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ABSTRACT
 

This is Volume 1 of three volumes which report the results of a strapdown calibration 

and alignment study performed by the Univac Federal Systems Division for the Guidance 

Laboratory of NASA/ERC. 

This study develops techniques to accomplish laboratory calibration and alignment of 

a strapdown inertial sensing unit (ISU) being configured by NASA/ERC. Calibration 

is accomplished by measuring specific input environments and using the relationship 

of known kinematic input to sensor outputs, to determine the constants of the sensor 

models. The environments used consist of inputs from the earth angular rate, the 
normal reaction force of gravity, and the angular rotation imposed by a test fixture in 
some cases. Techniques are also developed to accomplish alignment by three methods. 

First, Mirror Alignment employs autocollimators to measure the earth orientation of 
the normals to two mirrors mounted on the ISU. Second, Level Alignment uses an 
autocollimator to measure the azimuth of the normal to one ISU mirror and accelerom­

eter measurements to determine the orientation of local vertical with respect to the 

body axes. Third, Gyrocompass Alignment determines earth alignment of the ISU by 

gyro and accelerometer measurement of the earth rate and gravity normal force vectors. 

The 	three volumes of this study are composed as follows: 

* 	 Volume 1 - Development Document. This volume contains the detailed develop­
ment of the calibration and alignment techniques. The development is presented 
as a rigorous systems engineering task and a step by step development of 
specific solutions is presented. 

* 	 Volume 2 - Procedural and Parametric Trade-off Analyses Document. This 
volume contains the detailed trade-off studies supporting the developments 
given in Volume 1. 

* 	 Volume 3 - Laboratory Procedures Manual. In Volume 3 the implementation 
of the selected procedures is presented. The laboratory procedures are 
presented by use of both detailed step-by-step check sheets and schematic 
representations of the laboratory depicting the entire process at each major 
step in the procedure. The equations to be programmed in the implementation 
of the procedures are contained in this volume. 
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GLOSSARY
 

As an aid to understanding the symbolism, we present the following rules of notation 

* 	 Wherever possible symbols will be used which suggest the name of the 
parameter involved. 

* 	 Lower case subscripts are used almost exclusively for indexing over several 
items of the same kind. Examples are the indexes used to identify the three 
gyros, the three accelerometers, the two pulse trains of each accelerometer, 
the two clock scale factors, etc. 

* 	 Lowercase superscripts are used to index over different positions. 

* 	 Uppercase superscripts and subscripts will be used to distinguish between 
parameters of the same kind. For example, T is used to identify a 
transformation matrix. Lettered superscripts such as BE in TBE identify 
the particular transformation. 

* 	 An underline will identify a vector. 

* 	 Unit vectors are used to identify lines in space such as instrument axes 
and the axes of all frames of reference. 

" 	 Components of any vector along with any axis is indicated by a dot product 
of that vector with the unit vector along the axis of interest. 

* 	 The Greek sigma (E)will be used for summations. Where the limits of 
summation are clear from the context, they will not be indicated with the 
symbol. 

* 	 The Greek A is always used to indicate a difference. 

* 	 S ¢ and C 0 are sometimes used to identify the sine and cosine of the angle 0. 

* 	 A triple line symbol (-) will be used for definitions. 

* 	 A superior "-" denotes a prior estimate of the quantity. 
S II 

A* 	 A superior "denotes an estimate of the quantity from the estimation routine. 
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a Applied acceleration vector. 

(A1- B ) Elements of (QA)-I. 

A1 Unit vector directed along the input axis of the ith accelerometer 
1 = 1,2, 3. 

b A vector determined by the Alignment Parameter Evaluation 
Procedure and input to the Estimation Routine. 

B, Unit vector directed along the ith Body Axis i = 1, 2, 3. 

BI, B0 . BS Gyro unbalance coefficients. 

CII,Css,CIs,CICOs Gyro Compliance Coefficients.
 

Counters The six frequency counters used as data collection devices
 
during calibration. 

Do Accelerometer bias. 

D1 Accelerometer scale factor. 

D2 Accelerometer second order coefficient. 

D3 Accelerometer third order coefficient. 

E Unit vector directed East (E2) 

Unit vector directed along the ith Earth Axis. 

Eq Quantization error. 

fl f2 Frequencies of accelerometer strings 1 and 2, in zero 
crossings per second. 

F A triad of orthogonal unit vectors attached to the base of the 
table. 

GQ Unit vector directed along the ith input axis of the gyro. 

(g B) Elements of (QG)-1. 

g The vector directed up that represents the normal force to 
counteract gravity in a static orientation. Corresponding to 
popular convention, this is referred to as the "gravity vector". 

I/O Input/Output. 
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I Triad of orthogonal unit vectors attached to the inner axis of
-I test table. 

IEU Interface Electronics Unit - system interface device for the 
laboratory computer. 

ISU Inertial Sensing Unit. 

J Gyro angular rate coefficient. 

K Number of samples of accelerometer and gyro data taken in 
Alignment. 

m Position index used in calibration (superscript). 

M Matrix generated by Alignment Parameter Evaluation and used 
by Alignment Estimation Routine. 

M, Unit normal to ith mirror. 

N Unit vector directed North (E3 ).
 

N1 , N2 Count of output pulses from strings 1 and 2 of accelerometer.
 

nA Instrument noise in accelerometer.
 

nG Instrument noise in gyro.
 

¢rn Count of output pulses from strings 1 and 2 of accelerometer. 

LnT Count of timing pulses from master oscillator to frequency1 counters. 

T Count of timing pulses from master oscillator to IEU. 

O Unit vector directed along the output axis of gyro. 

O Triad of orthogonal unit vectors attached to the outer axis 
of the table. 

P Unit vector in the direction of the projection of M1 n the plane 
formed by E and N. 

pDefined on Chart 4-12 of the Development Document. 
k 

p G Defined on Chart 4-4 of the Development Document. 
k 

QA The transformation from accelerometer input axes to body axes. 

QG The transformation from gyro input axes to body axes. 
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al 

(r7),, 

(r 6), 

6d 

Gyro dynamic coupling coefficients.
 

Position vector.
 

Gyro bias.
 

Triad of orthogonal unit vectors attached to rotary axis of
 
table. 

Angular resolvers on each axis of the test table. 

Unit vector directed along the ith gyro spin axis. 

Scale factor associated with pulsed output from test table rotary
axis. 

Scale factor associated with timing pulses accumulated by thefrequency counters. 

Scale factor associated with timing pulses to the IEU. 

Time.
 

In alignment, the determined alignment matrix to transform
 
from body to earth axes. T is equivalent to T B E.
 

Transform from ISU body axes to inner axis frame. 

Transform from ISU Body Frame Axes to Rotary Axis Frame in 
the mth orientation. 

Triad of orthogonal unit vectors attached to the trunnion axis 
of the test table. 

Unit vector directed up (E1 ).
 

Velocity vector.
 

Unit vector directed along E.
 
Dual input on frequency counter that will difference two pulse
 
trains for comparison with a third input (Z).
 

Input on frequency counter for pulse train.
 

The azimuth angle of the normal to the ith mirror.
 

Pulsed output from the jth string of the ith accelerometer.
 

Pulsed output of the ith gyro.
 

Gyro scale factor.
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SECTION 1
 
INTRODUCTION
 

This document, in conjunction with two other volumes, describes the achievements of a 
six month study conducted for the. 

Guidance Laboratory
Electronics Research Center 
National Aeronautics and Space Administration 
Cambridge, Massachusetts 

by the: 

Aerospace Systems Analysis Department 
Univac Federal Systems Division 
Saint Paul, Minnesota 
A Division of Sperry Rand Corporation 

The purpose of the study is to develop techniques and outline procedures for the labora­

tory calibration and alignment of a strapdown inertial sensing unit. This document, 
Volume 1. presents a detailed analysis of the calibration and alignment problem and 
develops a specific solution. The nucleus of the study output is the contents of this docu­
ment. The Procedural and Parametric Trade-off Analyses, Volume 2, is a set of 
addendums which serve to justify decisions made and conclusions reached in the develop­
ment of specific calibration and alignment techniques. Reference is made to the contents 
of the trade-off document throughout Sections 4 and 5 of this document. The Laboratory 
Procedures Manual. Volume 3. describes specific procedures for an operational im­
plementation of the solutions obtained in Volume 1. It is an extension of the results of 
Volume 1 into' an operational laboratory situation. The last subsections of Sections 4 

and 5 of this document (Volume 1) form the interface between the study developments and 
the specific procedures found in Volume 3. 

At the time of this writing, the Guidance Laboratory of NASA/ERC is in the process of 
configuring a strapdown inertial sensing unit which they will use to evaluate many ad­
vanced concepts. By integrating this ISU with a system computer. they will attain a 
flexible system level research tool for testing analytical concepts, system design con­
cepts and fabrication concepts. In parallel with the development of the Guidance and 
Navigation System, a laboratory facility is being designed which will contain all of the 
test equipment necessary for conducting the experiments on the strapdown G and N System. 
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Among the more important experiments to be conducted are those which determine the 
feasibility of easily and precisely calibrating and aligning the sensor package in an 
operational laboratory situation. Before such experiments can be conducted, the cali­
bration and alignment techniques must be developed and definitively documented. The 
Guidance Laboratory contracted Univac's Aerospace Systems Analysis Department to 
develop and document those techniques. The specific tasks which Univac was contracted 
to accomplish are as follows: 

" 	 To specify mathematical models for the system sensors (gyros and accelerom­

eters). 

* 	 To define the mathematical description of the sensor package. 

* 	 To develop techniques for the determination of all calibration constants. 

* 	 To develop three techniques for initializing the alignment of the ISU. The three 
techniques involve the use of 

" 	 Optical measurements only 
" Accelerometer measurements for level, and an optical azimuth measurement 
" Accelerometer and gyro measurements only. 

* To accomplish specified trade-off analysis on all calibration and alignment
techniques.
 

* 	 To specify all equations and procedures for the accomplishment of a calibration 
and alignment in the ERC Laboratory. 

* 	 To document, in three volumes, the calibration and alignment developments, 
trade-offs, and procedures. 

The satisfaction of the first four items is accomplished in this Development Document. 
The trade-offs are described in the Procedural and Parametric Trade-off Analysis 
Document and the procedures are outlined in the Laboratory Procedures Manual. 

Al
 

The presentation of the calibration and alignment developments in this document, 
Volume 1, is divided into five sections. The purpose of the introduction is to briefly 
state the study problem (accomplished in the above listing of seven items) and to describe 
the developments contained in Volume 1. The purpose of Section 2 is to delineate the 
calibration and alignment requirements. Section 3 presents a system description of 
calibration and alignment with emphasis on the laboratory environment. The specific 
calibration and alignment techniques are then developed in Sections 4 and 5, respectively. 
As an introduction to the scope of this document, the following paragraphs outline the 
developments in these sections. 

The calibration and alignment study tasks have been only generally stated in the preceding 
paragraphs. Before the technique developments can be described, the specific engineering 
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and mathematical requirements of calibration and alignment must be stated. In Section 2 
we accomplish the detailed specification of those requirements. A statement of the cali­
bration and alignment requirements will be simply presented as a list of parameters to 
be determined in the laboratory. As a lead-in to that listing, Section 2 shows how the 
requirements tie in to the larger system problem of navigation. We accomplish this by 
presenting the general definitions of calibration and alignment as the deter mnation of 
constants required in an operational navigation loop. The mathematics of portions of the 
navigation loop are delineated so that calibration and alignment can be specifically defined 
as the determination of constants contained within the mathematics. 

After specifying the calibration and alignment requirements in Section 2, Section 3 directs 
our attention to the laboratory environment in which the calibration and alignment is to be 
accomplished. As an introduction to the environment, we present in the first subsection 
of Section 3 functional system descriptions of both calibration and alignment. The func­
tional description of the ERC laboratory calibration is presented in comparison with what 
we call an Ideal Calibration. The comparison of the ideal with the actual ERC laboratory 
calibration serves to illustrate those compromises necessary in the development of a test 
laboratory. The functional description of alignment presents those separate operations 
required in an operational alignment. Three functional diagrams are presented in 
Section 3, one for each of the three alternative alignment techniques. All functional 
descriptions serve to define those measurements, other than inertial instrument measure­
ments. which are required to accomplish the calibration or alignment. The additional 
measurements correspond to an independent measure of the kinematic environment. The 
determination of those additional measurements is the subject of the second subsection of 
Section 3. Section 3 is concluded with a brief description of the hardware available in the 
laboratory, and the interfaces between those pieces of hardware. 

The calibration technique developments in Section 4 are directed toward specifying the 
details of the calibration functions which are generally defined in Section 3. The basis of 
calibration is presented in Section 3 as the input of environment and inertial instrument 
measurements into computations which are a function of those measurements and the un­
known calibration constants. The general equations from which the computations are 
evolved are developed in the initial subsection of Section 4. Those general equations are 
developed by introducing the parameters which identify the laboratory kinematic en­
vironment and the ISU geometry into the inertial instrument mathematical models. Subse­
quent to the development of the general equations, particular choices of test table orienta­
tion are used to define the "Positions" to be used for the determination of all calibration 
constants. The chosen positions are shown to produce significant reductions in the com­
plexity of the general calibration equations. With the aid of these reductions it is 
possible to solve for the calibration constants by a series of relatively simple experiments. 
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In the third subsection of Section 4 the calibration computations are tabulated. The 
quantization and instrument and environment noise considerations are described in con­
junction with the tabulation. The fourth subsection of Section 4 describes those laboratory 
activities required prior to the actual calibration. All such activities are related to either 
the survey of the location of the ISU relative to the test table, or the compensations for the 
small low frequency motion of the test table base. The last subsection of Section 4 forms 
the tie between this Development Document and the details of calibration implementation 
presented in the Laboratory Procedures Manual, Volume 3. In Volume 1 the implementa­
tion of calibration is only briefly described, the details being left as the subject of 

Volume 3. 

The alignment techniques developed in Section 5 expand the functional descriptions of 
alignment as presented in Section 3 into a set of alignment techniques. Alignment is 
broken into three separate routines, preprocessing of sensor outputs, the application of 
chosen estimation procedures to the preprocessed outputs, and calculation of alignment 
matrices from the estimated values. Since the preprocessing and alignment matrix 
calculations are developed in Section 2, the major emphasis in Section 5 is centered on 
the estimation problem. 

Before describing the development of an estimation technique, the basic functional re­
quirements and the preprocessing computations are presented, respectively, in the first 
two subsections. The third subsection describes a detailed development of models for 
the environmental disturbance and sensor noise. The next two subsections are then de­
voted to the development of two approaches for estimation in Level Alignment and Gyro­
compass Alignment. The first approach develops a procedure for estimating average 
values of the gravity and earth rate vectors, while the second approach leads to estimates 
of instantaneous values of these vectors. Estimation techniques are developed using three 
basic statistical procedures: simple average, least squares. and posterior mean. From 
these estimates the average and instantaneous values of the alignment matrices are then 
obtained. The last subsection of Section 5 describes explicit equations for the recom­
mended alignment techniques, and ties the results of Section 5 to the procedural details 
of alignment described in the Laboratory Procedures Manual. 
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SECTION 2
 
CALI BRATION AND AL IGNMENT REQU IREMENTS 

The purpose of this study is to determine a procedure for the calibration of the NASA/EEC 
strapdown inertial sensing unit (ISU) and to delineate three operational laboratory tech­
niques for the initial alignment of the same inertial sensor unit. Clearly, the initial task 
in this, or any study, is to carefully describe the problem as a specifically defined study 
task. This we propose to do in this section of our report. 

The key words in the above general statement of the study purpose are the words "calibra­
tion" and "alignment". The first activity in this section will be to develop (in Section 2. 1) 
the definitions of those key words. Our approach to the development of those definitions 
is to present a description of an operational navigation loop and, as a conclusion to that 
description, to present calibration and alignment as the determination of constants re­
quired as inputs to the navigation loop. There are alternative approaches to the defini­
tions of these terms but we feel our approach is optimum in that it clarifies the necessary 
relationship between the calibration and alignment problem and the larger system problem 
of inertially navigating a propelled vehicle. 

Subsequent to the navigation-system definition of calibration and alignment we will, in 
Sections 2. 2 and 2. 3, describe the calibration and alignment requirements as they relate 
to the ERC strapdown inertial sensing unit. Section 2. 2 describes the calibration re­
quirements, and Section 2. 3 describes the alignment requirements. 

The development of the calibration requirements in Section 2. 2 will be directed toward 
the tabulation of the instrument constants and instrument-to-body-axes transformation 
matrix constants which are necessary in an operational navigation loop. The first 
activity in that section will be the description of the geometry of the ERC ISU. This will 
be followed by a description of the inertial instruments contained in that IS. The in­
strument-to-body-axes transformation matrices will then be described. All of the 
described equipment and geometry will then be used to develop the navigation loop "Pre­
processing Computations". Finally, the constants in the Preprocessing Computations 
will be defined as the constants to be obtained in calibration. 

In Section 2. 3 the alignment requirements will be described as the real-time measurement 
of the ISU fixed or earth-fixed coordinates of two vectors. Three alternative choices of 
these two vectors will be presented. The geometry of alignment will also be presented. 
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The final presentation will be the specific alignment matrix mathematics corresponding to 
the three alternative alignment techniques. 

2.1 DEFINITION OF CALIBRATION AND ALIGNMENT 

The necessity for a calibration and alignment of an inertial sensing unit is directly related 
to the use of the ISU in a vehicle guidance system. More specifically, calibration and 
alignment requirements are related to the necessity for a real-time transformation of the 
ISU instrument outputs into a best estimate of a vehicle's velocity and position. In this 
section we will, from a discussion of real-time inertial guidance activities, define the 
general calibration and alignment requirements. 

The functional diagram shown in Figure 2-1 serves as a description of the initial activities 
in a real-time navigation loop. That diagram will be the focal point of our attention for 
the remainder of this subsection. Figure 2-1 shows only that portion of the navigation 
loop which transforms instrument outputs into estimates of velocity and position. (The 
remaining portions of the loop are the guidance logic, automatic control, and dynamic 
response which are not shown. ) 

The input to the ISU is the kinematic environment of the vehicle and ISU as represented 
by the applied acceleration a and angular velocity _w. The outputs of the ISU are (usually) 
sequences of pulse counts taken over small intervals of time. These outputs are the in­
puts to the computer. The computer's immediate task is to convert those measurements 
into a knowledge of velocity and position. The velocity (v) and position (r) must be rep­
resented as components (v. D) and (r. Dk) in the frame (Dk) in which one chooses to 
navigate (Dk represents a triple, k = 1, 2, 3, of unit vectors directed along the orthogonal 
navigation axes). 

The initial activity in the conversion to velocity and position is the transformation of the 
pulse counts into estimates of the integrals of the instrument-axes components of applied 
acceleration and angular velocity. The instrument axes are represented by the triads 

Ak and Gk of (in general) nonorthogonal unit vectors directed along the input axes of the 
accelerometers and gyros, respectively. 

The second activity, in the conversion to velocity and position, is the transformation of 
the integrals of the instrument-axes components of applied acceleration and angular 
velocity into integrals of body-axes components. The body axes (Bk) are a triad of 
orthogonal unit vectors which are fixed to the ISU. These body axes can be defined in 
various ways. They can be defined by use of any two of the instrument axes or they can, 
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as they are in this study, be defined by use of two mirror normals. (The manner in 

which this definition is accomplished for the ERC system will be found in Section 2. 2.) 

The final activity in the conversion of instrument outputs into navigation-axes components 

of velocity and position begins with the input of the body-axis integrals of applied accel­
eration and angular velocity to the translational and rotational differential equations of 
motion. The numerical solution of those differential equations yields the desired velocity 

and position. The solution of the rotational differential equations serves to transform 
the argument of the translational differential equations into navigation-axes components. 
The output of the translational differential equations solution is then the desired com­

ponents of velocity and position. 

It is noted that various constants are required from computer memory as inputs into all 
routines. The initial routine requires those instrument constants which scale and 
correct the instrument outputs. The second routine requires the nonorthogonal three-by­

three matrices, QA and QG, which transform the integrals of the instrument-axes 
components into the integrals of the body-axes components. The third routine, being 
the solution of differential equations, requires initial conditions. The initial condition 
for the rotational differential equation solution is an initial body-to-navigation-axes. 
transformation matrix. The initial condition of the translational differential equation 

solution is an initial knowledge of navigation-axes components of velocity and position. 
A knowledge of all of these constants is required prior to any operational use of the ISo 
The development of the numerical values of these constants can be divided into three 

separate problems; and the statement of two of these problems can be used as a defini­
tion of calibration and alignment. 

The problem of determimng the instrument constants used in the first routine, and the
QA and matrices used in the second routine, will be considered in this report as the 

problem of calibration. The problem of determining the initial body-to-navigation-axes 
transformation matrix will be referred to as the alignment problem. The remaining 
problem of initializing velocity and position is an operational problem, which is not 

within the scope of this work. 

We will extend these definitions to the subject ERC strapdown ISU. Specifically, we will 
delineate more detailed definitions in terms of the geometry and instruments charac­
terizing the ERC system. Section 2. 2 will treat calibration, and 2. 3 alignment. 
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2.2 CALIBRATION REQUIREMENTS 

It was seen in the preceding subsection that calibration is defined as the determination 
of those instrument constants and constant matrix transformations required in the 
transformation of instrument outputs into integrals of body-axes components of applied 
acceleration and angular velocity. In this section we will describe the equations in the 
navigation routines which utilize the calibration constants. We will specify those 
equations with the assumption that the ERC strapdown ISU is the subject sensor unit. 
From that description, we can then specifically describe the calibration requirements 
as the determination of the constants contained within those navigation routines. 

The desired equations are directly deducible from the geometry of the ISU and the 
mathematical models of the instruments. We therefore begin the presentation in this 
section by describing the geometry of the strapdown ISU, followed by a description of 
the accelerometers and gyros contained within the ISU. Following those descriptions 
we will define the QA and QG matrices. Next we will employ all of this information to 
develop the desired equations; and finally we will utilize those equations in the tabulation 
of the required calibration constants. 

2.2.1 ISU Geometry 

The ERC ISU is a strapdown sensing unit containing. 

* Three vibrating-string accelerometers 
* Three single degree of freedom gyros 
" One mirror cube
 
" Associated structural and electronic devices.
 

The strapdown ISU has been specified such that the accelerometer input axes (Ak), the 
gyro input axes (Gk), and three mirror normals (Mk) are nominally orthogonal and 
nominally aligned. In implementing the specification, there will naturally be deviations 
of small angles between the supposedly aligned instrument and mirror axes. In 
Figure 2-2 an exaggerated representation of those deviations from nominal is shown. It 
will be assumed in this study that the cosines of the angles between supposedly aligned 
vectors are equal to one and the cosines of the angles between supposedly orthogonal 
vectors are equal to small first order numbers. 

Additional geometry required in subsequent developments is the nominal location of the 
gyro output (Ok) and spin (Sk) axes relative to the input axes already described. Those 
nominal locations are shown in Figure 2-3. 
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Figure 2-2o Instrument and Mirror Axes 
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It is always convenient, in inertial navigation, to define, from the geometry of the ISU, a 
set of orthogonal unit vectors which represent a common "body set of axes" to which all 
accelerometer and gyro outputs can be referred. The definition of those body axes is 
usually arbitrary; that is, any two ISU fixed vectors can be used. For the purpose of this 
study we will utilize two mirror normals. The body axes for the subject ISU are defined 
by 

B2 -L 1 xM 2) xM 1 /M 1 xM 2 1 
= (M1 x M/2)i/M1 xM 2 1 

This definition is shown schematically in Figure 2-4. 

2.2.2 Accelerometer Model 

A schematic of the accelerometer is shown in Figure 2-5. The accelerometer consists 
of two masses separated by a spring and supported for centering purposes by two strings 
(S1 and 82) and ligaments normal to S, and S2. When the accelerometer is at rest or 
moving with constant velocity, the sum of forces acting on the masses is zero. When the 
instrument is accelerated, the sum of forces will adjust to cause the masses to move with 
the same acceleration. Strings S, and S2 will change in tension as a function of the com­
ponent of acceleration along the strings. (This direction is the sensitive axis of the in­
strument. ) Since the resonant frequency of a vibrating-string is a function of its tension, 
the frequency of strings S1 and S2 may be read and converted to acceleration along the 
sensitive axis. 

The math model of the accelerometer is presented on Chart 2-1. The outputs from the 
accelerometer are the pulse counts, N1 and N2 , representing the number of zero 
crossings from strings S1 and S2 in the time interval t-tb. Since the counting process 
can start and terminate at a fixed time for any sample. a quantization error (represented 
by Eq) of up to two counts (one per string) may occur. A fixed bias (D ) is assumed. 
The entire output is multiplied by the scale factor D1 . The second and third order co­
efficients (D2 and D3) are extremely small. 

In developing the model (see Appendix A) several assumptions were made. The most 
critical are 

1. The accelerometer has negligible instrument noise. 
2. The effects of terms higher than the third order are negligible. 
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CHART 2-1 

THE FUNDAMENTAL ACCELEROMETER MODEL 

THE ACCELEROMETER MODEL IS: 
tb tb 	 tb 
ta 	 f2 dt a fldt = (N2 -N1)+ Eq = D1 ft a (a.A)dt 

a- a 

+D1 	 j CbD0 +D2 (a'A)2+D3 (a*A)3 ]dt 

WHERE 

0 	 a is the acceleration applied to the accelerometer 

0 	 ta !9t!9 tb is the time interval over which a is measured 

a A is a unit vector directed along the input axis of the accelerometer
 

a N1 and N2 are the number of zero crossings detected in ta t tb
 
from both strings of the accelerometer
 

* 	 Eq is the instrument quantzation error due to the fact that ta and tb
 
do not correspond to zero crossings
 

9 	 D1 is the accelerometer scale factor 

* 	 Do is the accelerometer bias 

* 	 D2 is the second order coefficient 

* 	 D3 is the third order coefficient 

f2 and f, are string frequencies in pulses/second 
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3. There are no cross coupling effects, 

4. The strings are colinegr. 

2. 2.3 Gyro Model 

The gyroscopes used in the ERC strapdown ISU are Honeywell GG334A single degree of 

freedom, pulse rebalance gyros. The gyros contain a gimballed rotor as shown in 

Figure 2-6. The rotor spins at a high angular rate. The gimbal is restrained by the 

gimbal bearings to rotate with respect to the case about the 0 axis only as shown in the 

figure. Any angular motion of the gyro case about the input axis, G, will generate a 

gyroscopic torque that tends to rotate the gimbal about 0. A signal generator measures 

the gimbal deflection. The deflection is compared at a 3. 6 KHz rate with two equal 

thresholds of opposite sign and a positive, negative, or zero pulse is generated. based 

on the results of the comparison. This signal is sampled by the readout electronics and 

fed to a torque generator where a torque pulse i. generated to offset the deflection. 

The model of the gyro is given on the accompanying chart. (See Appendix B for a deriva-
N 

tion.) S 6 K is the net count of positive and negative rebalance torques. At is the scale 
k=1 tN 

factor of the instrument. The term ( . G) dt is the desired information from the in­

strument. and is equal to the integral of the angular velocity component along the sensi­

tive axis. R is a fixed bias term. The three terms with coefficients, B1, Bo and Bs 

are due to the fact that the center of force of the gimbal support differs from the gimbal 

center of mass. causing a torque proportional to acceleration (mass unbalance effect). 

Terms with coefficients CII, CSS, CIS, COS and CIO arise because of the deformations 

of the gimbal, caused by acceleration forces that produce mass unbalance effects. The 

term with QII coefficient is due to scale factor nonlinearities. The QIS term is due to 

the differences of moments of inertia about S and 0. The term containing J is the 

effect of dynamic coupling because of finite gimbal inertia. 

2. 2. 4 Q Matrices 

In Section 2.1 we defined the QA and Q matrices as those constant matrices which 

transform the integral of the instrument-axes components of applied acceleration and 

angular velocity into the integrals of the body-axes components of the same vectors. 

In this subsection we will specifically define those matrices. 

