dual-spin
 

vehicles, a! appropriate for the cruise mode of a multi-planet missibn.
 

Contributions to this topic constitute the Ph.D. dissertation of
 

V. Larson, attached to this report as an appendix.
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In Section 5 the dissertation results are used to estimate
 

fuel consumption requirements for those large-angle turns required for
 

a multi-planet mission, as dictated by the results of Section 2.
 

In Section 6 the control system weight and power estimates for
 

dual-spin and reaction wheel systems are presented as originally
 

developed by JPL, together with modifications of fuel requirements for
 

the dual-spin vehicle resulting from this study. In addition, the
 

weight and power requirements of improved baseline systems studied
 

by JPL are presented.
 

Recommendations for further study appear in the final section.
 



2. ATTITUDE CONTROL REQUIREMENTS
 

A grand tour mission trajectory involves encounter with as many
 

as five planets, beginning with Jupiter. As the spacecraft approadhes
 

Jupiter (perhaps eighteen to twenty days prior to closest approach),'a
 

midcourse motor is fired to provide an incremental correction to the
 

vehicle velocity in order to refine the trajectory towards its nominal
 

state. Another velocity correction is necessary shortly after Jupiter
 

encounter. Similar pairs of corrections are required in the vicinity
 

of Uranus and subsequent planets, until the mission is completed with
 

the final planetary encounter.
 

'Throughout the days and years of flight through interplanetary
 

space, an antenna of the spacecraft must maintain an earth-pointing
 

orientation within a specified tolerance, requiring an extensive series
 

of small-angle turns. In the interplanetary space beyond Jupiter, a
 

tolerance of one milliradian is imposed, and this number increases
 

linearly with distance to five milliradians near the earth. For this
 

interplanetary or cruise mode of the mission, dynamic analysis based on
 

linearized equations of motion is appropriate.
 

When in the neighborhood-of Jupiter and subsequent planets it
 

becomes necessary to fire a midcourse motor in the direction required
 

for velocity correction, the antenna lock on the earth is temporarily
 

relinquished while the vehicle orientation is changed as necessary to
 

properly point the motor. Subsequent to motor burn the antenna is
 

returned to an earth-pointing orientation, which is maintained until'the
 

next midcourse correction is required. This process repeats nine times
 

for a five-planet grand tour mission.
 

In the absence of specific information to the contrary, it must
 

be assumed that the velocity increment demanded for trajectory correc­

tion is of random direction, requiring the capability of reorienting the
 

vehicle to f'ire the midcourse motor in anj direction. This was the
 

assumption adopted inJPL's preliminary selection of an attitude control
 

system for a multi-planet spacecraft.
 

If on the other hand it could be established that velocity
 

increments would be required only in the ecliptic plane, they by placing
 



*the midcourse motor (with, autopil6t) on the despun platform of a 

dual-spin vehicle with rotor axis-normal to the orbital plane, one 

could accomplish the necessary reorientations with the electric motor 

of the despin control system., expending no propellant for angular ­

momentum vector reorientation. 

It is the objective of this chapter to determine by statistical
 

estimation whether or not a statement between the extreme alternatives
 

of the two preceding paragraphs would.diminish the weight penalty sus­

tained by the dual-spin attitude control system in comparison with the
 

reaction wheel control system.
 

The procedure adopted here involves the mapping of the error
 

ellipsoid associated with the covariance matrix of position and velocity
 

errors at orbit injection into errors at Jupiter encounter, and
 

determining by a similar mapping the velocity correction ellipsoid
 

(covariance matrix) required at a given point of the trajectory to
 

cancel the-indicated target error.
 

If AI is the six by six covariance matrix of position-and
 

velocity errors at injection, and AAV is the three by three covariance
 

matrix of the velocity increments required to correct the trajectory
 

at a given,point of the orbit, then these matrices are related by
 

A = P AI p (1). 

where P is a three by six matrix available as the product of [C] and a
 

direction cosine matrix establishing the reference axes of matrices
 

generated by the JPL computer program ANAPAR. Specifically, the matrix
 

P may be written
 

-
[Pj = [C][K ][A K][U] (2)
 

where [C] is the direction cosine matrix required for transformation to
 

geocentric ecliptic reference axes from geocentric equatorial axes and
 

This objective could not have been met without the analytical and
 

computational support of A. Khatib of JPL.
 

U 



the matrices A, K, and U represent matrices of partial derivatives
 

established numerically in the ANAPAR program for any point in time.
 

It was the expectation-of the principal investigator after
 

discussions with JPL trajectory analysts that the velocity correction
 

ellipsoids for the several midcourse corrections would be extremely
 

flat, with little extension in the direction normal to the ecliptic.
 

If the three-sigma component of the velocity correction in this
 

direction proved to be sufficiently small, it would be possible to pro­

vide this trajectory correction capability independently of the mid­

course motor, thereby precluding the necessity of large-angle turns
 

entirely.
 

A numerical covariance matrix of injection errors typical of
 

boosters in the appropriate class was provided by JPL, and the corres­

ponding velocity correction covariance matrix was calculated for a
 

midcourse motor burn at 540 days from launch, approximately 20 days
 

before closest approach to Jupiter. The ellipsoid for the velocity
 

correction did not have the desired flatness property, thereby
 

frustrating the objective of eliminating the large-angle turns for the
 

dual-spin vehicle.
 

Numbers used in the indicated calculation are documented in
 

what follows:
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A1 = 

1.46720253E+00 -7.20787890E-02 8.56707000E-02 5.40521340E-02 1.87504938E-02 -4.32557340E-02 

-7.20787830E-02 1.87511316E-01 -3.875262301-0i 1,18442664E-02 5,2837920E-03 -1.20019449F-02 

8.567070002-02 -3.875262602-01 1.32149472E+00 -4.29633330E-02 1.,797798182-02 4.260568202-02 

5.40521400E-02 1.18442682E-02 -4,29633300E-02 3.72084810E-03 1.40456463E-03 -3.27112470E-03 

1.87504959E-02 5.23838010E-03 -1.79779818R-02 1.40456466E-03 5,37383910E-04 -1.25093625E-03 

-4.32557370E-02 -1.20019437E-02 *4.260567902-02 -3.27112500E-03 -1.25093625E-03 2.91872616E-03 

(3) 

-6.09011960E+04 4.04708980E+04 1.81426250E+04 -2.79750190E-03 6.96135670E-04 3.98763880r-04 

-7.39662340E+04 7.22347720E+04 3,13350990E+04 -3.58427040E-03 1.01205770E-03 5.76319760E-04 

U = 3.55558600E+04 -3.2928260E+04 -2.02794310E+04 1.73234430E-03 -5.06967030E-04 -2.456963402-04 

6.70069470E+07 -2.91947810E+07 -1.59280240E+07 2.96256560E+00 -6.673803901-01 -3.68901220E-01 

-1.39577520E+08 1.20043740E+08 5.54763180E+07 -6.64378990E+00 1.80879020E+00 1.01082270E+00 

-4.21427630R+07 3.14532320E+07 2.33431470E+07 -2.00151390E+00 5.59557670E-01 2.S1241920E-01 

(4) 

1.25082840E+00 7.90575000E-02 -1,13493310E+00 

A = -1.08379100E+01 3.69264300E+00 2.01739710E+00 

3.184758702-05 -8.206899202-06 -4.71707610E-06 

(5) 

K 

-2.65005440E+07 2.27537020E+07 6.178513503E+06 

2.42958160E+08 -1.64722720E+08 -6.96132810E+071 
-6.61353600E+02 4.951037202+02 2.091612503+02 

(6) 

C 

1.00000000E+00 

0. 

0. 

0. 

8 87413447R-01 

-4.60974374E-01 

0. 

4,60974374E-01 

8.874134471-01 

(7) 



*The covariance matrix AAv from Equations ()-7) is
 

AAV__[.9.76255387E+00 2,95048724E+008,92794381E-01 -5.88235777E+00-1.78220161E+_001
2.95048721E+00 (8)
 

[-5.88235778E+00 -1.78220163E+00 3.S6300031E+00
 

providing or- sigma values for velocity increments in directions x,y,
 

and z of
 

Sx'3.124 km/sec
 

" 0.945 km/sec (9)y
 

" Z 1.888 km/sec
 

Since the z axis is normal to the ecliptic plane, the corresponding
 

ellipsoid certainly does not:have a dimension in this direction of the
 

anticipated small relative size.
 

The conclusion of this chapter is thus disappointingly negative.
 

With the acknowledgment that velocity corrections in all directions have
 

comparable statistical likelihood (as assumed in the original JPL
 

attitude control system trade-off study), the prospect of overcoming the
 

weight advantage held by the reaction.wheel system over the dual-spin
 

system is much reduced.
 

There remains the possibility of reducing propellant weight
 

estimates by more efficient use of fuel in accomplishing the required
 

turns. Determination of a fuel-optimal control law is a task of sub­

stantial analytical and computational complexity, as may be judged by
 

the dissertation here attached as an appendix. Success in this
 

endeavor cannot be expected however to accomplish the reduction in
 

propellant weight demanded to overcome the weight difference between
 

reaction wheel and dual-spin control systems as originally estimated
 

by JPL.
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3. DUAL-SPIN VEHICLE PARAMETER SELECTION.
 

In this 	section, the values of the dual-spin vehicle parameters
 

used in computing the fuel-optimal controller are given. In this work, 

no attempt is made: to find the optimal parameters; instead, the 

fuel-optimal controller is determined for a configuration which is 

believed to be appropriate for the ulti-Planet Mission. The parameters 

that enter the analysis are
 

1, the 	ratio of the stored angular momentum h and the
(1) h/I


transverse inertia of the vehicle 1
 

(2) a, the rotor speed relative to the despun portion
 

(3) K, the ratio of applied moment M and transverse inertia 1
 

(4) r, the ratio of the rotor inertia about the spin axis
 

and the transverse inertia of the system Il.
 

Estimates of these parameters depend on
 

(1) The inertia characteristics-of the system
 

(2) The 	external torque environment
 

(3) The 	geometry of the vehicle
 

(4) The assumptions'made concerning the orbit (the
 

out-of-plane drift, etc.)
 

(5) The accuracy requirement.
 

3.1 	 Determination of the Estimates of the System Parameters
 

In this section, estimates of the system parameters are
 

determined. The inertia characteristics of the vehicle are determined
 

primarily by the need for a configuration which allows the mission
 

objectives to be satisfactorily achieved. The need for such components
 

as the
 

(1) despun platform
 

(2) antenna
 

(3) rotor
 

(4) planetary encounter instrumentation
 

(5) jets
 

.­



--

coupled with a consideration of the mission requirements determines the
 

weight and geometry of the 	system. In this analysis, it is assumed
 

(somewhat arbitrarily) that the transverse inertia the symmetric vdhicle 

is 200 slug-ft2, and that the ratio of the inertia of the rotor about 

the spin axis (J3 ) and the transverse inurtia of the system (I,)is 
0.15, i.e., 

R
 
J3
 
S1 - =0.15
 

The external torque depends on the geometry of the vehicle and
 

its position (distance from the sun). The maximum torque due to solar
 

radiation for the TOPS vehicle was previously estimated as 50 dyne-cm.
 

If the spacecraft (s/c) were configured as shown in Figure 3.1, the
 

torque due to solar radiation would be relatively large. An indication
 

of the magnitude of the solar radiation torque for such a vehicle at the
 

earth's surface is provided 	below.
 

Item Value of Equation
 

O Solar radiation pressure
 

of 1 A.U.
 
p0 n.456 dyne2 9.7x10-8 lbt
Absorption 046 


0m 2ft2
 

dyne 
Perfect Reflection P = 0.91 2 

m 

o 	Parameters
 
A = w(7.5) 2 ft2
 

- Area 

Lever Arm z = 10 ft 

OSolar Radiation Torque TD= PaAZ 

= 2300 dyne-cm=1.7xl0 -4 ft h 

* 

This estimate was obtained during an informal conversation with Ed
 

Dorroh of JPL.
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This torque is over 40 times larger than that for the TOPS
 

vehicle.
 

3.1.1 Stored Angular Momentum, h
 

In this section, an estimate of the angular momentum that is
 

stored in the rotor is obtained. First, it should be noted that the
 

optimal value depends on the nature of the mission. The mission con­

sists primarily of two portions, viz., the
 

(1) cruise portion in which A large angular momentum is
 

desirable
 

(2) large angle turn mode in which a small stored angular
 

momentum is desirable.
 

The angular momentum h that should be stored in the rotor, for the
 

cruise mode, is dependent upon the
 

(1) disturbance torque environment
 

(2) out-of-plane angle of the orbit (assumed small in the
 

analysis).
 

By selecting a range of values for h and by using the maximum
 

value of the external torques, the drift rate of the angular momentum
 

vector can be determined. The drift rate is important since it
 

determines how frequently the jets have to be fired in order to keep the
 

angular momentum vector properly oriented. Estimates of the drift rate
 

B (inthe vicinity of Jupiter) based on 

T = --= ho,
D At At. ­

are provided below (see Table 3.1) for various values of T0 and h.
 

*This value could be decreased by mounting the rotor closer to the
 

antenna, i.e., by decreasing the lever arm associated with the solar
 

radiation force.
 
**The solar radiation torque is approximc ted as To = To • I/R2
 

where T. = solar radiation torque near the earth
 
0
 

R =.distance from the'sun in a.u. (R=S for Jupiter).
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Table 3"l
 

DRIFT RATE OF ANGULAR MOMENTUM VECTOR DUE TO DISTURBANCE TORQUES
 

(SOLAR RADIATION) NEAR JUPITER
 

Drift Rate dg for Various T "(Dyne-Cm)
Angular Drif Rate da-y D 
Momentum, h T =50 = 100 T =500 T =2000 
ft # sec D D = 

100 .0072 .0148 .0732 .292 

200 .0036 .0072 .0364 .148 

300 .0024 .0048 .0244 .096 

So0 .0016 .0028 .0148 .06 

Based on the results of Table 3.1, a range of values considered appro­

priate for h is
 

200 < h < 	300 ft-lb-sec
 

3.1.2 Determination of the Rotor Speed
 

The rotor speed can be determined from the assumed values of the 

parameter i = J3R/11 = 0.15 and the stored angular momentum h. For 

values of h between 100 and 500 ft-lb-sec, -the corresponding rotor speed 

o is computed from
 

h 	 h
 
R
I1 


and is tabulated below (see Table 2.2).
 

Table 3.2
 

ROTOR SPEED VERSUS STORED ANGULAR MOMENTUM 

Angular Momentum h Rotor Speed,a
 

h J3Ra (ft-lb-sec) (RPM)
 

100 30
 

200 
 60
 
300 100
 
S0 150
 

•The drift rate is
 
TD
 

= 0.014604 
-- deg/day
 

*One ft-lb = 1.35582 x 107 dyne-cm. 

is
 



3.1.3 	 Determination of the Ratio of Applied Moment and Transverse
 

-Inertia, K
 

The system parameter K defined by
 

K = 'IA. 

depends on the
 

(1) stored angular-momentum, h
 

(2) lever arm of jet
 

(3) allowed reorientation time
 

(4) reorientation accuracy.
 

From the expressions
 

h AOM4
A At-

M = FA r 

.the required thruster capability is
 

F -h AO #
 
A = r At
 

The term AG/At, the reorientation rate, provides a measure of the
 

desired response time. The orientation tolerance is approximately 0.06
 . 

degrees. An estimate of the reorientation rate can be obtained by
 

requiring that an angle corresponding to 100 times the tolerance (con­

sistent with small angle approximation) be nulled within 30 seconds.
 

Using this criterion, the response rate for the cruise mode becomes
 

Ae = 6 deg 0.2 deg = 3 mr
 
At 30 sec sac sec
 

This tolerance applies for the Jupiter to Neptune portion of
 

the mission.
 

16
 



3.2 

The values of K are provided below (Table 3.3) for reasonable ranges of 

the rotor radius, the stored angular momentum, and the reorientation 

rates. As seen in Table 3.3 a reasonable constraint on K is 

0.001"< K < 0.005 12 
sec 

Values of Parameters Used in the Nunerical.W1ork 

Based on the discussion provided above, the values of the
 

dual-spin vehicle parameters to be used in the numerical determination
 

of the fuel optimal controller are
 

r 0.15 (dimensionless)
 

tad
h 300 ft-lb-sec = 1.5-__
Y f -= _ 

2 see


slugft


K I 0.001 

rad* 
sec
 

One rad/sec 9.549 rpm.
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Table 3.3
 

RATIO OF APPLIED MOMENT AND TRANSVERSE INERTIA
 

Ratio of Applied Moment and 
Thrust, FA (mlb) Transverse Inertia, K(-2) 

'sec'
Rotor Radius, r Angular Momentum, h 
(ft) (ft itsec) A6 1 mr A 3 mr AO' 1 mr A 3mr 

se At se- AT so At se 

100 300 0.0010 0.0030

2 200 


150 450 0.0015 0.0045
300 


150 0.00i0 0.0030
4 	 200 so 


300 75 225 0.0015 0.0045
 

Computed for the case in which
 

I1 200 slug-ft
2
 

R
 
= 0.15
 

I1
 



4. FUEL-OPTIMAL CONTROL IN THE CRUISE MODE
 

In this section, the fuel-optimal control of the symmetric
 

dual-spin vehicle described in Section 3 is briefly discussed (see'
 

Appendix 1, for a.detailed treatment of this topic). The control con­

cept is a hybrid attitude control scheme consisting of (see Figure 1.1
 

of Appendix 1)
 

(1) an active phase in which the angular momentum vector H
 

is aligned to the desired direction I (angular momentum
 

control, KMCO),
 

(2) a passive phase in which the nutation damper is used to
 

complete the control objective of aligning the rotor spin
 

axis and the desired angular momentum vector H
 

In the cruise mode, the objective of the attitude control
 

system is to maintain the desired orientation of the rotor axis (and
 

hence the antenna). Since the tolerance on the antenna pointing
 

accuracy is stringent (0.06 deg at Jupiter and beyond), the deviations
 

from the desired orientation arc perforce, small. This implies that the
 

attitude angles of the rotor axis can validly be assumed to be small
 

during the cruise mode. A 3-axis control scheme is, of course, needed
 

to accomplish the control task. The control of the despun portion about
 

the spin axis is considerably simpler than the control of the vehicle
 

about the other two axes. Essentially a motor-controlled closed-loop is
 

used to ensure that the antenna tracks the earth. The emphasis of this
 

study is on the control of the pitch-roll motion of the spacecraft.
 

The fuel-optimal control problem {L, A, S1,Xo, X1, J) for the
 

symmetric dual-spin vehicle in the cruise mode simply stated is as
 

follows. Given
 
* 

(1)- the linear plant
 

(L) =A x(t) + B(t) U(t) in C1 inR 

See the List of Symbols of Appendix I for a definition of symbols used.
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(2) the class of6 admissible controllers A
 

(3) the control restraint set 2
 

(4) the initial set X0
 

X ={x,t) : x(t ) = x (fized)1 

(5) the target set X1
 

X= {x,t) " g(x,t) =0 Vj, t1 free) ­

(6) the cost functional J (that appropriate for
 

fuel-optimization),
 

the problem is to find the controller u(t) C f2which
 

(a) takes x to X1 such that the pair
--o
 

(x(tI), tI) s x1
 

(b) minimizes the cost functional J(u).
 

In the above problem statement, it is important to note that the
 

control restraint set fQis chosen after carefully considering the
 

practical aspects of the problem. It depends on the type of jet used
 

for control, the number of jets used, etc. The target set X is
 

determined from a consideration of the implications of aligning the
 

angular momentum vector H to the desired direction H . The cost func­

tional is that appropriate for fuel-optimization and depends on the con­

trol restraint set Q.
 

4.1 Nature of the Elements of the Control Problem {L,Q,X0 ,XI,J}
 

In this section, the elements of the fuel-optimal control problem
 

{L,fl,X0XIJ1 are briefly discussed (see Chapter 3 of Appendix 1 for more
 

details).
 

Plant
 

The plant which characterizes the dual-spin system is described
 

below (see Figure 4.1 for the definition of the elements of the state
 

vector). The plant is obtained as a special case of a general and
 

powerful formulation suitable for an elastic constant mass system (see
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*Chapter 2 of Appendix 1)., The equation representing the dual-spin
 

vehicle in the cruise-node is
 

x = A x(t) + B(t) u(t) 

where 
 0 -r o 

A CT 0 (4.1) 

BWt u(t) =Isot I K t
 
0 J 

- -
X= x*= 

The coordinate frame used in writing Equation (4.1) is the despun body"
 

A and the'angular velocities wl,2 refer to the indicated components of
 

the angular velocity of frame A relative to the inertial frame N.
 

Control Restraint Set P 

The control restraint set suitable for the application at hand
 

depends on the type and the number of jets used. The notion of control­

lability is used to demonstrate that the minimum number of jets required
 

is one (see Chapter 4 of Appendix 1) and the notion of system normality
 

is used to demonstrate that the preferred location of the jet is the
 

rotor (see Chapter 4 of Appendix 1). The implications of the necessary
 

conditions for optimality (see Chapter S of Appendix 1) are used to
 

demonstrate that the preferred type of jet is a one7way jet. Of course,
 

a two-way jet could be used with one side of the jet providing the neces­

sary redundancy. The main advantage of the one-way jet as compared to
 

the two-way jet $ is that of greater reliability. This follows because
 

the number uf switchings (firings) of the one-way jet is one-half that
 

for the two-way jet (see Chapter S of Appendix 1). It follows therefore
 

that the control restraint suitable for the problem at hand is
 

A = {u(t): 0 < u(t) < 1} (4.2) 
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Initial Set Xo 

The initial set X consists of the particular pair (x, t0 )
0 ­

which exists at the time that the relationship
 

Il, o< >. 

is not satisfied. The value 0 refers to the tolerance on the antennaC 
pointing accuracy; the optimal control sequence must be initiated when 

the norm of a becomes as great as 6 . The value of 6 c is approximately 

5 mr near the earth, and 1 mr near Jupiter and beyond. It is tacitly 

assumed that appropriate sensors for measuring x would be provided for
-o 
in the event the optimal scheme were to be implemented.
 

Target Set X1
 

The target set X1 for the AIACO concept used for the symmetric 

dual-spin vehicle in the cruise mode is 
** 

X1 {(x,t): g.(x(tl)) O; j = 1,2} (4.3) 

where "[a 

IZ(x(tl) ) = X(t 1) 

- 1 -r 0
 

J33R
 

I1
 

This target set is said to be a smooth two-fold in Rn. Examination of
 

Equation (4.3) reveals that it is a linear manifold and hence is convex.
 

In addition the set X is closed. However, the compactness of X is
 

guaranteed only if the set X1 is bounded. From practical considerations,
 

it is clear that the control problem would not make any sense if the
 

elements of the state were not bounded. The fact that x(t) is bounded
 

*The components of a are the attitude angles 01, 0 2.
 
.The components of g refer to the components of H transverse to
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V t guarantees that X1 is bounded and hence is compact. Stated in 
another way, the boundedness of the initial state x and the fact that 

-0 

the optimal control sequence is such that the resulting state 

x(t) < KlX , it follows that the state is boundedVt(KI is someo


arbitrary constant).
 

Cost 	Functional J
 

The cost functional J associated with fuel-optimal controller,
 

having determined that the control restraint set appropriate for the
 

application at hand is as given in Equation (4.2)
 

-- t 

J(u)f t 'Ku(t)dt 	 (4.4) 
0 

It should be noted that this differs from that usually associated with
 

-fuel-optimization of nonspinning vehicles. For spinning vehicles, the
 

spin itself provides the direction of control and hence ensures that the
 

requirement that both positive and negative moments be available for
 

control is satisfied.
 

4.2 Necessary Conditions for Local Optimality
 

In this section, the necessary conditions for local optimality
 

are provided. These conditions can be obtained either from the calculus
 

of variations or from Pontryagin's maximum principle (see Chapter 5 of
 

Appendix 1). The necesiary conditions
 

(1) provide information concerning whether the problem is
 

normal or singular, o
 

(2). 	provide information concerning the nature of the optimal
 

controller so that the most appropriate control restraint
 

set can be selected,
 

(3) 	aid in the selection of a computational technique,
 

Even for practical problems it is necessary to demonstrate the com­

pactness of the target set X1 to ensure that there is even a chance that
 

an optimal solution exists.
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(4) provide the basis of every computational technique
 

save the gradient method.
 

The necessary conditions for the symmetric dual-spin vehicle in
 

the cruise mode are:
 

(1) Hamilton's canonical equations
 

x_t) (x,u,p,t) =
f- Ax(t) + b(t) u(t) 

(4.5)
H

5- = - A pit) 

.(2) The boundaFy conditions
 

x(t o) = x 
"-o 

(4.6)
=[ag lT 

It=t 

where v is a constant vector to be determined.
 

(3) The condition on the Hamiltonian 

Hit I ) 0 (4.7) 

(4) The optimality condition
 
(t)= hev{q (t)-11 = hev{< b(t), p t)>-l} (4.8) 

where
 

if q(t) <Ii 
evfqtj-l 

-0[ 


[ 1 if q(t) > 11 

The Heaviside function (see Figure 4.2) is appropriate in this case
 

because a one-way jet is used instead of a two-way jet. Conventionally,
 

the fuel-opcimal controller is expressed as a dez function (inthis
 

case, the control is constrained according to !ujf-< 1).
 

"The Hamiltonian is defined as
 

H = < x> -f0
 

where fo is the integrand of the cost functional.
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qj (t) 

Figure 4.2 The Function u*(t) for a Fuel-Optimal Problem in which a One-Way Jet is Used 
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4.3 Computational Algorithm
 

The computational algorithm used in computing the fuel-optimal
 

controller is briefly described in this section (see Chapter 6 of
 

Appendix 1 for more details). The algorithms that are suitable for this
 

task are
 

(1) the gradient technique,
 

(2)' the generalized Newton-Raphson (GNR) technique or the 

Method of quasilinearization,
 

(3) the classical Newton-Raphson (CNR) technique.
 

The advantages and disadvantages of these techniques as well as others
 

are provided in Table 6.3 of Appendix 1. The iterative nature of the
 

computational'techniques can be seen by examining Table 6.1 of Appendix
 

.1which is provided below for convenience (see Table 4.1).
 

Table 4.1
 

ITERATIVE NATURE OF COMPUTATIONAL TECHNIQUES
 

Computational technique Equations nominal Equations iterated on 
Solution satisfies 

Direct methods 

Gradient State equations- Boundary conditions 
Adjoint equations Optimality conditions 

Second variation 

Indirect 
Classical Newton-

State equations 
Adjoint equations Boundary conditions 

Raphson Optimality conditions 

Generalized Newton-
Raphson Boundary conditions State equations 

Quasilinearization Optimality conditions Adjoint equations 

With due consideration to such aspects as
 

(1) the nature of the optimal controller and the relatively
 

large number of switching times,
 

(2) the normality of the fuel-optimal problem being studied,
 

(3) the relatively low dimension of the problem,
 

(4) the fact that the final rather than the initial
 

adjoint variables 'are involved,
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(5) the theoretical disadvantage concerning the violation 

of the differentiability hypothesis for both the 

gradient and GNR techniques (for fuel-optimal problems 

in which two-way jets are used), 

(6) the ease in which the control constraints are handled 

in the CNR technique, 

(7) the computer storage requirements, 

(8) the fact that only very small deviations from the 

nominal trajectory are allowable, 

the CNR algorithm is considered suitable for the determination of the 

fuel-optimal controller for the symmetric dual-spin vehicle in the 

cruise mode. Concerning item (8), for the application under consider­

ation, the antenna pointing accuracy requirement is such that the 

-optimal control sequence would be initiated when the pointing error is** 

greater than one mr. This implies that the values of the state 

variables must be kept close to the nominal or desired values. This 

aspect is very important when the CNR technique is used (because of 

the nature of the iterative scheme). 

The use of the CNR method appears appropriate for the problem 

being investigated. In general, however, the CNR technique is seldom 

appropriate for optimal control problems. 

4.3.1 Iterative Nature of the CNR Algorithm 

In this section the iterative nature of the CNR algorithm is 

briefly discussed. Inherent in this technique is the equation 

F(y) = 0 (4.9) 

which must be solved iteratively for y. 

vector sequence [y I are related by 

The n and n+l elements of the 

Initially oth two-way jets and one-way Jets were considered. In 

addition, if the spin rate of the vehicle were slow and the forque 

capacity low, then two-way jets might be desirable for certain problems. 

The pointing accuracy requirement is one mr near Jupiter and beyond; 

near the earth 5 mr would be allowable. 
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>, -F 1)F ) (4.10) 
Xn+lI -n -

The iterative procedure consists of the following steps:
 

(1) guess an initial value of the constant vector y
 

and call it Y,
 

(2) using yo solve simultaneously the state equation,
 

the adjoint equation, and the optimality equation
 

and obtain F(y
 

(3) evaluate BF/ax (y ) numerically and compute its inverse,
 

(4) obtain y from Equation (4.10),
 

(5) repeat the process until IlE(y_) 6.
 

For the symmetric dual-spin vehicle in the cruise mode, the 

vectors F and y have components (JYHI, H and (vl,V2Vt1), 

respectively. 

4.4 Fuel-Optimal Controller
 

In this section *the numerical results obtained for the problem
 

being investigated are provided (see Figures 7.1 through 7.4 of
 

Appendix 1). The results are obtained for an initial condition of
 

special significance in the fuel-optimal control problem pertaining to
 

.the symmetric dual-spin vehicle in the cruise mode. The initial con­

dition refers to components of the initial state vector xo; the
 

numerical results are obtained for the case in which the components of 

x are (0,0,5 mr,O) where 81= 5 nm refers to the allowable tolerance on
--o
 

the antenna pointing near the earth. The results for this carefully
 

chosen initial condition can be used to estimate the fuel consumption
 

during the cruise mode of the mission.
 

The optimal controll6r u (t)obtained for the initial condition
 

described above is shown in Figure 7.1 of Appendix 1. For this case,
 

;Vis the Hlamiltonian and HIH are the components of the angular
 
'2 A
 

momentum transverse to the desired direction 11
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the controller is turned bn for one half of a rotor revolution and
 

turned off for the'other half. The number'of switchings involved is 74
 

and'the time used to drive the initial state x to the target set is 22
 

seconds. The value of the cost functional
uc)dt 
-o 

J(u)JtIK u(t)dt 
0
 

associated with the minimum fuel problem is
 

J(u) = 0.0109 i/sec
 

By using the mass flow properties of the jet used, the amount of fuel
 

consumed in accomplishing the control objective can be computed. That
 

is, by using the relation involving the cost
 

and the relation between the maximum jet thrust F and the specific
 

impulse Is of the cold gas
 

T I=IS f, 

the weight of fuel in pounds is given"by
 

t (4.11)
Fuel ful=W u(t)dt I x r
 

For a system having the values
 

= 200 slug-ft
2
 

I 


I = 70 sec
 
s
 

r= 4 ft (lever arm, the radius of the rotor)
 

MIX1 = 0.001 rad/sec
 

the relationship between fuel and the cost functional J(u) is
 
* S 
W yx J(u)
 

The fuel used in driving the initial state x to the target'set-X ! for
 

the case discussed above is
 
*e55
 

w -x (.0109) = .00779 lb. 
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For the dual-spin vehicle .being studied, the initial antenna misalign­

ment of 5 mr corresponds to an initial transverse component of angular
 

momentum of
 

-
Ah c = h8 = 300 x 5 x 10 = 1.5 ft-lb-sec. 

In Figure 7.2 of Appendix 1, the transverse component of the
 

angular momentum vector is shown versus time. It is seen that each
 

firing of the jet reduces the magnitude of the transverse angular
 

During the off period, the transverse angular momentum is
momentum. 


as it should be since H1 is conserved in a
constant. This result is 


torque-free environment. The behavior of the transverse angular
 

momentum depicted in Figure 7.2 allows the fuel consumed for other
 

initial conditions (compatible with the small angle approximation) to
 

a value of Ah is known, the fuel consumed in
be estimated. That is, if 


counteracting this angular impulse if
 

(4.12)
* =Ah xW * 


c
 

It is of interest to compare the estimate of the fuel based on Equation
 

(4.11) with that computed according to the approximate relation
 

Ah dt = t ; s (4.13)t'I dt sft s
T =1 r p to dt
 

I refers to the total linear impulse, and
where 
 mp
 
Ah refers to the total angular impulse.
 

From Equation (4.13), an estimate of the weight of fuel consumed in
 

counteracting an angular impulse of Ah is given by
 

1 (4.14)
 

In particular if Ah = Ahc then 

1.5 x 1 .00536 lb.
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This estimate is smaller than the optimal value; this indicates that the
 

approximation is not sufficiently conservative. The ratio of the two
 

estimates is 1.45, i.e.,
 

(4..15)
w* = 1.45 W 

Figure 7.3 of Appendix 1 shows the trajectory in angular"momen­

tum space. Initially, the transverse components of the angular
 

momentum are
 

(HI,H2) = (0,-1.5) ft-lb-sec.
 

Each time the jet is turned on, the H2 component is decreased. The
 

half waves correspond to the on-cycle of the controller. During the
 

off-time, neither H1 nor H2 varies.
 

4.5 Estimates of Fuel-Consumption for the Cruise Mode
 

The estimate of the fuel required for attitude control during
 

the cruise mode is provided in this section. This estimate depends on
 

estimates of the contribution made by
 

(1) Solar radiation torque,
 

(2) Micrometeriods,
 

(3) Gravity gradient effects,
 

to the total angular impulse. In addition fuel is required for fine
 

turn control and for tracking the variations in the earth clock angle.
 

The contribution made to the total angular impulse by solar
 

radiation torques is approximately given by
 

f2' T _d (4.16)
t 1 

= ff TD dt =Jf T R dt(AHsR 0 R2 

where T is the solar radiation torque near the earth's
 
0 

surface,
 

R is the distance from the sun in a.u.
 

The distance R can be approximated as
 
RI-1
 

(4.17)
R = 1 + Kt = I + ttf 
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*where tf is the final value of t (mission time) and Rf is the distance
 

from the sun at the end of the mission (Rf = 30 a.u. in this analysis).
 

Substitution of Equation (4.17) into Equation (4.18) yields
 

dt [ tf 

(l+Kt) 

t' t 

Tfa a~R-i1 + R tf 
Ta3 f- ft-lb-sec. (4.18) 

-4 

The value of T0was estimated previously as 1.7 x 10 ft-lb (see
 

Section 3) and the value of tf at Neptune is approximately 3.36 x 10 

and tf into Equation (4.18)
sec. Substitution of these values of T 


yields
 

(4.19)
AHSR = 1900 ft-lb-sec. 

However, since no fuel is required in counteracting the effects of solar
 

radiation torque about the spin axis, the effective angular impulse that
 

must be counteracted can be taken as
 

A = T x ASR = 950 ft-lb-sec. 

This value is roughly the same as that given in Reference-I. In 

Reference 1, the contributions made to the total angular were estimated
 

as 

Angular Impulse (ft-lb-sec)
Item 


700
Solar radiation torque (pitch) 


200
Earth tracking (pitch) 


80
Fine turn control 


60Microieteriods 

Gravity gradient 40
 

The amount of fuel required to counteract such an angular impulse is
 

(from Equation (4.12))
 

* Ah * l00 
WV -Ah x Wc X (.00779) = 5.7 lb. 
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2
 
This estimate is slightly'less than that calculated by lankovitch.
 

Mankovitch's estimate is
 

W = 8 lb.
 

This implier that only 2.3 lb of fuel could be saved furing the cruise
 

mode for utilizing an optimal control scheme for the 
pitch-roll motion
 

of the S/C. This comparison is not completely valid because the
 

investigated
vehicle considered in this work is not exactly the same as 


by 4ankovitch. ,Nevertheless,.the comparison provides an indication of
 

the fuel savings that could be realized by using an optimal control
 

scheme.
 

The calculation discussed above does not include the fuel
 

required for spin maintenance nor dues it include that required for
 

large angle turns.
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S. FUEL-CONSUMPTION ESTIMATES FOR LARGE ANGLE TURNS
 

In this section, the estimate of the fuel required for the
 

large angle turns is provided. As stated in Section 2, the large angle
 

turns are required because the desired velocity correction that must be
 

imparted to the vehicle by the midcourse inotor is not necessarily in the
 

yaw plane. Hence, the only way the large angle turns could be avoided
 

is by using two midcourse motors.
 

The duration of the study was-not sufficiently great to allow
 

for the determination of the fuel-optimal controller for the large angle
 

turn mode. Nevertheless, an estimate of the fuel required for this
 

task can be computed from
 

0=Ah I
 
- Mi 1 

where £ is the lever arm of the bipropellant system.
 

In this work it was determined that the use of a bipropellant system
 

located on the despun platform in such a way that the lever arm is maxi­

mized is more suitable (inregard to weight savings) than the use of
 

rotor-fixed jets for accomplishing the large angle turns.
 

The midcourse motor is located on the rotor (along the spin
 

axis), since an autopilot is not required for this location of the
 

motor.- The bipropellant system could be located either on the rotor
 

or on the despun portion. In this work, it is arbitrarily assumed that
 

it is located on the despun platform in such a way that the lever arm
 

is maximized.
 

