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ABSTRACT

This 15 Volume 1 of three volumes which report the results of a strapdown calibration
and alignment study performed by the Umvac Federal Systems Divigion for the Guidance
Laboratory of NASA/ERC,

This study develops techniques to accomplish laboratory calibration and alignment of

a strapdown mertial sensing unit (ISU) being configured by NASA/ERC. Calibration

1s accomplished by measuring specific input environments and using the relationship

of known kinematic input to sensor outputs, to determine the constants of the sensor
models, The environments used consist of inputs from the earth angular rate, the
normal reaction force of gravity, and the angular rotation 1mposed by a test fixture m
some cases. Technmiques are also developed to accomplish alignment by three methods.
First, Mirror Alignment employs autocollimators to measure the earth orientation of
the normals to two mirrors mounted on the ISU, Second, Level Alignment uses an
autocollimator to measure the azimuth of the normal to one ISU mirror and accelerom-
eter measurements to determine the orientation of local vertical with respect to the
body axes, Third, Gyrocompass Alignment determines earth alignment of the ISU by
gyro and accelerometer measurement of the earth rate and gravity normal force vectors.

The three volumes of this study are composed as follows:

. Volume 1 — Development Document. This volume contains the detailed develop-
ment of the calibration and alignment technmques. The development 1s presented
as a rigorous systems engineering task and a step by step development of
speecific solutions is presented.

¢ Volume 2 - Procedural and Parametric Trade-off Analyses Document. This
volume contains the detailed trade-off studies supporting the developments
given 1n Volume 1.

¢  Volume 3 — Laboratory Procedures Manual., In Volume 3 the zmplementation
of the selected procedures is presented. The laboratory procedures are
presented by use of both detailed step-by-step check sheets and schematic
representations of the laboratory depicting the entire process at each major
step 1n the procedure. The equations to be programmed in the 1mplementation
of the procedures are contained in this volume,
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GLOSSARY

As an aid to understanding the symbolism, we present the following rules of notation

e Wherever possible symbols will be used which suggest the name of the
parameter 1nvolved.

s Lower case subscripts are used almost exclusively for mdexing over several
items of the same kind. Examples are the indexes used to 1dentify the three
gyros, the three accelerometers, the iwo pulse trains of each accelerometer,
the two clock scale factors, ete,

* Lowercase superscripts are used to index over different positions.

L) Uppercase superscripts and subscripts will be used to distinguish between
parameters of the same kind, For example, T 15 used to identify a

transformation matrix, Lettered superscripts such as BE in TBE identify
the particular transformation.

s  Anunderline will identify a vector.

s  Unit vectors are used to 1dentify lines in space such as wstrument axes
and the axes of all frames of reference.

s  Components of any vector along with any axis 15 indicated by a dot product
of that vector with the unit vector along the axis of interest.

e The Greek sigma (Z) will be used for summations. Where the limits of
summation are clear from the context, they will not be indicated with the
symbol,

s The Greek Ais always used to indicate a difference,

o S ¢andC ¢ are sometimes used to identify the sine and cosine of the angle ¢.

* A triple Iine symbol (=) will be used for defrmtions.

e A superior '~ "denotes a prior estimate of the quantity.

s A superior" ~ "denotes an estimate of the quantity from the estimation routine.
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a Applied acceleration vector.

(A gj) Elements of (QA)'l.

A, Unit vector directed along the input axis of the ith accelerometer
1=1,2,3.

b A vector determined by the Alignment Parameter Evaluation

- Procedure and input to the Estimation Routine.

El Unit vector directed along the ith Body Axis i=1,2, 3.

By, o Bs Gyro unbalance coefficients,

CII’CSS’CIS’CIO’COS Gyro Compliance Coefficients.

Counters The six frequency counters used as data collection devices
during calibration.

Dy Accelerometer bias,

D1 Accelerometer scale factor.

D2 Accelerometer second order coefficient.

D3 Accelerometer third crder coefficient.

E Unit vector directed East (gz).

1_3_1 Unit vector directed along the 1th Earth Axis.

Eq Quantization error.

f1 . fz Freguencies of accelerometer strings 1 and 2, in zero

crossings per second.

F, A triad of orthogonal unit vectors attached to the base of the
table.

G, Unit vector directed along the ith input axis of the gyro.

Gy gj) Elements of (Q°)™1.

g The vector directed up that represents the normal force to
counteract gravity in a stafic orientation. Corresponding to
popular convention, this i1s referred to as the 'gravity vector',

/0 Input/Qutput.
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Triad of orthogonal unit vectors attached to the inner axis of
test table.

Interface Electronics Unit — system 1wnterface device for the
laboratory computer.

Inertial Sensing Unit.
Gyro angular rate coefficient.

Number of samples of accelerometer and gyro data taken in
Alignment,

Position index used 1n calibration (superscript).

Mairix generated by Alignment Parameter Evaluation and used
by Alignment Estimation Routine.

Unit normal to ith mirror.

Unit vector directed North @3).

Count of cutput puises from strings 1 and 2 of accelerometer.
Instrument noise in accelerometer,

Instrument noise in gyro.

Count of output pulses from strings 1 and 2 of accelerometer.

Count of timing pulses from master oscillator to frequency
counters.

Count of timing pulses from master oscillator to IEU,

Unit vector directed along the output axis of gyro.

Triad of orthogonal unit vectors attached to the outer axis
of the table,

Unit vector in the direction of the projection of Ml n the plane
formed by E and N, -
Defined on Chart 4-12 of the Development Document.

Defined on Chart 4-4 of the Development Document.

The transformation from accelerometer input axes to body axes.

The transformation from gyro input axes to body axes.
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QII‘ QIS Gyro dynamic coupling coefficients,

r Position vector.

R Gyro bias.

R, Triad of orthogonal unit vectors attached to rotary axis of

_ table,

Resolver Angular resolvers on each axis of the test table,

S Unit vector directed along the ith gyro spin axis.

§¢ Scale factor associated with pulsed output from test table rotary
axis.

Sr%‘ Bcale factor associated with tuming pulses accumulated by the
frequency counters,

Sg‘ Scale factor associated with timing pulses to the IEU,
Time,

T In alignment, the determined alignment matrix to transform
from body to earth axes. T 15 equivalent to TBE.

TB I Transform from ISU body axes to inner axis frame.

TBRm Transform from ISU Body Frame Axes to Rotary Axis Frame in
the mth orientation,

N Triad of orthogonal unit vectors attached to the trunnion axis

- of the test table.

U Unit vector directed up (El)'

v Velocity vector.

W Unit vector directed along QE.

X-Y Dual inpuf on frequency counter that will difference two pulse
trains for comparison with a third mput {(Z).

Z Input on frequency counter for pulse frain,

o The azimuih angle of the normal to the ith mirror.

(27’)11 Pulsed output from the jth string of the ith accelerometer.

= 6)1 Pulsed output of the ith gyro.

L Gyro scale factor,

X1l
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SECTION 1
INTRODUCTION

This document, 1n conjunction with two other volumes, describes the achievements of a
six month study conducted for the.

Guidance Laboratory

Electronics Research Center

National Acronauiics and Space Administration
Cambridge, Massachusetts

by the:

Aerospace Systems Analysis Department
Univac Federal Systems Division

Saint Paul, Minnesota

A Division of Sperry Rand Corporation

The purpose of the study 1s to develop techniques and outline procedures for the labora~
tory calibration and alignment of a strapdown ertial sensing umt. This document,
Volume 1. presents a detailed analysis of the calibration and alignment problem and
develops a specific solution, The nucleus of the study output 1s the contents of this docu-
ment. The Procedural and Parametric Trade-off Analyses, Volume 2, is a set of
addendums which serve to justify decisions made and conclusions reached 1n the develop-
ment of specific calibration and alignment techniques, Reference 1s made to the contents
of the trade-off document throughout Sections 4 and 5 of this document. The Laboratory
Procedures Manual. Volume 3, describes specific procedures for an operational 1m-
plementation of the solutions obtamed 1n Volume 1. It 1s an extension of the results of
Volume 1 mto an operational laboratory situation. The last subsections of Sections 4
and 5 of this document (Volume 1) form the interface between the study developments and
the specific procedures found in Volume 3,

L/

77
At the tune of this writing, the Guidance Laboratory of NASA/ERC is in the process of
configuring a strapdown inertial sensing unit which they will use to evaluate many ad-
vanced concepts. By integrating this ISU with a system computer. they will attain a
flexible system level research tool for testing analytical concepts, system design con-
cepts and fabrication concepts. In parallel with the development of the Guidance and
Navigation System, a laboratory facility 18 being designed which will contain all of the
test equipment necessary for conducting the experiments on the strapdown G and N System,
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Among the more important experiments to be conducted are those which determine the
feasibility of easily and precisely calibrating and alighing the sensor package 1n an
operational laboratory situation. Before such experiments can be conducted, the cali-
bration and alignment techniques must be developed and definitively documented. The
Guidance Taboratory contracted Univac's Aerospace Systems Analysis Department to
develop and document those techniques. The specific tasks which Univac was contracted
to accomplish are as follows:

e To sp)ecify mathematical models for the system sensors {gyros and accelerom-
eters).

e To define the mathematical description of the sensor package.
s To develop techniques for the determination of all calibration constants.

s To develop three techniques for imtializing the alignment of the ISU. The three
techniques involve the use of

4 Optical meagurements only
4 Accelerometer measurements for Ievel, and an optical azimuth measurement
4 Accelerometer and gyro measurements only.

» To accomplish specified trade-off analysis on all calibration and alignment
techniques.

o To specify all equations and procedures for the accomplishment of a calibration
and alignment m the ERC Laboratory.

o Todocument, inthree volumes, the calibration and alignment developments,
trade-offs, and procedures.

The satisfaction of the first four items 1s accomplished in this Development Document.
The trade~offs are described in the Procedural and Parametric Trade-off Analysis

Document and the procedures are outlined in the Laboratory Procedures Mznual,
Y
77

The presentation of the calibration and alignment developments in this document,

Volume 1, 1s divaded 1nto five sections. The purpose of the introduction 1s to briefly
state the study problem (accomplished 1n the above listing of seven items) and to describe
the developments contained in Volume 1, The purpose of Section 2 13 fo delineate the
calibration and alignment requirements. Section 3 presents z system description of
calibration and alignment with emphasis on the laboratory environment, The specific
calibration and alignment techniques are then developed in Sections 4 and 5, respectively.
As an introduction to the scope of this document, the following paragraphs outline the
developments in these sections.

The calibration and alignment study tasks have been only generally stated in the preceding
paragraphs. Before the techmique developments can be described, the specific engineering
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and mathematical requirements of calibration and alignment must be stated. In Section 2
we accomplish the detailed specification of those requirements. A statement of the cali-
bration and alignment requirements will be simply presented as a list of parameters to
be determined in the laboratory. As a lead-in to that listing, Section 2 shows how the
requirements tie in to the larger system problem of navigation. We accomplish this by
presenting the general definitions of calibration and alignment as the determination of
constants required 1 an operational navigation loop. The mathematics of portions of the
navigation loop are delineated so that calibration and alignment can be specifically defined
as the determination of constants contained within the mathematics,

After specifying the calibration and alignment requirements in Section 2, Section 3 directs
our attention to the laboratory environment in which the calibration and alignment 1s to be
accomplished. As an introduction to the environment, we present in the first subsection
of Section 3 functional system descriptions of both ealibration and alignment. The func-
tional description of the ERC laboratory calibration 1s presented in comparison with what
we call an Ideal Calibration. The comparison of the ideal with the actual ERC laboratory
calibration serves to illustrate those compromises necessary in the development of a test
laboratory. The functional description of alignment presents those separate operations
required in an operational alignment. Three functional diagrams are presented in

Section 3, one for each of the three alternative alignment techniques. All functional
descriptions serve to define those measurements, other than inertial instrument measure-
ments. which are required to accomplish the calibration or alignment. The additional
measurements correspond to an independent measure of the kinematic environment, The
determination of those additional measurements 1s the subject of the second subsection of
Section 3. Section 3 is concluded with a brief description of the hardware available in the
laboratory, and the mterfaces between those preces of hardware,

The calibration technigue developments in Section 4 are directed toward specifying the
details of the calibration functions which are generaliy defined 1n Section 3. The basis of
calibration 15 presented in Section 3 as the input of environment and inertial instrument
measurements into computations whach are a function of those measurements and the un~
known calibration constants. The general equations from which the computations are
evolved are developed in the initial subsection of Section 4, Those general equations are
developed by mtroducing the parameters which identify the laboratory kinematic en-
vironment and the ISU geometry into the inertial instrument mathematical models, Subse-
quent to the development of the general equations, particular choices of test table orienta~
fion are used to define the "Positions' to be used for the determination of all calibration
constants. The chosen positions are shown to produce significant reductions in the com-
plexity of the general calibration equations., With the aid of these reductions it is

possible to solve for the calibration constants by a series of relatively simple experiments,
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In the third subsection of Section 4 the calibration computations are tabulated. The
quantization and instrument and environment noise considerations are described in con-
Junction with the tabulation. The fourth subsection of Section 4 describes those laboratory
activities required prior to the actual calibration. All such activities are related to either
the survey of the location of the ISU relative {o the test table, or the compensations for the
small low frequency motion of the test table base. The last subsection of Section 4 forms
the tie between this Development Document and the details of calibration implementation
presented in the Laboratory Procedures Manual, Volume 3, In Volume 1 the implementa-~
tion of calibration 1s only briefly described, the details being left as the subject of

Volume 3.

The alignment techniques developed 1n Section 5 expand the functional descriptions of
alignment as presented in Section 3 into a set of alignment techniques. Alignment 1s
broken into three separate routines. preprocessing of sensor outputs, the application of
chosen estimation procedures to the preprocessed outputs, and calculation of alignment
matrices from the estimated values. Since the preprocessing and alignment matrix
caleulations are developed in Section 2, the major emphasis in Section 5 15 centered on
the estimation problem.

Before describing the development of an estimation technigque, the basic functional re-
quirements and the preprocessing computations are presented, respectively, in the first
two subsections. The third subsection describes a detailed development of models for
the environmental disturbance and sensor noigse. The next two subsections are then de-
voted to the development of two approaches for estimation in Level Alignment and Gyro-
compass Alignment. The first approach develops a procedure for estimating average
values of the gravity and earth rate vectors, while the second approach leads to estimates
of instantaneous values of these vectors. Estimation techniques are developed using three
basic stalistical procedures: simple average, least squares. and posterior mean. From
these estimates the average and instantaneous values of the alignment matrices are then
obtained. The last subsection of Section 5 describes explicit equations for the recom-
mended alignment techniques, and ties the results of Section 5 to the procedural details

of alignment described 1n the Laboratory Procedures Manual.
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SECTION 2
CALIBRATION AND ALIGNMENT REQU IREMENTS

The purpose of this study 1s to determine a procedure for the calibration of the NASA/ERC
strapdown inertial sensing unit (ISU) and to delineate three operational laboratory tech-
niques for the imtial alignment of the same 1nertial sensor unit. Clearly, the 1nitial task
in this, or any study, 1s to carefully describe the problem as a specifically defined study
task. This we propose to do in this section of our report.

The key words in the above general statement of the study purpose are the words "calibra~
tion" and "alignment". The first activity in this section will be to develop (in Section 2. 1)
the definitions of those key words. Our approach to the development of those definitions
1s to present a description of an operational navigation loop and, as a conclusion to that
description, to present calibration and alignment as the determination of constants re-
quired as mnputs to the navigation loop. There are alternative approaches to the defim-~
tions of these terms but we feel our approach is optimum 1n that it clarifies the necessary
relationship between the calibration and alignment problem and the larger system problem
of Inertially navigating a propelled vehicle,

Subsequent to the navigation-system definition of calibration and alignment we will, in
Sections 2. 2 and 2. 3, describe the calibration and alignment requirements as they relate
to the ERC strapdown inertial sensing unit., Section 2. 2 describes the calibration re-
quirements, and Section 2, 3 describes the alignment requirements.

The development of the calibration requirements in Section 2. 2 will be directed toward
the tabulation of the instrument constants and instrument-to-body-axes transformation
matrix constants which are necessary in an operational navigation loop. The first
activity in that section will be the description of the geometry of the ERC ISU., This will
be followed by a description of the inertial mstruments contamned in that ISU., The in-
strument-to-body-axes transformation matrices will then be deseribed. All of the
described equipment and geometry will then be used to develop the navigation loop ''Pre-
processing Computations'. Finally, the constants in the Preprocessing Computations
will be defined as the constants to be obtained m calibration.

In Section 2. 3 the alignment requirements will be described as the real-time measurement

of the ISU fixed or earth~fixed coordinates of two vectors. Three alternative choices of
these two vectors will be presented, The geometry of alignment will also be presented.
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The final presentation will be the specific alignment matrix mathematics corresponding to
the three alternative alignment technigues.

2.1 DEFINITION OF CALIBRATION AND ALIGNMENT

The necessity for a calibration and alignment of an 1nertial sensing unit 1s directly related
to the use of the ISU in a vehicle guidance system. More specifically, calibration and
alignment reguirements are related to the necessity for a real-time transformation of the
ISU mnstrument outputs into a best estimate of a vehicle's velocity and position., In this
section we will, from a discussion of real-time inertial gurdance activities, define the
general calibration and alignment requirements,

The functional diagram shown in Figure 2-1 serves as a description of the inmifial actavifies
1n a real-time navigation loop. Thatf diagram wil be the foeal point of our attention for
the remainder of this subsection. Figure 2-1 shows only that portion of the navigation
loop which transforms instrument outputs into estimates of velocity and position, (The
remaining portions of the loop are the guidance logic, automatic control. and dynamic
response which are not shown. )

The mput to the ISU 1s the kinematic environment of the vehicle and ISU as represented

by the applied acceleration a and angular velocity w. The outputs of the ISU are {(usually)
sequences of pulse counts taken over small intervals of time. These cutputs are the mn-
puts to the computer. The computer's immediate task is to convert those measurements
into a knowledge of velocity and position. The velocity (v) and position (r) must be rep-
resented as components (v. D k) and (r- ]zk) in the frame (D k) in which one chooses to
navigate (D | represents a triple, k=1, 2, 3, of unit vectors directed along the orthogonal
navigation axes).

The 1nitial activity in the conversion to velocity and position 1s the transformation of the
pulse counts into estimates of the infegrals of the instrument-axes components of applied
acceleration and angular velocity. The instrument axes are represented by the triads

A k and (Ek of {in general) nonorthogonal unit vectors directed along the input axes of the
accelerometers and gyros, respectively.

The second activity, in the conversion to velocity and position, 1s the transformation of
the integrals of the instrument-axes components of applied acceleration and angular
velocity into integrals of body-axes components. The body axes (B k) are a triad of
orthogonal unit vectors which are fixed to the ISU., These body axes can be defined 1n
various ways. They can be defined by use of any two of the :nstrument axes or they can,
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as they are in this study, be defined by use of two mirror normals. (The manner in
which this definition is accomplished for the ERC system will be found 1n Section 2. 2.)

The final activity in the conversion of instrument outpuis mmto navigation-axes components
of velocity and position begins with the input of the body-axis integrals of applied accel-
eration and angular velocity to the translational and rotational differential equations of
motion. The numerical solution of those differential equations yields the desired velocity
and position. The solution of the rotational differential equations serves to transform

the argument of the translational differential equations into navigation-axes components.
The cutput of the translational differential equations solution 1s then the desired com-~
ponents of velocity and position.

It 15 noted that various constants are required from computer memory as inputs into all
routines. The initial routine requires those instrument constants which scale and
correct the instrument outputs., The second routine requires the nonorthogonal three-by-
three matrices, QA and QG, which transform the integrals of the instrument-axes
components mnto the integrals of the body-axes components. The third routine, being
the solution of differential equations, requires initial conditions. The initial condition
for the rotational differential equation solution 1s an initial body-to-navigation-axes_
transformation matrix. The initial condition of the translational differeniial equation
solution is an initial knowledge of navigation-axes components of velocity and position,
A knowledge of all of these constants is required prior to any operational use of the ISU,
The development of the numerical values of these constants can be divided into three

separate problems; and the statement of two of these problems can be used as a defim-
tion of calibration and alignment.

The problem of delermimng the instrument constants used in the first routine, and the
QA and QG matrices used in the second routine, will be considered in this report as the
problem of calibration. The problem of determining the initial body-to-navigation-axes
transformation matrix will be referr=d to as the alignment problem. The remaining
problem of initializing velocity and position is an operational problem, which is not
within the scope of this work.

We will extend these definitions to the subject ERC strapdown ISU. Specifically, we will

delineate more detailled defimitions in terms of the geometry and instruments charac-
terizing the ERC system. Section 2.2 will treat calibration, and 2.3 alignment.
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2.2 CALIBRATION REQUIREMENTS

It was seen 1n the preceding subsection that calibration is defined as the determination
of those instrument constants and constant matrix transformations required in the
transformation of instrument outputs into integrals of body-axes components of applied
acceleration and angular velocity. Inthis section we will describe the equations in the
navigation routines which utilize the calibration constants. We wall specify those
equations with the assumption that the ERC strapdown ISU 1s the subject sensor unit.
From that description, we can then specifically describe the calibration requirements
as the determination of the constants contained within those navigation routines.

The desired equations are directly deducible from the geometry of the ISU and the
mathematical models of the instrements. We therefore begin the presentation in this
section by describing the geometry of the strapdown ISU, followed by a description of
the accelerometers and gyros contained within the ISU. Following those descriptions

we will define the QA and QG matrices. Next we will employ all of this information to
develop the desired equations; and finally we will utilize those equations in the tabulation
of the required calibration constants.

2.2.1 ISU Geometry
The ERC ISU is a strapdown sensing unit containing.

e  Three vibrating-string accelerometers

s Three single degree of freedom gyros

s  One mirror cube

o Associated structural and electrome devices.

The strapdown ISU has been specified such that the accelerometer input axes (A k), the
gyro input axes (G k)’ and three mirror normals (Mk) are nominally orthogonal and
nominally aligned. In implementing the specification, there will naturally be deviations
of small angles between the supposedly aligned instrument and mirror axes, In

Figure 2-2 an exaggerated representation of those deviations from nommal is shown. It
will be assumed 1n this study that the cosines of the angles between supposedly aligned
vectors are equal to one and the cosines of the angles between supposedly orthogonal
vectors are equal to small first order numbers.

Additional geometry required mm subsequent developments 1s the nominal location of the
gyro output (O k) and spin (8 k) axes relative to the input axes already described. Those
nominal locatzons are shown in Figure 2-3.
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Figure 2-2, Instrument and Mirror Axes
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It 1s always convenient, in inertial navigation, to define, from the geomeiry of the ISU, a
set of orthogonal unit vectors which represent a common "body set of axes' to which all
accelerometer and gyro outputs can be referred. The defimtion of those body axes is
usually arbitrary; that 1s, any two ISU fixed vectors can be used. For the purpose of this
study we will utilize two mirror normals. The body axes for the subject ISU are defined
by

By

By = (M x My) x My/|M; x M

-._-—%1

2

By = (M x My)/| M, x M,|

This defimition 1s shown schematically in Figure 2-4.

2.2.2 Accelerometer Model

A schematic of the accelerometer 1s shown i Figure 2-5. The accelerometer consists
of two masses separated by a spring and supported for centering purposes by two strings
(S1 and Sz) and ligaments normal to S1 and S2‘ When the accelerometer is at rest or
moving with constant velocity, the sum of forces acting on the masses 1s zero. When the
msirument is accelerated, the sum of forces will adjust to cause the masses to move with
the same acceleration. Strings S1 and 82 will change 1n tension as a function of the com-~
ponent of acceleration along the strings. (This direction 1s the sensitive axis of the in-
strument.) Since the resonant frequency of a vibrating-string 1s a function of 1ts tension,
the frequency of strings 81 and S2 may be read and converted to acceleration along the
sengitive axis.

The math model of the accelerometer 1s presented on Chart 2-1. The outputs from the
accelerometer are the pulse counts, Nl and NZ’ representing the number of zero
crossings from strings S1 and S2 in the time interval t;»tb. Since the counfing process
can start and terminate at a fixed time for any sample. a guantization error (represented
by Eq) of up to two counts {(one per string) may occur. A fixed bias (Do) 15 assumed.

The entire output 1s multiplied by the scale factor Dl' The gsecond and third order co-
efficients (D2 and D,) are extremely small,

In developing the model (see Appendix A) several assumptions were made. The most
critical are

1. The accelerometer has negligible instrument noise,
2. The effects of terms higher than the third order are negligible,
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Figure 2-4, Body and Mirror Axes
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CHART 2-1

THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

% % Y%
jt fo dt - J’t f£;dt = (Ny-Ny) + Eq = D, J“t (a-A)dt
a a a
‘ot
b 2 3.
+ Dy ?ft [D+Dy(a-A)“+Dg(a-4)" Jdt
a

WHERE-

a 18 the acceleration applied to the accelerometer
. ta st=t;, 1s the time interval over which a 1s measured
¢ A 1s aunit vector directed along the input axis of the accelerometer

* Ny and N, are the number of zero crossings detected in t ast <ty
irom both strings of the accelerometer

¢  Eq is the instrument quantization error due to the fact that ta and tb
do not correspond to zero crossings

. D1 18 the accelerometer scale factor
. DD 15 the accelerometer bias
’ D2 is the second order coefficient

. D3 1s the third order coefficient

e fz and fl are string frequencies in pulses/second
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3. There are no cross coupling effects.
4, The strings are colinear.

2.2.3 Gyro Model

The gyroscopes used 1n the ERC strapdown ISU are Honeywell GG334A single degree of
freedom, pulse rebalance gyros, The gyros contain a gimballed rotor as shown in
Figure 2-6. The rotor spins at a high angular rate. The gimbal 1s restrained by the
gimbal bearings to rotate with respect fo the case about the O axis only as shown in the
figure. Any angular motion of the gyro case about the input axis, G, will generate a
gyroscopic torque that tends to rotate the gimbal about O. A signal generator measures
the gimbal deflection. The deflection is compared at a 3, 6 KHz rate with two equal
thresholds of opposite sign and a positive, negative. or zero pulse 1s generated. based
on the results of the comparison. This signal 1s sampled by the readout electronics and
fed to a torgue generator where a torque pulse 1s generated to offset the deflection.

The model of the gyro 1s given on the accompanying chart. (See Appendix B for a deriva-
N

tion.) ¥ 6 K is the net count of positive and negative rebalance torques. A® is the scale
factor lgg %che mstrument, The term jt;\T (_Lg- g) dt 1s the desired mformation from the in-
strument. and is equal to the integral of the angular velocity component along the sensi-
tive axis. R 15 a fixed bras term. The three terms with coefficients, B;, B, and Bg
are due to the fact that the center of force of the gimbal support differs from the gimbal
center of mass. causing a torque proportional to acceleration (mass unbalance effect).
Terms with coefficients Cyy, CSS’ Crsr COS and C;4 arise because of the deformations
of the gimbal, caused by acceleration forces that produce mass unbalance effects. The
term with QII coefficient is due to scale factor nonlinearries. The Qg term1s due to
the differences of moments of nertia about § and O. The term containing J 1s the
effect of dynamzic coupling because of finite gimbal inertia,

2.2.4 Q Matrices

In Section 2.1 we defined the QA and QG matrices as those constant matrices which
transform the integral of the instrument-axes components of applied acceleration and
angular velocity into the integrals of the body-axes components of the same vectors,
In this subsection we will specifically define those matrices.