First, the QA and matrices, as suggested by the superscripts, transform, re­

spectively, the integrals of the accelerometer-axes components and the integrals of the 

gyro-axes components. Second, QA and QG, being constant matrices, transform all 
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CHART 2-2
 

THE 	FUNDAMENTAL GYRO MODEL 

THE GYRO MODEL IS: 

[k 	 ]k =j (w.G) dt + j tN R+Bi(a-G) + BO(aO) + Bs(a.S) + Cl(a'G) 2 + Css(a'S) 

+ CIS(a q) (a S) + Cos(aO) (a.S) + C1 .(a.G)(a0)
 

2QII(W.G)2 dt + n+Eq
 
+ ',~ G)+ QL(w.G) (w*S) + . J (w- O2t]) A+E 

WHERE 

* 	 w is the angular velocity applied to the gyro 

* 	 a is the acceleration applied to the gyro 

* 	 to S t is the time interval over which a and w are measuredtN 

* 	 tN - to = Nr, where N is an integer, andr is the gyro sampling 
period 

* 	 S is a unit vector along the spin axis of the rotor 

* 	 0 isa unit vector directed along the output axis as defined by the 
gimbal 

* 	 G is a unit vector along 0 x S (that is, the sensitive axis of the gyro) 

6 It is the kth gyro pulse, equal to +1, -1, or 0 for positive, negative, 

or no pulse 

* 	 AT is the gyro scale factor 

* 	 R is the gyro bias 

* 	 BI BO and BS are the gyro unbalance coefficients 

* 	 CII CSS CIS COS and CIO are the gyro compliance coefficients 

* 	 QIS and QII are dynamic coupling coefficients due to gimbal deflection 
and scale factor nonlinearity, respectively 

* 	 J is the angular rate coefficient 

* 	 An is the effect of gyro noise over the [to, tNJ interval 

* 	 Eq is the gyro quantization error 
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triples of vector components between the frames, not just the integrals of those vector 

components. (That is, the Q matrices can be taken in and out of the integral at will) 
Therefore. we can say that QA and QG are defined by: 

L3aL6 3/B°2lr:_2 
It will be seen in Section 4 tnat calibration determines not QA and QG but (QA)- 1 and 
(QG)-l We therefore need to deduce the matrices from their inverses. From the 

geometry presented in Section 2. 2. 1 it is seen that the QA and QG matrices are approxi­
mately identity matrices. This fact makes the deduction of the matrices from their in­
verses quite simple. In the accompanying chart that deduction is presented. Note, in 
Chart 2-3, that the inverses appear, at quick glance, to be orthogonal (that is the ele­

ments are "direction cosines"). This apparent orthogonality results from Bk being 
orthogonal. However Gk and Ak are not, in general, orthogonal, and therefore the in­
verse matrices are also not orthogonal. 

In Appendix C alternate forms of the QA and Q0 matrices are presented. Those forms 
are functions of the separation-angles between the unit-vectors contained within the ISU. 
Even though we will not specifically present techniques for finding separation-angles, the 
reader may be interested in those forms for the purpose of deducing separation angles 

from the calibration-determined (QA)-I and (QG)-l elements. 

2. 2. 5 Preprocessing Computations 

In this section we will show how the ISU geometry and mathematical models lead to the 

specific equations found in the initial computational routines of a navigation loop. Those 

equations. which we call the Preprocessing Computations, include all of the constants 
which must be determined during a laboratory calibration. 

Referring to the flow diagram presented in Figure 2-1 we see that the initial routine in 
the navigation loop is the transformation of the instrument outputs into a knowledge of the 
integrals of the instrument-axes components of applied acceleration and angular velocity. 
Referring to the instrument models, we see that the models represent functional rela­
tionships between the inputs and outputs of the initial navigation routine. (This statement, 
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and 	 (QG)-lDetermination of QA and QG from (QA)-' 

SThe calibration determines not QA and QG but (QA)-' and (QG)-I. 

* 	 The inverse matrices have the form. 

(A1 . B1 ) (A• 2 ) ' A1 B3)l 

(QA)- = B1) A2" B_2) 2 ' B3(A21. (A

(A3"-P) A B2) (A3 3 

I (GI1 E2) " 

(QGl = " ) (G2 B2) (92. B 

3 .- P) (G< _2) (.3 B3 

1 31) 
" (G1 ­

* 	 Because of the excellent mechanical specifications on the strapdown ISU, each 
of the above matrices will have ones on the diagonals and first order small 
quantities on the off-diagonal. That is, each matrix can be written as. 

I+ E 

where I is the identity matrix and E is a small off-diagonal matrix. 

* The inverse of (I + E) (to first order) is (I - E). 

" The QA and QG matrices can, therefore, be written as: 

1 -(AlI _2 -(AI" B3) 
A = [ 2 " 1 ) 1 -B2. 

_(A" B-) -(A3 B2 1 

= 2G1PBl) -(Gl I 12 ) -(9gy*p-(G2 .B_3)3 ) 

Q = 3- 1-( 
3 B1) -(G 2 1 

where all elements within the matrices are found in calibration. 
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of course, assumes that quantization and noise are neglected.) The mathematical model, 
functional relationships are not, however, explicitly in the form: routine output = f (rou­
tine input). To the contrary, the relationships are the inverse: routine input = g (routine 
output). The desired navigation equations must therefore result from an inversion of the 
instrument mathematical models. 

The inversion of the models is quite a simple matter. This is due to the fact that each 
instrument is designed to be a linear instrument, therefore, all "nonlinear" terms are 
the result of design deficiencies and therefore are quite small relative to the proportional 
term plus bias. We conclude then that all "nonlinear" terms can be approximated by 
functions of the instrument outputs. The following discussion shows how this is accom­
plished. 

The accelerometer model (neglecting quantization and noise) has the form: 

AN = DlJ'(a. A)dt + D 1D 0J'dt + higher order terms 

where AN is the difference in the number of zero crossings detected from each string in 
the time period over which the integrations in the equation are made. In the following 
discussions, tins time period will always equal At. 

As a first order approximation, 

1 
(a.A)dt = -

D 
(AN-D1 Do At) 

1I
 

Let us define 

(a.A)At f (a. A)dt 

or(a (a.A) - A) dt IDAtJ dtAIdt 

or - = - - (AN - DI oAt) 
fSdt DiAt 

We can see that (a.• A) is, from the mean value theorem of calculus, a value of (a. A) 
somewhere in the time period of integration. 

Referring to the second order term 

f(aA)2 dt 
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wich can be written 

(a- A) 2 At 

We see that, when the period of integration is chosen short enough that (a - A) is essentially 
constant over each period, then it can be assumed that. 

(a- A) 2 = (a-A)2 

(Ths is a very good approximation, considering the fact that the coefficient of the square 

term is quite small.) From all of the above statements we can therefore infer: 

(a -A) 2 dt =-- -AN -Di D Atj 2At 

Similarly, the cubic term can be written as 

(a -A) 3 dt = [DfAtN - DiDoA tAt 

The expression for (a. A) can also be used to determine the gyro unbalance integrals from 

the approximations: 

S(a.Gk)dt = S(a"Ak)dt 

0 ij1 [%(. A1)dt] 

S(a.ok)dt = 100 f (a-A2)dt (See Figure 2-3.) 

o 0 '(a A3) dt 

0-1 0 f (a A1)dt
f (a. sk)dt = 0 0 f (a.-A2) dt 

1 f(a. A3)dt 

H K ]
S(a.Ak)dtwhere = -i(DI)k (t 

(We have refrained from using the instrument index k until it was absolutely essential. 

This served to keep the notation as simple as possible.) 
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The compliance integrals are found to be similar to the higher-order accelerometer terms.
 

We note that all of the gyro approximations utilize the outputs of the accelerometers to
 

compensate for the gyro acceleration-sensitive terms.
 

Alter all approximations, we will have equations of the form:
 

j (a. 	 Ak) dt = f (accelerometer outputs) 

Y(_t Gk) dt = g(accelerometer and gyro outputs) 

The QA and QG matrices can then be used to find. 

S(a.Bk)dt QA (a. At) dt-

(t.B k)dt F QG f(u. Gdt 

The above statements lead to the complete set of computations, which are found on the 

following chart. We will henceforth, in this document, refer to those equations as the 

Preprocessing Computations. The following nomenclature is required for the understand­

ing of the Preprocessing Computations: 

S(Syl and (E)k2 are the counts from the one and two strings of the kth 

accelerometer. 

* 	 (D6) k is the count from the kth gyro.
 

T
S2 is the clock scale factor (the subscript 2 serves to distinguish this scale 
factor from another used in calibration). 

(Bn T 	 ) is the count from the system clock. All other terms have been 
previously defined. 

2.2.6 Calibration Requrements 

The Preprocessing Computations developed in the preceding subsection are seen to be a 

function of a great number of constants. Those constants were, in Section 2. 1, defined 

as the constants to be calibrated. An explicit statement of the calibration requirements 

is therefore the determination of the quantitative value of the constants contained within 

the Preprocessing routine. In Chart 2-5 those constants are listed. As a matter of 

convenience, the nominal values, ranges, and precision requirements, where available, 

are given. 
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---

CHART 2-4 

PREPROCESSING COMPUTATIONS 

Inputs (SVY)k2,(fLY)kl, (E6)k,and (SnT')for k =1, 2, 3 

+ AtThe outputs It t + At (- Bk)dt and J't (a-Bk)dt (k = 1, 2, 3) are given by the following 

computations 

A I (t7)k2 (r)klI

k kk
 

• 	 q G (p)
 

*at -ST(n'T)
 
* 	 L(C.Gk)ft2 PG(A)k - (R)kAt 

* 	 £(a.Akt, p/(Dlk_ (D)k At 

• 	 (_.G) [('-.k) at'/at 
S . [(-a k) t]/At 

* 	 (a.Gk) (a.Ak)
 

*D
 
0 	0 i] (a.A-)]

* (--r)_ji 001ol( ' 

[o1 	0 -1 -2 

Lo1 ojL0 
* tt(,.Gk)dt = g(.Gk)At3-(BI)k(a.-)+(Bo)k(a. _Ok)+(BS)k(a§k) at 

- (CII)k:. ­

- (Cis)a-.Gk) (a. §k) (COSk(a. OQk)(a S.)+ (CIo)k(aG k) - k): t 
- [ Qiik( ) -(QiS)k( -At
_ 	k)( ,-§k) 


* -At(aAk)dt = _(a. Akt - (D2 )k(a A )2 At - (D)k (-k) 3 At 

+ABt E Qt-A(w.G)dt 

*St+at(a.*,&)dt = QA t-At(a.A )dt 

where 
S -(ql. E2) -(GfB3
 

* -( 2. B1 ) 1 -(G2 - B3)
 

L(G 21) -(G~
-(A,.- E2)--(A," 3) 

•QA - PI) 1 '2 P 
*(A 	 *AB) -(A B 1
 

_ 1 2)
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CHART 2-5 

LISTING OF CALIBRATION PARAMETERS 

Accelerometer Coefficients 

Name and Units Nominal Value Range Precision 

Pulses / 254 252 - 256 AD 1 /D I = 2x10 - 6 

Do (g) 10-1 0 -. 2x10 - 1 AD O = 7x10­ 5 

D2 (g/g 2 ) 0 13x10 - 6 

D3 (g/g 3 ) 27x10 - 6 (26 -. 28) x10­6 

(Ak • Bk) 1 0 

(Ak -t) 0 

Gyro Coefficients 

Name and Units Nominal Value Range Precision 

Ac(deg/pdlse) 3. 3 x 10­3 A(Ad,)/ap 10- 4 

R(deg/hr) 0 =2 A R = 0. 005 

Bi(deg/hr/g) 0 =1 

Bo(deg/hr/g) 0 =1 

B,(deg/hr/'g) 0 -1 

Cii(deg/hr/g 2) 0 = 004 

Css(deg/hr/g2) 0 = 0.04 

Cis(deg/hr/g2) 0 =0.04 

Cos(deg/hr/g 2) 0 =0.04 

Cio(deg/hr/g 2 ) 0 negligible 

Qii(hr/deg) 0 

Q Sdeg )/ rad 2 4 

h sec) 

J(hr) 3.VxOi - 7 

(Gk" Lf) 1 0 

(9k. 
2) 
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Note that a great number of the constants have a nominal value of zero. Note also that 

the accelerometer bias term is the only term which has a nominal value which appreciably 

affects an instrument output (that is, affects the output over and above the effect of the 
linear term). The relatively large value of the bias term accounts for the bias being 

utilized in the preceding subsection as a part of the higher-order term approximations. 

Only the precisions of the bias and scale factor are given. The scale factor precision is 

presented as a relative requirement (ratio of uncertainty to magnitude). The bias 

precision is presented as an absolute error. It will be shown in the trade-off document 

that the errors in each of the other terms act as either a scale-factor-like or bias-like 

error. Therefore, all precisions are inferred from either the scale factor or bias 

precision. 

2.3 ALIGNMENT REQUIREMENTS 

In Section 2.1 alignment was defined as the initialization of the matrix which transforms 

from an ISU-fixed frame of reference (body axes) to a navigation frame. In this section 

our purpose is to explicitly state the requirements for determining that matrix. Three 

alternative techniques will be presented. The definition of the three alignment techniques 

will be presented in Section 2.3.1. The alignment requirement associated with each 

technique will be found to be the measurement of either the body-axes or earth-axes 

components of two system vectors. In Section 2.3.2 the geometry associated with the 

alignment techniques will be presented. The explicit functional form of the alignment 

matrix for all three techniques will be delineated in Section 2.3.3. 

2.3. 1 Defintion of Three Alignment Techniques 

Alignment has been defined as the initialization of the body-to-navigation-axes transfor­
mation matrix. For the subject ISU, the body axes (Bk) are defined by the normals to 

two ISU-fixed mirrors (see Section 2.2, 1). For the purpose of this study, we will assume 

that the navigation axes are aligned with a set of local-level earth axes (Ek) where, 

E1 is directed up (along the line of local gravity) 

E 2 is directed east (normal to the local meridian) 

E 3 is directed north (normal to E 1 and E2 ). 
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(Throughout the text we will, at times, also refer to the earth axes as U, E, and N, where 

U=E SE 	= E2
 

N E 3 

We can now more explicitly define the alignment problem as the determination (at some 

time, say t) of the 3x3 orthogonal matrix T, where T is defined by: 

2 j T B2 

There are numerous techniques for determining the elements of the matrix T. Each 

technique considered in this report is based upon expressing the matrix functionally in 

terms of the components of two vectors (which are known, in an operational situation) 

in both the body- and earth-fixed frames. The typical operational situation would be 

an earth-fixed orientation of the ISU. Assuming that the operationally available meas­

uring devices to be used during alignment are any combination of three gyros, three 

accelerometers, or two two-degree-of-freedom autocollimators, then the vectors which 

can 	be used to functionally define the T matrix are: 

a 	 The unit mirror normals M, and M 2 , which can be measured in the earth frame 
by the autocollimatorsand-tre knoiTn in the body frame because they define the 
body frame 

* 	 The local environment vectors g and wE ("gravity"* and earth rate), which can 
be determined in the body fram&-by thgaccelerometers and gyros and which are 
known in the earth frame because they explicitly define the earth frame, that is, 

E1 = u 

E2 E-= (WxU)WxUI-- jx I 
E3=Mx(WxU)/i x­

where U = g/igl 

and W =wE/IWEI 

The T matrix can be expressed in terms of the components of any two of the four above­

mentioned vectors (MI, M2, g, and w E ); but, as a contract requirement, only the 

following three combinations are of interest in this study: 

*See Section 3. 1. 1 for a definition of "gravity". 
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" Mand M2 

1, and g 

* gand 	_E. 

The names of the techniques which implement the use of the components of these three 
vector combinations are, respectively: 

* Mirror Alignment
 
" Level Alignment
 
* Gyrocompass. 

In the next subsection we will present the geometry of the four vectors (M, M2 , _ 
and to ), and in the following subsections we will present the explicit mathematical 
relationships between the components of those vectors and the elements of the T matrix. 

2.3.2 Alignment Geometry 

In the preceding subsection we described alignment in terms of the determination of the 
components of two vectors in both the body- and earth-fixed frames. We chose, as 
alternatives, the vector combinations 

* M andM 2
 
" i_ and g
 

* g andw E. 

In this subsection we present the geometric relationship between the four vectors which 
are considered in our three techniques. 

The required geometry is shown in Figure 2-7. The following comments explain the 
notation: 

a U is a unit vector directed up; that is U = g/Igj 
* 	 W is a unit vector directed along earth-rate; that is W = W1E_E]. 

* 	 a1 anda2 are, respectively, "azimuths" of the one and two mirror 
normal, as determined by an autocotlimator. 

* 	 61 and 82 are, respectively, the "zeniths" of the one and two mirror 
normal, as determined by an autocollimator. 
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* Xis the angle between U and W, which we will refer to as "local latitude". 

* 	 Pis a unit vector directed along the projection of the one mirror normal 
into the local horizontal plane. 

2.3.3 The 	Three Functional Forms of the Alignment Matrix 

In this subsection we present the explicit mathematical relationships between the elements 
of the T matrix and the measurable body or earth referenced components of 

* 1 and M2 for Mirror Alignment 

* 	 MI and g for Level Alignment 

* 	 g and WE for Gyrocompass 

These functional relationships are presented on the three accompanying charts. We will 

not, in this subsection, meticulously derive the relationships; but will instead present 
sufficient information such that the derivations are obvious. Let us consider each chart 

in turn. 

Mirror Alignment 

This derivation is quite easily explained. In Section 2. 2. 1 we defined the body-axes as: 

1!1 = LAI 

(Mlx M_2)xM 1 

I~xM2 
C1x1 

Therefore any vector, say U, can be written inbody coordinates as
 

U."(M xM2) xM1 U- (M 1xM2)U = (U- M1 ) B1 + H x x B'2 + I M 1 xM 2 1 B 

- I~lx 21IM 1xM 2f 

and, after substituting the identity 

U = ExN into the last component 
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MIRROR ALIGNMENT MATRIX 

Inputs O1, 082 and a2 

From these quantities the alignment matrix is given by: 

T = 

where 
IM x M21I1 

(Mi" k2) = ( 

(uMi1) 

(E-Mj) 

(NM 

(U ) 

(E . M I) 

(M1 x U). ( xM 2)1 

iM i xM2 1 

(Ml x E)-(M i x M2)
M x 
IM 21 

(MIx N)-(Mlx_D) 
IM xM 2 1 

I sin1) 1 i 

- (91' M2)2]2/ 2 

U-)('- 2 "U) + (M . 

[ cos ei 

cos a, sine I 

sin 

E)QM2 . E) + (M1. 

(U-M2)-

(6.M_2) = 

-(N'M2 sina 

An optional technique might utilize the value of 1M1 x M2 1 

CHART 2-6
 

(E x N)'(Ml x M 2) 

IM 1 X M2 1 

(N x U)-(M x M2)
I M -x i

M 
M1 M 2 1 

(UxE)'(MI xM 2 ) 

1Mi X M21 

2 . £)(MN-) 

cos a2 

Cosa 2 sine 2 

sin2 2 

from a previous alignment 
thus eliminating the aforementioned dot product and square root operations. 
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and interchanging the dot and cross in the second component, we have 

U = +KlxU(ixM2) +xFB, a) 

The three bracketed quantities are the elements of the first row of the T matrix. In the 

Mirror Alignment chart we see those elements in the first row, and similar elements for 

E and N in the second and third row. The relationships between those elements and the 

azimuth and zeniths as determined by optical equipment are listed below the matrix. The 

azimuth and zemth relationships are obvious from Figure 2-7. 

LeveI Alignment 

This derivation is quite simple if one separates the problem into three parts by defining 

matrices (T, T 2 , and T 3 say), where the three matrices are defined byE_2LU[E 'I TI] x11] 

=U [T][ 2 

Obviously T TIT2 T3. 

The three matrices shown in the Level Alignment chart are T 1, T 2 , and T3 respectively. 

The derivation of the T 1 matrix is obvious from the definition of P in Figure 2-7. The 

derivation of T2 is based upon the fact that 

and Px U (Mix )//I4! UJ 
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CHART 2-7
 

LEVEL ALIGNMENT MATRIX 

Inputs (_g.BP) (g' B_2), (_g. B, ) and uI, 

From these quantities the alignment matrix is given by: 

1 0 0 0 1 0 1 0 0 

1 
T 0 sma 1 cosa 0 0 MIxUI _.BI) (U- 2 ) (U.B 3) 

1 (Mi U) 
0 -cosa sinal 1Mix01 IM__lI 0 0 -(U%) (U-B2.)i 

wbcre 
a 	 (MkI. ) = (U -B i)
 

1IMlXUI= 1i - (Ml U2 I/2
 

(U.) _= (K"B-)/g
 

g = [(g. B) 2 + (g"B2)2 + (g" B3 )2 1/2 

An optional technique might utilize any of the following additional inputs: 

* 	 The zenthangle (61) of mirror one might be utilized to find (M1 • U) from 

(Mg U) = cos e1 

* The magnitude of gravity (g) might be supplied from a local survey. This piece 
of information can be utilized to reduce the number of required accelerometers 
to two. 
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The derivation of T3 is based upon the fact that 

Ui = ­

u -- (U. B (U.+)L2 )  + (U B2 B() x B 

I)MI~XU - = II xU ° B_3 1 ( I IXU_.B 2)  B2 + (M~ x ' _3 _ 

The third identity becomes, after substituting M1 = PI 

IvIxU= -(U'L33) B,+ (U-B,) B 

Below the matrix expression we see the obvious relationships between the elements of the 
T2 and T3 matrices and the body components of g(as determined by accelerometers). 
Below those relationships, we see alternate methods that utilize the zenith cosines and 
sines from an optical measurement, and g from a survey. 

Gyrocompass 

In this derivation we express the T matrix as a product of two matrices (T 4 and T5 say) 
where T4 and T5 are defined by: 

That separation is shown on the gyrocompass chart. The matrix T4 is obtained from the 
identities 

E = U 

E2 =M xU/WxU 

E3 = ux(WxU)/ Wxu 
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CHART 2-8
 

GYROCOMPASS MATRIX 

E . B1) (W' . B2Inputs (g. B1) (g. B2) (g. B3) ' (W and (±Eo B 

From these quantities the alignment matrix is given by: 

0 1 0 (W.BI) (W.%) (w.) 

1 

T 0 0 WxUl (U'-1) (U'- 2 ) (U B3 ) 

1 (W'U) 
(W x ).(%XB) (WxU).(B xB1 ) (WxU).(B-lxB 2 )IwxUl IWxUl 0 

where 
a (WoU) = (W.B 1 )(U. B) + (W.B 2 )(U-B 2) + (WP 3 )(U.B 3 ) 

* 1WxiLj = E1 - (W.U)2]l/2 

* (W.B) (E.)/E 

• (UoBk) =(g -)/g 

WE B)2+ (E B)+ (_ B 

L(g" l) 2 + (g-' L32)2 g* g =[(Eo1 (g.B 2 + (g.B-3' )232./1 2/' 

An optional technique might utilize any of the following additional inputs:­

* The local latitude (X)might be utilized to find (W U) from 

(W . U) = cos X 

* The magmtude of gravity (g) might be supplied from a local survey. 

o The magnitude of earth rate (WE) might be supplied from a local survey. 

A use of all additional inputs could reduce the number of necessary instruments to three 
(either two accelerometers and one gyro, or one accelerometer and two gyros). 
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The rows of the T5 matrix are obviously made up of the components of W, U, and WxU. 

Below the matrix expression is found the relationships between the elements of the T 4 and 
T5 matrices, and the accelerometer and gyro determined body-axes components of g 

and wE . Below those relationships is found a discussion of alternate techniques utilizing 
Eg, W and X. 
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SECTION 3
 
SYSTEM DESCRIPTION
 

The calibration and alignment requirements for the NASA/ERC strapdown inertial 

sensing unit were presented in Section 2. The calibration requirements were defined 

as the determination of the inertial instrument model constants and the elements of 

the matrices which transform between the instrument and body frames of reference. 

Alignment was defined as the real-time initialization of the body-to-earth transformation 

matrix. The alignment requirements were defined as the measurement of the body 

and/or earth-frame components of two system vectors. Three alternative choices of 

sets of vectors were introduced. These alternatives characterized the three alignment 

techniques: Mirror Alignment, Level Alignment, and Gyrocompass. As a necessary 

aid to the satisfaction of the calibration and alignment requirements, various pieces of 

laboratory equipment are needed. It is also necessary to understand fully the nature of 

the kinematic environment in which the equipment and ISU are located. In this section 

our purpose is to describe that equipment and environment, beginning with their relation­

ships with the problems of calibration and alignment. 

3.1 FUNCTIONAL DESCRIPTIONS OF CALIBRATION AND ALIGNMENT 

The following paragraphs describe the functional activities of calibration and alignment. 

(Section 3. 1. 1 discusses calibration, and 3. 1.2 discusses alignment.) These functional 
descriptions serve as a definition of the required inputs to the calibration and alignment 

evaluations which come from sources other than the ISU. 

3. 1. 1 Calibration 

In the following discussion we indicate the functional requirements for determining the 

calibration numbers. Our discussion will be quite general, the major purpose being to 

introduce the reason why the equipment described n subsequent subsections is required. 

As an aid to our presentation, we find it useful to compare the ERC laboratory calibration 

with an "Ideal Calibration". This comparison serves to indicate the compromises which 

are necessary in defining an operational calibration laboratory. 

On the following chart (entitled Calibration) we present two calibration functional diagrams. 

We refer to the two techniques represented by those diagrams as Ideal Calibration and ERC 
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CHART 3-1
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Laboratory Calibration. The Ideal Calibration diagram represents the manner in which 

calibration would be accomplished if an unlimited amount of tume and money were avail­

able. The ERC Laboratory Calibration diagram represents the manner in which the 

calibration will be accomplished under more realistic constraints. 

If one wished to calibrate a "black-box" (ISU) ideally, he would operate in the manner 

indicated in the Ideal Calibration functional diagram. Subsequent to the development 

of an ISU, whose outputs are designed to vary over a range of kinematic environment 

inputs (a and w), one would wish to determine the quantitative relationship between the 

ISU outputs and that environment. However, that environment exists only conceptually, 
and not quantitatively, until a device is available which is defined as the measurer of these 

kinematic quantities. That device is referred to as the "Standard" measuring device. 

With the Standard available, it is then possible to calibrate the ISU by placing both the 

ISU and the Standard in the same environment and mapping the output of both over the 

range of the kinematic quantities which are considered to be significant. This mapping 

would take the form of a table of ISU and Standard outputs over the required operational 

range of the ISU. The mapping would necessarily be accomplished in a frame which 

characterizes the ISU and is known relative to the Standard. In our case, this frame 

will be the body axes as defined by the ISU mirror normals. 

We see from the aforementioned statements that calibration is nothing more than the 

implementing of the requirement that the ISU behave as the Standard would under the 

same kinematic conditions. Thus, after calibration the ISU will have been "standardized". 

Subsequent to the standardization, it is assumed that the ISU can measure the kinematic 

environment, as the Standard would under the same conditions. This is accomplished by 

a transformation of the ISU outputs into a measure of the environment by use of the mapping 

information. 

This is all rather interesting but not, operationally, very feasible. First, such a Standard 

is not available in the laboratory, and even if it were, time would not allow for a mapping 

over the entire operational range of the kinematic inputs. Secondly, in the case of applied 

acceleration, the typical operational range of the kinematic inputs cannot be easily 

generated in the laboratory. (A centrifuge would be required for accelerations higher 

than one g.) Thirdly, it is not always feasible to have even a substitute for the Standard 

operating at the same tune as the ISU. All of these problems explain the deviations of 

the ERC Laboratory Calibration from the Ideal Calibration. Before elaborating those 

differences, a description of the ERC environment is necessary. 
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The kinematic inputs found in the ERC laboratory include: 

1) The applied accelerations and angular velocities characteristic of any point 
on the earth's surface 

2) The local deviations from those accelerations and angular velocities due to such 
things as earthquakes and cultural noise 

3) The generated environments, caused by the ERC test table. 

The first category includes earth-rate and the applied acceleration (normal-specific 
force) which negates the acceleration due to gravity in a "static" orientation relative 
to the earth. (This acceleration is often confused with gravity. It is, on the average, 
equal in magnitude and opposite in sign to gravity. The very common convention is to 
refer to this applied acceleration as g. We will, in the remainder of this document, also 
refer to it as g. Note, however, that we always direct g away from the surface of the 
earth.) The second category will be referred to as "noise". The laboratory test table 
(see Figure 3-1), mentioned in the third category, has a motor-driven capability of 
rotating at speeds up to several thousand earth rates. Such rotations will develop angular 
velocity and angular-velocity-related acceleration inputs to the ISU (the ISU being always 
attached, during calibration, to the table). 

As suggested in the discussion of the Ideal Calibration, it is necessary that an independent 
measure (Standard Output) of the laboratory environment be available in order that 
calibration can be accomplished. This independent measure, even when a substitute for 
the Standard is used, should be accomplished at the same time that the ISU is yielding 
outputs. In the case of the angular velocity of the test table, an independent, real-time 
measure will be accomplished through the use of the output of the test table resolver. 

The measurements of the g and wE vectors are, however, accomplished at some time 
prior to calibration and "stored" for use during calibration. The storage of the direction 
of those two vectors is evidenced in the location of such things as optical lines, resolver 
zeros, etc., and the magnitudes by storage of numbers in a computer memory. Informa­
tion about the noise is stored in the form of graphs showing characteristics such as 
power spectral densities. Because g, wE and noise are not measured in real time, it 
is assumed that their behavior is the same at the time of calibration as it was at the 
time of measurement, therefore, they can be considered a good approximation of a real­
time measurement. 

To this point we have described the manner in which the Standard output is evidenced in 
the ERC laboratory. We requre only one more statement, in this presentation of the 
calibration functional activity, about the substitution of ERC Laboratory Calibration for 
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Ideal Calibration. The Ideal Calibration was described as a standardization over the 

entire range of inputs. Fortunately, m the case of Laboratory Calibration, some of the 
standardization has been accomplished by instrument designers prior to the placement 
of the accelerometers and gyros in the ISU. A great deal of time and effort has already 
been devoted to the development of a functional relationship between the output of the 
instruments and their environment inputs. Those functional relationships are referred 
to as mathematical models. As seen earlier, the instrument models contain many con­
stants. Because of the availability of the models, it is only necessary in calibration to 
map a number of environments equal to the number of calibration constants for the de­
termination of those constants. It is assumed that a knowledge of the models, and the 

model constants, serves to interpolate the mapping between the chosen environments. 

