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ON THE RELATIONSHIP BETWEEN SMALL-SCALE WIND SHEARS
AND WIND PROFILE POWER SPECTRA

SUMMARY

Statistical wind shear information is used in the construction of
synthetic wind profiles for the design of space vehicles. 1In practice,
design scalar shears for various wind speed categories at various alti-
tudes at which the shears are to be applied are derived from rawinsonde
wind profile data, These data provide wind shear information for
intervals equal to and greater than 1 km. To obtain wind shear infor-
mation for intervals less than 1 km, detailed wind profile information
like that obtained from the FPS-16 radar/Jimsphere wind sensing system
is required., However, there are space vehicle launch sites which do
not have detailed wind profile data in sufficient quantity to calculate
statistical design shears. Accordingly, alternative procedures for
deriving small-scale wind shears are required. The introduction of
suitable hypoiheses about the behavior of wind profile spectra at large
wave numbers and the invariance of the distribution function of wind
shears with regard to varying shear intervals facilitates the deriva-
tion of an extrapolation procedure whereby one can extrapolate the
rawinsonde shear statistics down into the region of shear intervals
which are less than 1 km, To do this, it is assumed that any scalar
wind profile from an ensemble of wind profiles can be represented in
terms of a Fourier integral. The Fourier integrals permit us to
relate the ensemble variance and mean of the wind shears to the power
spectrum of the wind profile ensemble, The Fourier representation is
general and accounts for the vertical nonhomogeneous statisticai
properties of the wind profile ensemble, It is hypothesized that (1)
the power spectrum of the wind profile behaves like k™24 at sufficiently
large values of the vertical wave number K, (2) the vertical variation
of the wind profile power spectrum can be neglected locally in the cal-
culation of the ensemble mean and variance of the shear, and (3) the
probability distribution function of the standardized shear variate is
invariant with shear interval Az. These hypotheses are used to calcu-
late the asymptotic behavior of wind shear statistics for sufficiently
small values of Az. It is shown that the standard deviation and mean
of the shear ensemble, as well as the shear for any percentile level
occurrence, behave like (Az)©*7 for sufficiently small values of Az.
This result is in excellent agreement with shear data obtained from
FPS-16/Jimsphere wind profiles measured at Cape Kennedy, Florida,



I. INTRODUCTION

This report is concerned with establishing the relationship between
small scale wind shears and detailed wind profile spectra in the first
20 km of the atmosphere. Small scale wind shears are defined here to
be vertical differences between the zonal, meridional, or scalar winds
over vertical height intervals Az < 1 km., To this list of shears, one
could add the vector shear, which is the magnitude of the wind shear
vector whose components are the zonal and meridional wind shears. We
will confine our discussion in this report .o scalar wind shears,

Statistical wind shear information is used in the construction of
synthetic wind profiles for the design of space vehicles., A detailed
account of how a synthetic wind profile is constructed can be found in
reference 1, Within NASA the practice has been to specify design wind
shears based on scalar wind shear statistics¥* Moreover, two types of
shears are considered: build-up and back-off shears, defined as

build-up: S1(1z,2) V(z) - V(z - Az) )

back-off: So(fz,z) = V(z + Az) - V(z), (2)

where V(z) is the scalar wind at height z, The 99 percentile build-up
and back-off shears enveloped over all altitudes are used for the design
of space vehicles, To do this, the 99 percentile build-up and back-off
shears are calculated from the annual empirical conditional scalar
build-up and back-off shear distribution functions

build-up: F; = F1(S1(82,2) |V, < V(z) < V) (3)

back-off: F, = F2(82(Az,z)]Vl < V(z) < Vy), 4)

where V, and V, take on assigned values. Usually V, - V; = 10 m sec™?
and 0 < V; <100m sec™!, This corresponds to nine wind speed categories
at the reference level z, The distribution functions F, and F, are cal-
culated from rawinsonde wind profile data and the smallest value of

