Long-Life Electromechanical Sine-Cosine Generator

The problem:
To develop a sine-cosine generator capable of withstanding a 20 Hz oscillation for more than 14 hours. A sine-cosine potentiometer was used in a transonic dynamics tunnel to generate the references used during frequency response analysis tests of models flown in an oscillation airstream. At an oscillation of 20 Hz, the potentiometer lasted only about 14 hours, and replacement took six hours.

The solution:
A sine-cosine generator with no sliding components.

How it's done:
Sine-cosine signals with a maximum error of less than one percent are generated by a system employing nonconducting displacement measuring probes to sense distance from an off-center rotating cylinder.

Figure 1 shows the sine-cosine generator; figure 2 shows a cross-sectional view of the generator; and figure 3 is a block diagram of the system.

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.
Figure 3:

Tests have demonstrated that the generator is electrically equal to the potentiometer and that it has excellent dynamic characteristics. Because there are no sliding parts, this new sine-cosine generator shows promise of higher-speed applications than was previously possible.

Note:
Requests for further information may be directed to:

Technology Utilization Officer
Langley Research Center
Hampton, Virginia 23365
Reference: TSP71-10029

Patent status:
Inquiries about obtaining rights for the commercial use of this invention may be made to:

Patent Counsel
Mail Code 173
Langley Research Center
Langley Station
Hampton, Virginia 23365

Source: Bruce Flagge
Langley Research Center (LAR-10503)