In this subsection we discussed the independent measurements required as an aid to 
calibration. In Section 3.2 we will discuss how those measurements are specifically 
developed as inputs into the determination of the calibration constants. 

3. 1.2 Alignment 

In Section 2. 1 alignment was defined as the initialization of the matrix which transforms 
from an ISU-fjxed set of axes to a navigation set of axes. In Section 2.2 the ISU-fixed 
axes were defined by two ISU-fixed mirror normals, and in Section 2.3 the navigation 
axes were defined as an earth-fixed, local-level frame of reference. Further, in 
Section 2.3, three alternate mathematical forms of the alignment matrix (T) were derived. 
Each form showed a requirement for a different set of optical or inertial-instrument 
measurements as an input into the quantitative determination of the alignment matrix. 
In this section we will discuss the techniques for determining each set of inputs. 

As an aid to this disucssion we present in the accompanying chart, entitled "Alignment 
Functional Diagrams", a schematic of each of the three alignment techniques. In the 
remaining paragraphs of tins section we discuss, in turn, the contents of each functional 
diagram. 

Mirror Alignment 

The routine labeled Alignment Matrix Computations represents the computations described 
in the Mirror Alignment Chart found in Section 2.3.3. As shown in Section 2.3.3 those 
computations require, as inputs, the optically determined azimuth and zenith of both the 
one and two mirror normals. (In practice, the actual optical measurements might be 
angles other than the azimuth and/or zenith angle. It is always an easy matter, however, 
to convert the actual measurements into the required azimuth and zenith.) The optical 
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CHART 3-2
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measurements will be manually transferred to the matrix computation routine, which will be 

part of a digital computer program in the ERC facility. Because optical measurements are 

extremely accurate by design, we do not include in the functional diagram any data-filtering 

function. 

Level Alignment 

The second functional diagram represents the Level Alignment procedure. The Alignment 

Matrix Computations indicated in the last block in the diagram represent the computations 

found in the Level Alignment chart described in Section 2. 3. 3. That routine requires. as 

inputs, the body-axes components of g and the azimuth of the one mirror. In Section 2. 3 it 

was mentioned that the body-axes components of g will be available as the result of acceler­

ometer measurements and the azimuth of the one mirror as an optical measurement. At the 

left side of the diagram we see the input of these measurements. The optically obtained 

azimuth goes directly to the matrix routine (as it did in Mirror Alignment). The accelerom­

eter inputs, however, will require further processing, since they will be in the form of 

three digital pulse counts. 

We saw, in Section 2. 2.5. that the Preprocessing Computations convert such counts into 

integrals of body-axes components of the applied acceleration inputs to the accelerometers. 

However, those computations assumed no quantization and instrument noise. Therefore, 

the transformation of the outputs of the Preprocessing Computations into the desired 

body-axes components of g would require four additional operations in order to accomplish 

a good estimation of g- Bk . These are: 

* A differentiation of the integral outputs of the Preprocessing Computations 

A compensation for instrument quantization 

" A compensation for instrument noise 

* Separation of g from random environmental accelerations. 

If the ISU were to be in a stationary orientation relative to g during alignment (that is, if the 

accelerometer input were a constant g acceleration), the first operation would be simply a 

division of the Preprocessing output by the total time of integration (say At). Additionally, 

the compensation for instrument quantization could then be accomplished by simply waiting 

sufficiently long such that the quantization residual would be arbitrarily small. However, 

the ISU at the ERC facility will not be in a constant g ensironment. Due to such things as 

local vehicle motion, personnel movement, etc.. the ISU will be. in fact, in the presence of 

the nominal local g plus "noisy" vibrations, If some a priori knowledge of that noisy envi­

ronment is available, it is possible to accomplish some of the aforementioned compensations 

by the development of mathematical filtering operations on the "Preprocessing" outputs. 

Those mathematical operations are presented in Chart 3-2 as the Estimation Matrix Com­

putations and Estimation Routine. The former involves the computation of constants prior 

to the actual alignment. The input to those computations is the a priori noise information. 
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The Estimation Routine represents the on-line operations on the Preprocessing outputs. The 
outputs of the Estimation Routine are the required estimates of the body-axes components of g. 

The Preprocessing routine has been completely defined in Section 2.2.5, ann the Alignment 
Matrix Computations have been defined in Section 2.3.3; hence, the development of the 
alignment techniques presented in Section 5 of this report will be preoccupied with the 
Estnation Matrix Computations and the Estimation Routine. In Section 3.2.2 we will 
present a discussion of the a priori noise information which is required as inputs to the 
estimation routines described in Section 5. 

Gyrocompass 

The third functional diagram in Chart 3-2 represents the operational gyrocompass pro­
cedures. The Alignment Matrix Computations shown in the diagram were presented in 
Section 2.3.3. Required inputs are the body-axes components of g and WE. At the 
left-hand side of the diagram we see the inputs of accelerometer and gyro readouts 
required for the determination of the body-axes components of g and WE. In the preceding 
section there is a discussion relating to the transformation of the accelerometer outputs 
into an estimate of the body-axes components of g. This discussion also applies to Gyro­
compass with the following modifications 

In Gyrocompass the Preprocessing computations as presented m Section 2.2.5 
will be used entirely, whereas the Level Alignment uses only the accelerometer­
related computations. 

The estimation routines will operate on both gyro and accelerometer data. 

3.2 ENVIRONMENT MODEL 

In the preceding discussions we showed that independent environment measurements are 
required for calibration, and a priori noise information is required for alignment. 
We indicated the manner in which that information is available at the ERC facility. In this 
section we will show specifically how the required measurement information is made 
quantitatively available to the calibration and alignment computational routines. 

The reference environment information takes on different forms, and therefore can be 
discussed independently. First, there are the stored g and wE vectors which must be 
expressed in terms of body-axes components for calibration purposes. There is the 
vector (angular velocity of the test table), which must also be expressed in body-axes 
components. We will refer to these three vectors as the deterministic environment. We 
will show in Section 3.2. 1 how the body-axes components of the deterministic environment 
are obtained as a function of test table gimbal angles. The remaining environment inputs 
have been referred to as random noise. They will be described in Section 3.2.2. 
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3.2. 	1 Deterministic Environment 

T , The deterministic environment is made up of the three vectors g, WE and w which 
are assumed known in frames well surveyed in the laboratory. Our purpose in this 
section is to show how those vectors are transformed from the laboratory frames into 

ISU oody-axes components. The transformation will be accomplished through the use of 
quantitative measurements taken from both the laboratory test table and the system 
autocollimators. We begin our discussion (in 3.2. 1. 1) by describing the geometry of those 

pieces of equipment. We then define the transformations between the many rigid bodies 
making up the equipment. Finally, (m Section 3.2. 1. 3) we will develop the operational 
transformation of the deterministic environment into body-axes components. 

3.2. 	1. 1 Laboratory Geometry 

The geometry of the test table and autocollimators is the geometry which enables us to 
transform g, w0E, and woT into body-axes components in the ERC laboratory. In 
Figure 3-2 we present a schematic of this geometry. Tis figure is a repeat of Figure 3-1, 
with the addition of the defined laboratory frames. Chart 3-3 presents the definitions of 
the frames indicated in Figure 3-2. A few comments are necessary as an aid to the 
understanding of Figure 3-2 and the chart containing the definitions of the frames. 

* 	 All frames are defined by orthogonal unit vectors directed along the frame axes. 

* 	 The Sk frame is not explicitly defined in Figure 3-2. The explicit definition 
will depend upon the (at this time) unknown geometry of the autocollimators. 
(The lack of an explicit definition has, however, proved to be no burden in the 
work that follows.) 

" 	 The body axes are not shown in Figure 3-2, because their relative orientation 
depends upon the manner in which the ISU is attached to the inner-axis rigid 
body. 

o 	 The Fk frame will be required to line up with the Ek frame. This alignment 
will naturally be with the laboratory frame, which, in turn, is thought to be 
coincident with the earth axes defined by g and wE. We will see in Section 4.4.4 
that this alignment will have to be correcfd periodically by the use of bubble 
levels. 

o 	 Each adjacent pair of test table frames is assumed to have a common axis. 

* 	 The four test table rotation angles are defined as 01, 02, 03, and 04, as 
shown in Figure 3-2. 

* 	 The test table orientation shown in Figure 3-2 is the zero orientation -that is, 
the orientation when all resolvers yield a zero output. 

The ISU will be attached to the section labeled "test subject" throughout the 
entire calibration. 
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CHART 3-3 

DEFINITION OF FRAMES 

LABORATORY FIXED FRAMES 

o E 1 E2 E 3 	 A triad of unit vectors directed up, east, and 

north, respectively 

0 _S1 S2 _S3 	 A triad of unit vectors defined by the two optical 
lines of the autocollimators 

a F1 E2 F 3 	 A triad of unit vectors fixed to the base of the 
test table 

TEST TABLE FRAMES 

e FI F2 F 3 	 A triad of unit vectors fixed to the base of the 

test table 

* 	 T, T2 T3 A triad of unit vectors fixed to the body con­
taining the trunnion axis 

* 	 R, R2 R3 A triad of unit vectors fixed to the body con­
taining the rotary axis 

a 01 02 03 	 A triad of unit vectors fixed to the body con­
taining the outer axis 

S-i1 12 43 	 A triad of unit vectors fixed to the body con­
taining the inner axis 

ISU FIXED FRAMES 

* 	 I1 -2 23 A triad of unit vectors fixed to the body con­
taining the inner axis 

* 	 BI B2 3 A triad of unit vectors defining the body axes 
as defined by the mirror hormals (see 
Section 2.2.1) 
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3.2. 1.2 Definition of Transformations 

Let us choose the Tk and Rk frames for our example. The relationship between the unit 
vectors of the two frames is given by: 

LRJ [TRT] [fl'1
 
where a multiplication of the kth row of the 3x3 matrix TRT with the T column represents 

Rk expressed in the T, frame. If x is any vector known m the T frame and one wishes 
to express that vector in the Rk frame, we dot the above definition with x, yielding: 

x Tif[TRTy xH 
_x. L1)] 

(xR) (x T 

If, further, we wish to transform to the Ek frame, we have: 

(X.= F x-T TT x 2) 
_L3~ = EFR] [TRT] FT] LK)

and so forth. 

3.2.1.3 Operational Transformations 

With the geometry information now completely described, it is possible to show how 
, _ and are transformed into body-axes components. The accompanying chart 

shows how that transformation is accomplished. Note that the chart specifies that the 
test table gimbal angles will always be used in determining the transformation, instead 
of autocollimator surveys. This is purely a matter of convenience. It certainly would 
be cumbersome to survey via the autocolhmators over the 4T steradians in which the 
mirror normals can be located'. Besides, the test table was designed to accomplish 
the necessary transformations. Note that the autocollimators are absolutely essential 
for one very important operation, namely the determination of the matrix TBI . 

3-13
 



CHART 3-4 

TTransformations of wE and into
 
Body Axes Components
 

During calibration there is a requirement for the transformation of WE , g and wT into 
body axes components. Gravity and earth rate are vectors explicitly known in the Ek 
frame and wT is a vector explicitly measured in the R frame. The body axes com­
ponents of these vectors can, therefore, be written: 

E. E4(WE. Bk E TTBE W.
-f kt - = 

(g.Bk) =T BEg.E 
T B R T(CTB 


(wTk)= Tt, -T 


Thematrices T B E and T B R are, therefore, required. These matrices, as a matter of 
convenience, will always be found as a function of test table gimbal angles. Therefore 

T B I TI O TORTBR = 

and T B E = TBI T I O TOR TRT TTF T F E 

T B IThe matrix is a constant which must be found from an initial survey (see Section 
4. 4. 1). The remaining matrices can be seen from the previous definitions to be:003 

1 07 70 1 07
TIOq=CF04 0 -S0 TO = 3 0 -Sq, 3 

LS 4 0 -$ C 
01 0 0 1 0 

TRT = ¢C2 0 -S 2 [TT F ] = CI 0 -Sol 

L10 0 0 J0 Ck 

LTFE =L 1 

(Note, the frames are defined so that each matrix has the same form.) 
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3.2.2 Random Environment 

The laboratory test environment introduces a random translational and rotational "noise" 
input. In describing the noise inputs, we will utilize the worst-case model. Namely, the 
translational input and angular input are assumed to be independent, and the components 
of the random input vectors are assumed to be independent. 

The random translational inputs about the up-down, east-west, and north-south axes 
have been assumed to be statistically independent and identically distributed. Each input 
has a power spectrum illustrated in Figure 3-3. * It follows that the translational motions 
along any three perpendicular axes are uncorrelated and have the spectrum given in 
Figure 3-3. The nominal input (local gravity) is assumed to be the long-term average 
input. Assuming ergodicity of the expectation, the translational inputs have zero expec­
tations. The random translational inputs do not produce a significant output from the 
gyros. 

The random rotational input produces a rotation about an axis in the horizontal plane. 
The rotation about the vertical axis can be neglected. The random angular inputs about 
the east-west axLs and the north-south axis are statistically independent, and each has 
the power spectrum illustrated in Figure 3-4. These inputs are assumed to have zero 

expectations. 

The spectra given in Figures 3-3 and 3-4 are the basis of numerical computations involving 
environment noise. The selection of the 'Recommended Alignment Techniques" in 
Section 5.7 assumed an environment as indicated m Figures 3-3 and 3-4. The alignment 
processing techniques derived in Sections 5.4 and 5.5 use the power spectra of the 
translational and rotational noise inputs but do not depend on the specific numbers given 

in Figures 3-3 and 3-4. 

3.3 HARDWARE DESCRIPTION AND INTERFACE 

The material presented to this point has been introductory in nature. That is, all dis­
cussions were either related to the detailed statement of the calibration and alignment 
problem, the definition of terms, the description of necessary equipment, or the descrip­
tion of the laboratory environment. In this section we will complete the presentation of 
introductory material by covering two descriptive tasks wich aid in the understanding 
of the calibration and alignment development in Sections 4 and 5 and the operational 

* Spectra data is given by H. Weinstock in "Limitations on Inertial Sensor Testing 
Produced by Test Platform Vibration", NASA Electronics Research Center,
 
Cambridge, NASA TN D-3683, 1966.
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procedures presented in the Laboratory Procedures Manual. First, there is laboratory 
equipment which is necessary for the implementation of calibration and alignment pro­
cedures and which has not yet been described. Second, the laboratory equipment has not 
been presented as a system as a whole, with all of its interconnections. In this section 
the description of that equipment and interface will be accomplished through the use of 
a system diagram. In Section 3.3. 1 that diagram is introduced but without the lines 
denoting the equipment interface. In conjunction with the introduction of that diagram, 
we will present brief descriptions of the equipment which each block in the diagram 
represents. In Section 3.3.2 the useful interfaces between all equnpment will be presented 
in tabular form. 

3.3. 1 System Diagram and Equipment Description 

The master system flow diagram is shown in Figure 3-5. This diagram will be used as 
an aid in the Laboratory Procedures Manual to describe the system activities during 
various phases of calibration and alignment. In those applications of the diagram, interface 
lines will be added to indicate specific modes of operation. Data flows are indicated by 
narrow lines; dynamic or monitor interfaces are indicated by wide lines. A brief descrLp­
tion of each of the boxes represented on the master system diagram, in Figure 3-5, follows: 

Input/Output Console - The input/output console consists of the equipment that provides 
a manual computer interface. Included in the input/output console are computer control 
panel, keyboard and typewriter, paper tape reader and punchl, and the display panel. 

Operator - The operator in this system must perform many of the tasks of control and 
data transfer. The box "operator" includes not only the person(s) directing the laboratory, 
but also his worksheets, instructions, and notes. 

Systems Control and Monitor - This box represents the equipment, capability, and 
activity used to monitor and control the system during calibration and alignment. 

Frequency Counters - Six frequency counters are available for use in calibration to 
measure instrument output. These counters measure the number of counts on one pulse 
train for a fixed number of counts on another. One of the two trams may be a difference 
train formed from two inputs. The frequency counters are used m calibration, because 
they can read the leading edge of one pulse tram and thus substantially reduce the 
quantization error relative to the use of the computer registers. 

Auxliary Data Sources - These include data sources available to the operator but not 
sufficiently well defined as equipment or measuring devices to be represented individually 
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on the system flow diagram. Examples of these sources are bubble levels and survey 

information on the magnitude of g and _E. 

Autocollimators - The two-degree-of-freedom autocollimators are available to measure 

the earth-fixed coordinates of the ISU mirror normals. 

Resolvers - These resolvers measure the orientation of the test table. The angles 01, 
03, and 04 are static resolver readouts on the trunnion, outer and inner axes of the 

test table. The angle 02 is a rotary axis readout which can be used in either a static 
or dynamic mode. 

Master Oscillator - This is the central timing source of the system. The master oscillator 

includes countdown circuitry. 

Gyros, Accelerometers - These are the instruments contained within the strapdown ISU 

(see Section 2.2). 

Interface Electronics Unit (IEU)* - The IEU allows the computer to sample outputs of the 

inertial instruments and tuner. The IEU contains accumulating registers for each of the 
inputs shown in the diagram and the capability to periodically interrupt the computer to 
allow for sampling and resetting (without loss of data) of each of the registers. 

Computer* - The computer schematically indicated in the system diagram is the laboratory 
computer Honeywell DDP-124. Other portions of the data processing shown may, however, 

be performed on other computers at the discretion of the programmers and operators. 
Blocks shown within the computer represent functions used in both calibration and align­

ment0 Shown are programs to input and output data from and to the console, a program 
to input data from the IEU, and memory buffers for input data and output data (the results 

of computations). Space has been left within the computer block to allow representation 

of the various data processing tasks. 

3.3.2 Equipment Interface 

Figure 3-6 illustrates the principle data paths that might be of interest during calibration 

and alignment. Each of the paths is numbered and described by number in Chart 3-5. 

These paths represent the calibration or alignment data flow. 

*More detailed descriptions are presented in Appendix C. 
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CHART 3-5 

Description of Equipment Data Paths 

Data 
Interface # Type 

1 Coded 

2 Visual or tape 

3 Visual 

4 Visual 

5 Pulsed 

6 Timing 

7 Timing 

8 Timing 

9 0, +1 or -1 pulses 
at 3.6 KHz 

10 Pulsed 

11 Count 

12 Count 

13 Count 

14 Count 

15 Visual 

16 Manual 

Data Description 

Input - Includes magnetic and paper tape, keyboard, 
and display and computer control panel inputs. Data 
represents information and control from or through
the computer plus data or program filed on magnetic 
or paper tape. 

Output - Display, typewriter, or paper tape panel 
output to the operator. 

Various types of data 

Two angles/autocollimator 

Four angles test table position 

Rotary axis motion probably one pulse 

Frequency less than 1 MHz 

2. 034 MHz 

3.6 KHz 

Gyro output to frequency counters and IEU 

Zero crossing pulses from each of two vibrating
strings per accelerometer to frequency counters 
and IEU 

For inputs shown - count would be number of time 
pulses per n turns 

For input shown - count would be number of gyro 
pulses (signed) for n turns of table 

For inputs shown - count would be number of time
pulses per Inl gyro pulses 

For inputs shown - count would be numbers of time 
pulses per N accelerometer pulses 

Status and monitor information plus output from 
the counters 
Low visual display and printed 

Manual input of data to computer (includes key 
punching, mounting of tapes and punching of 
buttons) 
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CHART 3-5 

Description of Equipment Data Paths (Continued) 

Data 
Interface # Type Data Description 

17 Binary Data 	 Counts from IEU registers. Input in succession 
with data valid for same period of time. 

18 Binary Data 	 Counts from IEU registers. May be summations 
of data from several successive transfer across 
interface #17 

19 Binary Data 	 Input data shown in buffer 

20 Binary Data 	 Output data shown in buffer 
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Manual and monitor interfaces are shown in Figure 3-7. The manual interfaces correspond 
to operator activities during various portions of the calibration and alignment procedure. 

Monitor is performed during the many procedures to verify the operation of equipment being 
used at that time. Explanations for each interface on Figure 3-7 are presented on the 

figure. 
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SECTION 4
 
DEVELOPMENT OF CALIBRATION TECHNIQUES
 

The functional description of calibration in Chart 3-1 in Section 3. 1.1 indicated inputs of 
instrument data and environment measurements to a computation routine, which in turn 
outputs the calibration constants. The obvious sources of the relationships contained 
within that routine are the instrument mathematical models. In Section 4.1 we will use 

the instrument models to develop general equations from which the relations found in the 
computation routine are evolved The general equations will be seen to contain certain 

controllable parameters which describe the input environment in terms of the test table 

controllable orientation and angular speed. In Section 4. 2 a number of sets of particular 
values for the control parameters will be chosen such that the general equations reduce 
considerably in form. Each set of particular values corresponds to a different calibra­

tion "Position". It will be shown that the determination of any constant can be accom­
plished by the simultaneous solution of at most two of the reduced equations. In 
Section 4. 3 the complete set of calibration computations will be delineated The relations 

employed in the computation routine correspond to the solution of the calibration con­
stants from the data gathered in Positions 1 through 15. 

In Section 4. 4 we will describe the operations and computations required prior to the 

collection of calibration data. An example of a precalibration operation is the determina­
tion of the orientation of the ISU body axes relative to the test table inner-gimbal frame 

(i. e., TBI). In Section 4. 5 a brief discussion of the implementation of the proposed 
techniques will be presented. The discussion of the implementation of the calibration 
techniques is directed towards clarifying the relation between the developments in this 

document and the operational procedures described in the Laboratory Procedures Manual. 

Before proceeding to the development of the calibration techniques, it is appropriate to 
describe those incentives which motivated our specific choices of calibration techniques: 

* 	 The determination of any calibration constant should be made as insensitive as 
possible to the imprecision of any other constant(s). 

* 	 It is advisable to use as few different test table orientations as possible; and 
where the orientations are different, to try to make the orientations differ from 
one another by as little adjustment of the table as possible. The satisfaction of 
this requirement serves two purposes. First, it will allow for the simultaneous 
calibration of many instruments. Secondly, by limiting the number of table 
orientations, the amount of manual activity will be limited, thus minimizing 
calibration time, and also the chances of human error. 
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* 	 The imprecisions of the test table orientations should have a limited influence on 
the values of the calibration constants. 

* 	 The calibration should be made as flexible as possible. We wish to present the 
calibration in such a way that additional experiments can be accomplished with a 
minimum number of changes to existing calibration procedures 

* 	 We wish to accomplish our calibration with little or no data filtering. We would 
like to minimize the effects of noise by judicious choices of approaches other 
than involved software processing. 

* 	 The computation program should be as simple as possible. 

* 	 Data collection time should be limited to about 10 minutes, and the total calibra­
tion time to less than eight hours. 

* 	 The precision of calibration, as a function of time, should be apparent from 
error analyses accomplished on the resultant techniques. 

In the discussions which follow, it will be found that it is possible to satisfy a majority of 
the above requirements. 

4. 1 	 DEVELOPMENT OF GENERAL CALIBRATION EQUATIONS 

The routine that accomplishes the evaluation of the calibration constants we indicated in 
Chart 3-1 as a routine entitled "Computation of Constants". In this section we will develop 
the general equations from which the computational routine is developed Those general 
equations will be seen to contain the control parameters which describe the environment 
inputs. The chosen control parameters are the angular speed of the test table, the first 
two gimbal angles (eI and q)2) of the test table, and the TBR matrix (which is a function 
of the 33 and $4 gimbal angles). In Section 4. 2 we will show how particular choices of 
these control parameters result in relations from which the calibration constants can be 

extracted.
 

The presentation in this section is divided into two parts. In Section 4. 1. 1 we develop 

the general equations for the three system gyros, and in Section 4 1. 2 we develop the 
general equations for the three accelerometers. 

4. 1. 1 Gyro Equations 

The development of the general equations begins with a presentation of the Fundamental 

Gyro Model. After introducing the ERC environment and geometry into that model we 

will have developed equations which are a function of, among other things, the angular 
speed of the test table and test table orientation parameters. In subsequent subsections 
we will show how the control of those test table parameters is employed in the determinma­
tion 	of the required instrument calibration constants 
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The presentation in this subsection contains a great deal of mathematics So as not to 

interfere with the prose, we will present the mathematical development as a series of 

eight charts. In each chart, after the first, the equations found on the preceding chart 

will be modified to indicate certain assumptions about the environment n the dis­

cussions which follow we describe, in turn, the assumptions and the related mathematics 

presented on each chart. 

The Fundamental Gyro Model (Chart 4-1) 

The development of the generalized gyro calibration equations begins with the gyro 

mathematical model. That model was described m Section 2.2. 3 and presented as 

Chart 2-2. Chart 2-2 is repeated here as Chart 4-1. The gyro mathematical model 

describes the relationship between the output (S6) of the gyro and the input kinematic 

environment (a and w) over a time period to4tN. 

Introduction of Laboratory Environment (Chart 4-2) 

We first introduce into the gyro mathematical model the vector representation of the ERC 

laboratory kinematic environment At the top of the chart the kinematic inputs are listed 

Note that every possible input has been listed. This is done so that, at one point in the 

development, there exists an expression which assumes nothing about the negative effect 

of any possible input. Note also that the environment description assumes that the gyro 

is subjected to an input angular velocity wT as generated by the test table rotary axis 

motor 

Approximations (Chart 4-3) 

The next step is to neglect those kinematic inputs to the gyro which can reasonably be 

expected to have a negligible effect on the gyro output. A gyro is designed to be nominally 

a linear angular velocity measuring device; therefore all acceleration-sensitive terms 

are small. The noise acceleration and the test table-induced accelerations are also 

small relative to the nominal g input. Therefore the effects of these small accelerations 

are second order in all unbalance and compliance terms and are assumed negligible. 

Similarly, it is assumed that the small angular velocity noise terms can be neglected in 

all angular velocity-sensitive terms other than the linear term Note that in Chart 4-3 

we have arranged the equations such that only the deterministic g, WE, and J inputs 

exist to the right of the equality. Note also that the equation has been divided by the 

gyro scale factor. 
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Introduction of Body Axes and Instrument Indexing (Chart 4-4) 

The equations presented thus far have referred to a single gyro. At this point we intro­
duce the index i defining three gyros (i = 1, 2, 3). 

We mentioned in Section 3.2 that for calibration purposes, the vectors g, wE and wT 

must be known in body-axis components. In Chart 4-4 we introduce the body axes, and 
express the integrals of these vectors in terms of body-axis components. Because the 
nominally known instrument-to-body-axis transformations differ from the actual trans­
formations by small numbers, it is assumed that the nominal values can be used in other 
than the proportional angular velocity term. Note that the first three elements in the 
equation represent the ith row of the (QG)-1 matrix, scaled by the gyro scale factor 
Note also that these elements are assumed constants whereas, on a microscopic scale, 
they are time-varying within the limit cycle amplitude of the instruments. 

The function found to the left of the equality has, at this point in the development, been 
defined as the triple P?(i = 1, 2, 3). This vector, which we will refer to as the gyro 
processing vector, contains the instrument readout term plus the quantization and noise 
terms. The P9 vector, and the approximations made in its evaluation during calibration, 
will be discussed in Section 4.3. 1. 

Choice of Body Axes (Chart 4-5) 

The next step in the development is to introduce the ERC ISU nominal geometry. Those 
transformations which describe that geometry were defined in Section 2. 2. 1. Because 
the orientations of the output and spin axes are not cyclic, a general index equation 
cannot be developed. Therefore a separate equation for each gyro is presented in 
Chart 4-5. 

At this point the general equations relate the gyro processing vector (which includes 
measurable gyro readout, noise, and quantization error) to the measurable body-axis 
components of the environment (described by g, wE, and cT). In the remaining charts 
we will relate the body-axis components of the environment to the controllable test 
table parameters. 

Integral Evaluations (Charts 4-6, 4-7, and 4-8) 

The preceding chart listed the required equations as three expressions which are linear 
in the unknown calibration constants. The coefficients of those unknown constants are 

E , presented as integrals of body-axis components of g, w and T" In the discussions of 
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calibration techniques which follow this subsection we will show how calibration is 
accomplished by a control of the values of these integrals. Before we can show this we 
must functionally relate the integrals to the controllable test table geometry. The 
following three charts develop those functions. 

In the first chart (4-6) the integrals of the body-axis components of g,_E, and J are 
expressed as transformations from the frames in which they are well known. The 
definitions of the transformation geometry and notation were explained in Section 3.2. 1. 

In Chart 4-7 the earth-axes components of g and wE and the rotary axes components of 
J are introduced. Additionally, the TTE and TRT matrices are expressed as functions 

of the 01 and 02 gimbal angles. (See Section 3. 2. 1 for definitions of this geometry ) 
With these equalities introduced, we can now extract all but the time-varying parameter 
(02) from the integrands of the equations 

In the final chart (4-8) the integrals are combined as the calibration constant coefficients. 
The equalities listed at the top of the chart allow the integrals to be separated into sums 
of monotonically increasing terms, harmonic terms, and terms which are functions of 
terminal conditions only. The only harmonic terms are those which contain integrals of 

sines and cosines. The monotonic increasing terms are those containing At, and the 
terminal condition terms are those which contain A's other than At. 