First, the QA and QG matrices, as suggested by the superscripts, transform, re-

spectively, the integrals of the accelerometer-axes components and the integrals of the
gyro-axes components. Second, QA and QG, bemng constant matrices, transform all
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O 15 a umt vector along the output axis as defined by

the gimbazl,

G = O x § 1s the sensitive axis of the gyro.
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Axes: 8 isa umt vector along the spin axis of the rotor.
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THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS:

N AN tn 2, 0 g
A k§16k I, (w.G) dt + jt R+Bi(a-G) + Bofa-0) + Bgla-8) + Cpyfa-G)” + Cggla-8)
- ¢ 0

+ Cigla G) @ 8) + Cpglar0) (@-8) + Cpla-G) @ 0)

d
- QH( w 9)2 + QIS((_»_»(_}_) (E_S') + . at (Q’ ledt + An + Eq

WHERE

. w 15 the angular velocity applied to the gyro

N a 1s the acceleration applied to the gyro

. tgsts tN is the time interval over which a and & are measured

. tN -ty = N7, where N 1s an integer, and T 15 the gyro sampling
period

. 8 1s a umt vector along the spin axis of the rotor

. O 15 a unt vector directed along the output axis as defined by the
gimbal

] G 1s a unit vector along O x S {that 1s, the sensitive axis of the gyro}

. 6}; 1s the kth gyro pulse, equal to +1, -1, or 0 for positive, negative,
or no pulse

. Ad 15 the gyro scale factor

. R 1s the gyro ias

. BI B0 and Bg are the gyro unhalance coefficients

. CII CsS Cis COS and CIO are the gyro compliance coefficients

. QIS and QII are dynamic coupling coefficients due to gimbal deflection
and scale factor nonlinearity, respectively

. J 1s the angular rate coefficient

. An 1s the effect of gyro noise over the Cto, tN} mterval

. Eq 15 the gyro guantization error
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triples of vector components between the frames, not just the integrals of those vector
components. (That 1s, the @ matrices can be taken in and out of the integral at will.)
Therefore. we can say that QA and QG are defined by:

B A &4
Bal =197 || 42
B3l L L%s]
By a G
§2 = | Q G.
1]

It will be seen m Section 4 tnat calibration determines not QA and QG but (QA)"]‘ and
(QG)_l. We therefore need to deduce the matrices from their inverses. From the
geometry presented 1n Section 2. 2.1 it 1s seen that the QA and QG matrices are approxi-
mately identity matrices. This fact makes the deduction of the matrices from their in-
verses quite stmple. In the accompanying chart that deduction 1s presented., Note, 1n
Chart 2-3, that the inverses appear. at quick glance, to be orthogonal (that 1s the ele-
ments are "direction cosines'). This apparent orthogonality results from §k being

orthogonal. However G Kk and ék are not, in general, orthogonal, and therefore the in-
verse matrices are also not orthogonal.

In Appendix C alternate forms of the QA and QG matrices are presented. Those forms
are functions of the separation-angles between the unit-vectors contained within the ISU.
Even though we will not specifically present techniques for finding separation-angles, the
reader may be mterested in those forms for the purpose of deducing separation angles
from the calibration-determained (QA)"'1 and (QG)'1 elements.

2.2.5 Preprocessing Compuiations

In this section we will show how the ISU geometry and mathematical models lead to the
specific equations found in the mnif1al computational routines of a navigation loop, Those
equations. which we call the Preprocessing Computations, mclude all of the constants
which must be determined during a laboratory calibration,

Referring to the flow diagram presented in Figure 2-1 we see that the imifi1al routine in
the navigation loop 1s the transformation of the mstrument outputs into a knowledge of the
integrals of the msirument-axes components of applied acceleration and angular velocity,
Referring 1o the instrument models. we see that the models represent functional rela-
fionships hetween the mputs and outputs of the mitial navigation routine, (This statement,
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CHART 2-3

Determination of QA and QC from @1 ana (QG)'1

The calibration determines not QA and QG but (QA)"1 and (QG)— 1.

The mverse matrices have the form,

(&
@M l={@&

(Aq

=1
(Gy -

Gy

Q%! =

G- B

. B
- B,)
- By)

(J}_ * Ez)

(ég ' 52)

(é3 ¢ :_B_z)

@1 '

@2 * Ez)

(c_;';g : ]éz)

5)

(A ~B—‘

A+ By)

(Az * 53)
(é ' §3)

. §3)

(9_2 ) 123)

+ By)

Because of the excellent mechanical specifications on the strapdown ISU, each
of the above matrices will have ones on the diagonals and first order small
quantities on the ofi~-diagonal. That 1s, each matrix can be written as.

I+ E

where I 1sthe identity matrix and E 1s a small off-diagonal matrix,

The mnverse of {1+ E) (to first order) 13 (I~ E),

The QA and QG matrices can, therefore, be written as:

1
A
QT = '(éz' @1)
_(éa' El)
o
Q% = -6, B
"(93' El)

where all elements within the matrices are found in calibration.

'(él ' Ez)
1
“(éS " ?’_2)

-G

G, ' B

o)
1

- (gs * Ez)

..(él. B
"(ég' EB)
1

~(G,* B

~(Gy* By)
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of course, assumes that quantization and noise are neglected.} The mathematical model,
functional relationships are not, however, explicitly in the form: routine output = f (rou-
tine input). To the contrary, the relationships are the inverse: routine input = g {routine
output), The desired navigation equations must therefore result from an mversion of the
mstrument mathematical models.

The inversion of the modele is quite a simple matier. This 1s due to the fact that each
instrument is designed t{¢ be 2 linear instrument, therefore, all "nonlinear' terms are
the result of design deficiencies and therefore are quite small relative to the proportional
term plus bias, We conclude then that all "nonlinear™ terms can be approximated by
funciions of the instrument ouiputs. The following discussion shows how this is accom-
plished.

The accelerometer model {neglecting quantization and noise) has the form:

AN = Dl,J' (asA)dt + DIDOJ' dt + higher order terms
where AN is the difference in the number of zero crossings detected from each strmg in
the time period over which the imntegrations in the equation are made, In the following

discussions, this time period will always equal At,

As a first order approximation,

1
[@-a)at = — (AN -D,;D_ At)
2 D,
Let us define
@-Aat = [@.Aadt
S fa-A)at 1
or (a+d) = ————— = —— (AN - D;D_At)
- fat D,At

We can see that (2. 4) is, from the mean value theorem of calculus, a value of (a- A)
somewhere 1n the time period of integration.

Referring to the second order term

faBPat
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which can be written

a-2)%at

We see that, when the period of integration 1s chosen short enough that (a - é) 1s essentially
constant over each period, then it can be assumed that.

@ &% = @ A7

(Ths 15 a very good approximation, considering the fact that the coefficient of the square
term 18 quite small,) From all of the above statements we can therefore infer:

[@- 8% at =[

2
(AN -DyD Ati] At
D, At o

Similarly, the cubic term can be written as

1
I(gné)S it = [ﬁ(m - DIDOAt)}SAt
1

The expression for (2 A) can also be used to determine the gyro unbalance mtegrals from
the approximations:

f(i-_@k)dt = I(E‘ék)dt
(0 0 1] [J@a-apat]
J@-o)dat = 1 0 0| |f(a-Ay)dt| (See Figure 2-3.)
|1 0 0] _j’(g-As)dt_
[0-1 o] [[a-Apat]
Ja-gpat =] 0 0-1] |J(a-Aydt
0 1 0] [Ja-Agdt
h A)dt ! AN D), At
. = — - (D
where fa. Ay (Dl)k[( he = (B9D ) :|

(We have refrained from using the instrument index k until it was absolutely essential.
This served to keep the notation as simple as possible. )

2-18



The compliance integrals are found to be sumilar to the higher-order accelerometer terms.
We note that all of the gyro approxunations utilhize the outputs of the accelerometers to
compensate for the gyro acceleration-sensitive terms.

After all approximations, we will have equations of the form:

f (accelerometer outputs)

_1
o
o
o
.
o
ot
I

]

J (wse _(_ik) dt g (accelerometer and gyro outputs)

The QA and QG matrices can then be used to find.

[@ Bat = Dqg [@-A)at

1

J(w-Bpdt

D Qg [ Gyat

The above statements lead fo the complete set of computations, which are found on the
following chart., We will henceforth, m this document, refer to those equations as the
Preprocessmg Computations. The following nomenclature 1s required for the understand-
ing of the Preprecessmg Computations:

¢ (Tyki and (Zy)gs are the counts from the one and two strings of the th
accelerometer,
s (Z ﬁ)k 15 the count from the kT gyro,
T

& S5 1s the clock scale factor (the subscript 2 serves to distinguish this scale
factor from anocther used in calibration).

L (Eng) 18 the count from the system clock. All other terms have been
previously defined,

2.2,6 Calibration Requirements

The Preprocessmmg Computations developed in the preceding subsection are seen to be a
function of a great number of constants, Those constants were, in Section 2, 1, defined
as the constants to be calibrated. An explicit statement of the calibration reguirements
15 therefore the determination of the gquantitative value of the constants contained within
the Preprocessing routine, In Chart 2-5 those constants are listed, As a matter of
convenience, the nominal values, ranges, and precision requrements, where available,
are given,
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CHART 2-4

PREPROCESSING COMPUTATIONS

Inputs (By)\ g, (T7),y, (6}, and (Eng Jiork=1, 2, 3

The outputs _j'tt+ at («w B, )dt and _]'tt+ At (@Bp)dt k=1, 2, 3) are given by the followmg
computations

. PR = (@YY, - ()]

. P?: = (Z8),

. at =si(zn3)

e {eGlat? = Piae), - (R At

o ifaa,) At = PR/D;), - (Dy), At

. (e+Gy) = {(w-Gy) At:/at

. @a-4) =@ 4y atl/at

¢ a Gy = EET‘EI;)
0 o 1[EE)

. &0 -{1 0 o||@A&,)
(1 0 0f|@A])
[0 -1 0[EE

. @8) =|0 0 1|{&Ey
01 0||@Ey

o MG dt = HwGAti- (B GG+ (Bo), @-0,)+(Bg), (@5,) At
- {Cpyla: gk)zicss)h @E;f_ at L
- ;(Cls)k(g' (—}k) (E' §k) + (Cos)k(?_-‘ (—)k) (2 §k) + (Clo)k(ﬂ'gk) (3' Qk) TAt
- L@ @G - (Qug) (& G @S At

-;tt'm(g"ék)dt = J@AJAL - (Do) (@ AAt - (Dy), A%t

of U - 3, g
ut r - -—-

. Itt+At(ﬁ'§k)dt =2}, Lt"“m(_a_- At
where
L -Gy By) (G By
e @%=l-6;B)) 1 -(Gy By
~(G5-By) -Gy By) t ]
1 ‘(&1' gz) "(él' Es)
. QA = "(ég' El) 1 _(éz' 23)
(83" Bp) -(AgBy) T

2-20




LISTING OF CALIBRATION PARAMETERS

CHART 2-5

Accelerometer Coefficients

Name and Units Nominal Value Range Precision
Pulses - -8
( 1t /g) 254 252 - 256 AD, /D, = 2x10
D, (g) 1071 0-+2x107%  |ap,=7x107
D,(g/g?) 0 =13x1078
D,(g/e”) 27x107° (26 -+ 28)x1070
(4, B)) 1 0
(&," B, 0
Gyro Coefficients

Name and Units Nomainal Value Range Precision
Adp{deg/pilse) 3.8 x107° Al{A®)/ A% = 1074
R(deg/hr) 0 =2 AR =0,005
By(deg/hr/g) 0 -1
Bo(deg/hr /g) 0 =1
BS(deg.’ hr/g) 0 ES|
Cpyldeg/hr/g?) 0 =0, 04
CSS(deg/hr/gz) 0 =0, 04

Is(deg/ hr/g 0 =0, 04

Cogldeg/hr/g?) 0 =0, 04
CIo(deg/ hr/ gz) 0 negligible
Qppthr/deg) 0
Q (deg / rad )2 4

15 sec
J(hr) 3.7x10"7
(G, B k) 1 0
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Note that a great number of the constants have a nominal value of zero. Note also thai
the accelerometer bias term is the only term which has a2 nominal value which appreciably
affects an mstrument oufput (that is, affects the output over and above the effect of the
linear term), The relatively large value of the bias term accounts for the bias being
uf1lized in the preceding subsection as a part of the higher-~order term approximaticns.

dnly the precisions of the bias and secale factor are giwven. The scale factor precision is
presented as a relative requirement (ratio of uncertainty to magmtude). The bias
precision is presented as an absoluie error. It will be shown in the trade-off document
that the errors in each of the other terms act as either a scale-factor-like or bias-like
error. Therefore, all precisions are mferred from either the scale factor or bias
preclslon.

2,3 ALIGNMENT REQUIREMENTS

In Section 2, 1 alignment was defined as the imbalization of the matrix which transforms
from an ISU-fixed frame of reference (body axes) to a navigation frame. In this section
our purpose is to explicitly state the requirements for determining that matrix, Three
alternative technigues will be presented. The definition of the three alignment techniques
will be presented in Seciion 2.3.1. The alignment requirement associated with each
technigue will be found to be the measurement of either the body-axes or earth-axes
components of two system vectors. In Section 2. 3.2 the geometry associated with the
alignment techmques will be presented. The explicit functional form of the alignment
matrix for all three techniques will be delineated in Section 2. 3. 3.

2.3.1 Defiumtion of Three Alignment Technigques

Alignment has been defmed as the initiahzation of the body-to-navigation-axes transfor-
mation matrix, For the subject ISU, the body axes (_1§k) are defined by the normals to
two ISU-fixed mirrors (see Section 2,2, 1), For the purpose of this study, we will assume
that the navigation axes are aligned with a set of local-level earth axes (E,), where

E; is directed up (along the line of local gravity)
Ey is directed east (normal to the local meridian)

Eq is directed north (normal to E; and _E_Z) .
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(Throughout the text we will, at times, also refer to the earth axes as U, E, and N, where

f=]
]
&=

=

(2 =
I
k=
w

We can now more explicitly define the alignment problem as the determination (at some
time, say t) of the 3x3 orthogonal matrix T, where T is defined by:

Ey U [B
E|l = |E| = |[T||By
Eg N B,

There are numerous technigues for determining the elements of the matrix T. Each
technigue considered in this report is based upon expressing the mairix functionally in
terms of the components of two vectors (which are known, in an operational situation)

in both the body- and earth-fixed frames. The typical operational situation would be

an earth-fixed orientation of the ISU, Assuming that the operationally available meas-
uring devices to be used during alignment are any combimation of three gyros, three
accelerometers, or two iwo-degree-of-freedom autocollimators, then the vectors which
can be used to functionally define the T matrix are:

¢  The unit mirror normals M; and My, which can be measured in the carth frame
by the autocollimatorsand are known in the body frame because they define the
body frame

¢ The local environment vectors g and _@E ("gravity'™ and earth rate), which can
be determined in the body frame by thé accelerometers and gyros and which are
known in the earth frame because they explicitly define the earth frame, that is,

E 1 = U

Ey = WxU)/|wxy]|
Eg = Ux(WxU)/|Wx U]
where U = g/lg_|
and W = u_JE/lgEI

The T matrix can be expressed in terms of the components of any two of the four above-
mentioned vectors (1\_/.[1, My, g, and c.;oE }; but, as a contract requirement, only the
following three combinations are of interest in this study:

*See Section 3.1.1 for a defintion of "gravity'.
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¢ My and 1\_112
* My and g
¢ g and QE.

The names of the technigques which implement the use of the components of these three
vector combinations are, respectively:

&  Mirror Alignment
&  Level Alignment
®  (Gyrocompass.

In the next subsection we will present the geometry of the four vectors (M1 » Mo, 8,
and w ), and in the following subsections we will present the explicit mathemaheal

relationships between the components of those vectors and the elements of the T matrix,

2.3.2 Alignment Geometry

In the preceding subsection we described alignment in terms of the determination of the
components of two vectors in both the body- and earth-fixed frames., We chose, as
alternatives, the vector combinations

. _Igl and 1}1_2
» i\gl andg
* gandw®,

In this subsection we present the geomeiric reiationship between the four vectors which
are considered in our three techmgues,

The required geomelry is shown in Figure 2-7. The following commenis explain the
nofation:

e U is 2 umt vector directed up; that1s U = g /Ig, .
. W 1s a unit vector directed along earth-rate; that 1s W = E/I wEI.
L] o] andog are, respectively, "azimuths™ of the one and two mirror

normal, as determined by an autocollimator.

81 and 82 are, respectively, the "zeniths'" of the one and two mirror
normal, as determined by an autocollmnator.
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Figure 2-7. Earth and Mirror Axes
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. X 18 the angle between U and W, which we will refer to as "local latitude™.

. Pis a unit vector directed along the projection of the one mirror normal
mto the local horizontal plane.

2,.3.3 The Three Functional Forms of the Alignment Matrix

In this subsection we present the explicit mathematical relationships between the elements
of the T matrix and the measurable body or earth referenced components of

. M4 and My for Mirror Alignment
. M1 and g for Level Alignment
. g and wE for Gyrocompass

These functional relationships are presented on the three accompanying charts, We will
not, in this subsection, meticulously derive the relationships; but will instead present
sufficient information such that the derivations are obvicus. ILetf us consider each chart
m torn.

Mirror Alignment

This derivation 15 quite easily explamned. In Section 2, 2.1 we defined the body-axes as:

.1§1 = M,
(M x M) x My
Eg =
| M, =M |
(My x M)
By =

| My M, |

Therefore any vector, say U, can be written 1n body coordinates as

U (M )

U+ (M, xM,) XM U- (M, xM
U= (U-M)B , N
- T T | Mz My | 7 | MyxM

and, after substituiing the identity

U = ExN into the last component
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CHART 2-6

MIRROR ALIGNMENT MATRIX

Inputs 61, & 92 and o

From these quantities the alignment matrix 1s given by:

7 B I (M; % U)+ (M4 * M) (E x N)-(M, xn_qz)_
(U-My)
My x My | 1M, x M, |
T = (E'Ml) (Ml X E_)‘{I\_/Il b4 I}_&z) (N x [_D.(Ml XI_JZ)
lMlxMZ' |M1XI‘_/_12|
(N-M,) (M xN)- (M, M) (U x E)- (M x My)
2 I, % M, | M, =M, |

where
M M) = 01 (g )01/

(1\.41 . 1\_’;2) = (Ml. U_)(Mz' U_) + (I\El' E)(M;g' E_) + (Ml' §)(1\£2- E)
(E_J_'I\_&l) cos 84 (U- 1\_@2) cos 92
(E-Mq) | = | cos &; s, (E-My)| = |cos@y smb,

_(I:T_' Ml)_ _sin @, sinéd 1) (N*M,) s ¢y sm 8,

An optional technigue might utilize the value of ll\*/_I.l X MZI from a previous alignment
thus eliminating the aforementioned dot product and square root operations.
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and interchanging the dot and cross in the second component, we have

|- () B x )" (MyxMy)
U = [(g-l\_gl)] B, +L

B B
|| 20y, | =3

The three bracketed quantities are the elements of the first row of the T mairix. In the
Mirror Alignment chart we see those elements in the first row, and similar elements for
E and N in the second and third row. The relationships between those elements and the
azimuth and zeniths as determined by optical equipment are listed below the matrix, The
azimuth and zenith relationships are obvious from Figure 2-7,

Level Alignment

This derivation is quite simple if one separaties the problem into three paris by defining
mairices (Tl, Ty, and Ty say), where the three matrices are defined by

E; U
Bl = |T P xU
£ R i
U ] _1\_@1 )
— | BXUL = | Ty u
E ][ MixT
My B
o4 = |T3 By
M;xU | B3

Obviously T = T1 T2 T3.

The three matrices shown in the Level Alignment chart are T 12 Tg, and T4 Te spectively,
The derivation of the Ty matrix is obvious from the definition of P in Figure 2-7. The
derivation of T2 is based upon the fact that

I

xU

it

(Myx U)/| My xU|

and P=Ux(M{xU)/|M;x U]
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CHART 2-7

LEVEL ALIGNMENT MATRIX

to two.

Inputs (g' El)} (g" §2), (g * ES) and al

From these quantities the alignment matrix 1s given by:

] 1 0 0 0 1
T =10 sma, cos o, 0 0
1 (1}__'11' ‘_j_)
0 -cosay smo, |l\_/11xlﬂ Il\iflxy'_l
where
* (1\'_":‘1' u) = (U- 51)
o IMxUI={1- (Mlng?‘}l/g
o (U B=(eBe

(M- U) = cos 8y

An optional techmque might utillize any of the following additional inputs:

s The zemth angle (61) of mirror one might be utilized to find (

e The magmtude of gravity (g) mught be supplied from a local survey. This piece
of information ean be utilized to reduce the number of required accelerometers

1\_/11 - U) from
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The derivation of T3 1s based upon the fact that

M1=]§

1
U = (UBy) By « (U-By) By + (U By) By
MxU = (M;xU-By) By + (M;xU- By) B, + (M, x U+ By) By

The third 1dentity becomes, after substituting I\gl = E}.

MxU = - (U- Bs) By + (U §2) Bg
Below the matrix expression we see the obvious relationships between the elements of the
TZ and T3 matrices and the body components of _g_(as determined by accelerometers).

Below those relationships, we see alternate methods that utilize the zenith cosines and
simes from an optical measurement, and g from a survey.

Gyrocompass

In this derivation we express the T matrix as a product of two matrices (T 4 and T5 say)
where T 4 and T5 are defined by:

I 131- T W |
Byl = 1Ty U

| Es] | [¥=E
w B,
Ui = | T5|| B

WxU Bs

That separation is shown on the gyrocompass chart, The mairix T 4 is obtained from the
identities

E, =1
Eg = WxU/ WxU
E, = Ux(WxU)/ WxU
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CHART 2-8

GYROCOMPASS MATRIX

E E E
Inputs (g By) (g By) (&-By) (w™ By) (w™- By) and (¢~ Bg)

From these quantities the alignment matrix 15 given by:

][ o 1 o || @By (W-B,) (W' Bg)
1
T |=| 0 0 [WxUl (U'By) (U'B,) (U-Bg)
Ly B.) (WxU)-(B,XBy)
wxul “lwxul 0 | [(WxD)(Byx By (Wx)-(BgxBy) (WxD)-(By*Bp)|

L 3
—_—
[=

i

1

oy

{
e g =L@ B)?+ @ By)® + (g By)*3/2
An optional technique might utilize any of the following additional inputs:

e The local latitude (A) might be utilized to find (W+U) from
(W.U) =cos
e  The magmtude of gravity (g) might be supplied from a local survey.

e  The magmtude of earth rate (wE) might be supplied from a local survey.

A use of all additional inputs could reduce the number of necessary instruments to three
{ewther two accelerometers and one gyro, or one accelerometer and two gyros).
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The rows of the T5 matrix are obviously made up of the components of W, U, and WxU.

Below the matrix expression is found the relationships between the elements of the T, and

T5 matrices, and the accelerometer and gyro determined body-axes components of g

and wE. Below those relationships is found a discussion of alternate techniques utilizing
E

g, w  and
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SECTION 3
SYSTEM DESCRIPTION

The calibration and alignment requirements for the NASA/ERC strapdown mertial
sensing unit were presented in Section 2. The calibration requirements were defined

as the determination of the mertial instrument model constants and the elements of

the matrices which transform between the instrument and body frames of reference.
Alignment was defmed as the real-time 1mtialization of the body-to-earth transformation
matrix, The alignment requirements were defined 4s the measurement of the body
and/or earth-frame components of two system vectors. Three alternafive choices of
sets of vectors were introduced. These alternatives characterized the three alignment
technigues: Mirror Alignment, Level Alignment, and Gyrocompass. As a necessary
aid to the satisfaction of the calibration and alignment requrements, various pieces of
laboratory equipment are needed., It 1s also necessary to understand fully the nature of
the kmematic environment in which the equipment and ISU are located. In this section
our purpose 15 to describe that equipment and environment, beginning with their relation-
ships with the problems of calibration and alignment.

3.1 FUNCTIONAL DESCRIPTIQNS OF CALIBRATION AND ALIGNMENT

The following paragraphs describe the functional activities of calibration and alignment.
(Section 3. 1.1 discusses calibration, and 3, 1,2 discusses alignment.) These funciional
descriptions serve as a defimition of the required mputs to the caljbration and alignment
evaluations which come from sources other than the ISU,

3.1.1 Calibration

In the following discussion we wndicate the functional requirements for determining the
calibration numbers, Our discussion will be quite general, the major purpose being to
introcuce the reason why the equipment described i subsequent subsections 1s regured.

As anp a1d to our presentation, we find it useful to compare the ERC laboratory calibration
with an 'deal Calibration". This comparison serves to mdicate the compromises which

are necessary in defining an operational calibration laboratory.

On the following chart (entitled Calibration} we present two calibration functional diagrams.
We refer to the two techniques represented by those diagrams as Ideal Calibration and ERC
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CHART 3-1

CALIBRATION

IDEAL, CALIBRATION (OR STANDARDIZATION)
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Laboratory Calibration. The Ideal Calibration diagram represents the manner in which
calibration would be accomplished if an unlimited amount of time and money were avail-
able. The ERC Laboratory Calibration diagram represents the manner in which the
calibration will be accomplished under more realistic constraints.

If one wished to calibrate a ''black-box" (ISU) ideally, he would operate in the manner
mdicated in the Ideal Calibration functional diagram. Subsequent to the development

of an ISU, whose outputs are designed to vary over a range of kinematic environment
mputs (g and c_o), one would wish to determine the quantitative relationship between the
ISU outputs and that environment, However, that environment exists only conceptually,
and not quantitatively, until 2 device 1s available which is defined as the measurer of these
kinematic quantities. That device is referred to as the "Standard' measuring device.
With the Standard available, it is then possible to calibrate the ISU by placing both the
ISU and the Standard in the same environment and mapping the output of both over the
range of the kinerhatic quantities which are considered to be sigmficant, This mapping
would take the form of & table of ISU and Standard outputs over the required operational
range of the ISU. The mapping would necessarily be accomplished in a frame which
characterizes the ISU and is known relative to the Standard, In our case, this irame
will be the body axes as defured by the ISU mirror normals,

We see from the aforementioned statements that calibration 1s nothing more than the
1mmplementing of the requrement that the ISU behave as the Standard would under the

same kinematic conditions. Thus, after calibration the ISU will have been "standarcized',
Subsequent to the standardization, it 1s assumed that the ISU can measure the kmematic
environment, as the Standard would under the same conditions. This is accomplished by

a transformation of the ISU outputs mnto a measure of the environment by use of the mappimng
information,

This is all rather interesting but not, operationally, very feasible. Farst, such a Standard
is not available in the laboratory, and even if it were, time would not allow for a mapping
over the entire operational range of the kimemalic mnputs, Secondly, in the case of applied
acceleration, the typical operational range of the kinematic wnputs cannot be easily
generated 1n the laboratory. (A centrifuge would be required for accelerations higher

than one g.) Thirdly, 1t is not always feasible to have even a substitute for the Standard
operating at the same time as the ISU. All of these problems explain the deviations of

the ERC I.aboratory Calibration from the Ideal Calibration. Before elaboratmg those
differences, a description of the ERC environment is necessary.
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The kinematic inputs found in the ERC laboratory include:

1) The applied accelerations and angular velocities characteristic of any point
on the earth's surface

2) The local deviations {rom those accelerations and angular velocifies due to such
things as earthquakes and cultural noise

3) The generated environments, caused by the ERC test table.

The first category mcludes earth-rate and the applied acceleration (normal-specific
force) which negates the acceleration due to gravity in a "static' orientation relative

to the earth. (This acceleration 1s often confused with gravity. It is, on the average,
equal in magnitude and opposite in sign to gravity. The very common convention 18 to
refer to this applied acceleration as g. We will, in the remainder of this document, also
refer to it as g. Note, however, that we always direct g away from the surface of the
earth,) The second category will be referred to as "moise’. The laboratory test table
(see Figure 3-1), mentioned 1n the third category, has a motor-driven capability of
rofating at speeds up to several thousand earth rates, Such rotations will develop angular
velocity and angular -velocity-related acceleration mputs o the ISU (the ISU being always
attached, during calibration, to the table).

As suggested in the discussion of the Ideal Calibration, it 1s necessary that an independent
measure (Standard Output) of the laboratory environment be available in order that
calibration can be accomplished. This independent measure, even when a substitute for
the Standard 1s used, should be accomplished at the same time that the ISU 1s yielding
outputs. In the case of the angular velocity of the test table, an independent, real-time
measure will be accomplished through the use of the output of the test table resolver.