Since the direction of the thrust can be oriented in the yaw
 

plane by turning the despun portion to the desired direction, the maxi­

mum orientation angle for which mass expulsion is required is 1800.
 

However, after the correction has been made the vehicle must then be
 
The Ah associated with a 1800
reoriented to the desired direction. 


turn is
 

Ah = h2- h1 = 300-(-300) = 600 ft-lb-sec
 

assuming that the stored angular momentum is nominally 300 ft-lb-sec.
 

The angular impulse associated with ten 3600 turns is
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Ah = 12000 ftklb-sec.
 

The value is roughly one half that estimated in Reference 1. This is
 

probably due to the fact that the stored angular momentum in Reference
 

I is twice as great as that used in this work. As pointed out in
 

Section 3, it is desirable to have as small a value of stored angular
 

momentum as possible for the large angle turn mode. From Equation
 

(4.14), the fuel required for importing a total angular impulse of
 

12000 ft-lb-sec is
 

- 12000 1 = - 7 xx250:- = 6.86 lb 

for the case in which the lever arm is k= 7 ft. By scaling this result,
 

according to Equation (4.15), an estimate of the fuel required if an
 

optimal controller were used is
 

IV = 1.45 x W= 10 lb. 

According to Reference 4, an estimate of -the weight of the bipropellant
 

system (not including the propellant) is 20 lb. Hence the total bipro­

.pellant system weight is 30 lb. This estimate is 3 lb less than that
 

given in Reference 2.
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6. COMPARISQN OF ALTERNATE CONTROL SYSTEMS
 

In this section, a brief comparison of alternate control systems
 

is provided. The potential methods of attitude control for the
 

(MPM) were discussed qualitatively in the Phase'I
Multi-Planet Mission 


report of this study (see Reference 5). in that report, the most suit­

able methods of attitude control were identified (see Table 6.1) and
 

the relative suitability of various attitude control systems having the
 

most potential for the MPM was qualitatively discussed (see Table 6.2).
 

seen that the systems having the most potential
From Table 6.2, it is 


for the 	MPM are 

(1) the momentum wheel system using mass expulsion
 

for unloading the wheels,
 

(2) the dual-spin vehicle using reaction jets for
 

attitude control.
 

The main objective of this phase of the study, the determination
 

of the optimal dual-spin system, has already been discussed (see
 

A secondary objective is the comparison of the
Sections 4 and 5). 


optimal dual-spin system with alternate control schemes (inparticular,
 

the momentum wheel system using mass expulsion for unloading the wheel).
 

A qualitative discussion of the attitude control schemes based on
 

(1) mass expulsion only,
 

(2) solar radiation for a secondary means of control,
 

(3) spin stabilization,
 

(4) GIG's for momentum storage
 

was provided in Reference 5 and hence will not be repeated here. In
 

this report the momentum wheel system and the dual-spin systems are
 

first qualitatively compared, and then quantitative estimates of the
 

system weight and the power requirements are provided. The estimates of
 

*the system weight and power requirements are based on Reference 2.
 

6.1 	 Implications of the Mission Requirements on the Momentum
 

Wheel System
 

In this section, the implications of the mission requirements
 

(see Reference 5) are qualitatively discussed in relation to the
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Table 6.1
 

CLASSIFICATION OF METHODS OF SPACECRAFT CONTROL IN REGARD TO SUITABILITY FOR THE
 
MULTI-PLANET MISSION (MPM) 

Item Representative examples Suitability 

Relatively'Unsuitable Suitable 

System Categories Passive 
Semipassive 
Semiactive 
Active 
Hybrid 

x 
x 
x 

x 
x 

Actuation Methods 

Incident momentum 
Interaction with 

ambient fields 

Solar radiation pressure 
Gravity gradient effect 
Magnetic torque 

x 

X 

Expelled momentum 

Gaseous propellant 
Solid propellant 
Liquid propellant, 
Electrochemical 

Cold gas (N2) reaction jet 
Subliming solid (hot tip) 
Hydrazine plenum 
Resistojet 

x 

x (flight worthiness not 
sufficiently demonstrated) 

x 

x 

Internal momentum 
storage 

Reaction wheel 
Fluid flywheels 
Reaction sphere 
CMG 's 
Dual-spin vehicles , 

x 
x 

x 

Stabilization Technique Spin 

Environmentably stabilized 

x 

x 



Table 6.2 

CLASSIFICATION 	 OF SYSTEMS HAVING MOST POTENTIAL IN REGARD TO 
THEIR SUITABILITY FOR THE MPM 

Potential Systems 	 Suitability"for MPM 

Relatively Unsuitable Suitable
 

o Actuation Methods
 

Combination of incident x
 
momentum (solar radiation
 
pressure), internal
 
momentum storage (reaction
 
wheels) and expelled
 
momentum (reaction jets).
 

Expelled momentum (mass x
 
expulsion) alone.
 

Combination of internal x
 
momentum storage (reaction'
 
wheels) and expelled
 
momentum (reaction jets).
 

Dual-spin vehicle 	 x
 

oStabilization Technique
 

Spin stabilized
 

Environmentally stabilized 	 x­
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momentum wheel system. The main factors to be considered include
 

(1) antenna pointing accuracy,
 

(2) trajectory corrections,
 

(3) orientation of the planetary instrumentation
 

package,
 

(4) high reliability.
 

In regard to the requirement for accurate anteina pointing, no
 

mass expulsion is required to track the earth. In addition, the amount
 

of fuel consumed is not dependent on the deadband size as it is for
 

attitude control systems using mass expulsion only. In achieving the
 

desired antenna pointing accuracy, mass expulsion would be required only
 

in the rare event that the system is subjected to a continuous
 

disturbance.
 

Concerning the trajectory corrections that are required, no
 

mass expulsion is needed for orienting the S/C to the direction of the
 

desired Av. This factor is one of the most important considerations in
 

-the qualitative comparison of the momentum wheel system and the
 

dual-spin system. An active autopilot is necessary for TVC (Thrust
 

Vector Control).
 

Concerning the precise orientation of the planetary instru­

mentation package, no problem areas are expected. In addition, no mass
 

expulsion is needed for counteracting reaction torques.
 

Concerning the requirement for high reliability, the momentum
 

wheel system is considered adequate since a redundant set of momentum
 

wheels can be easily incorporated.
 

6.2 Implications of the Mission Requirements on the Dual-Spin System
 

In this section, the.implications of the mission requirements
 

*are qualitatively discussed in relation to the dual-spin system. The
 

same factors mentioned in connection with the momentum wheel system
 

are considered.
 

In regard to the requirement for accurate antenna pointing,
 

mass expulsion is not required for tracking variations in the earth's
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cone angle, but mass expulsion is required for tracking variations 
in
 

If the reaction jet is rotor-fixed,-only one
the earth's clock angle. 


jet is required for two-axis control. In addition, if the-jet is
 

rotor-fixed, leakage torques average out.
 

Concerning the required trajectory corrections, 
a relatively
 

large amount of fuel (10 ib) is needed for making the ten large angle
 

However, this value is somewhat conservative since it is based
 
turns. 


some cases, th6 required turn may be considerably
on 3600 turns, in 


less than this. If the midcourse motor is mounted along the spin axis
 

It will be seen later-that it
 of the rotor, no autopilot is required. 


not the weight of the fuel required for the large angle 
turns that
 

is 

a


is critical; it is the weight of the bipropellant system as whole
 

that is the critical factor.
 

Concerning the precisely oriented planetary instrumentation
 

package, no problem areas are expected. In fact, the dual-spin vehicle
 

a simultaneous
is especially suited for missions in which there is 


requirement for earth communication and planet 
observation.
 

Concerning the requirement for high reliability, a problem 
area
 

exists in that it is difficult to achieve redundancy for 
a critical
 

component - the spin bearings!
 

Comparison of the Weight and Power Requirements Associated
'6.3 


With Attitude Control
 

In this section, estimates of the weight and power requirements
 

associated with attitude control'are provided. Estimates of the fuel
 

consumed for the dual-spin vehicle in the cruise mode and 
that consumed
 

in the large angle turn mode have already been discussed 
(see Sections
 

Tables 6.3 and 6.4 (based on Reference 2) provide the weight
4 and 5). 


and power requirements associated with the attitude control-task.
 

Usig the fuel optimal controllei for the dual-spin vehicle, io­

is estimated that the fuel weight can be reduced by 2.3 
lb during the
 

In addition, the estimated
cruise mode (5.7 lb rather than 8 lb). 

weight of the bipropellant system used for accomplishing the 
large angle 

3 lb less than that given in Table 6.3, (30 lb rather than
turns is 
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33 lb). Hence, the estimateof the total weight associated with the
 

attitude control task determined in this work is 5.3 lb less than that
 

given-in Table 6.3. Assuming the weights of the other items to be
 

those given in Table 6.3, the weight of the optimal dual-spin spacecraft
 

system becomes 143.2 rather than 148.5 lb..
 

The weights of the momentum wheel systems are given in Table
 

the weight of the
6.4. Using the-weight associated with (option 3), 


momentum wheel system is 17.2 lb less.than that for the optimal
 

dual-spin vehicle.
 

Concerning the power requirements, the continuous power is
 

considerably less for the dual-spin vehicle than for the momentum wheel
 

system (34.5 compared to 91.5 watts).
 

6.4 	 Improved Baseline Systems Versus Dual-Spin and
 

Momentum Wheel Systems
 

This section provides a comparison of the weight and power
 

requirements associated with attitude control (A/C) for the dual-spin,
 

,the momentum .whee&-,gas j.e.t, .and the impno.ed baseline systems. The
 

improved baseline systems include the
 

(1) momentum wheel-hydrazine system
 

(2) pulsed plasvma-hydrazine system.
 

The use of an hydrazine system instead of gas jets for desatur­

ating the momentum wheels is advantageous because of the accompanying
 

weight savings. The hydrazine used for desaturation is pumped from the
 

midcourse engine supply. Compared to the original baseline system
 

a weight savings of 12 to 20 lb is-realized
(momentum wheel-gas jet), 


by using the momentum wheel-hydrazine system. For this reason, this
 

system has replaced the momentum wheel-gas jet system as the baseline
 

system for the MPH.
 

A proposed baseline system which results in-a substantial
 

weight 	savings is the pulsed plasma - hydrazine system. A pulsed plasma
 

(an electric propulsion system) has recently been flown on the LES 6
 

Satellite. Although the flight worthiness of this system has not been
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Table 6.3
 

WEIGFf AND POWER REQUIREMENTS FOR THE DUAL-SPIN SYSTEM USING 

REACTION JETS FOR ATTITUDE
 
POWER watts 

WEIGHT SIZE CONT PEAK -

ITEM (Ib)
 

4.
S.
--ATTITUDE CONTROL 

ELECTRONICS 
(REDUNDANT)
 

4.
16.
--CANOPUS SENSORS 

(STANDBY REDUNDANT)
 

1.
1.
--SUN SENSORS 

(REDUNDANT)
 

6.
30.
--DESPIN CONTROL 

ASSEMBLY (REDUNDANT)
 

--COLD GAS PRECESSION SYSTEM * 

8.
NITROGEN 

2W
12.8 4-g8" RADI.TANKS 

1.2
VALVES (2) 
2.0
REGULATORS 


PLUMBING & 'MISC 2.5 

10.--SOLID PROPELL SPINUP 

' SPIN I4WIN'ENA-NCE SYSTEM
 

2W
33.
--B-PROPELL PRECESS SYSTEM 


4. 1410.
--SCAN PLATFORM ACTUATOR 


& ELECTRONICS o.
 

3.
4.
-ANTENI-A POINTING 

ELECTRONICS 2.5S
2. 


--ACCELERONIETER 

10.
8. 


--GYROS 


3.
 
--MUTATION DAMPER 


34.S
148.S
TOTAL: 


The estimate of this item obtained in this study is 5.7 
lb.
 

**The estimate of this item obtained in this study is 30 lb.
 
The estimate of this item obtained in this study is 143.2 lb.
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Table 6.4 

SYSTEM USINGWEIGHF AND POWER REQUIREMENTS OF THE MOHENTUM WHEEL 


MASS EXPULSION (GAS JET) FOR UNLOADING TIE WHEELSt

(watts) 

POWER PEAKCeNTSIZEWEIGHT
(lb).
 

ITEM 
 8.6
 
CONTROL


-'-ATTITUDE 

(TRIPLE


ELECTRONICS 


REDUNDANT)
 
16 4
-. CANOPUS SENSORS 

(TWO-STANDBY REDUNDANT) 
1--SUN SENSORS (REDUNDANT) 1 


x
--MOMENTUM WHEELS - 30. 6"1 DIA. 
3" HIGH 2W/WHEEL(6-1Wheels) 

-- GAS SYSTEM (TRIPLE 
REDUNDANT) 11.3
 

*NITROGEN
 
18 5.1" RAD.
*TANKS (2) 


2W/AXIS
VALVES (12) & THRUSTERS 6.4 
2.5
REGULATORS 

3.1
PLUMBING & MISC 

4 14
10.
--SCAN P.LATFOIA 

ACTUATOR & ELECTRONICS
 

4
4.5
--ANTENNA POINTING 

ELECTRONICS (OPTICAL)
 

-- ACCELEROMETER (AV SHUTOFF) 2 2.5 

6.2 60
--GIMBALLED AUTOPILOT 

ELECTRONICS & ACTUATORS
 
(2 AXES)
 

--BYROS (STANDBY REDUNDANT) 12. 10
 

TOTAL (OPTIONS 1,2,4) 131.
 

m*OPTION P 

9.5
NITROGEN 

15.2
TANKS 


* TOTAL (OPTION 3) 126. 91.5
 

tThe weight of fuel consumed could conceivably be reduced if a
 

different type of mass expulsion were used.
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completely established, nevertheless, it is considered a likely candidate
 

because of the conspicuous weight savings associated with its use. It has
 

been estimated that a weight savings of 48 lbs and a power savings of­

11 watts (relative to the momentum wheel-gas jet system) can be realized
 

by using this newly proposed system. 

6.4.1 RTG Weight
 

An important parameter associated with the RTG (radioisotope
 

thermoelectric generator) is the quantity of power (watts) that can be
 

realized per pound. In the development of the RTG, a design goal is that
 

this parameter have a value of 1.5 watts/lb. Hence, the power require­

mpnts of a system affect the system weight. The RTG weight and the
 

combined RTG and A/C system weight associated with the various systems
 

are provided in Table 6.5.
 

Table 6.5 

RTG WEIGHT AND COMBINED A/C SYSTEI 
AND RTG WEIGHT FOR VARIOUS SYSTEMS 

.A/C SYSTEM RTG WEIGHT COMBINED RTG AND 
WEIGHT (LB) A/C SYSTEM WEIGHT 

(LB) (LB) 
-166.t
143.2 23.
DUAL-SPIN 


MOMENTUM WHEEL-GAS JET 126. 61. 187.
 

MOMENTUM I IEEL-IIYDPAZINE 106. 61. 167.
 

PULSED PLASMA-HYDRAZINE 78. 53.5 131.5
 

tThis weight can potentially be reduced by replacing the cold gas and
 
bipropellant systems by a hydrazine system.
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7. RECOMMENDATIONS FOR FURTHER STUDY 

In this section, recommendations for further study are provided.
 

to what extentOne of the main objectives of this'study was to determine 

optimization techniques could be used to evaluate the relative merits of
 

In this vein in order to determine the
attitude control systems. 


accurate weight of the fuel required for attitude control, further study
 

would include the
 

(1) determination of the fuel-optimal controller for the
 

large-angle case,
 

(2) determination of the optimal parameters for the
 

dual-spin system,
 

(3) examination of additional initial conditions..
 

It is expected, however, that the weight of the fuel saved by
 

using a fuel-optimal controller throughout the entire mission will not
 

significantly change the results provided'in Table 6.5.
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Pages' 1± Missing in 
Original Documfent ABSTRACT 

The dynamics and fuel-optimal control aspects of a class of dual-spin 

vehicles appropriate for deep-space missions are investigated. A­

dual-spin slacecraft typically consists o? a spinning rotor providing 

sufficient. stored angular momentiLumfor stabilization, -and a despun 

portion which provides a platform for an antenna and planetary 

.encounter instrumentation. This dissertation deals primarily with 

the cruise mode of the mission; in this mode, the fuel-optimal 

task of maintaining the desired orientation of the
controller has th 


so that the antenna can be
 
rotor spin axis relative to ihertial space, 

directed toward its target by an electric motor of a single-axis 

- control system. 

The linearized rotational equations of motion for the class of dual-spin 

These equations characterize the
vehicles of concern are developed. 

The other constituents of the optimal
,plant or the control process (S). 


control problem include the class of admissible controllers A, the
 

f,-the initial set X0 , thetarget set X 1 , and

control restraint set 


J; these elements are systematically discussed

the cost functional 


The nature of the control

.with emphasis on the practical aspects. 


restraint set n and the target set X are determined by carefully
 

Once

considering the physical and practical aspects of the problem. 

X0,X, i 4xJ} is formulated,the fuel-optimal control problem IS, A ,0, 

provided. The cornerstones of this 
a solid theoretical framework is 

as controllability, normality, and
foundation consist of such concepts 

their connection with the existence and uniqueness of the fuel-optimal 

The necessary conditions f6r local optimality are obtained
controller. 


by using the calculus of variations and are verified by appealing to the
 

maximum principle. Sufficient conditions for optimality are also
 

discussed.
 

iii 



The computational algorithm used for determining the fuel-optimal 

controller belongs to the family of the so-called indirect methods in 

in particular.
general and to the class of Newton-Raphson techniques, 

The basic achievement of this dissertation is in the introduction of 

practically motivated innovations in the selection bf the target set X1 

and the control restraint set P. The.result is a substantial improve­

both in terms of cost 
ment over previous "fuel-optimal" controllers, 

in fuel and ease of implementation. 
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Section 1 

INTRODUCTION 

1. 1 Dual-Spin Spacecraft 

This dissertation deals with the determination of the fuel-optimal 

controller for a class of dual-spin spacecraft appropriate for deep­

space missions. A dual-spin vehicle has been the subject of several 

recent investigations see, e.g., [II). Considerable attention has 

been focused on the important question of the attitude stability of 

these vehicles (see, e. g., [2] - [51). Typically, a dual-spin vehicle 

consists of a spinning rotor which provides sufficient stored angular 

a despun portion which provides a plat­

-

momentum for stabilization, 

form for planetary encounter instrumentation, a nutation damper, and 

an antenna for tracking the target. The dual-spin vehicle is especially 

suited for applications requiring simultaneous earth communication 

and planet observation (see Likins .and Larson [6]). 

1. 2 Fuel -Optimization 

Because of its great practical importance, the notion of fuel­

optimization has received considerable attention in the aerospace
 

[71 and [8]). However, the application of optimi­
industry (see Refs. 


still

zation techniques specifically to attitude control problems is 

[9] arfd [10l). There have been even fewer
relatively rare (see Eefs. 


studies which have dealt with the fuel-optimal control of spinning
 

vehicles. 

1. 3 Fuel-Optimal Control of Spinning Vehicles 

Sohoni and Guild [111 investigate the fuel-optimal control of the spin
 

Athans and Debs [12] investigate

axis of a spinning symmetric vehicle. 


of the

the analytical aspects of the problem concerning the control 


angular velocity of a spinning syrnmetric vehicle. Porcelli investigates
 

A-i 
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the sub-fuel-optimal control of both a symmetric spinning vehicle [ 13] 

in his work, optimizationand a. symmetric dual-spin vehicle [14]. 

an intuitive and graphical approach
techniques are not utilized; instead, 

is used. 

1.4 	 Fuel-Optimal Control Using an Angular Momentum Control 

Concept 

None of the preceding studies makes'nse of a properly placed nutation 

an integral part of every dual-spin
damper, although such a device is 

In a sense, the previous studies are not practicallyspacecraft. 


Since the objective of this dissertation is the application of

oriented. 

a
optimization techniques to a meaningful and practical problem, 


included in the control problem formulation. The

nutation damper is 


a practical implementation
use of a nutation damper results not only in 


on the optimal control concept. It not

but has a considerable effect 


only affects the theoretical aspects of the problem formulation and the
 

but more importantly it affects the amount

computational algorithm, 


of fuel required to achieve the control objective.
 

The inclusion of a nutation damper in the control concept leads to what
 

The hybrid control scheme consists

is called a hybrid control scheme. 


of both an active phase and a passive phase. During the active phase,
 

aligned to the desired direction in
 
the angular momentum vector H is 


The notion of aligning H to H is called an

inertial space. H . 

During the 
angular momentum control (AMCO) concept in this work. 


passive phase, the nutation damper is used to complete the task of
 

In previous investigations, an active

aligning the antenna axis to HD . 


phase is used to accomplish the entire control objective. The notion
 

of aligning the spin axis (antenna axis) to the desired direction in
 
-

inertial space by using an active controller is called a spin axis control 

(SACO) concept in this work. 

A-2 
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The differences between the practical concept (AMCO) and the 

previously investigated concept (SACO) can be discerned by examining 

Figure 1. 1. Figure 1. 1 illustrates the torque-free motion of a 

The trace swept out by the angular velocity vectorsymmetric body. 
on the on the energy ellipsoid is called the polhode and that swept out 

invariant plane is called the herpolhode [15]. The motion is charac­

cone on the space con&without slip.terized by the rolling of the body 

For the SACO concept, it is necessary to apply a moment (control) in 

a 3, the angular velocity vector. w andorder to align the spin axis 

the desir.ed angular momentum vector HD In the AMiCO concept, 

H is aligned to the desired directionthe angular momentum vector 

HD during the active phase. The alignment of the
in inertial space 

bearing axis to the desired direction H D = H is accomplished during 

the passive phase by the properly designed nutation damper. 

In regard to the optimal control problem, the significant difference 

between the AMCO and SACO concepts is the target set X1 . For the
 

Rn (in
SACO concept, the target set consists of a fixed point in 


the target set is given by
particular, the null vector) that is, 

X= {(xt): x(t1 ) = x, = 0, t1 free but finite} 

the target set for the AMCO concept is a smoothOn the other hand, 

t*o -fold in Rn and is given by 

X 1 = {(x, t) gl(x(t1 ))= 0 and g 2 (x(tl= 0, t1 free} 

where g, (x) and g (x) refer to the components of the inertial 

the desired angular morneniumangular mom.entut transverse to HD , 

vector.
 

Another important difference between the optimal-control problem 

formulated in this work and that discussed by previous investigators 
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Figure 1-1 Illustration Showing Torque-Free Motion of Symmetric Spinning Body I 



is in the nature of the control restraint set Q. The control restraint 

set should be chosen primagily on the basis of practical rather than 

mathematical considerations. Previous investigators have invariably 

used the compact convex control restraint set 

=.u(): Jui(t) 1-<1 Vj 

in formalating the fuel-optimal attitude control problem for spinning 

vehicles. This set is mathematically correct and even physically 

appropriate for the attitude control of nonspinning bodies. However, 

when the vehicle is spinning, the .spin rate itself provides the means 

for satisfying the requirement that both positive and negative moments 

convex control restraint setbe available for control. The compact 

used in this work is given by 

2 = Tu(t) : 0 !5-u (t):-i "VJ
 

It will be seen later that this seemingly slight difference has some 

significant practical implications. 

1. 5 Scope of the Dissertation 

The fuel-optimal control problem formulated in this work evolved from 

the previously cited investigations. The use of a fuel-optimal con­

troller for a ballistic spacecraft for deep-space missions is extremely 

can be carried. Theimportant since only a limited amount of fuel 

determination of the fuel-optimal controller for a class of dual-spin 

as special cases; isvehicles, including symmetric spinning vehicles 

The comparison of the AMCO one of the primary aims of this work. 


concept introduced in this work with the SACO concept studied by
 

concern.
other investigators is of special 

An equally important objective of this work is to demonstrate the 

utility of optimization theory in the preliminary design of competitive 
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spacecraft configurations. By determiningthe nature of the optimal 

controller for various control restraint sets'O and for various target 

The use of optimi­
sets X 1, the most practical design can be chosen. 


zation theory for such purposes is not accompanied by the customary
 

.limitations concerning computer storage and computer speed.
 

Although practical rather than theoretical considerations are empha­

sized in this dissertation, nevertheless, a solid theoretical framework 

of a generalThis framework emphasizes the structureis provided. 
a 

optinal control pl'oblem and provides the machinery for attacking 


general problem even though only the fuel -optimal controller for a
 

.dual-spin spacecraft is determined herein. 

a powerful and extremely useful developmentChapter 2 provides 

concerning the rotational motion of an arbitrary elastic constant mass 

system. With slight modifications, these equations would be appro-

The rotational equations
* priate for variable mass systems as well. 

of motion for the dual-spin spacecraft and the symmetric spinning 

of the general result. The
vehicle are obtained as special cases 

damper terms are discussed for completeness even though they enter 

Such effects
into the control problem only during the passive phase. 

being con­
are of great importance when the question of stability is 

are insignificant in comparison to the 
sidered (see Likins [4]) but 

Nevertheless, the damper
relatively large applied control lorques. 


plays a significant role in the AMCO concept.
 

In Chapter 3, the formulation of the fuel-optimal control ,problem 

pertaining to a class of dual-spin spacecraft is discussed. This 

sets the stage for the ensuing discussion of the long step-by­
chapter 


step procedure for determining the.fuel-optimal controller.
 

extremely important in the determina­areThe concepts of Chapter 4 

tion of the fuel-optimal. controller not only because they strongly 
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affect the computational procedure but also because they affect the 

For example, if it cannotinterpretation of the computational results. 

a control problem is normal, then*be proved or demonstrated that 

special attention must be given to the possibility that a singular 

optimal solution exists. The investigation of the notions of Chapter 4 

constitutes the first step in the determination of the optimal controller. 

Chapter 5 provides the necessary conditions for optinality. For 

the necessary conditions for optimality for the problems
completeness, 

are developed using the calculus of variations rather than
of interest 


the treatment tends to be self-contained.
just stated. Consequently, 

The necessary conditions obtained from Pontryagin' s Maximum 

Principle under weaker differentiability assumptions are stated
 

In addition to providing a discussion of the necessary
without proof. 

conditions, Chapter 5 also provides some sufficient conditions for 

optim ality. 

Chapter 6 provides a discussion of the computational algorithm used 

The algorithm chosen in 
to determine the fuel-optimal controller. 


this work belongs to the family of indirect methods in general and to
 

in particular, This algo­
the class of Newton-Raphson techniques, 


considered suitable for the application at hand, especially
rithm is 

when due concern is given to the practical considerations. In general, 

made after con­the selection of a computational algorithm is 

sidering the nature of the optimal controller, the practical impli­

cations, the simplicity of the formulation and implem entation, and 

estimates of the computer- storage requirements, convergence 

would be desirable to
sensitivity, and convergence time. Ideally, it 

compare such factors as computer storage requirements, converg­

ence sensitivity, and convergence time associated with the Newton-

Raphson algorithm with those associated with the use of several 
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other algorithms. In this way, the most suitable algorithm for this 

class, of problems could be determined. Such an undertaking, however, 

is not within the scope of the present work. 

Chapter 7 provides a summary of the significant results obtained front 

this study. The most important results are those that pertain to the 

control concept with the spincomparison of the angular momentum 

axis control concept. Chapter 7 also provides the conclusions drawn 

from this study. 
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Section 2 

OF MOTIONROTATIONAL EQUATIONS 
FOR A DUAL-SPIN VEHICLE 

This chapter provides the rotational equ-ttions of motion for a genera 

The rotational equations of motion for
elastic (constant mass) body. 

special
a dual-spin vehicle and a spinning vehicle are then obtained as 

basedThe derivation provided below is 
cases of the general result. 

solely on fundamental notions of Newtonian mechanics. 

2. 1 Rotational Equations of Motion for a General Flexible Body 

In this section, the rotational equations of motion for a general 

The results are obtained by straight ­
flexible body are obtained. 

forwardly manipulating the basic definitions of Newtonian mechanics. 

the following well-known vector relationship
In this development, 

will be frequently used [16] 

R R 2 R I R 2 -2
I 2 d 12
1 


where q represents any vector 

same origin
R11 R2 represent any Euclidean frames having the 

When frame R is the Newtonian frame, 

Ri1d 
dt 

R2 d 
- s refer to'time derivatives of q relative to 

frames R 1 , R 2 , respectively 

Ft R 2 

W 2 refers to the angular velocity of frame R 2 relative to R I . 

and R2 is some body-fixed 

frame, tho,time derivatives and the anglar velocity vector will 

sometimes be written as 
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Nd
 

R2d
 

qdt =1 

N WR2 

The notation first introduced by Dirac [17
for notational convenience. 


to distinguish between column and row vectors will occasionally be
 

Dirac used the symbols > and < to represent column and row 
used. 

Using thisnotation, the common operations
vectors, respectively. 

<" , > and - > <" 
as inner and outer products becomeknown 

< , > is used frequently in this
The inner productrespectively. 


En while at other times
 
work; sometines it is defined on the space 


When the space is En the elements
 
it is defined on a Hilbert space. 


in
clear that the elements are vectors 
are underscored to make it 


of course, redundant).
En (the underscoring is, 


The outer product u > < v defined on a finite-dimensional space
 

has as its matrix representation
 

u I v ... u I v nu I VI 

• 2 vnu 2 v I u2 v 2 

UnV1 U V 2 . . .. u v 
n n 2 n n 

A result similar to that of Equation (2-1) applies to the operation 

obtained from the chain rule for differentiation 
u > < v ; this result is 


and is given by
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Na-(u> <v) =di><V+U><'Y 

-(U.+w x u)><v+u><(+XV) 

xu> <v-u><vxw
= *><v+u><*+w 


-A>d (u> <v)+ L.)-x u >< v-u > < v x u(2-2) 

is involved, the result is 
In particular, when the inertia dyadic nJ 

(2-3)N -W(+ W'T- dr_ 

Since operations involving vectors and operations involving dyads 

the matrix representation of these 
can be- represented as matrices, 


For example, the
 
operations are used frequently in this chapter. 

a sum of dyads is
inertia dyadic Q9 written as 

> < 
. A typical dyad -ei 

where e , e belong to the space E 3
 

is simply
 

1I ( 0 0 10 (o 0l) 0 0o 0 

-l is
Hence, the matrix representation of the dyadic 

Jl 12 13
 

J21 J22 
 J23 

3331 32 
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Other common operations involving vectors that are frequently 

and w x (w x q).represented by matrices in this chapter are. w x q 

The operation w x I (where w and q are vectors in E') can be 

written as 

q2N
 " 
0W3 

3_U2, W1 0q 

and the operation w x (u x q) can be written as 

2 2 
) 

12(We e2We3 
'q­-. 

2 3 1 

3 32 1-1w 2233 

2. 1. 1 Newtonian Approach 

In this section the rotational equations of motion are obtained from 

Later the same result is 
the so-called "Newtonian" approach. 

such a way that the "kine ­
obtained by recasting the equations in 

The notion of relativerevealed.matical" nature of the problem is 


angular momentum plays a central role in this development.
 
I 

Definition Relative Angular M;omentum 

The relative angular momentum in a frame R with respect to any 

point P is given by (see Figure 2. 1) 

R 

(2-4)Rrp rr d r dm 
H j-p dt -p 
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CONSTANT MASS SYSTEM
 

-p-


N .N..dm 
R 
 -

._- PcC
p 

'Figure 2-1- -pictorial Representaio~nof a-Gen~eral Elastic Body 

NOTES: 

1. Point P isthe origin of frame A 

2. Point C isthe center of mass of the body
 

oInparticular, when the point P is he center of mass C and frame R 

is the Newtonian framne, the angular m omentum is given by 

NHC=-c Nd(-)

d 20 dm(25 

the starting point for the-derivation.Equation (2 -5) is 

introduce a frame A containing the point P whichFor convenience, 


coincides -with the nominal or undeformed center of nmass and par­

ticipates in the motion of the corresponding point of the material 

(point C), point P 
system, if such exists. Unlike the center of mass 
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The vector p expressed in terms of vectors 
is fixed in frame A. 

P is given bymeasured relative to 	point 

(2-6)r- d 

Substituting Equation (2-6) into Eqqation (2-5) and differentiating 

relative to the Newtonian frame yields 

(2-7)
r - c\XC)d 

Expanding Equation (2-7) yields 

- -pc283- p drnmi-d-p0PCxMd-pc -\r2:dm xdP _ j--=prPxri dm - dPCx 5r 	 (2 -8)• 
d
 

) mt () and the-distribution operator
The temporal operator 

are clearly commutative and, hence, 
(2 -9)

di2 r dm(29
i dm = d-

-P dt2
 

the first moment relative to the point -P is 
By definition, 

(2-10) 
_P P rp dm= M d-PC
 

It follows, therefore, 	that, 

×X[L- dpcx× p -nc 
(2-11) 

-=drp dmx 


P -pc-- pc
 

P 
cixd =Y xd 

p
-pc -pc -

Substituting the results of Equation (2-11) into Equation (2-8) yields 

(2-12)
9 c S r x r dm + 	dC x (-Mi ) 


- 1pc ­jp -p
-
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The integral term can be rewritten as 

d (2-13)dm Nrdt -P 


Using the results of Equation (2-1) in Equation (2-13) yields 

(2-14)x jdm= Nx - p+ dm 

Expanding Equation (2-14) yields 

N rx (ux r)dm (2-15)rNd 5 - ­-p -pd _rp
-p - t 


Combining all the terms, the resulting equation is 

)dml,Ic = _p dm + - px (Wx r 

(2 -16) 
Tt PP d -p ­

it follows that
From the definition of relative angular momentum, 

Nd Y Nd A 
H
P A*P
 

T r x dm= -dt -- -
P -p 

can be expanded as
The second integral term of Equation (2 -16) 

(2-17)N Y< r p > >- r ><r, cw> dm 
TIt -p -p -P --

This form is convenient since it leads naturally to the notion of 

Rewriting Equation
dyads and to the definition of the inertia dyadic. 

(2-17) as an operation on the vector w yields 

)dn, W (2-18)
d[ r, r > E -r ><r > 


Tt-p - - Ip 


Equation (2-18) can be 
From the definition of the inertia dyadic, 


written as
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The final equation is thus 

p0 = A kP + NANd w ++d , x (M ap) (-9 

From the definition of H, it follows that 

it S.q x'cdmS 2PxQ tdm 62-20) 

Substituting the relationship 

i dm = dF+ df 

where dF, df refer to differential external and internal forces, 

respectively, into Equation (2-20) yield:s 

_ X (dF+ di- - Epdmx R 

(2-21) 

c - - -C 

It follows from the definition of the mass moment about the center of 
c 

about mass that p 0.. Hence, for a system in which the moment 


the center of mass due to the internal forces is zero (one that obeys
 

the following relationship holds
Newton s third law), 


tc =M c (2-22)
 

and (2-22) represent the desired rotational equationsEquations (2-19) 


The term when
of motion for any constant'mass system. 


expanded becomes
 

APj Nd p A --d _rxm dm-0 C r x r dm
= TtP-P x2 -p-pXdm = TdtJ--pr dm -J-P+W X 
-ti--

(2-23).AP =A1P+'*AHP
 
H= H +x H
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N 
becomes

From the results of Equiation (2-3) the term 

NdU P WP W(-24) 

Note, however, that the term QDP x w wb is identically zero as 

can be seen by examining the following identity 

x . C W> (2-25)ja ,xwL,. 

Collecting all the results together the final expanded equation is 

Me U +(aX " + r xr dm 
-V - -- p -p 

+w( x SrPxrpdm '(2 -2 6) 

+ xP M PC+ 2toxd- PC+6- x d-pc-PC+wox(wxd Hd1l-pc -Pc -pc ~ 

2. 1. 2 Kinematical Approach
 

In this section, the same result obtained in the previous section is
 

obtained in such a way that the "kinematical" nature of the problem
 

is more evident. Starting with the relative angular momentum with
 

HP 
respect to point P, a relationship between and H c is easily
 

obtained and is given by
 

NHE = r xr dm x+(dx _+ ~1dm (­
-P(2 -27)-- i. -


Np P (PcP P
 
NHP = Ec + d 
 x M 

-- - -pc -pc
 

where 
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2~c x -c dm If 

~dd drn d x- p dm
 

P - jP m -P dtd-C
 

Examination of the term H P reveals 

NH = rx r -dmr xr P + w xrp)dm-=A HP+P P(u)xr) 

(2-28) 

As shown previously, 
rpX(toxrp)P _(2-29)[ 

PP 

The term P " wo can be viewed as the angular momentum of the 

total system rotating with the angular velocity of frame A, N HA. 

Combining the results of Equations (2-27) through (2-29) provides 

NHe =N HP-d xMd =NHA+AHP-d xMd (2-30)
 
-P-pcc PC - -Pc -Pc
 

Taking the time derivative of Equation (2-30) yields the desired 

result 

N.c M.c N+A P d 

Nc " - dC xMc l (2-31)t A 
fp -- -pc -pc _ 


Equation (2-31) is a convenient and concise statement of the general
 

result. For the special case in which che elastic body is rigid and
 

the point P is the center of mass, the result is
 

Mc N d c
 
(2-32)
S- t () 
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2.2 Rotational Equations of Motion for A Dual-Spin Vehicle 

In this section, the rotational equations of motion for the dual-spin 

are provided. They are obtained by appro­
vehicle (see Figure 2-2) 

The 
priately 	interpreting the general result given in Equation (2-31). 