Charts 4-5 and 4-8 constitute the required general gyro calibration equations. Note that 
our result is a set of three functional relationships among: the 'processing vector"GE
 
P the unknown calibration constants; the magnitudes of gravity (g), earth rate (WE), 

and latitude (X); the total time of integration (At), and the controllable test table 
parameters, which are 

01 - The trunnion axis angle 

02 - The total angle of revolution about the rotary axis 

-d 2 The speed of the test table
 
dt
 

and TBRm - The matrix which transforms from the rotary axis frame to the 
body axes for the mth calibration position. 

(See Section 3 for definitions of all test table geometry,) 

In Section 4. 2 we will show how gyro calibration is accomplished by a control of the test 
table parameters contained within the functional relationships. 
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CHART 4-1
 

THE 	FUNDAMENTAL GYRO MODEL 

THE GYRO MODEL IS 

A'' Ik1 = tN (.G) dt+ jN +BI(aG) + Bo(aO) +BS(a.S) + CIa-G)2+ a.S) 
Lk=k 0- t ItoL 

+ CS(a.G) (a.S) + Cos(a.O) (a.S) + CO(a.G) (a0) 

+Q II (w G)2 + QIs(w.G) (.S) + Ji (W dt + An + Eq 

WHERE 

S 	 a is the angular velocity applied to the gyro 

* 	 a is the acceleration applied to the gyro 

* t ; tN is the time interval over which a and 0_ are measuredto 

* 	 tN - t o = Nr, where N is an integer, andy is the gyro sampling 
period 

* 	 S is a unit vector along the spin axis of the rotor 

* 	 0 is a unit vector directed along the output axis as defined by the 
gimbal 

G is a unit vector along 0 x S (that is, the sensitive axis of the gyro) 

6k is the kth gyro pulse, equal to +1, -1, or 0 for positive, negative, 
or no pulse 

* 	 tA,'is the gyro scale factor 

* 	 R is the gyro bias 

* 	 BI BO and BS are the gyro unbalance coefficients 

* 	 CI SS cis Cos and CIO are the gyro compliance coefficients 

* 	 QIS and QII are dynamic coupling coefficients due to gimbal deflection 
and scale factor nonlinearity, respectively 

* 	 J is the angular rate coefficient 

* 	 An is the effect of gyro noise over the Eto, tN interval 

* 	 Eq is the gyro quantization error 
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CHART 4-2 

INTRODUCTION OF LABORATORY ENVIRONMENT 

ASSUME 

* 	 L=LTT+ WEE = (wT+ A T)+ (LE+ AwE) s the total applied angular 

velocity 

where: WT T is the total test table angular velocity 

j 	 is the measured test table angular velocity 

WEE is the total laboratory angular velocity 

E is the assumed (surveyed) laboratory angular velocity 

aL	 = xTT x r) + Aa isg + x (_TT + ITT x r the total applied specific force 

where- g is the assumed (surveyed) laboratory specific force 
TT ( TT x r) is the centripetal specific force due to the table&_ x _ _. 

motion 

4sTT x r is the angular rate specific force due to the table motion 

Aa is the deviation of the assumed laboratory specific force from 

the trueS TT x(TT x )an TTS WTT xTTx r) and wTT x r are formal expressions, as r is not explicitly 

defined. 

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-1, WE HAVE 

A0$[EN6,] N:[(~TA+T dtt
 o
 

+tN" a.B31 1i+13wflgEcWTT x r) + JTx.A + Bo tT Tx)+WntTXr+Aa)O]1 

r++ E'X cT xr _TTX+,A.) 2 

+c~ 	[JTx TTxr.+ TT+4-TxrT+4)(ITxr)+ An)] [ 


.cosi+~xr).Jxr.A~n] +[i.%(jxaLxrTTxr.Aa)s§] 

+CIO[(g + iETx (JTxr)+tJTx r+ A) [iLTx (LT r+ TTx r+tAn)o 

+Q 1
 

+ An+- Eq 
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CHART 4-3 

APPROXIMATIONS 

ASSUME 

* 	Terms containing the integral of components of A a always have negligible
effect on the gyro readout. 

* 	Terms containing the integral of components of uTT x (TT x r) and

5,TT x r have a negligible effect on the gyro readout.
 

_TT x (wTT x r) <(0. 22) 2 x 0.5 = 0. 024 ft./sec. 2 = 0. 008 g. 

* 	 Terms containing QI$ or Q11 and the integrals of components of Ao E or
 
6 WT have a negligible effect on the gyro readout.
 

a 	Terms containing J and the integrals of the rate of change of A oE and
 
A a T have a negligible effect on the gyro readout.
 

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-2 WE HAVE 
(AFTER SOME ARRANGEMENTS): 

Nk-ik 	 tN ( c E + T ) G- d 

(1 - ( / An- (1I/&) Eq - (1/ -+AwT)wN 
k=1 to

tN EtN 	 tN 

-( O j [(t E + wT). G!dt + (R/AM) Tt0 dt + (BI/A44) J0 (gG)dt 
to to ­to ­

tN tN tN 2 

+ (Bo/A ) f (g.O)dt + BS/AI ) f (g-S)dt + (CI/AP) J' (g- G)2dt
 
to to o tot
 
tN tN 	 tN 

+ Css/A ) ft° (g s) 2 t +(CIs/ ) ftN (g. G)(g.S) dt + (Cos/A0) f (g.)(g.S)dt 
to ito 	 to 
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CHART 4-4 

INTRODUCTION OF BODY AXES AND INSTRUMENT INDEXING 

ASSUME 	 BB B 3 are a triad of orthogonal unit vectors which have a fixed 
orientation relative to G1 01 and S where 1 is the instrument index equal 

to 1, 2, or 3. 

Therefore, G1 = Z (G B)Bk , i = P.k)Bk, S = k 
k- k k 

* (G.Bk), (0 1.Bk) and (S1 Lk) differ from their nominal values (G -Bk n 

(,.Bk) and (S%-Bk) by small numbers. Those differences are sufficiently 
small as to only affect the gyro readout via the proportional angular velocity 
term. 

WITH THESE 	ASSUMPTIONS THE GYRO EQUATION BECOMES 

Po I - ]z " N (j Bd .	 J9 ( T B .)d
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CHART 4-5 
A CEOIOR OV MNAL INSTRUBMWNAXS 
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CHART 4-6 

INTEGRAL EVALUATIONS 

ASSUME 

" WE , gand T are located as showni Figure 3-2 

* All transformations between frames follow the convention given by the 
following example-


Bi = ; TBR R
 

im in
t 


SjNdt =t t 0 +E At +ECwhere EC is the clock quantization error
 
to 

* The effect of EC is negligible 

THE NINE INTEGRALS CAN NOW BE WRITTEN AS: 
tN tN WE..) t0 N DTR rp~(zE.Bi)dt = mn Bi TRTmiptTTE (WE. E ) dt
 

to - _
 

NN (WTB )dt = J"NETBR (T.Rm)dt
 
im *Rmd
d t 0 m l * 


t dt -
tN LE; TR RTTTE"gE
 

to np np 


to ­

t---p)dt im Tt 

ftN " BR TBRTRTTTE( .E dtJtN (g.-Bk)(g-.-Br)dt = LEE RT TEEg ,[ 
$~i F BRr uTBRTT TT(~E.7[ TEi 