ANz = 1 km, Thus, for example, the design scalar shears for Az =z 1 km
for the Eastern Test Range (ETR) are based on serially complete rawin-
sonde wind profile data which consist of an eight-year sample of wind
profiles spaced 12 hours apart with wind speed and direction specified
at 1 km intervals in the vertical up to an altitude of 27 km observed
during the period 1956 through 1963, The 99% values of S;(Az,z) and

*These shears approximate the vector wind shears for sufficiently large
wind speed magnitudes at the reference level z due to the relatively small
directional variation in the wind vector with height at relatively high
wind speeds,
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So(Nz,2), St(ﬁz,z) and SZ(ﬁz,z) say, are calculated at 1 km height
intervals between z = Az and z = 20 km for the build-up shears and at

1 km height intervals between z = 0 and z = 20 km - Az for the back-off
shears. The maximum value of Az is usually 10 km. This, for example,
will result in 20 values of st (1 km, z) for Az = 1 km and 16 values of
S+ (5 km, z) for Az = 5 km. %he deslgn scalar shears are then taken to
be the supremum Values of St(ﬁz z) and SZ(Az,z), sup(Sﬁ(Az,z)) and
sup(SZ(Az z)), say. These calculations can be performed for various
intervals (V; < V(z) < V) of the conditionalizing parameter V(z),
resulting in two sets of design shear curves. One set will consist of
the design build-up scalar shears, sup(S+(Az z)), as functions of Az

for various categories of V(z) and the other will consist of the design
back~-off scalar shears, sup(Sg(Az z)) also as functions of Az for various
categories of V(z).

Because of the response properties of the rawinsonde system and the
procedures used to calculate wind speeds from rawinsonde data, the cur-
rently available rawinsonde data are not suitable for calculating design
wind shear statistics for Az < 1 km, To calculate wind shear statistics
for Az < 1 km, one requires detailed wind profile data like that obtained
from the Jimsphere/FPS~16 radar wind sensing system. The number of
detailed wind profiles from a particular launch site may not be large
enough to calculate the required empirical conditional distribution
functions, equations (3) and (4). However, it is possible to determine
an extrapolatlon procedure from a smaller sample of detalled wind pro-
files whereby one can extrapolate the values of sup(S (Az,z)) and
sup(S+(Az z)) calculated with rawinsonde data down 1nto the region
ANz < 1 km, and thus infer values of design scalar wind shear for vertical
scales of distance Az < 1 km,

II. ENSEMBLE STANDARD DEVIATION OF WIND SHEAR

Let us consider an ensemble of scalar wind speed profiles. Each
profile extends over the semi-infinite domain 0 < z < ». We select the
ensemble of scalar wind profiles V(z) such that the scalar wind speed
at zy, V(zr), in each profile lies in the interval V, < V(z,.) < V,,
where V, and V. have assigned values. We assume that we can express any
wind profile from the ensemble with a Fourier integral

[ee}

v(z) =fc<K> "2 g )

- 00



where the Fourier amplitude C(k) at wave number k (rad m~') is given by

[s2]

C(k) = 2%; f V(z) e dz. (6)

-0

The ensemble average of V(z) is

V(z)> = f<c<;<)>e'i'<z dk, (7)

-0

where < > denotes the ensemble average operator. “Upon subtracting (7)
from (5), we obtain the scalar wind fluctuation v(z) at z with respect
to the ensemble mean scalar wind profile; i.e,,

v(z) =f[C(K) - <C(k)>] e K2 gy (8)

-00
Thus, any wind profile realization from the ensemble is given by
V(z) =<V(z)> + v(z). (9

By definition, the build-up and back-off scalar shears associated with
the interval Az are

build-up: S1(z,A2)

<S;(z,Az)>+ s,(z,A2) (10)

back-off: So(z,A2)

<Sz(z,82)> + sx(z,02), (11)

where

<8, (z2,02)> = <V(2)> - <V(z-Az)>

<Sz(z,Az)>= <V(z+Az) - <V(z)>
s1(z,82) = v(z) - v(z - Az)
sa(z,02) = v(z + Az) - v(2)