The measurements of the g and LBE

vectors are, however, accomplished at some fime
prior to calibration and "stored' for use during calibration. The storage of the direction
of those two vectors is evidenced in the location of such things as optical hnes, resolver
zeros, ete., and the magnitudes by storage of numbers in a computer memory. Informa-
fron about the noise 1s stored in the form of graphs showing characteristics such as
power spectral densities. Because g, EE , and noise are not measured mn real time, it
15 assumed that their behavior is the same at the tune of calibration as it was at the

time of measurement, therefore, they can be considered a good approximation of a real-
time measurement,

To this pomnt we have described the manner in which the Standard output 1s evidenced in

the ERC laboratory. We requre only one more sfatement, in this presentation of the
calibration functional activity, about the substifution of ERC Laboratory Calibration for
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Ideal Cahbration., The Ideal Calibration was described as a standardization over the
entire range of inputs. Fortunately, mn the case of Laboratory Calibration, some of the
standardization has been accomphshed by mstrument designers prior o the placement
of the accelerometers and gyros in the ISU. A great deal of fime and effort has already
been devoted to the development of a functional relationship between the output of the
instruments and their environment inputs, Those functional relationships are referred
to as mathematical models, As seen earhier, the instrument models contain many con-
stants, Because of the availabihiy of the models, 1t 1s only necessary in calibration to
map a number of envircnments equal to the number of calibration constants for the de-
termination of those constants, It 1s assumed that a knowledge of the models, and the
model constants, serves to interpolate the mapping between the chosen environments,

In this subsection we discussed the independent measurements required as an aid to
calibration., In Section 3.2 we will discuss how those measurements are specifically
developed as mputs mto the determination of the calibration constants.

3.1.2 Alignment

In Section 2. 1 alignment was defined as the imtialization of the mairix which transforms
from an ISU-fixed set of axes to a navigation set of axes. In Section 2.2 the ISU-fixed
axes were defined by two ISU-fixed mirror normals, and m Section 2, 3 the navigation
axes were defined as an earth-fixed, local-level frame of reference. Further, in

Section 2, 3, three alternate mathematical forms of the alignment matrix (T) were derived.
Each form showed a requirement for a different set of optical or inertial-msirument
measurements as an input wnto the quantitative determmation of the alignment matrix,

In this section we will discuss the techniques for determming each set of inputs,

As an aid to this disucssion we present m. the accompanying chart, entifled "Alignment
Functional Diagrams', a schematic of each of the three alignment techmques. In the
remamming paragraphs of this section we discuss, in turn, the contents of each functional
diagram.

Marror Alignment

The routine labeled Alignment Matrix Computations represents the computations described
n the Mirror Alignment Chart found 1n Section 2. 3.3, As shown 1n Section 2. 3.3 those
computations reguire, as mputs, the optically determined azimuth and zenith of both the
one and two miurror normals. {In practice, the actual optical measurements might be
angles other than the azimuth and/or zenith angle. It 1s always an easy matier, however,
to convert the actmal measurements wnto the required azimuth and zenith.) The optical



CHART 3-2

ALIGNMENT FUNCTIONAL DIAGRAMS
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measurements will be manually transferred to the matrix compulation routine, which will be
part of a digital computer program in the ERC facility. Because optical measurements are
extremely accurate by design, we do not include 1n the functional diagram any data-Diltering
function,

Level Alignment

The second functional diagram represents the Level Alignment procedure. The Alignment
Matrix Computations indicated in the last block in the diagram represent the computations
found m the Level Alignment chart described in Section 2, 3. 3. That routine requires. as
nputs, the body-axes components of g and the azimuth of the one mirror. In Section 2. 3 1t
was mentioned that the body-axes components of g will be available as the result of acceler-
ometer measurements and the azimuth of the one mirror as an optical measurement. At the
left side of the diagram we see the mput of these measurements. The optically obtamed
azimuth goes directly to the matrix routine {as 1t did in Mirror Alignment), The accelerom-
eter imputs, however, will require further processing, since they will be in the form of

three digital pulse counts.

We saw, 1n Section 2, 2.5. that the Preprocessing Computations convert such counts into
mtegrals of body-axes components of the applied acceleration inputs to the accelerometers.
However, those computations assumed no quantization and instrument noise. Therefore,
the transformation of the outputs of the Preprocessing Computations into the desired
body-axes components of g would require four additional operations 1n order to accomplish
a good estimation of _g_-_j*;%k . These are:

¢ A differentiation of the integral outputs of the Preprocessing Computations
¢ A compensation for instrument gquantization

» A compensation for instrument noise

# Separation of g from random environmental accelerations.

If the ISU were to be in a stalionary orientation relative to g during alignment {that 1s, 1f the
accelerometer input were a constant g acceleration). the first operation would be simply a
division of the Preprocessing output by the total time of integration (say At). Additionally,
the compensation for mstrument quantization could then be accomplished by simply waiting
sufficiently long such that the quantization residual would be arbitrarily small. However,
the ISU at the ERC facility will not be in a constant g environment, Due to such things as
local vehicle motion, personnel movement, etc.. the ISU will be. 1n fact, in the presence of
the nominal local g plus "noisy' vibrations. If some a prior:i knowledge of that noisy envi-
ronment 1s available, 1t 15 possible to accomplish some of the aforementioned compensations
by the development of mathematical {iltering operations on the "Preprocessing’ outputs.
Those mathematical operations are presented in Chart 3-2 as the Estimation Matrix Com-
putations and Estimation Routine. The former mvolves the computation of constants prior
to the actual alignment. The input to thogse computations 1s the a priori noise information,
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The Estimation Roufine represents the on-line operations on the Preprocessimng outputs, The
outputs of the Estimation Routine are the required estimates of the body-axes components of g.

The Preprocessing routme has been completely defined 1n Section 2,2.5, ana the Alignment
Matrix Computations have been defined in Section 2. 3. 3; hence, the development of the
alhignment techniques presented in Section 5 of this report will be preoccupied with the
Estunation Matrix Computations and the Estumation Routme. In Section 3,2.2 we will
present a discussion of the a priori noise nformation winch 1s required as mputs to the
estmmation routines described 1n Section 5, )

Gyrocompass

The third functional diagram in Chart 3-2 represents the operational gyrocompass pro-
cedures. The Alignment Matrix Computations shown 1n the dizgram were presented 1n
Section 2. 3.3. Requred inputs are the body-axes components of g and t_OE. Al the
left-hand side of the diagram we see the inputs of accelerometer and gyro readouts
required for the determmation of the body-axes componenis of g and QE. In the preceding
section there is a discussion relating to the transformation of the accelerometer outputs
into an estunate of the body-axes components of g. This discussion also applies to Gyro-
compass with the followmg modifications

In Gyrocompass the Preprocessing computations as presented 1 Section 2,2.5
will be used entirely, whereas the Level Alignment uses only the accelerometer-
related computations,

®  The estimation routines will operate on both gyro and accelerometer data,
3.2 ENVIRONMENT MODEL

In the preceding discussions we showed that independent environment measurements are
required for calibration, and a priori noise information 1s required for ahignment.

We indicated the manner in which that mnformation 1s available at the ERC facility. In this
sechion we will show specifically how the required measurement information is made
quantitatively available to the calibration and alignment compwational routines,

The reference environment information takes on different forms, and therefore can be
discussed independently. First, there are the stored g and L:‘E
expressed in terms of body-axes components for cahibration purposes. There 15 the -
vector (angular velocity of the test table), which must also be expressed in body-axes
components, We will refer to these three vectors as the deterministic environment, We
will show in Section 3.2. 1 how the body-axes components of the determiistic environment
are obtained as a function of test table gimbal angles. The remaining environment mputs
have been referred to as random noise. They will be described in Section 3.2.2,

vectors which must be
T
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3.2.1 Deterministic Environment

The deterministic environment is made up of the three vectors g, 9_-‘E, and ET, which

are assumed known in frames well surveyed in the laboratory, Qur purpose in this
section is to show how those vectors are iransformed from the laboratory frames into

ISU nody-axes components. The transformation will be accomplished through the use of
guantitative measuwrements taken from both the laboratory test {able and the system
autocollimators. We begin our discussion (1n 3.2. 1, 1} by describing the geometry of those
pieces of equipment. We then define the transformations between the many rigid bodies
makmg up the equipment. Fmally, (m Section 3.2. 1. 3} we will develop the operational
tfransformation of the deterministic environment mioc body-axes components.

3.2.1.1 Laboratory Geometry

The geometry of the test table and avtocollimators 1s the geometry which enables us to

, and ET into body-axes components in the ERC laboratory. In

Figure 3-2 we present a schematic of this geometry. This figure is a repeat of Figure 3-1,
with the addition of the defined laboratory frames. Chart 3-3 presents the defimitions of
the frames indicated in Fagure 3-2. A few comments are necessary as an aid to the
understanding of Figure 3-2 and the chart containing the definitions of the frames.

transform g, «

*  All frames are defmed by orthogonal unit vectors directed along the frame axes,

* The 8Kk frame is not explicitly defined in Figure 3-2. The explicii definition
will depend upon the (at this time) unknown geometry of the autocollimators.
{The lack of an explicit definition has, however, proved to be no burden in the
work that follows.)

The body axes are not shown in Figure 3-2, because their relative orientation
depends upon the manner in which the ISU is attached to the inner-axis rigid
body.

¢  The Fk frame will be required to line up with the Ex frame. This alignment
will naturally be with the laboratory frame. which, in turn, is thought to be
coincident with the earth axes defined by g and wE, We will see in Section 4.4.4
that this alignment will have to be correcied periodically by the use of bubble
levels,

Each adjacent pair of fest table {rames 1s assumed to have a common axis,

®  The four test table rotation angles are defined as ¢4, @5, ©3, and ¢, as
shown in Figure 3-2.

®*  The test table orientation shown in Figure 3-2 is the zero orientafion — that ig,
the orientation when all resolvers yield a zero ouiput.

¢  The ISU will be attached to the section labeled "test subject throughout the
entire calibration.
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CHART 3-3

DEFINITION OF FRAMES

LABORATORY FIXED FRAMES

° EyEyEg

° 5155 8

¢ EpEy Ey

TEST TABLE FRAMES

* FyEy Fy
¢ T; Ty T3

* By Ry Ry

* 91959

ISU FIXED FRAMES

JE

* By By B3

A triad of unit veciors directed up, east, and
north, respectively

A trad of unit vectors defined by the two optical
Imes of the autccollimators

A triad of unit vectors fixed to the base of the
test table

A trmad of unit vectors fixed to the base of the
test table

A triad of unit vectors fixed to the body con-
tamning the trunnion axis

A triad of unit vectors fixed to the body con-
taming the rotary axis

A triad of unit vectors fixed to the body con-
taining the outer axis

A triad of unit vectors fixed to the body con-
taining the inner axis

A triad of unit vectors fixed to the body con-
taining the inner axis

A triad of unit vectors defining the body axes
as defined by the mirror hormals (see
Section 2.2. 1)
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3.2, 1.2 Defimtion of Transformations

Let us choose the Ek and Ek frames for our example. The relationship between the unit
vectors of the two frames 15 given by:

Ry I
. RT

Rol = | T 5

Rq T3

where a muliiplication of the kth row of the 3x3 matrix 'I‘PLT with the T , column represents
R, expressed in the T. frame, Ifx isany vector known wm the Ty, frame and one wishes
{o express that vector in the Bk frame, we dot the above defnifion with x, yielding:

(x-Ry) (x- Ty)
Ry | = [T (xe Ty
(x+ 53) (x- .':.[_‘3)

I, further, we wish to transform to the Ek frame, we have:

&=-Fy (x-Ty) (- T
wFy | = |TR|| BT | @y | = | T || @ 1y
(x-Fg) (x- Tq) (x+ T3)

and so forth.

3.2, 1.3 OQperational Transformations

With the geometry information now completely described, it is possible to show how

g, _f:u_‘E , and ,i,T are transformed into body-axes components, The accompanying chart
shows how that transformation 15 accomplished. Note that the chart specifies that the
test table gimbal angles will always be used in determining the transformation, instead
of autocollimator surveys, This is purely a matter of convenmence, It certainly would
be cumbersome to survey via the autocollimators over the 47 steradians in which the
mirror normals can be located. Besides, the test fable was designed to accomplish
the necessary transiormations, Note that the autocollimators are absolutely esgential
for one very important operation, namely the determination of the matrix TBI.
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CHART 3-4

Transformations of u_JE, g and ET into
Body Axes Components

Durmg calibration there 1s a requirement for the transformation of c_.rE, g and u_JT mto
body axes components. Gravity and earth rate are vectors explicitly known 1n the Ek
frame and QT 15 a vector explicitly measured 1n the I_ik frame. The body axes com-
ponents of these vectors can, therefore, be written:

(" B =3 TLT o™ B,
€8T B-E,
(wT-B) = 2 PR oI R,

The matrices TEC and TER are, therefore, required. These matrices, as a matter of

convenience, wiil always be found as a function of test table gimhbal angles. Therefore

TBR _ pBI 110 OR

and TBE _ T TIO TOR T TTF TFE

The matrix TE- is a constant which must be found from an initial survey (see Section
4.4,1), The remaming matrices can be seen from the previous defimitions to be:

0 1 0 0 1 o0
[T, - Coy 0 -Spy (TOR; = Ceg 0 -Seq
-Se, 0 -Cg, -Sp3 0 -Cog
[0 1 0| [0 1 o]
T =|co, 0 S, (T F1= g, 0 -sgy
-S¢y 0 -Coy -S¢;, 0 -Coy

(1 0 0
itFEy2lo 1 o
0 0 1

{(Note, the frames are defined so that each matrix has the same form. )
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3.2.2 Random Environment

The laboratory test environment mtroduces a random franslational and rotational "noise"
mput, In describing the noise inputs, we will uhilize the worst-case model. Namely, the
translational input and angular mput are assumed to be independent, and the compments
of the random input vectors are assumed to be independent,

The random translational inputs about the up-down, east-west, and north-south axes

have been assumed to be statistically independent and 1dentically distributed. Each wput
has a power spectrum 1llustrated in Figure 3-3.* It follows that the translational motions
along any three perpendicular axes are uncorrelaied and have the spectrum given in
Figure 3-3, The nommal mput (local gravity) is assumed to be the long-term average
mput. Assuming ergedicity of the expectation, the translational inputs have zero expec-
tations. The random translational iputs do not produce a significant output from the
gyros.

The random rotational mput produces a rotation about an axis in the horizontal plane.
The rotation about the vertical axis can be neglected. The random angular impuis about
the east-west axis and the north-south axis are statistically independent, and each has
the power spectrum ullustrated in Figure 3-4. These mputs are assumed to have zero
expectations,

The spectra given in Figures 3-3 and 3-4 are the basis of numerical computations involving
environment noise. The selection of the "Recommended Alignment Techmgues™ in

Section 5.7 assumed an environment as indicated 1n Figures 3-3 and 3-4. The alignment
processing techniques derived in Sections 5.4 and 5.5 use the power spectra of the
translational and rotational noise mputs but do not depend on the specific numbers given

m Figures 3-3 and 3-4.

3.3 HARDWARE DESCRIPTION AND INTERFACE

The material presented to this pont has been introductory in nature, That 1s, all dis-
cussions were either related to the detailed statement of the calibration and alignment
problem, the defimtion of terms, the description of necessary equpment, or the descrip-
tion of the laboratory environment, In this section we will complete the presentation of
miroductory material by covering two descriptive tagks which aid in the understanding

of the calhibration and alignment development in Sections 4 and 5 and the operational

* Spectra data 1s given by H. Weinstock in "Lamifations on Inertial Sensor Testmg
Produced by Test Platform Vibration", NASA Electronics Research Center,
Cambridge, NASA TN D-3683, 1966,
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procedures presented m the Laboratory Procedures Manual. First, there is laboratory
equipment which 1s necessary for the implementation of calibration and alignment pro-
cedures and which has not yet been described. Second, the laboratory equipment has not
been presented as a system as a whole, with all of its interconnections. In this section
the description of that equipment and interface will be accomplished through the use of

a system diagram. In Section 3.3.1 that diagram is introduced but without the lines
denoting the equipment interface. I conjunciion with the introduction of that diagram,

we will present brief descriptions of the equipment which each block 1n the diagram
represents. In Section 3, 3.2 the useful interfaces between all equipment will be presented
in tabular form.

3.3.1 System Diagram and Equipment Description

The master system flow diagram is shown 1 Figure 3-5. This diagram will be used as

an aid in the Laboratory Procedures Manual to describe the system activities during
various phases of calibration and alignment. In those applications of the diagram, interface
lines will be added to indicate specific modes of operation. Data flows are mdicated by
narrow lmes; dynamic or monitor mnterfaces are indicated by wide lines. A brief descrip-
tion of each of the boxes represented on the master system dragram, m Figure 3-5, follows:

Input/Ouiput Console — The mput/output console consists of the equipment that provides
a manual computer mterface. Included in the mput/output console are* computer control
panel, keyboard and typewriter, paper tape reader and punch, and the display panel.

Operator — The operator m this system must perform many of the tasks of control and
data transfer. The box "operator" includes not only the person(s) directing the laboratory,
but also his worksheets, instructions, and notes.

Systems Control and Monitor — This box represents the equipment, capability, and
activity used to monitor and control the system during calibration and alignment.

Frequency Comnters — Six frequency counters are available for use in calibration to
measure mstrument ouiput, These counters measure the number of counts on one pulse
train for a fixed number of counts on another. One of the two trains may be a difference
tram formed from two mputs, The frequency counters are used mn calibration, because
they can read the leading edge of one pulse traimn and thus gubstantially reduce the
quantization error relative to the use of the computer registers.

Auxliary Data Sources — These include data sources available to the operator but not
sufficiently well defined as equipment or measuring devices to be represented individually
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on the system flow diagram. Exzamples of these sources are bubble levels and survey

mformation on the magnitude of g and EJE.

Autocollimators — The two-degree-of -freedom autocollimators are available to measure
the earth-fixed coordinates of the ISU mirror normals,

Resolvers — These resolvers measure the orientation of the test table. The angles ¢1,
@3’ and ¢4 are static resolver readouts on the trunmon, outer and mner axes of the
test table. The angle 952 is a rotary axis readout which can be used mn either a static
or dynamic mode.

Master Oscillator — This 1s the ceniral timing source of the system. The master oscillator
includes countdown circuitry,

Gyros, Accelerometers — These are the mstruments contamned within the strapdown ISU
(see Section 2.2).

Interface Electronics Umt (IEU)* — The IEU allows the computer to sample outputs of the
inertial mstruments and timer. The IEU contains accumulating registers for each of the
mputs shown i the diagram and the capahility {o pericdically interrupt the computer to
allow for samphng and resetting (without loss of data) of each of the registers.

Computer* — The computer schematically indicated in the system diagram is the laboratory
computer Honeywell DDP-124., Cther portions of the data processmng shown may, however,
be performed on other computers at the discretion of the programmers and operators,
Blocks shown within the computer represent functions used in both calibration and align-
ment, Shown are programs to input and output data from and to the console, a program

to mput data from the IEU, and memory buffers for mput data and output data (the results

of computations). Space has been left within the computer block to allow representation

of the varicus data processmg tasks.

3.3.2 Equpment Interface

Fipure 3-6 illustrates the principle daia paths that might be of interest during calibration
and alignment. Each of the paths 1s numbered and described by number i Chart 3-5.
These paths represent the calibration or alignment data flow,

#*More detailed descriptions are presented in Appendix C,
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CHART 3-5

Description of Equipment Data Paths

Data
Interface # Type Data Description
1 Coded Input — Includes magnetic and paper tape, keyboard,
and display and computer control panel mputs. Data
represents information and control from or through
the computer plus data or program filed on magnetic
or paper tape.
Output — Display, typewriter, or paper tape panel
output to the operator.
2 Visual or fape Various types of data
3 Visual Two angles/autocollimator
4 Visual Four angles test table positicn
5 Pulsed Rofary axis motion probably one puise
6 Timing Frequency less than 1 Miz
7 Timing 2,034 MUz
8 Timing 3.6 KHz
9 0, +1 or -1 pulses Gyro output to frequency counters and IEU
at 3.6 Ktz
10 Pulsed Zero crossing pulses from each of two vibrating
strings per accelerometer to frequency counters
and IEU
11 Count For inputs shown — count would be number of time
pulses per n turns
12 Count For input shown — count would be number of gyro
pulses (signed) for n turns of table
13 Count For 1nputs shown — count would be number of time
pulses per In| gyro pulses
14 Count For inputs shown — count would be numbers of time
pulses per N accelerometer pulses
15 Visual Status and monmitor information plus output from
the counters
Low visual display and printed
16 Manual Manual input of data to computer (includes key

punching, mounting of tapes and punching of
buttons)
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CHART 3-5

Description of Equipment Dafa Paths (Confinued)

Data
Interface #

Type

Data Description

17

18

19
20

Binary Data

Binary Data

Binary Data
Binary Data

Counts from IEU registers. Input in succession
with data valid for same period of fime.

Counts from IEU registers. May be summations
of data from several successive transfer across
interface #17

Input data shown in buffer

Output data shown in buffer
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Manual and monitor mterfaces are shown in Figure 3-7. The manual interfaces correspond
to operator activities during various portions of the calibration and alignment procedure.
Monitor is performed during the many procedures to verify the operation of equipment being
used at that time. Explanations for each interface on Figure 3-7 are presented on the
figure.
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SECTION 4
DEVELOPMENT OF CALIBRATION TECHNIQUES

The functional description of calibration i Chart 3-1 in Section 3. 1.1 indicated inputs of
instrument data and environment measurements to a computation routine, which in turn
outputs the calibration constants. The obvious sources of the relationships contained
within that routine are the instrument mathematical models. In Section 4.1 we will use
the instrument models to develop general equations from which the relations found in the
computation routine are evolved The general equations will be seen to contain certain
controllable parameters which describe the input environment in terms of the test table
controllable orientation and angular speed. In Sechion 4.2 a number of sets of particular
values for the control parameters will be chosen such that the general equations reduce
considerably in form. Each set of parficular values corresponds to a different calibra-
f1on '"Position’. Tt will be shown that the determination of any constant can be accom-
plished by the simultaneous solution of at most two of the reduced equations. In

Section 4, 3 the complete set of calibration computations will be delineated The relations
employed in the computation routine correspond to the solution of the calibration con-
stants from the data gathered m Positions 1 through 15.

In Section 4. 4 we will describe the operations and computations required prior to the
collection of calibration data. An example of a precalibration operation is the determina-
tion of the orientation of the ISU body axes relative to the test table inner-gimbal frame
(i. e., TBI). In Section 4.5 a brief discussion of the implementation of the proposed
techniques will be presented. The discussion of the 1mplementation of the calibration
techniques is directed towards clarifying the relation between the developments in this
document and the operational procedures described in the Laboratory Procedures Manual.

Before proceeding to the development of the calibration techniques, it 1s appropriate to
describe those incentives which motivated our specific choices of calibration techniques:

s  The determinatjon of any calibration constant should be made as msensitive as
possible fo the imprecision of any other constant(s).

¢ It is advisable fo use as few different test table orientations as possibie; and
where the orientations are different, to try to make the omentations differ from
one another by as little adjustment of the table as possible. The satisfaction of
this requirement serves two purposes. First, it will allow for the simultaneous
calibration of many instruments. Secondly, by limiting the number of table
orientations, the amouni of manual activity will be lirmtfed, thus minimizing
calibration time, and also the chances of human erroxr.

4-1



) The imprecisions of the test table orientations should have a limited influence on
the values of the calibration constants.

®*  The calibration should be made as flexable as possible. We wish to present the
calibration in such a way that additional experiments can be accomplished with a
minimum number of changes to existing calibration procedures

¢« We wish {o accomplish our calibration with Little or no data filtering. We would
like t0 minimize the effects of noise by judicious choices of approaches other
than involved software processing.

o The computation program should be as simple as possible.

®*  Data collection time should be limited to about 10 minutes, and the total calibra-
tion time to less than eight hours.

®  The precision of calibration, as a function of time, should be apparent from
error analyses accomplished on the resultant techniques.

In the discussions which follow, it will be found that it is possible to satisfy 2 majority of
the above requirements.

4.1 DEVELOPMENT OF GENERAL CALIBRATION EQUATIONS

The routine that accomplishes the evaluation of the caljibration constants we indicated in
Chart 3-1 as a routme entitled "Computation of Constants'. In this section we will develop
the general equations from which the computational routine is developed Those general
equations will be seen io contain the control parameters which describe the environment
inputs. The chosen control parameters are the angular speed of the test table, the first
two gimbal angles (¢, and 9,) of the test table, and the T matrix (which 1s a function

of the 24 and %4 gimbal angles). In Section 4.2 we will show how particular choices of
these control parameters result in relations from whach the calibration constants can be
extracted.

The presentation in this section is divided into two parts. In Section 4, 1.1 we develop
the general equations for the three system gyros, and in Section 4 1.2 we develop the

general equations for the three accelerometers.

4,1.1 Gyro Eguations

The development of the general equations begins with a presentation of the Fundamental
Gyro Model. After introducing the ERC environment and geometry into that model we
will have developed equations which are a function of, among other things, the angular
speed of the test table and test table orientation parameters. In subsequent subsections
we will show how the control of those test table parameters is employed in the determma-
tion of the required instrument calibration constanis

4-2



The presentation in this subsection contains a great deal of mathematics So as not to
interfere with the prose, we will present the mathematical development as a series of
ei1ght charts. In each chart, after the first, the equations found on the preceding chart
will be modified to indicate ceriain assumptions about the environment In the dis-
cussions which follow we describe, in turn, the assumptions and the related mathematics
presented on each chart.

The Fundamental Gyro Model (Chart 4-1)

The development of the generalized gyro calibration equations begins with the gyro
mathematical model. That model was described m Section 2. 2. 3 and presented as
Chart 2-2. Chart 2-2 is repeated here as Chart 4-1. The gyro mathematical model
describes the relationship between the output &6} of the gyro and the mput kinematic
environment (2 and w) over a time period tO"tN‘

Introduction of Laboratory Environment (Chart 4-2)

We first introduce into the gyro mathematical model the vector representation of the ERC
laboratory kinematic environment At the top of the chart the kinematic inputs are listed
Note that every possible input has been listed. This is done so that, at one point in the
development, there exists an expression which assumes nothing about the negative effect
of any possible input. Note also that the environment description assumes that the gyro
is subjected to an input angular velocity E}_T as generated by the test table rotary axis
motor

Approximations {Chart 4-3)

The next step is to neglect those kinematic inputs to the gyro which can reasonably be
expected to have a negligible effect on the gyro ouiput. A gyro is designed to be nominally
a linear angular velocity measuring device; therefore all acceleration-sensitive terms
are small. The noise acceleration and the test table-induced accelerations are also
small relative to the nominal g input. Therefore the effects of these small accelerations
are second order in all unbalance and compliance terms and are assumed negligible.
Similarly, it is assumed that the small angular velocity noise terms can he neglected m
all angular velocity-sensitive terms other than the linear term Note that in Chart 4-3
we have arranged the equations such that only the deterministic g, QE, and g)_T inputs
exist to the right of the equality. Note also that the equation has been divided by the

gyro scale factor.
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Introduction of Body Axes and Instrument Indexing {Chart 4-4)

The equations presented thus far have referred {o a single gyro. At this point we intro-
duce the index i defining three gyros (i = 1,2, 3).

We mentioned in Section 3.2 that for calibration purposes, the vectors £, QE, and gT
must be known in body-axis components. In Chart 4-4 we introduce the body axes, and
expresg the mtegrals of these vectors in terms of body-axis components. Because the
nominally Imown instrument-to-body-axis transformations differ from the actual trans-
formations by small numbers, it is assumed that the nommal values can be used in other
than the proportional angular velocity term. Note that the first three elements in the
equation represent the i row of the (QG)_1 matrix, scaled by the gyro scale factor
Note also that these elements are assumed constants whereas, on a microscopic scale,
they are time-varying within the limit cycle amplitude of the instruments.

The function found to the left of the equality has, at this point in the development, been
defined as the triple PiGr (i=1,2,3). This vector, which we will refer to as the gyro
processing vecior, contains the instrument readout term plus the guantization and noise
terms. The P? vector, and the approximations made in its evaluation during calibration,
will be discussed in Section 4.3. 1,

Choice of Body Axes (Chart 4-5)

The next step in the development is to introduce the ERC ISU nominal geometry. Those
transformations which describe that geometry were defined in Section 2. 2.1. Because
the orientations of the output and spin axes are not cyelic, a general index equation
cannot be developed. Therefore a separate equation for each gyro is presented in
Chart 4-5.