tN [L EDnP T Tn (r -- BR 1 TE E
tN 

S( kE in kin T THdt 
o-

-FE 

~~~ton n p-:: 
t0(_w "Bk)(_w "Br)dt f to IM-np "kin imn ip_-- I q - -q 

.Bk)(w tNFS TR"-m Lq RfS>WTBXOTBdto(_w .Br)dt - ft0 mZTiaBR TBRZ-T iwTR)dt­

todt - -to At 

tNd[WE. Bk(wT. Bk)dt L=[D TB TRT TTE (WE. E )+WT T. q)] tN 
=to q to
innp kj tmnpok 
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INTEGRAL EVALUATIONS (Continued) 

ASSUME 

-- LE A]0g0m 
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CHART 4-8 

INTEGRAL EVALUATIONS (Contirnid) 

L!lT 
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4. 1.2 Accelerometer Equations 

As with the preceding gyro equation development, we develop the general accelerometer 
calibration equations by introducing the laboratory geometry and environment into the 
instrument model. A great number of the comments relative to the development of the 
general gyro equations apply equally well to the development of the general accelerometer 
equations. 

As in Section 4. 1. 1, we discuss each of the charts in turn. 

Fundamental Accelerometer Model (Chart 4-9) 

The accelerometer mathematical model was introduced in Section 2.2.2. Chart 4-9 is a 
repeat of Chart 2-1, showing the input/output relationships for a vibrating-string accel­
erometer. The notation presented is sell-explanatory. 

Introduction of Laboratory Environment (Chart 4-10) 

In Chart 4-9 the accelerometer output is seen to be influenced by only applied accelera­
tion inputs. Note that the accelerometers are assumed to be in a stationary attitude 
relative to the earth. The stationary attitude assumption dictates that all accelerometer 
calibrations will be accomplished without a use of the dynamic rotational ability of the 
test table. The main reason for this constraint is the fact that a motion of the test table 
introduces undesirable angular velocity-related accelerations. (See Section 2. 1 of the 
trade-off document.) 

Approximations (Chart 4-11) 

The environment approximations are self-explanatory. All neglected terms are assumed 
to have a second order effect on the accelerometer readout 

Introduction of Body Axes and Instrument Indexing (Chart 4-12) 

The comments presented in the gyro equation development apply equally well here. 

A Choice of Body Axes (Chart 4-13) 

These equations are the desired general form. In Section 4. 2 the determination of the 
calibration constants will be shown to be dictated by a control of the parameters found in 
the Environment Evaluation part of Chart 4-13. 
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CHART 4-9 

THE FUNDAMENTAL ACCELEROMETER MODEL 

THE ACCELEROMETER MODEL IS: 
tb tb tb 

St 2 dt - Jt a fldt = (N2 -N1 ) + Eq = D f ta (a.A)dt 

ta 	 t 
+ D ( tbj[D 0 +D2(a.A)2+ID3(a-A)3dt 

T ta . 

WHERE: 

a is 	the acceleration applied to the accelerometer 

ta ! t 2 tb is the time interval over which a is measured
 

" A is a unit vector directed along the input axis of the accelerometer
 

" N1 and N2 are the number of zero crossings detected in ta !gt tb

from both strings of the accelerometer 

* 	 Eq is the instrument quantization error due to the fact that ta and tb
 

do not correspond to zero crossings
 

* 	 D1 is the accelerometer scale factor 

* 	 Do is the accelerometer bias 

* 	 D2 is the second order coefficient 

* 	 D3 is the third order coefficient 

o 	 f2 and f1 are string frequencies in pulses/second 
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CHART 4-10 

INTRODUCTION OF LABORATORY ENVIRONMENT 

ASSUME 

* aL = g + Aa 'is the total applied specific force 

Where: 

g is the assumed (surveyed) laboratory specific force 

Aa is the deviation of the assumed laboratory speciflc force from 
- the true 

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-9 WE HAVE: 

tb tb
 

(N 2 -NI) +Eq = Dl f a I(g+Aa).A]dt+D 1 taD 0 +D 2 (g.A+Aa-A)
 

+ D3(g-A + Aa.A)3]dtI 

NOTE THAT THE TEST STAND IS ASSUMED STATIONARY(THATSw T x ( TT TT 

(THAT IS TTx(Txr) and w x r WILL NEVER BE SENSED) 
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CHART 4-11
 

APPROXIMATIONS 

ASSUME 

a Terms containng the product of the integrals of components of Aa with 
D2 or D3 have a negligible effect on the accelerometer readout. 

* 	 (g. A) is a constant over the time interval ta g t 2 tb 

* 	 f dt =At+E
 
to
 

where: 

At = NT, N is an integer and r is the clock period 

EC is the clock quantization error 

* 	 Terms containing the product of E. with Do, D2, or D3 have a negligible 

effect on the accelerometer readout. 

WITH THESE ASSUMPTIONS, THE ACCELEROMETER EQUATION BECOMES: 

I(N2 - N) + Eq - D 	 tb (Aa.A) dt - D1 (g_. ) E]
 

ta
 

{D 	 g.A) + n 1 [o + D (g-A) 2 + D3 (-.A)3]} At 
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CHART 4-12 

INTRODUCTION OF BODY AXES AND INSTRUMENT INDEXING 

ASSUME 

* B1, B2, and B3 are a triad of orthogonal unit vectors which have a constant 
orientation relative to Ai where i is the instrument index equal to 1, 2, 
or 3.
 

Therefore, 3
 
f= Bk 

(Ai'k) differ from their nominal values (Ai Bk)n by small numbers. Those* 
differences are sufficiently small as to only affect the accelerometer readout 
via the proportional acceleration term. 

* 	 The effect of EC is negligible. 

THEN 

A ( 

+ {D1 D 2 } Z ZE m (A-Bkn)n(A(A n A-kg)(-'-rr 

+ {D 1 D3 [rn1 (A.sftn()n(A n( B)~.~(~ (.~Z 1	 At 

WHERE 
tb 

* 	 PA = (N2 - N1) -ID ! ] i- (Aa.A) dt + Eqta ---­

* 	 The first three terms in the right hand side of the equation include the 
effect of the misalignment. 

" 	 The second order cross couplings due to the misalignment have been 
neglected by the second assumption. 
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CHART 4-13
 

A CHOICE OF NOMINAL INSTRUMENT AXES 

ASSUME 

[ Ai. Sk] n =1
 

0
 

THEN 

A' = {ni(Ai&~l) } {(E.B9t -{ (w.i{ gBAt} pA {D1 (A3 . ~i (.Qt 

%2 )}{(gB+ {fl1 (Agt 2)} { (g.B 2 )At} + { D 2 j 2 )At} + {D,(A3 .B2 )} {(g.B%)At} 

+ {n4A1 .B 3 )} {(g.B 3)At} + {D1 (A%.B3)} {g.B)At} + {D1(A3 .B ) _(g .B)At} 

+ {DiDo}l AtI + {D 'D12 ~At' 	 'At+{f D 1 3 

+ D1 D2 1} (g.B).	 2 At} + {fDID2 } {(__.B2At} {DD 2 } {(_B 3 )2At} 

+ {DID 3} {(g.BP 3At}] + {DIDg} 2 {(g. )3At} + {DDD1 3 {(g.Bg3)SAt} 

ENVIRONMENT EVALUATION
 

ASSUME
 

* g is located as shown in Figure 3-2,
 

0 All transformations between frames follow the convention given by the
 
following 	example:
 

F_ T B R
 

mnim ] -m
 

THE ith BODY AXIS COMPONENT OF g IS.
 

(gB 	 i)= n TP TmRTn Tnp (g. E) (Test Table readout) 

= mD n TBS9TimTSEmn (on(- (Autocolunator alignment) 
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4.2 CHOICES OF CALIBRATION ENVIRONMENTS 

The general gyro equations are presented in Charts 4-5 and 4-8 and the general accel­

erometer equations are presented in Chart 4-13. These equations represent the functional 

relationships among the instrument outputs, the input environment measurements, and the 

calibration constants. 

Each instrument equation is linear in n unknown calibration constants. Therefore, it is 

possible to determine the numerical value of all calibration constants contained within any 

equation from the simultaneous solution of n equations corresponding to n different 

measurements of instrument outputs and input environments. Such a technique of con­

stant determination would involve the inversion of an n x n matrix When n is large, as 

it is in these instrument equations, matrix inversion is very cumbersome. 

There is, fortunately, an easier technique for determining the calibration constants 
That technique involves the control of the environment inputs (by a control of the test 

table parameters) such that the instrument outputs would be insensitive to a large number 

of terms. This corresponds to the adjustment of the environment-sensitive coefficients 
of a large number of constants in the general calibration equations to zero. If it were 

possible to null all but one, the determination of the remaining constant would naturally 

be trivial. In this system, however, it is not possible to null all but one but we can in 

many cases null all but a few coefficients. In the subsections that follow we will apply 

this '!nulling technique" to the calibration of the ERC ISU. The result will be a set of 

equations from which any calibration constant can be determined by the simultaneous 

solution of at most two equations. Each equation corresponds to the input/output rela­

tionship for an instrument subjected to a particular environment, by control of the test 
table parameters. 

We begin our presentation, in Section 4. 2. 1, by dictating the environments and developing 

the equations from which the gyro scale factor and (Q G)- matrix can be determined. In 

Section 4.2.2 which follows we will show how to calibrate the gyro unbalance, bias, and 

square compliance terms. In Section 4.2. 3 we will show how to determine the com­

pliance-product coefficients, and in Section 4. 2. 4 we will complete the discussion of 
gyro calibration by describing the experiments for investigating the gyro scale factor non­

linearity and J term. The discussion of the calibration of gyro constants m any sub­

section will assume that the constants discussed in previous subsections are well known 

from previous calibrations. 

The description of accelerometer calibration begins in Section 4. 2. 5 with a description
 

of the calibration of all but the cubic term. InSection 4 2. 6 we complete the calibration
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developments by describing the determination of the remaining accelerometer cubic 

terms. 

4.2. 1 Determination of Gyro Scale Factor and Misalignment 

In this subsection we show how particular choices of input environments reduce the general 

gyro equations to forms which enable a relatively simple calibration of the gyro scale 

factors and elements of the (QG)-I matrix. (The matrix elements are sometimes referred 

to as "misalignments" from the nominal ISU design ) Our attention is directed to the 

general gyro equations found on Charts 4-5 and 4-8. We will dictate choices of the test 
table parameters found in the integrals shown in Chart 4-8 such that the desired angular 

velocity-sensitive terms predominate. 

We see that many of the integrals found in Chart 4-8 are functions of harmonic terms as 

well as terms which increase monotonically with time The harmonic terms are terms­
involving integrals of trigonometric functions of 02. Such integrals are bounded in value; 

asa d02ateroffatifT 
as a matter of fact, if W = - can be made constant, the harmonic terms would equate 

dt 
to zero for any multiple of whole turns (02 = 2nw) of the table. Under such conditions a 
large number of the terms in Chart 4-8 would disappear. In Chart 4-14 we see the sub­

stitution of the integrals into Chart 4-5 under the condition of whole turns of the table, 

while rotating at a constant speed. (See Section 2. 1 of the trade-off document for further 

comment about whole-turn equations. ) The assumptions made in the equations in 

Chart 4-14 are shown at the top of the chart. The condition on the transient terms re­
quires additional comment. 

The ERC table will have a precision limitation on its ability to rotate at a constant speed. 

That limitation is two parts in ten thousand, that is A&T/wT 2 x 10 - 4 , where A wT is 

the error in the speed of the table, and wT is the speed of the table. Assuming that a 

maximum error of plus E is evidenced in a first half turn, and a maximum error of minus 

E is evidenced in a second half turn, then 

s1n dTtin T+f1 sin2 dt sinwT + AWT)tdt 7r T_ AwT)tdt 
fo To7 

0402T 
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During all scale factor and misalignment determination experiments the maximum possible 

speed will be used. That speed will be just below the saturation level of the gyros, which 

is 15 degrees per second. (See Section 2. 1 of the Trade-Off Document fdr further com­

ments. ) Under such conditions: 

* 	 The proportional transient terms go as 

WE-A = 120 x 10 7 deg = 0.04 sec (per revolution) 

* 	 The unbalance transient terms go as 

BgA = 8x10-7 deg 

* 	 The compliance transient terms go as 

-Cg 2 A = 0.32x 10 7 deg 

which are all obviously very small and can be neglected (under the assumption, of 

course, that the above analysis typifies the worst-case deviation from a constant speed). 

Referring again to Chart 4-14, we see that a horizontal position of the test table rotary 

axes (i. e., 0i = 900) would null all unbalance terms. Chart 4-15 introduces that condi­

tion The remaining test table control parameters in Chart 4-15 are the first column of 

the TBR matrix. (The first column of the TBR matrix dictates the orientation of the 

table rotary axes (RI) relative to the ISU body axes. ) The orientation of R 1 is a function 

of the inner and outer gimbal angles (0 and 04). Having two gimbal angle degrees of 

freedom dictates that any values of the first column of TBR can be requested. (Equating 

the TBR choices to 0. and 04 settings is the subject of Section 4. 4 2. ) In Charts 4-16, 

4-17, and 4-18 we show the calibration equations for six choices of the first column of 

TDR. All choices are shown at the top of the charts. We see that 

" 	 Chart 4-16 corresponds to the alignment of the first body axis with the rotary 
axis in both the plus and minus sense. 

* 	 Chart 4-17 corresponds to the alignment of the second body axis with the rotary 
axis in both the plus and minus sense. 

* 	 Chart 4-18 corresponds to the alignment of the third body axis with the rotary 
axis in both the plus and minus sense 

In Charts 4-16, 4-17, and 4-18 the test table parameters have been completely specified 

The first table gimbal angle 0i is equated to 900. The second gimbal is rotating over 

whole turns at a constant speed. And the third and fourth gimbals are implicitly specified 

by choices of the first column of TB R. We will refer to these six orientations as Posi­

tions 1 through 6, respectively. 
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We note in Chart 4-16 that only the first terms m the three gyro equations have opposite
Gsigns in Positions 1 and 2. Therefore, those terms can be isolated as a function of Pk 

(k = 1, 2, 3) by simply subtracting the equation for Position 1 from the equation for Posi­
values the first gyro constantsction 2. From known environment inputs and-known P 

therefore be determined. (The manner in which Pk is known is the subject of Section 

4. 3. 1.) The second and third constants can be found by similar uses of Charts 4-17 and 

4-18, respectively. The final equations for the gyro scale factors and (QG)-I elements 

are found in Section 4. 3. 2. As a matter of convenience the computational equations from 

this and subsequent subsections are tabulated at a single point in this document, which is 

Section 4. 3.2. 

4. 2. 2 Determination of R, BI, B, BS, C and CSS1 1 

Subsequent to the calibration of the principal angular velocity sensitive terms (scale 

factors and (QG)- elements), the gyro equations predominantly contain, as unknowns, 
acceleration-sensitive terms (i.e., unbalance and compliance coefficients). This pre­

dominance is even more evidenced when the angular velocity input is controlled to a small 

constant value. Under that condition the remaining angular velocity terms (Q,1 and QIS) 

become relatively unimportant as influences on the gyro outputs. These points suggest 

that the calibration of the unknown unbalance and compliance coefficients should be ac­

complished under the conditions of extremely small angular velocity inputs. Not only 

will the QII and QIS be negligible, but also the imprecision in the already calibrated scale 
factor and (QG)-'elements will have a minimum influence on the precision of the unbalance 

and compliance coefficients to be determined 

In Chart 4-19 we present the general gyro calibration equations under the influence of the 

minimum practical angular velocity environment. That angular velocity input is earth rate, 
that is, the table is stationary relative to the laboratory. We say minimum 'bractical" 

environment because it would be possible to rotate the table at near minus earth rate, thus 

reducing the total angular velocity input below earth rate, but earth rate alone is so small 
that there appears to be no reason to try to regulate the speed of the table to a small number 

= = 9 0o .
At the top of Chart 4-19 we present our gimbal angle choices of 91 0 and 02 There 

are several reasons for these choices. First, it must be pointed out that we are interested, 

for the purpose of calibrating acceleration-sensitive coefficients, in controlling the 

orientation of only the input g vector relative to the body axes. To completely control one 

vector relative to the body axes requires only two orientation degrees of freedom. Two of 
the four test table degrees of freedom can therefore be chosen for matters of convenience. 

We choose the particular values of ¢1 and t2 , as shown in Chart 4-19, for the following 

reasons of convenience: 
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CHART 4-14 

GYRO CALIBRATION WHOLE-TURN EQUATIONS 

ASSME 1IG= 
pG 
miil 

BB/A 
* 

EI..( 
o(i 1 

X)3 
x) 1 

PE'l 
2 

I %o/A~ 
-

[4-0,,/~ 
2 +1 

Ata.(,+ 
n 4 

)gE
i 

+ 
3,A 

A Al ol X11 

For whole turns of 02 

1) All transient terms are negligible -Pt 1 01 ++ E ( + X Tt2B)/A5 140 2 + Cos(5 1 + X)3 T-B [A0 2 + l 1 

2) 
3) 

Terms of 
Terms of 

0(E)
2 

are neghgible 
0060 2 ) are negligible B i) T 1 /A 1 

4) 0, is constant 

For whole trns of v the gro equations are + R/A$ / rAt] + 1R/a12 [ALI + 1R/A A1[At 

gives on tius page. 

+ B (A2/At5s il T,? +2 B/ ALT3s 21 1 ) s1 ] 

+ B/&a[ [&At es Oil T 
1 

I IBQ/A 4 [gAtCos 013 TR + jB 0 /A* lg[(t ens 0 1 3T1 

2 ] 2 1 3 

+ IC /Af 
+ Q2 /g' 

Cs [rT 
r()1]TI) 

CIeo -1)] + 1IB/a4I(L[,At] 
2111 A4 

2 
Atl()4[2 

3 
_ +(J. 

+ IO/A3[]TA t 5 2 
e 

LCE/A 
,[g2A,%/AAt 

[j IT (3 Cos 
2 

- +) {2C/A1 
r( 

j ETfjT2(3 .. 201-I 

2 A1 1(BR)23L00 

I~s/s~~~wT1tft1 *1 13 2 11 21 2 11 31~~ 1~,)AtT 

2/21 1R1 2 2 31 

FOLDOU FRAM Co FOLDOUT FRoAM 4­

2 2-1 

FL U 2 O/2U+ 0 



CAT41 
GYRO CAL RATION WHOLE-TURN EQUATIONS 

9,go=P (cjt BQ/Aj [As 2 - wFAt sLinXJ T B 
0
G~ ­ - j/$ A~ t sin X.3TBR =pGj(g.p 1 )/A4.j [Ao 2 -r'tsinX2]T 

+ A 0[ A At s in %IT R + (9 2' fL2)/A $1l [A - ofAt n X] TB - Icq f / A Am w E si T B 

+I(01-B3 )/A5 112-EAt sin X3T~m 
- 1 

I (q2-L)/A 1 ELAo 2 - wAt sin A TER 
31 

+ )(4 B3 )/A 0 
2.-

CLAS 2 -PAt 
a2 

sin 2] R 

+ [At] 

0 

+ 

,A 

[L4~Et] 

2 0+ 

+ RA 

I /A 

3[t 

i3o 

. BS/Ae[ 0 + E,/ 40 
23 

+5 0 

+ o 

+ CE5 /A0 o 

%S/A1q ±jL a -[1j 21+ 

+ 

1,/A 

A 

2 

at 

Atj 

a TB 3 
2 

TT2-l 

+g2t]L 

+ B0 /Ao1! 

F9+ 

-(TB) 

it2 31B 

+C 2O/A01 F~I/ +TR C6 5 /A 11[gAl1EA-2 Ci -T(T 
2 

CA~­

+ cj[ I[T f~'TUS1 
TAL R3+12]213 

+ CUS/ATJ­ 1 T] ETIT 

+ QWA0 I( )At](T 1R)
2 

) 

12 

+ I~oA4~' E474tj_ BRIEF,{T 

+ %O/A.12 LtTBRTBj] 
+ [~~(io)2At]ETRl 

+ 

Q 1 A~LJ 

31 

2 

LTRTMI 

1 

tETR 
2 

1 11Q 21A[ ++I .r)2&tT[2At2L1"'T1TB{QW/A<r(&C'AtA[T1TBPf) 

* IJ/A01I 0 +la/6s 2 + pr/Afl 

FRAME 4-2
FOLDOUT FRAME IFOLDOUT 



CHART 4-16 

2 moving 

PG,=I (G'BO/A4-

-1 

A 

GYRO CALIBRATION WHOtE -TURN 

- E tsin X]}P1 

EQUATIONS POSITIONS 1 AN]) 2 

1( 22.Bh)/a$I {4 AO2 - A sin ] } G~% BQ)/AOtAn-A Bi, 

i 

x 

TBR 
21 

0 
-

T 

Rnotary 

10 

Rotary
Axis 

+ 

+ R/A< 

f 

[at] 

0dl 

0_1 

+ 

+ I( G .31)/A0+2 

+ <R/AO[at] 
21 

+ InI/1 2 o0 

0§ 

0 

0I/$ 

+ ](23. B )/A j3 0 

+ 11VAT [At] 

+3 Ch 

Axis 

~I~I 
Axi 

East 

1 

o 
IBS/Al40 + B 5 A 0 

23 
*%Ai 

0 

* 0c' + CIn/A l- [g 
2A/2] + {C 2

at/2] 

+CSS/a 0 [g
2 
t/2] * C 2A[, 

2 
at/2] + ICI/AtI gAL/2] 

i + ICs/At 0 + CIO/& 0 

± tCo/ A4 0 

+~~~~ 
I2 fc2 

i0 + IC./A 

*j 1/, 

I2 

0 

+ Co/A 

+nA~ ,)O/A aQ% 

- 12 3 

4 Q/A 0 + IQWA 10 +* Q1 JAO- 0 

- J/AlO 0 
1 

+ 3/A9l o 
23 

+ 0 

FnlDOUT FRAME I FO[ DOUT FRAME 

4-26 



CHART 4-17 

GYR CALIBRATION WlOLE-TURN EQUATIONS POSITIONS 3 AND 4 

= .(q-!g)/A 
G C0 BQ-AS- 0 

G 
= } 

G 
, = ( _ 

isBR ig. (G1. B2 )/A&{ I I A t sAInX] + j(Og B 2 )/A0J2Jj[to, - At snX] P9*E2 A .[0I -S t Xin] 

T11 -

BR =+ ( 1 s) aj C + j(G2. A~ 02~sV , 
TBR-31 -

2 

+ IUIA~ 1 R + 1W/A0( [At] 
2 

+R/4LA 

UP Rotary Up RIory B + 0 /A 

P 2 ~ + 1 23 

ATi.+ AsB 
T i + B/4Q 

0 /A@I 
o0 
a + tBW/A 

a,/t 2 
2 

+ )B,/&>t 3 
+ HBJ/A430 

+ t/At + ICs/A 21C I0j+ CHI/34 1 
1 2 

+ iCr/A< fgtoa + C a + C/A4C CS/ 
2 
oa 

+ tCi/A4I 0 + DO/A ] +C/A. 00 

+ JC 0 /AQI Ci +C 1 /Aoo 0 + CodWA4 a 

+ tCs/A4I 2 T)/2Lt + CQ,/A@ 0 

//E 0+5 1 Q 4 1Q ~[0' 2 t + JQ1 1/A4( 0 

4-27
 

2FOLDOUT FRAME FOLDOUT FRAME c



CHIART 4-Hi 

GRO CALIBRATION WHO E -TURN EQUATIONS MOSFIIONS5 AND 6 

N -= - - 1 o0 - _ . D) /A, 2. a PS-a 
o2 's moving 

=1 + (GI. )/A -I o + 1o. 2)IO=1 o2 + ( 3 -. 

T2 0 211 

31 - + o Es4<_tL + IA/,l(G 1 B3 )/Ao EL02 E iA2 j + G3'}B1 

Roay Rotsry 
UP Uixs lp ALxIs(DnnnB3st 

+ IA , [At] 

0 

+ 

+ 1 

(RAAt] 
2 

/AoI0 

+ IWtA$13 [At] 

+I::::0,1: 
+ BoIao 0 + O oBdo/aI 

+ B 1 0 + J 20 + 3 

+Cu/A41 Ef 
2 
At/2] c 1 1/A41 

2 
2At/2] + ICn/AI 0 

+ oAQsWA 1 g At/2] * "L 2 o + lC0 S/AZ [g 
2 
At/2] 

+ CIAo 0 + IC,,A tI 0 + C,,/wA30 

+ A j1 0 ,A (2 + c - 3a 

+ Cs/AO4 0 + cW/ao[ 2 0 + IC3AI 0 

+ 1C /A~ 0 + I .Aq20 + cos/A$a 

+ 0+ IQW~ 2 C + IisK4( 0 

+ jUL.11 0 . 0+ JJ/A j 0 

FOLDOUT FRAME rFOLDOUT FRAME 42 



=* 	 The value 01 00 is chosen because it results in the same 03 and 04 settings 
for the six positions required for the subject calibration as required for the first 
six positions. 

* 	 The value 02 = 900 was chosen for two reasons. the first reason is that it places 
the 03 gimbal in the north-south direction, and that gimbal, in conjunction with 
the east-west 01 gimbal, can be used for small angle corrections of the table 
base motions as measured by buble levels (see Section 4.4. 4). The second 
reason for the choice of 02 = 90 is that it results in only the second column of 
TBR being required in calibration computations. This results in a minimum 
amount of data handling during precalibration survey activities. 

The equations in Chart 4-19 contain, as control parameters, only the first and second 

column of the TBR matrix. The acceleration-sensitive terms are, however, a function 
of the first column only. The table orientation control will therefore be preoccupied with 

that column. In Charts 4-20, 4-21 and 4-22 we introduce the choices for the first column 

of T B R corresponding to Positions 7 through 12. These choices for the first column of 

TB R are the same, respectively, as they were for Positions 1 through 6. With the 

assumption that the first three gyro coefficients are known from the calibration described 
in the preceding subsection, we see that Charts 4-20, 4-21 and 4-22 present six equations 

in the six unknowns: 

R, B1 , BO , B, CiI, CSS 

We note that at most two equations are required for the solution of any required unknown. 
In Section 4. 3 the solution of the equations for the six unknowns is presented. 

4. 2. 3 Determination of CIO. CIS and Cos 

The three product-compliance coefficients (CIO, CIS and COS) were not evidenced in any 

equation for Positions 1 through 12. None of those positions senses the minimum of two 
body-axes components of acceleration required for the detection of product-compliance 

coefficients. In this subsection we choose three additional laboratory-fixed orientations 
(Positions 13, 14 and 15), each position detecting two (and only two) body-axes components 

of g. On Charts 4-23. 4-24 and 4-25 we present the instrument equations for those three 
positions. In each equation on those three charts there exists only one unknown product­

compliance coefficient. The solution for that coefficient, in terms of the known input 

environment vector PG, and the previously determined calibration constants, is found 
in Section 4.3. The determination of the second column of the T B R matrix is considered 

a precalibration activity. In Section 4. 4. 3 that activity is described. 

4. 2. 4 Gyro Nonlinearity and J Term Experiments 

There are three remaining constants to be described, namely* QI, QIS and J. The 
QII constant is intended to represent the scale factor nonlinearity. In the following 
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discussions we will describe not only how that constant is found, but also any other higher 
order W sensitive coefficients that are evidenced in the gyro readout. The QI8 calibration 
is not presented. It is assumed that this term is too small to be detected. The last 
paragraphs in this subsection discuss the calibration of the J term. It will be seen that 
this calibration requires test table speed controls not found in any other calibration. 

Gyro Nonlinearity 

The QII term in the gyro equation was described in Section 2 as the nonlinearity term. 
This term is intended to describe, in conjunction with the scale factor term, the output 
rate (say I) as a function of the input (say w) as: 

= A + C 2 

rather than the more familiar 

2=A+Bw 

The interpretation by many is that this term introduces a nonconstant scale factor as­
sumption, that is 

=A + (B + C w) w 

Regardless of the interpretation, it seems appropriate to assume nothing about the highest 
power of .w and in fact to try to conduct experiments to find all coefficients (say Ak) where 

P = A0 Alo + A2 2 A=n 

Such experiments are very simply described but would probably be somewhat time con­
suming to implement. 

Let us direct our attention to the equations for the one gyro in Position 1, the two gyro in 
Position 3, and the three gyro in Position 5. We see that each equation can be written: 

P 2 
- = A+Alw+ A2 w
At
 

where A0 = R/ A@ + f (acceleration) 

Al = Gk.kt/? 

A2 = QII/AZ 

4-37 



If experiments are conducted where only wg is changed (and not acceleration), A0 would 

always be a constant. We see that a variation of the table speed only, in the positions 
mentioned, accomplishes this need. Also the equations can be generalized to contain higher 

order w,terms. That is: 

P/At = A0 + Alw 
+ A2 w 2 "An 

The 	experiments can now be delineated: 

* 	 Collect gyro data 6from Position 1, 3, or 5 for n different speeds of the 
test table. 

* 	 Collect the table speed data by measuring A02 and At. 

WT=A2for constant w, and whole turns of A0 2.
 
At
 

" 	 Let the total speed imposed on the gyro be described by 

W= A-0 +W E sink 

At 

* 	 Let P be given by 

At 

that is, data is collected sufficiently long such that quantization and noise are 
negligible (see Section 2. 2 of the Trade-Off Document). 

* 	 Plot P against w 

* 	 Analyze the plot to find f, where P = f~n). 

J Term 

The 	environments chosen for the determination of the J terms are shown in Chart 4-26. 

Note that the positions chosen correspond to Positions 7 and 11 (which were used in 
Section 4. 2.2 ) with the modification of a rotating table. The gyro data will be collected 

over a period during which the angular speed has changed. This calibration is the only 

one which requires the determination of the time-varying integrals: 
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S sin 2 dt 

* cos §2 dt 

The 	manner in which these integrals are determined will depend completely upon the man­
ner in which the test table angular acceleration is commanded during the experiment. The 
calibration procedures will therefore be dictated by the commanded angular acceleration 
profile. There appear to be only three interesting alternatives: 

" 	 The first alternative, which appears to be the best, is when the angular
acceleration can be controlled to a desired function of time In that event 
the aforementioned integrals could be evaluated prior to the data collection 
A good example of a commanded profile might be a constant angular acceleration 
over a short data collection time. 

" 	 Another alternative, almost as good as the above, would be an angular ac­
celeration profile which is an analytic function, but not known until the time 
of the experiment. An example would be the ability to command a constant 
angular acceleration, but not any given constant. In this event the integrals 
would be evaluated after data collection. 

" 	 The least attractive alternative would be when the profile cannot be commanded 
as a clean analytic function. The J term experiment could be conducted under 
such circumstances, but there would be a requirement for the 02 resolver 
to be collected in real time for the purpose of evaluating the integrals. 

There is no reason to specify which of the above alternatives is to be used until the test 
table is evaluated to discern its ability to control angular accelerations. As a consequence, 
the J term equations in Section 4. 3. 2 are not specified as the equations to be programmed, 
as are the other calibration constant equations. Instead they are presented as functions 
of terms which will be described as functions of the angular acceleration profile at that 
time when the control characteristics of the table are better known. As a matter of con­

venience to the reader the form of the equation is presented for the case when a constant 
angular acceleration profile is commanded. 

4. 2. 	5 Determination of Accelerometer Coefficients 

The general accelerometer calibration equations were developed in Section 4 1. 2, and 
the results presented on Chart 4-13. We recall that it was assumed in the development 
of those equations that the test table would always be stationary (relative to the laboratory) 
during the entire accelerometer calibration. We recall also that nine of the gyro positions 
were also stationary. Analysis shows that the nine stationary gyro positions are very 
good choices for the entire accelerometer calibration. 
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We mentioned in Section 4.2.2 that, subsequent to the calibration of the principal angular 

velocity-sensitive coefficients, the gyro acceleration-sensitive terms predominate as un­
knowns. Thus, when concerned with calibration only, we can treat the gyro as an acceler­
ometer. We note that the three unbalance terms in the gyro equation play the same role, 

functionally, as the three scale factor and (QA)-I terms in the accelerometer equation. 
We also note that the square term in the accelerometer equation appears functionally 
the same as the square compliance terms in the gyro equation. These facts, and the fact 
that the gyro and accelerometer input axes are nominally aligned, results in the use of the 

same positions for the determination of acceleration-sensitive coefficients in both the gyro 
and accelerometer equations. 

In Chart 4-27 we see the accelerometer equations when 0 1 = 0 0 and 02 = 90 0. As with 

the gyro calibration discussed in Section 4. 2.2, the accelerometer calibration requires 
only two table angle degrees of freedom. Therefore, two of the four table degrees of 

freedom can be arbitrarily chosen. The particular values of O1 and ¢2 shown in Chart 4-27 
are chosen for the same reasons mentioned in Section 4.2.2 (where the gyro bias, unbal­
ance. and square compliance calibration is described). In Charts 4-28 and 4-29 we present 
the accelerometer equations for Positions 7 through 12. We note that all but the cubic 

term can be explicitly extracted from these equations. (The cubic term always appears in 

any equation with the scale factor term and therefore cannot be separated from the scale 

factor term. ) In Section 4. 3. 2 the explicit solution for the accelerometer bias, square 
coefficient and off-diagonal (QA)_ matrix elements are presented. Three additional sets 
of equations are presented which relate the scale factor and cubic term combination to the 

instrument and environment measurements. 

4. 2. 6 Determination of Accelerometer Cubic Term 

It was noted in Section 4. 2. 5 that the six positions (7-12) did not allow for the explicit 

evaluation of the cubic or scale factor terms. We therefore require additional positions 
for the extraction of the cubic terms Positions 13, 14, and 15 (described in the calibration 
of the gyro product compliance coefficients) are appropriate as the additional positions. 

In Charts 4-30 and 4-31 we present the accelerometer equations for those positions. The 
equations for the solution of the cubic terms are presented in Section 4-3. 

For each accelerometer, either of the two positions in which the corresponding body axis 
is nominally oriented 450 off the vertical may be used. Therefore any two of the three 

positions may be chosen to complete the calibration. The equations presented in Section 
4. 3 utilize Positions 13 and 14. 
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CHART 4-27
 

ACCELEROMETER CALIBRATION 

0001 = 

02 = 900 (trivial) 

.B 1 )}[g"tITBR{A {Dj(,-B} [gAt]T" 4 -- n(Ac-. 2-) 1 [gA]TB 

" {D(AgB2),[gt]TBR + D(,j, [gAtTBR + { 1 A. 2 [~]~ 

T~ + {D(S.-t)}2 [gAt]T + {fl(A 3 . B,)} [g&]T'{
+( {D1.B13) 1 

"{D o} [At] + {D 1Do}[AtI +{ DO1 [At] 

+ {D1D2 }[gSt][TB] 2 + {nD}a21 -42 Ti +{ DD1 }g2At[Tj 
+D1D3} IgAt IT f +i{D1 03 } [g3AtJ [TI] + {r1 D3 } [g3AtjI][TJ 
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CHART 4-28 

ACCELEROMETER CALIBRATION POSITIONS 7 AND 8 

0 - 00 Up U 

02 900 

T BR = 1 

1 BR
21 0 Gutei Axil non Axis Outet Ti unniol 

AxsEastAl 

TB = 0 - Rotary Axis A-sRo[ttv Axi , 

B 

APA = TDt(A-B)}{ [ gAt] j 	 Dl(42 .B1)}{+ [gAt]} P3 = {Dt(4s.i) }4 IIg Ati}] 

" {D1(A1B 2)} 0 + {D1(A )} 0 + {n1 (A3 .B%)}1 02
 

" {fl1(A1.B3)} 0 + {D1 (A4.B%)} 0 + {DItAa.B)} 0 