. (12)




In the mathematical treatment that follows we will only consider the
buildup scalar wind shears since we can formally obtain the back-off
shear from the definition of the buildup shear by replacing z and z - Az
with z + Az and z, respectively., Thus, any result we obtain for the
buildup shear can be transformed into a statement about the back-off
shear,

We now proceed to calculate the variance of s;(zy,Az). We can
express the fluctuation of the scalar wind shear associated with the
reference level z, in terms of the Fourier integral

51(z,,A2) =fB(;<")e'i’<"zr [1 - '8 g, (13)

-00

where

B(k) = C(k) - <C(k)> . (14)

We also can express s; in terms of the complex conjugate of the Fourier
amplitudes C*(K), so that

o]

fB*(K) L B PR TP (15)

=30

s l(zr:’Az)

By definition <s;>= 0, so that the variance of s, can be obtained by
multiplying (13) and (15) and then performing an ensemble average. This
yields

2 (z,,0%) =f f<B*(K)B(K")> LUK zr (o 1Ky g IKEZ gy
o (16)

where it is understood that V; < V(zy) < Vs, We can rewrite equation (16)
by setting

K- K'= k', (17)



so that

o0 [ee]
ik i(k=«' -1
03(2,,02) =Jf JF<B*(K)B(K-K')>>91 7 (12 KDAZy (g THZy g

-0 -0

(18)

Equation (18) gives the ensemble variance oi(zr,ﬁz) of the scalar wind
shears as a function of the Fourier amplitudes of the scalar wind field,
We will use (18) to obtain an approximate expression for g,(z,,Az) which
will enable us to make estimates of the scalar shears for vertical scales
Az <1 km upon specifying the wind shears for Az 2 1 km for any percentile
level of occurrence. This will become clear later,

The power spectrum of v(z) at altitude z is

[oe)

K'z

d(Kk,2z) =/‘<B"°(;<)B(;<—f<"‘)>ei dx', (19)

(o]

Although the quantity @g(x,zy) is complex, the real and imaginary parts of
#(K,zr), @y(K,2y), and @i(k,z,) are odd and even functions of «, respec-
tively (see appendix A). Equation (19) permits us to express (18) in the
form

o5z, 02) =f;z<K,z)<1-e'i"Az> dx +fﬁ(f<,zr-Az><1-eimz> dx, (20)

-0 -0

or in terms of the real and imaginary parts of @(k,zy) and g(x,zy - Az):

05 (2,5 02) =f{[¢r<f<,zr) + 8, (2, = 22)]1[1 = cos (kaz) ]
+ 19, (ko2 = 22) - g (K,2)] sin(mm} dk

) (21)

+ if{[;zi(K,zr) + 0, (zp = 22) 111 = cos (kez) ]

-00

+ [ge(K,2.) - Ze(K,zr -02)] sin(KAz)}-dK.




The imaginary part of this expression vanishes because the integrand of
the imaginary part of (21) is an odd function of « on the interval
-0 < z < e, Thus, the reality of oi(zr,cz) is guaranteed and

o (2,,02) =\/ﬁ-{[¢r(K,zr) + 2. (k2. - £2)][1 - cos(xaz)]

+ [gi(K,zr - Az) - Qi(K,zr)] sin(KAz)j»dK. (22)

If the ensemble of wind profiles has statistically homogeneous properties,
then the spectrum of v(z) is real and independent of position z. This
means that

() = @ (k2 ) = (K2 - ~z)

}', (23)
g,z ) = 2 (Kyz = Az) =0
so that (22) reduces to
o5 (L2) = 4‘]F(1 - cos(kaz)) o(x) dk, (24)
o}

where we have used the even properties of ¢(x) to obtain an integral over
the semi-infinite interval 0 < K < ». The result given by (24) can also
be obtained by noting that @(«x,z) can only be independent of z if

<B¥(K)B(k-k')>= o(k) d('"). (25)

Substitution of (25) into (18) yields the result given by (24).