At this point the general equations relate the gyro processing vector (which includes
measurable gyro readout, noise, and quantization error) to the measurable body-axis
components of the environment (described by g, _t_:J_E, and QT). In the remaining charts
we will relate the body-axis components of the environment to the controllable test
table parameters.

Integral Evaluations (Charts 4-6, 4-7, and 4-8)

The preceding chart listed the required equations as three expressions which are linear
m the unknown calibration constants. The coeificients of those unknown constanis are
presented as integrals of body-axis components of g, QE, and QT. In the discussions of
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calibration techniques which follow this subsection we will show how calibration is
accomplished by a conirol of the values of these integrals. Before we can show this we
must functicnally relate the integrals to the controllable test table geometry. The
following three charts develop those functions.

In the first chart (4-6) the integrals of the body-axis components of g, QE, and QT are
expressed asg transformations from the frames in which they are well kmown, The
definitions of the transformation geometry and notation were explained in Section 3.2. 1.

In Chart 4-7 the earth-axes components of g and L_:,‘E and the rotary axes components of
_ogT are introduced. Additionally, the TX® and TRT matrices are expressed as functions
of the #; and ¢2 gimbal angles, (See Section 3. 2. 1 for definiiions of this geometry )
With these equalities introduced, we can now extract all but the time-varying parameter
(@2) from the integrands of the equations

In the final chart (4-8) the integrals are combined as the calibration constant coefficients.
The equalities listed at the top of the chart allow the mtegrals {o be separated into sums
of monotonically increasing terms, harmonic terms, and terms which are functions of
terminal conditions only. The only harmonic terms are those which contain integrals of
sines and cosines. The monotonic increasing terms are those containing At, and the
terminal condition terms are those which contain A's other than At,

Charts 4-5 and 4-8 constitute the required general gyro calibration equations, Note that
our result is a set of three functional relationships among: the 'processing vector"

PS, the unknown calibration constants; the magnitudes of gravity (g), earth rate (wE),
and latitude (A); the total time of integration (At), and the controllable test table
parameters, which are

¢y — The trunnion axis angle

%9 — The total angle of revolution about the rotary axis

T Gy
w™ =—— — The gpeed of the test table
dt
and TBRm — The mairix which transforms from the rotary axis frame to the

body axes for the m' calibration position.

(See Section 3 for definitions of all test table geometry, )

In Section 4.2 we will show how gyro calibration is accomplished by a control of the test
table parameters contained within the functional relationships.



CHART 4-1

THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS

N oY N 2 2
Ad kE: 61{ =It (w.G)dt + Jt R+BI(3-§_) + BO(§°9) + BS(_a_og) + CII(E'Q) + CSS(§.§)
- 0 0

+ Cr5(a-G) @-8) + Cpgla-0) @) + Cypla'Q) @ 9)

‘ d
+ QH( e 9)2 + QIS(Q'(E) (w8 +J at (w (_I_#E|dt + An + Eq

WHERE

» w 15 the angular velocity applied to the gyro

. a 1s the acceleration applied to the gyro

. t0 = t <ty 1s the time mterval over which a and « are measured

. tN - tO = Nt, where N 15 an mnteger, and7 15 the gyro sampling
period

. S 15 a umt vector along the spin axis of the rotor

. O 1s a umt vector directed along the output axis as defined by the
gimbal

. G 1s a wt vector along O x § (that 1is, the sensitive axis of the gyro)

] 61{ 1s the kth gyro pulse, egual to +1, -1, or 0 for positive, negative,
or no pulse

. Ad s the gyro scale factor

. R 1s the gyro bias

. BI BO and Bg are the gyrc unbalance coefficients

. CII CSS Cis Cos and CIO are the gyro compliance coefficients

» Qg and Q]I are dynamc coupling coefficients due to gumbal deflection
and scale factor nonlinearty, respectively

. J 1s the angular rate coefficient

. An 15 the effect of gyro noise over the Eto, tN] interval

. Eq 15 the gyro quantization error
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CHART 4-2

INTRODUCTION OF LABORATORY ENVIRONMENT

ASSUME

o oli- ETT + QEE = (ci‘T + Ag’_T) + (L_uE + L\&‘E J 18 the total applied angular

velocity

where: a_)TT is the total test table angular velocity
(,ET 1s the measured test table angular velocity

WwEE 15 the total laboratory angnlar velocity

¢ 1s the assumed (surveyed) laboratory angular velocity

" 31" =g+ __TT X (LBTT XT)+ £ TT x r + Aa 1s the fotal applied speciiic force
where: g 15 the assumed (surveyed) laboratory specific force
« TT X (f_TT b £) is the centripetal specific force due to the table
motion
- TT

w x r 1s the angular rate specific force due to the table motion

Ag 1s the deviation of the assumed laboratory specific force from

the true
% (u_TT

c}_‘TT x r) and e‘ETTx r are formal expressions, as r 1s not explicitly

defined.

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-1, WE HAVE

+th5|:R+ By li(g+ c_.,TTx(BTTxI)-r ETsz-p Aa) g:] + Bg [(gugTT\(::TTa.E)i- ETTAE-'I— 4aa) (_)]

b
~
+
B
i
1%/]
—_
+
(o]

" [ e oI (@I T ne o« Txps ag) g:l 2

+Crg [(g+ ;._;TTx (QTT'( K L‘.TT\:£+ Aa) G] IE5+ E.TT‘( (&TT‘( ) + (r:._TTx5+ Ag_)g]

_TTxg)H:TTan-A )(il [(54 c_r.TTa(gTszh wTTxr+ a2}

—_

+Cpo [(g+ wr Tx (L:TTx 3+ L»TTx£+ A )g] EE+ I:TTx (E-TT'\: I}+ ETTXE* A_a_)g]

lEu_E . ET* A,_,_-Ea- A‘:T) E] + Jd/dt I:(&E+ t_a_.T+ A&E+A g) (_)]%dt
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CHART 4-3

APPROXTMATIONS
ASSUME

o Terms contaimng the integral of components of Aa always have negligible
effect on the gyro readout.

TT

Tx(g x r) and

¢ Terms contzining the integral of components of 0_-T
t_cTT x r have a neglhigible effect on the gyro readout.

1T x (07T x 1) |<(0.22)% x 0.5 = 0. 024 ft. /sec. 2 = 0. 008 g.

» Terms confaiming QIS or QII and the integrals of components of A t_:gE or
A L_ET have a negligible effect on the gyro readout.

s Terms contaimng J and the integrals of the rate of change of A EE and
A &T have a neghgible effect on the gyro readout.

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-2 WE HAVE
(AFTER SOME ARRANGEMENTS):

N N g r
(kzl ak) - (1/Ad) An - (1/ Ad) Eq - (1/ 89 rt Emg +Aw ) f_;] dt
= 0
ty I ty ty
= (1/A9) | [« + ") Gldt+ (R/A®) [ dt+ (B/a®) [ (@dt
—t % )
t by N
N . A 2
+(Boy/a®) [ T (g O)dt + Bo/A®) | (g-S)dt+ (C/ad) [ (g-G)7dt
ty to to
N PtN In
+ Cgg/A &) J’t . (g 8)° at + Cpg/ o) JtG (&G -9 dt + (Cog/AD) ft . (g O)(g-S)at

t t
Y t,

t
Nrwf s o) eisef + oT).sl1at + /29 [ N dat 0« + &T). 0lat
«" w8 X “+w)0

0 0

t
+ (le/ Ag) jt
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CHART 4-4

INTRODUCTION OF BODY AXFES AND INSTRUMENT INDEXING

ASSUME e B, B, By are a triad of orthogonal umt vectors which have a fixed
orientation relative to gl' 91 and §1 where 1 1s the instrument 1ndex equal
tol, 2, or 3.

Therefore, G, —Z G Bk)Bk —E(Ql'gk)lék, S, —2 S ‘B )Bk

. (G Bk) (o} Bk ) and (S B ) differ from their nominal values (G BK)n
(0 Bk)n and (S Bk)Il by small numbers. Those differences are sufficiently
small as to only affect the gyro readout via the proportional angular velocity
term.

WITH THESE ASSUMPTIONS THE GYRO EQUATION BECOMES

1=“'=;(':_§l gllmo: ! 'N(n.E By~ .0 T Blldt{

Vg Braet ! NE g gl N Tt

[l =] =2 1 ]v‘ = =2 " = =2 ]

0 0
‘(G yasl t ‘N No,oT
e oy NE 33)&-: {u gs)cu

RPN e

! fa Fig b

| i -
+ Brae ic‘:( B N(g Bk)dt t

' I Uy
« B As 120 B)" at L
IRC A4 ¢ ":0(58"‘] i
. ' n 4N 1
] By ad It ! E@j B) 4 (g Byt n
N 1 \ Iy
jSwat IDE BTG §,l“.t (& Byllg Byt }

! i
"y ssf 8% 1y

]
By LEG B 6 B N(gBk){gBldtl

)
i | K
VCotel I B0 B0 N B B
0
t.
el IEEG B BO" Mg B B
kr 1y
L
+ Y Cograsl, 12200 8" 5, 80" ; Vig Bl Brar L
kr ln i

N t 4 t K 1
19eel dEzg B0 g B L Bt Bt M BT Bjae e B B b BT B

- ool 12206 8" 6 B N(u BE 5)“4;‘*‘(‘ BT B rN(u Bk](u.EB)dt-r'N(u BT pouc !

SEZO (,Bk)“,l'N;t (WF B+ (T BY m}
WHERE
% - 12 e |-/ soiam, - (/o & { N (acB . auT
1 1en jlan, - (t/ad), (Eq) - /Ae)l‘[tn A+ auwl) G dt
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CHART 4-5

A CEQICE OF NUMINAL INSTRUMENT AXES 3

t by
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CHART 4-6

INTEGRAL EVALUATIONS
ASSUME

. EE, g and tT are located as shown in Figure 3-2

e All transformations between frames follow the convention given by the
foliowing example:

BR
B.=E5 T R
t = m im @
o j th =ty - t0 +EF At +€~where €q is the clock guantization error
t
0

o The effect of €18 negligible

THE NINE INTEGRALS CAN NOW BE WRITTEN AS:

W, E ty BR RT TE
It (@™, By dt =I ?n?llz)TLmen 1113("'J E)dt

B)at

J'tN (T
t

BR .RT .TE
E%TmenTnp (g.E ) dt

Mepya =¥
ty

Y N[ BR oRT TE BR..RT ,.TE
Jt (g.By)g. B Jdt It EE%Tkm mn np(gE q%gTququT (gE) at
0 0 -

E E | BR RT ~TE BR,.RT, TE
Ito(‘_"’ By Xe".B) dt ) ?11121 TkamnT (w E] [qu%Trq TquTus(w E) at

mn ~ np rq

T BR
_Rmﬂ E&T (w _Rq)jl dt

by . "
| g ot BT B = tN B35 Thn Ton Top (@ E ﬂ I; 5T (TR )]dt :

I T BT B

1
.—:qzr-
T 2w !
-1
W
[>v)

J - =
& Tty toTAt

th [(w B HeT Bk)]dt [z: 2z ok 7T 1R (W E B )+ 5 T @T.gq)]tN

lan " mn T np t
0
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CHART 4-7

INTEGRAL EVALUATIONS (Continued)

ABSUME
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CHART 4-8

INTEGRAL EVALUATIONS {Continued}
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4.1.2 Accelerometer Equations

As with the preceding gyro equation development, we develop the general accelerometer
calibration equations by introducing the laboratory geometry and environment into the
instrument model. A great number of the comments relative to the development of the

general gyro equations apply equally well to the development of the general accelerometer
equations.

As in Section 4. 1. 1, we discuss each of the charts in turn.,

Fundamental Accelerometer Model (Chart 4-9)

The accelerometer mathematical model was mtroduced in Section 2.2.2. Chart 4-9is a
repeat of Chart 2-1, showing the input/ouiput relationships for a vibrating-string accel-
erometer. The notation presented is sel-explanatory.

Introduction of Laboratory Environment (Chart 4-10)

In Chart 4-9 the accelerometer oulput is seen to be influenced by only applied accelera-
tion inputs. Note that the accelerometers are assumed to be in a stationary attitude
relative to the earth. The stationary atftitude assumption dictates that all accelerometer
calibrations will be accomplished without a use of the dynamic rotational ability of the
test table. The main reason for this constramt is the fact that a motion of the test table

introduces undesirable angular velocity-related accelerations. (See Section 2.1 of the
trade-off document, )

Approximations (Chart 4-11)

The environment approximations are seli-explanatory. All neglected terms are assumed
to have a second order effect on the accelerometer readout

Introduction of Body Axes and Instrument Indexing (Chart 4-12)

The comments presented in the gyro equation development apply equally well here,

A Choice of Body Axes {Chart 4-13)

These equations are the desired general form. In Section 4.2 the determination of the
calibration constants will be shown to be dictated by a control of the parameters found in
the Environment Evaluation part of Chart 4-13.
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CHART 4-9

THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

b, b Y,
Jootyat - ft f,dt = (Ny-Ng) + Eq = Dy j"t (a-A)dt

ta a a

Itb[D Do(a-A)%+ D -A)3]dt{
+D1?t 0+2(§_+3(§:_ \
a

WHERE:

a 1s the acceleration applied to the accelerometer
. ta st= tb 15 the time interval over which a 1s measured
¢ A8 a unt vector directed along the input axis of the accelerometer

. N1 and N, are the number of zero crossings detected in taststb
from both strings of the accelerometer

¢ Eq 1s the instrument guantization error due to the fact that ta and tb
do not correspond to zero crossings

. D1 is the accelerometer scale factor
] DO is the accelerometer bias
. DZ ig the second order coefficient

. D3 1S the third order coefficient

° f2 and fl are string frequencies 1n pulses/second
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CHART 4-10

INTRODUCTION OF LABORATORY ENVIRONMENT

ASSUME

. ?;L = g+4a 'is the total applied specific force

Where:
g 1s the assumed (surveyed) laboratory specific force

Aa is the deviation of the assumed laboratory specific force from
~ the true

INTRODUCING THESE ASSUMPTIONS INTO THE EQUATION IN CHART 4-9 WE HAVE:

t Ct
b
(No-N,)+Eq =D {{(g +Aa)-Aldt +D
P | ]_J‘ta -1 had b3 1 zfta

b 2
|:D0+D2 (g:A +Aa.A)

+ Dg(g-A + AE-_A_)Sﬁdt}
NOTE THAT THE TEST STAND IS ASSUMED STATIONARY

(THATIS » ' x(w ' x r) and ®TTxr WILL NEVER BE SENSED)
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CHART 4-11

APPROXIMATIONS

ASSUME

# Terms containing the product of the integrals of components of Aa with
D2 or D3 have a negligible effect on the accelerometer readout.

e (g'A) isa constant over the time interval Lststy

tb
o [Pa = Ata+c

ty

where:
At = N1, Nisanintegerand 7 1s the clock period
EC 1s the clock quantization error

) Terms containing the product of € c with DO’ Dz, or D3 have a negligible
effect on the accelerometer readout.

WITH THESE ASSUMPTIONS, THE ACCELEROMETER EQUATION BECOMES:

¢
[,-N) + Eq - D[ P(da-8)at - D, (g-4)€]

ta.

= {Dl(g-A) + DI[D0+D2 (g a)? + D3(g.z}._)3]} At
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CHART 4-12

INTRODUCTION OF BODY AXES AND INSTRUMENT INDEXING

ASSUME

* By, By, and B, are a triad of orthogonal unit vectors which have a constant
orientation relative to Aj,where 1 is the instrument index equal to 1, 2,
or 3.

Therefore,

3
él = lg-;——l (Al Ek) Bk

. (é_l-]_B_k) differ from their nominal values (éi- lik)n by small numbers, Those

differences are sufficiently small as to only affect the accelerometer readout
via the proportional acceleration term.

o  The effect of EC is negligible.

D1(£‘ti'§1)} %(E'gl)ng
Dy(4,-By) }i {(g-Byat}

Dy(4,-By) }i j(e-Bglat]

D3y %E DD (45BN, B YA, By e B(E By By | At ‘

WHERE
t
¢ P= (Np- Ny [, @aa)d + Eq
a

s  ‘The first three terms in the right hand side of the equation include the
effect of the misalhignment.

s  The second order cross couplings due to the misalignment have been
neglected by the second assumption.
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CHART 4-13

A CHOICE OF NOMINAL INSTRUMENT AXES

ASSUME
1 0 ¢
(a8 " = o 1 0
0 0 &
THEN
Py = {pyarBp} {epatley= {pyay B} {(@Boat) P {pyag 2))} {@Bac)
+ {pare} {@Bag|  + {oay B {@Baf | +{pgagB} {@Byay
- {oiarmy} {@agad) « {puayg} {@nget) |+ {oiagBy} (@Bgn)
+ {Dlno}l fat} e {DlDO}z At} +{D1D0}3 {at}
+ {DIDZ}:L {(E.}él)zbt} + {1:)1132}2 {(g.gz)f%m;} +{D1D2}3 lgByPat}
+ {DIDS}1 {(_g_.B_l)3At} + {D1D3}2 {(g.]iz)%t} +{D1D3}3 {(g_ §3)3At}

ENVIRONMENT EVALUATION

ASSUME

following example:

5

g is located as shown i Figure 3-2,

All transformations hetween frames follow the conveniion given by the

)
m

BR
Tim }—_{-m

THE i BODY AXIS COMPONENT OF g IS.

R = BR RT TE .
©B) =5%% Tim Tmn Tnp & Ep (Test Table readout)
- BS SE .,
=2 % Ty, Ton (€ E) (Autocolimator alignment)
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4.2 CHOICES OF CALIBRATION ENVIRONMENTS

The general gyro equations are presented in Charts 4-5 and 4-8 and the general accel-
erometer equations are presented in Chart 4-13, These equations represent the functional
relationships among the insirument oufpuis, the input environment measurements, and the
calibration constants.

Each instrument equation is linear in n unknown calibration constants. Therefore, itis
possible to determine the numerical value of all calibration constants contained within any
equation from the simultaneous solution of n eguations corresponding to n different
measurements of instrument outputs and input environments. Such a technique of con-
stant determination would involve the inversion of an n x n matrix When n is large, as
it is in these instrument equations, matrix inversion is very cuimbersome.

There is, fortunately, an easier technique for determining the calibration constants
That technigue involves the control of the environment inputs (by a control of the test
table parameters) such that the instrument outputs would be insensitive to a large number
of terms. This corresponds to the adjustment of the environment-sensitive coefficients
of a large number of constants in the general calibration equations fo zero. ¥ it were
possible to null all but one, the determination of the remaining constant would naturally
be trivial. In this system, however, il is not possible to null all but one but we can m
many cases null all but a few coefficients, In the subsections that follow we will apply
this "mulling techmgque’' to the calibration of the ERC ISU. The result will be a set of
equations from which any calibration constant can be determined by the simultaneous
golution of at most two equations. Each equation corresponds to the input/output rela-
tionship for an instrument subjected to a particular environment, by control of the test
table parameters.

We begin our presentation, 1n Section 4. 2. 1, by dictating the environments and developing
the equations from which the gyro scale factor and (QG)' maitrix can be determined. In
Section 4. 2.2 which follows we will show how to calibrate the gyro unbalance, bias, and
square compliance terms. In Section 4. 2.3 we will show how to determine the com-
pliance-product coefficients, and in Section 4. 2. 4 we will complete the discussion of

gyro calibration by describing the experiments for investigating the gyro scale factor non-
linearty and J term., The discussion of the calibration of gyro constants m any sub-
section will assume that the constants discussed in previous subsections are well known
from previcus calibrations.

The description of accelerometer calibration begins in Section 4. 2. 5 with a description
of the calibration of all but the cubic term. In Section 4 2.6 we complete the calibration
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developments by describing the determination of the remaining accelerometer cubic
terms.

4.2,1 Determination of Gyro Scale Factor and Misalignment

In this subsection we show how particular choices of input environments reduce the general
gyro equations to forms which enable a relatively simple calibration of the gyro scale
factors and elements of the (QG)'1 matrix. (The matrix elements are sometimes referred
to as "misalignments" from the nominal ISU design } Qur attention is directed to the
general gyvo equations found on Charts 4-5 and 4-8. We will dictate choices of the test
table parameters found in the integrals shown in Chart 4-8 such that the desired angular
velocity-sensitive terms predominate.

We sgee that many of the integrals found in Chart 4-8 are functions of harmonic terms as
well as terms which increase monctonically with time The harmonic terms are terms-
involving integrals of trigonometric functions of @2. Such integrals are bounded 1n value;
as a mafiter of fact, if mT = Eﬁ% can be made constant, the harmonic terms would equate
to zero for any multiple of Wlf.lgle turns (¢2 = 2nm) of the table. Under such conditions a
large number of the terms in Chart 4-8 would disappear. In Chart 4-14 we see the sub-
stitution of the integrals into Chart 4-5 under the condition of whole turns of the table,
while rotating at a constant speed. {See Section 2.1 of the trade-off document for further
comment about whole-turn equations. ) The assumptions made in the equations in

Chart 4-14 are shown at the top of the chart. The condition on the transient terms re-
quires additional comment.

The ERC table will have a precisicn limitation on its ability to rotate at a constant speed.
That limitation is two parts in ten thousand, that is AwT/ wT £2x 10"4, where AwT is
the error in the speed of the table, and wT is the speed of the table. Assuming that a
maximum error of plus € ig evidenced in a first half turn, and a maximum error of minus
€ is evidenced in a second hali turn, then

27 m 27
[ sindyat = [ sinw? + AwDtat - [ sin(wT - AwTitat
0 0 w
AQ)T 1
= 4{—[—])=a
NT UJT
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During all scale factor and misalignment defermination experiments the maximum possible
speed will be used. That speed will be just below the saturation level of the gyros, which

1s 15 degrees per second. (See Section 2.1 of the Trade-Off Document for further com-
ments.)} Under such conditions:

¢ The proportional transient terms go as

wEEA - 120x 1077 deg = 0. 04 sec (per revolution)
e The unbalance transient terms go as

BgA = 8x 1077 deg
¢ The compliance iransient terms go as

Cg?A = 0.32x 1077 deg

which are all obviously very small and can be neglected (under the assumption, of
course, that the above analysis typifies the worst-case deviation from a constant speed).

Referring again to Chart 4-14, we see that a horizontal position of the test table rotary
axes (i. e., 0)1 = 900) would nuil all unbalance terms, Chart 4-15 introduces that condi-
tion The remaining test table control parameters in Chart 4-15 are the first column of
the TBR matrix. (The first column of the TBR matrix dictates the orientation of the
table rotary axes (R;) relative to the ISU body axes. ) The orientation of Ry 1s a function
of the inner and outer gimbal angles (@53 and (54). Having two gimbal angle degrees of
freedom dictates that any values of the first column of TBR can be requested. (Equating
the TBR choices to 8, and ¢, settings is the subject of Section 4.4 2.) Tn Charts 4-16,
4-17, and 4-18 we show the calibration equations for six choices of the first column of

T R. All choices are shown at the fop of the charts. We see that

e Chart 4-16 corresponds to the alignment of the first body axis with the rotary
axis in both the plus and minus sense.

o Chart 4-17 corresponds to the alignment of the second body axis with the rotary
axis in both the plus and minus sense.

s Chart 4-18 corresponds to the alignment of the third body axis with the rotary
axis in both the plus and minus sense

In Charts 4-16, 4-17, and 4-18 the test table parameters have been completely specified
The first table gimbal angle ¢, is equated to 90°. The second gimbal is rotating over
whole turns at a constant speed. And the third and fourth gimbals are implicitly specified
by choices of the first column of TBR. We will refer to these six orientations as Posi-
tions 1 through 6, respectively.
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We note in Chart 4-16 that only the first terms m the three gyro equations have opposite
signs in Positions 1 and 2. Therefore, those terms can be isolated as a function of PE
(k = 1,2, 3) by simply subtracting the equation for Position 1 from the equation for Posi-

tion 2. From known environment inputs and-known Pg

values the first gyro constants can
therefore be determined. (The manner in which PE is known is the subject of Section
4,3.1.) The second and third constants can be found by simlar uses of Charts 4-17 and
4-18, respectively. The final equations for the gyro scale factors and (QG')—1 elements
are found in Section 4. 3.2. As a matter of convenience the computational equations from

this and subsequent subsections are tabulated at a single pomnt in this document, which 1s
Section 4. 3. 2.

4.2.2 Determination of R, Bp By Bg, Cppand Cog

Subsequent to the calibration of the principal angular velocity sensitive terms (scale
factors and (QG)'1 elements), the gyro equations predominantly contamn, as unknowns,
acceleration-sensitive terms (1. e., unbalance and compliance coefficients). This pre-
dominance 1s even more evidenced when the angular velocity input is controlled fo a small
constant value. Under that condition the remaining angular velocity terms (QII and QIS)
become relatively unimportant as influences on the gyro outputs. These points suggest
that the calibration of the unknown unbalance and compliance coefficients should be ac-
complished under the conditions of extremely small angular velocity inputs. Not only

will the QII and QIS be negligible, but also the imprecision in the already calibrated scale
factor and (QG)"l elements will have a mimimum influence on the precision of the unbalance
and compliance coefficients to be determined

In Chart 4-19 we present the general gyro calibration equations under the influence of the
minimum practical angular velocity environment. That angular velocity input is earth rate,
that is, the table 15 stationary relative to the laboratory. We say mmimum 'practical™
environment because it would be possible to rotate the table at near minus earth rate, thus
reducing the total angular velocify input below earth rate, but earth rate alone is so small
that there appears to be no reason to try to regulate the speed of the table to a small number

At the top of Chart 4-19 we present our gimbal angle choices of 9y = 0 and Pq = 90°, There
are several reasons for these choices. First, it must be pointed out that we are interested,
for the purpose of calibrating acceleration-sensitive coefficients, in controlling the
orientation of only the mput g vector relative to the body axes. To completely control one
vector relative to the body axes requires only two orientation degrees of freedom. Two of
the four test table degrees of freedom can therefore be chosen for matters of convenience.

We choose the particular values of &y and ¢y, as shown 1n Chart 4-19, for the following
reasons of convenience:
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CHART 4-14

GYRQ CALIBRATION WHOLE ~TURN EQUATIONS

ASESTTME
For whnle turns of ‘!vz.
1) All translent terms are negl:gible
2} Terms of 0B are neghgible

3) Terms of G{u.E sz) are negligible
4} vy 15 constant

For whole turns of wz the gyra sgquations are
given an thas page.

E BR G
plG = gy El)/mp}l [Afy + o4t coslsy + A1) Ty By

+

+

-+

4

*

+

HEN 131)/M>§2 Lagy + of At cos {4y + )1 TOR

jigy gz)/m;-}l Lag, + oot cos (s, + N1 TER = J{Gy ByyA ¢§2 La9, + Fat coslsy + 13 TER

{ (G- Bylfae] Tavy+ it coslpy + 01 TER

{R/ael, [a8]

_ BR
§ BI/Aw}lt.gAt cos 9] Ty

§ Bo/mﬁ}lcgm ©os 9] T?F

{ Bs,fncp}j—[gm cos ¢ ) T:ZBIRE

-+

&y Byla éiz [as, + oFat cosloy « 1 TOR
+ 3R/A-:-§2 (ALl
+ SBIfA‘I'}a[gAt o8 9] Tg’lR
ER
+ |By/a ﬂzrga.: ces 6,1 Tpy

+ ;BSIAQ}Q%-[gAt cos 6] T?F[

24 2
Yepfae [ ] EPEFY (3 cos? 9,-1 + sin 231 + ;cn/w}z[ ]c(’r ¥(3 cos?e;-1) + s, 1
gz 2 2 ghat 2 2
{cs/aol L3193 cos® 41-1) + snay ) + 1Cg/ant | —— g eos o)+ sunlsy )
ol 22at
/sl 5 PRI (3 cos® 9,-1)1 + {Cpfae 2—:' [T e (3 cos” py-11]

oAt
L -[— [Ti Thp (2 cos®sy-1)]

§ Cog/a | -[—] LTERTER (3 cos °1 13

fawas) L) e )T )

i Qmﬂmf

{.I/Ms[l

tah2ay TR

uq
L;""

+
©

N
L
L

[TEFT3R(3 cosp, - 1)]}

flﬂ T35 (s costar- 1)1}

*

=

2
.
-
il

fag/ae] ) anmgl?