-

dual-spin vehicle being considered here is essentially the same as that 

the vehicle consists of
As shown in Figure 2-2,

discussed by Likins [4]. 

(1) an asymmetrical portionT­

(2) a mass-spring -dashpot damper 

(3) 	 a symlinetrical rotor 

chosen as that frame established by the asymmetrical
The frame A is 


assumed to be that established by the bearings

body. The rotor axis is 


The mass
:which permit relative rotation of the two primary bodies. 

constrained against relative. 
centers of the two primary bodies are 


also assumed that a closed-loop control system

translation. It is 


governs the behavior of the motor used to maintain the rotor speed or
 

the single axis control of the despunNdA platorm. 

-.2.2.1 Evaluation of the Term .d ( f ')Tt~ N d (A LP) 

Both the rotor and the damper contribute to the term A (
 

made by the rotor is
The contribution to AHP 

(2-33)
HR 3 	 a 3 

where 

the angular velocity of the rbtor relative to the frame A 
a a3 = 

R the 	axial moment of inertia of the rotor.3 is 

P
 
The contribution to 

.A 
H made by the damper mass m is
 

in whichobtained 	for the general case 
'The equations of motion are 

even though a symmetric vehicle 
the despun body is asymmetrical 


is of concern in this work.
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•/--.SYMMETRIC ROTOR R 

SYMMETRIC BODY A 

/p -A2. 

Figure Pictoria/lRepresentation of a General Dual-Spin Vehicle 

NOTE 
1: The damper mass is constrained to move in the a3 direction and is located relative to the point P by 

rpd a1 + a3 
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A P A A- A d.A 

2 AP ad + z >xm Tt(d'+za
.Damperk -1-	 a33dx 

It~AA 

mdz 2 (2-34) 

Differentiating and collecting the terms of Equations (2-33) and (2-34) 

yields 

N dA d/AP A? 

-n 

HARH )+ w 
d(AHtF(A 

d a ac+ Wx)(JR a a -mi d a) 

- nr za= 3 a3 2 +2+ 2_ 

-m d {w 1I- 3 - L3 1} (2-35) 

Nd (AP\ 
The term - H written as a column matriX is 

R 9W+md 3"
J 3 2 + 

md JR o (2-36)W1 
J -rn-J 3 1 

2.2.2 	 Evaluation of the term d x (-Md 

-pc A 

the damper mass n is constrained to move in the direction a it 

follows that 

M d zA (2-37)
-Pc 	 -3 

where M = the total system mass. 
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* From Equation (2-37), the vector d is given by
-Pc 

i A (2-38)d. z -3a,-pc 

and aC, d are given by 

d -z a 3 

-Pc M 3 (2 -39) 

00d Il-h .-z- aA
 

-pC M -3
 

Substituting Equation (2:39) in the expanded form of dPx (-Mi P) 

yields 

z' -a -z 

+WX3 xmz ] (2-40) 

x (- Md )aa- Simplifying Equation (2-40) and writing the term d 


column matrix yields

)22 (z 

- (i 2- 2 zrmz)2 

M 23 M 1 M 1
 

2 2 2(2-41)
(mz) in (mz) 

- 2 M (52M 

2.2.3 Evaluation of the term Nd( 

N d p
 
the time rate of change of the angularThe term T (Q3 ") is 

of the total system rotating with the angular velocity ofmomentum 

* frame A. The inertia matrix for the total system about point P is 

designated by J, the principal axis moments of inertia of the unde­

formed system about point P are designated I . The equation for 

this matrix J is 
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= 22 0 r 0 z 
 (2-42) 

S-dz 0 o 

The term ZOP w is equivalent to the matrix 

{ (2-43). 1{u}+mEo *2 } 

Ld._S 0 

is wellThe form of the contribution made by the term involving I 

known and is given by (Euler' s equation). In matrix notation the term 
N d
 

t- I] _ becomes11 1I-(12 3 2 W- 1# 3' 

1:2 1311W (2-44)[13 s -(1I1- 12) WIW2] 

mass is given byThe remaining term due to the damper 

N9 )
d *m+. e m t +t C. In matrix notationdt Vm Wn =Z- O In m ­

this is written as
 

m LE VIW2zi j Tu+Inw3 0 +_jW 2 2 dz ] 

d;" 0 01_w 2 Ej 1 0 dz 0 0 W3
 

2
 

(2-45)f+ m 0 z 0 2 


-dZ 0 0 W3
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After performing the matrix multiplications indicated in Equation 

(2-45), the matrix representation of the term Nd ( m w) becomes 
dt 

-'3	
. 

"2z ,0-d ­2z iI d -z2 E2 3- dzwlw2+ z 2 6 i- dz Ci 

2 2 '2 2. (2-46) 
m 2z uo +z w13- dz w 3 + dz +z w 2
 

2+ 1Iw2-dz
-d 1 -Z-ztu 12 dz w23 + Z2 

With the combination of the results of Equations (2 -44) and (2-46), the 

term ( •o)becomesw 

N 	 ddwAw2 

2. -dz ] 
+ C- dz 3)] 

2 

4 +n+2 dzw 2 +dzw 

2 z 

+ 
+ 

3[(36- 1- 2 1 )m d 2-3%- 1)] 

(2-47) 

2.2.4 	 Rotational Equations 

(2-41) and (2-47) representThe combined terms of Equations (2-36), 

three of the five equations required to characterize the motion for 

the system. These scalar equations are 

M 1 = [1161- (12- I3) 2 3 JR 9 

2+[2mz(1-)Col-mz	 (i -d) to2 t 3 

2] 	 (2-48)+m z2(1~,i _mdz63 1mdz 
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M2 [ 2 o62 - (' 3 -IYpww 3 -43w1] 

+ [- 2 ma7,w +±mdz - Indz6 jw2 o 3 

To obtain a complete set of equations in the five unknowns (W 1, w 2 , W3 ; 

a, z), the preceding equations must be supplemented by some internal 

specification of the behavior of the rotor and the damper mass. 

Supplementary Rotor Equation 

The supplementary equation for the rotor is 
H 

(2-49)MP = J3 (C +dr)3 3 

where MR is the rotor torque about the a3 axis. 

The torque M is due to the combination of bearing friction and the 

applied motor torque. In the present application, the motor torque 

would be determined by a closed loop control system designed to 

maintain the desired rate to3. 

Supplementary Damper Equation 

The damper mass motion is governed by the equation 

A A (2-50)F - m aCQ a3 

where ai is the inertial acceleration of the mass point Q
-CQ
 

dCQ is the position vector of the mass m located relative 

to the center of mass of the system'(point C). 

A-25 
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a directionThe component of the force applied to the damper in the 


is that due to the spring and dashpot. Consequently, Equation (2-50)
 

becomes
 

A dcp+ d (2-51) 
-CQ -3 dt2 

dcP dPQ are given byThe position vectors 

m A 

-cp -PC - M -3 
(2-52)

dP dad+ za 3 

the vector d is given by-eQ 

dC = C,d l d Aa 1+z (I -Aa3 	 (2*-53) 

The term d is evaluated according to 
-pc 

x (2-54).-d + 2w x dcQ+ _ dQ+w x (w x d 

- CQ -CQ - CQ -- CQ - -- CQ_
 

obtained from the following partitioned
The a 3 component of CQ is 


matrix equation
 

K-~1+2 [01a1= 	 +d ~ 0 

d 	 (2-55) 

w1+W2+w2 {z-M)jL31 2IW3U2 
Combining Equations (2-51) and (2-55) yields the desired result
 

m .. m (21+U2)
 

0=m(1- -- )+c .+kz -md6 2 + m d wlw m)( 2	 ) 

(2-56) 
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Equation (2-48), (2-49), and (2-56) provide the set of five scalar 

equations which governs the motion of the system. 

2.3 	 Simplified Rotatipnal-Eqiations of Motion for Dual-Spin 
Vehicles 

In this section, the rotational equations of motion for a specific class 

of vehicles designed to perform specific mission objectives are 

selectedobtained. As stated in Section 1, the dual-spin vehicle was 

for the deep-space mission because of the requirement for simul-

In this disser ­taneous earth communication and planet observation. 

an axis of symmetry. Thetation, it is assumed that the a3 axis is 

main function of the control system is to maintain the desired orien­

tation of the angular momentum vector during the cruise mode and-to 

reorient the angular momentum vector during the large angle turn 

mode. In comparison with the applied rHoments, the torques due to 

the presence of the damper can be neglected. Under these assumptions 

the approximate rotational equations become 

M R
I-I 	 J 2 

233 1 3 

1 3- 	 3 + 3
 

M 43I
R 

J3
 

As stated previously, a closed loop control system forthe a 3 axis 

will ensure that the angular velocity about that axis is maintained at 
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.the desired value. Consequently, in this work, the control of the 

angular velocities (o1 and 102 and the angles 91, 02 is of chief concern 

(see Figure 2-3). 

2. 	 3. 1 Rotational Equations of Motion in Terms of Attitude Angles
 

(Symmetric Vehicle)
 

dual-In this section the rotational equations of motion for a symmetric 


spin vehicle are obtained in terms of the attitude angles 61, 0, 3 In

1' 2'3N A 


terms of 0, , 3 the angular velocity E expressed in the a
 

basis can be obtained directly from Figure 2 -3; expressed as a
 

column matrix this result is
 

6200 01sjNuAl- 2 -15 0 O2f 	 (2-57) 

+ 2e3 	 s 

The 'Euler rates -expressed as a function of , 2 U' U 3 are given by 

CO - so
 

1 O2 CO21
 

2 (2-58)2 	 so C 

-CO tan 0 -SO tanG0 1 Wo 
3 3 2 3 2 L 3 J 

a axis 
Assuming 	that the angular rate 6f the despun body about the 

is precisely controlled to its desired small and constant value, it 

follows that C 0. Combining the results of Equations (2-56) 

through (2-58) one may obtain a set of equations for tL.Vw 2' 01' 02' 03, 

as follows 
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Figure 2-3 Coordinate Frames for the Dual-Spin Vehicle 

- NOTES: 

1. na from basis for Newtonian frame 
2. aa from basis for body frame A 
3. ra, from basis for rotor frame 
4. Rotation sequence: 1-2-3 

n2 
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1 3o I 

R-- 1 
. I 2--T­

3-2 22 

1 s[ " 3 .
 

30 2 
02 0

'2 S3 003 

3 -CO. tan -So3 tan_ 03 ­
-33 3 2 0.2 (3 

(2-59) 

For notational convenience, Equation (2-59) can be written as 

3 = A(x, t) x (t) + B(t) u(t) = f(x, u, t) (2-60) 

where x can be considered the state and u the control. In general, 

the rotational equations of motion are characterized by a set of non­

linear time-varying ordinary differential equations. The control u
.1­

is produced by appropriately located jets. For this formulation?, a 

singularity would exist in the direction cosine formulation when 

82 = (2n+1) - for n = 0, ± 1, ± 2.... .. However, if it is known 

that the allowed range for 02 does not include these values, this 

potential problem is of no concern. 

2. 3. 2 Small Angle Case (Symmetric Vehicle) 

In this section, the rotational equations of motion for the small angle 

case are obtained. Because of the precise pointing requirements for 

the mission being considered, deviations from the desired orientation 

are accurately represented by small angles. The small angle case is 

the one of chief concern in this dissertation. The linearized rotational 

TBy using a 3-2-1 sequence, the potential singularity problem can be 

avoided for the problems being studied in this work. 

A-3D 
qD 



equations, under the assumption of small angles (So. = .0., CD. = 1 

for j =1, 2, 3), become 

1 R i. 	 -7 RiIn ,M	 2 
0 

-

_	 1 
ii 0" 0	 . 1­

(2 1 1 
2 1 

- -- - - - - - - - - - - - - - --- + - - (2-61) 

0 1 0-1:&0 0 

6o2 
0 1 

2 o 

2. 	3. 3 Rotational Equations of Motion for the Small Angle Case as 
Expressed in the Coordinates of the Rotor Frame (Symmetric 
Vehicle) 

In the preceding sections, the equations of motion were .expressed in 

the coordinates of the "despun" frame A. In this section, the equation 

corresponding to Equation (2 -61) is obtained for the case in which the 

reference frame is the rotor, In rotor coordinates, Equation (2-31) 

becomes 

Rd 	 Nd " AP N RxAEPMcMc = dt( . a0)Nx(G- )+ -(H)+w x 

- dt"- dt-_ E 

(2-62) 

Since the axis a3 is an axis of smnmetry, P is constant in the 

well as in the A frame. The vectors AH P R 
rotor frame as 

and NwA are given by 

I? A A
A PJ= aa aJ r

H 3 -3 3 -3 

(2-63)NRNA aA 

NA N R A 
W) & -a r3 
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Examination of Equations (2 -62) and (2-63) indicates that Equation 

(2-62) can be Written as 

= d . +N R dA PdNIR x HI 
wX(QJPNWR)+d(AH)+Nw A 

d P. (-U A N( R x P. 3 (2-64) 

The bracketed term in Equation (2-64) has the same form as that of 

Equation (2-56). Hence, the equations written relative to the rotor. 

frame are 

M1(-10 R
1 + - N 2]NR 1NRR WURj~ 1

IiI I " 1 .2 33 1 1 

M 2 KR (3-I1) NRNR 3appI NRo1 

(2-65) 

M 3 - J3 1 3 

3 1 13
 

MR N.R 

R - 3 +c 
J 3 

For the small angle case, the linearized equations for the control of
NR NI 
Ni1R1'U 2 2 are given by 
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Ii 0 	 + 2­
1. .	 . . . .1 . . Ti (2-66)- ..---	 1 

C0 -- Ot 	 -0
Cot So 	 001 


C ot -'Sot 00 2 0
62 Sot Cot 	 602 o 

where the superscripts on woare dropped for notational convenience, 

and where the nominal value of w3 has been selected as zero to 

-correspond to the case of interest. 

2. 	3. 4 Rotational Equations of Motion for a Spinning Symmetric 
Vehicle (Small Angle Case) 

The rotational equations of motion for a spinning symmetric vehicle 

are obtai-nedas a special case of those obtained for a dual-spin vehicle. 

These equations can be obtained by interpreting the results provided 

in the last section, viz., the case in which the equations are expressed 

in the coordinates of the rotor frame. If the T despunt" portion of the 

dual spin vehicle is spun up to the rotor speed, a spinning symmetric 

vehicle results. Hence, substituting 13 (the moment of inertia of the 

total system about the spin axis) for J5 (the moment of inertia of 

the rotor about the spin axis) and w3 for a in Equation (2-66), provides 

the rotational equations of motion 
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I3- I I ~ 1K 0- M 

(2 -67)-
(0 . . . . . . . . . 

3 1 

2 SW 3t Cw t ' 2 0 

Although this equation is correct, it has the relative disadQantage 

that the system matrix A is time-varying. However, it is felt 

intuitively that such a system can be characterized by a set of 

linear time-invariant differential equations, 

(2-68)* =Ax+Bu 

The problem is thus to define a new x which results in the desired 

property. In particular, a more suitable rotation sequence is sought. 

clear that if the attitude angles i k2 , ofGeometrically, it is 

Figure 2-4 are chosen instead of the attitude angles of Figure 2-3, 

i1 2 arethen the desired result is achieved (keeping in mind that 

small angles but 03 is, in general, large). In this case, the rela­

- , 3 and the angular velocity of thetionship between the rates 

despun body relative to the basis vectors can be obtained by_ 

inspection of Figure 2-4; the desired relationship is 

S62-l
 
(2-69)3 *0=SO,2C~l t2I CO 2(*10 oCsso1]2 

The rates i 1 3 are thus given by 
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Fifgure 2-4"- Coordinate Frames-for a'Spinning -S'rymmetric Vehicle 

NOTES: 

Rotation sequence 3-2-1 
Newtonian frame N with basis no 

Body frame B with basis ba 
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-I ..... 9~ 1/w i 
-S12 

oH2 S (2-70)(~
\3 ,-s 1 . Cl ic3 

Because of the presence of-the identity and the null matrices in 

Equation (2-70), the inverse can be immediately.obtained. The 

notion of obtaining the inverse of a rnatrixby partitioning is used 

the inverse of the partitioned-frequently in this work. In general, 

matrix T is given by 

-TT',2-TI1T TT 

22 2 1 1L 12T221LTt-1T1lTl 2 --- 1 -- ......-- 1- -L11 12 -.-.- - -- -

T i T2 2 - T 2 1T1 1 T12] 

(2-71) 

Using Equation (2-71) the inverse of the matrix in Equation (2-70) 

0 and T 1 = T 1 I 
becomes (noting that T 

-T T- 1 IS 1 tan 2 C tan 21 22 IT2$ -- 1
 

0 - Sol
S¢1 (2-72) 

-I 0 Slc, -TI00¢ 

0 2 2
 

I 2
 

The final expression for € and 2 is given by 

1 0 01 = 

0 (2­[a2-1 _ -73) 

.02
 

xThe rotational equations of motion in terms of the newly defined 


become
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01-13 


0 11 1 3 

\C2 -. . . . .- -. ..-..--..-- -..-
-- to 0 ~" 2 (2 -7 4) 

133 1-

I 3 2 

Equation (2 -74) -is in agreement with the equivalent result provided 

in Reference [11.); in Reference [11], since dual-spin vehicles are 

of no concern, the result is obtained by using Euler' s equation. 
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Section 3 

FORMULATION OF THE FUEL-OPTIMAL 'CONTROL PROBLEM 

This chapter provides a discussion of the formulation of.the optimal 

control problem. The general structure introduced in this chapter 

provides a convenient framework in which the fuel-optimal control 

problem concerning the dual-spin spacecraft can be imbedded. 

.3. 1 .Statement of the Optimal Control Problem 

An optimal control problem is characterized by the composite of the 

following elements 

.(1) the plant or process S 

x and the initial(2) the-initial set X
0 

containing the initial state -o
 

timet
 
0 

x and the final time
(3) the target set X containing the final state 

t
 

the class of admissible controllers A
(4) 

(5) the control restraint set Q 

(6) the cost functional or performance index J 

then an optimal control problem is completely specified inBriefly, 


terms of the composite
 

{s, A, , X0o X I J} 

A statement of the general optimal controlproblem is as follows. 

Given 

(1) the dynamical system S having the state equations 

~f fi(X - U, t) = Rn 
 m R1 

, cRwhere xeR , uR 

belongs to the class of continuous functions having continuousand *. 

first partial derivatives with respect to x, u, t, i. e. 
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(2) the initial state x and initial time t 

(3)' the class of admissible controllers A 

'(4y the control restraint set-S£, 

the ptoblen is to find the controller u(t) C £2 which 

such that the pair (x t 1), t 1 ) CX 1 or equivalently(i) 	 takes x to X 

the pair (ek(ti1; u (t ,it1L, x), t 1 ) EcX 1 

where is a vector function (transition function) which maps the 

cartesian product mspacen R
1 x Rm x B into Rn , i. e., 

1 	R in Rn 

l:R 	 xR xR -*-R 

, tO, u) maps
(ii) 	minimizes the cost functional J(xo to, _)where J(x 


m
R, 	x Ri into Rthe 	cartesian product space Rn x 

* As 	used here R refers to -the elended -real number ,system defined 

by [18]
 

Al I
 

The control function u (t). which accomplishes the task described
 

called the bptimal controller u'(t).t
above is 

3.2 	 Formulation of the Fuel-Optimal Control Problem for the Dual-

Spin Spacecraft 

' In this section, a specific optimal control problem for a specific class 

In this work, the fuel optimal control ofof vehicles is discussed. 


dual-spin spacecraft and spinning vehicles will be treated in detail.
 

I'A controller ut*(t) belonging to the admissible class A is called 

optimal relative to the cost functional J (x o, to, u(t)) if the relation 

J (xSo to, u*(t)) :5. (x 0 . to, u (t)) 

is satisfied V u(t) e A. 
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Once formulated, the problen under consideration can be compared to 

similar efforts discussed in the literature. To be specific this work 

will be compared with pubiished works dealing with the fuel optimal 

attitude control of spinning vehicles. 

3. 2. 1 Class ofAdmissible Controllers A 

In this work, the class of admissible controllers is taken as those 

functions u(t) which are :measurable t on various intervals t E[to, ,t 

and which steer the initial state x 0 to the target set X1 . An 

important exampie of a measurable function is one that is piecewvise 

continuous. 

3. 2. 2 Control Restraint Set P 

In this section, the nature of control restraint sets 0 which could 

conceivably be applied to the fuel-optimal control of dual-spin and 

spinning vehicles is discussed. Later, it will be seen that the control 

restraint set 2 for a particular problem should be carefully chosen. 

Many text books and journal publications give the erroneous impression 

that the control restraint set 2 which applies to the fuel-optimal 

attitude control problem in which magnitude limited jets are used is 

always given by 

--{u(t) lu.(t) 1:- 1 j = 1, 2, ... ,rn} 

The "optimal" solution which results from the use of a model which is 

not "best" from a physical and practical pint of view should be cau­

tiously interpreted. 

IA real-valued function u(t) defined on a real interval 0. is called
 

measurable if for all real a and , the set
 

{tlt E0, and a< u(t)< } is measurable. 
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In general, the 	control restraint set 0 is defined in terms of the 

(belonging to the class of admissible controllers A)
functions u (t) 

which satisfy some appropriate constraints. Frequently (and perhaps 

P is assumed to be thattoo frequently), the control restraint set 

P is known as an m-cube and isIn this casedescribed above. 

both compact and convex. I 

For the prob) ems of interest in this w/ork, the controllers u(t) are 

defined as 

Mu(t) ­

7.1 

where M is the applied moment (control) and I1 is the transverse 

mnoment of inertia. The control restraint set £ depends on 

(1) 	 the type of reaction jets used 
M-.

(2) 	 the number of reaction jets used to generate the applied moment 


seen that the number -ofjets needed for control

Later, it will be 


depends on their location.
 

said to be compact if every open covering
'A topologicalspace X is 
Uof X has a finite subcovering, that is, if there is a finite collec­

tion 

O C x= i=u1{O1'O 2 ) 

XC Rn then X 	 is compact if it is closed
In particular if the space 

and bounded.
 

X is said to be 	convex if whenever it
A subset K of a 	vector space 

0 < X <,X x+(I-X)y for 1.
contains x and 	 y, it also contains 
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Magnitude limited two -way jet 

For magnitude limited two-way jets the control restraint set 0 is 

given by 

0 --{u(t: 1 U.(tyIf= 1 j 1,21,...,ml} 

For this case, the components of u(t) are independent of each other 

and belong to a hypercube. For the case in which m 2, 0 is geo­

metrically depicted by U2 (t) 

In this work, a two-way jet is designated by " . In a two-way 

jet, either side of the jet can be separately activated by a valve. 

Magnitude limited one-way jet 

Magnitude lkmited one-way jets have a control restraint set charac­

terized by 

j = 1,... ,n}( {u(t) : o.5 u.(t) -i, 

This type of jet is aepresented by V and is a special case of the two­

way jet. 

Gimballed-jet
 

in which both the magnitude of thrust and its

A gimballed -jet is one 

The salient -feature of a gimballed-jet is
direction are controlled, 

that it can simultaneously produce torques about two axes rather 

in the case of a fixed -jet. "he components of u(t) for a
than one as 

dependent and belong to a smooth hypersphere. The
gimballed-jet are 


control restraint set 0 is given by
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-
= {u (t) :1I1 u(t)1 4. 

where 1i(t) 11 is the norm of the vector 'u(t) 

Rate-limited controller 

In order to more realistically consider the inertia of the control 

mechanism, the controller is sometimes assumed to have a limited 

rate of variation. In this case, instantaneous switching is eliminated. 

The admissible controllers belong to the class of absolutely contin­
< tI.
uoust functions on various finite time intervals with 0 :_ t In 

this case the control restraint set is defined by 

{ : jilt)(u(t)1- 1 V a. e., u.(t) are measurable, 

and u(O) =u(t1 ) . } 

3.2.3 Discussion of the Plant S 

Inthis section the plant or process S is discussed. The rotational 

equations of motion for both the dual-spin vehicle and the spinning 

vehicle are derived in Chapter 2. As shown there, the plant can in 

general, be characterized by 

(S) )E=A x, ) x (t) + B(t) u(t) (3-1) 

This characterization accurately represents the large angle turn
 

In the phase of the mission of
mode of the deep-space mission. 


the cruise phase, the plant can accurately
chief interest in this work, 

be represented by 

on [a, b] is said to be absolutelytA real-valued function u(t) defined 


continuors on [a, b] ifgiven an E> 0 3 6 > 0
 

u (ti) -u(t.) 1< c for every finite collection {(ti, ti)} of 
i 

nonoverlapping intervals with Z
i 

jtt- tf < 6 [19]. 
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L) = A(t) x(t) + 1(t) u(t) (3-2) 

with an intial state x at time t . Hence, for the problems of 
0- .0
 

chief concern, the plant is characterized by a linear time-varying
 

set of ordinary differential equations.
 

The exact representation of (L) depends on the logation of the jets.
 

As mentioned previously, the number of jets. required to accomplish
 

the control objective depends on their location. In this section, the
 

forms of the matrices A(t), B(t) are given for various jet locations.
 

Plant for the Dual-Spin Vehicle Using Rotor-Fixed Jets
 

'When the rotational equations of motion are expressed in the "despun" 

- frame (as was done in Chapter 2) and the jets are rotor-fixed the 

plant for the cruise phase is given by 

(L) .c(t) = A x(t) + B(t) ut
 

or
 

1 0 1 

2 0 W2 S t - Sat
 

- - -- - - (3-3)
0 10 

0 .ii..

b 2 I 1 0 0 21 0 1 

2 2J 0 

3where _=_ = ra 

.I = the identity matrix (2 x 2) • 

.Clearly, if only one rotor fixed jet (e. g., the one generating Ul), is 

used then the matrix B(t) becomes 
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C[dat1 

-B(t)= Sat
 

0
 

Plant for the Dual-Spin Vehicle Using Jets Located on the "Despun 

Body 

located on the despun portion of the spacecraft (S!C),Ifthe jets are 

the plant is given by 

(L) k- Ax(t) +Bu(t) 

or 

-, - -0 -8: U, 
0 U 

(-4)2 - l 

61 01 u2 
0
0- 0 

2JI 
 -
.02_.2_ 


In this case the system (L) is time-invariant. Optimal control
 

theory for such systems has been intensively studied. It will be
 

shown later when the notion of controllability is discussed that two
 

jets would be required for this case. 

Plant for the Dual-Spin Vehicle with the Equations of Motion Expressed 

in the Rotor Frame 

For the case in which the.linearized equations of motion are expressed 

in the rotor frame and the jets are rotor-fixed, the plant is given by 

xZ A(t) x(t) + Bu(t) 

or 
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- 0 -'­

0 21 ( 
Gi o.... Cat ..- at' .:.. 'L i l j (-5 

'i- ­

'0 
j62 Sat Cat 2 

NR
N oto.where 

R 

- _ 
3 
_=_ 

1 a 

In this case the matrix A is time -varying and B is time -invariant. 

If only one jet is used, the time -invariant matrix B becomes 

This formulation has no advantages over that given by Equation (3-2). 

In fact, it has the disadvantage that the transition matrix cannot be 

evaluated as easily. Although the solution is given by 

t1
 

+ q(t) 5 1(q) B(r) u(r) d'-, (3-6)x(t) = 0(t) x W 
t 

0 

where 4 (t)is the transition matrix satisfying 

S(t) = A(t) 45 (t) (3-7) 

0(0) = I 

the fact that the matrix product 

A(t 1 ) A(t 2 ) 

not simplyis not commutative implies that the transition matrix is 
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At

¢(t) = At 

as it was for the formnulation given by Equation (3-2). 

Plant for a Symmetric Spinning Vehicle 

can be viewed as a. special case of 
The plant for a spinning vehicle 

that for a dual-spin-vehicle. A spinning vehicledi s of special interest 

in this work because the fuel-optimal spin-axis control (SACO) of 

such a vehicle has been discussed in the literature [11. By com­

paring the results given in [11] with the new results obtained for 

same vehicle when the angular momentum control (AMCO) concept
the 

can be ascertained.
is used, the relative merits of the new concept 

The rotational equations for this vehicle are provided in Equation 

The plant can be represented by the time-invariant linear 
(2 -74). 

system 

(3-8)
(L) (t)= A x(t) + B ut) 

or 

0 r 3 WI 

2-3 -r 3 00 0 W2'iu 

1I 3 0 1 

- - +3 

i
r =here 

3.2.4 	 Initial Set X and Target Set XI 

X 1 , as theyX and the target set 
In this section, the initial set 

a 
pertain to the fuel -optimal control of a dual-spin SIC and 

As stated in the introductionare discussed.spinning vehicle 
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it is the target set X and the control restraint set 0 which 

distinguish the present work from that which has been discussed 

in the literature. In Reference [11], the fuel-optimal control problem 

for a spinning symmetric vehicle is discussed. In that case, the 

target set X is given by 

= {(x, t): x(t I ) =0, t free}X 1 

:This type of fuel-optinal problem can be conveniently classified as 

one of spin-axis -control (SACO). 

emphasis is placed on the practical aspects of
In this dissertation, 

not considered practical, especially when
the -control problem. It is 

to minimize fuel, to drive the
the objective of the control problem is 


final state to zero (or even to a small neighborhood of zero -- i. e.,
 

the notion of angular momentum
the dead band region). Instead, 

the angular momen­
control (AMCO) is introduced. In this concept, 


oriented to its desired direction in inertial space

.tumvector H is 


such a way that fuel is minimized. A
uby applying the control in 

properly designed damper then aligns the spin axis with the angular 

In this case the target set X 1 is given bymomentum vector. I(xt ) 2'l 
gg (ttX1 1x(t), tb:g(tt) t1 ) oj 

where gl(x, t) H" 'nA 

g,( x. t) = • 

and 
A n3 parallels the desired angular momentum 

vector H D 
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X R' (if theIn this case, the target set is a smooth 3-foldt in R 

and g2 are noL explicit functions of time, then the targetfunctions g, 

It is noted that the transverse comnpo-Set is a smooth 2-fold in R0). 


nents of the angular momentum in inertial space, gj(X) and g2 (x), arc
 

g.(x) = 0 is said to be
smooth functions. The set of points for which 

set can be viewed as the 
a smooth hypersurface. Hence, the target 

intersection of the smooth hypersurfaces associated with g1(x) and 

are 
g2 (x). For the dual-spin vehicle, the functions g1 (x) and gx 

given by 

CW 1 0" 0 r T U2 

g 1 -ra 0 1 
02
 

(3-8) 

- J3 
where r ­

and r u, 

convex and closed. Note
Hence, the target set X for the AMCO is 

not compact since it is unbounded.
that as defined in Equation (3-8) it is 

However, when due consideration is given to the fact that both 0 and 

The target set X in 
w are bounded, then the set X is compact. 


02 and L2- 01 planes is depicted in Figure 3-1.
 
terms of the1 ­

t ) where x is the initial
The initial set X consists of the pair (xo, 

0 ­o0 
for the problems

state and t is the initial time. The initial state, 

-The set of points X 1 defined by 

X 1 = {x: gx) =0 j1,2,..., n-k} 

if for every point x EX 1 the 
is said to be a smooth k-fold in R 

8g. 
) are linearly independent [201.

n-k vectors 3 (x 
ax -0 
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is that which exists at the time the optimalof interest in this work, 

x are sensedcontrol sequence is initiated. The components of 

such that the
by appropriate sensors and when the initial state is 

the optimal control sequence is 
antenna pointing error is too large, 

the elements of the initial state provide a criterion
initiated. Hence, 


for initiating the optimal control sequence.
 

W2 

H2 (x) g2 (x) =0H,(xSgI=D 0 

Figure 3-1 Illustration of the Target Set for the AMCO Concept 

3. 	 2. 5 Cost Functional 

, to, u) is, in general, the quantitativeThe cost functional J(x 
< < 


criterion for the efficiency of the controllers u(t) on t t t, in 

In this work, the cost functional is related to the
the class A. 


fuel used in driving the initial state x to the target set X1 . Hence,
 

the cost functional is given by
 

A-SI 
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(3 -9)
j (xE. to, Ihou~) t) dt 

0 

For convenience,
where h ( u (t), t) is related to the flow of fuel. 

j(Xo, to, u) will frequently be written as J(u). The exact form of 

The form of 
on the control restraint set 0. 

h (u(t), t) depends 

for various control restraint sets (2 of interest for the 
h (u(t), t) 


dual-spin S/C is discussed below.
 

Magnitude-C onstrained Controller
 

The control restraint most commonly used in regard to attitude
 

control problems is given by
 

2= {u(t): lu.(t)I5 1 j = 

The cost functional corresponding to this P for the fuel-optimal
 

problem is given.by
 

3-10) 
= IJ(x_, to, u) Klu.(t)Idt 
-- i= 1 

0 

A special case of the above category which is especially suited for
 

given by
the dual-spin vehicle is 

j = 1...m}={(t) : 0 u3-(t) -5 1., 

In this case, the cost functional becomes 

(3-11)
J(xo, to, u) Z Ku.(t)dt 

Norrn-Constrained Controller 

the use of a gimballed jet results in 
As mentioned in Section 3. 2. 2, 


given by

a control restraint set P2 
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The cost functional corresponding to this r is 

(3-12)J(xo to, Ui) = § 1 u 11dt 

0 

3. 2. 6 Statement of the Fuel-Optimal 	Control Problem for 

Systems 	Being Studied 

an .optimal controlHaying discussed the notions which make up 

problem, the fuel-optimal contrQl problem for the systems being 

In this dissertation,
studied can now be explicitly and briefly stated. 

the cruise phase of a deep space mission is of prime concern. In 

to maintain the precise inertial orientation
this phase, the task is 

the control problem is to find the
of the rotor axis. Loosely, 


which drives the initial state x to the

optimal controller ul(t) 

_ -0
 

target set (defined by requiring that the transverse components of
 

the angular momentum vector in inertial space be zero) in such a 

way that a minimum amount of fuel is expended. The optimal control 

sequence is initiated when the condition 

(3-13)IIf&1 6 

where 0 has components 01 02 

0C is based on the required antenna pointing 

accuracy
 

is satisfied and is terminated when the conditibn 

(3-1 .)HIIT c 

where LTT has components - nl 1!2 

E represents some arbitrarily small 	positive 

number
 

is satisfied.
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X 0	 , X1, J} of primeMore precisely, the control problem {L, A, 0, 

concern is the following. Given 

(1) 	 the dynamical system L 

(L) i= A x (t) + BWt u~t .W3­

(2) 	 the initial state x and the corresponding initial time t 

(3) 	 the class of admissible controllers £ 

(4) 	 the control restraint set Q? (to be carefully selected based on 

practical considerations), 

the 	problem is to find the controller u(t) C 0 which 

(a) 	 takes x to X l such that the pair 
-0 

where X I {(x, t): g.(x) = 0 j = 1,2} 

(b) 	 minimizes the cost functional J(u). 
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Section 4 

NORMALITY, EXISTENCE,CONTROLLABILITY, 

AND UNIQUENESS
 

the related concepts of controllability and normality
In this chapter, 

and uniqueness of optimal
and their connection with the existence; 

These notions, are of great importance
controllers is discussed. 

are 
when the computational aspects of the optimal control problem 

well posed, whether 
They indicate whether a problem is 

of concern. 
can be found, and even indicate to an 

a unique optimal-controller 

extent what computational approach should be taken to determine the
 

the general theory

As in the preceding chapters,

optimal controller. 


first stated and then applied to the specific problems of interest.
 
is 

4. 1 Controllability and Normality
 

the notions of controllability and normality are
 
In this section, 


Thenotien of-controllability, pop larized by Kalman [221,

discussed. 


a linear control
for determining whether
provides a convenient means 


problem is well-posed. Normality isclosely related to controll­

stronger property in that normality implies controll­
aability but is 

a key roleThe notion of normality plays
ability but not vice versa. 

existence theory pertaining to optimal solutions of linear systems. 
in 


are
 
are defined, some pertinent theorems 

After these concepts 


stated and applied to the problems of interest in this work.
 

4. 1. 1 Controllability 

In this work, the concept of controllability is used to establish if the 

linear control problems being studied are well-posed. If the system 

is linear, the very first step in the determination of the .optimal 

It is demonstrated 
an investigation of this concept.

controller involves 
not 

in this section that the nature of the notion of controllability is 

In fact, controllability
merely mathematical but is practical as well. 
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can aid in the determination of the location and number of jets 

required for control. 

If the systemControllability is defined as follows [211. 

(L) -At) x(t) + B(t) u(t) f(t, u, x) 

x admits 	a solution such thatwith initial state x(to) = 

x(T) ±(T; u(to,T, x) --0 

u for each x c R , 
and for some measurable 	 -O 

for some finite T > t o0-

said to be completely controllable. In this
then the system (L) is 

definition, 	 the vector function is such that
 

q5:x~ ,Rn .Rn
 
_R FPx -Il
:x 	 R 

and satisfies 

(t;u(to't' X f t, Wt), #t; u(t it], 

Controllability for Time-Varying Systems
 

on
a computational check
For a time -varying linear system, 


0 (t, 7-) and the
 
controllability involving only the transition matrix 


matrix B(t) is given by the following theorem due to Kalinan [22].
 