Equation (22) expresses the general relationship between the ensemble
variance of the wind shear and the spectrum of v(x). Equation (24) is a
special case of (22) for the statistical homogeneous case and relates the
ensemble variance of the wind shears to the homogeneous power spectrum,

We will use these results to infer the dependence of ¢,(zy,,Az) on Az
from the power spectrum of the wind field.

ITI. ENSEMBLE MEAN WIND SHEAR

Let us now consider the ensemble mean shear. By definition, the
ensemble buildup mean shear associated with the reference height z, and
the shear interval Az is

(o]

<8,(z,02) > =f<C(K")> e

-0

Ic2r L QIK2y g (26)

Similarly, the ensemble mean shear can be expressed as

(o]

<Sl(zr,Az)>=f <CT (k) > e T (1 - TPy gy, (27)

=00

Multiplication of (26) and (27) will yield the square of the ensemble mean
shear, namely,

f f<c*(K)><C(K-K')> eik'zr 1 - ei(K'K')Az)

-0 -00

<Sl(zr,Az)>2

-1 - K%y gurak. (28)

Now the power spectrum of <V(z)> at altitude z is

[oe]

(K, z) =f<c*(;<)><c(;<-;<')> 1K'z d«'. (29)

-00




As in the case of the wind shear fluctuations, y(«,z) is complex, and the
real and imaginary parts of this function, y.(k,z) and y;(x,z), are even
and odd functions of «, respectively. The proof of this statement is
similar to the one in appendix A. Accordingly, the equation for
<Sl(zr,Az)>? in terms of the real and imaginary parts of {(x,z) can be
obtained from (22) by replacing g,'s and gi's in (22) with the corre-
sponding V,.'s and y;'s, so that

<si(z_,02)> =f{wro<,zr) Y (6,2 - 22)]I1 - cos (k)]

-00

+ [x;ri(K,zr - Nz) - qri(K,zr)] sin(mz)} dxk. (30)

In the case of statistically homogeneous conditions, the spectrum of
<V(z)> is real and independent of z, Moreover, the spectrum is a delta
function, so that

¥ (6,2,) = Y (K2, - 22) =<V>T5(x) (31)

¥ (2 = v, (K,2) =0, (32)

where <V>® is the square of the ensemble mean wind profile which is
independent of z. Substitution of (31) and (32) into (30) will show
that <§;(z,, Az)>2 vanishes for statistically homogeneous conditions,

Equation (30) is the general relationship between the ensemble mean

buildup scalar wind shear and the spectrum of the ensemble mean scalar
wind profile.

IV, STATISTICALLY HOMOGENEOUS WIND PROFILE ENSEMBLE

We have found that, for an ensemble of statistically homogeneous
wind profiles, the ensemble mean wind shear vanishes and the variance of

the wind shear is given by (24), which we will repeat here for conven-
ience:



Gi(éz) = 4‘/n[1 - cos(kAz)] o(x) dk. (24)
o

It is worthwhile to examine the implication of this formula for spectra
that obey power laws. Power spectral calculations with detailed zonal,
meridional, and scalar wind profiles observed with the FPS-16/Jimsphere
wind-sensing system show that, for sufficiently large wave numbers, the
power spectra of individual profiles behave like x~P, where p is a posi-
tive number with numerical wvalue approximately equal to 2.4 [1,2]. 1In
these calculations the profiles were assumed to be statistically
homogeneous, 1If we invoke the ergodic hypothesis (ensemble averages can
be replaced with space averages), then, for sufficiently large wave
numbers,

o(k) = B P, (33)

where B is a positive quantity that depends on the intensity of the wind
fluctuations about the ensemble mean wind profile, which in this case is
independent of z..