+

s

i ‘I’iz}f(“ﬂz‘“l T

+ §J/M:}2 0

= {(Gy Bl)m:; [Ag, + o AL cosly; + ITER

E BR
+ Gy Byfae ;3 [agg + « At cos{ey + A)ITqy

+

j(Gg Byl/aay [ty St cos(sy + NITE

+ |R/ae} [at)
3

+

BR
3131/4 & }ECgAt cos ¢ Ty

+

BR
B~/A L Epat cos ¢, 1T
{Bofa i’ 1371

+

{By/a® k;gat cos 9 ITET

M) ppa 2
[CH_/Aags — |UT3; V(3 cos ml-l)+ s10°9 1

+

2

+

gzﬁt— BR.2
{CES/AGD%:; P [(T J°(3 cos' @1 -1) + s 91]

2

a
{Ciom‘i’fs[gT:l I TR (8 cos®ey 1)

-

-+

5
zat
}CIS/A-r}a |:2 C'I‘leTn (8 cos ¢1-1)]

+

sat]
T e

+

lan/aat, L PacyTg?

lag/ae] s PatiTgrTe

+

3

{J/Aﬂs ]

FOLDOUT FRAME |

4-24

, FOLDOUT FRAME &7



CHART 2-15

GYRO CALIBRATION WHOLE-TURN EQUATIONS
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CHART 4-16

GYRO CALIBRATION WHOLE -TURN EQUATTONS POSITIONS 1 AND 2
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CHART 4-17

GYRO CALIBRATION WEQLE-TURN EQUATIGNS POSITIONS 3 AND 4
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CHART £-18

GYRO CALIBRATION WHOLE -TURN EQUATIONS POSETIONS 5 AND 6
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* The value ¢1 = 0° is chosen because it results in the same ¢g and ¢4 settings
for the six positions required for the subject calibration as required for the first
six positions.

¢ The value oy = 90° was chosen for two reasons. the first reason 1s that 1t places
the ¢g gimbal in the north-south direction, and that gimbal, in conjunction with
the east-west ¢1 gimbal, can be used for small angle corrections of the table
base motions as measured by bugble levels (see Section 4.4.4). The second
reason for the choice of ¢9 = 90~ is that it results in only the second column of
TBR being required in calibration computations. This results 1n 2 mmimum
amount of data handling during precalibration survey activities.

The equations i Chart 4-19 contain, as control parameters, only the first and second
column of the BR matrix. The acceleration-sensitive terms are, however, a function
of the first eolumn only. The table orientation control will therefore be preoccupied with
that column. In Charts 4-20, 4-21 and 4-22 we introduce the choices for the first column
BR corresponding {o Positions 7 through 12. These choices for the first column of
"I‘BR are the same, respectively, as they were for Positions 1 through 6, With the
assumption that the first three gyro coefficients are known from the calibration described
n the preceding subsection, we see that Charts 4-20, 4-21 and 4-22 present six equations
in the six unknowns:

R, B, B

I Bo, C

o By € C

S8

We note that at most two equations are required for the solution of any required unknown,
In Section 4. 3 the solution of the equations for the six unknowns is presented,

4. 2.3 Determination of CIO‘ CIS and COS

The three product-compliance coeffrcients (CIO’ Cig and COS) were not evidenced 1n any
equation for Positions 1 through 12. None of those positions senses the mimimum of two
body-axes components of acceleration required for the detection of product-complhiance
coefficients. In this subsection we choose three additional laboratory-fixed orientations
(Positions 13, 14 and 15), each position detecting two (and only two) body-axes components
of g. On Charts 4-23, 4-24 and 4-25 we present the instrument equations for those three
positions. In each equation on those three charts there exists only one unknown product-
compliance coefficient. The solution for that coefficient, in terms of the known input
environment vecior EG, and the previcusly determined calibration constants, 1s found

1n Section 4. 3. The determination of the second column of the TBR matrix is considered
a precalibration activity. In Section 4. 4.3 that activity 1s described.

4. 2.4 Gyro Nonlinearity and J Term Experiments

There are three remaining constants to be described, namely- QII’ QIS and J. The
QII constant 1s intended to represent the scale factor nonlinearity, In the following
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CHART 4-19

GYRO CALIBRATION FIXED ORIENTATION
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CHART 4-20

GYRO CALIERATION FIXED CRIENTATION POSFTIONS 7 AND §
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CHART 4-21

GYRO CALIBRATION FIXED QRIENTATION POSITIONS 9 AND 10
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CHART 4-22

GYRO CALIBRATION FIXED ORIENTATION POSITIONS 11 AND 12
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CHART 4-23

GYRO CALIBRATION FIXED ORIENTATION POSITION 13
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CHART 4-24

GYRO CALIBRATION FIXED ORIENTATION POSITION 34
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CHART 4-25

GYR0 CALIBRATION FIXED ORIENTATION POSITION 15
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discussions we will describe not only how that constant is found, but also any other higher
order & sensitive coefficients that are evidenced in the gyro readout. The Qqq calibration
1s not presented. T is assumed that this term is too small to be detected. The last
baragraphs in this subsection discuss the calibration of the Jterm. It will be seen that
this calibration requires test table speed controls not found in any other calibration.

Gyro Nonlinearity

The QII term in the gyro equation was described in Section 2 as the nonlinearity term.
This term is intended to describe, in conjunction with the scale factor term, the output
rate (say P) as a function of the input {say @) as:

b=A+Bw+Cw?
rather than the more familiar

b=A+Bw

The mterpretation by many is that this term introduces a nonconstant scale factor as-
sumption, that is

P=A+BYCw)w®

Regardless of the interpretation, it seems appropriate to assume nothing about the highest
power of . and m fact to fry to conduct experiments to find all coefficients {say Ak) where

. 2 _ n
P = A0+A10_\+A2w ._-..Anw

Such experiments are very simply described but would probably be somewhat time con-
suming to implement.

Let us direct our attention to the equations for the cne gyro m Position 1, the two gyro m
Position 3, and the three gyro in Position 5. We see that each eguation can be written:

P 2
— = A+ A w+ Aqgw
At 0 1 2
where AO = R/A® + f(acceleration)
- m 7 N
Al = G B, /4% ~ 1/08
Ay = Qp/ A¢
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I experiments are conducted where only « is changed (and not acceleration), AO would
always be a constant., We see that a variation of the table speed only, in the positions
mentioned, accomplishes this need. Also the equations can be generalized to contain higher
order o terms. That is:

— + + 2 e e
The experiments can now be delneated:

s Collect gyro data X6 from Positionl, 3, or 5 for n different speeds of the
test table.

s  Collect the table speed data by measuring A@z and At
T Agg

ws = for constant w
At

T

and whole turns of Acbz-

s Let the total speed imposed on the gyro be described by

Ag
E .
- = — + W
w At sina
o LetP be given by

. (Z8)
P= —

at

that is, data is collected sufficiently long such that quantization and noise are
negligible (see Section 2.2 of the Trade-Off Document).

s Plot P against w

w

o Analyze the plot to find f, where P = f(w).
J Term

The environments chosen for the determination of the J terms are shown in Chart 4-26.
Note that the positions chosen correspond to Positions 7 and 11 (which were used in
Section 4. 2,2) with the modification of a rotating table. The gyro data will be collected
over a period durmg which the angular speed has changed. This ealibration is the only
one which requires the determination of the time-varying integrals:
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CHART 4.26

GYROQ CALIBRATION ROTATING TABLE POSFTIONS T AND 11
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o [sin® dt

. fcos ?’2 dt

The manner in which these integrals are determined will depend completely upon the man-
ner in which the test table angular acceleration 1s commanded during the experiment. The
calibration procedures will therefore be dictated by the commanded angular acceleration
profile. There appear to be only three interesting alternatives:

o  The first alternative, which appears to be the best, is when the angular
acceleration can be controlled to a desired function of time In that event
the aforementioned integrals could be evaluated prior to the data collection
A pood example of a commanded profile might be a constant angular acceleration
over a short data collection time.

s Anpther alternative, almost as good as the above, would be an angular ac-
celeration profile which 1s an analytic function, but not known until the time
of the experiment. An example would be the ability to command a constant
angular acceleration, but not any given constant. In this event the integrals
would be evaluated after data collection.

e The least attractive allernative would be when the profile cannot be commanded
as a clean analytic function. The J term experiment could be conducted under
such circumstances, but there would be a requirement for the $9 resolver
to be collected in real time for the purpose of evaluating the integrals.

There is no reason to specify which of the above alternatives 18 to be used until the test
table is evaluated to discern its ability to control angular accelerations. As a consequence,
the J term equations in Section 4. 3. 2 are not specified as the equations to be programmed,
as are the other calibration constant equations. Instead they are presented ag functions

of terms which will be described as functions of the angular acceleration profile at that
time when the control characteristics of the table are better known. As 2 matter of con-
venience to the reader the form of the equation is presented for the case when a constant
angular acceleraiion profile 18 commanded.

4.2.5 Determination of Accelerometer Coefficients

The general accelerometer calibration equations were developed in Section 4 1.2, and

the results presented on Chart 4-13. We recall that it was assumed in the development

of those equations that the test table would always be stationary (relative to the laboratory)
during the entire accelerometer calibration. We recall also that nine of the gyro positions
were also stationary. Analysis shows that the nine stationary gyro positions are very
good choices for the entire accelerometer calibration.
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We mentioned in Section 4. 2. 2 that, subsequent to the calibration of the principal angular
velocity~-sensitive coefficients, the gyro acceleration-gensitive terms predominate as un-
knowns. Thus, when concerned with calibration only, we can treat the gyro as an acceler-
ometer. We note that the three unbalance terms in the gyro equation play the same role,
functionally, as the three scale factor and (QA)'1 terms in the accelerometer equation.

We also note that the square term in the accelerometer equation appears functionally

the same as the square compliance terms in the gyro equation. These facts, and the faet
that the gyro and accelerometer imput axes are nommnally aligned, results in the use of the
same positions for the determination of acceleration-sensitive coefficients in both the gyro
and accelerometer equations.

In Chart 4-27 we see the accelerometer equations when 81 = 0° and by = 90°. As with

the gyro calibration discussed in Section 4. 2, 2, the accelerometer calibration requires
only two table angle degrees of freedom. Therefore, two of the four table degrees of
freedom can be arbitrarily chosen. The particular values of ®y and @2 shown in Chart 4-27
are chosen for the same reasons mentioned in Section 4. 2.2 (where the gyro bias, unbal-
ance, and square compliance calibration is described). In Charts 4-28 and 4-29 we present
the accelerometer equations for Positions 7 through i2. We note that all but the cubic
term can be explicitly extracted from these equations. (The cubic term always appears m
any equation with the scale factor term and therefore cannot be separated from the scale
factor term.) In Section 4. 3.2 the explicit solution for the accelerometer bias, square
coefficient and off-diagonal (QA)"1 matrix elements are presented. Three additional sets
of equations are presenied which relate the scale factor and cubie term combination to the
wmstrument and environment measurements.

4, 2.6 Determination of Accelerometer Cubic Term

It was noted in Section 4. 2, 5 that the six positions (7-12) did not allow for the explicit
evaluation of the cubic or scale factor terms. We therefore require additional positions

for the extraction of the cubic terms Positions 13, 14, and 15 {described in the calibration
of the gyro product compliance coefficients) are appropriate as the additional positions,

In Charts 4-30 and 4-31 we present the accelerometer equations for those positions. The
gquations for the solution of the cubic terms are presented m Section 4-3.

For each accelerometer, either of the two positions in which the corresponding body axis
is nominally oriented 45° off the vertical may be used. Therefore any two of the three
positions may be chosen to complete the calibration. The equations presented in Section
4, 3 utilize Positions 13 and 14.
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CHART 4-27

ACCELEROMETER CALIBRATION
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CHART 4-28

ACCELEROMETER CALIBRATION POSITIONS 7 AND 8
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CHART 4-29

ACCELEROMETER CALIBRATION POSITIONS 11 AND 12
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CHART 4-30

ACCELEROMETER CALIBRATION POSITION 13
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CHART 4-31

ACCELEROMETER CALIBRATION POSITION 15
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4.3 CALIBRATION EQUATIONS

We noted in Section 4. 2 that the simultaneous solution of at most two equations would yield
the value of a required calibration constant as a function of the input environment and the
defined Pg or Pﬁ“ vectors. The Pg and Pf: vectors were seen in Section 4. 1 to be a func-
tion of the instrument outputs, noise, and quantization error. In the first subsection which
follows we will approximate the Pl(g’ and Pﬁ vectors by the instrument outputs only. Those
approximations will be incorporated infc the determination of the calibration computations,

which are tabulated in Section 4. 3. 2.
4.3.1 Processing

We showed in Section 4.2 that each cahbration constant ~an be solved for as a function of

at most two input environments, two Pﬁ or two PE components, and previously determaned

constants. That is, the solution for any constant {say y) can be written as:

y = Ax+ B
i/fp P P
where K =] e E o or ~—
21 At At At
1

= environment coefficient of ¥

P=Pﬁ*orP§fork=1, 2, or 3

B = function of other calibration constants and environment
inputs.

In Section 4.1 we defined the P vectors as a function of instrument readout, quantization
error, and noise. We suggested in the introduction to Section 4 that we wish to approxi-
mate the P vectors as functions of instrument readouts only. We would like therefore to
collect the msirument data in such a way that the effects of quantization and noise fall be-
low some reguired threshold, Fortunately the noise can be represented by random pro-
cesses with bounded means and variances. The quaniization error is by its very nature
also bounded. On the other hand, for a nominally constant input environment, the instru-
ment output 18 2 monotone mncreasing function of the observation time. Thus by choosing
sufficiently long observation imntervals, the percent error in the assumption that the instru-
ment output equals P can be made arbitrarily small.
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In Section 2 of the trade-off document the analysis which leads to the above conclusions is
presented. The results of that analysis are presented in form of graphs in which the
precisions of the calibration constants (with the assumption of neglected noise and quanti-
zation in P]S or Pﬁ) are plotted against time. Those graphs will be used 1n the Laboratory

Procedures Manual to determine the calibration time required to obtain a desired precision
in any constant.

4. 3.2 Computation of Constants

With the approximations described in the previous section, it is now possible to solve
explicitly for the calibration constants mn terms of well-known instrument and environment
measurements., The eguations are presented in tabular form on the Calibration Equations
Charts. These equations are those which are to be programmed, An exception is the

J term equafions which will not be 1n program form until the time when the iest table 15
evaluated (see Section 4.2, 4).

It has been nofed in Section 4,2.5 that the accelerometer third order term cannot be
separated from the scale factor by a choice of positions. In the following set of equations
there are two equations given for each accelerometer that relate the scale factor term
[Dl(Ai' Bl) ]1 to the third order term (D1D3)i. If a simultaneous solution of the two equa.-
tions is used to determine the scale facior and the third order term, then the scale factor
will be sensitive to errors m the bias and the second order term., These terms appear on
the equation listed second in each of the three sets of two equations. This may be avoided
by determining (D 1D3)1(by sumultaneous solution or other methods) and using this value to
solve the first eguation for [D l(Ai- Bi) :-1. This value 1s subject to the accuracy of other
terms only through the extremely small ferm containing D3. (b 1) is then given by the square
root of the sum of the squares of [Dl(Al-B])E1 for 3 =1, 2, 3.

In developing these equations several equalities are used which introduce previously un-
mentioned parameters. The following comments describe those parameters and their
nomenclature:

e Because we are dealing with the measurement of quantities 1n many different
positions, a position index must be introduced. The numerical superscripts in
all equations refer to the positions

s The vecior PE {(k =1, 2, 3)is approximated by the gyro readouts, therefore

G _,
Py = (20
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GYRO CALIBRATION EQUATIONS

Scale Factor and Misalignments
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GYRO CALIBRATION EQUATIONS (Continued)
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GYRO CALIBRATION EQUATIONS (Continued)
Gyro Three {Continued)
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GYRO CALIBRATION EQUATIONS (Continued)

Unbalance
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GYRO CALIBRATION EQUATIONS {(Continued)
Gyro Three
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GYRO CALIBRATION EQUATIONS (Continued)
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GYRO CALIBRATION EQUATIONS (Continued)

Product Compliance
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GYRO CALIBRATION EQUATIONS (Continued)

Gyro Two
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GYRO CALIBRATION EQUATIONS (Continued)

Gyro Three
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GYRO CALIBRATION EQUATICNS (Conti.nued)
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GYRO CALIBRATION EQUATIONS (Contmued)

Gyro Three
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ACCELEROMETER CALIBRATION EQUATIONS

Scale Factor and Cubic Term
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ACCELEROMETER CALIBRATION EQUATIONS (Continued)

Bias and Second Order Term
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ACCELEROMETER CALIBRATION EQUATIONS (Continued)

Accelerometer Three
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ACCELEROMETER CALIBRATION EQUATIONS {Contmued)
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where (7'0) .. corresponds to the pulse count from the kth gyro over the total
time of dat&{collection.

« The vector P%: (k =1, 2, 3) is approximated by the accelerometer readouts,
therefore

Pi = (27)1{2 "(E'Y)kl

where (Ty)xa and By)k1 correspond to the pulse counts from the second and
first string of the kth accelerometer, respectively.

. The total time of data collecting will be recorded as a count (Z nr{) from the
system clock, therefore

At = T (EnT)

where Si}:lis the scale factor of the system clock. The subscript 1 serves to
i

distinguish the clock pulse train used in calibration from the pulge tram used in
the Preprocessing computations.

*  The total test table angle (A®5) will be recorded as a number of whole turns
{or a number of fractions of whole turns), therefore

where (Zn?) is the number of mcrements of angular displacement, and s?is
the scale factor which converts the number of increments to a finite angle.

In Section 3. 3 we presented a description of the laboratory facility with all of its measure-
ment and computational devices. In Figure 3-6 we showed the possible equipment interfaces.
For the purpose of calibration all instrument data collections will be accomplished with

the frequency counters shown in Figure 3-6. (See Section 2. 1 of the trade-off document

for the reason why the counters are used.) The specific employment of the counters for

all posilions is described in the Laboratory Procedures Manual in the sections entitled
Fundamental Modes. Also found 1n the Fundamental Modes sections are all events in the
collections, transfers. and compuiations during calibration in the form of flow diagrams
accompanied by descriptions of the activities

4.4 PRECALIBRATION REQUIREMENTS

The required constants contamned within the equations tabulated in Section 4 3 were pre-
sented as functions of instrument outputs and parameters describing the environment mnputs.

Before the data can be collected which is necegsary as inputs into the equations, several
mtial survey tasks must be accomplished.

4-64



. The environment selections were presented in SectE};on 4.2 as choices of the 21
and ¢9 gimbal angles and the first column of the T R matrix The test table
orientation 1s, however, controlled by choices of four gimbhal angles; therefore,
the choices of the first column of TBR must be expressed m terms of the gimbal
angles, which we know from Section 3 to be ¢3 and %4

¢  The TP® matrix 1s a function of the Bl maitrix as well as the ¢3 and ¢4 gimbal
angles. We_must, therefore, determine TBI before we can equate the first
column of TBE to ¢, and ¢,.

» The gyro bias and compliance constants are seen (see Section 4. 3.2) tobe a
function of (among other things) the second column of the TBR matrix. That
column can be determined {(once TBI, $3, and ¢y are known) by a use of equalities
presented In Section 3.

« In all previous developments it was assumed that TFE (the transformation between
the test table basge frame and the earth frame) was equal {o the identity matrix.
In the operational laboratory this matrix will deviate (by small numbers) from the
identity matrix. It is, however, possible to correct for the deviation by the use
of bubble levels.

In the following subsections we present the manner 1 which all of the above tasks are ac-
complished The order of presentation is the chronological order in which these tasks
should be accomplished in the laboratory.

4,4, 1 TBI Survey

The 1nitial activity subsequent to the attachment of the I8U to the test table is the determi-
nation of the orientation of the ISU body axes relative to the test table frames. This cor-

responds to the evaluation of the TPl matrix (see Section 3.2, 1), In Chart 4-32 we see how
this is accomplished.

In Chart 4-32 we refer to the test table orientation used in the determination of T2* as
Position Zero. Position Zero can be any orienfation, but the zero orientation shown in
Figure 3-2 might be the most convenient for it results in

(TIO TOR pRT pTF pFE)-1 _ 1 (e jdentity matrix)

BS SE _ BE

(The matrix product T T 18 functionally equal {o the Mirror Alignment Matrix
shown m Chart 2-6, As mentioned m the discussion of the Mirror Alignment Matrix is
Section 3.1.2 the particular evalvation of this mairix depends upon the particular geometric
angles which are outputted from the autocollimators. At the tume that the form of those
outputs are known, the exact form of 'IB S TSE can easily be determined.)

The TBI Survey activity is formalized as a "Precalibration’ activily in the Laboratory
Procedures Manual., If will most probably be accomplished very near the fime that the
ISU is placed on the fest table, If will probably not be necessary to repeat this survey
except when the ISU is removed from the table and then "rebolted" in another orieniation.
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CHART 4-32

L BI

Determination

Given.

Find:

1. From the laboratory geometry defimtions described in Section 3 we have:

where TBS OTS‘EO is given oy the autocollimators and

TIOO

TRTO

TFO

a set of resolver readings 952, Gbg, @

transformation from body
(TBSO TSEO)

0

cos @2

~-S1n cbg

0

0
cos ¢3

~51n ¢g

r—

0

cos ¢(2)

=S ¢g

0
0
Cos ¢y

-81n ¢(1)

0

0
0- ~-sin t;bg
-C0S ¢2
1 0
0 ~sm ¢g
0 -cos q)g
1 0
0 -sin sbg
0 -cos ‘f’g
1 0
0 -sin gbg
0 -cos ¢g
0 0
1 0
t] 1

3, and ¢2 from position zero and the
to earth axes via autocollimator readings

the matrix TEL which transforms from the body axes to the axes fixed
to the inner gimbal of the test table.

B _ (TBSOTSEO) (TIOOTOROTRTOTTFOTFE)-l
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4.4.2 Test Table Resolver Settings

The calibration selections in Section 4, 2 were accomplished by dictating values for B1>

g and the first colurélﬁ of the TPR matrix. In implementing those selections it 1s neces-
sary to equate the T choices to the controllable Bg and ¢, gimbal angles. In Chart 4-33
we see the functional relationship between the first column of T R and g and P4 (and ‘I‘BI
which is known from the procedures developed m Section 4. 4. 1),

In Chart 4-34 we present the ¢4, 99, pg, and ¢, settings for all fifteen calibration positions.
Included 1n that chart are the equations for the determination of 95 and ¢, from the choices
of the first column of TBR. Those equations are special cases of the arithmetic contained
in Chart 4-33 for Positions 1, 3,5, 13, 14, and 15. A duplicate of Chart 4-34 is presented
in the Laboratory Procedures Manual. The numerical solutions for g and by must be ac-
complished and placed in the chart before calibration can be accomplished,

4,4.3 TBRm Determination

The gyro bias and compliance computations presented in Section 4. 3 are functions of
(among other things) the second column of the TBR matrix for Positions 1, 3, 5,13, 14,
and 15, The TR matrix is a function of ¢3 and ¢4 (see Section 3.2), The gimbal angles
¢3 and ¢4 are known by the use of the computations presented in Chart 4-33, In Chart
4-35 we present the computations which develop the required second column of TBR from

the known ¢, and ¢, andgles (and T8l a5 given by the computations presented m Chart 4-32),
Although not required for calibration purposes, the computations of the third columm of
BR matrix are presented for information purposes in Chart 4-35 The first column

is kmown because it was utilized as the environment selection control parameter.

4,4, 4 Bubble Level Corrections

Taroughout the development of the calibration techniques it was assumed that the test table
bhase frame is aligned with the earth axes, thaf is:

TFE _g (the identity matrix).

In practice this matrix will deviate from identity, due to such things as solar heating of

the vuailding and setthing of the buildng., The resuliant low frequency motion of the base
relative to the earth can be corrected (immediately before calibration data collection) by
the use of buble levels. There are three ways in which the corrections can be implemented.
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CHART 4-33

(%n ¢£ﬂ Equations

1.

where T

2.

s Bl .BRm m.BRm ,.BRm
Given. T77, T11 s T21 s T31
Find: 95" and ¢

We know that

.pBRm _ Bl £I0m ORm

or (TBI)TTBRm= TIOIn TORm

Bl is given from a prior survey and

cos ¢§“ ",

TIOmTORm = | sin ¢§nsm ¢Zn cos @21

sin ¢§ncos ¢:ln -gmn ¢£n

I0mORm

Solving for the first column of T T

we have

m
-sin ¢3
cos ¢§n sin ¢fln

cos ¢§1 cos ciin

m _
cos 957 =T 1 Ty + Ty Ty
sin o s1a o = TEL TRRM TzBZI TORm

m m _
sm 953 cos 954 —T13 ’I‘11 + Tyg Tyy

BI .BEm TBI TBRm + TB]‘BIE T:1331Rm

BEm ..BI .BRm
T3y T3y

BI .nBEm TBI TBRm N TBI TBRm

33 ~31

which gives the desired functional relationships.
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CHART 4-34

TEST TABLE RESOLVER SETTINGS

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6
¢01 90° a90° 90° 20° 90° 90°
¢>2 Rotating Rotating Rotating Rotating Rotating Rotating
1 .1 . From 3_BI From BI
$q From cosqb3 TB ¢, + 180 cos$3=Tgy ¢>g + 180° 0084’3 T3y ¢g + 180°
3 sm4>3 sm‘i'-“i T]13 % ) sin¢’§3 sin¢’4—T22 3 sin‘ﬁ3 s1n954=T3BZI ¢5
4 ; BI 5
sm¢3 cos¢4 -T13 4’4 sm‘i’ cos95 =Ty 954 sm¢ cos¢2 =Tqg 4
Position 7 Position 8 Position 9 Position 10 Position 11 Position 12

¢ | 0° 0° 0° 0° 0° 0°
4>2 90° 90° 90° 90° 90° 90°

1 2 3 4 5 6
4’3 ¢ 3 c'63 ¢ 3 ¢3 ¢3 ¢3

1 2 3 4 5 6
¢ | b, by P4 P 4 Py

Position 13 Position 14 Position 15
¢; | O° 0° 0®
¢>2 90° 90° 90°
14 BI BI
bg From costf% -»/TT[TH + T21 ] From  cospy '—"m[Tll +T31 From cosqb;l;s =/1/2 [T?lI T3B1
ot} sudl? T [xB] o 15)] | st owtl <[5 7] | ahl® antls - /TR o)

4 Sin¢;133 0054’4 =/1/2 [T13 + leag] Sm¢14 cos<3614 =J/1/2 [TBI + TE sinfl%f‘ cosﬂ1 =/1/2 [TBI + Tng




CHART 4-35

TBRm Determination

Given: gbgn, ¢ff, and pBI

Find: TBRm

1. We know that

TBRm _ TBITIOmTORm
where TBI 18 given from a prior survey and
m . m
cos ¢g 0 -sin ¢q
plOmpORm _| ., 95 s 9y COS ¢y  COS 93 sin Py

sin ¢:13n cos 9521 -sin ¢2“ cos ¢:13n oS ¢21

2. The first column of TPRM 1s the calibration control parameter. The values of
this column have already been included 1n the calibration equations.

3. The second column of TBRm
the calibration equations, is:

which is the only column required for inclusion into

BEm _ BI m Bl . m
le = le cos ¢4 - T13 sin ¢4
ngRm = T%'[ cos qff - ng s cbfin These equations need only be solved
form=1, 3, 5, 13, 14, and 15.
BEm _ BI m Bl m
4, The third column of TBRm, which 15 not required in the calibration equations, 1s

given for information:

ERm _ _,.BI m Bil m m BI m m
T13 = T11 sin ¢3 + le CcoSs ¢3 sin ¢4 + T13 cos ¢3 cos ¢4
T2]‘3’3Rm = —T?ll sin Q%n + T% cOs ¢:13n sin q%n + Tg oS ¢§n cos ¢fln

BRm _ BI m BI m_. .m BI m m
T33 = -T31 sin ¢3 + T32 cos ¢3 sin ¢4 + T33 cos ¢3 cos ¢4
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#  The first and most obvious way is to incorporate "leveling screws’ on the hase
of the table.

e  Another technigue is to store the TBI matrix in the computer as other than an
identity matrix, and o input the bubble level readings taken before data collection.