+ 	{DIDo} EAt] + D1D0 }2 [At] +{DDo} [At 

2 + D1 D2}3 0+ {DID2} 1 Eg2 AtJ + {DD2l2 0 

D 1D3 } {± £g3At4 + {D1 D3 }2 0 +{D 1 D3 } 0 

POSITIONS 9 AND 10 

B2Up01 = 00Lp 

= 90002 

1 0 Outer Trunnion Axi Ou T s 

T BR Axi :1Nxxs55 
Axis 	 4- Rotary Axis21 o-Rotaiy 

31 
B2 

I I4l~l~ 0 IPA~= {D1 (A.B1 ) 2 0 P4= {D1(A3.B1} 0 

+ 1 (A1 B_ 2)}fr gAti} + D 1,(A2"B2)2{± [gAt-} + D(A-2) gAt]} 

+ {D1(A1.BE3)} 0 + D, 213 2 0 + {Di(As.BS}3 0 

" {D1Do} At] + {D1 D0 } 1 At) + {D~fl} 3 EAt]j 

+ {DD 2 0 + .{D1D2} [g 2 Ati + {DID2 } 0 

+ {D 1D 3}I 0 + {D 1D3}2 { ±[gSAt} + {DD 3 } 3 0 
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CHART 4-29 

ACCELEROMETER CALIBRATION POSITIONS 11 AND 12 

0 1 = 00 
UPA B3 Up 

02 9Qgo 
TBR= a0___ _____East 

11 Outer Truninion Axi 	 Outer Trunnion Axis Es
 

Axis,AX
TBR o21 Rotary Axis 4 Rotary Axis 

TBR = =h1 BBT31 


A= DpAB} 0 p {D 4 	 {A0 

+ {D 1 (A 1 .%))} 0 + {D 1 (A 2-%)} 0 + {fl1 (A 3 .B%)}) 0 

+ {D 1(AV1B&$+ [ g'0t]I + 1D 1 (A 4 2}-3)2± Cg At]i I + {fl(A3. )l J[gAt]} 

+ {D 1Do} [At] + {DD1 C At] + {fl 1 } [ At] 

" D+ 0 + {D 1 D2 } 0 +{fl1 D 2 } Cg At] 

"+{D 1D3 J, 0 + {D1D3} 0 +{l 1 D3 }3 {+[g3at]} 
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CHART 4-30 

ACCELEROMETER CALIBRATION POSITION 13 

01Up 	 R0 Rotary Axis 

=
02 900 

R?211R =B~v 
21 _ 

TBR= 0 East 
31 - Outer Axis Trunnion Axis 

PA= {D(Af1)}[C/ 2 gt] P+A' {Dl(A_ 2B,)} [F/2 gAt] Pk {DI(A3.B)} 3['l gAt] 

" I,0,.%>} 0 + {D,1(AR3>) 0 + { 1(A3 .3)}3 0 
+ {DI 1o} [At] + {DiD6} [Aj] + {D o} [At] 

" {D1 D2}, [1/2g 2 At] + {D1 D2 } [/2 g2 At j + {DiD2}1 0 

+{jDfl3} [, g23Atl + {D	 +{JD 1 D3} 0V 	 1 D4 [11/Vf/i2gAt] 

POSITION 14 

1	 1 Rotary Axis 

02 = 900 

TBR 	 0o Est 

01 Trunnion Axis 

31 - i2OtrAxis 

= ~4 i)}2.Tjg,t] -- _ 2 gAt] PA {4--)t}-,1) 1/2 g14 i,1/ 

+ 	 {D1 (A 1.B2)} 0 + { 1 A.)} 0 + {DP(Aat12)}3 0 
1 2 

+ {D1 (A1.B3 )} [.VfiL/gAtj + {D1(A4.BQ} [Ji-/2 gAt I + {D 1 ( 3 .B%)}[J/1/gAt] 

+ {D~D 0} [At] + {n 1no} At] + {Do} [At] 

+ {DD 2 1 [i/g 2 At] + {DD 2 } 2 0 + {D1 D2 }3 [/ 2 g2 At] 

+ D1 D3}I[1/2 j/f/ 2g 3At] + {DID3 }, 0 + {DD 3 } [1/2 1/2 g3 At] 
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CHART 4-31
 

ACCELEROMETER CALIBRATION POSITION 15 

0= 00 

Up oayAi02 = 900 R1 RtryAiB2 

TBR = 011 

31Trunnion Axis Es 

Outer Axis 

1 fii 0 P2" {D( 'B)2 0 

+ {D(A 1 .%))}[f/2 gAt] + {D1 CAt2-. ) [fj//2 gAt ] + {D(A .)}3[J1/gAt 13 

+ {flD 0 } [BAt] + {D1 D} [t] +{ 1D} [t 

,{D 1D2 }I 0~ + ID+ fDD 3 l E{0 1 2 [Atl 

3 gAt
+ D1D3 }1 0 + {r D312a}[1/ xVl 2 g3 At ]+{DlDS}3[ / V,gAt 
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4.3 CALIBRATION EQUATIONS 

We noted in Section 4.2 that the simultaneous solution of at most two equations would yield 

the value of a required calibration constant as a function of the input environment and the 

defined G or PA vectors. The Pk and PA vectors were seen in Section 4. 1 to be a func­
tion of the instrument outputs, noise, and quantization error. In the first subsection which 
follows we will approximate the P and P vectors by the instrument outputs only. Thosek k 
approximations will be incorporated into the determination of the calibration computations, 

which are tabulated in Section 4. 3. 2. 

4. 3.1 Processing 

We showed in Section 4. 2 that each calibration constant can be solved for as a function of 
at most two input environments, two P o t components, and previously deternined 

constants. That is, the solution for any constant (say y) can be written as: 

y = Ax+B 

where or 

environment coefficient of y 

P=PAorPGfork=1, 2, or 3 

B = functionof other calibration constants and environment 
inputs. 

In Section 4. 1 we defined the P vectors as a function of instrument readout, quantization 

error, and noise. We suggested in the introduction to Section 4 that we wish to approxi­
mate the P vectors as functions of instrument readouts only. We would like therefore to 

collect the instrument data in such a way that the effects of quantization and noise fall be­
low some required threshold. Fortunately the noise can be represented by random pro­

cesses with bounded means and variances. The quantization error is by its very nature 
also bounded. On the other hand, for a nominally constant input environment, the instru­
ment output is a monotone increasing function of the observation time. Thus by choosing 
sufficiently long observation intervals, the percent error in the assumption that the instru­

ment output equals P can be made arbitrarily small. 
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In Section 2 of the trade-off document the analysis which leads to the above conclusions is 
presented. The results of that analysis are presented in form of graphs in which the 
precisions of the calibration constants (with the assumption of neglected noise and quanti­

ztoinPG orpA,
mation in or k) are plotted against time. Those graphs will be used in the Laboratory 
Procedures Manual to determine the calibration time required to obtain a desired precision 
in any constant. 

4. 3. 2 Computation of Constants 

With the approximations described in the previous section, it is now possible to solve 
explicitly for the calibration constants in terms of well-known instrument and environment 
measurements. The equations are presented in tabular form on the Calibration Equations 
Charts. These equations are those which are to be programmed. An exception is the 
J term equations which will not be in program form until the time when the test table is 
evaluated (see Section 4.2.4). 

It has been noted in Section 4.2.5 that the accelerometer third order term cannot be 
separated from the scale factor by a choice of positions. In the following set of equations 
there are two equations given for each accelerometer that relate the scale factor term 

[DI(Ai ' BI)] to the third order term (D1 D3 )1. If a simultaneous solution of the two equa­
tions is used to determine the scale factor and the third order term, then the scale factor 
will be sensitive to errors in the bias and the second order term. These terms appear on 
the equation listed second in each of the three sets of two equations. This may be avoided 
by determining (D1D3),(by simultaneous solution or other methods) and using this value to 
solve the first equation for [DI(Ai.-Bi)]. This value is subject to the accuracy of other 
terms only through the extremely small term containing D3 . (D1) is then given by the square 
root of the sum of the squares of tD1 (A1 .B)-, for j = 1, 2, 3. 

In developing these equations several equalities are used which introduce previously un­
mentioned parameters. The following comments describe those parameters and their 
nomenclature: 

* 	 Because we are dealing with the measurement of quantities in many different 
positions, a position index must be introduced. The numerical superscripts in 
all equations refer to the positions 

* 	 The vector PG (k =1,2, 3) is approximated by the gyro readouts, therefore 

P G 
6(D8)k 
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GYRO CALIBRATION EQUATIONS
 

Scale Factor and Nisalignments

i+	 /31 2 12 ~G 2 
EAC k ik + LTLA

E1k Ad k 

Gyro One
2' 

(nT)i (FnT)2 j 

(rn0)l1 + (n )2 ' ] 

(Sn)' 	 (SnT) 2 ,/j 

+ - - 2 1 w sin 1 

HQ 

)G(En) 

n¢ 3 	 T(Sn') 4'\=S 

LYEnT3+ (Enl, 
(ZnO) 	 (Lno) 61 

T c)5 6i) j1
+ - 2sf 'sin 

Gyro Two 

(G2 .B )/ M]2 =(En 

Qno)1 + ( 2 2Sf usinX1 

IS1 (LT, El)2/ 	 j­
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GYRO CALIBRATION EQUATIONS (Continued) 

Gyro Two (Continued)

LFT3(En I 
i(G2. B2)/A-D 2 [4n) (n) 

sq(Dn1~ (n)-4 -2S uE sinXjLTn3 T 6 

(En1) 

L 2' f 3 )/ 2 (o 5 (Tn,5 T E 

I ~T(En )6)j 

Gyro Three 

(En0 ) ( fl0 )2 ] 

L(rno)'1 + cEn)2) 2SiL0,9sinXj 

IS1L (n)2 () i 
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GYRO CALIBRATION EQUATIONS (Continued) 

Gyro Three (Continued)

L( ;ij(znT)5 (r 1 6 

UG.9/4;o=(En0,)5 (Eno)' T 

csnf#En )6) 2S, JPsin X] 

Bias 

-R'k =R/A,5k L A:k 

Gyro One 

1 (-nT1) 12 

- ,EsnxBRnL(GBR5 
P sin 12 c(Gi-[TR5c(G1. B)/AC-111 T22 _ 

Gyro Two 

LR/Ac 2 =_Ij-n +
2 T TO7? T)GS]I 

1 2 (E 1 2 j 

Gyro Three
 

Z6)l1 F (Z6)3 

LRI& LnnI{E~ Bnh? 
.W sin X[T 2 1 G3• B3 ),/A', 3 + T 2 Fl1 C(G3. . , 
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GYRO CALIBRATION EQUATIONS (Continued) 

Unbalance 

[B]k = [B/Ac'k LA@Jk 

Gyro One
 

I__ w __ 

2gSI 
 L B /AcIjl)'-TTG8 

2gSfT [ni 1 (nl) 1 j g 

[BS/Ad" 1 6i S__ 
1 P~l 1 r)121 B~o 

T ) i )2 g
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CBI/ACP2 - ,"-LG -gsEBs/At2 - 2gST - L(G- 2B)/A&5'J 

1 S V1jLEn 

Gyro Two 

1 (E6))2 2 

B1 A'C T 7LT)G1Ol2 TG9 
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v 11 12 E 
-1 (r6)2 (r) wCsXL ]
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GYRO CALIBRATION EQUATIONS (Continued)
 

Gyro Three
 

I w Cos X 
EB / 1 = g E-,,1 -,{/1j(-

I/ 1n I (' BT)/A'1T 

1 V 1L) E 0]3 
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O/A] bS32gs1 T1)33 
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E LLBs/AP3 -2g )3-9 --nf-3G o] {(O-" B--)/A¢j 

Square Compliance 

C Ik = LC/A kLAd]k 
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GYRO CALIBRATION EQUATIONS (Continued)
 

Gyro Two


]-[R

LcII/' "'2
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GYRO CALIBRATION EQUATIONS (Continued) 

Product Compliance 

Gyro One 

2 (Nl) 2 Nr2­
2[CIS/bNI + g g[R/APBi/A;I, - EBs/A2] 

12 - GI"B_1 /A [vT/2 cos X+ T sin X] + E(G1r B2)/A 

$3 i7iCOS x+ T~~2 13 sin X] + [GIOB 3/AcPJ3l [T sin X] 
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GYRO CALIBRATION EQUATIONS (Continued) 

Gyro Two 
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GYRO CALIBRATION EQUATIONS (Continued) 

Gyro Three
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GYRO CALIBRATION EQUATIONS (Continued) 

J Term 
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GYRO CALIBRATION EQUATIONS (Continued)
 

Gyro Three
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ACCELEROMETER CALIBRATION EQUATIONS 

Scale Factor and Cubic Term 

Accelerometer One 
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ACCELEROMETER CALIBRATION EQUATIONS (Continued) 

Bias and Second Order Term 

Accelerometer One 
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ACCELEROMETER CALIBRATION EQUATIONS (Continued) 

Accelerometer Three
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ACCELEROMETER CALIBRATION EQUATIONS (Continued) 

Accelerometer Three 
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where (Q6) corresponds to the pulse count from the kth gyro over the total 
time of datj collection. 

The vector pAk (k = 1, 2, 3) is approximated by the accelerometer readouts,therefore 

kA=> (DTk - (Zk1 

where (EY) k2 and (S)kl correspond to the pulse counts from the second and 
first string of the kth accelerometer, respectively. 

The total time of data collecting will be recorded as a count (E nT) from the
thereforesystem clock, 

At -> ST (Z nT 

where is the scale factor of the system clock. The subscript 1 serves to 
distinguih the clock pulse train used in calibration from the pulse train used in 
the Preprocessing computations. 

The total test table angle (¢0 2 ) will be recorded as a number of whole turns 
(or a number of fractions of whole turns), therefore 

wh2 --> So (En¢) 

where (Sn0 ) is the number of increments of angular displacement, and So is 
the scale factor which converts the number of increments to a finite angle. 

In Section 3. 3 we presented a description of the laboratory facility with all of its measure­
ment and computational devices. In Figure 3-6 we showed the possible equipment interfaces. 

For the purpose of calibration all instrument data collections will be accomplished with 
the frequency counters shown in Figure 3-6. (See Section 2. 1 of the trade-off document 

for the reason why the counters are used.) The specific employment of the counters for 
all positions is described in the Laboratory Procedures Manual in the sections entitled 

Fundamental Modes. Also found in the Fundamental Modes sections are all events in the 

collections, transfers, and computations during calibration in the form of flow diagrams 

accompanied by descriptions of the activities 

4.4 PRECALIBRATION REQUIREMENTS 

The required constants contained within the equations tabulated in Section 4 3 were pre­

sented as functions of instrument outputs and parameters describing the environment inputs. 

Before the data can be collected which is necessary as inputs into the equations, several 

initial survey tasks must be accomplished. 
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* The environment selections were presented in Sectjon 4. 2 as choices of the 01 
and 02 gimbal angles and the first column of the TR matrix The test table 
orientation is, however, controlled by choices of four gimbal angles; therefore, 
the choices of the first column of TB R must be expressed in terms of the gimbal 
angles, which we know from Section 3 to be 03 and 04' 

" 	 The TB R matrix is a function of the T B I matrix as well as the 03 and 04 gimbal 
angles. We must, therefore, determine TBI before we can equate the first 
column of TB to 03 and 04. 

" 	 The gyro bias and compliance constants are seen (see Section 4. 3.2) to be a 
function of (among other things) the second column of the TBR matrix. That 
column can be determined (once TB I , 03, and 04 are known) by a use of equalities 
presented in Section 3. 

In all previous developments it was assumed that TF E (the transformation between 
the test table base frame and the earth frame) was equal to the identity matrix. 
In the operational laboratory this matrix will deviate (by small numbers) from the 
identity matrix. It is, however, possible to correct for the deviation by the use 
of bubble levels. 

In the following subsections we present the manner in which all of the above tasks are ac­

complished The order of presentation is the chronological order in which these tasks 

should be accomplished in the laboratory. 

T B I 4.4. 1 Survey 

The initial activity subsequent to the attachment of the ISU to the test table is the determi­

nation of the orientation of the ISU body axes relative to the test table frames. This cor­

responds to the evaluation of the TB I matrix (see Section 3.2. 1). In Chart 4-32 we see how 

this is accomplished. 

In Chart 4-32 we refer to the test table orientation used in the determination of TBI as 

Position Zero. Position Zero can be any orientation, but the zero orientation shown in 

Figure 3-2 might be the most convenient for it results in 

(T10 TOR T RT T TF TFE-I = I (the identity matrix) 

T B E (The matrix product TB S TSE = is functionally equal to the Mirror Alignment Matrix 

shown in Chart 2-6. As mentioned in the discussion of the Mirror Alignment Matrix is 

Section 3.1.2 the particular evaluation of this matrix depends upon the particular geometric 

angles which are outputted from the autocollimators. At the tune that the form of those 

outputs are known, the exact form of TB S T SE can easily be determined.) 

The TBI Survey activity is formalized as a "Precalibration" activity in the Laboratory
 

Procedures Manual. It will most probably be accomplished very near the time that the
 

ISU is placed on the test table. It will probably not be necessary to repeat this survey 

except when the ISU is removed from the table and then "rebolted" in another orientation. 
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CHART 	4-32 

TBI Determination 

Given. 	 a set of resolver readings 00, 0, 0, and0 from position zero and the 
transformation from body to earth axes via autocollimator readings 
(TBSO TS E0) 

Find: 	 the matrix TBI which transforms from the body axes to the axes fixed 
to the inner gimbal of the test table. 

1. From the laboratory geometry definitions described in Section 3 we have: 

TBI - (TBSOTSEO) (TloOTonOTaTOTFoTFE)-i 

where TBSOTSEO is given oy the autocollimators and 

0 1 0 

T100 - coso 4 0 -sin 0 

£ 

[ 
Oi

]-sin 04 0 -Cos 00 

0 1 0 

TORO Cos 030 0 -sin 03 

-sin 0 0 -Cos 

010 
TRTO - Cos 00 0 -sin 0 

0 0 
-sin 020 0 -Cos 02 

00 1 0 0 

TTFO 	 - Cos 00 0 -sin 0Fi0 0 -o 0 
0L 0 

-sn0 0 -co 
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4. 4.2 Test Table Resolver Settings 

The calibration selections in Section 4. 2 were accomplished by dictating values for 01,
 
02 and the first column of the TB R matrix. In implementing those selections it is neces­
sary to equate the TBR choices to the controllable 03 and $4 gimbal angles. In Chart 4-33
SBR TBI 
we see the functional relationship between the first column of T and 03 and P4 (and T
 

which is known from the procedures developed in Section 4.4. 1).
 

In Chart 4-34 we present the ¢1, 02' 03, and $4 settings for all fifteen calibration positions. 
Included in that chart are the equations for the determination of 03 and $4 from the choices 
of the first column of TBR. Those equations are special cases of the arithmetic contained 
in Chart 4-33 for Positions 1, 3, 5, 13, 14, and 15. A duplicate of Chart 4-34 is presented 
in the Laboratory Procedures Manual. The numerical solutions for ¢3 and 04 must be ac­
complished and placed in the chart before calibration can be accomplished. 

TB R m 4. 4. 3 Determination 

The gyro bias and compliance computations presented in Section 4. 3 are functions of 
(among other things) the second column of the TBR matrix for Positions 1, 3, 5,13, 14, 
and 15. The TBR matrix is a function of 03 and 04 (see Section 3. 2). The gimbal angles 
03 and 04 are known by the use of the computations presented in Chart 4-33. In Chart 
4-35 we present the computations which develop the required second column of TBR from 
the known 03 and $4 andgles (and TBI as given by the computations presented in Chart 4-32). 

Although not required for calibration purposes, the computations of the third column of
 
the TB R matrix are presented for information purposes in Chart 4-35 The first column
 
of TBR is known because it was utilized as the environment selection control parameter.
 

4. 4.4 Bubble Level Corrections 

Throughout the development of the calibration techniques it was assumed that the test table 
base frame is aligned with the earth axes, that is: 

TFE = I (the identity matrix). 

In practice this matrix will deviate from identity, due to such things as solar heating of 
the bailding and settling of the building. The resultant low frequency motion of the base 
relative to the earth can be corrected (immediately before calibration data collection) by 
the use of buble levels. There are three ways in which the corrections can be implemented. 
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CHART 4-33
 

0WIO Equations 

TBRmGiven. TBI, TBRm , TBRm 
11 21 ' 31 

Find: ¢W and Om 

1. We know that 
= T BI TIom TORmTBRm 

or (T BI)TTBRm = TIOn TORm 

where TBI is given from a prior survey and 

0 -sin OWcos Om 

TIOmTORm sin osn Om Cos OM cos OW sin oW 

cos o ccs OMsin 0mcos 02 -sin In 

2. Solving for the first column of TIOmTORm we have 

BI TBRmCos BIOMT=m TBin+R TBI TBRm 
3 11 11 21 21 31 31 

Om si 0 = TBI TBRm +BI TBRm TBI TBRm 
3 4 12 11 T22 21  + T32 T31 

sin Oo Om TEmBI BI n TBI TBRm= T TBRm
3i o13 4 11 + T23 T21 + T33 T31
 

which gives the desired functional relationslups.
 

4-68
 



CHART 4-34 
TEST TABLE RESOLVER SETTINGS 

Position I Position 2 Position 3 Position 4 Position 5 Position 6 
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CHART 4-35
 

TBRm Determination 

0¢in 


TBRm
 

Given: oW, and T B I 

Find: 

1. 	 We know that 

T BRm =TBITIOmTORm
 

where TBI is given from a prior survey and
 

cos 03 0 -sin 03
 

TIOmTORm = sin sn Om cos Om cos Om sinm
 

sin OW cos -sin cos oW cos
 

2. 	 The first column of T B Rm is the calibration control parameter. The values of 
this column have already been included in the calibration equations. 

3. 	 The second column of T B Rm which is the only column required for inclusion into 
the calibration equations, is: 

T B I TBRm = cos 0i- TBI sin 0i1212 4 13 sin4 

Tm- T23 si These equations need only be solved2 for m=l, 3, 5, 13, 14, and 15. 

"BRm BTI III2- T33 sin 0W 

4. 	 The third column of T Rm which is not required in the calibration equations, is 
given for information: 

+ T B I TBRm = TBI sin O Cos Om sinOm + THE Cos mOmcos Om13 11 3 1 2 c 3 i 4 + 1 3c 3 4 

= TBI 	 Cos OM m l4TBRm T sin Om + T B I sin mn+ T23 Cos Cos23 - 21 03 +122 co 3 si 4 23 co 3 co 4o 

TBRm ~BI inm BTIO m mn TBI mn m33m= _T31 s 03 + T3 2 cos 03 sin 04 + T 3 3 cos 03 cos 04 
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" The first and most obvious way is to incorporate 'leveling screws on the base 
of the table.
 

" 	 Another technique is to store the TB I matrix in the computer as other than an 
identity matrix, and to input the bubble level readings taken before data collection. 

* 	 The third technique is to place two of the table gimbal angles in the direction o 
the two bubble level degrees of freedom, and correct for the lean of the table by
small corrections to the gimbals. 

We choose the third technique because it is the easiest to implement. 

The bubble level corrections for the rotating ISU in Positions 1 through 6 need only be 
imposed on the trunnion axis (i. e. $ ). As a matter of fact, if the motion of the table 
base is less than, say, 20 secon3s no correction is required. This is because the prin­

cipal input to the gyros in Positions 1 through 6 is the table speed, which is unaffected 
by the motion of the base. In Positions 7 through 15, however, the principal innut to the 
instruments is g; therefore the level corrections are essential. This is why, in every 
position after the sixth, we placed the outer axis in the north-south direction. Assuming 
that the two bubble levels are in the east-west and north-south directions, level corrections 

can be imposed on the Oland 03 gimbals. 

4.5 	 IMPLEMENTATION OF CALIBRATION TECHNIQUES 

In this subsection we begin the formulation of all of the aforementioned topics into a for­
malized laboratory calibration procedure. In formulating these procedures we will intro­

duce several housekeeping operations which have not been previously mentioned. 

The discussions in this subsection are directed toward a presentation of the chronology 
of events which occur during the calibration. We will not go into great detail, the detailed 
presentation being left as the task of the Laboratory Procedures Manual. This subsection 
should be considered as the interface between this Development Document and the Labora­

tory Procedures Manual. 

The 	calibration procedures are divided into four separate activities. 

* 	 Turn-on 

* 	 Precalibration 

* 	 Calibration 

* 	 Computation. 
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Whether accomplishing a complete or partial calibration, the above four activities occur 
in the order presented. In the following paragraphs we will briefly describe each activity: 

Turn-On 

These activities include all of the various housekeeping tasks which include such things as: 

* Power-on 	to equipment 

" Monitor equipment operation. 

The detailed specifications of these activities cannot be tabulated until the laboratory facility 
is completely defined. In the Laboratory Procedures Manual a space has been allocated 
in Part I for inclusion of the details of turn-on to be specified at the time when the labora­
tory is configured. 

Precalibration 

At some time, between the placement of the ISU on the test table and the initiation of cali­
bration, the following system survey activities must be accomplished: 

" Determine 	TBI 

" Find 03 and 04 for all calibration positions 

* 	 Find the second column of the TBR matrix for all calibration positions
 

P, ,S T , and S.
* Store g, wE, 

The first activity locates the ISU relative to the test table. The second activity determines 
the inner and outer test table gimbal angles settings for al calibration positions. These 
settings were shown in Section 4. 4. 2 to be a function of the TBI matrix. The third pre­
calibration activity computes the second column o. the TBR matrix, which was shown in 
Section 4. 3. 2 to be necessary for computing the gyro bias and compliance terms. The 
fourth activity records system numbers required in the calibration equations. All of these 
activities are described in detail in Part I of the Laboratory Procedures Manual. 

Calibration 

At any time subsequent to the completion of the Turn-on and Precalibration activities, the 
ISU can be calibrated. We formally define the calibration activities as the completion of 
the following list of activities for any or all positions: 
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* Connect instruments to frequency counters 

* Set frequency counters 

* Set test table resolvers with bubble level corrections 

* Set table speed 

* Collect data 

* Transfer data to computer. 

A complete ca-ibration would accomplish the above activities for all positions The order 

of positions is completely arbitrary; but the packages of six (1 to 6 and 7 to 12) will proba­

bly be accomplished in numerical order. A partial calibration need only accomplish these 

tasks for positions required for the determination of the required constants. The details 

of the above activities are found in Part II of the Laboratory Procedures Manual. 

Computation 

Computation is very simply the solution of any or all of the equations in Section 4. 3. 2. A 

complete calibration requires all computations and a partial calibraton would require the 

solution of only a few of the equations in Section 4. 3.2. The details of the computation 

procedures are described in Section 11-4 of the Laboratory Procedures Manual. 
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SECTION 5
 
DEVELOPMENT OF AL IGNMENT TECHN IQUES
 

In Section 2 alignment was defined as the initialization of the matrix which transforms from 
an ISU-fixed set of axes to a navigational set of axes. The ISU axes were defined by use of 
two mirror normals and the navigation axes were defined as an earth-fixed, local-level 
frame. Transformation of this alignment problem to any other alignment problem using 

different ISU and navigational frames is then a simple problem of coordinate transformation. 
The discussion in Section 2 revealed that alignment could be accomplished by measurement, 
in body and/or earth-frame, of the components of two system vectors. Three different 
choices of these vectors lead to the three alignment techniques: Mirror Alignment, Level 
Alignment, and Gyrocompass. 

Further analyses in Sections 2 and 3 lead to the functional description of the three alignment 
techniques shown in Chart 5-1. In this description each technique is further broken down 
into four basic types of computational routines. These are: 

o Preprocessing Computations 

o Estimation Routine 

" Estimation Matrix Computations 

* Alignment Matrix Computations. 

These routines have as inputs certain a priori information, calibration constants, instru­
ment outputs, and/or outputs from other routines as indicated in Chart 5-i. 

Before beginning the detailed development of alignment it is important to note several points 
which dictate the viewpoint adopted in the remainder of this section. First note that there 
are basically three types of routines indicated in Chart 5-1. They are Preprocessing, 
Estimation (including both Estimation Routine and Estimation Matrix Computations), and 
Alignment Matrix routines. The mathematics of the Preprocessing Routine was developed 
in subsection 2.2.5 and will be considered only briefly here (in Section 5.1). The Alignment 
Matrix routine uses estimated values of gk B and mirror azimuth (Level Alignment) or 
g. Bk and wE. Bk (Gyrocompass) to initialize the alignment matrix T. This relatively 
straightforward mathematical problem has been discussed in Section 2 and is considered 
again rather briefly in Section 5. 5. The remaining routine, Estimation, is the major sub­
ject of discussion in this section. Before developing various estimation techniques, the 
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CHART 5-1 

ALIGNMENT FUNCTIONAL DIAGRAMS 
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environment and sensor noises are modelled in Section 5.2. Then in Section 5. 3 and 5.4 

specific estimation techniques are developed under different assumptions. The explicit 

equations for the recommended alignment techniques are summarized in Section 5. 6. 

Second, it should be noted that there is no detailed discussion of Mirror Alignment since 

this section emphasizes estimation which is not relevant to the mirror alignment problem. 

The Alignment Matrix Calculation discussion of Section 5.5 is, of course, applicable to the 

mirror approach when mirror azimuth and zenith angles are given. 

Third, the reader should be forewarned of the emphasis on Level Alignment over Gyro­

compass in this section. It was found, not unexpectedly, that the alignment errors in 

Gyrocompass may easily be two orders of magnitude larger than those expected in Level 

Alignment. This is, of course, mainly due to the low signal-to-noise ratio of the earth­

rate signal in gyro quantization noise. Further details of this comparison of Level Align­

ment versus Gyrocompass are given in Section 5 of the trade-off document (Volume 2) 
where a Monte Carlo simulation of an alignment problem is used to obtain quantitative 

results. 

Finally note that Section 5 of the trade-off document justifies many of the comments included 

below. Section 5 of Volume 2 includes further discussion of the assumptions required and 

the results of a simulation of the proposed estimation techniques. It is important to note 

that in several places important assumptions have been made with little justification when 

the data was not available to include completely realistic values. The collection of ac­

curate data about the noise environment is a very difficult and expensive problem How­

ever, all results of this study have been presented in such a manner that when more ac­

curate data is available, modifications can easily be made. 

5. 1 PREPROCESSING COMPUTATIONS 

The Preprocessing Computations yield integrals of angular velocity and acceleration in the 

body frame" 

t+At t+At
SW.B dt a-Bdt , j 1, 2, 3. 

t t 
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The inputs to the computations are the counter outputs ('TN2 k (s6k, and (1nT), 
k = 1,2, 3. The calibration constants for each sensor are required, along with the trans­
formations from the sensor axes to body axes QA, QG. The notation is defined in Section 
2. The preprocessing equations are developed in subsection 2.2.5. They are reproduced 
in Chart 5-2. In this chart, dots at the left hand margin indicate the alternative computa­
tions used for Level Alignment or for Gyrocompass. Note that At was assumed to be 
small in the development of the equations in Section 2.2.5. This restriction is not required 
in the Preprocessing Computations used in alignment since the ISU is relatively stationary. 

5.2 ENVIRONMENT AND SENSOR NOISE MODELS 

Before developing processing techniques, we must describe the effect on sensor outputs of 
various random inputs: environment translational acceleration and rotation, accelerometer 
noise, and gyro noise. This section is a continuation of Section 3.2.2 which describes the 
general characteristics of the environment noise. In the development of estimation tech­
niques, quantization errors are not included. Several of the resulting techniques are tested 
with a Monte Carlo simulation to determine the effect of quantization, computer word length, 
and anomalous noise inputs. The results are presented in Section 5 of the trade-off docu ­
ment. In the following paragraphs, we first describe the environmental components of the 
sensor inputs (5.2. 1) and subsequently describe ther effects on the observed sensor out­
puts (5.2.2). 

5.2. 1 Sensor Input Acceleration and Angular Velocity 

It is convenient to define a "level frame" that moves with the ISU and whose average orien­
tation is collinear with the earth axes, as indicated in Figure 5-1. The body axes are fixed 
relative to the level axes. If there were no environment disturbance, the level frame would 
coincide with the earth frame. 

Let aLk be the acceleration of the level frame along Lk. Then 

a al g + a1: a~L2|
aL3= = g-L2+2UL +U3 
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CHART 5-2
 

PREPROCESSING COMPUTATIONS 
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where al' a 2 , a 3 are the environment-induced accelerations along L1, L2, L3 . The 

expected value of a. is zero. To first order, L• U = 1 since the rotation from vertical 

is the order of one minute of arc or less. Further, U-L 2 and U.L 3 can be represented 

as small rotations about L3 and i!2, respectively. Let 03 = -U.1 2 and 82 = U.L 3 . 

Then, to first order, 

fg +° 
L gjg03 +a2] 

96g2 +a3! 

Further, the angles 82 and O3 have zero expectations. Let T 1 be the orthogonal trans­

formation from the level frame to the body frame. Then the acceleration in the body frame 

a is 

aB = TlaL = T, + T 1 -gO3 + TiI a 2 

The first term is the average gravitational acceleration in the body frame. The second 

term is the variation of the acceleration due to level frame rotation. The last term is 

the environmental acceleration disturbance. The power spectra of a 1, a2, a3 , 02, '3 

can be obtained from environmental test measurements. 