We wish to calculate the ensemble variance of the shears for small
values of Az, Az <1 km, say. Now for sufficiently small values of Az,
the behavior of ¢(k) at small wave numbers is relatively unimportant in
the evaluation of (24) because the factor 1 - cos(kAz) in the integrand
tends to suppress the contributions to o?(ﬁz) from ¢(x). Accordingly,
we will use (33) to evaluate (24) over the complete interval 0 < kK < =,
so that

oi(Az) 2 46\/\K-p[1 - cos(kaz)] dk, (34)
)

or

B 2nt cosec (% n(p-1))
®-1) I(p-1) (e

o2 (22) ~ P, (35)

provided 1 < p < 3, which corresponds to the situation we are dealing with
here, Equation (35) shows that, for statistically homogeneous conditions,
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the ensemble standard deviation of the scalar wind shear depends on Az,
asymptotically, like

p-1
oy = 031 o(A2) 2, (36)
where
1 1/2
T cosec (2 x(p-1))
01,0:(2 (p-1) T'(p-1) > B/2. (37)

V. NONHOMOGENEQUS WIND PROFILE ENSEMBLE

wind profiles are not homogeneous. One example of the
nonhomogeneous behavior of wind profiles is the general increase and
decrease of the scalar wind speed below and above the core of an atmos-
pheric jet stream., A second example is the change.in the eddy structure
as height increases through the tropopause; i.e., the wind fluctuations
about the running mean of a wind profile realization above the tropopause
tend to be larger than the ones below the tropopause, especially when the
troposphere is convectively unstable., Gravity wave theory provides a
third example. According to Hines [3], the Fourier components

FEE 0

of the zonal and meridional wind at position x, and time t in a gravity
wave are given by

2/ _i(K-X-u()t)

G(K,%,t) = UG, w@))e , (38)

where E;ik a wave number vector, H is the atmospheric scale height, and
w(k) is the eigen frequency associated with k. The quantity Ue? 2f1 is

the Fourier amplitude. Hines [3] obtained this solution of the inviscid
hydrodynamic equations by perturbing a quiescent isothermal atmosphere
with infinitesimal perturbations. The important point here is that Hines'
gravity waves constitute one plausible class of motions in the atmosphere
which have Fourier amplitudes that increase with altitude like eZ/ZH, thus
rendering the process nonhomogeneous. There are other types of plausible
atmospheric wave motions that have Fourier components that vary with

11




height in a manner similar to Hines' gravity waves. 1In view of the
obvious nonhomogeneous nature of atmospheric wind profiles, it is reason-
able to inquire about how the variance and mean of the scalar wind shear
depends on Az, Unfortunately, the vertical variation of the power spectra
of wind profiles is not well known. However, by making assumptions about
how @(k,z) and y(k,z) depend on x and z, we can make inferences about how
01(zyr,/2) and <S,(zy,Az)>, which we shall denote with _,,depend on Az.
Furthermore, the introduction of an assumption concerning the behavior of
the probability density function of S,(z,Az) as Az decreases will permit
us to predict how S;(z,Az) for any percentile depends on Az. The result-
ing predictions can be tested with existing experimental data on the dis-
tribution function of wind shears from Cape Kennedy, Florida.

The integrands of (22) and (30) are even functions of «, so that we
can replace the integrals over the interval -« < Kk < «» with integrals
over the interval 0 < K < =} thus,

O‘i(zr,Az) = Zf{lﬁr(K,zr) + @ (2 = A2)][1 - cos(xkaz)]
[o]
+ [, (k2 - 22) - F,(x,2)] sin(KAz)} dk. (39)
ui(zr,Az) = Zf{[wr(K,zr) + (k2 = A2)][1 - cos(kaz)]
3 ,

+ [qfi(K,zr - Az) wi(K,zr)] sin(KAz)}-dK. (40)

As stated previously, we do not know how @(x,z) and vy (k,z) depend on z,
However, we do know that these quantities are functions of altitude, and
this means that there will be different spectra or sorting by wave number
for each value of z, Nevertheless, the process described is a physical
one, and we hope that the variation of the spectra from position to posi-
tion will not be too abrupt, but rather even with smooth variation. With
this philosophy in mind, we expand @p(k,zr - Az), @i(K,zy - OZ),