Theorem. The Linear System 

(L) 	 * A(t) x(t) + B(t) u(t) 

t there exists a t, > t such 
is completely controllable iff for every 


thaL the n x n symmetric matrix
 

• . t1 
C(t' tl1) *= 0 (tl117) B (T)13T(')0T(tI,-r)dT-	 (4-1) 

t
 

is positive 	definite. 
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Because of the nature of the controllability matrix C(t, tl) the 

requirement that it be positive definite is equivalent to the require­

ment that it be nonsingular or that its determinant be nonzero. 

For the dual-spin vehicle, the nature of The system 

(L) i = A(t) x(t) + B(t) u(t) 

for various control restraint sets and for various jet locations was 

discussed in Section 3. 2. When the jets are rotor-fixed, the matrix 

For such aA is time-invariant and the matrix B is time varying. 

system the transition matrix 0 (t, t0 ) can be conveniently computed 

by using some fundamental results pertaining to the spectral theory 

The notions of this theory which are used in obtainingof operators. 

(t, to) include 

(1) the spectral representation of the operator A 

(2) the Jordan canonical form for the operator A 

(3) functions of the operator A 

Spectral Representation 

The spectral representation of a simple operator A is given in terms 

of its eigenvalues Xi. its eigenvectors xi, and the eigenvectors Yi 

of the adjointI operator A*'. That is, any vector x expressed in 

terms of its eigenvectors x. is :represented by1 

x =ai xi • (4-3) 

the vector A x is represented by 

x. (4-4)Ax =X i i 

and the scalars z.1 are represented by 

'A linear operator 0' is said to be the adjoint of L if for all x, y 
= <y, Lx> < LIy, x>belonging to the domain of L, 
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<x > (4-5) 

When the operator L is the matrix A, then the adjoint operator L 

is simply A
T 

. Using Equations (4-3) through (4--5),, the vectors x 

and Ax can be written as 

X= xi< Yi, X> 

Ax i x i <y i x> 

1- -

In terms of dyads these results are 

A Xi x i > Yi 

i- (4-6) 

x >= .. >< Yi, x > 

1 

-it folloWs that the operator
 

,. Xi > < Yi
 

is the identity operator. In addition, the eigenvectors of A and those 

of A' form a biorthogonal set, that is 

(4-7)< xi, -y > =i 

The representation of A given in Equation (4-6) immediately suggests 

that 

A=M A M 

are the columns of M, the eigenvectorswhere the eignevectors x.1 

Yi are the rows of M-i and the eigenvalues X. are the elements of 

A. 'In the general case, the eigenvalues are notthe diagonal matrix 

distinct and the diagonal matrix A is replaced by the Jordan 

canonical forn 3. 
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Jordan Canonical Form 

The following theorems [17] provide important features of the Jordan 

canonical form. 

Theorem. Every matrix A can be transformed'into its Jordan canon­

ical form J by means of a similarity transformation. 

Theorem. Let .A be an arbitrary matrix with x. as its right eigen­

vectors or right generalized eigenvectors. Let i be the matrix 

x., then the matrixwhose columns are the vectors 

J= M-1 AM 

are the left eigen­is the Jordan canonical form and the rows of M 

or left generalized eigenvectors of A.vectors 

Hence, when the ordinary eigenvectors do not span the space, the
 

notion of a generalized eigenvector is introduced. The generalized
 

the null space athe operator (L-X oI)
eigenvector xk belongs "0 


Repeated applications of (L - X0) to a generalized eigenvector of
 

a chain of r generalized eigenvectors. In this
rank r generates 


-way, an optimal basis for the operator L is created and relative to
 

this basis the operator L has the Jordan canonical -form.
 

For the dual-spin system, the matrix A is given by 

0 -f0 0 

010 0 
1 010 0(4-8) 

0 1 0 

xk but for which (L\)k XktA vector xk for which (L-X ° ) k-i 


or an eigenvector of rank k
is called a generalized eigenvector 

corresponding to the eigenvalue X.
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The eigenvalues are computed from the characteristic equation. 

The determinant of A is conveniently evaluated by partitioning 

the matrix A. That is, 

A ll 
1 A -1 f 

- - 4-_-- IA11 1' 2- A2 11- 121 i 111 

A ~A
21 22 (4-9) 

The eigenvalues are given by 

X1. , X2 = X3 =j0, Xx=-j 

For the repeated eigenvalue X = 0, the. generalized eigenvector Xk 

is that vector for which 

(A - XoI) Xk = 0 

The null space for (A- XI) x is determined from the relation 

I o 
'3
10 

o
0 60t E1lP)
 

0 1 
 0 0 32 

that is, the null space is given by
 

1 x =0 'and =0}
 

Similarly, the null space for
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(A- X 1)2 x is determined from 

0 - 0 0 2 2
 

0300 0 2
 

1 0 0 0
 

o 1 0 0 

2
-0 - X 1) is given byhence the null space for (A 

2 {x =-0 and 2 0 

Since the null spacesflt and (12 are identical, there are no ones 

in the super diagonal and the Jordan canonical form is given by the 

diagonal matrix 

0
 

0 o=3 = A
 

0 are
The generalized eigenvectors of rank 1 associated -with X = 

x3= 
 X4 0 

The eigenvaectors corresponding to the distinct eigenvahues X = jo 

are obtained from the definition of an eigenvector and 
and X - jf 


are
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X :j 3 for X= jp 
~j 

x2 jp for X=-jP3 

Hence, the modal matrix M is given by 

-43 (3 , 0 -

WE jf3 jf3',o 0 

j j i 0 

1 -i 0 1 

The inverse of ME is easily computed by partitioning; that is, 
-----..- -----------------..-

-1 MM M - i,-M 'M12-

IM21,W 221 L i if 222 21 -- '12 i 2 2 2 21 

21' L(4-10). 

112.... 

with M12 [0] 

* 22 

The inverse of M is given by 

1 1 

-1 
M-_ 

23
pi 

TP 
2jf3 0 

---

* 

0 

- * 

-1/( 

0 :1 

seen that, indeedAs a check it is 
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J=M Am 

as it should. 

Functions of An Operator 

The transition matrix 0(t, r) can now be easily obtained since the 

Jordan canonical form and the matrices M and M are knon. The 

operator A is simple, that is, every eigenvalhue of A is an eigenvalue 

of A*, all eigenvectors of A and A* are of rank one, and the eigen­

vectors of A or A* span the space. For a simple operator, the 

spectral representation is given by 

x= i<Yi, x > 
1 

Ax= EX x.<y. x> 

It follows that functions of the operator A are given by 

A2-x 2 < X>
 
i
 

n x =
A 1 l nx < y i x> 

q(A)x= x. q (x. ) <y., x> 

I 

where q(X) is any polynomial in t. 

Extending this notion of a function of an operator to analytic functions 

f(X) by using the power series for f(X) it follows that 

f(A xf(Xi ) < Y., x > 

-The controllability of the system at time t can be determined by 

examining the determinant of the controllability matrix 
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C(to, t1 ) = q(tt) Eft) BT(t) T9T(t td (4-12) 

t 
0 

The controllability matrix can be easily evaluated analytically by 

Some of
using the fundamental properties of the transition matrix. 

the useful properties of transition-matrices are the following: 

0(tt 0 =(f1 (to0 

04to t o0 
4 

(4-13)0 1(tt )= (t ,t) = (t) 

(t0, t) =10(t" (t V ) 

45T(t t) =0 (t05(tI = ' 0 o 

The transition matrix for a time -invariant system has the additional. 

properties 

W o(-t)(t 

0(t+r) = 0(t)s(7) 

C(t o ) is given byHence, the controllability matrix 

Ol 1 (t)[0 
0 -

From Equation (4-13), it is seen that 

--and, hence; Equation (4-14) reduces to 
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(4-15)C(t 	 t) P(t)B(t)BW (-t) dt 

0 

cases 	in which,be evaluated for theThe controllability matrix can now 

e. ,(1) 	 two rotor-fixed jets are used, i. 

Cut -Sut 

'SYt 	 Ca t 
(4-16)B(t) 	 0 0 


0 0
 

(2) one rotor-fixed jet is used, i. e., 

Cat 

(4-17)
BS 	 at 

0 

0 

kndvn that for a linear time -invariant system of differentialIt is 


equations
 

(L) 	 * A x(t)
 

i(t ) =_x •
 

the solution is given by
 

x(t) = eAt x =P(t) x
 

= 
where eAt = .(t) the transition matrix. 

as
The function eAt is calculated from Equation (4-11) 
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1eAt eAtt -=(5(t) (4-18) 

x2t1 

where e ext~ 0 
x~t 
.4 

0 e 

Expanding Equation (4. 18) yields the transition matrix for the dual­

spin vehicle 

sotCot ­
0cotSot 

- ----------------- ----- -.----4-19) 

Sfot -- (i-ot) 

P(IPCt) .st 

Two Rotor-Fixed Jets
 

into Equation (4-14) and integrating
Substituting Equation'(4-19) 


yields the analytical expression for the controllability matrix for­

the two rotor-fixed jet case. 

The controllability matrix is given by 
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-t st
 

0 It SCpt 4 -ft 1 
t _S t


2 -(Ct - 1) 

22 
 2 

t +sot (Cpt-1), 0 ­

2 2 
2 -1 

(4-20) 

Evaluating the determinant according to the relation 

-c 11 1C22- 021.011 12 

022C21 C 

fields 
.tC(,t0 lt ( 2 T8_2(1._Ctj 

- ttt _2 t) ( 1 

It is clear that the determinant is greater than zero for all t 1> 0;
 

at t1= 0, the determinant is identically zero. Hence, the dual-spin
 

system using two rotor-fixed jets is completely controllable at to.
 

This result is in agreement with that obtained by using a digital com­

puter in evaluating the determinant. 

One Rotor-Fixed Jet Case 

one rotor-fixed jet case, it
Repeating the above procedure for the 

was-determined that again the dual-spin system using one rotor-fixed 

also corrobor­
jet is completely controllable at t . This result was 


ated by that obtained by using a digital computer.
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Controllability for Time -Invariant Systems 

For time -invariant systems, the conputational effort involved in 

completely controllable is signifi­
determining whether the system is 

cantly reduced. In this work, time-invariant systems are of interest 

since 

body, the system is 
(1) 	 if the jets are located on the "despun ' 

characterized by a time -invariant system of differential equations 

i(t) =A x(t) + B u (t) 

characterized by a time­
(2) 	 the symnetri-c spinning vehicle is 

invariant plant. 

Computational techniques for determining whether a time -invariant
 

system is controllable are provided by the following theorems.
 

The 	time -invariant systemTheorem. 
= A x (t) + B u (t)() 

and 	having distinct eigenvalues is completely
with x c Rn, u E Rm 

rows in the matrix
controllable iff there are no zero 


M-1 B J
 

simply the left generalized
of the natrix I- arewhere the rows 

A or equivalently the right generalized
eigenvectors of the operator 

A,eigenvectors of the adjoint operator 

Theorem. The time-invariant system (L) _ = A x(t) + B u(t) is 

n x nm matrixcompletely controllable iff the 


G B A B .. , A BI
 

has 	rank ii. 

A-68
 



Jets Located on "DespuntI Body 

with the jets located on the despun portion,For the dual-spin vehicle, 

the system is characterized by 

(L) =A x(t) + B(t) u 

The spectral representation for the operator A has already been 

determined. The matrix B is given by 

B = 0 when two jets are used 

B = when one jet -18 used 

The matrix M-1 B for the two-jet case is given by
 

1 1
1 1 0 0 
2j3.2PTI-23 


I I
 

23 2jf3- 0 1 1
1 1 


o -1- - -­

0
0 '10 
0.P

1 I1 

- 00 '0 . 
(4-21) 

Since there are no zero rows of M - 1 B, the system is completely
 

controllable.
 

For the one-jet case, the matrix M_ B is given by
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_1
11 i 1 

-2)1 
2j13 

- -
-21 

........ .... (4-22) 

o -1/.0 0 

1 I I. 1 

0 0 ( 

Since there is one zero row, the dual-spin vehicle using one jet on 

the despun portion is not controllable. In this problem, this conclusion 

can be confirmed by intuitive reasoning. Intuitively, it is felt that 

but if the jets are fixedif the jet is rotor-fixed, only one is required, 

to the despun body, two are required. -The ideal location of the jets 

for this work has thus been determined. In the sequel, the type of 

jet to be used will be determined. 

Controllability of a Symlmqetric-Spinning V-ehicie 

The controllability for the time -invariant system 
=
(L) A x( )+ B u(t) 

representing a symmetric spinning vehicle is determined in exactly 

vas for the dual -spin vehicle with the jets mountedthe same way as it .­

on the despun portion. The matrix A is given by 

0 wIto 0 0
1 3 

00033Ai 

I I -3I 
1 0 00 0L . 0 

Its eigenvalues are 
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Y 13 . - 13 
W 3 J w ­3j 103 

the modal matrix is 

Is I. 0 0­-
 3
i{3 1 

3F 

3
1 E3{3I1 - 0 0 
(033y10 

M 1-(4-24) 

:1 -j :1 -j 

1 1 1 1 

the inverse of the modal matrix is 

'0 
2 w313 2 1I3 w3 

0 

-j I Ii 0 

-1 2 w 3 13 2 13w 3 
M =(4-25) 

1 1 1 1I I ­

2j w313 213w 3 2j 2 

I Ii 1 I 

2jiw3 13 213 w3 -2j 2 

and the matrix M B is 
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-jno 3t -jr-w3 t 
E' e 

-IB = -1 -j 
jrW 3 t 

c 
jrw3t 

C (4-26) 

2(l-r)w 3 -jrw3 t .j rw3i: 

•-jc C 

jrW3 t jrW3 t 

jE -

r = 
where •I,­

completely controllableHence, for the two-jet case, the system is 

since there are no zero rows of the matrix M-1 B. If only one jet 

is used the matrix M B is simply the first column of that given in 

Equation (4-26), i. e., 

-jrt 3t 

j e 3 
* * -ice 

(4-27)*M B 2 (1 -) 3 _j_-rj 3 t 
3r3 

It is seen that a symmetric spinning vehicle using only one jet is 

also in agreement with that
completely controllable. This result is 

obtained intuitively. Since the body-mounted jet rotates relative to 

an inertial frame, the requirement for both negative and positive 

torques is automatically met. 

Relation Between Controllability and Classical Vibration Theory 

interesting to note that the notion of controllability has anIt is 
In fact, it can be

analogous counterpart in structural dynamics. 

Consider
said that the notion originated in classical vibration theory. 

the linear system 
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(4-28)(L) 	 i = A x(t)'+ B(t) u(t) 

previously given-
The spectra! representation for the operator A was 

A=
A = ixi><Yi 

I-I 
>~ < X, x. 3axg x inY.> " 

The measure members a. of the vector x relative to the basis 

are termed the normal coordinates.
.defined.by the eigenvectors 

That is 

x = Zn xi = (ni, n 2 3 ... n) 
1 

where n. <x, yi > 

*me relation between normal coordinates and the spectral theory of
 

the-operator A has thus been established. The result
 

X Ex. n.
 

is equivalent to 

(4-29)
x M n 

the matrix 
In-terms of the spectral representation of the operator A, 

A is given by 

(4-30)
MA M- 1A = 

-for the distinct eigenvalue case. 

Substituti-g Equations (4-29) and (4-30) into Equation (4-28) yields 

-(Mn) = [M A.M-1 I Mn +B(t) u (4-31) 
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-- -- 

Simplifying Equation (4-31) yields 

1A= An+ M - B(t)u(t)" (4-32) 

The solution, for the vector n is 

n(t) =At n(O)+ SeoBA(t(T)M - C) u(T)dr (4-33) 
0 

If the jth row of M B(t) is zero, the th coordinate n. is unaffected 

by the input and the system is uncontrollable. 

Knowing -n, the vector x becomes 
At- e A-T)v-t(rurd-1 

x(t)= M:n(t) MeAt -1 x(O) MeA(tM B(u(d 
0 (4-34) 

Equation (4-34) can be conveniently written as 

x.t t Y-T) 
x(t=Y< y.x(O) > e 1 x.+ E <i' i B u-- (r)> e x.drx. (4 35(4-35) 

In Equation (4-35), the initial condition response is seen to be a 
x .t
 

weighted sum of the modes. e xI , that is
 

<Yi, x(0).>'e I x
 
i
 

the forced response is
 
t 'Ai(t-T)
 

Job i<yi, B ur> e d
 

0v1 d
 

it h mode due to the forcing function
The amount of excitation of the 

(4-3EfSis < y i (t-r d 
o < , B u(T) > e x i d 

The vector B u(r') can be rewritten as 
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B u(7) u b.j (4-37) 

where b. are the columns of B. 
-J 

Substituting Equation (4-37) into Equation (4-36) yields the amount 

of excitation of the ith mode due to the forcing function and is 

given by 

) j> u (-) e)1i( ')xidYt E;iri<5 -_J>uj-) 

If the scalar product < y, b. > is zero for the ith mode for all j, 

then the input is not coupled to that mode and cannot excite or 

control that mode. The criterion for controllability (for the case of 

distinct eigenvalues) is that the scalar products < y., bj > do not 

vanish for all j. In vibration theory, the scalar product < y., b, > 

is analogous to the participation factor. Hence, for time-invariant 

systems having distinct eigenvalues, the notion of controllability is 

essentially a generalization of the participation factor of classical 

vibration theory. 

4. 1. 2 Normality 

In this section, the notion of normality and its relationship to 

controllability are discussed. 

In the next section the connection between normality and the existence 

of optimal solutions is discussed. The term normality has several 

connotations and is used differently by various authors. In this work, 

the notions of 

(1) normal systems 

(2) normal problems 

(3) normality conditions 
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are discussed. The definitions of these terms and the definition of 

the set of attainability are given below. 

A linear time-invariant system 

(L) J = A x(t) + B u(t) 

with x c Rn, u c Rm is said to be normal if each of the systems 

: =-A _x(t) + b I u1 

= A x(t} -+ b2 u 2 

I­

= A x(t) + b um 

is completely controllable. The vectors b. are the columns of the 
-3 

matrix B. If a system is normal then it is controllable with respect 

to each component of the control and, hence, it is completely con­

trollable. The normality condition is defined as follows. Consider 

the time -invariant system 

(LI *.=Ax+Bu+v 

c R n . with convex polyhedral restraint set QCR m and initial state x-O 
Let a nonzero vector along an edge of n be designated as w. The 

normality condition is that the vectors 

Bw, A B ... An-I Bw 

must be linearly independent for each nonzero vector w. 

Problem normality is defined as follows. Consider the linear control 

process
 

(L) k_= A(t) x(t) + 3(t) u(t) + v(t) 

with restraint set £2 and initial state x at ine t The problem-OO .
 

(L, (2 xo, t' i) is said to be normal in case any two controllers
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u1 (t) and u(t) on t 0 , t which steer x to the same boundary 

point P 1 belonging to the set of attainability at time t1 must be equal 

alnost everywhere. The set of attainability is defined as follows. 

Consider the linear control process 

=
(L) k A(t) x(t) + B(t) u(t) + v(t) 

with restraint set 2, initial state xo, and controllers u(tC 02 on 

[to,t ]. The set of attainability K(L,/2, x, t, t 1 ) is the set of all 

endpoints x(t ) in Rn. For notational convenience the set of attain­

ability is written as K(tl). 

It should be noted that system normality does not imply problem 

normality. This is as expected since in determining system normality 

the control restraint set Q and the set of attainability are not con­

sidered. 

Having defined the notion of nonality, some theorems in which it is 

used can now be stated. 

Theorem [24]. Consider the linear control process in Rn 

(L) "k= A(t) x(t) + B(t) u(t) + v(t) 

with compact restraint set Q and initial state x at time t . The 

control problem (L, £, Xo, to: t ) is normal iff the following unique ­

ness property holds: for each dontrivial solution of 

P(t) = A t) p(t) 

and for any two controllers u.(t) and u 2(t)C 2 satisfying 

< p(t), B(t) U(t) > = < p(t), B(t) u2(t) > = sup < p(t), B(t) u)< 1 ucr 2 ­

almost everywhere, the extrernal controllers u1 (t) and u2(t) are the 

same; that is, 
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1 (t) = u 2 (t) a. e. on t E [t, t1t 

In addition, if the problem is normal, and if Q contains more than 

one point, the set of attainability is strictly convex; hence, K(t I ) is a 

compact convex set with nonempty interior. 

The above theorem shows the intimate connection between normality 

and uniqueness and also the relationship between normality and the 

set of attainability. 

Although quadratic cost functionals are not of concern in this work, 

it is interesting to note that the normality conditions which guarantee 

the uniqueness of extremal controllers steering (0, x ) to the boundary-0 

point of K(t I ) are automatically satisfied for linear control processes 

with integral quadratic cost criteria. 

System Normality for Problems of Interest in this Work 

For a time-varying system there are no useful computational tech­

niques for determining whether the linear system is normal. For a 

linear time -invariant system however, the normality condition can 

be used. Hence, for the dual-spin system with rotor-fixed jets, there 

is no way to determine a priori whether the system is normal. The 

normality condition can be applied to the dual-spin -system with the 

jets on the despun portion and W5 the symmetric spinning vehicle. 

Dual-Spin System with Jets Located on Despun Body 

The matrices A and B for the dual-spin system have already been 

given; for the case in which the jets are located on the despun body 

they are
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P 0 0 

p 0 0 0 
1 0 0 0 

o i 

1 0 

The normality condition implies that the rank of each of the following 

matrices must be four in order for the system to be normal: 

G 1 =b A b I A' b I A' b 

' A b A b2'31'A b21 

where bI and b2 are the columns of B 

The matrices G and G2 are given by 

1 0 - 0 -03 0 3 

0 j 0 -3 1 00 
G1= 0 1 0 -p2 ; G2 0 0 -(3 0 

0 0 P 0 0 1 0 -P2 

Theran o boh 1 an 2 " 

using jets located on the despun body is not a normal system. 

Symmetric Spinning Vehicle 

For the symmetric spinning vehicle the matrices A and B are 

The rank. of both G Iand G is three. Hence the dual-spin vehicle 
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0 ru3 0 0 

0 0 0 

A1 0 0 

i -u3 0 

and the matrices G and G are 

0 -(no3)2 0 (r3) 4 

-rw 0 (r3) 3 0 
1 2 2 
1 0 -w32 [ +r+r 0 

o -W3 (1+r) 0 o[ +r+r 2 + r 3 

0 -(ro3)30 rw 3 


1 0 -(r 3) 2 0
 

G2 0 
 0 w3(1+r) 0 

0 1 0 -W4( 1+r+r 

Since the rank of both G and G is four, the system characterizing
1 2 

the symmetric spinning vehicle is normal. 

Problem Normality 

A sufficient condition for a restricted class of fuel-optimal problems 

to be normal is now stated. 
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Theorem[20]. Consider-the control problem (L, R, XO, X 1 , J) with 

the system 

(L) A x(t) +B u(t) 

X C Rn , u E R"1 

with the control restraint set Q 

Q= {u: Iu.(t)k1 Vj}, 

with the initial state x at time t, with the target set consisting of 

a fixed endpoint x 1 and fixed final time T, and with the cost func­

tional 

t j1 

A sufficient condition for this fuel-optimal problemto be normal is 

that 

det A\G 0 ,A) j 

On the other hand, for this problem to be singular it is necessary 

that 

det (GTAT) =0 for some j 

Thus, if this system is normal and if the matrix A is nonsingular then 

the problem is normal. 

Using this theorem, it is seen that the spin-axis control concept 

applied to the symmetric spinning vehicle results in a normal fuel­

optimal problem for the fixed-time case. Note, however, that this 

statement does not hold for the free-time problem. The theorem 

also indicates that if the spin-axis control concept were used for the 
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dual-spin vehicle with the jets on the despun portion, then the 

fuel-optiinal fixed-time probleni would necessarily be singular. 

For this system, the fact that 

IGI = 

implies that the system is not normal and the fact that 

IAH-o 

implies that there is at least one.stage of integration. Actually 

there are two stages of integration since the eigenvalue X = 0 

has a multiplicity of two. 

A useful geometric property of a more general fuel-optimal normal 

problem is given below. This definition is appropriate when the 

angular momentum control (AMCO) concept is used. Consider the 

problem {S, E2, X o, XI J}I with the system 

lf4(?S(t), +B (t, u(t)CS) = t) (x t) 

X R, UERm 

with the control restraint set P 

£2={: u.(t)I-: 1, j 1,2,...om} 

with the smooth target set 

Xl= {(=x t) : gi[x't] =0 , i=1,2,...,n-k} 

with the initial set 

2S(to =x O fixed 
t fixed
 

0 

and cost functional 
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tI
 
-


0 

Suppose that in the interval [to, tl] for the free time case or in the 

interval [t O, T for the fixed-time case, there is a countable set of 

times 'lj' '2j * ' " (switch times) such that 

q7cf(±) < (ct), t),pf)><b. 

iff t = V = -1, 2, .. m.,m,then the fuel-optimal problem is 

normal. Inthis definition, the vectors b. are the columns of the-I 

matrix B, and the vector p*(t) is the adjoint (costate) vector. 

A similar definition can be stated for a 2singular fuel-optimal problem. 

For the problem described above, suppose that in the interval [t 0 tI) 

or in the interval [it T] there are one or more subintervals [T 1 , T2] 

such that 

f<(t) < b. (L(t), t), I(t)>I 1 Vt[I71,T,T2 
-


Then, the problem is said to be singular, and the intervals [TI, T 2] 

are singularity intervals (see Figure 4-1). 

q.(t 
t uM(t q(t) 

'-if>1 

SINGUILARITYif C)> 
INTERVAL Ut- if (t)<-1 

Figure 4-1 Illustration of'Singulat Cond:tion for Controller O if lq*(t} I< 1 
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4. 2 Existence and Uniqueness of Optimal Solutions 

The topics dealing with the existence and uniqueness of optimal solu­

tions are of great importance and can, of course, have a tremendous 

effect on tf a compuiational aspect of the problem. In fact, the study 

of the existence of optimal solutions often leads to new and better 

computational algorithms. Because of the mathematical complexity 

of these topics and because of the limited scope of this dissertation, 

only those aspects that appear to have a direct effect on the compu­

tational procedure for obtaining the fuel-optimal controller for the 

dual-spin and spinning vehicles are discussed. At the same time, 

however, those notions which are fundamental in the proof of a general 

existence proof are noted. Included among these are the notions of the 

compactness of the set of attainability and uniform bounds on the 

response.
 

In practice, some of the conditions required to guarantee the existence 

and uniqueness of an optimal controller are not always satisfied. 

Nevertheless, the necessary conditions obtained from either the 

maximum principle or from the calculus of variations are used to 

find the extrernal controllers in the so-called indirect method for 

finding the optimal solution. The indirect methods and the direct 

methods are discussed in Chapter 6. 
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An extremal controller is one which satisfies the necessary conditions 

for optimality. If it can be shown that-an optimal control exists and in 

addition that the extremal control is unique then the unique extremal 

controller Is the unique optimal control. For the general nonlinear 

system, however, it is difficult to prove that an optimal solution exists 

and even more difficult to prove that the extremal control is unique. 

The procedure for finding the optimal solution (if it exists) for this 

case entails an examination of the cost functional associated with the 

cornputationally -determined extremal controllers. The extremal con­

troller which results in a minimum value of the cost functional 

is then considered the optimal solution. A global search is 

.required, perforce, to find all the extremal controllers; this ensures 

thai the solution termed "optimal" is indeed optimal and not merely 

"locally -optimal." 

4.2. 1 Existence of Optimal Controllers 

Existence theory for systems represented by ordinary differential 

equations has been extensively studied (Reference [25] through [35]). 

The theorems presented in this section are based primarily on [24], 

[34), and [351. The proofs of the theorems stated herein can be found 

in the cited references. In this work, emphasis is placed on the 

determination of the applicability of the available existence theorems 

for the fuel-optimal control of dual-spin and spinning vehicles. 

First, a general theorem for linear systems is stated. Next 

the basic existence theorems for nonlinear systems are given. 

Linear Systems 

In this section, some existence theorems which are applicable for 

linear systems vith general integral cost criteria are provided. Fo 

linear systems the notions which are fundamental for the existence 

of optinal solutions include 
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(1) convexity of the integrand of the cost functional 

(2) problem normality (compactness of the set of attainability) 

A theorem concerning the compactness of the set of attainability is 

now stated [24]. 

Theorem. Consider the linear system 

(L) " = A(t) x(t) + B(t) u(t) 

with compact convex restraint set SZ, initial state x at time too-0 

and controllers u(t) on t E[t , t1. Then the set of attainability 

K(tI ) is compact and convex and varies continuously with t for 

t1 > t o 
10 

The following theorem provides the hypotheses necessary for the 

existence of optimal controllers for linear systems with general 

integral cost criteria. 

Theorem. Consider the system 

(L) i = A(t) x(t) + B(t) u(t) 

with the integral cost functional 

J1)= V/(Mc) + ST f~x t) + h,(t, u)d 
- a 

Assume that A(t), B(t) are redl continuous matrices on the fixed 

finite interval [t, T], that ?P (x), f(tt), ho(t, u) are continuous for 

all values of their arguments for x . n and u E Rm, that f (t, x) 

and h O(t, u) are convex functions for each fixed value of i E[t O, TI, 

that the controller u(t) on t E[to, T] belongs to a compact convex 

restraint set Q C Rm; and that the problem {LA Q, Xo0 X 1 , J} is 

normal. Then there exists an optimal controller. 

It is noted that there is no mention of the compactness of the target 

set in this theorem. However, the assumption of problem normality 
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is sufficient, in this case, to guarantee that the set of attainability 
nK(T) in is a strictly convex compact set with nonempty interior. 

It is also noted that this theorem applies to fixed-time problems. 

Hence, the theorem, cannot be applied to time-optimal problems. 

Existence theorems for time-optimal problems are more prevalent 

than for fuel-optimal problems and are not discussed in this work. 

It is not to be assumed that existence theorems can be proven only 

for the fixed final time case. In the general existence theorems for 

nonlinear systems, the final time is allowed to be free. 

Applicability of the Existence Theorem to the Fuel-Optimal Control 
of Dual-Spin and Spinning Vehicles 

First, it is noted that for the fuel-optimal problems of concern in 

this work both free and fixed final time are being considered. The 

existence theorem applies only to the fixed -time case. This fact 

illustrates that linear fixed-time problens are more attractive from 

a theoretical point of view than free -time problems. This point will 

be re-enforced when the question of uniqueness is discussed. Of 

course, a free-time problem can be treated computationally as 

several fixed time problems. The particular fixed -time problem 

which minimizes the cost functional is considered the optimal solu­

tion to the free-time problem. 

The hypotheses concerning A(t), B(t), f0 (t, x) and h (t, u) are 

satisfied for the fuel-optimal problems being considered. In particu­

lar, the cost functionals being considered are 
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, 
I 

J(u) flu 1ldt 
0 

ti
 

(u)= Zu.(t)dt -; 

0 

The integrands of each of these cost functionals are convex. The 

hypothesis that the control restraint set be compact and convex is 

also satisfied; the sets & of interest in this work include 

= {u: I uj(t) [:S I vj} 

= {u: 0 :5ui(t) - ivjI 

9- I{u !-- m} 

The crucial hypothesis is that concerning the normality of the problem. 

Problem normality was considered in Section 4-1. The conclusions 

drawn considering normality are repeated here fo convenience: 

System and Control Concept Problem Normality 

Spin axis control of symmet ric Yes 

spinning body using either one 

or two jets 

Spin axis control of dual-spin No 

vehicle with jets located on 

despun-portion 

Angularmomentum control of Depends on nature of the 

symmetric spinning vehicle switching function 
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Angular momentum control of 	 Depends on nature of the 

dual-spin vehicle 	 switching function 

U/sing this theorem the following statenr ents can be made 

(1) 	 the existence of the fuel-optimal controller for the SACO concept 

applied to a symmetric spinning vehicle in which the final time is 

fixed is assured 

(2) 	 no conclusions concerning the existence of the fuel-optimal 

controller for the AMCO concept can be drawn until the nature 

of the switching function is investigated 

(3) 	 the theorem does not assure the existence of the fuel-optimal 

controller when the SACO concept is used for the dual-spin 

vehicle with the jets located on the despun body 

Nonlinear Systems 

In this section, the basic existence theorems for nonlinear systems 

are 	stated. It is noted that certain notions are fundamental in any 

general existence proof. For linear systems tie notion of problem 

normality in conjunction with a compact convex restraint set resulted 

in a 	compact set of attainability K(tI). For nonlinear systems the 

notion of a uniform bound in conjunction with a compact convex 

restraint set 0 results in a compact K(t1 ).I The definition of a uni­

form bound, the statemegt of a theorem relating a uniform bound and 

K(tl. and two existence theorems (one due to Markus and Lee [24], 

'the other due to Neustadt [34] are provided below. Consider a non­

linear process 

u,t) in Rn
 (S) i f(x, 

where f is in C1 in Tn+m+1 and where the admissible controllers 

K(t1 ) refers to the closure of the set of attainability K(t1 ). 
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u(t) defined on [to, T] onstitute a certain family of measurable 

rn-vector functions. Assume the initial point x lies in a given 

compact initial set X in Rn and that the respone x(t; xo, t ) = x(t)
0 - - 0 -

for u(t) c exists on [t0 T1. Suppose. for each u(t) E; there is 

a bound 

Ixi(t) <b 
andI t' u(t)) + I ' t' u(t)) - m(t) 

T 

for i, k = 1,2,...,n with Sm(t)dt < oo, then u(t) admits a 
t 

bound for the response. If, in addition, the bound b and the 

integrable function m(t) can be chosen independently of the 

controller u(t) E, then the problem Is, a, X0, X1} has a uni­

form bound. 

A theorem relating the notion of a uniform bound and the compactness 

of the closure of the set of attainability is stated below. 

Theorem. Consider the nonlinear process 

n +m 4 l 
(S) _ f(x, u. t) inC iR 

with initial state x0 at time t and admissible control family 

on [t , T]. Assume the process { S, a, Xo, X1} has a uniform 

bound. Then K(t I ) is a compact, continuously varying set in Rn 

for t c [t 0o T] . A general existence theorem (sometimes called 

the basic existence theorem) for nonlinear -systems is stated below. 

The theorem applies to minim ax problems as well as to problems 

with ineqaality constraints on the stab.. 

Theorem. Consider the nonlinear process in Rn 

(S) i = f(x, u, t) in CI inR n+T+I 

The problem is as follows: 
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(1) 	 the initial and target sets X (t) and X (t) are nonempty compact 

sets varying continuouslr in Rn for all t in the basic prescribed 

compact interval t C [To, T1i 

(2) 	 the control restraint set Q (x,t) is a nonempty compact set 

varying continuously in Rm for (x, t) C Rn x [T0 , 1I] 

(3) 	the state constraints are (possibly vacuous) h 1 (x)>- 0,... 

hr(x)? 0, a finite or infinite family of constraints, where 
rn 

hi, ...	 I hr are real continuous functions on Rn 

(4) 	 the familyZ of admissible controllers consists of all 

measurable functions u (t) on various time intervals t c [t, t ] 

in [70 , T1] suchthat each u(t) has a response x(t) on 

t E[tot 1] steering x(t o ) EXo(to) to x(tI ) EX(t) and 

u t) EcQ (X t) and h,() a j =,. 

(5) 	 the cost for each u c j is 

) + 5t
J(u) = (x(t 1 ) fo x(i), u(t), t)dt 

0 

+ inax 'Y(x(4i 

where fo C in m and O(x) and -(x) are continuous 
in 

Assume 

a) the family J of admissible controllers is not empty 

b) there exists a uniform bound 

Ix(t) 1<-b on t E[t, t] 

for all responses x(t) to controllers u E 

c) the extended velocity set 
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V(X t) p' 0o(Xul t), f(x'ut)luno(x, t)} 

is convex in Rn + for each fixed (xt). Then, there exists an3 

optimal controller u'(t) on C -St : t' in 3 minimizing J(u).
1 	 0 1 

A useful corollary to this theorem which applies to the case in which 

the control enters linearly in both the plant and the integrand of the 

cost functional is provided below. 

Corollary. Consider the process 

(S) V --A(x, t) + B(x, t) u 

in Rn with cost ti
 

3(u) = qj (ctp) 5t Ao (t,t)+ BO(x, t) u(t)dt
 

0 

+ 	ess supf -y ( x(t), U t)
 
tE[to0 t 1
 

where the matrices A. B, A, B are inC in Rn , W(x) and 

-(x, u) are continuous in Rn+m, and y(x, u) is a convex function 

of u for each fixed x. Assume that the restraint set Q (xt) is 

compact and convex for all (x, t). Then, hypothesis (c) of the 

preceding theorem is satisfied. If the problem is defined by (1) 

through (4) of the preceding theorem and if hypotheses (a) and (b) 

are assumed, then an optimalocontrol u*(t) on t c [t t' exists. 
_ 0' 

This corollary is appropriate for determining the existence of the 

fuel-optimal controller for the dual-span vehicle in the large -angle 

turn mode. Previously, it was shown that the plant for this case is 

(S) _, = A(x, t) + B(t) u(t) 

Note also that when one one-way rotor fixed jet is used the integrand 

of the cost functional is 

tThe term ess sup refers to the essential supremum. 