. The third technique is to place two of the table gimbal angles in the direction of
the two bubble level degrees of freedom, and correct for the lean of the table by
small corrections to the gimbals,

We choose the third technique because it is the easiest to implement,

The bubble level corrections for the rotating ISU in Positions 1 through 6 need only be
1mposed on the trunnion axis (i. e. ¢1). Az a matter of fact, if the motion of the table

bage is less than, say, 20 econds no correction is reguired. This is because the prin-
cipal input to the gyros in Positions 1 through 6 is the table speed, which is unaffected

by the motion of the base. In Positions 7 through 15, however, the principal input to the
instruments is g; therefore the level corrections are esgential. This is why, in every
position after the sixth, we placed the outer axis in the north-south direction. Assuming
that the two bubble levels are in the east-west and north-south directions, level corrections
can be imposed on the ¢1and ¢3 gimbals.

4,5 IMPLEMENTATION OF CALIBRATION TECHNIQUES
In this subsection we begin the formulation of all of the aforementioned topics into a for-
malized laboratory calibration procedure. In formulating these procedures we will intro-
duce several housckeeping operations which have not been previously mentioned.
The digcussions in this subsection are directed toward a presentation of the chronology
of events which occur durmg the calibration. We will not go into great detail, the detailed
presentation being left as the task of the Laboratory Procedures Manual. This subsection
should be considered as the interface between this Development Document and the Labora-
tory Procedures Manual.
The calibration procedures are divided into four separate activities.

¢ Turn-on

®  Precalibration

¢  (Calibration

®  Computation.
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Whether accomplishing a complete or partial calibration, the above four activities occur
in the order presented. In the following paragraphs we will briefly describe each activity:

Turn-On
These activities include all of the various housekeeping tagks which include such things as:

*  Power-oun to equipment

e  Monifor equipment operation

The detziled specifications of these activities cannot be tabulated until the laboratory facility
1s completely defined. In the Laboratory Procedures Manual a space has been allocated

in Part T for inclusion of the details of turn-on to be specified at the time when the labora-
tory is configured.

Precalibration

At some time, between the placement of the ISU on the test table and the initiation of cali-
bration , the following system survey activities must be accomplished:

s Determine TSB!
¢ Find 95 and ¢ 4 for all calibration positions

* Find the second columm of the TBR matrix for all calibration positions

s Storeg, oF, A, sT, anas?

The first activity locates the ISU relative to the test table. The second activity determines
the inner and outer test table gimbal angles seitings for all calibration positions, These
settings were shown in Section 4, 4. 2 to be a function of the Bl maftrix, The third pre-
calibration activity computes the second column of the TBR matrix, which was shown in
Section 4. 3. 2 to be necessary for computing the gyro bias and compliance terms. The
fourth activity records system numbers required in the calibration equations. All of these
activities are described in detail in Part T of the Laboratory Procedures Manual.

Calibration
At any time subsequent to the completion of the Turn-on and Precalibration activities, the

ISU can be calibrated. We formally define the calibration activities as the completion of
the following list of activities for any or all positions:
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e Connect instruments to frequency counters

¢ Setfrequency counters

s  Set fest table resolvers with bubble level corrections
. Set table speed

o Collect data

¢ Transfer data to computer,

A complete calibration would accomplish the above activities for all positions The order
of positions is completely arbitrary; but the packages of six (1 to 6 and 7 to 12) will proba-
bly be accomplished m numerical order. A partial calibration need only accomplish these
tasks for positions required for the determmation of the required constants. The details
of the above activities are found in Part IT of the Laboratory Procedures Manual

Computation

Computation is very simply the solution of any or all of the equations in Section 4.3.2. A
complete calibration requires all computations and a partial calibration would require the
solution of only a few of the eguations in Section 4. 3.2. The details of the computation
procedures are described in Section II-4 of the Laboratory Procedures Manual.
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SECTION 5
DEVELOPMENT OF ALIGNMENT TECHNIQUES

In Section 2 alignment was defined as the initialization of the matrix which transforms from
an ISU-fixed set of axes to a navigational get of axes. The ISU axes were defined by use of
two mirror normals and the navigation axes were defined as an earth-fixed, local-level
frame. Transformation of this alignment problem tc any other alignment problem using
dafferent ISU and navigational frames is then a -sumple problem of coordmate transformation,
The discussion in Section 2 revealed that alignment could be accomplished by measurement,
in body and/or earth-frame, of the components of two system vectors. Three different

choices of these vectors lead to the three alignment technigues; Mirror Alignment, Level
Alignment, and Gyrocompass.

Further analyses m Sections 2 and 3 lead to the functional description of the three alignment
technigques shown in Chart 5-1, In this description each technigue is further broken down
into four basic types of computational routines. These are:

e Preprocessing Compuiations
o  Hsiimation Routine
o Egtimation Matrix Computations

*  Alignment Matrix Computations,

These routines have as inpuis cerfain a priori information, calibration constants, instru-
ment outputs, and/or outputs from other routines as indicated in Chart 5-1,

Before beginning the detailed development of alignment it is important to note several pomts
which dictate the viewpomnt adopted in the remainder of this section, First note that there
are basically three types of routines mdicated in Chart 5-1. They are Preprocessing,
Estmation (including both Estimation Routine and Estimation Matrix Computations), and
Alignment Matrix routines. The mathematics of the Preprocessing Routine was developed
in subsection 2.2.5 and will be congidered only briefly here {in Section 5, 1), The Alignment
Mairix routine uses estimated values of g+ 1§_k and mirror azimuth (Level Alignment) or

g §k and QE - By, (Gyrocompass) to initialize the alignment matrix T. Ths relatively
straightforward mathematical problem has been discussed in Section 2 and 1s considered
again rather briefly in Section 5.5. The remaining routine, Estimation, 1s the major sub-
ject of discussion in this section. Before developing various estimation techmques, the
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CHART 5-1

ALIGNMENT FUNCTIONAL DIAGRAMS

Mirror Alignment

One & Two Mirror Azimuth Angles

> Alignment T
o Matrix —>
ne & Two Mirror Zemth Angles | Computation
Level Alignment
a priori - Est1r;1a't10n
Information Matrix
Computations
Accelerometer
Calibration
Conastants
v
T
Accelerometer |Preprocessing .f E'Ekdt .| Estimation | 2" 5k o Alignment { T N
Readouts Computations | Routme - Cozl;.&;tifa?zon
Azimuth of the One Mirror T
Gyrocompass
\ a priori Estimation
Information Matrix
Gyro and Computations
Accelerometer
Calibration
Constants
v N
Accelerometer fﬂ‘?kdt\ -5 _
Readouts Preprocessing Estimation = Ai:g;i;nt A
Gyro Computations | [ w- gkdt> Routme |y - B Computation
Readouts
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environment and sensor noises are modelled i Section 5.2, Then in Section 5.3 and 5. 4
specific estimation techniques are developed under different assumptions. The explicit
equations for the recommended alignment techniques are summarized m Section 5, 6.

Second, it should be noted that there is no detailed discussion of Mirror Ahgnment smce
this section emphasizes estimation which 18 not relevant to the mirror alignment problem.
The Alignment Matrix Calculation discussion of Section 5.5 is, of course, applicable to the
mirror approach when mirror azimuth and zenith angles are given.

Third, the reader should be forewarned of the emphasis on Level Alignment over Gyro-
compass 1 this section. It was found, not unexpectedly, that the alignment errors in
Gyrocompass may easily be two orders of magnitude larger than those expected mm Level
Alignment. This is, of course, mainly due to the low signal-to-noise ratio of the earth-
rate signal in gyro quantization noise. Further details of this comparison of Level Align-
ment versus Gyrocompass are given in Section 5 of the trade-off document (Volume 2)
where a Monte Carlo simulation of an alignment problem is used to obtain quantitative
results,

Finally note that Section 5 of the trade-off document justifies many of the comments mecluded
below. Section 5 of Volume 2 includes further discussion of the assumptions required and
the results of a sumulation of the proposed estimation technigques. It 1s important to note
that in several places unportant agsumptions have been made with little justification when
the data was not available to include completely realistic values, The collection of ac-
curate data about the noise environment is a very difficult and expensive problem. How-
ever, all results of this study have been presented in such & manner that when more ac-
curate data is available, modifications can easily be made.

5.1 PREPROCESSING COMPUTATIONS

The Preprocessing Computations yield integrals of angular velocity and acceleration in the
body frame-

t+At t+ At
' wBa [ apa, j=1,2,8.,
t

o+
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The mputs {o the computations are the counter outputs (E-y)kz, (Ey)kl, (z ‘5)k’ and (& ng),

k =1,2,3. The calibration constants for each sensor are required, along with the trans-
formations from the sensor axes to body axes QA, QG. The notation 15 defined m Section
2. The preprocessmg equations are developed 1n subsection 2.2,5, They are reproduced
m Chart §-2. In this chart, dots at the left hand margin indicate the alternative computa-
tions used for Level Alignment or for Gyrocompass., Note that At was assumed to be

small in the development of the equations in Section 2.2,5. This restriction is not required
in the Preprocessing Computations used in alignment since the ISU 1s relatively stationary,

5.2 ENVIRONMENT AND SENSOR NOISE MODELS

Before developing processing techniques, we must describe the effect on sensor outputs of
various random inputs: environment translational acceleration and rotation, accelerometer
noise, and gyro noise. This section is a contmeation of Section 3.2.2 which describes the
general characteristics of the environment noise. In the development of estimation tech-
niques, quantization errors are not included. Several of the resulting techmiques are tested
with a Monte Carlo simulation to determine the effect of quantization, computer word length,
and anomalous noise inputs. The results are presented m Section 5 of the trade-off docu -
ment, In the following paragraphs, we first describe the environmental components of the

sensor inputs (5.2. 1) and subsequently describe their effects on the observed sensor out-
puts (5.2.2).

5.2.1 Sensor Input Acceleration and Angular Velocity
It 1s convement to define a "level frame" that moves with the ISU and whose average orien-
tation is collinear with the earth axes, as indicated m Figure 5-1. The body axes are fixed

relative to the level axes. If there were no environment disturbance, the level frame would
coincide with the earth frame.

Let Ay be the acceleration of the level frame along Ek Then

ar1 gU- Ly +oy
ap, = | a9 | = (8ULy+ay
ay3 gU Ly +&4



CHART 5-2

PREPROCESSING COMPUTATIONS

Inputs (Sy)yg, (E7)y, (55, and (‘Bng)for k=1, 2, 3

The outputs [, t+at (w-By)dt and [} t+ At (@By)dt (k=1, 2, 3 are given by the following
computations
Level GC

s e P = LBy, - (B7))

G -
J Py =(Bs),
Tl T
. L oy =8 Z(En 2)

m

s L(wGpat? Pi(“’)k' (R), At

« o f@agat] = PY/(D)), - Oy, At

° (-Gy) = L(-Gy BtY/at
. . @-4) = [@-4a)) at)/at
. @G = @4y
0 0 1lifaAy
° @0%) =1 0 0 (ﬁ‘ )
(1 0 0| A, A3)|
[0-1 o[@ &)
. @8) ={0 0 1 |{@3ay)
01 0f@ig)

o o) MGt = TG IA- LB, -G+ (B, a0 )+ (Bg) @5, ) 'at

- (@ G + (Cgg), @57 at
- £(Cig) e G e 5+ Coghar 0@ 8,0+ (Cro), (2-Gy ) @0y ) 24t

- L@ (@G)? + (@) (@GS, at
o olagar = [@AJE - (Dy), & B At - D) G A At

trAL

I, *8ueBdt = EQ?U, v (@Gt
R ft+At(a Bt = EQk{, | t-rAt(E. At
where

[ 1 (B -Gy By
« o f-l-(Gy By 1 -Gy By)
B egs) 1
1 -8By (4B
L e - L -(ay By
B
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where @, &, Ggq are the environment-induced accelerations along Ly, Lo, Ls. The
expecled value of «; is zero, Tofirst order, L;-U = 1 since the rotation from vertical
is the order of one minute of arc or less, Further, I_I_-L:Z and g-és can be represented
as small rotations about Ly and Lo, respectively., Let 84 =-U-Ly and 65 =U-La.
Then, to first order,

g +0y

| &

L = 8% %
g8 + g
Further, the angles 82 and 6 3 have zero expectations. Let Ty be the orthogonal trans-

formation from the level frame to the body frame. Then the acceleration in the body frame
4. is
=B

g 0 &y
EB = T 1_a-_ = T]. 0 + Tl —gBS <+ Tl az
0 g8 %3

The first term 1s the average gravitational acceleration i the body frame. The sgcond
term is the variation of the acceleration due to level frame rotation. The last term is
the envircnmental acceleration disturbance. The power spectra of &qs Og, Og, 62, 93
can be obtaimned from envirommental test measurements.

Next, consider the angular velocity. Let 7 1o be the angular velocity of the level frame

about L,. Then
- - o e _
“11 wyU-Ly + wyN-Ly + By
_ | E.. E
@1, =| wia | =| wgU-ly + oyN-Ly + By
B Eoq.
W13 wyl-lg + oyN-Lg + Ay |

where w%l_}_ + wﬁl_{_ 1s the angular velocity of the earth and 'Bk is the environment-
induced angular velocity about Lj. Tofwrstorder, U-L; = N+-Lg = L Furtl'w.er assume
that there 15 no rotation about U and hence £ =0 and N-L, = 0, Also, By =8y, B3 =854,
and N.Iy =9,. Hence,
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“g - @nY
E
E E
_wUBZ +wy 8 il
E B
WY -wNBZ 0

_ E A
wp = T1 0 + T1 -wU93 + T. 92
E E 3
Wy wpba o3

where wp is the angular velocity 1n the body frame. These three ferms have interpreia-
tions analogous 1o the corresponding terms n 2g.

Since the system has heen calibrated, the iransformation from body axes to sensor input

axes is known. Let T, transform an to the accelerometer npul axes; let T4 transform
Wy to the gyro input axes. Let

ap = Tgap

and EG = T3-w—B

These veciors represent the sensor inpuis.

There are two aliernatives in estimating gravity and angular velocity. First, we can
estimate the average components in the body frame:

g wl
T4 0 and T1 1] (5-1)
0 wg.

Second, we can estimate the components at some tune t* m the future, t* > KAt:
0

g
(0] + Ty|-g850t%) (5-2)
0

g0y (t+)

T
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ol ~wEe, (14)
T,| © + Tyl -0h8s (t¥) (5-3)

Where the strapdown system is initiated t* - KAt seconds after the last measurement.
Let t% - KAL = Et’ the prediction interval,

5.2.2 Observed Sensor Quiput

In the development of a processing method, we will assume that the gyros and accelerom-
eters are linear with unit scale factors and zero bias. Actual values will be used m the
application to a real alignment problem. Further, we assume that the gyros and accel-
erometers have relatively large band widths, 1.e., we will neglect the sensor dynamics.
The preprocessed sensor ouitpuis are miegrals of acceleration and angular velocity, )
Namely, the oufputs are:

t t
PAY) = | a,ma + § n,(r)dr
t~ At t- At

G t t
2Sm) = | wgar « [ ngnar
t- At i- At

where n A('r) and n G('1') represent noitses mtroduced by the sensors. Further the outputs
are observed at discrete times At, 2 At, ---, KAt, Denote these outputs by EA(]) and
]_?G(J)., it 1s convenient to transform the outputs BA(]) and EG(]) to the body frame: namely

A 1A ae | [e °
PR = Ty BOG) = Ty 01+ Ty |gog(n)| bdr
(1-1) At ? 0 g65(7)
ae [ et n, 4(7)
+ Tq| o) | + ’I‘é nAz(r) dr (5-4)
(3-1) Atz a3('r) n A3('r)



, _E 1]

1 jat | o TN Op(r)
PEM = T3 2% = drylo | sy |Wf ey L oar
(-1 Atz ©N Wl 0y(r)
- =/ (5-5)

JAt 0 At ™) |

+ TIJ ?2(1') dr  + [ T, ngo(m) | dr
G-Dat | byl (-1 At ngl™

Since T 1 1s orthogonal, and since T, and T4 are nearly orthogonal, T A7) + Té 12 AlT)
and ’I‘S" n G(T) have the same power specirum as (1) +n A(“r) and n G('r), respectively.
This simplhification will be used in equations (5-4) and (5-5) since only second order
statistics are used in the following discussion.

Note that the components of a.(7), n A(’T’), and n G("r) have been assumed statistically
independent and identically distributed,

In the following sections, estimation techniques are developed based on the above models,

5.3 ESTIMATION OF GRAVITY IN LEVEL ALIGNMENT

Estumations of the componentis of gravitational acceleration in the body frame are based on
the observation equation

AL j At g 0
23(3) = X T, 0| + T -ges(-r) + afr) + ;}_A(T) dr (5-6)
(1-1) At Q gag(?’)

with j=1,....,K. Using the observed accelerometer outputs in the body frame, Eg(j)
(=1,...,K), our goal is to estimate the average components (5-1) or mstantaneous
components (5-2) in the presence of the disturbances oft) and n A(t) giwven in (5-6). The
former problem 1s described in the following Section (5. 3. 1); the latter problem 1s
discussed in {5.3.2). Note that the basic operation is differentiation; we obtain ac-
celeration from velocity measurements.
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In the following subsections several estimation methods are developed from mathematical
statistics. A general discussion of Level Alignment techniques appears in 5. 3. 3; and the
recommended technique is presented 1n 5. 6. The characteristics of several techniques are
described in Section 5 of the trade-off document. These techmques are simple average,
posterior-mean estimate of average components, posterior-mean estimate of instantaneous
components, and iterative estimate of mstantaneous components.

3.3.1 Estimation of Average Components

The objective here 1s to estimate the average gravitational acceleration components in the
body frame namely:

Let gp(t*) denote the true gravitational components at time t*. Then the rms deviation of
the estimated average components (say § B) from the true componenis can be bounded,
namely:

El(egt")-gp) " @pt*)-gp)] = Elept*)-Ep) (€pt*)-Ep) 1+ ElEp-En) @ p-Ep):
+ 2E[5t)-Ep) (B - 85) 1 = {[Ez(gB(t*)-g_B)T(_g_B(t*)—gB):] 1/2

- A - A 2
+ [E E(gB“gB)T(gB‘gB) 3:}1/2}

The first term corresponds to the rotational motion of the level frame about the average,
The second term corregponds to the error in -é-B as an estimate of éB' The objective 15
to mimmize the second term, accepting the first term (the error from the motion about
its mean).

In the following subsections three approaches to estimation are considered- simple average,
least squares, posterior mean. The first approach does not use any a priori information
about the noise speetra, alignment, gravity or earth rate magnitudes. The second approach
uses prior measurements of the noise spectra. On the other hand, 1f does not include the
prior geophysical measurements of gravity and earth angular velocity. The third approach
uses a priori information about alignment, gravity magmtude, and earth rate magnitude
plus measurements of the noise specira, but the noises are assumed to be gaussian
processes. This third approach has several advantages: (1) prior geophysical measure-
ments are included and are weighted with their accuracy; (1i) the estimation technmiques are
comparable to those obtained from a least squares approach in complexity; (111) the resulting
techmques can be used recursively to continuously update the alignment matrix; (1v) the
posterior-mean estimate is optimum with respect to a large class of loss functions, not
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Just quadratic. From noise simulation, we find that the posterior-wean techniques are
not sensiive to the gaussian assumption, {See Section 5 of the trade-off document. )

5.3.1.1 Simple Average

This approach 1s based on the assumption that we do not have any prior information about
the noise, gravity, earth rate, or alignment. In this case

: — I 2A0)
By = I BR

Note that the same estimate is obtained if K=1, and At is replaced by KAt.

5.3.1.2 Least Squares

Beifore develeoping a least-squares fechnique, it 1s convenient to define certain notations.
Let X be the 3K vector whose components are

r — pd . — nh . _ pA
1{] = PBI(3)’ Xj-i—K = PBZ(I)’ X]+2K = PBg(J)

withy=1, ..., K. Let Hy be the 3Kx3 matrix

A

o
)

..

A

>

OCJ"'O”‘".H
>
OOC'OH'O-F"
g

""““"‘O"‘OO"'

OIIU
>

JAt

Let 6, = (E“I)At

Br('r)d'r, withr = 2,3,
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Let @ be a 3K vector with components

‘?] =+ g(T1)13 ‘pz(J) - g(T1)12 ¢3(J)

]

@]+K + g(T1)23 ‘f’z(J) - g(T 1)22 ¢‘3(]) (5-7)

&
12K = +g(T1)33 952(]) - g(T1)32 953(3) 1 = 14,2,...,K,

. )
Let 81 = (by(1),...,0,(K) andod = (#5(Ds..,95(K)). Then @=H, LJ

where Hq is the 3Kx 2K matrix defined by equation 5-7. Let N be a 3K vector with
components

Bt

N, = L yat Loy (r) + nAl('r)} dr
1AL

N]+K =(]{1)At [ozz(r) +nA2('r)]d-r
jAt

N]+2K = (31r1)At leea(r) + nAg('r)} dar

with 3 =1, ..., K. Then the basic observation equation 5-6 can be rewritten as

X = Hy

[l

B+ ®+N (5-8)

The objective 1s to estimate gB m the presence of noise # + N, given the observationsX,
The covariance of this composite noise is the sum of the covariances of ®and N smece
they are mdependent:

23‘15+N = E<I’+)3N
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. Further

where & oo 152 K x K matrix with elements

(Esﬁ@)i] B EE¢2(1) %M, 1,) =1,...,K.

Note that 62 and 93 are assumed to be independent and identically distributed, Further,

5 Eo,:+n 0 0
N T 0 Eoz+11 0
0 0 Eoc+n

where Ea +n is 2 K x K matrix with elements

(% = EINN ], i,7=1,..., K.

o+ n)ij

These covariance matrices can be expressed in terms of the correlation functicons,
namely

At 0
IO CAtpl o (p+(j-DA dp +~ [ LAt+p) g (b + (3-1) At} dp

ELéy(1) 95(1)3 N

At 0
IO LAE-p) ¢, (1 +(3-0) AL dp + jAt Lat +pl g (b + (3-1) &%) dp

E[NiN]]

At 0
+ j’o [ At-ul o (0 +(-)A L) dp +IAt LAt - pl ¢ (1 +(3-1) At) de
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where ¢6, ¢a,kgnd ¢ are the_correlation functions of a(t), o{t), n(1), e.2., ¢9 = E(6(0)8(r)).
From prior experiments we estimate the noige power spectra and correlation functions. *
The above integrals may be evaluated numerically or mathematicaily when the correlation

function 1s approximated by a mathematical formula., For example, assume

%(’ﬂ cq e'cle'

Then
2¢, ¢~C2 l1-il At
oy = 1 [ cosh (cy At) -1], 1 #)
Ca
201
_ ~c9 At
(E@‘)fb)ll = —~ [e"¢2 -1+ ¢y At]

2
(Cz)
The same methods can be applied to the other covariance mairices,

Note thatl H2 is evalualed by using prior estimates for the value of T1 and g, denoted by ';["1
and g, Precise values are not needed since Hg 18 used in the noise model. Corrections to
Hy would be of second order.

Based on the composite measurement equation (5-8), the objective is to find the unbased
linear estimate of g, say p(X), which mimmizes E|gy - g(}g)lz as a function of g(X).
It follows from the Gauss-Markoff theorem that -Q-BGQ 1s the value of g that mmimizes
MX - M H,g|?, where M is the nonsmgular matrix such that MEg (M = L **

*Spectra data is given by H. Wemstock in "Limitations on Inertial Sensor Testing Produced
by Test Platform Vibrations', NASA Eleciromcs Research Center, Cambridge, NASA
TN D-3683, 1966,

**See H, Scheffe’, Analysis of Variance, John Wieley, 1959, p. 14.
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In fact Eg_B(EE) is a minimum variance estimate for each component of EB' One can show that

5 = (¥ w1 -1 .. T -1

Further the expected value of 33(19 18 §5, even if we have used an incorrect covariance
matrix Zg , . The covariance matrix of gB 18

-1

)

— va = \To T w1
Elgg-Ep) Gp-8p) 1= (H Iy, v B (5-10)

5.3.1.3 Posterior Mean

In the following discussion we assume that e]('r), oT), n A(T) are gaussian processes.
Hence the "optimum™ estimate of EB is the posterior mean. This estimate is optimum
with respect to any loss function I{€) on each component where*

() (o) = o
{i1) L(EE) 2 L€ 1) = 0 when €, 2 El = Q
() L(g) = L(-€).

For example, let §5 be an estimate of §,. Then

-~ ]2

E gBl‘-gli’,l
and

E|8no-8ps |

cn2~tp2
and

wla s |2

Sp37®R3

*See 8. Sherman "Nonmean -Sguare Error Criteria” IRE TRANS. ON INFORMATION
THEORY, Vol. IT-4, No, 3, p. 125,
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are 2ll mmimized when fg_B is the posterior mean. As a second example, let €, €, €5
represent the maximum admissible errors i components of gravity. Let

L.(€) 0, 1€l = EJ&
r € €
Lo fel > e
Then
ElL @180} = Pri|%p1-81| > e1‘
and BlLyEg-82)) - Pef|Zna-lpa| > |
and ElLg(Eps-8pg) = Pri]—ngi'@BiB] - 63}

are all minmmized when _Q_B is the posierior mean. (The expression'"Pr {-1}" denotes
"probability that {-1".)

To evaluate the posterior mean, we first determine the conditional distribution of X, given
gB' In this subsection the notation is the same as that in 5.3, 1.2, From equation (5-8),
1t follows that X is normally distributed with mean H gy and covariance Zg, .

From prior observations we have an estimatie of orientation of the ISU; and hence we have
an estimate of T, say T{. Also we have an estimate of the magnitude of g, S2y 8. With
these estimates, a prior distribution can be defined for f;iB , hamely, gaussian with mean

[
gg =%, 10
0
and covariance
o 0
& 22 0 T
0 ~2 2

where o_ 15 the rms error in the estumate of ] gBlg and Og 1S the rms error in the estimate
of vertical (expressed in radians),
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This prior distribution implies that the distribution of gB 1s isotropic in a horizonial
piane,

Applying Bayes formula we find that the posterior distribution of EB’ given X, is gaussian
with mean

S 1 1 T - '-1""
Bp(®) = (H[PgH, +53 o) (H1%g,nX + 25" 8p) (5-11)
and covariance matrix
1 -
By = (H'fz@+NH1+z:~ )t (5-12)

The estimate @B ()_() represents the optimum combination of the measurements X and
prior data weighted by their respective errors. Note that the covariance is

E[(EB - gB (X)) (EB - gB(E))T] = (H'{E Q;}-N Hy+ Eé-l)'l

¥ our prior alignment information is poor, the posterior-mean estimate reduces to the
least-square estimate. Speciically, as o = and og*=, then 2z150and expression
(5-11) approaches expression (5-9). Also the covariance (5-12) approaches (5-10).

" The estimate (5-11) and covariance (5-12) are\the basis for an iterative alignment technique.
Specifically, the inifial gB , Eg are obtained from K measurements based on EB and

Eg:-. The second estimate gx 2 and covariance Eg) are obtained from a second set of K

measurements based on g( 1) and Zg-l) ete, This iterative technique 1s sub-optimal since
we are sunmarizing all of the prlor measurements in terms of g( ) and E(J) . Afirue
recursive ''least-squares' technique involves significantly more computatlon since suc-
cessive measurements are correlated.* Also, all back measurements are used in the
current computation, The miermeasurement correlation can be eliminated by augmenting
the measurement variable. ** This approach also results in a very complex estimation
procedure, From a practical viewpoint, the sub-optimal technigue described above is

a reasonable compromise.

*P. Gainer, "A Method For Computing the Effect of an Additional Observation on a
Previous Least Squares Estimate', NASA La,ngley Research Center, NASA TN
D-1599, 1963,

**kZee M. Acki, "Optimization of Stochastic Systems™, Academic Press, i96%, p. 38if,
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5.3.2 Estmation of Instantaneous Components

In the previous subsection we developed several techniques of estimatiing the average
components of acceleration

In this subsection the objective is to estimate the instantaneous components at time
t* > KAt 1.e.,

g 0
0 g0g (%)

In the following discussion we asswme that the stochastic wputs Bj (1}, @(7), n A(T) are
gaussian processes. The discussion in Section 5. 3. 1.3 apphes here; the posterior mean
will be used to estumate instantanecus components. If our prior alignment data is poor,
the posterior-mean esfimate reduces to the least-sgquares estimate.