Yr(K,zy - A2z) and yi(K,zy - Az) in Taylor's series about the point z = z,
for small values of Az so that second- and higher-order terms can be
neglected., This permits us to express (39) and (40) as

12




Gi(zr,Az) = f@ (k,z ) {l:
g (k,z)
C 20, (k,z)

Wiz, ,02) = f ¥, (K, ){[

Vp (K, 2,)
T2y, (K,z))

ﬂ (k,z

-2,®(Kz)

0Dz sin(KAz)} dx,

W (x,2

o2y, (K z )

Nz sin(KAz)} dk,

] [1 - cos(kAz)]

] [1 - cos(kaz)]

where prime denotes differentiation with respect to z,

If we now assume that

ﬁ (x,2)
28 (K, 2z )

25 (K,2.)
STy o2
20_(<,2,)

Yy (K,2)
2y (k.2 )

Vg (K,2,) .
2y, (k,2.)

&l

<< 1

<< 1

<1

(41

(42)

(43)

(44)

(45)

(46)
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We can then approximate (41) and (42) as

il

Fopeto) = 4 [ 000200 - cos () dk, @7
[0}

W3 (z_s02) 4u/‘ ¥ (6,2 ) - cos (kaz)) dk. (48)
(o]

The result given by (47) is similar in form to the one for the statis-
tically homogeneous case; however, (47) permits #r(k,z,.) to vary with z,,
but the variation must be sufficiently slow such that (43) and (44) are
satisfied. Note that, in the nonhomogeneous case, p;(zy,Az) is a func-
tion of zy, and Az, while in the homogeneous case, |, is equal to zero.

We now assume that, for sufficiently large wave numbers, g (k,zy)
and yr(K,zy) depend on «x through power laws of the form

-pr(Z)
Z.(k,z) = B (2)k , (49)

-q_(2)
Ve (K,2) = 7 (2)K , (50)

where By, 7y, Py, and q, are positive definite functions of z. Substitu-
tion of (49) and (50) into (47) and (48) yields

1
B.(z.) 2x cosec (5 =n(p_(z )-1)) Pr(zr)-1
- _rx r°r
1) = TG D e (2 )-D) (&) ’ Gb
1
- ) 7r(zr) 2w cosec (7 n(q_(z_)-1)) q.(z.)-1
L) T TG T T, D ) ' GD

These results show that o, « (Az)(pr-l)/2 and i, « (Az)(qr_l)/2 for suf-
ficiently small values of Az.
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Various investigators have experimentally examined the nature of the
dependencies of |1; and 0, on Az. Adelfang, Ashburn, and Court [4] have
shown that the annual climatological mean and standard deviations of the
vector shear at Cape Kennedy, Florida, depend on the reference level Zy
and Az, In particular, they found that both the mean and standard devia-

. . 2/3 . .
tions are proportional to (Az) /° and the coefficients of proportionality
are functions of height. Their analysis was based on 1194 Cape Kennedy
Jimsphere profiles. The computations were made at zp, =8, 12 and 16 km
for Az = 50 to 5000 m. Other authors have deduced power law relation-
ships between Az and p; and o, (see, for example, references 5 and 6),
In view of the results of Adelfang, Ashburn, and Count, we will set

p.(z) =q . (z) =aqa (53)

where ¢ is a constant, As mentioned previously in Section IV, power
spectra of individual scalar wind profiles behave like k™P at sufficiently
large wave numbers, where p has numerical value approximately equal to 2.4.
TF <340 naairma thaotr +hiag ralito AF n AhFademnd Commen 00 d2..2 3001 mama £33 acv Aan

Lo W aooullc “ila o ilL0 va iLuc Vi Ublua Liuicu L LUl LUl vivuadl PLU.LJ.J.CD il

1.4. Thus, we hypothesize that

be identified with «, thenqa - 1

iz ,02) « (22)°-7
(54)
Ol(z]_)Az) o< (Az)o.7’

where the coefficients of proportionality are functions of Zy.
Let us now assume that the conditional probability density function

of S; can be transformed into the conditional probability density func-
tion:

p=pk|Vy<V(z) <V, (55)
where x is the nondimensional wvariable:

Sl(zr’AZ) - Hl(zr’Az)

X = Ol(Zr,AZ) . (56)
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Integration of (56) over the interval -« < x < x' will yield probability P
that x = xt given that V, < V(zy) = Vo; i.e.,

+

P(x

IIA

X
< | Vi < V(z) < Vz) =\/ p(x] V; < V(z ) s Vo) dx, (57)

-00

Now

P(x

A

+
X l vV < V(zr)

1A

+
Vz) = P(Sy = 81| Vy <V(z) 5 V), (58)

where St is the value of S; associated with xT, so that the value of ST

for an assigned value of P can be obtained by solving (56) for St with
= xt+. 4
X =x7; i.e,,

ST(z,,02) = pa(z_,02) + % 0y(2_,00). (59)

If we now assume that the distribution function of x is invariant with
&z for a fixed value of zp, then it follows that xT is only a function of
P, and we conclude from (54) and (59) that

sT(z_,00) = G(z_,P(x s x7 |V < V(z)) 5 V2))(2)°7, (60)

where G is a function of zy and P. To obtain the design buildup wind
shear, we select the supremum value of St(zr,ﬁz) for P = 0,99 from the

set of 99 percentile buildup shears that is obtained by letting z, take

on all permissible values. In view of the hypothesis that G is independent
of Az, it follows that sup(St(zr,Az)) is proportional to (Az)°*7. The
results given by (51), (52), and (60) also hold for the back-off shears,
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VI. EXPERIMENTAL DATA

To verify the theoretical speculations and hypotheses presented in
the previous sections, Mr, C. Hill of the Aerospace Environment Division
has made available his calculations of the distribution functions of
scalar wind buildup and back-off shears for Cape Kennedy, Florida, Hill
performed his calculations with a sample of approximately 256 FPS-16
radar/Jimsphere profiles observed during the period January 3, 1967 to
June 30, 1967, The reference levels for his calculations were zy = 1,2,

.. 15 km. At each of these reference levels, he stratified the pro-
files into 10 m sec™' wind speed categories such that V, - V; = 10 m sec™?
and Vo, = 10, 20, 30, ... . He then calculated the buildup and back-off
shears for each wind speed category for each value of z, =1, 2, ... 15 km,

Generally, his results show that the buildup and back-off shears for
any particular percentile are functions of altitude, and increase like
(22)°+7 for sufficiently small values of Az; i.e., Az <1 - 2 km. The
results for z, = 10 km for 10 < V(zy) = 20 m sec™! and 30 < V(zy) = 40 m
sec™' were selected for presentation here, and they are typical examples.
Figures 1 and 2 contain the buildup shears, and figures 3 and 4 contain
the corresponding back-off shears. The figures show that the shear for
a given percentile varies like (Az)©*7 for Az = 1 km, These results seem
to verify the speculations and hypotheses presented in the previous sec-
tions: (1) The ensemble fluctuation spectrum and the spectrum of the
ensemble mean wind profile are sufficiently slowly varying functions,
such that & (K,z, - Az) =~ @ (K,2y), etc. for sufficiently small values
of Az, (2) the real parts of the power spectra depend on wave number like
K‘2-4, and (3) the distribution function of the standardized shears
(8; - py)/oy and (S5 - pp)/o, are invariant with Az.