A-92 



A. (x(t), t) + B. (x(t), t) u(t) = u(t) ER 1 

and the control restraint set QC R 1 is 

S = { u(t) : o u(t- 1} 

The final existence theorem due to Neustadt is interesting in that no 

convexity hypotheses are required. It applies to the restricted class 

of problems in which both the plant and the integrand of the cost 

function are linear in x and nonlinear in u. 

Theorem. Consider the process in Rn 

_(S) =A(t) x (t) + B(t, u) 

where A(t) and B(t, u) are continuous in R . The problem is 

as follows: 

1. 	 The initial and target sets X (t) and X 1 (z) are nonerpty compact 

sets varying continuously in Rn for all t in the basic pre­
scribed compact interval t 01]"E [Tor 

2. 	 The control restraint set P(t) is a nonempty compact set 

varying continuously in Rm' for t e [7-r.i 1.] 

3. 	 The integral constraints (possibly vacuous)St1hj (t, u(t)) dt> 0 for j = 1,2,...,r 

0 

RI + m where h. are real continuous functions in 

3 
4. 	 The family 3 of admissible controllers consists of all 

measurable functions u (t) on various time intervals 

t0t :t1 in [r0, T 1] such that each u(t) has a response 

x(t) on t tst 1 steering x(t o )EX ( t o ) to x(t I ) cX(tl), 

such that the restraint u(t) C (t) in [to, t ], and such that 

the integral constraints are satisfied. 
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5. The cost of each, u cU is 
tj
 

J(u5 . (xct 1 ))+ A () x(t) + Bo (tu(t))dt 

- 0 

where V(x), Ao(t), Bo(t, u) are continuous in all (x, u, t). 

Assume that the set u of admissible controllers is not empty. Then' 

there exists an optimal controller u (t)on [t0 , t in T which 

minimizes J(u). 

4.2.2 Uniqtieness of Optimal Controllers 

In this section, the question dealing with the uniqueness of the opti­

mal controller for linear systems is examined (for a more detailed 

discussion of this topic see Reference [36] through [38]). The 

hypotheses guaranteeing the uniqueness of an optimal controller are, 

as expected, more stringent than for existence and the classes of 

problems for which uniqueness can be demonstrated are more 

restricted. 

The lack of uniqueness of the extremal controllers is naturally 

undesirable because of the increased computational effort involved 

in obtaining the unique optimal controller. Note, however, that 

the nonuniqueness of the extremal controllers does not imply the 

nonuniqueness of the optimal controller, but the nonuniqueness of 

the optimal controller does imply the nonuniqueness of the extremal 

controllers. In addition, the uniqueness of the optimal controller 

does not imply the uniqueness of the extremal controller. 

It is possible that in certain instances, nonuniqueness of the 

optimal controls is not necessarily a curse. In Reference [201 it 

is pointed out that if the nonunique optimal controllers are examined 

carefully, it may be possible to find one that has definite practical 

advantages.
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Just as in the case of existence, the uniqueness theorems provided 

in this work pertain to problems having a general integral cost and 

Similar theorems apply toto fuel-optimal problems in particular. 

the time -optinal problem but are not included in this work. The 

following theorem describes a problem for which the extremal 

controllers are unique [24]. 

Theoren. Consider the linear process 

(S) (t) = A(t) x(t) + B(t) u(t) 

with the integral cost functional 

J(u) (xT+STT [fyt. x) + h (t,u] dt
 
0
 

Assume that A(t), B(t) are real continuous matrices on [t TI, 
0
 

that 0 (x), f(t, x), and ho(t, u) are continuous for all values of
 

u Rm , that fo(t, x) is convex for
their arguments for xE Rn and e 


each fixed value of t E [to, TI, that h (t, u) is strictly convex for m
 -00 

each t, and that the restraint set £ is compact and convex in Ri 

Assume that the problem { L, £, x0, to , T} is normal. Then 

any two extremal controllers steering (0, xo ) to the same boundary 
A' a uniquepoint of KT must-coincide almost everywhere. Moreover, 

optimal controller exists. 

Note that this theorem applies only to fixed final time problerhs. 

The nornality hypothesis was previously discussed in relation to 

existence. The crucial hypothesis in this theorem is that require ­

ing ho(t, u) to be strictly convex. The integrand of the cost 
-

A 

K refers to the totality of all response endpointstfIn this theorem, 

(x o ( T ) , x(T)) j
 

that is, the set of attainability for the augmented response.
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convexfunctional which is apprqpriate for fuel-optimal problems is 

the theorem cannot be applied to thebut is 	 not strictly convex; hence, 

problems of interest in this work. However, if the linear process is 

applicable [37].time-invariant, the following theorem is 

-"
Theorem. Consider the linear process 

(L) :Z =A x(t) +Bu(t) xcR n , cR 

with cost functional 

J~u)= 3 ju.(t) Idt 
j0 

m
2 CR convex restraint set
with compact 

62 = { luu(t)I! 1 V =1 

correspondingwith initial state x at to, and with the final state -x 

to the 	final time t = T. Assume that A and B are nxn and n-­

constant matrices, respectively, and that the problem IL, P, X0 XI,J} 

Then any two extremal controllers steering (t o, x ) to
is normal. 


must be same for all t E [0, T].
(T, x1 ) 

linear 	and time-invariantThis theorem indicates that if the plant is 

and if the fixed final time fuel-optimal problem is normal, then the 

The relationship between uniquenes
extremal controllers are unique. 

of the 	extremal controllers and the reduced computational effort 

involved in determining the optimal controller has already been
 

this theorem

mentioned. Of the problems of concern in this work, 

applies only to the case in which 

used 	for the symmetric spinning
(1) 	 the spin axis control concept is 


yehicle
 

(2) 	 the final time is fixed 
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free and all other conditions areIt- follows that if the final time is 

satisfied, then the theorem is still applicable if the free-time problem 

is treated as several fixed-time problems. 
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Section 5 

NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMALITY 

Inthis chapter, the necessary and sufficient conditions for optimality 

are provided. Although necessary conditions for general control 

are known both from the calculus of variations and from the
problems 

the necessary conditions for
maximum principle, nevertheless, 

are developed by using the calculus of variations for the
optimality 

This tends to make this treatment
problems of interest in this work. 

concerning the fLel-optimal control of dual-spin and spinning vehicles 

The necessary conditions obtained from the maximum
self-contained. 

principle are stated,- compared to those obtained from the calculus 

and applied to the problems of interest in
of variations approach, 


this work.
 

General sufficiency conditions obtainable from each of the major
 

to the optimal control problem are provided. The

approaches 

,applicability of these theorems for the problems of interest in this 

work is discussed. 

5.1 Necessary Conditions for Optimality 

In this section, the necessary conditions for optimality are provided. 

obtained both from the calculus of-variations
These conditions are 

'The choice of
approach and from Pontryagin'.s maximum principle. 


is a matter of personal taste. Each
 
one approach over the other, 


distinct advantages..
approach has some 

5. 1. 1 Calculus of Variations Approach 

First, the necessary conditions for a weak extremal are obtained. 

Then these conditions are strengthened by finding an additional 

It will be seen that-the 
necessary condition for a strong extremal. 

a version of 
necessary conditions for a strong extrenal result in 
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the maximal prihciple'(see Hestenes [39]). The set of necessary 

conditions obtained in this section are for local optimality. 

Necessary Conditions for a Weak Extremal 

The necessary conditions for a weak extremal are'obtained by using 

aresome 	fundamental notions of analysis; included among these 

(1) the notion of a derivative 

(-2) the .notion of an extriemum 

(3) 	 a Taylor series expansion (TSE) of a vector function 

An elegant definition of a derivative due to Caratheodory is as 

follows [18]. -Consider a function f 

f: V -- C 

where V is a neighborhood of b E R and C is the complex plane. The 

function f is said to possess a derivative at b provided that there 

exists 

g: V 	-'C 

continuous 	at b such that
 

f(x) - f(b) = g(x) (x-b) X E V -


A similar extremely useful definition of the derivative of a function 

f is given below [39]." A function f is said to be differentiable at a 

point 	 x if it is defined on a neighborhood of x and there is a 
0
 

linear function. Vt (x, h) such tItat
 
0 

f(xo+ h) - f(x) - f' (x h) 
h 0 =0 (5-1)lim 


h 0Ihi
 

where fo(xh) = [(xo] 

A generalization of this definition which is extremely useful when 

the computational aspects of the optimal control problem are of 

concern, is now given [40]. Let X, . Y be Banach spaces. Let 
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T be an operator with adomain D in X and a range in Y. The 

operator T is called Frechet -differentiable at the point f c D if 

there exists a bounded linear operator T' with a domain in D and a 

range in Y, and a real function (IIh I) with the property 

lT(f+h) -T(f)- Tt h[- E([jh1f) 11h1 for 11hl !5h0 

and where 	 limn E(lhJl) = 0 (5-2)[IElI.o
 

Equation (5-2) c.n be rewritten as 

[[Tc(f+h) -T(f) - T'I hi11llhil =0o 	 (5-3) 

It can now be 	seen that the definition given by Equation (5-1) is a 

special case 	of Equation (5 -3) where the norm is taken to be the abso­

lute value and the operator T is simply the function f. The Frechet 

contrast to thederivative is 	 sometimes called a strong derivative in 

GateauI or weak derivative [41]. 

IA Gateau derivative is defined as follows. Let P be an operation
 

mapping an open subset E of a Banach space (B-space) X into a
 

subset F of another B-space Y. Consider a fixed element xo EE
 

and suppose that there exists a linear operation U
 

U:X-Y 

and such that 	for every x E X 

P(x ° + tx) - P(xo) lira 	 t U (x)
 
t _
 

The linear operation U is then said to be a Gateau or weak derivative 

of the operation P at x., that is 

U = PI(x 
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The preceding definitions of the Frechet derivative of a function and 

an operator can now be applied to the functional J(u). In this develop­

ment, u and Au are assumed either to belong to the space of 

continuous functions C(to t 1)defined 6n a closed interval[t , tI] or 

to belong to the space D I(t , t) consisting of all functions defined on 

an interval [t tl] continuous and have continuous firsttwhich are 

derivatives. The norms for the spaces C(t ,t.) andD (t ,t) for 
1i 0lol 

the vector A u(t) = u1(t) - u2(t) are 

t ilim - = sup Zi 141(t) - Ct j for the space C(t, t) (5 -4) 
- -20 

I=sup iUi)(t) - u4W (t) I+sup ZLI(i)(t) - it'i)(t)I-2I1 . i -
t i 

for the space DI(t o,t ) (5-5) 

The vectors x and Ax are assumed to belong to the space D (t,t) 

The functional J(u) is said to he differentiable at u if there exists a 

continuous linear functional 6J(h, u) with a domain in C(to,t ) and 

a range in R, and a real function E ( 1hi)with the property 

h IlhlJ(u +h) - J(u) - 5Jh, u) IihI) 

for 1ihlS-h and where lim c(Ilhi) = 0 (5-6) 

Ihil-> o0 

or equivalently with the property 

lim J(u +h) - 5(u) - &J(h, u) 

Ilhj- 0-Ihl 0 

The expression J(u + h) - J(u) is termed the increment in J(u). 

The continuous linear functional 6 J(h, u) which maps thespace 

C(t tl)into R is called the strong differential (the first variation) 

It follows that the increment of a differentiableof J(u) at u. 


functional J(x, u) is given by
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I 

AJ(x, u; Au, Ax) = J(u+Au x+AX) -J(n, x) (5-7) 

)1-u 1ax U; A x, Au) + Ec1 Ax 11) IAxI1+ E_20IAI _1 

An easily proved theorem pro­for the case in which u E C(t tl). 


viding a necessary condition for the differentiable functional J(x, u)
 

to have an extremurn is now stated [42].
 

A necessary condition for the differentiable functionalTheorem. 

to have- an extremum for u u is that its first variationJ(x, u) 
= uvanish for u I i.e., that 

68J(h'. ui) = 0 

=for u and all admissible h-. 

are now given. TheThe definitions of weak and strong extremrnums 

u = u provided there existsfunctional J(u) has a weak extremum for 


a positive c such that
 
J (u) - J(u)" 0 

for all u in the domain of definition of the functional which satisfy 

the condition 

a strong extremum for u = u provided thereThe functional J(u) has 


exists a positive c such that
 

J(u) - J(u) > 0
 

for all u in the domain of definition of the functional -which satisfy 

the condition 

Iu-u 10 < 

It is noted that every strong extremurn is simultaneously a weak 

extremum since if 
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-111 < c, then u u 11 0< c a fortiori;[ "-- L < henu 

hence, if J(q) is an extremum with respect to all u such that 

[Iu - < E then J(u) is clearly an extremum with respect 

to all u such that u -L <C. 

The calculus of variations approach to the optimal control problem 

formulated in Chapter 3 can now be discussed. Given the system 

* =f(x, u, t) with
 

xo, to fixed and
 

t free
 

subject to the end constraints 

g(x i ) 00 

the problem is to find the necessary conditions for the first variation 

of the functional 
ti
 

J(x, t, 1U) f0(x, *, u, t)dt
 

0 

to vanish. By appending the constraints to the functional J through 

the use of Lagrange multipliers v, p the new functional becomes 

j(x o, g(X, Q t[fo(X,X,U,t)+< P, f -i>ldtt1U) =<v, t1) >+ 

0 

The so-called "multiplier rule" ensures that the minimization of the 

new functional is equivalent to the minimization.of the original one 

subject to the constraints. A rigorous treatment of this is given by 

Hestenes [391. It is clear, however, that the terms added to the 

original function are identically zero, i. e., 
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< V, g<xl, t> =o 

<p, & - f > = 0 

.Rewriting Equation'(5-8) assince g(x 1 , t) = 0 and _Z- f = 0. 

dt(x,to, u)=<, g(x, t) >+ Ix+ 
t 0 (5-9) 

and defining the bracketed term as the negative of the Hamiltonian 

yields 

(x, u,t)<v, g(x 1,tl)>+ [-I(2tuspst)+<p' R>t]dt (5-10) 

0 

The definition of the Hamiltonian as used above is the same as that 

the Hamil­given in classical mechanics; in classical mechanics, 

tonian is given by 
H(q, p, t) =-L (.q, "t)+ < .p 4> 

where L(g, a,t) is the Lagrangian, thie components of p are the 

and the components of q are the generalizedgeneralized momenta, 


f£(x, , u,t) plays the

position coordinates. Hence, the function 

role of the Lagrangian and the Lagrange multipliers p play the role 

of the generalized momenta. The increment in J(u, x) is given 

by 

+ 6t)- J(u, x) (5-11)AJ(ux; Au, Ax) =J(u+Au, x+Ax,t 

AS6J(u;.; Au, Ax) + c1( 11Ax Il)fI1 1 j + (llAUII I0) lu1'o 

is gtven byThe tent J(u+Au, x+Ax,t 1 + 61) 
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J(u+Au, x + Ax, t1 + 6t1) 

< V, g(x+ Ax 1 , t+ 6t) > +
 

t I+6t
 

S-I(x+Ax,uAU, p,t)+<p, i+A5)>dt (5-12)
 

t 
0 

u + Au, p, t) as a TSE about (x, u,p, t),Expressing the term H(x+Ax, 

expressing the term g(x 1 + Ax I , t1+ 6tI) as a TSE about (x1 1tI) and 

solving for the first variation 6(u , x; Au, Ax) yields 

tI< {a
 

6J(u-,x;AusA> [<s x+ m u> PA 
to x (5-13) 

8g Bg
+< ax 1 > +< ,'" h l 

-jfr ,_upst-<p, 4>] 6t1 

t 

0

S <pAk > <p4A>K- <upAx>dt (5-14) 

o 0 0
 

Substituting Equation (5-14) intoEquation (5-13) yields
 

utx at I ) = 

-.PLx. 3 A + < - Ad;A< > Duui dt 

Ax> _ Dg Ax >+<A-uv,8 t>5-15) 

ag ag 
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The terms Ax. and Ax(t1 ) are related by 

Ax =Ax(t 1 ) + i(t 1 ) 6t (5-16) 

the term < p, Ax > I becomesHence, 

<p(t6), _ - (t 1 ) 6t1 > =< p(t l , Ax1 > 

(5-17)<p(tZ) .- L( > 6t1 

Substituting Equajion (5-17) into Equation (5-15) yields 

-sHlyis =6J -x - Ax>+< Tu-H'-Au dt 

0 

+i, pt,t]+ <V, ]t 1 (5-18) 

aT
 

i) v+p(t 1 ), Ax 1 >
 
+< ( 

Hence, the necessary conditions for 6J to vanish are given by 

1) 8H (one of Hamilton' s canonical equations) 

2) 8H 0 (optimality condition) 

(5-19)
T 


3) p(t I ) = - (V- T (transversality condition)
 

Bg
 
4) - H(tI) + < V, -I > = 0 (boundary condition)
 

at1
 

5) (x1 , ti1 = 0 (end constraint)
 

6) = f(x, ut) - (differential constraint, the other
 
S_ = u - canonical equation)
 

tThe Hamiltonian is defined as H = < p, k > - fo
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Weierstrass E Condition 

An additional condition is required in order to have a strong extremum. 

The additional necessary condition is known as the Weierstrass E 

condition (a convexity condition). The Weierstrass E-function of the 

functional 

J(x, u) = SF(to x i, u)dt
 
a
 

is given by 

E(t, x,-X , L, u) 

OF 

+F(t x.*c,U)- F(to x,i u)-< u-u,N'> 

where 	 IX refers to some arbitrary ± 

U refers to -somearbitrary u. 

The property 

(5-21)E(to x, :,k, U, u) 0 

for arbitrary finite vectors X_, U is known as the E-condition. The 

Weierstrass E function for the functional 

J(ux) <V, g(xlt) >+ H(t$xsuP)+<px> dt 

0 

is given by
 

E(t;x, i, u, U)
 

-Htx,U,p)+ H(tox,u,p)-<U u,- u >
 

+<+pX> -<+p, > -<k-*, +p> 

The E -condition for this functional is simply 
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(5-22)-H(t,x, , p) +H(t, x, u,p) >20 

or equivalently 

x, (5:23)H(t, x,u,.p) - H(t, Up) 

Equation (b-23) represents a form of the celebrated maximum prin­

ciple. 

noted that the first order necessary conditions forIn summary, it is 

are of two types; these types'are designated as Aa strong extremum 

and B for convenience. The conditions belonging to Type A are 

fixed, free, or con­independent of the nature of the endpoints (i. e., 

strained) and independent of the -nature of the initial and final time 

on(i. 	e., fixed or free time); those belonging to Type B are dependent 

on the hature of the initial and finalthe nature of the endpoints and 

time. The necessary conditions belonging to Type A include 

(1) Hamilton' s Canonical Equations 

8H
 
ax 

=f a 
-p
 

(2) The Weierstrass E Condition 

H(t.x, ui, p)-> H(t, x, U, p) 
th8H=0-whih 

(3) A condition which the extremal controller must satisfy - 0. 

The conditions belonging to Type B include 

-that which describes-behavior of the Hamiltonian evaluated(1) 

along the extremal 

-(2) those -which the Lagrange 	multipliers p must satisfy (trans 

versality condition) 
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The necessary conditions (Type B) for the problems of interest in 

this dissertation are provided in Table 5. 1. 

It is noted that in this development it was tacitly assumed that 

1) 	 H(x, up,t) -issufficiently differentiable in both x and u
 

and hence, that nu is defined.
 
au
 

In many practical problems these assumptiohs do not hold. In
 

u is constrained according to
addition, when the control 

j(t4S2 vi 

- the problem.becomes more difficult, albeit tractable. For such 

a convenientproblems, Pontryagin' s maximum principle provides 

technique for obtaining the necessary conditions for local optimality. 

It will be seen in the next section that fhe maximum principle requires 

relatively weak differentiability assumptions. 

5. 1. 2 Pontryagin' s Maximum Principle 

stated. TheIn.this section, Pontryagin' s maximum principle is 

proof of the maximum principle is given in many of the recent books 

on optimal control theory (e. g., [241, [431, and [44]) and will not be 

In the 	maximum principle, the notions of the weakrepeated here. 

and strong extremals that were introduced in the calculus of variations 

The maximum principle in conjunctionapproach are no longer used. 


a necessary
-withthe assdciated transversality conditions provides 


criterion which the optimal controller u*(t) must satisfy.
 

A theorem which applies lo autonomous systems is first stated. The 

to the general nonautonomous systemsresults which are appli&able 


are then obtained by treating t as an additional spatial coordinate.
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Table 5-1 

FIRST ORDER NECESSARY CONDITIONS (TYPE B) FOR A STRONG 
OF VARIATIONSOBTAINED FROM TI-lE CALCULUSEXTREMUM 

Note 1. 	 Plant (differential equation constraint), k= f(x, t).
 

Intial state x and initial time to, fixed.

-O0 

t;
 

Cost functional, Ju) f0( x, "x ut)dt
 

0 

Hamiltonian, H (x, p, u,t ) =-<p, :k> - £ (x, :k ,ut)
 

Note 2. Necessary conditions (Type A) include
 
2H 81H 

1) Hamiltons canonical equations ­

pU LI, t)
2) Weierstrass E condition H(X, p, u.t)? H(x, 

3) 	 0 

Lagrange multipliers pHamiltonianNature of right end 


No condition
No condition_X fixed, tI fixed 


No condition
H(tl) =0xI fixed, t1 free 

X1 free t I fixed No condition £(T = 0
 

=p(t1 ) 0­
free, t I free H(ti) = 0 	

r T 
8g 

1) 0 No condition2O I fixed 	 p(T) - a 
Eg, 

v>=0 	 p(tl) = ax
z(X1 tl)--O t1 free -Ht) +<v, 3-

A-ll	 
(1 



Autonomous Systems 

Consider the autonomous control process 

(S) * = f(x, u) 

with f(xu and (x, u) continuous in Rn+ . The initial and 

and the nonempty control restraint settarget sets X and X 1 C Rn 

2C Rm. Let the class of admissible controllers A consist of the 

u (t) C £ on -some finite interval'bounded measurable functions 

u(t) is0 5 t : t . The response associated with the controller 

x(t, x ); the controller u(t) trantsfers x(O, xO) = x c X to 
-0 -0 00 

The cost functional associated with the contrc....
X) = x E X. 

u(t) on t e [Ot ] in A with response x(t) is given by 

J(u) = Itf( _(t), u t dt 

0 
ao
Sf n+mt
 

where f and - are continuous in
 

An augmented system is formed by introducing the integrand of the 

cost functional f as an additional state equation. 

A 
x and is given.byThe augmented state is denoted as 

A <0X=
 

p is given bythe augmented adjoint vector A. 

A P 

A 
is given bythe augmented system (S) 

Note that it is not necessary to assume that u exists as it was 

in the calculus of variations. 
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(5-24)
(SA) ("t ( )) 

the augmented adjoint system (&) is given by 

&)f (x(t u(t)) p > 
r A 0 T 

(5-25) 

or 
[----------o0 

T [T
 
p =-

rA 
(x t), u(t) p- (t)_
 

asand the augmented Hamiltonian function is defined 

(5-26Y
A' ) < (, u)> 

This definition (when p is taken as -1) corresponds exactly to that 

used in classical mechanics. The function M(-, x is defined as 

(5-27)M(A' A) sup AA , U) 


U) p
 

can now be stated [24).A theorem for autonomous systems 

P, X o, X I J)being consideredTheorem. The coritrol problem (S,A 

is
 

(S) )E= f(x, u) 

: C C R u(t): u (t) are bounded and measurable onu= 


various intervals 0 t.< t i}
 

some initial point ofA : all admissible controllers which steer 

X to a final point in X 1 

0 1 

j J(u) = fo(x(t),-u(t ))de 

0 
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If u*(t) on 0 < t S t' is optimal in A with augmented response x (t), 

then there exists a nontrivial augmented adjoint response (t) 

satisfying 

A 	 8]TA 

ax 

0 andsuch that 11(*'x, 0 * u') z M(Y,°, *) a. e., and M(, *$) 

if X and (or justP 	 :0 everywhere on 0 -<t S t I In addition, 

atone of them) are manifolds with tangent spaces T and T x*(0) 

then p"(t) can be selected to satisfy the transversalityand x*(t) , 

conditions at both ends (or at just one end)' 

p*(0) is orthogonal to T. 

(t1) is orthogonal to Tj 

Similar results (see Table 5-2) apply to 

(1) 	 the case in which target set X is all R n (the free-endpoint
 

problem)
 

(2) 	 the case in which the time duration is fixed and finite), i.e., 

the controllers u(t) are defined on 0 -< t 5T 

the case in which the fixed time duration is infinite.(3) 

The necessary conditions for local optimality are seen to be of two 

types (A and B). Type A consists of those conditions which are 

sets Xo; X 1 ; Type B consists ofindependent of the initial and target 

those conditions which are dependent on the initial and target sets. 

The necessary conditions belonging to Type A include 

(1) -	 Hamilton s canonical equations 
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Table 5-2 

NECESSARY CONDITIONS (TYPE B) FOR LOCAL OPTIMALITY FOR AUTONOMOUS 

FROM THE MAXIMUV PRINCIPLE)
SYSTEMS (OBTAINED 


Notes:
 
as Type A which are common to all 

1. The necessary conditions denoted 

autonomous systems are not included. 

2. The system (S) is given by 

(S) *~fQsA u), 

the cost functional is given by
 

ti ° ( x
J(u) f0t u) dt 

0 

, and the fixed initial time t o .3. The inltial~set consists of the fixed initial state o 

Hmitonian. Ht ''tu) Adjoin vector 
• 	Target Set X 


No condition
if- - constant
{(x, t) : x fixed, t1 fixed} 


No condition
 
{(x,t) x1 fixed, t I fiflnite} 1. 	 -0 


= No condition

free} le 0

{(x,t) : x fixed, t I 


p*(T 0
1p' 0{Cx't) xi free, t1I free} 
8 T 

t){(t= gi(.) ,0, t fixed, 
-

Iip, con
i1, 2,..., n-k} 	 ant 1 



A 	 T 

(t), u*(t)) @H 

the so-called "optinality condition" which characterizes the(2) 

controller u*(t) 

(3) po 	1 0 

The conditions belonging to Type B (see Table 5-1) include 

(1) 	 those which pertain to the adjoint vector 

p_*'(t) (the transversality conditions) 

that which describes the behavior of the Hamiltonian along the(2) 

optimal trajectory 

Nonautonom ous System 

The results for the most general nonlinear nonautonomous process 

t as an additionalobtained 	immediately by introducing the timeare 


spatial coordinate, i. e.,
 

t =Xn+l
 

For this case, the system (S) is given by
 

(5-28)kS)= f (x, u, t) 
1Rn
Rn m 
-
x R I >

f :R xRwhere 

cC1 in 	 n~l+mand f 


and the cost functional is given by
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t1
 

(5-29)u(t), t)dtJ(u) =t 


0 

where 
Rn x m 1 17 

0: RxR In ->fl0 
C1 Rn+1-l-m
 

and f EC inR
 
0 

The time augmented response x(t) -corresponding to u(t) is 

x(t) = x 

(S)and represents the solution to the time augmented system 

(5-30)x (x, U) 


or = fo(X, x u)

0 0 n+l' 
.x= ffx, Xn+ , u) 

Sn = x xn+Iu 

Irt1 

u(t) and x(t) is
The time -augmented adjoint system based on 

(a) .o a (_(t), u(t ]TA 

Df
 

< 
Bf

.0 p> <0 p >=0 (5-31) 

.0
 

a,=~ IPt)p>~f 


=
pn+1 <Xn+1 P
 

The time augmented Hamiltonian is 
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(5-32)u) <p, f(x, xn 1 , u)> 

The function M (x, p) is defined as 
M(, p) = sup H(x, p u)> (5-33) 

uc' 

It is seen that 

x=. 
 I = 
xn+1 

-
n+l 

H (x p, uh+p ++ ~ l-

(5-34) 

(5-t3+Pn+5)M(x", ) M x 

The theorem for the nonautonomous case can now be stated [24]. 

Q, X o, X1 , J) whereTheorem. Consider the control problem (S,A 

1) the.process (S)is given by 

(S) i: f(x, u, t)
 

2) the class of admissible functions A are all the bounded
 

r t
measurable controllers u(t) C P C on various 

finite intervals t t <t which steer points of X to X 
0 1 

*0 -1 
(fixed endpoint, free tirne)
 

3) the cost functional is
 

ti
 
J(u) = t fo (-Lc(t), uW), t) dt 

0 

If uI(t) on t' < t -<t' with time-augmented response x (t) is 

optimal in A, then there exists a nontrivial time -augmented adjoint 

response p'(t) of A such that 

(5-36)= xHx't), p I(t) u*(t) "(0, p(t) a. e. 

and
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-(~ct)p (t) ---0 , p 0 	 (537)
M~t -(-mwt-< 

everywhere on o t t 
01 

These conclusions are equivalent to 

5(t) (t), t) = M ( (t),t t) a. e. (5-38) 

M.(I 	 (t), v*(t) _ t) If*(~e
and 	 t A... .. 	 " -, (s), ,os >as (530and~~ 


<AS, 	_ _(), u. 

0 

The transversality conditions are 

(-0W-) 	 P (t*,) = 0
•pn+i 	 o n+l 

so	 
M(t̂  *^ " * ):0-41) 

If X and X (or just one of them) are manifolds in Rn with tangent 

spaces T and TI at X and xl, respectively, then p () can be 

selected to satisfy the additional transversality conditions (or just 

one of them) 

p(t*) is orthogonal to T 
-o0 (5-42) 

p*('W) is orthogonal to T, 

Similar results apply to the nonautonomous cases in which (see 

Table 5-3)
 

t is fixed (to= t)

(1) 	 the initial time 

0 0 0 

(2) 	 the initial and target sets are time varying 

(3) 	 the time duration is fixed and finite 

5. 	1. 3 Application of the Necessary Conditions for Local Optimality
 

to the Dual-Spin and Spinning Vehicles
 

In this section, thegeneral first order necessary conditions obtained 

in the preceding sections are applied to the systems being studied. 
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Table 5-3 

NECESSARY CONDITIONS (TYPE B) FOR LOCAL OPTIALITY FOR NONAUTONOMOUS 
SYSTEMS (OBTAINED FROM THE MAXIMUM PRINCIPLE) 

Note 1. The necessary conditions (Tyme A) which are common to all 

nonautonomous systems are not included. 

Note 2. The system (S)is given by ff(M(t), u(t),t) 

The cost function is givenhyu f(uof0 (2(t), u( t) tdt 
to0
 

Note 3. The initial state x at time t is fixed. 

Hmniltonian 
Target Set X*(t)* (*) + * , Adjoik vector, p(t) 

X1 ={(x,t) xI fixed, t1 fLi ed} No useful condition No condition
 
X {(=,t) x fixed, t free} Hf(t*) = 0 No condition on*±p *
(t)- 0 

X {(st) X1 free, t1 fLxed} No useful condition ?*(T) =0 

x.- {(=x,t) XI free, t fr e 0 n(t1 
X1 {(x,t) gi(X,t) =0, t1 fixed No useful condition _pT)[] 

i,2,.n-k} 
t=T 

X1 {(x,t) gi(x,t) =0, t1 free T*1' ga- T 

i~l, 2 .,n-k} 1 n-l 1 I~A-[LC t 

BgT 

(tg 



As seen in Tables 5-i and 5-3, the results obtained from the calculus 

of variations approach are identical to those obtained from the 

maximum principle, as expected. 

Target-Dependent Necessary Conditions 

The target set X which applies to the angular momentum control 

(AMCO) concept was given in Equation (3-8). For the dual-spin 

vehicle the convex target sets X 1 of concern are given by (both fixed 

and free final time t1 are considered) 

X1 = (xtxt) g(x,t) 1 0, t fixed -43) 

where g(xt) = x Cx 
1 01 

Ii Jrr 

I 2 x 2 identity matrix 

The target set for a spinning symmetric vehicle is also of interest 

because the angular momentum control concept (AMCO) is later applied 

to this vehicle. The results obtained by using the AMCO concept for 

this vehicle will later be compared with those obtained by using the 

SACO concept (the SACO concept was studied in [il].) The target 

sets X which apply to the spinning symmetric vehicle (when the 

AMCO concept is used) are 

, {(x, t) g(x t)f t= 0 , t. free}
 
1 ~-(5-44)
 

X 
 {(xt) t)= 0, t I fixed} 
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0 3 
where g(x,t) = g(x) = I2 

-rca 3 t 

The target set X which was used in [11] and which applies to the 

SACO concept is given by 

"X1 = {(xt) :x 0 , t 1 free} (5-45) 

This target set is of interest in this work only in that the results 

obtained when this X 1 is assumed will be compared with those 

obtained when the X1 given by Equation (5-44) is assumed. However, 

since the results provided in ii] are not complete enough for a 

thorough comparison, the SACO concept will also be simulated. 

The remaining target sets discussed in Table 5-3, viz. the free-end 

point problems are clearly unsuitable for the control problem being 

studied. The necessary conditions corresponding to the specific 

target sets discussed above are provided in Table 5-4. As seen in 

Table 5-4, the Hamiltonian evaluated at the optimal conditions when 

t I is free vanishes, i. e., 

H(u (t) _(t') , p(t) t 1) = (t1 ) 0 

When the final time t is fixed, however, there is no useful condition 
on H(T), i. e., none except for the fact that HI must satisfy its 

definition, 

:¢ = <pt f*> _f' 
- - f 0 

For the angular momentum control (AMCO) concept, p4 (t7) is 

transversal to the smooth 2-fold in Rn (where n = 4) at xW(t), that is, 

t(tl) can be represented as a linear combination of the linear 

A-122 

fr 



independent vectors i= 1, 2. Alternatively, it can 

ineednaetr x(t) x(t) =x I tI 

be said that p*(t*) is orthogonal to the tangent plane T (x (t)) of the 
-1I 1-1 1 

manifold X( t), i. e. 

< (tl)' x ( -_0 x c Tl(xl(t,)1- -1 1 1(t* * ..... > 

For the spin axis control (SACO) concept, however, there is no 

condition on the adjoint vector p*(t'). It wvill be seen later that this
1~ 

condition (or its absence) has a pronounced effect on the computational 

aspects of the control problem. The parameters vi, V2 that appear 

in Table 5-4 are arbitrary constants (Lagrange multipliers); they are 

determined so that the defining relationships for the manifold X 1 are 

satisfied, i. e., 

g(x) = 0 

Hamilton' s canonical equations 

In this section, Hamilton' s canonical equations for the systems being 

studied are provided. In general, these equations are given by 

al = [ ( x' n T
 
Y- TxLXj
 

(5-46) 

=1f n~,i,t) T 

where H(xu,p,t) <p, i > - f (u(t),t) 

For the cruise mode of the deep-space mission, the equations for 

the dual-spin vehicle are 
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Table 5-4 

TARGET -DEPENDENT NECESSARY CONDITIONS FOR LOCAL
 
OPTDvIALITY FOR THE SYMMETRIC DUAL-SPIN
 

AND SYMMETRIC SPINNING VEHICLES

R 

Js a - II- I 
NOTE: t =Ir1r == w w 3 

Control T S 
Necessary ConditionsConcept Target S X 1 

Dual-Spin Vehicle Spinning Vehicle 

'I 'I 
Hfamilton:in, H' Adjoint Vector, Hamniltonian, 1-t" Adjoint Vector,p 

AMCO goJ) tf None 10. None0 

-C(%) =0 ~ ' 
SACO Xlt ) =0 None None None None 

t, free t 0 1 )t =T (fixed) 
IV2
 



(6) b(t) = - [AF p(t) 

(L) "(t) = f( x(t), u(t), t)= A x(t) + B(t) u(t) 

0i1 
where A -------- 2 (5-47)

1 0 e1 

-;- 2P =ra 

[cut -sat1 

B(t;) -sa --- cu if two jets are used 

0 

[cat-1 

B(t) = ;at if one jet is used 

For the spinning symmetric vehicle, the equations are 

(0) f(t) [A] T p(t)­

(L) k(t) = A x(t) + B u(t) 

where 

A, B, and x are given by 

0 r
[r_% 0 ' - - ­ (01 

(5-48)
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B = .0 if two jets are used
 
-0 0­

=
3 if one jet is used 
0
 

From Equations (5-47) and (5-48), it is seen that both the adjoint 

system (0) and !he plant (L)are time -invariant for the symmetric 

spinning vehicle while in the case of the dual-spin vehicle, the 

adjoint system (a) is time-invariant but the plant (L) is time-varying. 