The vectors X, N, ¢ 1 %95 and g:B’ are defined in Section 5.3.1. Let S* denote the
mstantaneous components 1.e.,

0
§% =T |0 |+ T, |-geg(t”
0 g6, (t%)

To obtain the conditional distribution of §* given X, we first obtain the joint distribution

of (8%, X). The components of (8%, X) can be expressed in terms of fundamental random
variables as follows:

S}“ &gy * (Tl)]3g9§ - (Tl)]2g9§ , §=1,2,3

. = Bg1At + (Ty) 3865(0) - (Ty)pe25(i) + Ny
K = Bpalt + (Tyze8s(D) - (T)oggdg(i) + Ny
Lok = §B3At t (T1)33g¢>2(i) - (T1)32g$3(i) + N ow

e
P
oo

, i=1,2,3,:+K
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or in matrix form as follows:

where ET 1s the vector

T = = = *
Z_ - igBl’ ng: ng: Nla "ty N3KJ 92: ¢2(1): T ¢2(K): Qg, Q)3(]-): "t G"’?,(K)]

and where V is the corresponding matrix. Note that V can be evaluaied using prior
estimates g and T‘l, since they only enter as multipliers of 8, and ¢,. A prior distri-
bution of EB is based on prior alignment data — namely, gaussian with mean

and covariance

e
T 1 0
0
Q 0
éz O'g' 0 T’f
0 'éz crg

a smmilar prior distribution was uged m Section 5.3, 1.3. The variate 7 is gaussian

with mean

zT

and covariance

= [.éBl: EBZ’ ng: 0, «--, 0i



sl | 7,

81 e e -l
PN [ 3K
""""" e o, T — — —
BT AT 3 I R
1 Ic.li ||
Ez = | : | Z || K
S |
— —_— — —_— — — _i___._.__.......
. . —_EOi cpeer g |1
g ]c'l—I( >
i l : l . I o¢ ®
N :CKE |
3 K 1 K 1 K
where
2
ey = E[(83)"]
At
¢, = E 85 ¢, ()] =6|‘ 9 (T - (K+1-7At - €)ar
with t* = KAL + Gt.
. . -b2|’1'|
I cbe is approximated by ble , then
CO = bl
L bel(- At - ] oAt
¢, = —¢g Le - 1]
3 b2

S

Hence, X is a gaussian variate with mean VZ and covariance VEZ vT . 'The condi-

tional disiribution of S* given X 1s gaussian, T To evaluate the conditional mean and co--
variance, we must partiftion the mean and covariance matrix as follows:

T See T.W. Anderson, "An Introduction to Multivariate Statistical Analysis', John Wiley,
1958, p. 27fL,
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— a A B
VZ =| | ama vz vDH1 o) T,
- ay B C
where ay1s 3x1 and A is 3x3. The conditional mean is
~m -1 -1
gg = -ATBX + a; + AT Bay (5-13)

The conditional covariance 1s A" L, Note that

B(S* - g5) (8% - )71 = a7l

The discussion of iterative techniques in subsection 5.3, 1.3 applies here, The
estimate (5-13) can be used in such an iterative technique,

5, 3.3 Discussion

Several level alignment estimation techniques were suggested in this section. A Monte
Carlo simulation was performed to select the best estimation technigque. The simulation

is discussed in Section 5 of the trade-off report, Three techniques were considered:
simple average (5.3.1. 1), posterior mean (5. 3. 1, 3), and instantaneous estimation
(5.3.2.1)., Several values of K, At, and TEB yere tried. The effect of nongaussian
noise was also investigated. The instantaneous estimate is superior to the other estimates,
in some cases the rms alignment error being one-half the alignment error obtained with
the simple average, The instantaneous estumate is selected as the recommended technique.
The sumple average is selected as an alternate technique, since it is computationally less
complex.

The simulation was also used to wvestigate the characteristics of the recommended
estimation technigques. The results of the simulation suggest the following conclusions
for level alignment:

¢  The instantaneous estimate is probably not sensitive to the noise distribution
{gaussian or nongaussian).

® Rotational motion from the environment is most probably the dominant source
of error for long integration intervals (At > 15 sec).

* The instantaneous estimate is more accurate than the simple average for
Atz 30 sec.



. Instantaneous estimation and sumple average appear to have comparable accuracy
for At < 15 sec.

e If At is held fixed at about 30 seconds and the quantization increased, the
mstantaneous estimate becomes less accurate than the simple average.

o Low frequency environment noise is not the dommant source of error for short
integration intervals (At < 15 sec).

The above poinis are a summary of the detailed analysis of the sumulation results included
in Section 5 of the trade-off document (Volume 2),

5.4 ESTIMATION OF GRAVITY AND EARTH RATE IN GYROCOMPASS

Estimation of the components of gravity and earth rate is based on the observational
equations (5-4) and (5-5), Using the observed sensor outputs _12%(1) and Eg(]),

j=1, «+«o, K, we estimate the average components (5-1) or the instantaneous
components (5-2) and (5-3). The average estimate is investigated in the following
section, 5.4.1; the instantaneous estimate is discussed in 5.4.2. The basic estimation
problem 1 Gyrocompass Alignment is very similar to estimation in Level Alignment,
Note that the basic operation is differentiation. We obtam acceleration from velocity
measurements and angular velocity from angle measurements.

In the following subsections several estimation methods are developed from a mathematical
statistics viewpoint. A general discussion of Gyrocompass Alignment techniques appears
m 5.4.3, and the recommended technique is presented m 5.6. The characteristics of

itwo techniques are described in Section 5 of the frade-off document. These fechniques

are simple average and posterior-mean estimate of average components.

5.4.1 Estimation of Average Components

The objective here 1s to estimate the average gravity and earth-rate components in the
body frame — namely,

g wp
g = Ty|0 and 25 = T,|0
0 wI%

In usmg an estimate of the average components, we are neglecting the motion about the
average. The error bound derived in subsection 5. 3. 1 applies to _a_:E as wellas g.
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In the following subsections three approaches to estimation are considered: simple average,
least squares, and posferior mean, The first approach does not use any a prior: informa-
tion about the noise spectra, aligmment, gravity, or earth rate. The second approach uses
pricr measurements of the noise spectra., On the other hand, it does not include the prior
geophysical measurements of gravity and earth angular velocity. The third approach uses

a priori information about alignment, magnitude of gravity and magnitude of earth angular
velocity plus prior measurements of the noise spectra. However, the noises must be
assumed to be gaussian processes. This third approach has several advantages: i) prior
geophysical measurements are included and are weighted with estimates of their accuracy;
i1) the estimation techniques are comparable to those obtained from a least squares approach
1 complexity; ii) the resulting techniques can be used recursively to confinuously update
the alighment matrix; iv) the posterior-mean estimate 1s optimum with respect to a large
class of loss functions, not just quadratic. From noise simulation, we find that the
posterior-mean techniques are probably not sensitive to the gaussian assumption (see
Section 5 of the trade-off document).

8.4.1.1 Simple Average

This approach is based on the assumption that we do not have any prior information about
the noise, magnitude of gravity, magnitude of earth rate, or alignment. In this case,

1 K 1 K
= — I PR 68 = — 2= PE()
KAt 7=1 = KAt =1

~

£B
HNote that the same estimate 15 obtained if K = 1 and At is replaced by KA{,
5.4.1.2 Least Squares

Before developing a least-squares technique, it is convenient to define certain notation,
Let X be the 6K vector whose components are

X

A . A _ A
] Pg1(3, XK Py (1), X]+2K"P133(])

G

G
X Pga (D,  Xp5x = Pr3(@

I

_ G
3k = P10, Xjux

with j=1, 2, »»+, K. Let Hg be the 6Kx6 matrix
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At

At
At

s
33
[

At

At
At

At
At

|
|
i
|
|
|

at

/1
\|

6
Let
® SR
= T)arT
r(]) (]—1)At r
jAt [
or() = 6.(r)dr
(-DAt
with r =2, 3,

Let € be a 6K vector with components

T
_? = (q’ls @2: T @SK)
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where

(I)]—z—K =
¢3+2K -

J+3K

®]+4K =

and % g‘

and (_@ %)T

8(TP13% () - &(Tqy 8500

8(T gs & (1) - (T gy 9300

g(T 339 () - &(T 13y #3(2)

[Ty e + (T)1308105(0) - (T wbss() + (T %)
+ (T) {3 85 ()

[T g1 + (Tiagop] %) - (Tyageds) + (Tipp 650

(T{)gg %3)

3=

™

{Tgq0 + (Tggwpl 9() - (Tylg el s + (T1)3 %50

(T1)35393()

+

.00’ K.

I

[qu(l); ¢2(2): R ¢2(K)]

Lo (1), 85(2), *++, ¢5(K)]

Log(D), 85(2), -+, @3(1{)3

[¢-§(1): @;(2), ) Qg(K)]

Then equation (5-14) can be rewritten as follows.

> (5-14)

where H, 1s the 6K x4K mairix defined by equation (5-14) and 1s introduced for mathe-
matical convenience. Let N be 2 6K vector with compenents
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jAt

N, = (jj_l)At[al(r) + nyq(r)lar
T
N = (]fdlmt[az('r) + nyg(n)lar
AL
Nk = (%’ﬂl)At[a?,(T) +nyq(r)ldr
1At
Nisg = ({_l)AtnGl(r)dfr
Nyax = (]If);tnez('r)d"
1AL
Nisg = (]f_ y Atnas(’r)df

with 3= 1, 2, »++, K. The vector N represents the environment and sensor noises. The
basic observation equations (5-4) and (5-5) can be rewritten as:

gp
X = Hg + % + N (5-15)
= _E - =

@

—-B

The objective is to estunaie -é-B and QE in the presence of noise ¢ + N,

The covariance matrix of @ + N is the sum of the covariance matrices, since the noises
are independent; i.e.,

Poy = Zo+3

84N o + 2y
Further, - | i _
|
|
Zop {z¢®+1 010
—--E‘ —————— I———
5 Thot | Zpegry O | O | o
e = Hpp—q—— b~ ——H
0 0 |z Is .
R I
T |
| © { O | Zop+ o]




where
(I)¢¢)i] = Elo,5(1)¢4(1)]

Cyapslyy = Elo3o5()

(E@{;'*‘)i] = B ['352 (1)99;(3)]

with i, =1, 2, +-«, K, Note that 62 and 63 are assumed to be independent and
identically distributed. Further,

where

Il

(E&+n)i] E[NIN]] s i,i=1, -, K

&

u

G)ia E[NiN]} , i, j=3K+1, «ve, 4K
These covariance matrices can be expressed m terms of the correlation functions (see
subsection 5.4.1.2). The following identities* are useful in simplifying Z?¢ +¢+ and
Zgp+
&2
-— mle(0) 8(7)1
ar2

E(81(0)6'(r)]

ELe(0) 8" (1)1 -_ii—E[S(O) 8(1))
ar

where we have assumed that 8,(7) and 64(7) are stationary processes.

*E. Parzen, "Stochastic Processes', Holden-Day, 1952, p, 83.
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Note that H 4 is evaluated using prior estimates for the value of Tl and g, denocted by
’f‘l and g. Precise values are not needed since H 4 is used in the noise model. Corrections
to H4 would be of second order,

Based on the composite measurement equatlon (5-15), the objective is to find the unbiased
linear estimate of (gB, wB), say (Ep(X), wB(X)), which mimimizes E| gp - g(X)l as a function
of g(X) and minimizes E wE -w(X)]53 as a function of w(X). It follows from the Gauss-Markoff
theorem that (5]3@)’ EE(X)) is the value of (g, w) that mmmizes

=l

where M is the nonsingular matrix such that MZg +N MY = I, Infact gBQ_{) and

2

c:‘ B@) are minimum variance estimates for each component of EB and gg One can
show that

gp(X)

Ty-1 -1 5Tg-1
= (Hz Dp,  Hy) ™~ H3Zg, X (5-16)

~

opX)
Further the expecied value of ’:T’B (X) 1s Zp, and expected value of GBE (X) is wg, even if
we have used an incorrect covariance mairix Z‘@ AN The covarla.nce matrix of

(EB: B) 18

Te~1 -1

5.4.1,3 Posterior Mean

In the following discussion we assume that the stochastic inputs are gaussian processes.
The "optimum" estimate of EB and E% is then the posterior mean as shown in Section
5.3.1.3.

To evaluate the posterior mean, we first determine the conditional distribution of X
given (?g_'B, @g). In this gubsection the notation 1s the same as that in 5.4, 1.2, From

equation (5-15) 1t follows that X is normally distributed with mean

B
H3 E and covariance Zg +N°

“B
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From prior observations we have an estimate of the orientation of the ISU, and hence we
have an estimate of T, say Tl‘ Also we have an estimate of the magnitude of & £

(say g), the magnitude of wB , (say @ ) and latitude (say k) from geophysical and
astronomical measurements, With these estimates a prior distribution can be defined
for g — namely, gaussian with mean

g
0
and covariance

cr2
g

- ~2 2 ~T

Eg =Ty g og Ty

P

where 0 _ 18 the rms error in the estimate of I EB l and Og is the rms error in the

estimate of vertical (expressed m radians). Similarly, we can define a prior distribution

for Eog — namely, gaussian with mean

sin% 0 -cosh||@®
B A
e o= %l 0 1 o ||o
cosA 0 sin A 0
and covariance
sinX 0 -cosAi cri 0 0 sinX 0 cosX
= 2 2 =T
Ea; = Tl 0 1 0 1] ( ) 8w 0 0 1 0 Tl
cosh 0 sinX |0 0 (w) -cosX 0 sin}

where 0., 18 the rms error in the estimate of | wB | and %50 is the rms error in the
est:unated direction of wB (expressed mn radiang)., Let
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Applying Bayes' formula, we find that the posterior distribution of (gB , g’B) given X
is gaussian with mean

%B(X) gB
=B~ R R | ISR YA, | -1
) = \B3%emtly +Pr ) |H3ZenE+ir | (5-18)
wg (X) : “p
and covariance
_ Te-1 -1,-1
Zpo = (H3Bg,Hg+ZIp) (5-19)

The estimates g (X) and @E (E) represent the optimum combmation of the measurements
X and prior data weighted by their respective errors,

The alignment procedure described by (5-18) and (5-19) reduces to a least squares
procedure when the prior measurements are very inaccurate. Also, this procedure

can be used recursively to updaie the alignment matrix (see Section 5.3. 1. 3).

5.4.2 Estimation of Instantaneous Components

The earth's angular velocity is small compared with gyro quantization, in conirast to
gravity and accelerometer quantization, Hence, it is reasonable to estimate the average
angular velocity and instantaneocus gravity, In Section 5.3.3 we coneluded that the
posterior-mean estimate of the Instanfaneous gravity components is best, based on a
Monte Carlo simulation. On the other hand, based on the same simulation, there is no
advantage in using a posterior-mean estimate of earth rate as opposed to a simple
average (see Section 5.4, 3).

5.4.3 Discussion

Several alignment estimation techniques are suggested. A Monte Carlo simulation was
performed to select the best estimation technique. The simulation is discussed in
Section 5 of the trade-off document, Two techniques were considered — simple average
(5.4. 1. 1) and posterior mean (5.4. 1.3). Several values of K, At, and TEB were tried.
The effect of nongaussian nolse was also investigated. The simple average was superior
to the posterior mean, An alternate techmique is to use an instantaneous estimate of

g (5.3.2) and an average estimate of EE. The accuracy will be improved but at the price
of a significant increase 1n the computation requirements., Therefore, the recommended
technique is simple average of both accelerometer and gyro data,
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The simulation is also used to investigate the characteristics of the recommended
technigues, The accuracy of gyrocompass alignment is strongly dependent on quanfization
errors of the gyro. The alignment error is of the order of 100 seconds of arc.

5.5 CALCULATION OF ALIGNMENT MATRICES FROM ESTIMATES OF GRAVITY,
EARTH RATE AND OPTICAL ANGLES

The final operation in alignment is the calculation of the alignment matrix (see Chart
5-1). The basic equations are developed in Section 2.3.3 and are repeated here for
completeness. The Mirror-Alignment mairix is presented in Chart 5-3, the Level-
Algnment matrix in Chart 5-4, and the Gyrocompass matrix in Chart 5-5.

5.6 RECOMMENDED ALIGNMENT TECHNIQUES

Referring back to Chart 5-1, we find that there are four basic types of equations:
alignment matrix, preprocessing, estunation, and estimation matrix equations. The
alignment matrix equations are presented in Charts 5-3, 5-4, and 5-5 for Mirror
Alignment, Level Alignment, and Gyrocompass. The alignment matrix computations
are the only computations needed for Mirror Alignment., The preprocessing equations
for level alignment and gyrocompass are presented in Chart 5-2 of Section 5.1, Note
that the dots on the lefi indicate which equations are used for Level Alignment and
Gyrocompass.

The estimation eguations for Level Alignment are presented in Chart 5-6. The estima-
tion matrix equations are presented in Charts 5-~7 and 5-8. The estimation equations
and matrix eguations for Gyrocompass Alignment are presented m Chart 5-9.

The procedures required to implement the preceding alighment techmgues are presented

1n the Procedures Manual, Part 3. The estimation equations were programmed for the
Monte Carlo simulation, which is described in Section 5 of the trade-off document,
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CHART 5-3

MIRROR ALIGNMENT MATRIX

Inputs 61, &y 92 and gy

where .
1M, x Myl = {1
(M, - M)

(v

(E-M,)

1\_41{

(N"My)

From these quantities the alignment matrix is given by.

My x U)-(M; x M,)

UM

Ly M, x M, |

Eup W xM)
My x M,

wuy St xR
lIlI]_Xl\_@zl

2.1/2
- (MI.MZ) ]/

cos 8y (U-Mp)
= | cos &y sin 8, (E-M,)| =
s & sine1 (E'Mz)
— — P - —

(E x )- (M % My) |
1M, x M,

(N x U)-(M; x M,)
IM, x M, |

(U x B)* (M, x My)
| M, x M, |

= (M;- U)(My- U) + (M- E)(M,- E) + (M- N)(M,,- )

cos 92
cos 052 sin 62

sin 0!2 sin 92

An optional teehnique maght utilize the value of |1\__f.[1 X I\ilzl from a previous alignment
thus elimmnating the aforementioned dot product and square root operations,
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CHART 5-4

LEVEL ALIGNMENT MATRIX

Inputs (g

where
L ]

©

B,), (8- By), (g By) and ¢

From these quantities the alignment matrix 1s given by:

1 0 o [ o 1 0 10 0
1
=0 sin@; cosa; 0 0 11_\_’1115[_” (ggl)(g_']?'_z)(UBQ
1 (MII_J_)

o emser oney | | Tl ey

(M- V) = (U- By)

IMxUl=[1- (U

(U- B) = (g B /g
g= [ B)? + (& By? + g+ By?1Y/2

2]1/2

An optronal technigue might utilize any of the following additional inputs:

The zenith angle (61) of mirror one might be utilized to find (Ml' U) from

(I&I_J_-I_J) = cos 8

The magmtude of gravity (g) might be supplied from a local survey. This piece
of information can be utilized to reduce the number of required accelerometers

to two.
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CHART 5-5

GYROCOMPASS MATRIX

E B E
Inputs (g ]_31), g Ez), &- 53), (w™- 912 (™ 1}2), and (& §3)

From these quantities the alignment matrix is given by:

0 1 0 (W-B,) (W+B,) (W*Bj)
1
T [=] o 0 [wxul (U-By) (U'By) (U-By)
LWy B,) (WxU)«(B,xBy)
wxul ~Twxul  © | |®xD(Bx By (WxU)-(BgxBy) (Wx1)-(ByxEp) |

where
° W-U) =(W.B)U-B))+ (W-By}{U-B,) + (W-B,)(U- By)

lwxul =(1- (w-0)2)/2

(W-B) = (& B)/"

(U-B) =(g-B)/e

R F = [ @1)2 . (@E'Ez)z - (F 123)211/2
3)2]1/2

. g ~[g-B)?+ @ By)’+ g-B
An optional technique might utilize any of the following additional inputs:
®  The local latitude (1) might be utilized to find (W * U) from

(W.U)=cos A

s The nr_la‘gg'nitude of gravity (g) might be supplied from 2 local survey.

¢ The magnitude of earth ratel(wE)lrmght be supplied from a local survey.

A use of all additional inputs could reduce the number of necessary instruments to three
(either two accelerometers and one gyro, or one accelerometer and two gyros).
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CHART 5-6

ESTIMATION ROUTINE COMPUTATIONS ~ LEVEL

Inputs: Preprocessed accelerometer measurements, X, estimation matrix, M,
VAN
Output Estimate of acceleration components 1n body {rame, g- §1 , 1=1, 2, 3

The basie estimation computation 1s

AN
E'§1 (t*)
AN
€8] = MX + b
N
g- By (t%)
where
T At 2At Kat AL
X = |[ a-Bjdt, [ a-Bydt,c-- [ a-Bydt,[ a-Byde, -,
0 A (K-1) At 0
KAt Kat
arBydt, - -+ | a-Bgdt
(K-1} At (X-1)at
At = Intersample time
K = Number of samples

and vector, b

at trme t*

Posterior Mean Technigque (Instantaneous): Computations of b and M from
the Estimation Matrix Computation Chart

Simple Average Technique-

b=0
®aty' ... xap! 0
M = ®a)t .. kapt
0 kap)™ L. (xant
S N S —
K K K

5-36



CHART 5-7

ESTIMATION MATRIX COMPUTATIONS — LEVEL

Inputs: intersample time, At (sec)
number of samples, K
estimate of gravity, g (ft/secz)
rms error in gravity estimate o, (ft/secz)
estimate of TEB, 'f‘l
rms angular error in prior estimate of vertical, % (radians)
noise covariance functions (tabular)
® accelerometer noise ¢~n(t) (ftz/sec4)
* translational acceleration noise 3,(t) (ftz/sec4)
e rotational noise ¢g(t) (radianz)
prediction time €, (sec)

Outputs alignment parameters M and b

The intermediate quantities Ea, ., L c]. and E“g‘ are computed from the

n! ®¢J CO’

mputs.

* I, is Kx K matrix with components

At
(Ecc)ij = Io [at - ulg, (u +(j-i) At)du
0
+ J’Atmt +ulg (u+(1-)At)da

. En 15 K X K maitrix with components

At
Z = ‘FO [At - ul ¢n(u + (J-0Atdu

i

0
+[] [At+ul ¢ (u + (1-)At)du
At
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CONTINUATION OF CHART 5-T

e % 1isa Kx K matrix with components

lo]o)
At
(E@ﬁ@)lj = 6{' [At - u]¢e(u+ (3-1) At) du

0
+ J" [At + ul ¢9(u+ (j~1) At) du
- At

o CU = (150 (0)

At
I og(u+ (-1)At - KAt - €. )du i=1, 2, ---, K
0

1}

L} C:
i

where the mtegrals are evaluated by a convenient integration technigque such as
trapezoidal rule or Simpson's rule,

. Eg isa 3x3 matrx

Bg = 'i: 520'2 T

From these intermediate quaniities, EN‘ Z:Z, V, A, B, ay; and a, are computed.

. BN 15 2 3K x 3K matrix
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CONTINUATION OF CHART 5-7

Tyisa (5K + 5) x (5K + 5) matrix

I 1
Zsl | 0 3
“‘gh:&_}:*—"*‘"i""'_"“ 3K
N e = e ]

R e S

Ty = | I;! Zyy !

[ S DA

l (I e ™
0, : : !:{ Zsa K
B [ ICK‘ =

3 3K1 K 1 K
Numbers at edges of matrices denote dimension of submatrices.
Matrices A (3 x 3) and B (3 x 3K) are submatrices

A B

.
= (VI VD)
BT p Z

where matrix V 1sthe (3K + 3) x (6K + 5) matrix given on the following chart,

~T
~

Atg (Tl)ll

- ATE(T
A E(T oy

oo ATE (T )y,
_ i At E (Tlgq

=

|
-

i}
i
o~
3
et
el
(A
-
|
[RY]

1l

Tl .

b

At (Ty)3;
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CONTINUATION OF CHART 5-7

Then, the outputs are given by-
e M=--AlB
Note that A'1 is the covariance mairix of the estimate.

* b= 31+A'1B§_2
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1%-6

1 | | 5F)1s ; SUY |
1 l 0 é(fl)zg 0 | "é(Tl)zz | 0
IS B U -] I
YR | BTy, | @1
S | o o
N CE B P I N
At I l %(T1)23 _}_ |"g-(T1)22
: , l 0 ) J 0 ] j
- T 5.7 | N U -0 Y]
afl | E(T,)ag | -E(Ty)y,
"1 | o | 0 :
.l P L.
B Atl 1;[ g(T1)33l | —g(T1)32
3 3K 1 K 1 K -
(daagonal) {diagonal) (d1agonal)

All missing entries are zero.
(’f‘l)IJ denotes the (1, 3) component of %1.

Numbers at the edge of the V matrix denote the dimension of the submatrices.
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CHART 5-9

ESTIMATION ROUTINE COMPUTATIONS — GYROCOMPASS

Inputs: Preprocessed accelerometer measurements, X, estimation matrix, M,
and vector, b

AN
Outputs. E/s%%lates of gravity and earth rate components in body frame, g-* _Bi and

w i=1, 2, 3

=1

The basic estimation computation 1s

PN
£°'21
N
g By
.g_/'Bs,
= MX + Db
.@E'§1 - -
R
w +By
£
w+Bg
where
T At Kat At Kat
X" =1 ] a-Bdt, .-+ [ a-Bdt, [ a-Bydt,---, a-Bgdt,
0 (K-1) At 0 (K-1) At
At KAt KAt
J weBjdt .-, w-Bydt, -, [ weBydt
0 (K-1) At (K-1) At
At = Intersample fime
K = Number of samples
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CONTINUATION OF CHART 5-9

e Simple Average Techmque:

=0

®aty L. (kay?

®a) ... gayt
o ®at L. (kap!
®a L. (gay?
®at)y L. xat)l
i 0
N e N e~ e
K K K K K

Diagonal 6 x 6K

e Hybrid Techmique: Use posterior-mean estimate of gravity as given for Level Alignment and sumple
average for earth rale, .

®aty Lo kayl

R
K
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APPENDIX A
THE MATHEMAT ICAL MODEL OF THE
VIBRATING STRING ACCELEROMETER

A-1,0 INTRODUCTION

This appendix describes the operation of the Vibrating String Accelerometer (VSA) that
has been selected {or the ERC Strapdown Inertial Guidance System and develops a

mathematical model to be used to relate the ouiput of this type instrument to an estimate
of applied acceleration.

A-2,0 DESCRIPTION OF THE ACCELEROMETER'S OQPERATION

A functional block diagram of the Vibrating String Accelerometer (VSA) is shown in

Figure A-1. The accelerometer consists of a seismic mass (mass 1 and mass 2 separated
by a spring) winch 1s supported by. 1) two taut strings that function as oscillator tank"
circuits, and 2) ligaments as shown in Figure A-1 and normal to the plane of Figure A-1,

When the VSA 1s at rest or moving with constant velocity, the sum of forces acting on its
seismic mass 1s zero. When the VSA is accelerated, the resultant force acting on the
sewsmic mass changes so that it accelerates with the case. The displacement of the
seismic mass, relative to the case, that is produced by this resultant force is neghgible
except along the sensitive axis, A, as shown in Figure A-1, The tension in the strings as
a result will not be affected by any motion other than that along the sensitive axis. This
change in tension (from the at rest tension) of each string 1s, therefore, a function of the
acceleration acting along the A axis of the wnstrument,

Swnce the natural frequency of a vibrating-string is a function of its tension, the vibrating
frequencies of the strings in the acceleromeier are directly related to the applied accel-
eration along A,

Each of the strings of the VSA passes through a magnetic field supplied by the two permanent
magnets of Figure A-1. When set to vibrating in its field, an electric signal 1s generated

by the string. This signal 1s amplified and fed back to the strmg m such a manner that a
sustained vibration occurs. The electric signals so generated are nominally sinusoidal

with frequency equal to the resonant frequency of the individual string. The vibrating string



Model: ARMA D4E Vibrating String Accelerometer

Axis: A 1s a unit vector directed along strings 54 ana Sy
(the sensitive axis)

Figure A-1, A Schematic Diagram of the Acceleromster
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acts as a high Q tank cricuit for the osecillator within the associated feedback amplifier
electronics, The vibrating frequency of each string is read by using Schmidt triggers to
generate pulses corresponding to zero crossings of the respective sme waves. The
frequency of the zero crossing pulse irain is proportional to the frequency of the vibrating
siring,

A-3.0 KINETICS OF V3A
A-3.1 COORDINATE AXES

The accelerometer coordinate axes (A, O, P) used in the derivation of the fundamental
mathematical model are 1llustrated in Figure A-2. The unit vector A is along the nominal
position of the string, while O and P are unit vectors arbitrarily defined to make A, O,
and P a right handed, orthogonal system.