The fact that S+ and S+ behave like (Az)©+7 for sufficiently small
values of Az permits the estimation of small scale wind shear for Az < 1 km
with rawinsonde wind shear data at Az = 1 km, The procedure consists of
specifying Az and calculating the associated shear with the formula

-+

+ -
2(zr,Az) - Sl,z

(2,1 km) (22)%"7, (61)

where Az is in units of kilometers,
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Figure 1, Cape Kennedy, Florida buildup scalar shears St(zr,Az) as func-

tions of Az for z, = 10 km and 10 < V(z,) = 20 m sec~! for
various percentiles,
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Figure 2. Cape Kennedy, Florida buildup scalar shear Si(zr,ﬁz) as func-

tions of Az for z, = 10 km and 30 < V(z,) = 40 m sec™! for

various percentiles,
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Figure 3. Cape Kennedy, Florida back-off scalar shears S;(zr,Az) as func-
tions of Az for z, = 10 km and 10 < V(z,.) = 20 m sec™! for

various percentiles,
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Figure 4. Cape Kennedy, Florida backoff scalar shears SZ(zr,Az) as func-

tions of Az for z, = 10 km and 30 < V(zy) = 40 m sec~! for
various percentiles,
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VII, CONCLUDING COMMENTS

The purpose of this report has been to determine the relationship
between scalar wind shears and power spectra of atmospheric flows. We
have seen that there is an intimate relationship between the ensemble
mean shear and the spectrum of the ensemble mean wind profile and
similarly between the ensemble standard deviation of wind shear and the
spectrum of the wind fluctuations relative to the ensemble mean wind
profile. The analysis accounted for the nonhomogeneous aspects of wind
shear statistics, and in this respect the analysis is general. The
hypotheses listed in Section VI enabled us to make relatively accurate
predictions about how the buildup and back-off shears vary with Az for
a given percentile level of occurrence. In particular, we found that
the scalar wind shears depend on Az like (Az)®+7 for sufficiently small
values of Az, The analysis in this report can be applied to zonal and
meridional wind shears by making slight changes in notation.
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APPENDIX A

Proof that the y.(x,z) and Qi(K,z) are Even and 0dd Functions of «

We assume that v(z) can be expressed as

v(z) =fB(K2)e-lK22 dz, (A-1)
-00
where
B(kz) = 2%[ fv(z) e 2% 4y (A-2)

and Ko is a wave number, The complex conjugate of B(k) evaluated at
wave number «, is

o]

B (k) = 5= fv(g) et g, (A-3)

- 0Q

Multiplication of (A-2) and (A-3) and ensemble averaging the resulting
relationship yields

0

B (<1)B(xz) > = — [f<v(z)v(g)> el (K22=28) g g, (A-4)
(zﬁ)2-m -0

Complex conjugation of (A-4) yields

[oe)

<B* (k1)B(ko) S = lzf < v(z)v(t) > e HKZ K8 (A-5)
@20 4 J

00 =-
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The right side of (A-5) is <B*(-K1)B(-K2)>. Therefore, we have
<B¥(k1)B(K2) > = <B¥(-K1)B(-K2) >. (A-6)

Complex conjugation of (A-6) yields
<B¥ (k1)B(Ks)> = <B¥(-K1)B(xp) ¥, (A-7)

Now the power spectrum of v(z) at wave number « and altitude z is

fos]

F(Kk,z) =f <B*(K)B(K - K')>eiK‘z dk' . (A-8)

- 00

The corresponding spectrum at wave number -« is

[os]

F(-k,2) =f<B*(-K)B(-/< - K')>eiK'z d«'. (A-9)

-0

Complex conjugation of (A-9) and utilization of (A-7) yields

@ (-, z) =f<3*(K)B(K+K')> RELS VS (A-10)

-0

Let

K' = =, (A-11)
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Thus, (A-10) can be written as

co

F*(-k,z) =~/ﬁ<B*(K)B(K-K")>»eiK"z d«', (A-12)

-CO

However, «" is a dummy variable of integration which we can replace with
k' in (A-12), so that

00

7 (-k,2) =f<B*(K)B(K-K')>eiK'Z dx’', (A-13)

-00

The right-hand sides of equations (A-8) and (A-13) are equal. This means
that

g(k,2) = F*(-,2), (A-14)
from which we conclude

g.(k,2) = @ (-«,2) (A-15)

g, (k,2) ==@, (-K,2). (A-16)

Equations (A-15) and (A-16) state that the real and imaginary parts of
@, @y, and @; are even and odd functions of «, respectively.
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