Optimality Condition 

In this section, the nature of the optimal controller for the dual-spin 

and spinning vehicles is determined by examining the "optimality" 

condition. The optimality condition, in general, is given by 

-i(t) p (t), u = (t), I a. e.u'(t t 

-P-(t),t Ipt () *t'Ut 

where M x(?t), F(t)) sup ( 2*Ct), _pc(t), u(t) 

(5-49) 

( (t). t) uftl) - n~x(t). p(t), u(t),t) + p 1 Mt 

H (4t), p(t), u~t), t) < pVt), f( x(t), t) >- f (x(t)' uit), 

It follows, therefore, that 

sup I-(xtt), p (L), ut sup I-r( x*(t), p"X), ), ), (5-50) 

Hence, the optimal controller u(t) must be such that it maximizes 

the Hamiltonian. As shown previously, the function f ( x(t), u(t), t) 

is given by 
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t(x(t)x u(t), t) = A x(t) + B(t) u(t) 	 for the dual-spin vehicle in the
 

cruise mode
 

IX\), u(t), t) = A (x(t), t) x(t) +B(t) u(t) for the dual-spin vehicle in 

= £ (x t) + B(t) u(t) the large -angle turn mode 

(x(t), u(t)) A x(t) + B u(t) 	 for the spinning symmetric vehicle 

Hence, for the most general system being discussed the Iamiltonian 

is given by 

H= < p, f(x,t) >+ <p, B(t) u(t) > - fo(x(t), ut,t) (5-52) 

and u*(t) must be such that 

H*(t ,p*(t), x*(t) t) 	 s [< RtMut > - f0(e(t)u(t)t)] 

(5-53) 

That is, the optimal controller u*(t) is that particular u(t) c 2 which 

maximizes the part of the Hamiltonian which is a function of u(t). 

Equation '(5-53) indicates that the nature of the optimal controller is 

dependent on the control restraint set R2 and the function f . 
0 

In obtaining the fuel-optimal solution, it is often advantageous to 

examine the time-optimal solution as well. This is true because the 

fuel-optimal solution does not exist unless the final time involved in 

the fuel-optimization problem (T for the fixed-tim e problem and t"
1 

for the free-time problem) is greater than the time-optimal solution 

t'. In addition, in many cases the most appropriate cost functional 

is neither time nor fuel but a combination of both. For these reasons, 

the optimality condition will be examined for the cases in which (see 

Table 5-5) 
fo i(t)) 1 time-orJmal problem 

fo(Ht), t) h (u(t), t) , fuel-optimal problem 

f 0(U(t) = k + h(u(t),t), 	 combination time-fuel optimal
 

problem
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Table 5-5 

NATURE OF THE OPTIMAL CONTROLLERt (OBTAINED 
FROM THE OPTIMALITY CONDITION) 

SIntegrand f(uct)0t) of 
Control restraint set cost functional Optimal Controller 

= ={u(v lu(t)I- 1 j=,...mr fo z lu (t) I u*(t) = DEZ {BT(t) p*(t)} , fuel-optimal 

fo = Iu*(t) = SGN {BTkt) 2 '*(t)} , time-optimal 

f I= t {uJ u() = DEZ {B T (t) p*(t)} , combination of 

to fuel and time 

j{u(t): 0 -5uj(t) - 1 J=I,, fo .u() _u(t) I-EV BT(t) p"(t) - e}, fuel-optimal 

fo I u (t) -- 1EV {B'T(t) *(t)}, time-opt3ial 

fo K + .Z j(t) I u*(t) = B3EV {BT(t) P*(t) -e}, combination of 

fuel and time 

tThe plant is 

(S) :Z = f(xt) + B(t) u(t)
 

and the cost functional is
 

0(3 (nct)at 



Magnitude-Limited Case'(two-way jet 

The control restraint set 0 for the various types of jets has already 

been discussed (see Chapter 3). For the two-way jet the control 

restraint s.t is 

2= {u : Iu(t) I5 1 vj} (5-54) 

The nature of the optimal controller for the functions f(u(t),t) of 

interest is discussed in this section. The optimal controller must be 

chosen to maximize the expression 

= < 	p*(t) t) u t) > - fo (u(t)( t) 

where H refers to the part of H that is a 

function of u. 

Fuel-Optimal Problem 

The optimality condition is examined below for the case in which 

f0(uMtt) 7 uJ(t) I 

The term B(t) u(t) can be conveniently written as 

B(t) !) = Ln b.1 (5-56) 
jJ­

where b. refers tb the jth column of B(t).
-J 

Substituting Equation (5-56) into Equation (5-55) yields 

=< p(t), u1 bi > -Z Iu(t) I 

[Uj< p"(t), b.i >-Iui t)1] (-

By 	defining the scalar product <p(t), b > as q}(t), it follows that 
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97(t) 1 MT p(t) 

and that 

i [ ( qqt) u i] (5-58) 

The function YI is maximized relative to u.(t) if 

u (t) = 0 for Iq](t) j< 1 

uT(t) = - 1 for qt(t)< -1 j=l,...m (5-59)
3 3­

u$'(t) = 1 for q$(t) > 1 

The optimal controller u*(t) is thus given by (see Figure 5. 1) 

dez q*(t) dez < b (t)p*(t)> 
II
 

u*(t) = f{qj(t)= dez 4(t)= 

(5-60) 
DEZ {BT(t) p*(t)} 

o for lq*(t)j<1 

where dez qi(t) = I for qY(t) > I 
1. 2. 

-1 for qZ(t) < - 1 

Equation (5-60) is general in that it applies to nonlinear systems 

which are linear in u(t) and to all linear systems for which 

-={u:-- Iu (t) 1 Vj}
 

f(X, Ut) = f (u) = Z Iu(4I
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Time -Optimal Case 

In this section the nature of the time-optimal controller is determined. 

The time-optimal controller is actually a special case of the fuel­

optimal prcblem. Using the relations 

fo (u(t),t) =i 

B(t) u(t) = u. b. 
J­

in Equation (5-57) yields 

Zu. < pt 
t ), b > - M q*(t) (5-61) 

-The u.(t) which maximizes H is given by 

u"(t) = sgn {q'(t)} j In... (5-62)m 
31 3 

The optimal controller u*(t) is thus given by (see Figure 5-1)
 
"sgn < b1IN, 
 pr(t) > 

_ _u*(t)Tu-) = SGN{B (t) p(t)} sgn <b2(t) , p"(t) > 

sgn < bin(t), p*(t)> (5-63) 

Combination Time -Fuel Problem 

For the case in which the integrand of the cost functional is a combi­

nation of fuel and time, the function
 

f0 (u(t) ; t) is given by
 

f (u~t) I<K Z ujt) I(5-64)t) + 

The shape of the optimal controller for this case is the same as that 

for the fuel-optimal problem since T- is the same for the two cases. 

In this case, the optimal solution is the one which minimizes 
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u.*(t)
I 

*1 

-1 0 

-1 

(a) ui (t) = dez q*(t) fuel-optimal problem 

IU W 

'ujIt)
 
J 

_________'>,.qflt) 

-1 .... 

(b) ut(t) =sgn q*(t) ,timie-optimal problem 

i Figure 5-1 The Function u. (t) for Fuel and Time Optimal Problems in which Two-Way Jets are Used 
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J(u =kt +F , (5-65)
1 ti 

where, F ZsKjutIt 

k = some positive constant 

t' =final time t I for the optimal solution 

Magnitude-Limited Case (One-Way Jet, V) 

Intuitively, it is felt that since a two-way jet is essentially two one ­

way jets back-to--back, the optimal controller for the one-way jet 

case should be characterized by Equation (5 -59) with the modification 

that 

u'(t) = 0 for '(t) < - 1 

It is shown below that this is indeed the case. 

For the magnitude-limited one-way jet case, the control restraint 

set n is 

( {u(t) : u:5(t) S1 j =1,20...m} (5-66) 

The functions f (u(t),t) corresponding to the fuel-optimal, the 

time-optimal, and the optimal for a combination of fuel and time for 

this case are given by 

f (u(t),t) = i (t), fuel-optimal 

f (UMt)t> 1 *time-optimal 

fo(u(t), t) = k + . u.(t) combination of fuel and time 

Fuel-Optimral Case 

The portion of the Hamiltonian that depends on u(t) is immediately 

obtained from Equation (5 -55)>and is given by 
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Uut)( qtt) - U.(t)j u.(t) [q-(t) - 1] (5-6 8) 
- 3 

The u.(t) which maximizes H is given by
3 
uT(t) = 0 for q'(t) < 1 

(5-69) ­

ut(t) = 1 for qc (t) > I 
31 

-Because of its -simila-rity to the Heaviside function h(t - ), the 

controller satisfying Equation (5.69) is designated by (see Figure 5. 2) 

hev[ < bl(t)., p(t) > - 11 

u*(t) HE V{q"(t) - e} 

hev[< b (t), p"(t) > -] (5-70) 

= HEV{B
T 

(t) p4 (t) - e} 

where e=
 

The control restraint' set 0 and the function f0 given by Equation
 

(5-66) and Equation (5-67) have not previously been considered
 

-relevant to the fuel-optimal attitude control problem. Hence, the 

HEV function (unlike the DEZ function) introduced in this work is 

new. The DEZ function is used by Athans and Falb [20). 

It will be seen later that the use of the control set Q and the function
 
f given by
 

= {_IM : 0 - uj0u() 51 Vj} 

S0 =Zu-) 
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is especially suitable for spinning spacecraft both from a practical 

point of view (considering such items as reliability and the number of 

jet firings) and from a computational point of view. 

It is also ioted that even though a few fael-optimal control studies 

pertaining to spinning vehicles have been conducted (e. g. [1) through­

[141), the invesitgators invariably and perhaps unwarily (from a 

practical point of view) chose the control set 0 and the function 

fo0 (u(t)) given by 
-S{(t) :u.(t) _ 1 j} 

fut) Z Jjt)I 

Time-Optimal Case 

For the case in which fo (u(t), t 1, the portion of the Hamiltonian 

which is a function of u(t) is 

H uj(t) qt3(t) (5-71) 

The function H is maximized when 

tofor q (t) <0U.WJ
uT'(t) = o 

1 for qt"(t) > 0 

and hence, the time -optihnal controller is given by (see Figure 5-2) 

u1(t) = HEV {q (t)} = HEV {BT(t) p"(t)} (5-72) 

Norm-Limited Controller 

Norm -limited controllers will not be treated in depth in this work, 

but it is of interest to note some of their chief characteristics. It 

was pointed out previously that the control restraint set 2 given by 
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u (t) 

1 

- q*(t) 

-1 J _... 

,-=1 

(a) uj(t)=hev(c (t) i);fuel-optimal problem 

u~(t) 

,1' 

q;(t} 

-1 

(b) u. (t) = hey q. (t) ;time-optmal problem 

Figure 5-2 The Function I* (t) for Fuel and Time Optimal Problems in which One-Way Jets are Used 
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flu~tjf z~u~)1}(5-73) I 
is an accurate respresentation of the gLmballed-jet. In addition, 

this constraint set could be used as an approxh-nation of that for the 

magnitude-limited case. It is clear that if the constraint 

11u(t) II 
is satisfied, the constraint 

Iu.t)I1 Vj 

is satisfied a fortiori. Hence, the norm-limited constraint set (a 

hypersphere) can be viewed as a smoothed magnitude-limited con­

straint set (a hypercube). 

In this section, it is shown that the optimal controllers belonging to 

the smooth control restraint set discussed above are smooth. Later, 

the smoothness properLy will be discussed in relation to sufficient 

conditions for optimality and in relation to the existence of optimal 

controllers. 

In this work, the norm-limited case is discussed for a time-optimal 

problem. 

Time -Optimal Case 

For the norm-limited time -opfimal control problem in which 

R={ I(t) : 11 it)U I­
f0(u(ttt) =I1 

The function H is given by [from Equation (5-55)] 

= < B(t) u(t), p*(t) > = < u(t), BT(t) p"(t) > 

The controller which maximizes U is given by 
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u') BT(t) -p4 (t) 	 (5-4)B T (t) 

iBT(t) p*(t)II 

assuming that 

IBT(t) p(t) It 0 

If the relation 

j T(t p -(t) 1 0 

is satisfied, then no information concerning u*(t) can be obtained 

(the singular case). A distinguishing property of Equation (5-74) 

is that the components u(t) are continuous functions of time and
3 

are in general, smooth functions of the state. 

Controller Having a Limited Rate of Variation 

In section 3. 2, a smooth controller having a limited rate of variation 

was briefly discussed. It was stated that a constraint having such a 

property allows the inertia of the control system to be realistically 

modeled. Although this type of controller will not be studied in 

detail in this work, it is of interest to note that the maximum principle 

is applicable. A result that applies to a specific system in which a 

rate-limited controller is used is given below. Consider the linear 

autonomous process in R n 

(L) 	 "_ = A x(t) + B u(tY 

The problem is to find the optimal controller u*(t) in Rm which 

steers the initial state x to the target state x I in minimum time. 

The admissible controllers are those functions u(t) which are 

absolutely continuous on various finite time durations 0 t !- t 1 

which satisfy the constraints 

(1) 	 u(t) C 0 where 2 is a given closed convex set containing. 

the origin of Rm 
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(2) 	 u(t) = ii(t) are measurable and 

IV (I15 1 Vj =1,..m a. e. 

(3) 	 u(O) = u(t 1 - 0 

It can be shown [84] that the optimal controller ui(t) on 0 - t S t­

for this problem is such that either 

u_ t 8 (the boundary of the set ) 

or 
I4.j(t)Il =1 Vj =1,...m 

at almost every instant. 

A controller having this property is said to be a pang-bang controller. 

The intervals of 0:5 t 5 t for which 

I (t) 1 are known as pang 

and those for which 

u*(t) E aQ 

are known as bang. 

5. 1.4 Functional Analysis Approach 

In this section, elementary functional analysis is used to determine 

the nature of the fuel-optimal controller for a restricted class of 

problems of interest in this work. This section is a digression and 

is included to show the power and utility of functional analysis in 

solving certain classes of optimal control problems. Functional 

analysis will be used again in Chapter 6 in discussing the compu­

tational algorithms. 

In many applications it is desirable to drive the transverse compo­

nents of angular velocity to zero while maintaining a constant spin 

velocity about the third axis. Typical applications for such an 

objective include 
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(1) 	 ' a manned space station in which a constant artificial gravity is 

established by maintaining a constant spin velocity and by 

driving the transverse angular velocities to zero 

(2) 	 a spinning reentry vehicle with a spin velocity appropriate 

for aerodynamic stability 

Special Fuel -Optimal Problem 

In this section, the problem of nulling the transverse components of 

angular velocity of a symmetric vehicle so as to minimize fuel con­

sumption is considered. The equations governing the behavior of 

W and w are given by (from Equation (2-74)) 

-0 11-1 
I 

i = I 1 -1 	 + (5-75)
(W I 


3 0 u2
'2 1 2 

or 

x=A x+Bu 

It is immediately noticed that the matrix A is skew-symmetric, that 

is 

A =AT (5-76) 

It is now shown that any system (time -varying or time -invariant) 

having the property given by Equation (5 -76) is norm-invariant. 

The dynamical system 

(S) i(t) = f( x, t) + u(t)) 

is said to be norm -invariant if the solution x(t) of the homogeneous 

system sttisfies the property 

d II?(t) - 0dt 	 ­

for all x(t) and all t [20]. The derivative of the norm of x(t) is 

given by 
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= 	
I )d 11)i A. 	 <xt), 5(t) > - < x(t), *(t) > 

t - )X(t)dt < - > = 

The homogeneous system corresponding to Equation (5-75) is 

(L) _(t) = A x(t) 	 (5-77) 

The system given by Equation (5-77) is norm -invariant if and only if 

< x(t), A x(t) > = 0 (5-78) 

From Equation (5-78) it follows also that 

<A T 	 ATx(t), x(t) > = < x(t), x(t) > = 0 	 (5-79) 

Combining Equations (5-78) and (5-79) yields 

< (A+A T ) x(t), x(t) > = 0 	 (5-80) 

It follows, therefore, that for the nonn-invariant system 

(L) *=Ax 

the matrix A 	must satisfy the relation 

TA= -A I 

that is, A is skew-symmetric. In addition, the homogeneous norm­

invariant system of Equation (5-75), viz. 

*k= A x(t) (5-81) 

is self-adjoint. The adjoint system is given by 

A T x(t) (5-82) 

Since the matrix A is skew synmetric it follows that the adjoint 

system is identical to the plant and, hence, the system is self­

adjoint. 

The optimal controller for norm-invariant systems can be found by 

a direct method, viz. by using the Scbwarz inequality. For the 

norm-invariant systems [Equation (5-75)], the norm of x satisfies 

the equation 
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x(), < A x(t), x(t) 

I1?S(t) 1 II (t) 11 

< u(t), x(% > x(t) (5-83) 

d I_() I1 < x(t)'> > + 

+.~- t I - <_ (t)III (­

_x(t) 
The Schwarz inequality applied to the term < u(t), > implies 

that .... 

< u(t), x( ) S Iu(t 1:= (5-84) 

Straightforward manipulations of Equations (5-8 3) and (5 -84) yield 

the optimal controller for the problem (LNV A, £2, X, XI, J) where 

(LNI) _(t) = A x(t) + u(t), norm -invariant 

A class of admissible controllers consisting of the 

smooth functions u(t) C Q2 

2 = {u(t) : fIu(t) 1 :5 14 

X0 {(Sxt) " x = _ , to 0} 

X 1 = {(x,t): x(t 1 ) 0 , t free} 

J(u) = ju~t) jdt 

Integrating Equation (5-83) yields 

++), < U( X(T) > dr (5-85) 

Evaluating Equation (5-85) at t t y'elds

t1I_(t)
 

Ik<= u (t) >d (5-86) 

Taking the absolute value of Equation (5-86) yields 
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-- t - 0 _(~ [ t[<ult),I = II <'u(t), .1 >dt < x(t) > dt 

(5-87) 

Using the Schwarz inequality in Equation (5-87) yields 

[ StIIlI[11 x1(t) dt = J(u) (5-88)-

0II(t) I1 u-

Hence, the norm of the initial state is the greatest lower bound of 

the cost functional. i. e., 

Il[- glb J(u) (5-89) 

It follows that the optimal control is that for which 

JQu) = II-l 

It is easily shown that the optimal controller is given by [20] 

u*(t) = - (t) x*() (5-9o) 

where at) belongs to the set a. The set Q is the set of non­

negative scalar functions a(t) defined as 

OE= {ot) : 0:< a(t) 5 1 Vt and for every a(t)
 

3T 3 T ct)dt =I
 

Substituting Equation (5-90) into Equation (5-87) yields 

1! 1 : o 
-xt)a=,<)< IIE. II l(t)l l >d >t)dt 

1k I o T 
= 

T Iot)dt '*11(t) dt =J*(u) (5-91) 

where T is the time required to force E to 0 given an 
a(t). 
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The distinguishing features of the optimal controller specified by 

Equation (5-90) are that 

(1) the controllers are smooth 

(2) the control is oppositely directed to the state vector 

(3) the control represents a feedback solution 

5.2 , Sufficiency Conditions 

In this section, three theorems concerning sufficient conditions for 

optimality are stated. More detailed treatments of this subject are 

provided in Reference [45] through [51]. The sufficiency conditions 

presented here are representative of those obtainable from each of 

the three approaches to the optimal control problem. 

Sufficient Conditions Obtained from the Maximum Principle 

For an important class of systems, the maximum principle provides 

not only the necessary but also the sufficient conditions for optimality. 

The theorem presented here is due to Lee [47). The control problem 

(S, A, , X 0 , X 1 I J) for which the theorem applies is now described. 

The system (S) is given by 

(S) : = A(t) x + h (tt) 

the class of admissible controllers A is such that 

A = all bounded measurable m-vector functions on the fixed 

finite duration t 5 t -<T which steer the initial state x 
0 -O 

the target set X 

the control restraint set 0 is such that 

R = a nonempty set C R'n, 

the initial set X is such that 
0 

X0 (x(t),t) :x fixed, tO fxed} 
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the target set X 1 is such-that 

X, = a closed convex sett, 

the cost functional J(u) is given by 

J(u)) +h. (u(ttt)]adt 

0 

Theorem. Consider the control process in Rn 

(S) i = A(t) x(t) + h(u, t) 

with the initial state x and the closed convex target set,XC R. 

The cost functional corresponding to an admissible controller u(t) 

on t -St! T lying in the restraint at S C Rm is defined by0 

3(u) = sT fr USt) t) +ho (t) t)] dt 
0 

with o-(t) = f (t)t) + h (u(t), 0 , x (to) =0 

Of 
The quantities f (x(t) t) j--(x(t), t), ho(u(t), t), 

A(t), and h(u(t),t) are assumed continuous in all (x(t), u(t), t) in 
n + + i . The function f (x(t), t) is assumed to be convex in x(t) 

-0­

for each fixed t c[t 0 , T]. If the controller u7(t) with response 
x = x (t), x*(t) satisfies the maximum principle, then u*(t) 

is an optimal controller achieving the minimal cost 

J(u*) = Xo(T) 
- 0 

As stated previously, the target set for the angular momentum 

control concept is given by 

tNote that compactness of the target set is not required for the 

sufficiency theorem but it is for existence. 
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x1 {(x,t): g1[x(tl)1 ='o , g2 [_x(tQ] = o} 

where g [x(t)] = C x(t1 ) 

C a time -invariant matrix 

In this case, X is a linear manifold and is thus convex (every linear 

manifold is convex). It was stated previously that XI is also compact 

(closed and bounded). It is noted that the theorem applies only to 

fixed-time problems. Both fixed and free time problems are being 

considered in this work. The theorem is useful for both the angular 

momentum control concept and the spin axis control concept when 

(1) the cruise mode (small angles) is being considered 

(2) the final time t I is fixed 

The theorem is not applicable to the large angle turn mode because 

then the plant is nonlinear in x . Of course, in the problems of 

interest in this work since the plant is linear in u and the integrand 

of the cost functional is linear in u.(t) or Iuj(t) I depending on the 

type of jet being used, special attention must be paid to the possibility 

of the existence of shigular optimal controllers. 

Sufficient Conditions Obtained from the Calculus of Variations 

In this section, a sufficiency theorem involving the calculus of 

variations is presented. This theorem involves the notion of the 

second variation of the cost functional and provides the sufficient 

conditions for local optimality. The notion of the second variation 

has no counterpart in the maximum principle. The elegant theory 

involving the second variation of the cost functional is important not 

only becahse it provides sufficient conditions for optimality but also 

because it provides a computational technique as vell [85]. 
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Previously it was stated that the cost functional J(x) is said to be 

differentiable if the increment of J(x) can be written as 

AJ(x; Ax) - J(x + Ax) - J(x) = 6J(x ;Ax) + E1IIAx Ij (5-92) 

where 6J(x ; Ax) is a linear functional known as the first 

variation (first differential) 

Analogously, the functional J(x) is said to be twice differentiable if 

its increment. can be written as 

AJ(x ;Ax) J(x+Ax) -J(x) 

= 6(x; Ax) + 62J(x ;Ax) (5-93) 

where 62J is a quadratic functional known as the second variation 

(second differential). The form of 652J is easily obtained by express ­

ing AJ in a TSE. Given the functional 
t 

3(x) S f°(x° tt) 
0 

the increment of J is given by 

t t 
AJ(X;Ax) = J(x+Ax) -J(x) = fo(x+Ax +Att)dt - f (xit)dt 

0 0­

f
t[ af° af a 

---Ax >+ < 0 Ai>+-2< Ax, 20 Ax0 > 
_i _z,- -- _ -

D2f a2f (5-94),1I o o* A0<Ai, > + < Ax, . >+ <- -- A U 


+cI < A-x J-x > + 2 < A, Ak>+Es< A Lx>]dt 
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From Equations (5-9 3) alnd (5-94) the second variation is given by 

2a;f 2 2 af 

0 0 
a'xax 2 

Ifthe functional J is given by J(u, x) (u, x)dt, the second 
0variation 62J becomes 

J~x u;Ax AxT 2f a2 d 

1A (5-96) 

2 ul a2 2xl 

2f a2f
0 o 
auax au2
 

Before stating the sufficiency theorem the following easily proven 

lemma is stated [42]. 

Lemma A necessary condition for the functional J(u, x) to have 
= 
a minimum for x = X* , u u, isthat 

6 J(x, u, Ax, Au) 0 

for x =x , u = u and all admissible Ax, Au. 

This condition is clearly satisfied if the symmetric matrix 

2 2 
o 0 

ax~ 

a2 2 
o 0 

auax au2
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is positive semidefinite. 
I 

With this definition of the notion of the 

second variation the sufficiency tleorem can now be stated [24]. 

Theorem. Consider the autonomous process in Rn 

(S) ] = f(x, u) 

with initial state x(O) = x and cost functional 

T
 
J.(u, x) f0(x, u)dt
 

2 	 n~mAssume that fo(xu), f(x, u) are in C in R . The admissible 

controllers are those bounded measurable'functions u(t) defined on 

the fixed finite interval [0, T] which satisfy the restraint 

u(t) C QC Rm 

The controller ut(t) is optimal if u*(t) is such that 

(1) 	 the first order necessary conditions for a local minimum are 

satisfied, viz. 

i)8u 2(t), 2 (t) x-"t 0 a. e. 

where H -f (x, U) + p, f > 
0­

it) i = f_ (xct), p(t), uM(t) x(0) = x 

/x(t), p(t), p(T) = 0 

(2) 	 the symmetric matrix involved in the expression for the 

second variation is positive definite, i. e., 
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a2f 2f
 
o 0 

2 bxau
ax

is positive definite 

O2f O2f
a2 f a2f 
o 0 aua~x au2 --


Ln t u u=.(t) 

(3) either of the two following conditions holds along (x t, U'() 

O2f -2f 2f =
 
Wa2 f 2f 2 =0
 

2 - S- 27i o
 
ax 8xu au


(ii) o 
- =0 
Ox 

It is immediately apparent that this theorem cannot be used for the 

problems of interest inthis work. The theorem is typically applicable 

for cost functions which are quadratic in both x and u. In this 

work, the functions f(u ,t) under consideration include 

f£0.(, t)i u t 

f0(u, t) (t)K u.j 

f t t)) = ii 

For these functions, the following observations are apparent 
O2f O2f
a2 f a2f0 0 

=
(1) the matrices 0 
2 axauax
 

(2) the matrix defining the second variation is not positive definite 
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(3) 	 the function f£( u', t) = Kj V.u(t) I does not belong to C 2 in 
J 82f 

R and, hence, the operation o cannot be performed. 

It is also noted thatthe theorem as stated here applies only to 

autonomous systems for which the final time is fixed and finite. 

Sufficient Conditions Obtained from Dynamic Programming 

In this section, -a sufficiency theorem based on dynamic programming 

is provided. The theorem is applicable only if a feedback solution u 
I ­

exists. Previously it was noted that if the control constraint 2 given by 

were assumed appropriate, then in certain cases a smooth feedback 

solution exists. The advantages of having a feedback solution are 

well-known to the practicing -control engineer and considerable 

effort is expended in an attempt to obtain feedback solutions. In 

fact in many cases, a feedback law obtained by appropriate approxi­

mations is more useful than an exact open loop control law. The 

control process in Rn 

(S) = f(x, a, t) 

with restraint set f
ti 

C Rm, with the cost functional 

J(u) 5' f_ (u(t), x(t),t)dt , and with the Harniltonian 

0 

H°(x, p,t) sup 1_(x, p, u,t) -(x, p. u(x, P,(t)t) 

The close analogy between Hamiltont s canonical equations and the 

Harniltonian of analytical mechanics and Pontryagin s maximum 

principle has already been noted. A similar analogy exists between 
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the Hamilton-Jacobi theory of analytical mechanics and Bellman' s 

theory of dynamic programnning. 

The quintessence of the Hamilton Jacobi theory of classical 

mechanics concerns such notions as canonical transformations and 

their generating function [52]. The distinguishing feature of the 

Hamilton-Jacobi approach is that the problem of solving the entire 

system of canonical equations is reduced to the problem of solving 

one partial differential quotation. Consider the functional 

Ax) = ffo(x, ,t)dt defined in a regionR and define -(xt) as 

0 
the 	functional J(x) evaluated along the extremal joining the points 

A 	= ( o, x 

B 	 (t , x) 

The quantity S is a singled-valued function of the points A and B.
 

If point A is fixed and point B is variable, then S is a single-valued
 

function of the coordinates of point B, i. e.,
 

s = 	s(t 1 , x1 ) = J*(t x1 ) (5-97) 

By 	definition, the increment of S is given by 

(t AS 	= S( t + dti - + Ax - 1 ) 

= J(W) -J() (5-98) 

where -y = the extremal going from the point A to the point 

(t1 , 	 x ) 

= 	 the extremal going from the point A to the point 
(t+ dtlvx + AX) 

From Equation (5-98), it follows that 
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dS = 6J (5-99) 

The first variation 6J is given by 

t f of 
6a=5 < -,Ax>+< --2-, Ax ­

0 (5-100) 

Shplifying Equation (5-100) yields 
tIf 
 af
 

6< - - o - o Ax> dt + 

0 BDf 
0 

+< --,_> + f0(X *,t)&t1 	 (5-101)7 It
 

Since the 	Euler -Lagrange equations 

a f Of 
d o 

d 8> -5x- (5-102) 

are satisfied for an extremal, the general variation becomes 

65J - H(x, p t) I 6t1 + <p (t I),Ax1 > (5-103) 

where H-- f(x , ,t)+<p, i> 

af
0 

From Fquation (5-97), an additional expression for dS is 

CS= 6t +< Ax > (5-104)
at1 1 ex1 

Equating 	the results of Equations (5 -103) and (5 -104) yields 

A-153
 



8- :- (t) 
1(5-105) 

as P(tl)ax 

It follows from Equation (5 -120) that 

as +(tl, l ) =0 (5-106) 
1 - a 

where S and H are expressed in terms of the coordinates of point 

B. In classical mechanics, the partial differential equation 

S+IT _ -0 	 (5-107) 
at *(t, ax) 

is known as the Hamilton-Jacobi equation and S is known as the
 

generating function.
 

The sufficiency theorem related to the Hamilton-Jacobi equation
 

-may now be stated [24]
 

Theorem. Consider the control process in Rn
 

(S) 	 * = f(x, ut)
 

Rn
with initial sate x0 and target set X 1 C . The admissible con­
trollers are all bounded measurable functions u(t) on [t, T] with 

values in the control restraint set 2 C Rm which steer the 

response x(t) from x(t ) =x to x(T) c X1 . The cost functional is 

J(u) = (x(T) + Tf ( x(t), u(t),t)dt 

0 

where 0 f, f, are in C I in all arguments. 

Assume that there exists a feedback control u°(x, p, t) in CI in 

Rn + n + l such that 
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H0(%, p, t) -- ,Xop, u'(X 0p, t),t) 
- C2
 