A-3.2 THE TENSION IN THE STRING

The forces acting on M, and M, along A are shown in Figure A-3, The lateral supporting
forces along P (normal to the page) are not shown 1n this figure.

The equations of motion for the two masses can be written

Ey=FEy =Mg2; Fp=2Ep =M (A-1)
As we are mterested i the tension of the strings, only the A component of equation A-1
will be considered.

(Fi-A) = My(a-A)

(A-2)
(_F:z *A) = M, 2 - A)

Because the supporting force from the ligaments acts orthogonally to the string, we have

(Ey-A) = Tg-Ty
(4-3)

(Fy-4) = Ty-Tg
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Therefore from equations A-2 and A-3, we have
T3—T1 = Ml(é.&)

TZ-T3 = Mz(&' )

which can be combined as
Tz—T1 = (TZ-T3) +(T3—T1) = (Ml + Mz)(g- A) (A-4)

When the accelerometer is statmné.ry a = { and equation A-4 gives Ty =T¢. Letthis tension
in the strings be defmed as T o* When the VSA experiences an acceleration a, Tyand Ty

will be changed to cause the seismic masses to accelerate with the case. I (2-A)1s
positive (To-T ;) will also be positive. The tension 1 each of the strings can be written as
T2 = TO + ATZ
- (A-5)
T1 = TO + AT].

and

AT, + ATy = (Mq + M) (a+ A)

The amount of change in the tension of both strings will be the same 1if the strings are
identical, In practice, however, the sirings camnot be made to be identical.

For the range of accelerations that 1s‘}yith1n the proportional limit of the strings, we can
write

ATy =K4a-4)

(A -6}
ATy =Ky(a- A)

where Kl + K2 = Ml + Mz



Beyond that range of applied acceleration, the strings creep and the mathematical model
derived m the following pages will not apply.

A-4.0 MODEL DEVELOPMENT
A-4,1 THE RESONANT FREQUENCY OF A VIBRATING STRING

The resonant frequency of 2 uniform string under tension 1s directly proportiocnal to the
square root of the tension.

For the vibrating strings 5, and Sz, their pulse tram frequencies f i and f2 {(which are pro-
portional to the respective resonant frequencies) can be written as

=GV
fg = Co /Ty

C1 and C2 are proportienality constants determined by the dimensions, densiiy and other
physical properties of the strings. Combinmg equations A-5, A-6 and A-7, we have

(A-T)

n

f1 = Cq/ Ty -K;(2-4)

)
|

5 = CayT,+Kyar A)

By Taylor's expansion, this becomes

= Cy| 4T, - 21/_1(1(_ A)- ‘[__Kl(a A

)
e (TR
16’1‘0 T0 128’1‘0 T,
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1 3
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16Ti1/T0 128T3 [T

Iy = Czlim +

The above expansions will converge rapidly since the instrument is constructed so that T0

1s much greater than either Kl(?: +A)and Kz(g + A). The frequency difference of the
two strings is

1 _

fy-f; = (Cg - Cp4fT, +”"1—(c Ky + C{K(a-4) - (CoK2 - C4K2)(a-4)2
2 - 11 2 -Cy 0 "y fr, 2 . T L) ICATN

1 5
§ (K] + O - ————(CyK - oAt (4-9)
16T 4T, 12872 [T

The series given in equation A-8 converges rapidly because T o 1s made large. However,
Cy CZ’ K4 and K, are constants determined by the dimension and material of the vibrating
strings S, and S,. The accelerometer 1s manufactured so that (Cl—Cz) and (K 1—K2) are
kept as small as possible (a highly symmetric instrument). For this reason, the even
order terms are very small and the linear ferm is the most significant. The approximated
irequency difference obfained by iruncating equation A-8 after the third degree terms may
be written:

fo-f; =D Dy +Dya-A) +D;D, (a- A)? + DDy(a- A)° (A-9)

where, by definifion,

D Dy= (Cy - C1) 4T,

1
D,= (C + C K}
1 2./, o¥y + LKy
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Dy = (CoK2 - C(K2)
1Pa 2 181
8T, 4T,

1 3. g3
Ps = — (CoXh + CKY)
1612 f1_
A-4.2 THE ACCELEROMETER READOUT

Let the signal generated by the string 8 be

t
el(t) = 58ln [.61 + Ito Tffldt]

where 1 1s the frequency of the pulse tram from string S (in pulses per second) and ¢
15 a constant, The number of zero crossings in the interval (ta,’ tb) is

t, -At th
N, = [P % fat = Bqy + [ fyat
t, +At 1 t
1 o

where (ta. + Atl) and (tb - Aty) are the times of the first and last zero crossings i the
interval (ta R tb) and Eq ¢ 1s the quantization error given by

t
- ()
Eq; = fdt - j‘t A¢ f,dt
)

The time 1ncrements Atl and At2 are defined by illustration in Figure A-4, In the same
way, for string S5, we have

t
b

N, = Edy +It fodt
a
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Figure A-4, At]_ and At,



The difference in the number of zero crossings of thé two strings can be written, using
equafion A-9, as

1

t,
(Eq; - Eqy) +£f (f, ~fpat
a

Ny - Ny

ty Y
Eq+ | DDgdt+ [ Dy@-A)dt
ta ta

t
+ ijlDz(g-é)zdt-i- jtbnlng(io_ﬁdt
ty ty

A-4.3 THE VSA FUNDAMENTAL MATHEMATICAL MODEL
In summary, the readout of the VSA is two pulse tramns corresponding to the zero crossings
of the sinusoidal signals from the two vibrating strings. The input to the VSA is the

acceleration of the case along its sensitive axis. The accelerometer readout 1s related
to 1ts wmput by the mathematical model given in Chart A-1,
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CHAERT A-1

THE FUNDAMENTAL ACCELEROMETER MODEL

THE ACCELEROMETER MODEL IS:

Y% Y
jt fy dt - ft £,dt = (Ng-N;) + Eq = D It (a-A)dt
a a a
"
+ Dy ;I [D0+D2(a-A)2+D3(a.-A)3]dtls

‘ a4 ab,

a
WHERE:

a is the acceleration applied to the accelerometer
ta st< tb 18 the time interval over which a 1s measured
A is a unit vector directed along the input axis of the accelerometer

N, and N, are the number of zero crossings detected 1n tast <t,
from both sirings of the accelerometer

Eq is the mnstrument quantization error due to the fact that ta and tb
do not correspond to zero crossings

Dl 15 the accelerometer scale factor
D0 is the accelerometer bias

D2 15 the second order coefficient
D3 15 the third order coefficient

iy and f; are string frequencies 1n pulses/second
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APPENDIX B
THE MATHEMAT [CAL MODEL OF THE GYROSCOPE

B-1.0 INTRODUCTION

The purpose of this appendix is to find the mathematical expression that relates the outputs
of the Honeywell GG 334A gyroscope to the environmental wmput to which this gyro is
subjected.

Section B-2,0 is devoted lo the general description of the 334A gyro and its principle of
operation. The mathematical model is then developed m Section B-3.0,

B-2.0 DESCRIPTION OF THE GYRO OPERATION

The Honeywell GG 334A gyro contains a gimballed rotor spumming at a very high angular
rate (see Figure B-1), A hydrodynamic gas bearing 1s used to support the rotor. The
gimbal is restricted by the gimbal bearing to rotate only about the output axis relative to
the case. The signal generator of Figure B-1 consists of a moving coil attached to the
gimbal and a stationary wound stator attached to the gyro case. If generaies an a-c voltage
with an amplitude that is directly proportional to the angular displacement of the moving
coil from 1its null position. In this way the gimbal deflection relaiive to the case 1s
measured. At each sampling cycle (3,6 KHz rate), the gumbal deflection is detected,
sampled and compared to two thresholds (positive and negative of equal level) to determine
if a positive, zero or negative rebalance torque is to be generated., A current switch and
associated elecironics provide the torque generator with correct torgquing current pulses
of constant strength. The tuming mformation (3.6 KHz) used to deriwve the cycle periods
is furnished,

Any angular motion of the gyro case about the input axis, G, will generate a gyroscopic
torque that tends to rotate the gumbal about the output axis, O. The signal generator
senses the resulting gunbal deflection and produces the signal to the gyro electronics
necessary to generate the correct torquing current pulses to the torque generator, In
this way, the gyroscopic torgue developed matially about the gimbal axis 1s rebalanced by
the pulsive torque produced by the torque generator. The average rebalance torque is
proportional to the average gyroscopic torque which 1s in turn proportional to the gyro
angular rate about G. A readout ¢f the pulse train of the rebalance current is used as the
instrument's oufput.



Q is a unit vector along the output axis as defined hy
the gumbal,
G = O x S 1s the sensilwve axis of the gyro.

Figure B~1. A Schematic Diagram of the Gyro
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B-3.0 MATH MODEL DEVELOPMENT

B-3.1 COORDINATE AXES

The coordinate system used in the following derivations 1s illusirated m Figure B-2, The
gimbal axes (G, O, S) are defined as fixed to the gyro gimbal with O (the output axas)
directed along the gimbal rotary axis, 8 (the spm axis) directed along the gyro rotor spmn
axis and G (the input axis) directed along the direction of O x 8.

The set (G, O, 8) 1s right handed, orthogonal and 1s assumed to be coincident with the
gimbal prinecipal axes.

B-3.2 THE GIMBAL DYNAMICS

The gimbal angular momentum can be expressed m the gimbal coordinate axes as

|

= ol 0® - @16 + Ig(w® - 020 +[I(wf - 8 +H IS  (B-1)

where I~ is the moment of inertia of the gimbal and the rotor about G, IOO is the
moment of inertia of the gimbal and the rotor about ‘Q, ISS is the moment of inertia of
the gimbal about §, and H, is the constant rotor spinning angular momentum. (g‘g -G,
(_u:‘g +0), and (g_)g -8) are the components of the gimbal angular velocity about G, O, and
$, respectively.

Since G, O, S are assumed to be the principal axes of the gimbal, all the products of
mertias IGO’ IOS’ IGS’ etc. are assumed to be zero. The second law of rotational moticn

states that the torque applied to the gumbal is equal fo the derivative of the gimbal angular
momentum.

dx
I =— (3-2)
dt

Using equation B-1 and writing equation B-2 m component form, we have

(_T_.g) = IGG(“E g'g_) + (('_'Jg '9_) (fg '§) (Iss'Ioo) + Hr(_% g-__(_)_) (B —3)
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Figure B-2, Coordinate Axes
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(T-0) = Iy 5-0) + (@8.5) (@8 6) (Igg-Igg)-H (5. G)

(B-3)
(T+8) = Igg(@%:9) + (@& @) (w8 0) (Iny-Tne)

(T-G) and (T. 5) are reaction torques from the gimbal bearmg, Since we are concerned
only with the torque about the output axis, O, we may write

g
T, = (T-0) =Inol +O) -H (08.G) + (. 8)(«5-6) (IggIgg)

For a single -degree-of-freedom gyro, the gumbal can only move relative to the case about
the gimbal axis O. Thus the gimbal angular velocity can be expressed in terms of the case
angular veloeity and the relative angular velocity between the gimbal and the case.

wB=w +(wfw)-w+60

where w1s the gyro case angular velocity and 6 is the gumbal deflection with respect to
the case (see Figure B-3), Therefore,

Ty = (T00) = Inp¥ +1pgw 0) - Q) +(w-8) (0 Oligglyy)  (B-9)

B-3.3 THE GIMBAL TORQUE

The gimbal torque, T o 18 the sum of all torgues applied to the gimbal about the output
axig, O, T, mcludes a dampening torque, T a2 rebalance torque, T, provided by the
torgue generator; and error torques,

The dampening torque 1s proportional to the rate of change of gimbal deflection a.ngle,é .

Td= "Ce

The rebalance torque is

T, =-Lb,

where 61«: is the logic value of the pulse at the mstant tk By = +1, -1, or O for positive,
negative or zero pulses, respectively.
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L = L,LU(t-t) - Ut -t - h)i

where Lo is the amplitude of the pulse
h 1s the pulse width
U{t) 1s the unit step function
t, is the th gsampling period.

L 0h = j'tk+1Ldt is the strength of the pulse and would be constant for a linear rebalance
BN

loop. However, the torque rebalance loop will not be linear in reality, and L 0h waill be a

function of w. To take mto account the effect of nonlinearity, let us assume

Loh = Loh(l+e(w-Gy)

where Loh is constant and o very small,

The error torques include a constant torque, an a-sensitive torque, an gz-sensrcive torgue,
and other torques considered as noise (for example, reaction torgue from the signal
generator).

The constant torque is dencted by R'.

The a-sensitive torques are mainly due to the fact that the center of support of the gumbal
is not coincident with 1ts center of mass, If the gyro acceleration is a, the 2 -sensitive
error torgue 1s

Ty =B} (2:G) + B5(a-0) + BY(a-5)
where B, Bb and Bé are gyro unbalance coefficients.

The gz-sensfcive error torgue 1s due to the fact that the gyro gimbal 1s not a rigid body.
To make the gimbal follow the motion of the gyro case, there are forces acting on the
gimbal through the gimbal bearing. The gimbal deforms when subjected to these forces,
Because of this deformation, the cenfer of mass of the gimbal will be displaced from the
cenfer of support and therefore produce an gz-sensmve torque about the output axis. It
is assumed that the deformations also occur in the lateral direction as well as along the
direction of the acceleration,


http:Loh(1+a(wo.Gt

If the acceleration is a, the g._z—sensitive error torque 1S
2 .
Ty = Cj(a-0)% + Cdglar9)? + Cigla- @) (2-8) + Cola- O (a-9) + Ca- G(a-O)

C

where C’n, C 'IS ,

1 T _ N P
gq C'OS , and CIO are so-called compliance coefficients.
The total gunbal torgue 1s then

T, = -Cb-15, +R' + BJ(a-GHBL(a-0)}+BL (a- C(a- Q) +Chy(a-9%+ Clg (a-@) (2 9)

+ Cpgla-0)(a-8)+C{,(a-G)a Q) + T, (B-5)

where T is the torque due to-other effects and is considered as a noise component.

B-3.4 CONCLUSION
Combiming equation B-4 and equation B-5 we have

-Cé -6, +R"B (a- G) + By (- 0)+BY (2~ 8)+Cl(ar G)*+C4q (a-8)7+Clg (2. G)(a- 9)

+Chg(a. O)a 8)+Cry(a- G)ar OT ), = 100(9'3°9) - H (0 G)+w-8)(e -GN g-Log)

where 8 1s the gyro case angular velocity, and the component of the reaction torque,
100'6', has been neglected since it is small compared waith the damping torque, Cé.

A rearrangement of equation B-6 gives

k =

L4, = (@@« — | PHeQ +Bya-0)+ Bya-9 + Ca-o
- T H
T T

+ Cés(a-ﬁ)z + Cg(a-G)a-8) + Chg(a+ONa-8) + Cjy(a-G)a-0)

T, C6
- (IGG - Iss)(‘ﬁ‘_s_)(‘f‘_'_q_) - 100(0‘1'9_)] +H_ - E" (B-T)
T T



Let us now integrate equation B-7 over the N sampling periods starting at time to and

ending at time t,. We have

I"oh th
[R +BI(?:'§) + BO(E'Q) + BS(5°§)

Mt’
O‘J
T
1}
L—~
|E
|Q
2
+
[

+Cp@-G)? + Cgg (-8 + Crgla-G)a-8) + Cogla-O)a-9

+ Co(a Q)@ 0) + Quglw-G)@-8) + (& - SJdt +An+Eq  (B-8)

where w is the gyro case angular velocity

6k = 1,0,-1 is the kth rebalance pulse

e}

R' B By By
_7 “—-.1 _,
5 H Hr

R, By, By, Bg, Cp» Cgg Crg: Cogr 20d Cpg equal; ,
T

Ci Cgs Cig Cog Cio
T T T , and ——, respectively
Hr ﬂr HI‘ HI‘ Hr

ptn Tn
An = — dt 1s the effect of noise torques

to Hyp

=/ ™ — 4§ & is a quantization error,
to Hy



However,

0

L h = m[l-i-a(g'(})]
With @ very small, we can write
1

L h = —— L h = ({-el-G)L.h

Multiplying both sides of equation B-8 by (1 - @(w -G)) produces the gyro model as given
on Chart B-1.

o |

L h
0
In the model, A% = is the instrument scale factor, QI[ = -t —— jis the coefficient

Hy

of the term of the scale factor nonlinearity, @ is very small, and the higher order effects
of it have been ignored,

B-10



CHART B-1

THE FUNDAMENTAL GYRO MODEL

THE GYRO MODEL IS

=1

Ad gﬁ =—J'tN (w.G) dt + th R+BA{a'G) + B~(a-0) + Bg{a-S) + C (a-G)2 +C (EL-S)2
k t(] = t(] e = O = S = = (LR

+ Cigla-G) @8) + Cgla-0) @8) + Cypla-G) @-0)

d
+ QH( w 9)2 + QIS(u_J-g) (w8 + T qu (ur Qildt + An + Eq

WHERE

« 15 the angular velocity applied to the gyro
a 18 the acceleration applied to the gyro
tO <ts< tN 18 the time interval over which a4 and « are measured

tN “ty= Nts where N 1s an integer, andT 1s the gyro sampling
period

15 a unt vector along the spm axis of the rotor

O 1s a unit vector directed along the output axis as defined by the
gimbal

g 1s a umt vector along (_Z)_ X E (that 1s, the sensitive axas of the gyro)

bk 15 the kth gyro pulse, equal to +1, -1, or 0 for pesitive, negative,
or no pulse )

Ad1s the gyro scale factor

R 15 the gyro bias

BI BO and BS are the gyro unbalance coefficients

CII CSS Cig Cog and CIO are the gyro compliance coefficients

Qg and QII are dynamuc coupling coefficients due to gimbal deflection )
and scale factor nonlinearity, respectively

d 1s the angular rate coefficient

An 1s the effect of gyro noise over the Cto, tN] interval

Eq is the gyro quantization error
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APPENDIX C
ALTERNATE FORM OF G MATRICES

In Section 2,2,4 the QG and QA mairices were expressed m terms of (QA)'1 and

(QG)'l, which are the matrices calibrated in the ERC laboratory. The calibrated elements
were seen in Section 2.2.4 to have either the form éi«:'%?f or gk-_@& . Because the body
axes (§k) are defined, the elements do not equate directly to physical ISU angles — angles
like the angle between, say, two gyro axes. It is possible, however, to express the Q
mafrices as a function of physical angles only, Those expressions are found in Chart C-1
and C-2, In Chart C-i we see the general expression, and in Chart C-2 we see the first
order approximation of the mairices. (Recall that the nomimal QG and QA matrices are
1dentity matrices.)

The form of the two matrices (QA and QG) m Chart C-1and C-2 are, naturally, the same,
In Chart C-1 the @ maitrices have been separated into sums and products of submatrices,
where each submatrix is a function of only one type of ISU angle. For example, the first
submatrix is a function of only the angle between ‘the mirrors, the second submatrix 1s a
function of only the angles between the mirrors and mstruments, the third submairix is a
function of only the angles between the accelerometers or gyros, and so forth.

The calibrated QA and QG elements can be equated to the elements foundan Chart C-2,
allowing for the solution of the physical ISU angles. Such solutions could be useful for
the determination of the satisfaction of design requirements,



CHART C-1

Q MATRICES
T T I/ 7 [ia A A (AxA A (A% A |
. ) . ey 0 ay b ag| [BEA) Gy s A (Agrdy (AxAY (AxA)
4, aycag’® (4 ayx Ag)” (& apx ‘5-3)2
al [y My L o {J o e ayay ey (Ag¢ A} (BguAg) (Agx A (Agx Ayl (Agcdg) (A dy)
I pdyh Ia ! “2E T te 2 . AxA o AA N
—t= (&) Agx Ag) (&) A4y {8 4% 45
0 0 1 o 0 0 (Apc ) (AgnAg) (A% Ag) (Agk A (A 4y) (Apndy)
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1
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. . . M, e) 06 MGy g Gg) (Gn Gy (Gpx Gl (Gyx Gy (G GG Gy
SN N S A
ol _ [ My 1 o 0L G0 L Gl O G (Ggr Gy) (Gpe Gg)  (Gye Gy) (GgxGy)  (Gye Gy (63 Gy)
IM_f‘le I—MIXMJ e Hy! Vo Mt WEa g > 5 5
(G Gox Gy (@) Gyx Gy (G Gx &y
1 0 0 0 (Gy= Gp) (Gp* Gg)  (Gyx Gy) (Ggr Gy (G &) (G0 &)
° ° [t o] 2 2 2
4 1\ | (G Gye Gy (G Gp» Gy (G Ge Gy |
— . -\
0 0 0 — 0 0
(G Gyx Gy
+ 0 0 0 3 ! 0
Gy G2 3y
1
(M)% M) (Gpx Gy} (Ms M) (Ggr G {Mx M) (G Gp) 0 0 TR




CHART C-2

F Q MATRICES (OPERATIONAL)

LET
N __N_ N
4 =M = G
N_N N
4 =M -G
L_@lf be perpendicular to I\LII;

where the superscript N denotes
the nominal vector

IGNORING SECOND ORDER TERMS, WE HAVE:

1 (l‘ﬂl'éz' é.l'éz) (M 'ég" é é )
A
Q| = |(Myedy- MM, - A4)) 1 (M- Ag- Ay Ag)
(M y-Ay) -(My4g) !
Or, letting A,-(M, - él) = M,- (M Al)
and A (Mg- Ag) = M, <(My-A,)
1 (5_41'1!12 - I\_”Ig'él) (I‘ill'é3 - é3'é1)
= | M4y 1 (My-Ag - Ay-Ag)
(M Ag) -(My-4q) 1
1 (MG -G *Gy)  (M)Gy - Gy*Gy)
Gl _ .
QU = | Mg Gy - My My - Gy Gy) 1 (My* Gy - Gy Gg)
'(Ml'gg) -(MyG ) 1
Or, lettmng 92-(1\_41- 9.1) = I\_/Iz-(I\_JII- g_l)
and Gy (My- Gp) = My (My- Gy)
1 (M My - M,+G) (M 1"Gg - 93§ )
= | -(M;°Gy) 1 (My- Gy - *Gy)
-(M, gg) (Mg -+ Gy) 1




APPENDIX D
COMPUTER SYSTEM DESCRIPTION

This appendix contains a description of the laboratory computer and its associated equip-
ment. Section 1 describes the laboratory computer. Section 2 describes the Interface
Electronics Unit (IEU), the device that interfaces the computer to the ISU. Section 3
describes briefly the devices used for the computer manual interface.

D-1.0 COMPUTER

The Honeywell DDP-124 computer is a small scale scientific/control digital computer
with a 1.75 microsecond memory access time. The memory is an 8, 192 word, 24-bit/
word core memory. Arithmetic is performed on 24-bit sign-magnitude (not complement)
data with the left-most bit of the data word containing the sign and the other 23 bits con-
taming a binary representation of the magnitude. The basic arithmetic register is a 24-

bit A Register which is extended by a 24-bit B Register for multiplication, division and
shifting.

The instruction repertoire contans 47 instructions allowing fairly flexible fixed point
processmg. Unique instructions include a step multiple precision, store address portion
of A, output and input to A (may be ANDs) as well as mput/ouiput to memory, direct con-
trol pulse outputs and sense line skips. Because of the sign magnitude number representa-
tion, the computer has both arithmetic shifts (sign bit{s) do not shift) and logical shifts.

Indirect addressing may be performed by use of one bit in the instruction Three index
registers are available.

A Fortran IV Compller is available and 1s considered preferable by NASA for calibration
programming, The 124 15 not equipped with floating point hardware so use of the Fortran
Compiler will necessitate use of time consuming floating point software routines DBecause
of real-time considerations, Fortran shall not be used for alignment

The computer interfaces with the Interface Electromes Unit, the displays and magnetic tape
unit via a direct memory access (DMA) subunit, This allows direct transfer of data from
and to memory under buffer control m one of two modes. These modes are the time sharing
mode and the hog mode. In the hog mode, the mput/output will hold the memory until the



entire transfer is completed. In the fime sharing mode the mput/cutput and the processor share
memory with exther locked out for one memory cycle while the other completes one transfer.

Execution times of instructions are as given in the PP-124 Programmers Reference Manual,
and execution times and memory sizing for standard arithmetic sabroutmes are as given in
the DDP-124 Users Guide. One magnetic tape handler 1s available for program storage
and/or other uses.

D-2.0 INTERFACE ELECTRONIC UNIT (IEU)

The IEU provides the computer an interface to the system equipment. A block diagram of
the IEU is shown in Figure D-1.

The IEU counts information in its counters from the gyros, the accelerometer strings and
the timer. FEach counter is compared to 2 manually selected mterrupt condition. This
condition is selected as any number for the time counters or any power of two for gyro
and accelerometer inputs. When an interrupt condition is met, a signal is sent to inter-
rupt logic 3 if time counter 2 has satisfied it condition, interrupt logic 2 if time counter
1 has satisfied its condition or mterrupt logic 1 if a gyro or accelerometer register has
satisfied its condition. The mterrupt logic generates an interrupt fo the computer on its
own mterrupt channel and sends a reset signal to the counters Interrupt logic 1 and 2
send reset signals to all of the counters other than time counter 2 and interrupt logic 3
sends a resel signal only to time counter 2, When a counter receives a reset signal, it
will hold the contents of the main register, clear an auxiliary register and begin to ac-
cumulate data in the auxiliary register.

When the computer has received an interrupt, it will initiate a direct memory access
(DMA) controlled mput from the IEU of the counters and ISU status registers. The main
registers of the counters are read. After the reading process has been completed, a
resume signal will be sent to all the counters from the DMA input control. This signal
will cause any counter that is counting in an auxiliary register to clear the main register,
add the auxiliary register to the main register. and continue accumulating in the main
register

While the IEU has the capability of usmg any of the mputs to determine sampling rate as
described above, 1t 15 not expected that any criterion ofher than time counter : 1s needed
for the mam calibration and alignment routines. The IEU interface program should verify
that the time criterion has been met (Interrupt i},
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Since the IEU sampling determines the time to sample ISU data on the basis of a tume
criterion, use of the IEU resulis 1n the maxunum worst-case quantization error.

The IEU will transfer up to four 24-bit parallel data words from (and to) the ISU to (and
from) the computer, Output from the computer is via DMA transfer.

D-3.0 COMPUTER MANUAL INTERFACE DEVICES

The operator interfaces with the computer via the display panel, a keyboard and typewritevr
and a paper tape reader and punch.

The display panel can display nine numbers. Each number has a signed one decimal digit
mantissa and a signed five decimal digit characteristic., This capability will be used to
display results or intermediate results or request and to display normalized data output
from the ISU durmg realtime data collection by the computer

The display panel hag three rows of eight buttons each to be used to select parameters to
be digplayed and 24 buttons to select program options,

The keyboard and typewriter may be used to enter data info the computer in small amounts
and to furnish the operator with information such as desired settings of test table axes.
Maximum transfer rate is 15, 5 characters per second.

The paper tape reader and punch will be used to enter large amounis of data into the com-
puter and for output of the results of the procedure Maximum transfer rates are 110

8-bit characters per second for the reader and 300 §-bil characters per second for the
punch.

END

NATE FILMED
dec. 3/, 1970