Next, consider the angular velocity. Let wLk be the angular velocity of the level frame 

about L k . Then 

WLl wEU-'Li + wEN-'Ll 1 

E E 

where w U + WEN is the angular velocity of the earth and Pk is the environment­
induced angular velocity about Lk. To first order, U-L 1 N-L 3 = 1. Further assume 

=that there is no rotation about U and hence 1 =0 and N.L 2 = 0. Also, 2 z ;2, 63 = 63, 
and N.LI = 62. Hence, 
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to L 	 +22 
EU2 + 'Lq + as 

W EOE 

B T1 0 1 - UE83 + T, b2 
T 	 0 ++ W 

WE WE02 63 

where w. is the angular velocity in the body frame. These three terms have interpreta­
tions analogous to the corresponding terms in a3 . 

Since the system has been calibrated, the transformation from body axes to sensor input 
axes is known. Let T 2 transform a3 to the accelerometer input axes; let T 3 transform 

-2B to the gyro input axes. Let 

aA = T2a 8B 

and 	 = T--

These vectors represent the sensor inputs. 

There are two alternatives in estimating gravity and angular velocity. First, we can 
estimate the average components in the body frame: 

TI[O and T 1 0] 	 (5-i) 

Second, we can estimate the components at some time t* in the future, t*> KAt: 

T[] + T1[E03(t*) 	 (5-2) 
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tT1 0 + TI -U (5 -3) 

E ,WE 

Where the strapdown system is initiated t* - IKAt seconds after the last measurement. 

Let t* - KAt = Et, the prediction interval. 

5.2.2 Observed Sensor Output 

In the development of a processing method, we will assume that the gyros and accelerom­
eters are linear with unit scale factors and zero bias. Actual values will be used m the 
application to a real alignment problem. Further, we assume that the gyros and accel­
erometers have relatively large band widths, i.e., we will neglect the sensor dynamics. 
The preprocessed sensor outputs are integrals of acceleration and angular velocity. 

Namely, the outputs are: 

t t 

pAt) = S A(r) + fd 

t-A t t- At 

PG(t) St _G()dT + nG() dT 

t- At t- At 

where nA(T) and nC(7) represent noises introduced by the sensors. Further the outputs 
are observed at discrete tnes At, 2 At, --- , KAt. Denote these outputs by PA(j) and 
pG(j)° It is convenient to transform the outputs pA(J) and p G (j) to the body frame: namely 

pB() = 21 0A) = (p-i) At T3 0g8 9 2 i- d

io ]_A_ S A + g jT 1 

Tojr)I ± InA2Cr) d2 
0 -i) At( 3(T)j nAsr)i 

5-917 
 dr(54 
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rG(J) = T 1 pG() ) K] + T1 L dr 

01)t At n0l()]

L+ i r +~ JAt 1 dr(T 

(. At 0 P+ (-1) A t nG3 (T) I 

Since T1 ,s orthogonal, and since T 2 and T are nearly orthogonal, T 1 S i-) + T21nA(r) 
and T3nG(r) have the same power spectrum as U(T) + nA(T) and n (T), respectively. 
This simplification will be used in equations (5-4) and (5-5) since only second order 
statistics are used in the following discussion. 

Note that the components of a (7), nA(r), and nG(r) have been assumed statistically 

independent and identically distributed. 

In the following sections, estimation techniques are developed based on the above models. 

5.3 ESTIMATION OF GRAVITY IN LEVEL ALIGNMENT 

Estimations of the components of gravitational acceleration in the body frame are based on 
the observation equation 

= T 1 + T 1 -g 3 (r) + U (T) + nA(T) dr (5-6) 
(j-l1) At 00i L 62) 

with j=1 .... , K. Using the observed accelerometer outputs in the body frame, PA 

(=l, ... ,K), our goal is to estimate the average components (5-1) or instantaneous 
components (5-2) in the presence of the disturbances _o(t) and nA(t) given in (5-6). The 
former problem is described in the following Section (5.3. 1); the latter problem is 
discussed in (5.3.2). Note that the basic operation is differentiation; we obtain ac­
celeration from velocity measurements. 
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In the following subsections several estimation methods are developed from mathematical 
statistics. A general discussion of Level Alignment techniques appears in 5.3.3; and the 
recommended technique is presented in 5. 6. The characteristics of several techniques are 
described in Section 5 of the trade-off document. These techniques are simple average, 
posterior-mean estimate of average components, posterior-mean estimate of instantaneous 
components, and iterative estimate of instantaneous components. 

5. 3. 1 Estimation of Average Components 

The objective here is to estimate the average gravitational acceleration components in the 
body frame namely: 

EB = 

Let gB(t*) denote the true gravitational components at time t*. Then the rms deviation of 
the estimated average components (say a B) from the true components can be bounded, 

namely: 

E[(gB(t*) -_B)T(_91B(t*)_-gB ) ] 1E(g9B(t*)- B])T(_B t)_B ) ] + E[(_gB-_B)TgBB)
E ~~t)j)(g (t*).j9 -B 

+ 2E1(g9t*- )T(kB j, [T~ - T iji_/2 

1i/2 Th2beci ei+ [EB 

The first term corresponds to the rotational motion of the level frame about the average. 

The second term corresponds to the error in B as an estimate of --gB- The objective is 
to mimmize the second term, accepting the first term (the error from the motion about 

its mean). 

In the following subsections three approaches to estimation are considered- simple average, 
least squares, posterior mean. The first approach does not use any a priori information 

about the noise spectra, alignment, gravity or earth rate magnitudes. The second approach 
uses prior measurements of the noise spectra. On the other hand, it does not include the 
prior geophysical measurements of gravity and earth angular velocity. The third approach 
uses a priori information about alignment, gravity magnitude, and earth rate magnitude 
plus measurements of the noise spectra, but the noises are assumed to be gaussian 
processes. This third approach has several advantages: (i) prior geophysical measure­
ments are included and are weighted with their accuracy; (i) the estimation techniques are 
comparable to those obtained from a least squares approach in complexity; (1ii) the resulting 
techniques can be used recursively to continuously update the alignment matrix; (iv) the 
posterior-mean estimate is optimum with respect to a large class of loss functions, not 
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just quadratic. From noise simulation, we find that the posterior-mean techniques are 

not sensitive to the gaussian assumption. (See Section 5 of the trade-off document.) 

5. 3.1. 1 Simple Average 

This approach is based on the assumption that we do not have any prior information about 
the noise, gravity, earth rate, or alignment. In this case 

1 K A 

KAt j=1 

Note that the same estimate is obtained if K=i, and At is replaced by KAt. 

5.3.1.2 Least Squares 

Before developing a least-squares technique, it is convenient to define certain notations. 
Let X be the 3K vector whose components are 

Xj -- PB0); Xj+K = P1320j), Xj+2K = PB303)A~(JX =APA A 

withj = 1, ... , K. LetHlbethe 3Kx3 matrix 

° K-rows 
A t 5 

o At o 
H I ,K-rowsI 

0 At 50 0 At 

K-rows 

jAt 
r( T ) d T,Let 0 r(j) = (_i)At with r = 2,3. 
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Let (Dbe a 3K vector with components 

j = + g(T1)13 02(l) _ g(T 1)12 O3() 

=b5+K + g(T 1)2 3 02(l) - g(T) 2 2 03(j ) (5-7) 

+2K = + g(T1) 3 3 02(J) -g(T 1 )3 2 O(i) j = 1,2,...,K. 

Let-T = (02(1)".", 2 (K)) and = (0 3(1),...0 3(K)). Then i=H2-21 

where H2 is the 3Kx2K matrix defined by equation 5-7. Let N be a 3K vector with 
components 

NJ = (J t)t[a '(T) + niAl(f 1 ] dT 
, jAt 

N = lAtj+K (J-1)At Lcu(r) +nA2(T) 

jAt

Nj+2K = (fl)At La3(r) +nA 3(r)] dT
 

with 3= 1, ... , K. Then the basic observation equation 5-6 can be rewritten as 

'X = H1 -B + + N (5-8) 

The objective is to estimate B m the presence of noise 4' + N, given the observationsX. 
The covariance of this composite noise is the sum of the covariances of 41and N since 
they are independent: 

F11+N = + N 
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Further 

= 2 0 ) 2 

where L O0 is a K x K matrix with elements 

(DO¢i = E[o2(i ) 02(3~=i 2i 23)3 , 1, j = 1, ... ,K. 

Note that a2 and 63 are assumed to be independent and identically distributed. Further, 

= aa+nn 0;a+ 00FN [ 	 n 

where % + n is a K x K matrix with elements 

(n +n)ij = EENiNj I , i, = ,..., K. 

These covariance matrices can be expressed in terms of the correlation functions, 
namely 

At 0 
E[ 2(i) 02 (l)] = f [ At-A] 06 ( + (j-i) At) d I [At + Ml O0 (A + (j-.) At) dg 

0 -At 

At 	 0
 
E[N.Nj3 = 0 EAt-p1 0, (p + (j-i) At) dp + A LAt +ILI 0j(p+(j-i)At) dg 

At 	 0 
+ 	 f EAt-41 on (A +(j-i)At) d + f [At - Al 0n L+ (p-i) At) dfi 

0 -At 
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where 0" ce, a nd on are th correlation functions of O(T), o(r), n(T), e.g., 0e = E(B(0)6(r)). 
From prior experiments we estimate the noise power spectra and correlation functions. * 
The above integrals may be evaluated numerically or mathematically when the correlation 
function is approximated by a mathematical formula. For example, assume 

c l=e-c2T 

Then 

2e e-C2 i-il h] 

(ZL ) j c2 Ecosh (c2 At) -11, i 

2 c2 A t - 1 + c2At]
((c)1 -2C [e ­

(c2)2 

The same methods can be applied to the other covariance matrices. 

Note that H2 is evaluated by using prior estimates for the value of T1 and g, denoted by T 1 

and j. Precise values are not needed since H2 is used in the noise model. Corrections to 
H2 would be of second order. 

Based on the composite measurement equation (5-8), the objective is to find the unbiased 
linear estimate of -BI say _,(X), which minimizes Elg B - _(X)I2 as a function of g(X). 
It follows from the Gauss-Markoff theorem that ^B(X) is the value of g that minimizes 
MX- M Hlg 2 , where M is the nonsingular matrix such that MZNMT 

- I. ** 

*Spectra data is given by H. Weinstock in "Limitations on Inertial Sensor Testing Produced 
by Test Platform Vibrations", NASA Electronics Research Center, Cambridge, NASA 
TN D-3683, 1966. 

**See H. Scheffe', Analysis of Variance, John Wieley, 1959, p. 14. 
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In fact gB(X) is a minimum variance estimate for each component of - One can show that 

-T I HH1 1 HTr2+NX (5-9) 

Further the expected value of _B(X) is--,g even if we have used an incorrect covariance 
matrix rd)+ N' The covariance matrix of ^B is 

E[( TI =(HT -1 -i 

E(-B -B -B = (H1 D0+N H1 ) (5-10) 

5.3. 1.3 Posterior Mean 

In the following discussion we assume that 6 (T'), Q(T), _n 7) are gaussian processes. 

Hence the "optimum" estimate of B is the posterior mean. This estimate is optimum 
wLth respect to any loss function L(E) on each component where* 

(i)L(0) = 0 

(ii) L(E2) L(E 1) t 0 when E2 C'1 0 

(iii) L(E) = L(-E). 

For example, let g be an estimate of Then 

E 'rB 1l 2 

and 

E B 

and 
E jB3_gB312­

*See S. Sherman "Nonmean -Square Error Criteria" IRE TRANS. ON INFORMATION 
THEORY, Vol. IT-4, No. 3, p. 125. 
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are all minimized when kB is the posterior mean. As a second example, let E1, E2 , E3 

represent the maximum admissible errors m components of gravity. Let 

EI, E L 
L (E) 

tEl> E 

Then 
EEL l(Bl-91Bl)l = P)IjBv1311 > 1 

and E[L2 (gB 2 -gB 2 )] = > 

and E[L3(9Bs-9ABQJ = PrflI B3-aB31 E3 

are all minimized when !B is the posterior mean. (The expression "Pr (-]" denotes 
'"probability that [-i 1.) 

To evaluate the posterior mean, we first determine the conditional distribution of X, given 
-B" In this subsection the notation is the same as that in 5.3.1.2. From equation (5-8), 
it follows that Xis normally distributed with mean H& and covariance FI+N . 

From prior observations we have an estimate of orientation of the ISU; and hence we have 
an estimate of T1, say t 1 . Also we have an estimate of the magnitude of iB say j. With 
these estimates, a prior distribution can be defined for iB' namely, gaussian with mean 

gB =T
1
 

and covariance [ 2 

0 0 -22 

where a is the rms error in the estimate of .anda is the rms error i the estimate 
of vertical (expressed in radians). 
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This prior distribution implies that the distribution of -B is isotropic in a horizontal 
plane. 

Applying Bayes formula we find that the posterior distribution of -B, given X, is gaussian 

with mean 

= ( 1 1 + l 1-B (5-11) 

and covariance matrix 

(H,T rr1 lnrll ) (5-12) 

The estimate RB () represents the optinum combination of the measurements X and
 

prior data weighted by their respective errors. Note that the covariance is
 

_ ^ -X)Cl-(gT3 TZ -1 !-1 

EIXIB -=B(()){ -(X))Trh 1B H-I ++ Z''l 

If our prior alignment information is poor, the posterior-mean estimate reduces to the 
least-square estimate. Specifically, as a -* and u.- then E-L 0 and expression 

(5-11) approaches expression (5-9). Also the covariance (5-12) approaches (5-10). 

The estimate (5-11) and covariance (5-12) are\the basis for an iterative alignment technique. 

B( 1 ) 32Bcifically 
The second estme and covane are obtained from a second set ofK 

Specifically, the initial E) 1 are obtained from K measurements based on and 

measurements based on ^() and 23(1); etc. This iterative technique is sub-optimal since
 

we are summarizing all of the prior measurements in terms of Q) and ZQ).f A true
 
recursive "least-squares" technique involves significantly more computation since suc­

cessive measurements are correlated. * Also, all back measurements are used in the
 

current computation. The intermeasurement correlation can be eliminated by augmenting
 

the measurement variable. ** This approach also results in a very complex estimation
 

procedure. From a practical viewpoint, the sub-optimal technique described above is
 

a reasonable compromise. 

*P. Gainer, "A Method For Computing the Effect of an Additional Observation on a
 
Previous Least-Squares Estimate", NASA Langley Research Center, NASA TN
 
D-1599, 1963.
 

**See M. Aoki, "Optimization of Stochastic Systems", Academic Press, 1967, p. 38ff. 
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5.3.2 Estimation of Instantaneous Components 

In the previous subsection we developed several techniques of estimating the average 

components of acceleration 

In this subsection the objective is to estimate the instantaneous components at time 

t* > KAt; i.e., 

T 1 + T 1 g6 3 (t*) 

[ j+ L go 2 (t*)J 

In the following discussion we assume that the stochastic inputs 0. (T), a (r), nA(-) are 
gaussian processes. The discussion in Section 5.3. 1. 3 applies here; the posterior mean 

will be used to estimate instantaneous components. If our prior alignment data is poor, 
the posterior-mean estimate reduces to the least-squares estimate. 

The vectors X, N, 01 -2, and -B2 are defined in Section 5.3.1. Let S* denote the 
instantaneous components i.e., 

- T [ + Ti -gE3(t*)t 

0L g 0 2 (t*) 

To obtain the conditional distribution of S* given X, we first obtain the joint distribution 

of (S*, X). The components of (S*, X) can be expressed in terms of fundamental random 
variables as follows: 

0 =bflj +(T 1)j 3gO@* (T1 )j 2 g9o* j -1, 2,3 

X1 = gB1 At + (T1)13 g0 2 (i) - (T 1)12 g0 3 (i) + Ni 

XI+K = g32 At + (T 1)2 3 g¢ 2 (i) - (T1)2 2 g3(i) + Ni+K 

Xi+2K = gB3 At + (T1)3 3 g0 2 (i) - (T 1)32 g3(i) + Ni+2K , i = 1,2, 3, --- K 
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or in matrix form as follows: 

where is the vectorZT z - - -N 3 ,e* • .,2(), s 3(\), .. ( 

z-T =NB 3 1 NI' ", N3K' 2' 02(1), ... ,B2' g , 8*03l) 

and where V is the corresponding matrix. Note that V can be evaluated using prior 
estimates j and T,, since they only enter as multipliers of 09 and 03 . A prior distri­
bution of -B is based on prior alignment data - namely, gaussian with mean 

= TI 
LB 

and covariance 

Vu0 a I 
2o 22 

a sun3iar prior distribution was used m Section 5.3. 1.3. The variate Z is gaussian 
with mean 

2 T = [gBll iB21 iB31 0, ...,P0-1 

and covariance 
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-. '1 3I I i 

I I 3KN I 

Sz= c1c ¢ I ] K 

I ] K I I 

I I i l 

3K 1 K 1 K 

where 

2 ] c = E-(8) 
At
 

c3 = E[6¢2(3)] = O(T-(K+1-j)At-Et)dT
 
0
 

with t* = KAt + Et , 

e - b 2 i
If ¢8 is approximated by b , then 

CO b 1 

bl b2[(-l)At -t*[eb2Atl] 

Cj - e le 
Sb 

2
 

The condi-Hence, (S*)is a gaussianvariate with mean V zand covariance VrZ V T. 

given X is gaussian. t To evaluate the conditional mean and co­tional distribution of S* 


variance, we must partition the mean and covarince matrix as follows:
 

John Wiley,t See T.W. Anderson, "An Introduction to Multivariate Statistical Analysis", 

1958, p. 27ff. 
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v [a ] and (VLZVT [ABT B] 

where a1 is 3x 1 and A is 3x3. The conditional mean is 

(5-13)i* --BX + a1 + A-

- 1The 	conditional covariance is A . Note that 

E [(S* - _gB) (S* -B) T ] A-1 

The discussion of iterative techniques in subsection 5.3. 1. 3 applies here. The 
estimate (5-13) can be used in such an iterative technique. 

5.3.3 Discussion 

Several level alignment estimation techniques were suggested in this section. A Monte 
Carlo simulation was performed to select the best estimation technique. The simulation 
is discussed in Section 5 of the trade-off report. Three techniques were considered: 
simple average (5. 3. 1. 1), posterior mean (5. 3. 1. 3), and instantaneous estimation 
(5. 3.2. 1). Several values of K, At, and TEB were tried. The effect of nongaussian 
noise was also investigated. The instantaneous estimate is superior to the other estimates, 
in some cases the rms alignment error being one-half the alignment error obtained with 
the simple average. The instantaneous estimate is selected as the recommended technique. 
The simple average is selected as an alternate technique, since it is computationally less 
complex. 

The simulation was also used to investigate the characteristics of the recommended 
estimation techniques. The results of the simulation suggest the following conclusions 
for level alignment: 

0 	 The instantaneous estimate is probably not sensitive to the noise distribution 
(gaussian or nongaussian). 

a 	 Rotational motion from the environment is most probably the dominant source 
of error for long integration intervals (At > 15 sec). 

* 	 The instantaneous estimate is more accurate than the simple average for
 
Ata 30 sec.
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nstantaneous estimation and simple average appear to have comparable accuracy 
for At < 15 sec. 

* 	 If At is held fixed at about 30 seconds and the quantization increased, the 
instantaneous estimate becomes less accurate than the simple average. 

* 	 Low frequency environment noise is not the dominant source of error for short 
integration intervals (At < 15 sec). 

The above points are a summary of the detailed analysis of the simulation results included 

in Section 5 of the trade-off document (Volume 2). 

5.4 	 ESTIMATION OF GRAVITY AND EARTH RATE IN GYROCOMPASS 

Estimation of the components of gravity and earth rate is based on the observational 
AG

equations (5-4) and (5-5). Using the observed sensor outputs B() and­
j = 1, •.., K, we estimate the average components (5-1) or the instantaneous 

components (5-2) and (5-3). The average estimate is investigated in the following 

section, 5.4. 1; the instantaneous estimate is discussed in 5.4.2. The basic estimation 

problem in Gyrocompass Alignment is very similar to estimation in Level Alignment. 

Note that the basic operation is differentiation. We obtain acceleration from velocity 

measurements and angular velocity from angle measurements. 

In the following subsections several estimation methods are developed from a mathematical 

statistics viewpoint. A general discussion of Gyrocompass Alignment techniques appears 

in 5.4.3, and the recommended technique is presented in 5.6. The characteristics of 

two techniques are described in Section 5 of the trade-off document. These techniques 

are 	simple average and posterior-mean estimate of average components. 

5.4. 1 Estimation of Average Components 

The 	objective here is to estimate the average gravity and earth-rate components in the 

body frame - namely, 

B = T1[0 and E = TI 0 

In using an estimate of the average components, we are neglecting the motion about the 

average. The error bound derived in subsection 5.3.1 applies to wE as well as g. 
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In the following subsections three approaches to estimation are considered: simple average, 

least squares, and posterior mean. The first approach does not use any a priori informa­

tion about the noise spectra, alignment, gravity, or earth rate. The second approach uses 
prior measurements of the noise spectra. On the other hand, it does not include the prior 

geophysical measurements of gravity and earth angular velocity. The third approach uses 

a priori information about alignment, magnitude of gravity and magnitude of earth angular 

velocity plus prior measurements of the noise spectra. However, the noises must be 

assumed to be gaussian processes. This third approach has several advantages: i) prior 

geophysical measurements are included and are weighted with estimates of their accuracy; 
h) the estimation techniques are comparable to those obtained from a least squares approach 

in complexity; iii) the resulting techniques can be used recursively to continuously update 

the alignment matrix; iv) the posterior-mean estimate is optimum with respect to a large 

class of loss functions, not just quadratic. From noise simulation, we find that the 

posterior-mean techniques are probably not sensitive to the gaussian assumption (see 

Section 5 of the trade-off document). 

5.4.1.1 Simple Average 

This approach is based on the assumption that we do not have any prior information about 

the noise, magnitude of gravity, magnitude of earth rate, or alignment. In this case, 

K rt= _ -sp F (j)
KAt j=l B( KAt j= B 

Note that the same estimate is obtained if K = 1 and At is replaced by KAt. 

5.4.1.2 Least Squares 

Before developing a least-squares technique, it is convenient to define certain notation. 

Let X be the 6K vector whose components are 

X = PA() Xj+K = PA Xj+2K : PA( 

PX~ Xj+ PB2 () 
=j+K I Xj4K = P 2 , j+5K PB() 

with j= 1, 2,-.., K. Let H 3 be the 6Kx6 matrix 
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At At K 

At 

At 

• K 

At 
H3 At 

At 

:KAt

At 
At
 

6 

Let 

jAt
 
0r(j) = OrT ( ) dt 

(j-1) At 

jAt 6Td 
S(j-1) At 

with r=2) 3. 

Let P be a 6K vector with components 

q)T 1,) " .. ° Ic602 
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where 

)0 = 13 02 (j) - g(Tl)12 03(j) 

3+K - g(Tl)2 3 02 (J) - g(T) 2 2 0 3 (j)
 

j3+2K = g(T 1)3 3 02 (j) - g(T1 )
32 03(i) 

AK= E-T) 1 N + cT1 )1 3 &{]0 2c) 1)lwUo30) + (T, 1 024(i)-(T 

+ (T1)13 () (5-14) 

-A [=(TQ 2 1 1N +(1)23'~0 () -( 1)2 2 w () + (T1) 2 2 0) 
+ (T 1)2 3 4(j) 

)T + 0)
3+5K = +( T)12132 wEu08 0) + 1 32 P21(T)lN 1)33 'u~ 0T

+ (1) 3 3 3() 

with j= 1, 2, ... ,K. 

Let 0 = 102(1), 02(2), ... , 0 2 (K)] 

and ( _I)T =[q)+(i), 0+(2), .,¢() 

and 0+T [0 (2), 
and _= [3(1), ¢ 3 (2), ... , 0 3 (K)] 

and g)T [+(1), 0+(2), ... , 4(K)] 

Then equation (5-14) can be rewritten as follows. 

02 

-3 

where is the 6Kx4K matrix defined by equation (5-14) and is introduced for mathe-H4 

matical convenience. Let N be a 6K vector with components 
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= At
 
N = f [ali') + nAl(T)] d­

(j-l)At 

N]j+ K = t[a2 ( T) + nA2(T')]dT"
 

] At
 

Nj+2K = S [a3(T) + nA3 ()l d
 

(j-1) At

jAt 

Nj+3K = A n (
 

(j-1)At
 

JAt 

Nj+4K S nG 2 (T)dT
 
(J-1)At
 

jAt 

Nj+5K j Atn G3 
( T) dr
 

07-1) At
 

with J= , 2, *- •, K. The vector N represents the environment and sensor noises. The 

basic observation equations (5-4) and (5-5) can be rewritten as: 

X = H3[] + € + N (5-15) 

The objective is to estimate RB and FE in the presence of noise 4' + N. 

The covariance matrix of 4' + N is the sum of the covariance matrices, since the noises 
are independent; i.e., 

E +N D + FN 

Further, - I I 

E I I 0 0 

F D~ H~ E4T¢ + Io+ 0 H 

1 H I 010 iF 

Lo I o 
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where 

M0043j E102(W)20 )] 
{+ ij= EE{0 }
 

P )ij = E[0){i} )] 

with i, j = 1, 2, •.., K. Note that 62 and 83 are assumed to be independent and 
identically distributed. Further, 

n 0 

0 G r, 

where 

EININ3, ,-,K
(%+~n)ij E ij 

(ZG)ij -- EN iN J] , i, 3K+1, -- 4K 

These covarmne matrices can be expressed in terms of the correlation functions (see 
wheresubsection 5.4°1.2). The following identities* are useful in simplifying B,+0+ and 

d2
 
EEO (0)0'(I-)] = -- E18(0) ()] 

2
dT


d 
ELe(0) @,()l = -- E[6(0) O()] 

wherweo have assumed that (b2 x ) are stationary processes.) and 3 n(T
 

E. Przen, "Stochastic Processes", Holden-Day, 1952, p. 83. 
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Note that H4 is evaluated using prior estimates for the value of T1 and g, denoted by 
T, and g. Precise values are not needed since H4 is used in the noise model. Corrections 
to H4 would be of second order. 

Based on the composite measurement equation (5-15), the objective is to find the unbiased 
linear estimate of ( B, I),say ( n(X) IB(X)), which minimizes El B -g(X)j 2 as a function 
of g(X) and minimizes EI& - w(X)1.as a function of w(X). It follows from the Gauss-Markoff 
theorem that (B(X), 4B(X)) is the value of (g, w) that mmnizes 

2MX - MHS) 

where M is the nonsingular matrix such that Mf 4 +N MT = I In fact jB(X) and 
AB(X) are minimum variance estimates for each component of gB and -E. One can 

show that 

(5-16)
RB- ( T ~1 j 3 - 1 T3 - N%L 

Further the expected value of gB (X) is EBI and expected value of E (X) is OE , even if 
we have used an incorrect covariance matrix LP+N. The covariance matrix ofC- , U-B m 

9KB Z ) -is 

(3TiiN 3 (5-17) 

5.4. 1.3 Posterior Mean 

In the following discussion we assume that the stochastic inputs are gaussian processes. 
The "optimum" estimate of -B and BE is then the posterior mean as shown in Section 

5.3.1.3. 

To evaluate the posterior mean, we first determine the conditional distribution of X 
given ( B' E). In this subsection the notation is the same as that in 5.4.1.2. From 

equation (5-15) it follows that X is normally distributed with mean 

Hr3 and covariance LP+NO 
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From prior observations we have an estimate of the orientation of the ISU, and hence we 
have an estimate of T 1 , say TI. Also we have an estimate of the magnitude of _ 

(sahemagitdeofj, -E -E 
(say g), the magnitude of &SE, (say w ) and latitude (say X) from geophysical and 
astronomical measurements. With these estimates a prior distribution can be defined 

for IB - namely, gaussian with mean 

and covariance 

U2
 
g 

-22] 

where a is 	the rms error in the estimate of IB and a. is the rms error in the 

estimate of vertical (expressed m radians). Similarly, we can define a prior distribution 

for -E - namely, gaussian with mean 

0 -cos 	 ][aEsin 

S 1 	 0 1 0 0 

LcosX 0 sin i 0 

and covariance 

U2sin X 0 	 -cosX 0 0 sinX 0 cos 

2. 	 T 0 1 0 0 (E) 2 2 2 0 0 1 0 T 

cos X 0 sinX 0 0 ( E) 2, -cos X 0 sin X 

where a. is the rms error in the estimate of CO and is the rms error in the 
-EIBestimated direction of w. (expressed m radians). Let 

1T r 
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Applying Bayes' formula, we find that the posterior distribution of (-B' L-B) given X 

is gaussian with mean 

1X(H _ H3 lt3/'T 

BL{ S'H B] (-8 

and covariance 

- ( -H +N (5-19) 

The estimates _(X) and _4EB(X) represent the optimum combination of the measurements 

X and prior data weighted by their respective errors. 

The alignment procedure described by (5-18) and (5-19) reduces to a least squares 

procedure when the prior measurements are very inaccurate. Also, this procedure 

can be used recursively to update the alignment matrix (see Section 5.3. 1. 3). 

5.4.2 Estimation of Instantaneous Components 

The earth's angular velocity is small compared with gyro quantization, in contrast to 

gravity and accelerometer quantization. Hence, it is reasonable to estimate the average 

angular velocity and instantaneous gravity. In Section 5.3.3 we concluded that the 

posterior-mean estimate of the instantaneous gravity components is best, based on a 

Monte Carlo simulation. On the other hand, based on the same simulation, there is no 
advantage in using a posterior-mean estimate of earth rate as opposed to a simple 

average (see Section 5.4.3). 

5.4.3 Discussion 

Several alignment estimation techniques are suggested. A Monte Carlo simulation was 

performed to select the best estimation technique. The simulation is discussed in 

Section 5 of the trade-off document. Two techniques were considered - simple average 

(5.4.1.1) and posterior mean (5.4.1.3). Several values of K, At, and TEB were tried. 

The effect of nongaussian noise was also investigated. The simple average was superior 
to the posterior mean. An alternate technique is to use an instantaneous estimate of 

g (5.3.2) and an average estimate of wE. The accuracy will be improved but at the price 

of a significant increase in the computation requirements. Therefore, the recommended 
technique is simple average of both accelerometer and gyro data. 
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The simulation is also used to investigate the characteristics of the recommended 

techniques. The accuracy of gyrocompass alignment is strongly dependent on quantization 

errors of the gyro, The alignment error is of the order of 100 seconds of arc. 

5, 5 	 CALCULATION OF ALIGNMENT MATRICES FROM ESTIMATES OF GRAVITY, 
EARTH RATE AND OPTICAL ANGLES 

The final operation in alignment is the calculation of the alignment matrix (see Chart 

5-1). The basic equations are developed in Section 2.3.3 and are repeated here for 
completeness. The Mirror-Alignment matrix is presented in Chart 5-3, the Level-

Ahgnment matrix in Chart 5-4, and the Gyrocompass matrix in Chart 5-5. 

5.6 	 RECOMMENDED ALIGNMENT TECHNIQUES 

Referring back to Chart 5-1, we find that there are four basic types of equations: 
alignment matrix, preprocessing, estimation, and estimation matrix equations, The 

alignment matrix equations are presented in Charts 5-3, 5-4, and 5-5 for Mirror 
Alignment, Level Alignment, and Gyrocompass. The alignment matrix computations 

are the only computations needed for Mirror Alignment. The preprocessing equations 
for level alignment and gyrocompass are presented in Chart 5-2 of Section 5. 1. Note 

that the dots on the left indicate which equations are used for Level Alignment and 
Gyrocompass. 

The 	estimation equations for Level Alignment are presented in Chart 5-6. The estima­
tion matrix equations are presented in Charts 5-7 and 5-8, The estimation equations 

and matrix equations for Gyrocompass Alignment are presented in Chart 5-9. 

The procedures required to implement the preceding alignment techniques are presented 
in the Procedures Manual, Part 3. The estimation equations were programmed for the 

Monte Carlo simulation, which is described in Section 5 of the trade-off document. 
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CHART 5-3 

MIRROR ALIGNMENT MATRIX 

Inputs 0l, 1', 62 and ' 2 

From these quantities the alignment matrix is given by. 

(E x N).(M 1 xM 2 )
(U1t) (Ml x -(MA x M2) 

IMiXXM21 IM1 X M21 

(M X E) (M1 x M2) (N x U). (M1 x M2)
IMIxM 2I 

(M x N)'-(M lX_ (U xE)- (MiX M2 

1MIxM 2 1 1M1 xM 2 1 

where 
(AI My2)2]/2 

T x IM!XM21 

IMlx M2! = El ­

S-2) = (-'" U)(M 2 "U) + (Mf.E)(M 2. E) + (M-. N)(M 22).
 

(u 1) cos El (U.M2) cos 92
 

(E'M 1 ) = Cos a 1 sinS9 (EM 2 ) = cos a 2 sin 62
 

(NL ) L sm al sin a1 (N'M 2 ) sina 2 sin e2 

An optional technique might utilize the value of IMvl x M2 1 from a previous alignment 
thus eliminating the aforementioned dot product and square root operations. 
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CHART 5-4
 

LEVEL ALIGNMENT MATRIX 

Inputs (_g.Bl), (_g-_2), L33) and a1 

From these quantities the alignment matrix is given by: 

1 0 0 0 1 	 0 1 0 0 

1 
T = 0 sina I Cosa I 0 	 0 (MUi1 ) (U.) (UB 3)!1_.B

' 1 (M i" ) 

o -cosa 1 sinl 1 (MXU 0 -(U.B )(U B)txU-3 -	 21FMTqsU X1 

where 
( 	 U) = (U- B)
 

--[I- (M 1.-U2]1/2
IIM xU 

o (U. 	 Bk) = (_. )g 

[(g. 	Li)2 + (g. B2)2 + .B3)211/2*g = 

An optional technique might utilize any of the following additional inputs: 

* The 	zenith angle (at) of mirror one might be utilized to find (M1 •U) from 

(M 1U) = cos a 

* 	 The magnitude of gravity (g) might be supplied from a local survey. This piece
of information can be utilized to reduce the number of required accelerometers 
to two. 
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CHART 5- 5
 

GYROCOMPASS MATRIX 

Inputs (go B1 ) (g. B2) (g. B3) (wE. 1 (wE. B), and (Eo B 

From these quantities the alignment matrix is given by: 

0 1 0 (W.B) (W.%) (W ) 

T = 0 0 Iwxul (U'B 1 ) (- 2)) 

IwxuI Iwxul 0 (W x U).(% x B3) (WxU)-(BxB%) (WxU). (B1jxB2 ) 

where 
S(w. u) = (w. B)(U. B)+ (W. B2 )(U B2) + (Wo B3 )(U. B3) 

CI - (W. 	 U)2]1/2* wx l = 


S(W._) = (w m)/F
 

* 	 (Uo3) = (_g.-V/g
 

WE = c(WE. B1) 2 + (WE. L32)2 + (oE. B3)2]1/2
 

g =[(g. B1 )
2 + (R. _)2 + ( . 1/2
 

An 	optional technique might utilize any of the following additional inputs: 

" The local latitude (X)might be utilized to find (W" U) from 

(W. U) = cos X
 

" The magnitude [of gravity (g) might be supplied from a local survey.
 