If S(x,t) c C for x c R%, t = T is a solution of the H-J equation 

as H (+- as = 

S(x, T) : - *(x) for xcX I 

° then t-hecont-rol law u(xt)=u (.X b ' It' which determines a 
~~~- I- ax' 

a response i(t)-steering (xo, t ) to the target set at t = T is an 

optimal controller provided it lies in 2 and has cost 

J(-U(ti) = -S (Xo't ) 

Before commenting on the applicability of this theorem for the 

problems of concern in this work, a theorem concerning a restricted 

class of control problems for which a feedback control can be deter­

mined is given [24]. Consider the minimal-time problem of steering 

a given initial state x to the target set X I C Rn. Assume that-- O 

the control restraint set £2 C Rn is compact and is diffeomorphict
 

for each fixed x c Rn with the velocity set
 

V={f(x, u)Itc£P} 

Rn 
Theorem. Consider the autonomous control process in 

1 inR n + n (S) k=f(x, u) inC
 
with compact restraint set Q C REn and cost functional J(u) 1
 

__ _dt. = 

For each x c R , the velocity set is defined aso 

t The rnap 

0 -'V: u- f(x, R) 

is said to be diffeomorphic if it is 1-to-1 onto V and is in C with 
a nonvanishing Jacobian determinant. 
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VGx) ~r COfx2 

If for each x z Rn 

() there is a diffeomorphism of £ onto V 

0- V: u - f (x, U) 

(ii) 	 V(x) is a strictly convex body in Rn with a smooth C2 boundary 

manifold 8V having positive Gaussian curvature, 

then 	there exists a smooth feedback control 

nu°(p, x) in C for p 4-0 , x cR 

describing the unique point in 0 where 

H(_p x) = sup [-i+<p, f(x, u)>] 

This sufficiency theorem does not apply to those problems being 

considered in this work for which the cost functional is given by 

J(u) = Zjkiu.I 

or 

J(U) = kjuj(t)dt 

This follows because the extremal controller u*'(t) is neither a 

feedback solution nor does it belong to C However, if the control 

restraint set Q given by 

0 = !1R11 51 	 (5-108) 

were used, the theorem could conceivably be used. Recall that the 

smooth control constraint given by Equation (5-108) is appropriate 

(1) 	 when a ginballed-jet is used 
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(2) 	 as an approximation of the restraint set 
I 

l {u(t): 1 .(t) i Vj} 

Besides providing a sufficient condition for optimality the theorem 

demonstrates a geometric property that was conspicuous neither in 

the calculus of variations approach nor in the maximum principle. 

This geometric property is that 

(1) 	 the adjoint vector p(t) corresponding to an optimal trajectory 

is the gradient of the optimal performance index (cost 

functional), i. e., 

(2) 	 the optimal Hamiltonian H' is equal to the negative time 

rate of change of the optimal performance index, i. e., 

-t -at 
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Section 6 

COMPUTATIONAL ALGORITHMS 

In this chapter, the computational algorithms that could be used for 

determining the fuel-optimal controller are categorized (see Table 

6-2). A few of the algorithms considered most suitable for the 

problems of interest in this work are briefly described. It is 

emphasized, that a thorough treatment of this topic is not an objective 

of this dissertation. It is also emphasized that the algorithm to be 

selected in this work is not necessarily the most suitable for an 

arbitrary class of fuel-optimal problems bat is suitable for the 

particular class of problems of interest. Almost all the algorithms 

mentioned in this chapter are potential candidates for the application 

at hand; however, appropriate modifications would have to be made 

to some of them. 

There are two types of optimization problems that are commonly 

encountered, these types include 

(1) the general optimization problem 

(2) the parameter optimization problem. 

In the general optimization problem, a nonlinear two -point boundary 

value problem must be solved. In the unconstrained parameter opti­

mization problem, the task is to° determine the values of say m 

parameters which minimize some appropriately chosen performance 

index. 

6.1 Parameter Optimization 

A class of optimization problems of gret.t practical importance and 

of relevance in this work is that associated with parameter optimiza­

tion. In this type of problem, the task is to determine the values of 

say m parameters which minimize some appropriately chosen 
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performance index. This task is considerably simpler than the 

general optimization problem. However, many of the computational 

techniques used for this class of problems can be modified and used 

for the general optimization problem. Some of the techniques which 

have proven worthiness in attacking parameter optimization problems 

include 

(1) relaxation search [53] 

(2) random search [54] 

(3) direct climbing [55]. 

Of these techniques, the category that is currently used most fre­

quently is that associated with direct -climbing. In the direct climbing 

technique, an n-dimensional search problem is converted into a series 

of unidimensional searches. Frequently employed search procedures 

include the direct elimination and the polynomial approximation cate ­

gories. The techniques belonging to the direct elimination category 

include [55] 

(1) dichotomous search 

(2) Fibonacci search 

(3) Golden Section search . 

The climbing techniques are usually classifted as 

(1) first-order gradient 

(2) se ond-order gradient. 

The most common technique belonging to the first-order gradient 

classification is the well-known method of steepest ascent (descent). 

The seconr-order gradient techniques cvercome some of the con­

vergence problems associated with the first-order gradient technique. 

Algorithms belonging to the second-order gradient technique include 

(1) PARTAN [561 
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(2) FLETCHER -POWELL DESCENT METHOD [57] 

(3) ACCELERATED GRADIENT METHOD [58] 

,(4) HESTENES-STIEFEL CONJUGATE GRADIENT [59] 

(5) DAVIDON VARIABLE METRIC [60]. 

Of these, the most promising ones are (4) and (5). 

In many practical applications, it is desirable not only to determine 

the optimal controller but also to determine the optimal values of 

certain system parameters. Hence, the parameter optimization 

problem is coupled with the general optimization problem in this case. 

According to Cicala [61], it is frequently convenient to handle these 

parameters as initial conditions. That is, the parameters e. are1 

characterized as initial values of additional state variables xi defined 

as 

t.=01 

xit ) = e. i = nl, ..... 

6.2 General Optimization Problem 

The general optimization problem is defined in terms of the nonlinear
 

plant (S)
 

(S) -k f(x, u, t) 

the cost functional J(u) 

J(u) = w(x(ttl) + f 0(x, u,t)dt 

the target set X 1 associated with either a fixed-endpoint, a free­

endpoint, or a constrained-endpoint and the final time tI (fixed or 

free), the initial set Xo, and the control restraint set Q. In general, 

both the state variables and the control variables are constrained. 

In the problems of interest in this work, however, only the control 
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variables are constrained. An important consideration affecting the 

selection of the algorithm to be used in this work is the relative ease 

in which the constraints on the control variables are handled in the 

various algorithms. 

6.2. 	1 Classification of Computational Methods for the General 
Optimization Problem 

Although the various computational algorithms for the general optimi 

zation problems do not fall automatically into distinct categories, 

nevertheless, it-is convenient to classify them (see Table 6.2). 

Frequently, the computational algorithms are categorized as [63]. 

(1) 	 direct methods 

(2) 	 indirect methods . 

In the direct methods, the equations of motion and the appropriate 

terminal conditions are used as the starting point and an attempt is 

made to maximize or minimize the cost functional without using the 

necessary conditions. 

In the indirect methods, the necessary conditions for optimality are 

used as the starting point and an attempt is made to satisfy these 

conditions by using an iterative approach. Advantages and disad­

vantages of these techniques (based on Reference [621, [631, and [64]) 

are listed in Table 6.-S. 

In the general nonlinear two -point boundary-value problem, the task 

is to find 

(a) 	 the n state variables x(t) 

(b) 	 the n influence functions p(t) (sometimes called the adjoint 

or costate variables) 

(c) 	 the m control variables u(t) 
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to satisfy simultaneously the 

(1) the n state equations involving x and u 

(2) the n adjoint equations involving, p, x, and u 

(3) the rn optimality conditions involvfng p, x, and u 

(4) the boundary conditions involving x and p. 

A characteristic which distinguishes the various algorithms pertains 

to the equations which the nominal solution satisfies and the equations 

which are iterated on (see Table 6. 1) 

Direct Methods 

The direct methods have been applied successfully to many practical 

- problems. As will be seen later, the same statement cannot be made 

for the indirect methods. In 1960 Kelley [651 applied the direct method 

to a control problem; he called his method the Gradient Method. Since 

then several modifications have been suggested to cope with the 

inherent disadvantage of extremely slow convergence in the neighbor­

hood of an optimal solution (see, e.g., Reference [661 and [67]). The 

Implementation of the gradient technique has varied widely because 

the proper step size in the control space is not well defined. The 

gradient direction, however, is well defined. Because of this arbi­

trariness in the inplementation of the gradient method, considerable 

care is required in selecting the proper control step size to avoid 

violating the linearity constraints imposed on the problem. This 

suggests that there is a certain amount of art involved in the success­

ful application of these techniques. Indeed, this statement applies to 

all known computational techniques for solving optimization problems. 

The direct methods are categorized by Bryson and Ho [64] as 

(1) first order gradient methods (method of steepest descent) 

(2) second order gradient method 
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Table 6-1
 

ITERATIVE NATURE OF COMPUTATIONAL TECHNIQUES
 

Computational Technique Equations Nominal Solution Satisfied Equations Iterated On 

Direct Methods 

Gradient State equations Boundary Conditions 

Second Variation Adjoint equations Optimality Conditions 

Indirect Methods 

State Equations 

Classical Newton-Raphson Adjotnt Equations Boundary Conditions 

Optin ality Conditions 

Generalized Newton-

Raphson Boundary Conditions Skate Equations 

(Quasilinearization) Optimality Conditions Adjoint Equations 



(3) second variation method 

(4) conjugate -gradient method. 

The gradient methods were developed to surmount the "initial guess" 

problem associated with the classical Nicwton-iRaphson technique to 

be discussed later. First-order gradient methods reportedly show 

great improvement in the first few iterations, but have poor converg­

ence characteristics as the optimal solution is reached. Second order 

gradierxt methods have improved convergence characteristics as the 

optimal solutionis approached, but may have starting difficulties 

associated with choosing a convex nominal solution. 

The basis of the steepest descent or the first order gradient technique 

is to determine the estimates of the control variables u (t) which 

minimize the cost functional. The previous estimate u is updated 

according to 

i+1 i 8J(ui) 
U =U -k --

Du
 

where k is sone small positive constant. The mn-H algorithms 

are modified first -order gradient methods which were developed to 

improve the convergence characteristics, included among these are 

(1) Halkin' s method of convex ascent [68] 

(2) Gottlieb' s min-H strategy [69]. 

In Reference [64], a second order gradient technique in which both 
a28 J
 --and -1
 

a and must be computed is discussed. The estimate u 
au [ 

is updated according to -1
 

i+Ii 2J a3 i
 
u =-1 uau2 
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A method related to the second order gradient method known as the 

method of second variation [851 is based on the calculus of variations. 

A significant advantage of this method is that the step size is auto­

matically determined, thus eliminating the independent search pro­

cedure needed in the gradient method. An additional advantage is 

that the penalty functions (linear or quadratic depending on the problem) 

associated with the terminal conditions are not needed in the final 

-stages of-the computational procedure. Thus, the undetermined con­

stants associated with the penalty function terms are eliminated. 

The conjugate -gradient method [70] attempts to combine the advantages 

of both the first-order gradient and the second-order gradient methods. 

- Initially, the algorithm behaves like a first-order method and as the 

iteration progresses, it behaves like a second-order method. One of 

its chief advantages is that it is not necessary to compute 

[825]I Fundamental to the conjugate -gradient method are such 

ideas as 

(1) 	 the conjugate property of a sequence of directions n1 , n2 , ... , n 
2
 

relative to - that is
 

D2 
<a. 	 2 n. >=0* ij
 

Dz2 j
 

(2) determination of the optimum in each of the conjugate directions 
n. by making a sequence of one-dimensional searches. 

1 

Since this technique has not been extended to constrained control
 

problems, it will not be discussed further.
 

It is expected, however, that this extension will be made because the 

method appears very promising. 
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1.Table 6-2 

METHODSCLASSIFICATION OF COMPUTATIONAL 
FOR GENERAL OPTIMIZATION PROBLEMS 

Remarks 
Computational Technique 

Direct Methods 
a Developed to overcome Initial guess problem

" First-order gradient or method of 
associated with clasAical indirect method 

steepest descent (ascent) 
o Shows great improvement in the first few 

iterations 

( 1) 
o Update estimate of u by 

u1+1 = u() - u (n­u -_ -k 

MbU-H algorithms 
s method seeks to satisfy dptimalitya Gottlebt 

Gottliebt s mn-H Strategy 
conditions 

-improved convergence character istics nearascentHalldn' s method of convex 
optimal solution 

oRequire nominal solution to be convex, i. e.,
" Second-order gradient 


a H2 > 0 for minimizatior problem
 
aru
 

-Improved convergence characteristics near 

optimal solution 

oUpdate estimate u by 

' _~ i "Tu 



Table 6-2 (Continued) 

RemarksCoputational Technique 

Direct Methods 

aDeveloped to improve iteration techniqueSecond variation method 
and eliminate shortcomings of gradient method 

o Based on theory of second variation of the 
balculus of variations 

- Find Au W which minimizes 

AJ = 6J + 62J 

. Combines advantages of first-order and­-Conjugate-gradient 
second-order gradient methods 

- Initially behaves like a first -order method, 
as iteration proceeds it behaves like a 

Ilsecond-order method 

" Not necessary to compute T2 

" Currently can be applied to unconstrained 
control problems but possibly can be 
extended for general problems 



Table 6-2 (Continued) 

ComputatIonal Method 

Tndirect 

perturbation lethods 

Method of Perurbation 
runctions 

-Classical Nowton-Raphson 

, 

(o 

Method of Adeoint Functions 

Quasilunearization Methods 

Remarks 

. Diffcult to guess appropriate initial 
values for the ad3olnt variables 

* Success depends on the dinension of 
the problem 

' al conditions are very sensitiveTermi 
0tovariations in the initial adjoint variables 

Trajectories are determined by integratizng
 
nonlinear equations of motion
 

Same as method of perturbation functions
-
except the system of equations adjoint to 

the system equations are integrated backwards 

problems associatede Developed to overcome 
with the classical Newton-Raphon technique 

* Rapid convergence near the optimum
 

, Succession of nonhomogeneous linear two­

point boundary value problems are solved 

until state and adjolnt equations are satisfied 



Indirect Methods 

Indirect methods have not been used as frequently for solving optimal 

control problems as the direct methods, despite the fact that they were 

introduced earlier. Hestenes [71], as early as 1949, applied a calcu­

lus of variations formulation to the study of time -optimal solutions 

to the fixed endpoint problem. The differential variations method 

proposed by 1-Testenes for generating the numerical solutions is 

considered the forerunner of the recently popularized quasilineariza­

tion methods. The lack of success of the classical indirect method 

(NewLton-Raphson) is attributed to the sensitivity of the terminal con­

ditions to variations in the initial adjoint variables. 

The indirect methods are categorized [63] as 

(1) perturbation methods 

(2) quasilinearization methods. 

In the perturbation methods, the reference trajectory is generated by 

integrating the nonlinear differential equations of motion. In the 

quasilinearization methods, the linearized differential equations of 

motion are used to generate the reference trajectory. The pertur­

bation methods are further subdivided as 

(1) method of perturbation functions (classical Newon-Raphson) 

(2) method of adjoint functioiis. 

The main difference between these two perturbation methods is that 

in the method of adjoint functions, the set of equations adjoint to the 

system equations (Hamilton' s canonical equations) is integrated 

backwards while in the method of perturbation functions, the system 

equations are integrated forwards. 
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The quasilinearization methods include several methods, which 

although essentially the same, are known by various names; included 

in this category are 

(1) Hestenes' method of differential variations [71] 

(2) Bellman and Kalabal s quasilinearization 172] 

(3) McGill and Kenneth' s generalized Ne'vton-flaphson [73]. 

Kalaba [74] studied the convergence characteristics of the fixed end 

condition problem from a theoretical point of view. Long [751, 

Conrad [76] and Lewallan [71 have extended the generalized Newton-

Raphson method to handle variable final time problems. In addition, 

Lewallen [77] extended the generalized Newton-Raphson technique 

so that it can handle general terminal conditions. 

In the quasilinearization methods, the reference solution is obtained 

by integrating the linearized form of the system equations. The 

coefficients used to generate a new reference trajectory are obtained 

from the previous reference trajectory. Under appropriate conditions, 

the successive solution of the linearized equations converges to the 

solution of the original set of nonlinear equations. Being linear, the 

boundary conditions can be satisfied on each iteration. Note, how­

ever, that the optimality condition -- = 0 is satisfied only when 

convergence occurs. 

Although the quasilinearization methods have not been extensively 

used, all indications are that the methods appear promising. 

6.2.2 	 Brief Description of Most Suitable Algorithms for the 
Problems of Interest in This Work 

In this section, brief descriptions of the method of steepest descent, 

the generalized Newton-Raphson method, and the classical Nevion-

Raphson techniques are provided. It is felt that these techniques 

are the most appropriate for the problems of interest in this work. 
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Table 6-3
 

ADVANTAGES AND DISADVANTAGES OF VARIOUS
 
COMPUTATIONAL ALGORITIMS
 

Computation Technique 

Direct 

First-order gradient 

Second-order gradient 

Second Variatton 

Advantages 

* Conceptually simple 

Easy to program 

* Se3ks out relative minima rather 
than stationary sclutlonh 

- Control constraints are easily 
implemented 

•Useful for starting a solution 

*Possible to determine singular 
solutions with this algorithm 

*Concepttally simple 

'Fast convergence near optimum 

* Seeks out relative minina rather 
than stationary solutions 

- Penalty functions not required in 
final phase for satisfying terminal 
boundary conditions 

*Quadratic convergence near optimum 

* Step size automatically determined 

*Improveauent in each step 

* Convergence not contingent upon a 
good starting function 

Disadvantages 

- Penalty functions required for terminal 
boundary conditions 

- Poor convergence characteristics near 
optimal rolutioli 

•Step size determined by an Independent 
search procedure 

RRelatively difficult to program 
2­

*Must compute 2 Usau u 

* Initially i may not exist or resemble 
v~u mayno
 

value near optimum 

* Requires nominal solution to be convex 

* Method must be modified to handle 
control constraints 

- COntrol constraints Cannot be easily 
handled 

-Relatively difficult to program 

* Method seeks out stationary value 
rather than relative minima 



Table 6-3 (Continued) 

Computational 
Algorithm 

Advantages Disadvantages 

Direct 

Conjugate-gradient - Conceptually simple -Has not been extended to apply to the 
general control problem 

* Good convergence characteristies 

Not necessary to compute J-3 as 
2uin the second-order gradient method 

- Control conntraints 
handled 

are not easily 

> 

-

Indirect 

Classical Newton-
Raphson (CNl) 

* Conceptually simple 

-Easy to program 

* Terminal boundary conditions y 
sensitive to variations in initial 
adjoint variables 

-Control constraints 
implemented 

are easily -Success depends 
problem 

on dimension of 

Quasilinearzation 

*Neighboring optimal solutions 
obta iied in addition to optimum 

- Convergence of method is quadratic 

-Method seeks out otationary values 
rather than rela±ive minima 

- Method seeks out stationary values 

Methods near optimum rather than relative minima 

- Step size is automatically determined * Relatively difficult to program 

- Potential savings in computer 
running time 

-

* Penalty functions are not required
for the treatment of ter=_inal 
boundary conditions 



Ideally, it would be desirable to determine the fuel-optimal controller 

by using each of these methods and to compare such factors as con­

vergence characteristics, computer running time, sensitivity to 

starting function, etc. *Despite the importance of such a task, it is 

not within the scope of the present work and must be delayed until a 

future time. 

Method of Steepest Descent 

The method of steepest descent is important not only as a computa­

tional technique in its own right but also because many of the available 

algorithms for computing optimal controllers are based on it. For 

example, a typical modification to the steepest descent technique 

centers around the notion of using the gradient in an appropriate space 

(one that ensures that the gradient exists for all elements in the space). 

In another modification, the geometry in the function space is changed 

by introducing a locally linear transformation; this modification results 

in the Newton-Raphson method. The mathematical theory of this 

method is discussed in Reference [78] through [81] and in an Appendix 

of [ 24]. 

In this section, the method of steepest descent for functionals defined 

on a function space is discussed. The results for the case in which 

Rnthe space is are obtained as a special case of the general results. 

Fundamental notions involved in this development include such con­

cepts as 

(1) are length in a Banach space 

(2) Frechet derivatives 

(3) the Riesz representation theorem. 

Let u(t) be a smooth function in a real complete normned linear 

space (i. e., a real Banach space or simply a real B-space). The 

arc length s is given by 
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s5I- 1u'() IIId 
.where u' (a) = (o) 

8a 

If the curve is parameterized by arc length, it follows that the norm 

of ut (t) is unity, that is, 

1 ()I1 

-Forthe case -in which the real B-space is the space of square­

integrable functions on [0, 1], that is L 2 [0, 1], and the function 

u(s,) with 0S a 5 1 is a smooth curve in L2 [O, 1], then the following 

is true 
1o.u )2 

(uS, da= 1 (6.2) 

where s = are length, y- (sa) = u' (s) . 

The notion of a -Frechet deri-vative has already been discussed in 

reference to the differentiability of the cost functional J. For con­

venience, this definition is given again. Let -f[ be a real complete 

space having a scalar product (that is, A is a Hilbert space). Suppose 

u, h E- and let J be a function such thai 

where R denotes the set of real numbers. The function IT has a 

Frechet (strong) differential J' (u) h, if there is a continuous linear 

functional (the Frechet derivative of J at u 0 J' (u0 on j-( such 

that 

J(U0 +h) - J(u) - J (uhf 0 (I1hI)I 

A function g(h) is said to be o( lih 1) as lihl- 0 if ln Igh - 0. 
lihil - 01T 

A-17S 



as lhil - 0 with 1ih -- <h,h> . Moreover, if the expression 

= lie J(uo+ Xh) - J(u0 )DJ(uo, h) (u + X h) 

exists, it is called the Gateau (weak) differential of J at u or the 

directional derivative of J at u . If the Gateau differential has certain 
0 

properties then the Frechet and the Gateau derivatives are equal, that 

is 

DJ(U0, h) 0J(uo)h 

The following theorem due to Luisternik [821 provides the conditions 

which must be satisfied in order for the two derivatives to be equal 

(Luisternik uses the term weak derivative while Kantorovich [41] 

uses the term Gateau derivative). 

Theorem. [24] If the Gateau derivative D J(u, h) exists in lU-U 0 11 a, 

a > 0 and if it is uniformly continuous in u and continuous in h then 

the Frechet differential exists and 

J' Cu) h = D J(u,h) 

Higher order Frechet derivatives are defined in an analogous manner. 

Let Jf denote the B -space of continuous linear functionals on -f with 

norm I 1I. If J(u) has a Frechet derivative, then J(u) is said to 

have a second Frechet differential J"(u ) h if 

IJ(u0+ h) - J(u) - J"(u)hOW = 0 (lhill) 

as Ihil 0. The term J"(u0 ) is a continuous linear operator from 

j-( into 3 uand is the second Frechet der'vative of J at u 0 

Suppose J has two continuous Frechet derivatives in -. Since the 

first Frechet derivative is a linear functional onJ., it follows from 

the Riesz representation theorem [ 171 that 

A-176 



aJ
 
J't(u)h = < Mu(u), h > hE J-4 (6-3) 

as au 

where u (u) is a unique element in _-f. The element u is 

called the gradient of J at u. This agrees with the finite dimensional 

definition of a gradient if J-f Rn, that is 

J,
u) =< H(),h> 

and 

VJ(u) = a U) 

where u, h c Rn 

Since J"(u)h is also a continuous linear functional on -, it follows 

that 

(J"(u)h) h = <Jfj(u) h, h > (6-4) 

where -i (u) isa continuous linear operator on EJ known as the 

Hessian of J at u. 

With the concepts of arc length in a B-space, Frechet derivatives, 

and the Riesz representation theorem established the method of 

steepest descent can now be stated for functions defined on a Hilbert 

space 44. Let J be a real-valued function defined on J-4 with one 

continuous Frechet derivative, let uI c J-[ and let -y be a smooth 

curve in N-f passing through u1. Parameterizing the curve by arc 

length, i follows that 

fju' (s) 1 

and 

dJ -. J[u(s+As)] - J[u(s)] = < ,u 
ds AsAsds lm. s < (-(s)),nU,(s)>

A~s
 

The direction of steepest descent is found by minimizing 
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subject to 

liU (0) 112 = 1 

and the path of steepest descent is found by solving the differential 

equation 

-du 83() u(O) u (6-5)
1da u 

o 0
 

The solution is a function with values in -f and along this path 

J (ucM) is decreasing since 

dJ 8n du KJ
dJ _<8H3 u > 1 1 8( 0 ) 1 0 (6-6) 

if - 0. 
au 

The following theorem due to Rosenbloom [831 indicates under what 

circtunstances a unique solution based on the steepest descent tech­

nique exists and also indicates the convergence characteristics of 

the algorithm. 

Theorem. Let J have two continuous Frechet derivatives on a 

convex domain D of1f. Suppose the sphere S(u) defined by 

S(u) {u [nEil, lu-uo < A: } 

where a = IIJ (u) f and A (chosen later) is contained in D. More­
8u o over, assume that 

< i -4.(u)v,v > a A IIv!12 

-for u cD, v A-f4, A > 0 and fixed, and that u(a) satisfies the equation 

for the path of steepest descent, that is, 
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2u du_ for a :O, u(O) =n cD(or)UOaS 

Then 

a. lia u(a) uo exists in 4( (that is, the minimizing element, 

is unique and the path of steepest descent u exists). 

b. U J(u(a)) = c exists for o- 0 

c. 111ua)-_u 1 a exp (-A a) and' 

2
 
0 - J u((Y) - <a- exp(-2AaT)
 

2A
 

and VI uED J()C+A U - 2 

For the control problem, it is frequently necessary to minimize a 

function J on [-fsubject to the side condition that g = 0. In this 

case, the path of steepest descent is defined by 

du 8J g6-7)
 
- Onu + X(u) l6-7
 

uaa -Lu
 

auX(U) au 
11ag/au 112 

provided that 1g- 0. With this choice of path, it follows that 

_ au 

dar 2
 

au 
 (6-8) 

dg(u) 0 
dcr 

Thus far it has been shown how the steepest descent path can be 

constructed based on the gradient information of the functional J(u). 

In practice, however, a discrete version of the differential equation 
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representing the path ofsteepest descent is implemented, that is, 

the value of u at the k+lth step is taken as 

Uk+l =Uk- Pk VTJ(uk) for pk> 0 k= 0...... 

Application to Fuel-Optimal Problems 

It is of interest to note that the existence theorem stated above could 

be directly applied to the fuel-optimal problem in which the cost 

functional is given by 

J(u1) = t° - kjuj(t)dt
 

it cannot be directly applied, however, to the case in which the cost 

functional is given by C 
tI -

J(u) -5 Zk !I.dt (6-10) 
to ' 

since the hypothesis that J have two continuous Frechet derivatives
 

isviolated.
 

Itwas demonstrated inthis work that the cost functional 
t 

J(u) = 12kj u.(t)dt (6-11) 
t0
 

isappropriate for the fuel-optimal control of spinning and dual-spin 

vehicles even though in the literature the cost functional for such 

problems is always taken as 

J(u) = S 1 Ek.tjIdt 

t0 

It is possible that even though the differentiability hypothesis is 

violated, a solution could still be found for the cost functional given 
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in Equation (6-10). That is, the notion of a Gateau derivative could 

be used in lieu of the Frechet derivative and could be evaluated 

numerically. 

Generalized Newton-Raphson Method 

In this section, the rudimentary notions concerning the generalized 

Newton-Raphson Method are discussed. As in the method of steepest 

descent, it is 'convenient to discuss this method for functions defined 

on a function space. Kantorovich [41] was one of the first to disguss 

this technique. Kenneth and McGill [731 applied it to an optimal 

control problem. 

Let 1P be a nonlinear operation mapping a B -space X into another 

B-space Y. Consider the task of finding a zero of the equation 

P(x) =0 (6-12) 

showed that under certain conditions the solutionKantorovich [411 x 

to this equation can be obtained from the sequence {xnj defined -by 

x1 X - [dI(xo)]- 1(xO) 

I )'2 x 1 - pP(x)]-( 

-x n 1 X -1P n (6-13)( 

In this technique it is assumed that the inverse of the Frechet 

derivative W' that the initial guess x is(x) exists, sufficiently closeo 
to the solution x, and that the operator '9 is bounded. These 

conditions are summarized in the fundamental theorem of Kantorovich 
[411. 

Theorem. Consider the operation 'P defined above and suppose it is 

defined on the open sphere { Ec XK x-x 0o < r} and has a continuous 

second derivative on the closed sphere {x EX Ix-x0 11- t0 }. Assume 

that 
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(1) the linear operation r ° = [9'(x)] -1 exists 

(2) Ir(p(x)IIS 

(3) fir 9"(x)w11 k 

If h=kn<1 and r>r = 1-12h r thenthe sequence
2 o h n 

defined by Newton' s method 

x+1 + E9'Cx1 4(x) 

converges to the-solution xP of the equation (x) = 0. Moreover, 

the solution will be unique provided that the following condition is 

satisfied 
for h<- r<r- 1+42h 

2 1 h 

for h =1!2 rSr 1 

- Furthermore, the speed of convergence is characterized by the 

inequality 

x:- x n ±5 (2h_ h , n = 0, 1 .... 

Note that the differentiability hypothesis of this theorem is violated 

for fuel-optimal problems in which the cost functional J(u) is given by 

t1 

J(U) . lu (t)Idi 
to j 

The implication of this has already been discussed in reference to the 

method of steepest descent. 

This theorem immediately suggests a method for solving two-point 

boundary value problems. Consider the system 
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1 in 1n+l
(S) k=f(x,t)'inC 

with fixed endpoints xo, xI . If the system equations are rewritten 

as 

4 x fx,( t) = 0 ='9(x)

dt ­

where P is defined formally as 
d 

-


then heuristically, the following sequence is obtained 

n+ nX- d - (x] D x -f(x, t 	 (6-14) 
t o b t s d s O 

?-ndta [ dt -n 1f11 

By formally applying the operator _ -d8f CX to both sides of
dt 

Equation (6-14), the following iterative sequence results 

ad 
d( ) (x -x ) f(x ,t) (6-15)

It-D+1 E ax -nj -n+1 -n - -n 

with the boundary conditions as previously prescribed. Since the 

matrix M (x) is the Jacobian matrix of the system, the systen 

described by Equation (6-15) is linear and thus can be readily solved. 

It has been shown previously that the standard optimal control prob­

lem involves 

(1) n 	 system differential equations , k f(x, u,t) = Oa 
adjoint differential equations , = 

(2) n 

(3) 1 	 differential equation describing the cost functional 

(4) 	 r algebraic equations of the form 

G(x, u, t) =0 

(5) boundary conditions 
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Designating the 2n+1 differential equations corresponding to (1) 

through (3) as 

I=F(X, u,t) = F(zt) 

and the r algebraic equations as 

O(x, uit) = 0 = G(z,t) , 

it follows that the generalized Newton-Raphson sequence is given by 

(assuming u can be determined as a function of x) 

Xn+1-- [ (n5t) 1- _n + F(z 't) (6 -16a) 

Lax -n+1I -n - (6 -16b)Dj-n ­a=x8 (Xn' t)] (X_-n+1-X_n)_ G(z n, t) 

n=0, 1,2.... 
The computational procedure entails the following steps 

(1) guess a trial solution X satisfying the boundary conditions-O
 

(at least as many of them as possible)
 

(2) obtain z from Equation (6 -16b) using the initial guess X 0 

(3) substitute z into Equation (6 -16a) and obtain the estimate X-O 

(4) obtain z I from Equation (6-16b) using the updated state X1 

(5) repeat the process until 

lixn -xfla 

where the norm could be taken as 

lII_--n = max t-x~n)m IXn+(
i t c[to, t 1 

In this method some of the necessary conditions for optimality were 

used so sngular trajectories and solutions cannot be found with it. 

Recall that, singular solutions could be found with the method of 

steepest descent since none of the necessary conditions were used. 

Kenneth and McGill [7 3] show that this method can be used for 
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problems in which there are inequality constraints on the state and 

on the control. An important factor to consider in potential applica­

tions of this technique is that pertaining to computer storage require ­

ments. Depending on the application, the storage requirements could 

be relatively great. 

Classical Newton-Raphson Technique 

.The,classical Newton-Raphson (CNE) technique is a special case of 

the generalized Newton-Raphson (GNR) technique. Important differ­

ences 	between the two include such items as 

(1) 	 the CNR technique uses the optimality conditions while the 

GNR technique doesn' t 

(2) 	 the reference trajectories are generated by integrating the 

nonlinear equations in the CNI technique while in the GNE 

technique they are generated from the inearized equations 

(3) 	 'in the CNR technique the boundary conditions are iterated on 

while in the GNR technique each estimate satisfies the boundary 

conditions 

Using 	Kantorovich' s result, the solution to the equation 

(x) = 0 

for the case in which the B -spaces X and Y are each in R n and the 

operator 9 is simply a vector function F, it follows that the 

solution to 

F(x) = 0 (6-17) 

is obtained from the sequence 

F -1 
x = x
-n-hi -

- I 
-n 

(x )I
n 

F( x ).
-n 

Hence, if the optimal control 

problem can be cast in the form of Equation (6-17), then the solution 

can be obtained iteratively. It is easily shown that even the most 

general optimal control problem with inequality constraints on both 
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the state and the control variables can be readily cast in this form. 

The necessary conditions for the problems of interest in this work 

were previously obtained and were designated as Type A or Type B; 

Type A included the necessary conditions common to any optimization 

problem regardless of the target set and Type B included those that 

were target-set dependent. In the CNR technique, only those condi­

tions designated as Type B are used to form the vector F ; the 

vector y is composed of either the initial adjoint variables p(o) 

and the finaltime t for the fixed-end point free-final time Troblem 

or the Lagrange multipliers v due to the presence of the end-con­

straints and the final time t 1 for the constrained right end problem. 

The control problem now has the form 

F(x) = 0 

and the solution y is obtained from 

F @F ,] -1 FY (6-18) 
Xn+l= Yn - LyZn] - -y) 

The iterative procedure consists 	of the foloving steps 

(1) guess an initial value of the constant vector y and call it yo 

(2) using yo solve simultaneously 

the state equation- . f 	 8H
 
ap
 

airthe adjoint equation p = ­

the optimality equation u(t) u (x, p, t)
 

and obtain F(yo)
 

-(3) evaluate L (y ) numerically and compute its inverse ax -0 

(4) obtain Y, from Equation (6-18) 

(5) repeat the process until 
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II_(Zn)II 6 
where fj U1is some appropriate norm. 

The method is conceptually simple and intuitively appealing. The 

control constraints are automatically taken into account because only 

extremal controllers are allowed. The problem areas are encoun­

tered in steps (2) and (3). The simultaneous solution of the state 

equations, the adjoint equations, and the optimality conditions is not 

as straightforward as it appears when the control function u(t) is 

the on-off type and matters are even worse when the control function 

takes on the values -1, 0, 1. In step (3), an accurate determination
)7-I

of [ (Yn] is difficult because the vector F is extremely sen­

sitive to perturbations in zn (this is especially true if is based 

on the initial adjoint vectors). However, the method can be made to 

work satisfactorily and perhaps it may even be the best method for 

certain problems. As stated previously, there is a great deal of 

art involved in any of the computational methods. 
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Section 7 

RESULTS AND CONCLUSIONS 

The preceding chapters provided a discussion of a methodology which 

is appropriate for handling a large class of optimal control problems. 

In essence, the preceding chapters describe a step-by-step procedure 

which can be followed in the determination of the optimal controller. 

Briefly, these steps include 

(1) 	 the derivation of the equations of motion for the systems being 

investigated (see Chapter 2) 

(2) 	 the formulation of the optimal control problem IS, A, , XG, 

XI, J (see Chapter 3) 

(3) 	 an investigation of such concepts as controllability, normality, 

and the existence and uniqueness of optimal solutions (see 

Chapter 4) 

(4) 	 the determination of the necessary conditions for local optimality 

and an investigation of sufficiency conditions (see Chapter 5) 

(5) 	 a categorization and qualitative comparison of the various 

computational algorithms and a selection of the most suitable 

algorithm for the problems of interest (see Chapter 6). 

In this chapter, the final aspects in the determination of the fuel­

optimal controller for the problems formulated in this work are dis­

cussed; these aspects pertain to 

(1) 	 the selection of a suitable computational algorithm 

(2) 	 the numerical determination of the fuel-optimal controller 

(3) 	 the evaluation of the relative merits of the proposed control 

- cone apt. 

The evaluation of the relative merits of the angular momentum control 

concept is of special importance in this work. As stated previously, 
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the emphasis in this dissertation is on practical rather than theoretical 

considerations. In fact, the entire problem formulation is based on 

such 	practical considerations as 

(1) 	 the importance of fuel-optimal attitude control for deep-space 

missions using a ballistic spacecraft 

(2) 	 the relative advantages of a dual-spin vehicle when compared 

to a spinning vehicle 

(3) 	 the advantages of the implementation of a properly placid 

nutation danper 

(4) 	 the physical significance of controlling the angular momentum 

vector rather than the spin axis 

(5) 	 the use of the minimum number of jets for achieving the control 

objective, the most appropriate type of jet (i.e., one-way, two­

way, gimballed, etc.), and the most appropriate jet location. 

In this chapter, the results of all the preceding chapters are synthe­

sized 	so that the final steps can be efficaciously executed. In the 

preceding chapters, various control restraint sets, various jet 

locations, and various cost functionals were considered and their 

effects on the optimal control problem were noted. Now, only the 

most 	appropriate control restraint set, the most appropriate jet 

location, and the most appropriate cost functional are considered in 

the numerical determination of the fuel-optimal controller. 

Before executing the final steps, the results obtained in the preceding 

chapters are summarized. Next, a discussion of the results obtained 

in this chapter is provided. Finally, the conclusions drawn from the 

study 	are given. 
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7. 	1 Summary of Results Pertaining to the Theoretical Aspects
of the Control Problem 

In this section, the results that were obtained in the preceding chapters 

concerning controllability, normality, the control restraint set, the 

existence and uniqueness of the optimal solutions, and the necessary 

and sufficient conditions for optimality are summarized. 

7. 1. 1 	 Controllability and Normality 

It was shown in Chapter 4 that controllability can aid not only in the 

determination of the number of jets required for the control objective 

but also in the determination of the most suitable jet location. The 

use of either one or two jets resulted in a completely controllable 

system for the spinning symmetric vehicle. For the dual-spin vehicle, 

if the jets are fixed to the despun body two are required for complete 

controllability; if the jets are rotor-fixed, only one jet is required 

for complete controllability. Concerning system normality, the 

system characterizing the symmetric spinning vehicle is normal 

when either one or two jets are used. Concerning the dual-spin 

vehicle, the system is singular when either one or two jets are 

fixed to the despun body. If either one or two rotor-fixed jets are 

used, the system is time-varying and the normality condition does 

not apply. 

The connection between problem normality and the existence and 

uniquencss of the optimal controller was discussed in Chapter 4. 

Concerning problem normality, when the final time is fixed, the 

fuel-optimal control problem in which the spin axis control concept 

is used for the symmetric spinning vehicle is normal. On the other 

hand, the fuel-optimal control problem in which the angular mom en­

tum control concept is used for the dual-spin vehicle with jets fixed 

to the despun body is singular. However, if rotor-fixed jets are 
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used, problem normality depends on the behavior of the switching 

function 
q*(t) = < p*(f b(t) > 

The above considerations reveal that only one body-mounted jet is 

required for the symmetric spinning vehicle and that only one rotor­

fixed jet is required for the dual-spin vehicle. The fact that the sys­

tem representing the dual-spin vehicle with the jets fixed to the 

despun body is singular is especially important. There is still little 

known about the existence of singular optimal solutions. In addition 

only the gradient computational algorithm could be used for the 

determination of the singular optimal controller. Singular solutions 

are not uncommon when the system is linear in u and the Hamiltonian 

is linear in jul or u. Note that if the necessary conditions alone 

were used (or at least a computational algorithm which makes use of 

