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PREFACE 
The purpose of this book is to review the present knowledge of the 

mixed state of superconductivity. It is the hope of the author that this 
review will be helpful to persons unfamiliar with the subject. The 
fundamentals are discussed in detail to provide sufficient background 
for the understanding of more recent developments. The emphasis i's 
on the experimental and theoretical aspects of flux creep and flux 
flow. The thermal properties of the mixed state have not been discussed. 

This publication was originally prepared in partial fulfillment of the 
requirements for a Master of Science degree at John Carroll University, 
Cleveland, Ohio. 
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The discussion begins with a review of the fundamental properties of 
superconductivity. Then the Ginzburg-Landau equations are described 
and Abrikosov’s solution is discussed. The vortex state is compared to a 
laminar state to determine which state is energetically more favorable. 
The experimental evidence that substantiates the vortex state is given. 
The results of tube magnetization experiments are presented, and the 
flux creep theory is derived. The flux flow models of Bardeen-Stephen 
and Nozieres-Vinen are compared with each other and with the experi- 
mental evidence. Three models for the viscosity coefficients are pre- 
sented. Finally, the rigidity of the Abrikosov structure and the possible 
flux line pinning mechanisms are mentioned. 

Zero Resistance Effect 

In 1908 Kamerlingh Onnes liquefied helium for the first time. Elec- 
trical resistivity was not very well understood and Qnnes decided 
to make use of his liquid helium capability to study the dependence.of 
resistivity on temperature. He believed that if he could obtain a metal 
in a pure enough condition its resistivity would approach zero at absolute 
zero. For this reason he chose mercury. Figure 1 shows the results 
obtained by Onnes. 

Qnnes found that the resistivity dropped very abruptly to an un- 
measurably small value at a temperature just slightly above the normal 
boiling point of helium (ref. 1). This transition temperature is now 
called the critical temperature Tc. Initially Onnes explained that this 
result occurred because of the purity of the mercury. He discarded 
this conclusion when he found that the resistivity of mercury disappeared 
even when impurities were added. The addition of impurities did, how- 
ever, increase the temperature span over which the resistivity dropped 
to zero. The sharpness of the transition and its relative insensitivity 
to alloying forced Qnnes to conclude that mercury had undergone a very 
fundamental change to a new electronic state. He named the new state 
the superconducting state. 

The discovery of the superconducting state opened a whole new area 
of research. One obvious question was how many other substances 
exhibit the zero resistance effect. As of 1963, more than 900 super- 
conducting materials have been found (ref. 2). Among the known super- 
conducting materials are metals, semiconductors, alloys, and compounds. 
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FIGURE 1. -Resistance of mercury plotted against absolute temperature (ref. 105). 

The new electronic state was also probed experimentally in many 
ways. Onnes (refs. 3 and 4) discovered that if an electric current through 
a superconductor exceeds a critical value the material becomes resistive. 
He also discovered (ref. 5) that if a magnetic field is applied to a super- 
conductor the resistance returns when the field exceeds a particular 
critical value H,. The detailed nature of the magnetic transition became 
known somewhat later (refs. 6 and 7). The critical magnetic field was 
found to be temperature dependent. In many materials the temperature 
dependence is described fairly well by 

where H, is the critical field at absolute zero. Some experimentally de- 
termined critical field against temperature curves may be found in ap- 
pendix A. In the region above the critical curve the material is in the 
normal state, and in the region below the curve it is in the supercon- 
ducting state. It was suggested by Silsbee (ref. 8) that the critical current 
and the critical magnetic field are related. Silsbee’s hypothesis is that 
the critical current is the current which generates a self field equal to 
the critical magnetic field. 

The superconducting state is very sensitive to impurities and de- 
formations. Figure 2 shows the changes that occur in the resistive 
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- Pure single crystal tin 
-- Pure polycrystal tin --- Less pure polycrystal tin Current, 

I I i  / I 40-? 