* The 	magnitude of earth ratej(WE),mlght be supplied from a local survey. 

A use of all additional inputs could reduce the number of necessary instruments to three 
(either two accelerometers and one gyro, or one accelerometer and two gyros). 
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CHART 5-6 

ESTIMATION ROUTINE COMPUTATIONS - LEVEL 

Inputs: Preprocessed accelerometer measurements, X, estimation matrix, M, 

and vector, b
 

Output 	 Estimate of acceleration components in body frame, goB , i = 1, 2, 3 

at time t* 

The basic estimation computation is 

/\B (t,) 
A 

g.B2 (t*) MX + b 

3 (t*)g.B 

where 

T-S At - B1 dt, -'I dt, KAt-t a B 2 Ata- --.- .B dt , Sat .B2dt , .... 
L0 At (K-l)At 0 

KAt 	 KAt 3ta.B 2 dt,~•• j _'B3 dat
 
(K-1) At (K- )At
 

At 	 = Intersample time
 

K = Number of samples
 

* 	 Posterior Mean Technique (Instantaneous): Computations of b and M from 

the Estimation Matrix Computation Chart 

* 	 Simple Average Technique* 

b =0 

r(KAt-... (KAt)- 1 0 

. -M KMA) =0 (K~)- 1 - K(Ett)(K-At) -t K t I . . . (K bt)- I 

K K 	 K 
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CHART 5-7 

ESTIMATION MATRIX COMPUTATIONS - LEVEL 

Inputs: 	 intersample time, At (see) 

number of samples, K 

estimate of gravity, E (ft/sec2) 

rms error in gravity estimate ag (ft/sec2) 

estimate 	of TEB , i1 

rms angular error in prior estimate of vertical, a. (radians) 

noise covariance functions (tabular) 

* accelerometer noise 0n(t) (ft2/sec 4) 
* translational acceleration noise 0,(t) (ft2/sec4 

* rotational noise 09(t) (radian2) 

prediction time Et (see) 

Outputs alignment paramieters M and b 

The intermediate quantities S En'SE0, e o , c. and E are computed from the 

inputs. 

* is K x K matrix with components 

At 
(D) ii= [At - u] 0,(u + (j-i)At)duj 0 

0 
+f [At + u] (,(u+ (j-i)At)du

-At 

* n is K x K matrix with components
 

At
 
n)ij = 0 [At - u] 0n(u + (j-i)At)du 

0 
+ S [At + u] 0n(U + (j-i)At)du

-At 
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CONTINUATION OF CHART 5-7
 

* r is a K x K matrix with components 

At 
00 j' [At u1100(u + (J-i)At)du 

0 

+ 	 J 0 
[At+ u]0(u+ (-i) At)du 

- At 

* Co ¢0 (0) 

= f At 
.C 	 2,., K0(u+(j-1)At-Kt-Et)da j1, 

0 

where the integrals are evaluated by a convenient integration technique such as 
trapezoidal rule or Simpson's rule. 

r is a 3 x 3 matrix 

r g T 1 - 2 0 T 
= g2q 2 

From these intermediate quantities, N' Z Z' V, A, B, a1 , and a2 are computed. 

EN is a 3K x 3K matrix 

0 	 n + 
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CONTINUATION OF CHART 5-7
 

Z is a (5K+5)x (5K+5) matrix
 

I I
 

-- I 1 ~ I-e 
Ez I: I r,¢ K 

oI 1 00 

= ii{ I 
t0 Ip I E~0 K 

I 4 ICK 

I3K K I K 

Numbers at edges of matrices denote dimension of submatrices. 

Matrices A (3 x 3) and B (3 x 3K) are submatrices 

A: B] = cVEzVTrl 

where matrix V is the (3K + 3) x (5K + 5) matrix given on the following chart. 

At' (T1)i 1 

Pl At (TI)21
 

-1 g(j)21 (2 
 K2 
At g (W1)21 

Kt i 
T 11)3 
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CONTINUATION OF CHART 5-7
 

Then, the outputs are given by-

SM= -A-IB 

-Note that A 1 is the covariance matrix of the estimate. 

= a, + A-Ba2 
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V MATRIX 

w 1 -4 

-

1Ig-)33 
__ 

g(T1 )2 3 g(T1)12 

-g(T 32 -- -

0 

At I ---- A - - j( o---t 

v 

Ati 

I[ 

=' 

I 

. 

~~13 

j 

.10 

' 

2s 

. 

g(Tg()2 

(1)3[ 

[-(I 

I)81I" 
01 1 

2 

32 

( 2 

'--3gT K 

K 

3 3K 
(diagonal) 

1 K 
(diagonal) 

I K 
(diagonal) 

All missing entries are zero. 

(Ti denotes the (1,j) component of T1. 

Numbers at the edge of the V matrix denote the dimension of the submatrices. 

H 



CHART 5-9
 

ESTIMATION ROUTINE COMPUTATIONS - GYROCOMPASS 

Inputs: Preprocessed accelerometer measurements, X, estimation matrix, M, 

and vector, b
 

Outputs. Estmates of gravity and earth rate components in body frame, g" B1 and 
E p 1 i=1, 2, 3 

The basic estimation computation is 

g B 2 

= MX+ b 

where 
xT FA KM~ ,At KMt 

S' AtoBdt, .-- -B1 dt, J AB 2 d, ... , fK aB 3 dt, 
0 (K-1) At 0 (K-1) At 

At KAt K At 1­f w'Bldt.."', f wBldt,">' f w-°B 3 dt j 
0 (K-1) At (K-1) At 

At = Intersample time
 
K = Number of samples
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CONTINUATION OF CHART 5-9
 

* Simple Average Technique: 

b=O 

1 -	 0(K6- .. (KAt) ' 

(K--(t)t - . (KtAt)­
-(K(Kt)-I... (K(tt)


M =t(KAt) - -
I.. (Kt) 

(K~)-I. (KZ~t) - 1 

.
0 	 (KAt) -1 .. (KAt)-

K K K K K K 

Diagonal 6 x 6K 

* 	 Hybrid Technique: Use posterior-mean estimate of gravity as given for Level Alignment and simple 

average for earth rate. 





APPENDIX A
 
THE MATHEMATICAL MODEL OF THE
 

VI BRATING STRING ACCELEROMETER
 

A-i. 0 INTRODUCTION 

This appendix describes the operation of the Vibrating String Accelerometer (VSA) that 
has been selected for the ERC Strapdown Inertial Guidance System and develops a 
mathematical model to be used to relate the output of this type instrument to an estimate 
of applied acceleration. 

A-2. 0 DESCRIPTION OF THE ACCELEROMETER'S OPERATION 

A functional block diagram of the Vibrating String Accelerometer (VSA) is shown in 
Figure A-I. The accelerometer consists of a seismic mass (mass 1 and mass 2 separated 
by a spring) wich is supported by. 1) two taut strings that function as oscillator "tank" 
circuits, and 2) ligaments as shown in Figure A-I and normal to the plane of Figure A-I. 

When the VSA is at rest or moving with constant velocity, the sum of forces acting on its 
seismic mass is zero. When the VSA is accelerated, the resultant force acting on the 
seismic mass changes so that it accelerates with the case. The displacement of the 
seismic mass, relative to the case, that is produced by this resultant force is negligible 
except along the sensitive axis, A, as shown in Figure A-I. The tension in the strings as 
a result will not be affected by any motion other than that along the sensitive axis. This 
change in tension (from the at rest tension) of each string is, therefore, a function of the 
acceleration acting along the A axis of the instrument. 

Since the natural frequency of a vibrating-string is a function of its tension, the vibrating 
frequencies of the strings in the accelerometer are directly related to the applied accel­
eration along A. 

Each of the strings of the VSA passes through a magnetic field supplied by the two permanent 
magnets of Figure A-I. When set to vibrating in its field, an electric signal is generated 
by the string. This signal is amplified and fed back to the string in such a manner that a 
sustained vibration occurs. The electric signals so generated are nominally sinusoidal 
with frequency equal to the resonant frequency of the individual string. The vibrating string 
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Axis: A is a unit vector directed along strings S 1 and 

(the sensitive axis) 

Figure A-1. A Schematic Diagram of the Accelerometer 

A-f2 
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acts as a high Q tank cricuit for the oscillator within the associated feedback amplifier 

electronics. The vibrating frequency of each string is read by using Schmidt triggers to 
generate pulses corresponding to zero crossings of the respective sine waves. The 
frequency of the zero crossing pulse train is proportional to the frequency of the vibrating 

string. 

A-3.0 KINETICS OF VSA 

A-3. 1 COORDINATE AXES 

The accelerometer coordinate axes (A, 0, P) used in the derivation of the fundamental 

mathematical model are illustrated in Figure A-2. The unit vector A is along the nominal 
position of the string, while 0 and P are unit vectors arbitrarily defined to make A, 0, 
and P a right handed, orthogonal system. 

A-3.2 THE TENSION IN THE STRING 

The forces acting on M and M2 along A are shown in Figure A-3. The lateral supporting 
forces along P (normal to the page) are not shown in this figure. 

The equations of motion for the two masses can be written 

Fi= FFP i = Ma ; F2 F = Ma (A-i) 

As we are interested in the tension of the strings, only the A component of equation A-I 

will be considered. 

(M) = M(_a'A) 

(A-2) 
a .A)(T2 . A ) = M 2 _ 

Because the supporting force from the ligaments acts orthogonally to the string, we have 

(F I .A) = T3-T 1 
(A-3) 

T_2 • A_) = T2-T 3 
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Figure A-2. Coordinate Axes 
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Figure A-3. Forces Acting on the Masses 
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Therefore from equations A-2 and A-3, we have 

T3-T ! = Ml(a .A) 

=T 2 - T 3 M2 (a.A) 

which can be combined as 

T2-T = (T2 -T 3) +(T 3 -T1 ) = (M1 + M2 )(a. A) (A-4) 

When the accelerometer is stationary a = 0 and equation A-4 gives T2 = T 1 . Let this tension 

in the strings be defined as T o . When the VSA experiences an acceleration a, T 1 and T 2 

will be changed to cause the seismic masses to accelerate with the case. If (a • A) is 

positive (T2 -T 1 ) will also be positive. The tension m each of the strings can be written as 

T2 = T o + AT 2 

- (A-5) 

T 1 = To+AT1 

and 

AT 1 + AT 2 = (M 1 + M 2 )(a" A) 

The amount of change in the tension of both strings will be the same if the strings are 

identical. In practice, however, the strings cannot be made to be identical. 

For the range of accelerations that is within the proportional limit of the strings, we can 

write 

AT1 =K(a - A_) 

(A-6) 

AT2 =-2(a.A) 

=where KI +K 2 M I +M 2 
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Beyond that range of applied acceleration, the strings creep and the mathematical model 
derived m the following pages will not apply. 

A-4.0 MODEL DEVELOPMENT 

A-4. 1 THE RESONANT FREQUENCY OF A VIBRATING STRING 

The resonant frequency of a uniform string under tension is directly proportional to the 

square root of the tension. 

For the vibrating strings S 1 and $2, their pulse tram frequencies fl and f 2 (which are pro­
portional to the respective resonant frequencies) can be written as 

fl = CI I 

(A-7) 

f2= C2 FT 

C1 and C2 are proportionality constants determined by the dimensions, density and other 
physical properties of the strings. Combining equations A-5, A-6 and A-7, we have 

f1 = cl To- K(a-A) 

f2 = C2 To +K 2 (a'A) 

By Taylor's expansion, this becomes 

IT - - Kl(a.-A) - (a. A) 2 

2 - -- 8T 0 J7( 

1 3.3 5 4 (a. A)4 
- -K -(a 

A-6
 



C2 [I (FT(a+AK 
2 [jTo K= 0 ± 2 aA 8T 0 4TJ Z 

1 3 5 

0T 0 (.A)3 128T j 
The above expansions will converge rapidly since the instrument is constructed so that To 
is much greater than either K(a - A) and K2 (a. A). The frequency difference of the 
two strings is 

o °#- 2ji- (o02 1 2KK2 ++C1K9(.A_-AT - o0124 0 C2 C--o _-fl=C+ 

1 

+ ­
1 6 1 T 

Co o /.3o: 
2 ' + CIK )(a 

A3
A) -

o(.24 CK4...( 02 14K- 1 K)( a A t. _(A -8) 

06~V 128T t 

The series given in equation A-8 converges rapidly because To is made large. However, 
C1, C2, K1 and K2 are constants determined by the dimension and material of the vibrating 
strings S1 and S2 . The accelerometer is manufactured so that (C1-C2) and (K-K2) are 
kept as small as possible (a highly symmetric instrument). For this reason, the even 
order terms are very small and the linear term is the most significant. The approximated 
frequency difference obtained by truncating equation A-8 after the third degree terms may 
be written: 

f2 -fl = D1 D0 + D(a. A) + D I 2 (a. A) 2 + D1D3 (a. A) 3 (A-9) 

where, by definition, 

D1D0 = (02 - Cl) I o 

1 
Dl= 2 To(C2K2 + CIK1) 
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D1D2 =-1 (CK - c K2) 

T 1 (24 + ClK) 

A-4.2 THE ACCELEROMETER READOUT 

Let the signal generated by the string S be 

el(t) = sm[ + St0 ildt] 

where f is the frequency of the pulse tram from string S (in pulses per second) and 0 
is a constant. The number of zero crossings in the interval (ta, tb) is 

.tb -At 9 tb 
d t N1 = - f t = Eq1 + S f 

I tata +At I1 

where (ta + At 1 ) and (tb - At2 ) are the times of the first and last zero crossings in the 
interval (ta, tb) and Eq 1 is the quantization error given by 

Eq1 ft'a + At1 fidt - stb f dt 
ta ttb At2 

The time increments At I and At 2 are defined by illustration in Figure A-4. In the same 
way, for string S2, we have 

N2 = Eq 2 +ftb 

= -f f2 dt 

,a 
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Figure A-4. A.1 and At2 
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The difference in the number of zero crossings of th6 two strings can be written, using 

equation A-9, as 

tb 

N2 -N 1 = (Eq 1 -Eq 2) + S (f2 -f1 ) dt 
ta 

tb tb 

= Eq+ tb D1D 0 dt+ f' Dl(a.A)dt 
ta ta 

+ 	 f tbDD 2 (aA)2 dt+ StD1D3 (aoA)3dt 

ta ta 

A-4.3 THE VSA FUNDAMENTAL MATHEMATICAL MODEL 

In summary, the readout of the VSA is two pulse trains corresponding to the zero crossings 
of the sinusoidal signals from the two vibrating strings. The input to the VSA is the 
acceleration of the case along its sensitive axis. The accelerometer readout is related 
to its input by the mathematical model given in Chart A-1. 
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CHART A- I 

THE FUNDAMENTAL ACCELEROMETER MODEL 

THE ACCELEROMETER MODEL IS: 
tb tb tb 
ta 	 f2 dt - ft5 fIdt = (N2 -NI) + Eq = D1 Ift (a.A)dt
 

ta ta ta
 

+ D IS[D 0 +D2 (aA)2+D(aA)31dt 

WHERE: 

a is the acceleration applied to the accelerometer
 

" t a t < t b is the time interval over which a is measured
 

" A is a unit vector directed along the input axis of the accelerometer
 

" N1 and N2 are the number of zero crossings detected in ' a t t

from both strings of the accelerometer	 b 

• 	 Eq is the instrument quantization error due to the fact that ta and tb
 

do not correspond to zero crossings
 

* 	 D1 is the accelerometer scale factor 

* 	 D0 is the accelerometer bias 

* 	 D2 is the second order coefficient 

* 	 D3 is the third order coefficient 

* 	 f 2 and f, are string frequencies in pulses/second 
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APPENDIX B 
THE MATHEMATICAL MODEL OF THE GYROSCOPE 

B-1.0 INTRODUCTION
 

The purpose of this appendix is to find the mathematical expression that relates the outputs 
of the Honeywell GO 334A gyroscope to the environmental input to which this gyro is 
subjected.
 

Section B-2. 0 is devoted to the general description of the 334A gyro and its principle of 
operation. The mathematical model is then developed in Section B-3.0. 

B-2. 0 DESCRIPTION OF THE GYRO OPERATION 

The Honeywell GG 334A gyro contains a gimballed rotor spinning at a very high angular 
rate (see Figure B-I). A hydrodynamic gas bearing is used to support the rotor. The 
gimbal is restricted by the gimbal bearing to rotate only about the output axis relative to 
the case. The signal generator of Figure B-i consists of a moving coil attached to the 
gimbal and a stationary wound stator attached to the gyro case. It generates an a-c voltage 
with an amplitude that is directly proportional to the angular displacement of the moving 
coil from its null position. In this way the gimbal deflection relative to the case is 
measured. At each sampling cycle (3,6 KHz rate), the gimbal deflection is detected, 
sampled and compared to two thresholds (positive and negative of equal level) to determine 
if a positive, zero or negative rebalance torque is to be generated. A current switch and 
associated electronics provide the torque generator with correct torquing current pulses 
of constant strength. The timing information (3.6 KHz) used to derive the cycle periods 
is furnished. 

Any angular motion of the gyro case about the input axis, G, will generate a gyroscopic 
torque that tends to rotate the gimbal about the output axis, 0. The signal generator 
senses the resulting gimbal deflection and produces the signal to the gyro electronics 
necessary to generate the correct torquing current pulses to the torque generator. In 
this way, the gyroscopic torque developed initially about the gimbal axis is rebalanced by 
the pulsive torque produced by the torque generator. The average rebalance torque is 
proportional to the average gyroscopic torque which is in turn proportional to the gyro 
angular rate about G. A readout of the pulse train of the rebalance current is used as the 
instrument's output. 
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Model. 	 Honeywell GG 334A single-degree-of -freedom, pulse 
rebalance gyroscope. 

Axes: 	 S is a unit vector along the spin axis of the rotor. 

0 is a unit vector along the output axis as defined by 
the gimbal. 

G = 0 x S is the sensitive axis of the gyro. 

Figure B-I. A Schematic Diagram of the Gyro 
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B-3.0 MATH MODEL DEVELOPMENT 

B-3.1 COORDINATE AXES 

The coordinate system used in the following derivations is illustrated m Figure B-2. The 

gimbal axes (G, 0, S) are defined as fixed to the gyro gimbal with 0 (the output axis) 
directed along the gimbal rotary axis, S (the spin axis) directed along the gyro rotor spin 
axis and G (the input axis) directed along the direction of 0 x S. 

The set (G, 0, S) is right handed, orthogonal and is assumed to be coincident with the 
gimbal principal axes. 

B-3.2 THE GIMBAL DYNAMICS 

The gimbal angular momentum can be expressed in the gimbal coordinate axes as 

H = [IGG(wg . G)IG + [1O0( g • 0)]0 +[IS(wg • S) + Hr] S (B-i) 

where IGG is the moment of inertia of the gimbal and the rotor about G) Io0 is the 
moment of inertia of the gimbal and the rotor about '0, 'SS is the moment of inertia of 

the gimbal about S, and Hr is the constant rotor spinning angular momentum. (3g. G), 
(g. O), and (wg .S) are the components of the gimbal angular velocity about G, 0, and 
8, respectively. 

Since G, 0, S are assumed to be the principal axes of the gimbal, all the products of 

inertias IGO' IOS IGS , etc. are assumed to be zero. The second law of rotational motion, 

states that the torque applied to the gimbal is equal to the derivative of the gimbal angular 

momentum. 

dH 
T = - (B-2) 
-- dt 

Using equation B-i and writing equation B-2 in component form, we have 

(TG) 1 ( G) + (oag.)(w-.S)(ISS-i 0 0 ) +Hr( g.o) (B-3)-

B-3
 



Figure B-2. Coordinate Axes 
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(T.O) 	 = IOO(wg.O) + (g.S)(g.G) (IGG-ss)-Hr(g.G) 

(B-3) 
(T.S) = Iss(Lgs) + (g.G)(wg-o)(Ioo-IGG 

(TG)and (T. S) are reaction torques from the gimbal bearing. Since we are concerned 
only with the torque about the output axis, 0, we may write 

T = (T. 9) = Ioo( .0 ) -Hr(wg. G) + (wg . S (wg - G) (IG 

For a single -degree-of-freedom gyro, the gimbal can only move relative to the case about 

the gimbal axis 0. Thus the gimbal angular velocity can be expressed in terms of the case 
angular velocity and the relative angular velocity between the gimbal and the case. 

Wg = W + (Wg-W) = w + 6 0 

where cc is the gyro case angular velocity and 0 is the ginbal deflection with respect to 
the case (see Figure B-3). Therefore, 

T o = (T.0) = '00a +I0(..) - Hr( G) +(w.S)(W.G)(IGG-ISS) (B-4) 

B-3.3 THE GIMBAL TORQUE 

The gimbal torque, To, is the sum of all torques applied to the gimbal about the output 
axis, 0. TO includes a dampening torque, Td; a rebalance torque, Tr, provided by the 
torque generator; and error torques. 

The dampening torque is proportional to the rate of change of gimbal deflection angle, 0 

Td=-e 

The rebalance torque is 

Tr = -L6k 

where 6k is the logic value of the pulse at the instant tk . 6k = +1, -1, or 0 for positive, 
negative or zero pulses, respectively. 
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L = LoLU(t - tk) - U(t - tk - h) 

where L is the amplitude of the pulse 

h is the pulse width 

U(t) is the unit step function 

tk is the kth sampling period. 

Loh = tk+lLdt is the strength of the pulse and would be constant for a linear rebalance 

tk 

loop. However, the torque rebalance loop will not be linear in reality, and L0 h will be a 

function of w. To take into account the effect of nonlinearity, let us assume 

Lh = Loh(1+a(wo.Gt)) 

where Loh is constant and a very small. 

The error torques include a constant torque, an a-sensitive torque, an a2-sensitive torque, 

and other torques considered as noise (for example, reaction torque from the signal 

generator).
 

The constant torque is denoted by R'. 

The a-sensitive torques are mainly due to the fact that the center of support of the gimbal 

is not coincident with its center of mass, If the gyro acceleration is a, the a -sensitive 

error torque is 

T 1 = B (a-G) + B'(a.O) + Bg(a. S) 

where Bj, Bt and BI are gyro unbalance coefficients. 

The a2-sensitive error torque is due to the fact that the gyro gimbal is not a rigid body. 

To make the gimbal follow the motion of the gyro case, there are forces acting on the 

gimbal through the gimbal bearing. The gimbal deforms when subjected to these forces. 

Because of this deformation, the center of mass of the gimbal will be displaced from the 

center of support and therefore produce an a2 -sensitve torque about the output axis. It 

is assumed that the deformations also occur in the lateral direction as well as along the 

direction of the acceleration. 
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If the acceleration is a, the a2-sensitive error torque is 

C I(a-G)2 + CdI(a+S) + CS (a. G) (a-.S) + Cbs(a.O)(a.S) + C1o(a- G)(a.O) 

where Ch, CS, Cis, C5 , and C I are so-called compliance coefficients. 

The total gimbal torque is then 

T o = -Cb + BI (a. G)+B(a-.O)+B (a.S)+Ct (a. G)2 +Cs 0) (a S)eL5 k + R' 2(a.Sa"-G' 

+ Cs(a°O)(a.S)+C1 o(a°G)(a'O) +Tn (B-5) 

where Tn is the torque due to-other effects and is considered as a noise component. 

B-3.4 CONCLUSION 

Combining equation B-4 and equation B-5 we have 

-C6 -L6k+R'+BJ(a. G +B6(a.O)+B' (a.S)+Cl(a.G)2+C~s(a.S)2 +GS(a.G)(a. S) 

+CS(a. 0)(r"S)+Cio(a.G)(a.0)+Tn = IO(_.O) - Hr(w.G)+(o..S)(- G)(IGG-IsS) 

where e is the gyro case angular velocity, and the component of the reaction torque, 
I0 J , has been neglected since it is small compared with the damping torque, Cd. 

A rearrangement of equation B-6 gives 

L (WG)1 [Rt+Bi(.G)+Bb(a.2)+Bs(a7S)+Cfi(a0)2 
r k-HHr 

+ CSS(-.S)2 + CjS(.G)(a-S)+Cs 

T ni Cd 
(IGG - ISS)(w -S) (w- G) - 10O (c -O0)3 1- Hr(-7 
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Let us now integrate equation B- 7 over the N sampling periods starting at time to and 

ending at time t n . We have 

L0 h n tn 
k ) n[ IH- Z = J (w G) dt + J a.2) +Bo(aO) +Bs(a.S ) 

Hr -1l to to 

+ Cii(a.G)2 + CSS (a. S) 2 + CIS (aG)(aS)+ COS(a.O)(a.S) 

+ CiO(a.G)(a.O ) +QIS(w.G)(.S) +J(L5.Odt +An + Eq (B-8) 

where w is the gyro case angular velocity 

5k = 1,0,-i is the kth rebalance pulse 

R? Bj' B6 %~ 
R2,3, BO, Bs, C CSS CIS" COS, and CIO equal - , 

Hr Hr Hr H r 

Ch C1 Cs Cbs C1o 

Hr Hr 
-, 

Hr 
-, 

Hr 
and -

Hr 

, respectively 

HHr
-(IGG - ISS) 
QIS = 

H 

100 
J=-

Hr 

An = t T- dt is the effect of noise torques 

to Hr 

Eq = t - 6 dt is a quantization error. 
to Hr 
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However, 

Loh = -h[1+x(w.G)i0 - _ 

With a very small, we can write 

- 1 
L h = 

1 + a(w-G) 
Lo h (i-a(.G))L oh 

Multiplying both sides of equation B-8 by (1 - a(w .G)) produces the gyro model as given 
on Chart B-I. 

L0 h L0h 
In the model, Al = - is the instrument scale factor. Q = -a -- is the coefficientHr H 

of the term of the scale factor nonlinearity. a is very small, and the higher order effects 
of it have been ignored. 
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CH-ART B-I
 

THE FUNDAMENTAL GYRO MODEL 

THE GYRO MODEL IS 

A0 [k k] = dt + N [R+BI(a.G) + Bo(a.O) + Bs(a.S) + Ci(a.G)2 + Cssa.S) 

+ CIS(a.G) (a.S) + COS(a-2) (a.S) + CIO(a.G) (a-0) 

+ Q(.G)2+QIs(w.G)(w.S) + J ur _ jdt + An+ Eq 

WHERE 

* 	 c is the angular velocity applied to the gyro 

* 	 a is the acceleration applied to the gyro 

* 	 to t g tN is the time interval over which a and u. are measured 

* 	 tN - to = NT, where N is an integer, andr is the gyro sampling 
period 

* 	 S is a unit vector along the spin axis of the rotor 

* 	 0 is a unit vector directed along the output axis as defined by the 
gimbal
 

G is a unit vector along O x S (that is, the sensitive axis of the gyro)
 

*k is the kth gyro pulse, equal to +1, -1, or 0 for positive, negative, 
or no pulse 

* A4 is the gyro scale factor
 

" R is the gyro bias
 

* 	 Bt Bo and BS are the gyro unbalance coefficients 

* 	 CII CSS CIS COS and CIO are the gyro compliance coefficients 

* 	 QIS and QII are dynamic coupling coefficients due to gimbal deflection 
and scale factor nonlinearity, respectively 

* 	 J is the angular rate coefficient 

* 	 An is the effect of gyro noise over the Zt0 , tNJ interval 

* 	 Eq is the gyro quantization error 
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APPENDIX C
 
ALTERNATE FORM OF QMATRICES
 

In Section 2.2.4 the QG and QA matrices were expressed in terms of (QA)-l and 

(QG)-, which are the matrices calibrated in the ERC laboratory. The calibrated elements 

were seen in Section 2.2.4 to have either the form Ak.Bt or gk.B . Because the body 

axes (Bk) are defined, the elements do not equate directly to physical ISU angles - angles 

like the angle between, say, two gyro axes. It is possible, however, to express the Q 

matrices as a function of physical angles only. Those expressions are found in Chart C-1 

and C-2. In Chart C-1 we see the general expression, and in Chart C-2 we see the first 

order approximation of the matrices. (Recall that the nominal QG and QA matrices are 

identity matrices.) 

The form of the two matrices (QA and QG) in Chart C-I and C-2 are, naturally, the same. 

In Chart C-1 the Q matrices have been separated into suns and products of submatrices, 
where each submatrnx is a function of only one type of ISU angle. For example, the first 

submatrix is a function of only the angle between the mirrors, the second submatrix is a 

function of only the angles between the mirrors and instruments, the third submatrix is a 
function of only the angles between the accelerometers or gyros, and so forth. 

The calibrated QA and QG elements can be equated to the elements found-in Chart C-2, 
allowing for the solution of the physical ISU angles. Such solutions could be useful for 

the determination of the satisfaction of design requirements. 
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CHART C-1 

Q MATRICES 

0 0 (MAI) (IA) (MA 3) (A-2 (-'A3) (Ax 4S) (A3xA) (A2xA3)(AxA2) 
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CHART C-2 

Q MATRICES (OPERATIONAL) 

LET 

AN =N =N 
- 1-1 - 1 
N =N N where the superscript N denotes 

-2 M-2 -2 the nominal vector 

be perpendicular to MN 
1 -2
 

IGNORING SECOND ORDER TERMS, WE HAVE*
 

A2.A- M-M2 - AfA) 1 (M2.-2A3) j
Q1=1-(MI-A3 -(M2 -A3) 

Or, letting A2 (M - Al) = Iv_2-(M__l-A)
 
and A(_ 2 - A2) = M I(M
 

[ 
- A 

(M.M2 - M2.Al ) (MA 3 - A3-Ai)
 

-(M1* 2 ) 1 --- 3 - A2"A3)
(M2


-(M *A -(M2'A)
 

( I -2) (__2.3 -

KG] -)-('_23) (M 2 §3 § 2 3 ) I 
or, letting G2 .(M_- §_9 =- M_2(_I- GI
 
and GGI._ M 2- M= __(_2- ) 1_2 .o3
-(M~~i~o_2)i (M -G 

21 ('1I_2 - M2.1) (M1G ­ §3._2)1 
2 §s - 2 12 j1 


- G(M19_ ) -M.(1G_)
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APPENDIX D 
COMPUTER SYSTEM DESCRIPTION 

This appendix contains a description of the laboratory computer and its associated equip­
ment. Section 1 describes the laboratory computer. Section 2 describes the Interface 
Electronics Unit (IEU), the device that interfaces the computer to the ISU. Section 3 
describes briefly the devices used for the computer manual interface. 

D-1.0 COMPUTER 

The Honeywell DDP-124 computer is a small scale scientific/control digital computer 
with a 1.75 microsecond memory access time. The memory is an 8, 192 word, 24-bit/ 
word core memory. Arithmetic is performed on 24-bit sign-magnitude (not complement) 
data with the left-most bit of the data word containing the sign and the other 23 bits con­
taming a binary representation of the magnitude. The basic arithmetic register is a 24­
bit A Register which is extended by a 24-bit B Register for multiplication, division and 
shifting. 

The instruction repertoire contains 47 instructions allowing fairly flexible fixed point 
processing. Unique instructions include a step multiple precision, store address portion 
of A, output and input to A (may be ANDs) as well as input/output to memory, direct con­
trol pulse outputs and sense line skips. Because of the sign magnitude number representa­
tion, the computer has both arithmetic shifts (sign bit(s) do not shift) and logical shifts. 

Indirect addressing may be performed by use of one bit in the instruction Three index 
registers are available. 

A Fortran IV Compilet is available and is considered preferable by NASA for calibration 
programming. The 124 is not equipped with floating point hardware so use of the Fortran 
Compiler will necessitate use of time consuming floating point software routines Because 
of real-time considerations, Fortran shall not be used for alignment 

The computer interfaces with the Interface Electronics Unit, the displays and magnetic tape 
unit via a direct memory access (DMA) subunit. This allows direct transfer of data from 
and to memory under buffer control in one of two modes. These modes are the time sharing 
mode and the hog mode. In the hog mode, the input/output will hold the memory until the 

D-1
 



entire transfer is completed. In the time sharing mode the input/output and the processor share 
memory with either locked out for one memory cycle while the other completes one transfer. 

Execution times of instructions are as given in the DPP-124 Programmers Reference Manual, 
and execution times and memory sizing for standard arithmetic subroutines are as given in 
the DDP- 124 Users Guide. One magnetic tape handler is available for program storage 
and/or other uses. 

D-2. 0 INTERFACE ELECTRONIC UNIT (IEU) 

The IEU provides the computer an interface to the system equipment. A block diagram of 
the IEU is shown in Figure D-1. 

The IEU counts information in its counters from the gyros, the accelerometer strings and 
the timer. Each counter is compared to a manually selected interrupt condition. This 
condition is selected as any number for the time counters or any power of two for gyro 
and accelerometer inputs. When an interrupt condition is met, a signal is sent to inter­
rupt logic 3 if time counter 2 has satisfied it condition, interrupt logic 2 if time counter 
I has satisfied its condition or interrupt logic 1 if a gyro or accelerometer register has 
satisfied its condition. The interrupt logic generates an interrupt to the computer on its 
own interrupt channel and sends a reset signal to the counters Interrupt logic I and 2 
send reset signals to all of the counters other than time counter 2 and interrupt logic 3 
sends a reset signal only to time counter 2. When a counter receives a reset signal, it 
will hold the contents of the main register, clear an auxiliary register and begin to ac­
cumulate data in the auxiliary register. 

When the computer has received an interrupt, it will initiate a direct memory access 
(DMA) controlled input from the IEU of the counters and ISU status registers. The main 
registers of the counters are read. After the reading process has been completed, a 
resume signal will be sent to all the counters from the DMA input control. This signal 
will cause any counter that is counting in an auxiliary register to clear the main register, 
add the auxiliary register to the main register, and continue accumulating in the main 
register 

While the IEU has the capability of using any of the inputs to determine sampling rate as 
described above, it is not expected that any criterion other than time counter i is needed 
for the main calibration and alignment routines. The IEU interface program should verify 
that the time criterion has been met (Interrupt i). 
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Since the IEU sampling determines the time to sample ISU data on the basis of a time 

criterion, use of the IEU results mn the maximum worst-case quantization error. 

The IEU will transfer up to four 24-bit parallel data words from (and to) the ISU to (and 

from) the computer. Output from the computer is via DMA transfer. 

D-3. 0 COMPUTER MANUAL INTERFACE DEVICES 

The operator interfaces with the computer via the display panel, a keyboard and typewriter 

and a paper tape reader and punch. 

The display panel can display nine numbers. Each number has a signed one decimal digit 

mantissa and a signed five decimal digit characteristic. This capability will be used to 

display results or intermediate results or request and to display normalized data output 

from the ISU during real-time data collection by the computer 

The display panel has three rows of eight buttons each to be used to select parameters to 

be displayed and 24 buttons to select program options. 

The keyboard and typewriter may be used to enter data into the computer in small amounts 

and to furnish the operator with information such as desired settings of test table axes. 

Maximum transfer rate is 15. 5 characters per second. 

The paper tape reader and punch will be used to enter large amounts of data into the com­

puter and for output of the results of the procedure Maximum transfer rates are 110 

6-bit characters per second for the reader and 300 6-bit characters per second for the 

punch. 

buc D, 
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