the necessary conditions were programmed) and no attention was 

paid to the important ndtion of problem normality, then no computa­

tional results could be obtained regardless of the mathematical 

elegance of the algorithm used. 

7. 1.2 Existence and Uniqueness of the Fuel-Optimal Controller 

In Chapter 4, it was stated that for a linear time-varying system, the 

fundamental hypotheses that are used in proving the existence of the 

optimal solution include 

(1) problem normality 

(2) compactness and convexity of the control restraint set Q 

(3) convexity of the integrand of the cost functional. 

It was also noted that (1) and (2) imply that the set of attainability 

K(T) is a strictly convex compact set with nonempty interior. It 

was determined that a fuel-optimal controller exists for the fixed 

final time case in which the spin axis control (SACO) concept is used 
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for the symmetric spinning vehicle. It was noted in Chapter 4 that 

the stated existence theorem is not applicable when the angular 

momentum control (AMCO) concept is used because problem normality 

has not been demonstrated (yet). 

Concerning nonlinear systems, it was stated that the fundamental 

notions needed in demonstrating the existence of the optimal controller 

include 

(1) 	 the existence of a uniform bound on the response x(t) to 

controllets u Ea(where a is the family of admissible con­

trollers) 

(2) 	 the compactness of the control restraint set ­

(3) 	 the compactness of the initial and target sets 

(4) 	the convexity of the extended velocity set 

V(xt) ={fo(x, Ut), f(x, ut) ju C2 (x,t)} 

where f is the integrand of the cost functional and f is the 
0 

function defining the plant 

(5) 	 suitable continuity characteristics of f viz. f0 cc in Rn+m + l 

In regard to the uniqueness of the optimal controller, for linear time­

varying systems, the hypotheses that were required to demonstrate 

uniqueness include 

(1) 	 problem normality 

(2) 	 compactness and convexity of the control restraint set 0 

(3) 	 convexity of f£(x, t) and strict convexity of h (u, t)where 
T
 

J10u) = to fo(x, t) + ho(u, t)]dt
 

[0-

Because of (3), the theorem cannot be applied to the problems of
 

interest in this work. However, for a time-invariant system, the
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strict convexity of ho u., t) can be relaxed, i. e., the convexity of 

h(u, t) is sufficient. In this case, it can be shown that a unique 

fuel-optimal controller exists for the fixed final time case in which 

the spin axis control concept is used for a symmetric spinning vehicle. 

7. 1. 3 Necessary and Sufficient Conditions for Local Optimality 

The necessary conditions for local optimality were developed in 

Chapter 5. It should be noted that if the method of steepest descent 

(or some other gradient method) is used in determining the optimal 

controller, the necessary conditions are not needed. Nevertheless, 

it is felt that it is desirable to have all the facts concerning the 

optimal controller available before choosing a computational technique. 

Necessary Conditions 

It was shown in Chapter 5 that if a smooth control restraint set 

Q I : HIIU < } 
associated with a gimballed jet were used in formulating the control 

problem, then in certain cases, a smooth feedback controller could 

be obtained. A feedback solution is almost always more desirable 

than an open loop controller and in practice, considerable effort is 

expended in an attempt to obtain a feedback solution. The connection 

between the smoothness of the control restraint set 0, the associated 

smoothness of the integrand of fhe cost functional and the sufficiency 

conditions was also noted. Despite the theoretical niceties of a 

smooth control restraint set associated with a gimballed jet, the use 

of a gimballed jet is not recommended for the present problem. 

'The use of the smooth control restrair as an approximation to the
 
set associated with magnitude-limited jets could prove to be very
 
useful, especially if the feedback solution can be easily deter­
mined. This notion should be investigated in the future.
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Note that a high performance servo is required when a gimballed jet 

is used. For the mission being investigated, extremely high reli­

ability is an imnportant mission requirement. Hence, the theoretical 

advantages of a gimbalied jet are in significant when the practical 

considerations are weighed. Note also that gimballed-jets would be 

more appropriately used for non-spinning vehicles. Hence, the 

potential jet types have been reduced to two, viz., 

(1) a one-way jet having the control restraint set 2 =lut): OS u(t) -1} 

(2) a two-way-jet having the control restraint set 

-
--z{u(t) : Iu(t)1! 1 . 

The necessary conditions for local optimality for the control problem 

fL , 0, 1' JIX where the system is 

(L) k = A x(t) + b(t) u(t), 

the compact convex control restraint set is either 

- {=u(t) : 0 5 u(t) 5 1 } 
or 

6 {u(t) : In(t)I :1} 

the initial set X 0 consists of a fixed x and a fixed t o the target set 

X 1 is 

X AMcO= {(x,t) g (X(tl)= 0 j1, 2,'tI free} 

or 
= (t xl
 X SACO {(x't):x I = O, 1 free} 

t 

and the cost functional J(u) f(x,uOdt is0­
t1 t
 

J(u) = .t.K u(t)dt for the one-way jet 

or
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J(U) K fu(t) [dt for the two-way jet
 
to
 

are stated below. Regardless of the jet type or the target set, 

Hamilton' s canonical equations are given by 

aH
 

x T = A x(t) + b(t) u(t)"
Op Y 

* 	 H _ T

FDH A pN()
 

where H <p, k > - f (x, u,t) 

_~0-

Regardless of the control concept, the optimality condition is given 

by 

u*(t) = dez {< *(t) , b"(t) 4 dez q*(t) 

and 

u'(t) =hev {<p*(t), b (t) > 1- = hev {q";(t) -1} 

for the two-way jet and the one-way jet respectively. Only the 

boundary conditions are target set dependent. For the AMCO concept, 

the boundary conditions are 

4t o) =_ ° 
00 

*(t*) 00 

while for the SACO concept the boundary conditions are the same 

xcept there is no condition on the adjoint variables, that is, the 

oundary conditions are 

x(t) =x 

H 	 (t*) = 0 

I 
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It might appear that the seemingly slight difference in the boundary 
I 

conditions would have no significant affect on the computational 

algorithm. Later, it will be shown that this difference can have a 

tremendous affect depending on the computational technique used. 

The final selection of the most appropriate jet type will be made after 

carefully considering the practical and computational implications of 

the nature of the extremal controllerst 

u*(t) 	= dez q*(t) for the two-way jet 

u*(t) 	= hev-{q*(t) - 1} for the one-way jet 

The importance of the necessary conditions can now be appreciated; 

they 

(1) 	 provide information concerning whether the problem is normal 

or singular 

(2) 	 provide information concerning the nature of the optimal 

,controller so ,that the most appropriate control restraint 

set can be selected 

(3) 	 aid in the selection of a computational technique 

(4) 	 provide the basis of every computational technique save the 

gradient method 

Sufficient Conditions for Local Optimality 

In Chapter 5, sufficient conditions based on 

(1) 	 the maximum principle 

(2) 	 the calculus of variations 

(3) 	 dynamic programming 

were discussed. It was noted that sufficiency conditions based on th2 

maximum principle were the most appropriate for the problems of 

'Intuitively, it is anticipated that the one-way jet is the most appro­

priate. Nevertheless, optimization theory is used to confirm this 
feeling. 
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interest 	in this work. Concerning the control problem {S, 0, X0' 

X1 , J in 	which 

(1) 	 the plant is linear in x and nonlinear in u, i. e., 

k = A(t) x(t) +h(u, t) 

(2) 	 the target setis closed and convex 

(3) 	 the initial set consists of the fixed point x and the fixed 

initial time t 
0 

(4) 	 the cost functional J(u) is 

J(u) = T[f (Xt) +h(ut) ] dt 

t
o
 

8f 
(5) 	 fo(xt), h (ut), 8x h(ut) and A(t) are continuous in all 

(x, u,t) inIn+m +l
 

(6) 	 f0(x, t) is convex in x for each fixed t c [to T], 

it was stated in Chapter 5 that if a controller ui/(t) satisfying the
 

maximum principle is found, then it is an optimal controller. All
 

the conditions of this theorem are satisfied for the fixed final time
 

case for all the problems of interest in this work. Note, however,
 

that in this work, the function h (u,t) is linear in u and h(u, t) 

is linear 	in u or [ul depending on the jet type. Hence, special 

attention 	must be given to the possibility of the existence of singular 

optimal 	controllers. 

7. 1. 4 	 Computational Algorithms 

In Chapter 6, the various computational algorithms were categorized 

It was stated that the algorithms mostand qualitatively compared. 

suited 	for the problems of interest in this work include 

(1) the 	gradient methods 

(2) the 	generalized Newton-Raphson (GNR)method 
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(3) the classical Newton-Raphson (CNR) method. 

It was noted that in both the method of steepest descent and in the 

generalized Newton-Raphson technique, that the existence of the 

second Frechet derivative of the cost functional is assumed. For 

fuel-optimal problems in which two-way jets are used, the cost 

functional t1
 

J(= S1
° EK.( [u(t) Idt
 

to
 

does not have a second Frechet derivative. Hence, at least from a 

theoretical point of view, the violation of the differentiability hypoth­

esis is important. It was also noted that if a one-way jet were 

used, the differentiability hypothesis would not be violated. 

It was stated that the control constraints are most easily handled in 

the CNR technique but that they can be handled in the gradient and 

GNI techniques. Concerning the determination of singular optimal 

solutions, only the gradient technique is suitable. 

7. 2 Selection of a Computational Algorithm for the Determination 
of the Fuel-Optimal Controller 

In this section, the results obtained in Chapters 2 through 6 and 

summarized in the preceding section are used in the selection of a 

suitable computational algorithm for the class 6f fuel-optimal prob­

lems involved in this work. In general, the selection of a compu­

tational algorithm depends to a great extent on the nature of the 

specific problem being investigated. 

The values of the system parameters appropriate for the fuel-optimal 

control of the dual-spin vehicle being investigated are 

rotor speed, a = 10 rad 
sec 
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ratio of jet torque capacity 

and transverse inertia , k 0. 001 1 
see. 

ratio of stored angular 

momentum and transverse 

inertia ,se 
p 5 Lad 

Sec 

Of these parameters, the one that has the most effect on the compu­

tational algorithm is the rotor speed a. This is because the extremal 

controller is given by 

either uit) = dez < b(t), p*'(t) > for a two-way jet 
(7-1) 

or if(t) = hey J< b(t), p*(t) > - 1] for a one-way jet 

where the vector b(t) is given by 

Cos at 

sin at 

00 

Using the necessary conditions for local optimality, the nature of the 

switching function can be determined. From Equation (7-1), the 

switching function q*"(t) is given by 

q*(t) = < b(t), pCt) > 

Using the boundary conditions on p'(t) and the adjoint transition 

matrix kL(t, T) it follows that 

qjI(t) = Vi 2 it 

Considering the geometric implications of a singular control problem 

(see Chapter 4) and the result of Equation (7-2), it follows that the 

dual-spin vehicle using one rotor-fixed jet is normal. In addition 
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the number of switchings and the switching times are obtained by 

examining the functions 

u*(t) =dez [ for a two-way jet 

(7-3) 

u(t = hev T - for a one-way jet 
sot 

The number of switchings is proportional to the rotor speed a and 

the switching times are simply the zeros of the transce~Adental equations 

equations 

q*()- 1 0 
S+ 0 for the two -way jet 

(7 -4) 
q*(t) - 1 0 for the one-way jet 

Note that this result agrees with the intuitive notion that a two-way 

jet is actually two one-way jets back-to-back and, hence, the average 

number of switchings for a one-way jet should be one half that for a 

two-way jet. This result is of great practical significance because if 

a two-way jet were used the probability of jet failure would increase 

with the increased number of jet firings. The high reliability 

required for long-duration missions is one of the most critical 

mission requirements. 

The number of switchings associated with the extremal controller is 

an important factor to be considered in selecting a computational 

algorithm. For example, in time -optimal problems in which the 

extremal controllers turne out to be bang-bang, it has been pro­

posed by several investigators that the optimal controller can be 

conveniently determined by treating the switching points as param­

eters and, hence, converting the problem into a parameter optimi­

zation problem. This method is unthinkable for the problem at hand! 
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For example, if two two-way jets.were used (this jet combination is 

the one previous investigators actually used in fuel-optimal control 

problems involving spinning vehicles), the number of switchings for 

the case in which the rotor speed is 100 rpm would be in excess of 

300. Treating the switching times as parameters for this type of 

problem is ill-advised indeed! IEver if the optimal controller were 

successfully determined by such a technique, its implementation 

would be impractical. 

The boundary condition for the adjoint variables p(t) has already 

been used in determining the switching function q(t). An examina­

tion of the necessary conditions for both the AMCO and SACO con­

cepts reveals that this boundary condition is the feature which 

distinguishes one concept from the other. For the AMCO concept, 

the boundary condition is given by 

V 1 

[itj W T / (7-5) 

Hence, the final value of the adjoint vector is completely specified 

in terms of the two unknown constants v and v2 . This reduction 

in the dimension of the problem can be very significant depending on 

the algorithm used. An examination of Equation (7 -5) reveals that if 

the CNR technique were used, the final rather than the initial adjoint 

variables would be iterated on. This could be extremely important 

because the sensitivity of the terminal conditions to variations in the 

initial adioint variables is actually the only inherent disadvantage of 

the CNR technique. It may be expected that the sensitivity of the 

terminal conditions to perturbations in the final adjoint variables 

(i. e., their values at t ) will not be too great. 
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With due consideration to such aspects as 

(1) the nature of the optimal controller and the large number of 

switching times 

(2) the normality of the fuel-optiraal problem 

(3) the relatively low dimension of the problem 

(4) the fact that the final rather than the initial adjoint values are 

involved 

(5) the theoretical disadvantage concerning the violation of the 

differentiability hypothesis for both the gradient and GNR 

techniques (for fuel-optimal problems in which two-way jets 

are used) 

(6) the ease in which the control constraints are handled in the 

CNR technique 

(7) the computer storage requirements 

(8) the fact that only very small deviations from the nominal 

trajectory are allowable, 

the CNR.algorithm is considered suitable for the determination of 

the fuel-optimal controller for the dual-spin vehicle in which the 

AMCO concept is used. Concerning item (8), for the application 

under consideration, the antenna pointing accuracy requirement is 

such that the optimal control sequence would be initiated when the 

pointing error is greater than one milliradian. I This implies that 

the values of the state variables must be kept relatively close to the 

nominal or desired values. This aspect is very important when the 

classical Newton-Raphson (CNR) technique is used because of the 

nature of the iterative scheme. 

IThe pointing accuracy requirement is one milliradian near Jupiter 

and beyond, in the vicinity of the earth, 5 milliradians would be 
allowable. 
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It is noted that the us6 of the CNR method appears appropriate for 

the problems under investigation. In general, however, this method 

is very seldom appropriate for optimal control problems. 

7.3 	 Determination of the Fuel-Optimal Controller for the Dual-
Spin Vehicle Using the Angular Momentum Control (AMCO) 
Concept 

In this section, the fuel-optimal controller for the dual-spin vehicle 

using the AMCO concept is determined for a specific initial state x-00 

The necessary conditions for local optimality and the CNR algorithm 

have alread been discussed. The only items that need further dis­

cussion are 

(1) the 	method for determining the switching times 

(2) the initial state x-o 

7. 3. 1 	 Switching Times 

It was previously shown that the switching times for this problem are 

the zeros of the transcendental equation 

q*(t) - 1 	 =0 = p1 cos ot+ v2 sin'ot - 1 (7-6) 

for the case in which one one-way jet is used. 
A convenient technique for determining the zeros of this equation is 

the method of Regula Falsi. Since this method is a well-known 

technique of numerical analysis, it will not be discussed in this 

work (see, e.g., Reference [40]). 

7. 3.2 	 Initial State 

The boundary condition on the system equations 

x(t) x 

has not been used yet. As stated previously, the initial value of the 

state x and the time t are the elements of the initial set X-O o 	 0 
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The initial state x refers to the state x(t) existing at the time
-0O 

the optimal control sequence is initiated at time t . The optimal 

control sequence is initiated when the antenna pointing error becomes 

excessive, that is, when the condition 

11[11 c (7-7) 

is not satisfied. Nominally the initial state is such that 

x-o-O0 

but due to the presence of solar radiation torquest and other dis­

turbances torques, the angular momentum vector (and hence, the 

antenna axis) drifts away from the desired direction. When the 

condition of Equation (7 -7) is not satisfied, the elements c1, 2' 

11 02 are sensed (observed) and are used to define the initial set 

X . The initial state used in the numerical work is 
0 

0 

-o 0005 

0 

where 0 = 5"milliradians refers to the maximum allowable antenna 

pointing error in the vicinity of the earth. 

7.3.3 Iterative Procedure 

In essence, the unknowns z,', v2 , t1 are determined iteratively 

until the terminal conditions are satisfied. That is, the vector y 

is determined iteratively to satisfy the equation 

fSee Likins and Larson [6] for a discussion of the external 
enviroiment relevant to deep-space missions. 
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F(y) =0.
 

where T = ("V t) (7-8) 

= (H, T_F His H'2 

In Equation (7-8), H1 and I2 are the transverse components of 

angular momentum vector in inertial space, H is the Hamiltonian, 

1 is the final time, and YI and Y2 are constants arising because 

of the transversality condition. 

7.3.4 Fuel-Optimal Controller 

The optimal controller u*(t) obtained for the initial condition pre ­

viously described is shown in Figure 7-1. During each revolution 

of the rotor, the controller is turned on for one half of the revolution 

- and turned off for the other half. The number of switchings involved 

is 74 and the time to drive the initial state x to the target set is-0
 

22 seconds. The value of the cost functional 
t 

J(u) = foK u(t) dt 

associated with the minimum fuel problem is 

1= 0.0109J(u) 
see
 

By using the mass flow properties of the jet used, the amount of 

fuel consumed in accomplishing the control objective can be com­

puted. The relation between the fuel weight WV and the cost functional 

J(u) is 
I1 

W Ixr J(u) 
S 

where r is the jet lever arm and IS is the specific 

impulse of the jet. 
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Figure 7-1 Control u(t) vs Time For Dual-Spin Vehicle Using AMCO Concept 
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The fuel consumed in accomplishing the task described above is 

only 0.00 8 lb. 

In Figure 7-2, the transverse component of the angular momentum 

vector H is shown vs. time. It is seen that each firing of the jet
-T 

reduces the magnitude of the transverse angular momentum. During 

the off period, the transverse angular momentum is constant. This 

result is as it should be since H is conserved in a torque-free 

environment. Figure 7 -3 shows the trajectory in angular momentum 

space and Figure 7-4 shows the antenna angles. Initially, the trans ­

verse components of the angular momentum were 

(Hio H2) (0, - 1.5)ft # sec 

Each time the jet is turned on, the H 2 component is decreased. The 

half waves correspond to the on-cycle of the controller. During the 

off time, H is constant and neither HI nor H2 varies. 

7.4 	 Evaluation of the Relative Merits of the Angular -Momentum 
Control Concept 

In this section, the relative merits of the angular momentum control 

concept are evaluated. The fuel-optimal control problem for a 

spinning symmetric vehicle was investigated in Reference [11], in 

that reference the concept termed SACO in this work was used. 

The nature of the SACO concept has been previously discussed in 

this work so that it can be compared with the AMCO concept. By 

comparing the results of the two concepts when applied to the same 

problem, the relative merits of the AMCO concept can be deter­

mined, meeting one of the main objectives of this dissertation. 

The problem that will be solved is that which was studied in Reference 

[11, viz., the determination of the fuel-optimal controller for a 

symnhetric spinning vehicle. In order to have a meaningful com­

parison, the same initial conditions, the same system parameters, 
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and the same number and type of jets will be used in the numerical 

work.
 

Control Problem
 

The control problem {L, 2, X 0, X1 , J}being studied is as follows:
 

(1) the 	system (L) is given by 

m
(L) * 	=A x(t) + B u(t) in C1 in Rn' 

(2) the control restraint set R C Rm is giien by 

S 	{u_(t) lu.(t) 1:5 1 j =1,2} 

(3) the 	iiftial set X0 consists of the pair (x0 t)0where x0 is 

the 	initial state, i. e.,
 

x 0 ={(xt)--: x(t o ) x-oo, t fixed­o 0 

(4) 	 the target sets X 1 for the two concepts are 

xIs'c=--(x t) x(t1):O0t I free1 

xIAMCO= {(xt) g.(x~t )) = 0, j 1 2, t free} 

(5) the 	cost functional J(u) is given by 

t 

J(U) =f ; K.Iu.(t)] dt 
-	 to __ S 

Necessary Conditions for Local Optimaity 

The necessary cpnditions for optimality for both concepts have 

already been obtained. The only difference between the necessary 

conditions for the two concepts is that in the AMCO concept, the 

adjoint vector at the final time t ' is orthogonal to the tangent 

plane (T(x(t1) of the manifold X (t); in the SACO concept, 
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there is no condition on the adjoint vector. The necessary conditions 

are repeated below for convenience: 
an 

Hamiltont s canonical equations, x = A x(t) + B u (t) 

-H _A p(t) 

Opti nality condition, u*(t) = DEZ {BT p*(t)}t 

Boundary conditions, SACO AMCO 

-o _ 0) X 

t' = 0 't~ 0 

:o p* (t) o 

- :L 5 Jt~tl-
Iterative Procedure 

The CNR algorithm is used for both concepts. As stated previously, 

in this algorithm, the equation 

f(z) =o0 

is solved iteratively for the vector x. The vectors F and y have 

already been discussed; the elements of these vectors for the two 

concepts are repeated below for convenience: 

Vector AMCO SACO 
F = (H, x(t1)TH )F FT= (H, 

T T T
X x : (Vl VB2' tl : (p(O) , t 1) 

fTwo two-way jets are used in this comparison because they were 

used in[11]. 
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A very significant difference in the iterative procedure for the two 

concepts is that in the SACO concept, the initial adjoint vector p(O) 

is iterated on while in the AMCO concept, the constants ' are 

iterated on. The sensitivity of the conditions F to perturbations 

in the initial adjoini variables is extremely great. This problem 

was discussed previously and is, in general, a characteristic of the 

CNR technique. In the AMCO concept, the sensitivity of F due to 

parturbations in _v is considerably less. This follows because v 

is related to the- final adjoint variables p(t1 ). Another significant 

feature of the AMCO concept is the reduction in the dimension of the 

problem. When the CNR technique is used, the probability of success 

and the computer running time are inversely proportional to the 

dimension of the problem. 

Fuel-Optimal Controller 

In this .section, the results obtained by using the two concepts for a 

specific initial state are provided. The initial state is that which 
- )was used in [1ll and is given by (note that 6 and 0 

Wl(0) -0.01 rad/sec xI(0 x(0) 

W (0) 0.008 rad/see x (0) x (0)2 2 - 2X (0) 0. 1 rad x3 (0) 00 

() 0. 05 rad x4 (0) 

Before interpreting the results obtained for each concept, the nature 

of the switching function q'(t) and the implication of the terminal 

conditions are examined. Just as in vibration theory, it is convenient 

to express the response of the system in terms of its modes. The 

modes of the system were previously determined as a by-product of 

the spectral theory of the operator A (the system matrix). The 

nature of the switching function and the implications of the terminal 

conditions for the dual-spin vehicle are also examined. 
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Symmetric Spinning Vehicle 

The switching function *(t) was previously defined as 

17(t) = B pit) (7-9) 

For the SACO concept, Equation (7-9) becomes 

=((/t\ [zl(t) V12jt p(o) (7-10) 

kP (t) :'1I21 
where I is the adjoint transition matrix 

for the AICO concept, Equation (7 -9) becomes 

-'t (t_- )] [ - (7-11) 

Representing q*(t) in terms of the function space having as its 

basis the modes of the system, yields 

crw 3t 
"P ' -P3 P4 srw3 t 

q 4(r­ ' P+lPP33 3W r-1) 3 (r-1 s3o -1t 

q*(t) 
SACO P2wr1) 

32-~--I 

44 
-l] 

33 

(rl -1 
r 
(-) 

I" 

7 
I 

r. 
) 

cu 3t 

(7-12) 

-2r- O- 2 -­~ 2r-t 11riitV - r - Isct 3 

I 3 
AMCO 2r-1 ' 2 r-12r- ' r-I r 3(3 t 

"2 r1 1r:-l '" -1 "1 r-1 sw t 

('7-13) 

An examination of Equations (7 -12) and (7 -13) reveal that for the 

general case the nature of the switching function for both concepts 

is the same. However, for the AMCO concept, if the vehicle 

parameters are chosen such that 
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Ii1I3 
1'
 
r I 

then the modes crw3t and srw 3t are not involved in the represen­

tation of q'(t). In general, then the number of switch points are 

,expected to be approximately the same and to depend primarily on 

the spin rate w3" 

Terminal Conditions 

Using the modal response of the system, the terminal condition 

x(t 1 ) = 0 

for the SACO concept can be written as 

to =0
 

2 
+ U(i.h;hwt.± -T-_) s3
 

+lo(1-r cWt U1)
t--)(T)] d 

(7-14)
0 1 1 W20 10 S 

+
( 1-)2 -)0 (l (0.(t 1-r) 

o
 

For the AMCO concept, the terminal condition that 

-HT0= 0EH 

can be written as 
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o r (+ wl 0o) -2 _ 
+- j~w31r U(O) d t) 


+ 3 (-) W~t -F) u~ + SW 3 . -i) u (r)) dj (7-15)( 3 (i-) 

o
 
0 )  0
o ) - (l 0 W(1- "3 02so(i -r)] s 3t 

+ 5 ; 
3 1r 3s (tw(-r) u1 (g) - (t-r 

2-i3
0 -r ).c3% 1 
0 

0 = r*=o ++ U sw te2 +It is convenient to represent these terminal conditions in terms of 

the modes defined in the complex plane rather than the real plane. 

Letting w1 I-iW2 be wot the terminal conditions for the SACO concept 

become 

toir (t-)*-trw 3t 
0Oco U* e .+ kt e (r,(7-) u,,~d7-16a) -i 

to (0) to (O) It 
0 -W-3t- , 1(+ ( -- 3to _-r)- oj e 

+I ito3 (t- ) d (7 -16b) 

where w- refers to the complex conjugate of to 

For the AMCO concept, the terminal condition reduces to 

o(1 ±wr to [1~±$r> 2'1 3ot 

+%(1-r) (( )0 ) r)% 


0 
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The nutation damper caneffectively damp out the motion characterized 

by 
-in3t
 

3to W3 e 
0 

Effectively, in the AMTACO concept, the vehicle is designed so that no 

fuel is required for damping out the response 

-irc) t 
* =t*e 3 

Inthe SACO concept, however, fuel is required to damp out the initial 

condition response 

-iru t 
u0- to3 

0 

and in addition fuel is required to satisfy the constraint given in Equa­
- irw3t iW3t 

tion (7-16b). Since the modes c and c have different fre­

quencies, the excitation (control) which damps one to zero does not, 

in general, sinultaneously damp the other to zero. This implies that 

more fuel is required to satisfy Equation (7.16b) than is required to 

satisfy only the bracketed part of Equation (7. 16b). If the vehicle 

parameters are properly chosen, the terminal constraint to be satis ­

fled for the AiviCO concept is simply the complex conjugate of the 
1 

bracketed part of Equation (7. 16b). That is, if r = 1-then no fuel is 
2' 

required to damp out the initial response 

-irw 3t 

0 

1 
because this term drops out of Equation (7. 17). Hence, if r = ­2'"
 
then it is expected that for general initiA conditions less fuel will 

always be used for the AMCO concept than for the SACO concept. 

Note, however, if initially w*= 0 then the two sets of constraints are 

essentially the same and the same amount of fuel would be used for 
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each. This agrees with the intuitive notion that fuel savings is achieved 

by not burning fuel to damp out the motion 

-ir3 t 

0
 

which can effectively be damped out by the nutation damper. In the 

comparison of the two concepts the saxnte vehicle studied in [Il] will 

be used, viz., that for which 

Ir - ­
2 

As noted above, this choice of r. is especially desirable for the 

AMCO concept. 

1 
It is noted that for general initial conditions in which r ; - , the 
relative advantages of the inclusion of the nutation damper are not 

as pronounced. 

Even though numerical results are provided only for the case in 

which two two-way jets are used, it is of interest to determine if the 

same conclusion holds for the case in which one-way jets are used. It 

is clear from the above discussion that the type of jet did not enter 

into the analysis. Hence, the same conclusions would hold if two one ­

way jets were used. If only one jet is used the equation stated above 

still holds except u2 = 0. That is, for the SACO concept in which one 

jet is used, the terminal conditions are 

-ir3n t 0I -iru 3(t- T) 
0 WV0 e + 3e u 1 (,r)d­

0 

0= 1 [fc () ( 2 (0) iW3 t 

w 3 (1-r) U* + j}K 0 o+W 1-r)Y 

t i 3(t - T-)~ 1w 
i' 3(1-r) je (-8 
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For the AMCO concept in which one jet is used, the terminal condition 

is 

r ( * w1(O) ( 2 -)13(0) 

+ Ul(-)dJ (7-19) 

An examination of Equations (7-18) and (7-19) reveals that the con­

clusions drawn for the two-jet case also hold for the case in which 

one jet is used. 

Dual-Spin Vehicle 

It is also of interest to examine the nature of the switching function 

and the implications of the terminal conditions for the dual-spin 

vehicle. Using the same procedure as discussed above, the switching 

function is given (with two jets assumed for generality) by ­

p(}P4 (0) ca(-r)tP) 4 (o) 3 ;--p P3 (0) 

I ro 1P2 ra ra Tr sa(l-r)t 

_ (SACO--p3 (0 )p catp_ (0) P4 (0) 

+raYa r2a0 Toa sot 

cot (7-20)()l
s(t)AMCO =-9qt MO_2 

- R3 
where r = -

I1
 

An examiration of Equation (7 -20) reveals that the number of 

swvitchings depends on the rotor speed a. It is also noted that the 

modes ca (1-r)t and su(1 -r)t are not used in representing q in 

the AMCO concept. 
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Concerning the terminal, conditions, for the SACO concept the condition 

X(t,) = 0 is given by 

0 =Ww eirot +Y 'eil rU(t-7-)+g-] [u T) + i u2(r)])d7 

o =tJ*=t* e +l 

+
0 (0(0)-01 20) (7-21) 

1 -e (7) + i u( dT
 

t
 

while for the AMCO concept, the terminal condition is given by 

W1 (0) 0 (0)
0
0 = ro- LK6 02+ ) - i (0(0) - = ) 

+r E (7 ) + i(u 2 (r d (7-22) 

An examination of Equations (7-21) and (7-22) reveals that conclusions 

similar to those drawn for the symmetric vehicle can be drawn for 

the dual-spin vehicle. An important difference is that for the dual­

spin vehicle, regardless of the vehicle parameters less fuel is used 

for the AMCO concept than for the SACO concept for all initial condi­

tions except those for which w* 0. When w%-0, the two concepts 

are identical. This conclusion is in complete agreement with the 

notion that the nutation damper damps out the term 

irot 

0 

and if the complex mode c isnot excited (that is w -0) then 

no fuel is required to damp it out and, hence, no fuel savings can be 

realized. These conclusions hold also for the case in which one jet 
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is used. These results can be obtained by setting u2 (-r) 0 in 

Equations (7-21) and (7-22). 

The foregoing analysis is extremely important because it shows the 

relationship between the expected fuel savings, the vehicle param ­

eters, and the initial conditions. The use of the function space 

having as its basis the modes of the system, proved to be an inval­

uable tool in this analysis. Note that these conclusions could not 

have been reached as easily by using the computer. 

Numerical Results for the Symmetric Spinning Vehicle 

Figures 7 -5 through 7-7 provide the results for the SACO concept. 

Figure 7 -5 shows the nature of the optimal controller u*(t) and 

the curves wI versus time and w2 versus time. It is noted each 

component of u(t) switches eight times. Figure 7- 6 shows the 

curves 0 versus time and 0 versus time. Close examination of 

Figure 7-5 and 7-6 reveals that each switching of the optimal con­

troller can be explained; that is, the results are consistent with the 

terminal conditions that must be satisfied. The terminal conditions 

Were previously given as (recall that i- and 0) 

1. -irw 3t(t-7) 
= w W° E + E () +iu2(T) d' = 0 (7 -23a) 

0to 

(1-r ) ( 2 r) 0 ic 
- ~~ ito1 0 + 3 ))-i(t-r) 0) 

+ t1 e ) L'Cr i u ,(rjdr 0 (7-2b
t w 3 (1 -r) [u -T 

Initially the switchings are such that the bracketed term of Equation 

(7 -23b) is decreased. This is accomplished by applying a torque to 

damp the amplitude of 0. These initial switchings tend to get the 
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modes in phase so that later they can be damped to zero 

simultaneously. Once the modes are approximately in phase, there 

is a I : 1 correspondence between the jet firings and the times the 

components w1 and w2 reach their maximum amplitudes, that is, 

to reduce the amplitude of w a torque is applied slightly before w 

reaches its crest. The same remark holds for w - - the jet desig­

nated u2 is fired slightly before w2 reaches its crest. The notion of 

damping the sinusoid slightly before it reaches its crest is intuitively 

appealing. 

As seen in Figure 7-5 the off-tumes of the controllers are very 

short. Fuel, of course, can be saved only during the times the jets 

are off. Figure 7 -6 illustrates the time history of the antenna point ­

ing errors for the SACO concept. Figure 7-7 shows the phase plane 

plots of W2 versus w and 02versus 1. In Reference [11], the equiv­

alent of Figure 7 -7 is provided. The results obtained in this work 

support those given in [11]. An important observation concerning 

the SACO concept is that the jet firings are not in 1 : Icorrespond­

ence with the spin rate of the vehicle because the response is given 
-irw t iW t 

in terms of the complex modes E and E 

AMIvCO Results 

The results for the AMCO concept are provided in Figures 7-8 

through 7 -14. Figure 7 -8 shows the controller u*"(t) and the switch­

ing function q*(t). It is immediately noted that each controller is off 

almost 50% of the time implying that fuel is consumed during these 

times. Figure 7 -9provides the time histories of the transverse 

components of the angular momentum vector and the magnitude of 

the transverse angular momentum. Examination of Figures 7-8 and 

7-9 reveals that the jet firings are ih 1 :1 correspondence with the 

times the components of the transverse angular momentum reach 
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their crests. Also, since only the modes of the system having a 

frequency equal to the spin rate are excited, the jet firings are in 

1 : I-correspondence with the spin rate. That is, effectively, two, 

impulses are applied each revolution of the body to damp out HI 

and two impulses are applied each .revolution to damp out H The 

impulses are applied slightly before the sinusoids reach their crests. 

This suggests that it may be possible to devise an advantageous 

-suboptimal nethod of synthesizing the optimal controller.t This result 

is especially interesting because the notion of a two-impulse scheme 

has been used by the attitude control engineer in the past without 

giving any attention to the question of optimality. Another observation 

that can be made from Figures 7 -8 and 7-9 is that the controllers 

are never off simultaneously. This implies that H cannot be 

constant after the optimal control sequence is initiated. The impli­

cation of this is that the transverse angular momentum is a strictly 

monotonically decreasing function. Note that this would niot be true 

if only one jet were used as was seen previously when the dual-spin 

vehicle results were examined. This suggests that two jets can 

accomplish the task in less time than one jet. This assertion was 

demonstrated for the symmetric spinning body by using only one jet 

to accomplish the control objective. This fact implies that there is 

a trade-off between the number of jets used and the time taken to 

accomplish the control task. If the spin rate is sufficiently great, 

then only one jet would be appropriate. If the body is slowly-spinning 

and the thrust capacity of the jet cannot be increased, then it may 

be desirable to use two one-way jets. However, if a jet having a 

greater thrust capacity were used, one jet would be suitable even 

for slowly-spinning vehicles. 

tThis aspect will be considered in more detail at a later time. 
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Figure 7-10 shows the trajectory in angular momentum space. The 

initial condition (11. a2) = (4, - 1. 4) ft # sec is driven to (-0. 017, 

0. 016) ft # see. The trajectory has a spiral shape. Figure 7-11 

I) - 2shows 	the antenna angles; the initial angles ( 2' =(10, 5) x 10 rad 

are driven to (3. 1, 3) x 10 rad. Figure 7-12 shows the plot of W. 

The plot of w* is circular as it should be since in the AMCO concept 

no fuel is used to damp out this response. Recall that it was stated 

previously that the trace swept out on the energy ellipsoid by the tip 

of the angular velocity vector is circular for a symmetric spinning 

body 	in a torque-free environment, 

Figures 7-12 and 7-13 show how the target is approached. The 

target set consists of the lines shown in Figures 7 -12 and 7 -13. It 

is noted that the u1- 2 2 -0 1trajectories approach these lines 

tangentially at the final time. 

The important conclusions drawn from the comparison of the two 

concepts are that 

(1) 	 35% less fuel is used for the AMCO concept than for the 

SACO 	concept 

(2) 	 the fact that the jet firings associated with the AMCO concept 

are in 1 : I correspondence with the spin rate while in the 

SACO concept they are not implies that there is a strong 

likelihood that the synthesis of a sub-optimal controller for 

the AMCO concept would be considerably simpler than that 

for the SACO concept, 

7.5 Conclusions 

In this section, some concluding remarks concerning this work are 

provided. Some conclusions concerning the importance of such 

theoretical notions as controllability, normality, existence, and 

tThis 	possibility should be examined at a later time. 
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uniqueness and their effects on the computational algorithm have 

already been given (see Section 7. 1). The importance of these items 

is evidenced by the facts that controllability aided in the determination 

of the number of jets required and normality aided in the determin­

ation of the location of these jets. In this section, the conclusions 

deal with the practically motivated innovations, introduced in this 

work in the formulation of the fuel-optimal control problems, for 

a class of dual-spin spacecraft. 

The inclusion of the nutation damper as a passive means of control 

-le-d to what is called in this work an angular momentum control 

(AMCO) concept. The distinguishing feature of the AMCO concept 

is that the target set is a smooth 2-fold in Rn rather than a fixed 

point. When this concept is compared to the more conventional 

formulation (called a spin axis control (SACO) concept in this 

work), some dramatic differences are noted. The comparison 

entailed the determination of the fuel-optimal controller far a 

synetric spinning vehicle for each concept. The practically 

motivated scheme (A-MWCO concept) used 35% less fuel than the SACO 

concept in achieving the identical control objective. This result is 

startling in that the solution obtained from each method is called the 

"fuel-optimal" controller. This experiment dramatically illustrates 

the importance of practical considerations in formulating an optimal 

control problem. 

By expressing the terminal constraints associated with each concept 

in terms of the modes of the system, it was shown that if the sym ­

metric spinning vehicle is designed such that 

13 1
2
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then for all meaningful initial conditions, fuel savings can be 
realized by using the AMCO concept rather than the SACO concept. 

For a dual-spin vehicle, the statement is true regardless of the 

inertia characteristics of the system. 

Another important consequence of the use of the AMCO concept 

concerns the computational aspects of'the determination of the fuel­

optimal controller. The number of variables to be iterated on in 

using the AMCO concept is two less than that required for the SACO 

concept. This-results in a reduction in computer running time. In 

addition, the convergence characteristics of the AMCO concept are 

better than for the SACO concept. This is due to the fact that in 

usiLg the classical Newton-Raphson algorithm, the final adjoint 

variables are iterated on in the AMCO concept while the initial 

adjoint- variables are iterated on in the SACO concept. 

Another practically motivated innovation introduced in this work 

pertains to the choice of the suitable control restraint set. For 

spinning vehicles, the use of the control restraint set 

S {u O-u(t) -- 1 Vj} 

has a distinct advantage over that which is customarily used for fuel­

optimal problems, viz. 

0=ILI: u.t) I51 Vj}I 

These control sets are associated with one-way and two-way jets, 

respectively. By using the necessary conditions of optimality, the 

nature of the optimal controller for each Q can be obtained. 

Examination of the optimal controllers for each 02 reveals that if 

the vehicle is spinning sufficiently rapidly then the number of firings 

(switchings) associated with the one-way jet for the problems 
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studied in this work is significantly less than that associated with 

the use of a two-way jet. This fact has a considerable bearing on 

the reliability of the system. An increase in the number of jet 

firings is accompanied by an increase in the probability of jet 

failure. Although'such factors as reliability are difficult to incorp­

orate into an optimal control problem formulation, nevertheless, in 

the final analysis, they must be given due consideration. 

One of the important conclusions drawn from this work is that 

optimization theory can be used very effectively in the preliminary 

design of competitive spacecraft. By determining the optimal con­

figurations of various systems that are considered potential candi­

dates for the given task, and then factoring in such factors as cost 

in dollars, reliability, weight, power requirements, etc., the most 

Suitable system can be selected. It is important to recognize that 

it is not always advantageous to implement the optimal controller. 

Nevertheless, the optimal scheme provides a very. good standard 

for judging the performance of the scheme that is implemented. 

The writer feels that this latter application of optimal control 

techniques has a promising future. 
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