5.11 3.13 3.15 3.11 3.79 3.71 3.12 3.13 3.14 
Temperature, K 

(a) Influence of physical properties of (b) Influence of measuring 
the samples. current. 

FIGURE 2. -Reduced resistance against absolute temperature (ref. 102). 

transition which depend on the sample condition and the measuring 
current. These measurements, which were made by deHaas and Voogd 
(ref. 9), showed that the transition could take place in a temperature 
span as small as 0.001 K. The specific heat of a superconductor changes 
discontinuously at the critical temperature, and the thermoelectric 
power of superconductors is equal to zero. 

Since superconductivity was discovered, various researchers have 
attempted to measure a resistance in the superconducting state. The 
early potentiometric measurements of Onnes were accurate enough to 
show that resistivity in the superconducting state was lov6 less than 
the normal state resistivity. Since then various investigators have been 
able to put an upper bound on the resistivity by inducing a current in 
a ring of superconducting material and measuring its decay. Onnes was 
the first to use the method. Grassman (ref. 10) reported a resistivity of 
less than of the normal state value. Recently File and Mills (ref. 11) 
have performed experiments where the decay time of a niobium zir- 
conium (NbZr) solenoid was measured. They found that the decay time 
of the persistent currents must be greater than 100 000 years. 

Meissner Effect 

In 1933, Meissner and Ochsenfeld (ref. 12) discovered an abrupt 
change in the apparent magnetization of tin as it was cooled below th; 
transition temperature. The original purpose of their experiment was 
to determine if the current in a superconductor flowed on the surface 
or in the bulk. The experimental scheme was to measure the magnetic 

388-980 0 - IO - 2 



4 MIXED STATE OF SUPERCONDUCTORS 

field in the vicinity of a U-shaped current-carrying wire. They hoped 
to be able to distinguish between the two modes of current flow by meas- 
uring small differences in the magnetic field. What they found instead 
was that the magnetic field surrounding the wire increased sharply 
when their sample became superconducting. 

Later experiments showed that the magnetic field is totally expelled 
from the bulk of a superconductor when the magnetic field is less than 
the critical field. The applied magnetic field Ha is excluded by super- 
conducting surface currents. If these currents are represented by an 
equivalent magnetization, the Meissner effect can be shown graphically 
by plotting magnetization as a function of applied magnetic field (fig. 3). 
Below H ,  there is no magnetic field inside the superconductor and the 
,magnetic flux density B equals zero. Therefore B = Ha + 43rM becomes 
H a = - 4 r M .  Above H ,  the superconductor can no longer expel the 
magnetic field and the sample undergoes a transition to the normal 
state. 

Hc 
Applied magnetic field, Ha 

FIGURE 3. -Ideal magnetization against applied magnetic field for superconductor. Below 
H ,  superconductor is perfectly diamagnetic, H ,  =-&M. 

The Meissner effect may be complicated by the sample geometry 
and the orientation of the magnetic field with respect to the sample. 
These effects, called demagnetization effects, are discussed in detail 
in references 13 and 14. Basically, figure 3 would be obtained only for an 
'infinitely long cylindrical sample with the magnetic field paralled to its 
axis. In this geometry the magnetic field is paralled to the internal mag- 
netization. The critical field H ,  is defined for this geometry. Any other 
geometry exhibits a lower value of critical field. When the sample 
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geometry or the sample orientation with respect to the magnetic field 
is such that magnetic field penetrates the sample below H,, the sample 
is said to be in the intermediate state. The intermediate state has been 
optically observed using an experimental technique that takes advantage 
of the Faraday rotation effect (ref. 15). Some pictures taken by Faber 
(ref. 16) are shown in appendix B. These particular pictures are of an 
aluminium plate. The dark areas are superconducting regions. The 
pictures show that the intermediate state is composed of alternating 
normal and superconducting regions which are laminar-like in appear- 
ance. The width of the superconducting laminae are seen to decrease 
with magnetic field. The size of the normal and superconducting laminae 
varies because the total magnetic flux through the sample must be 
equal to the applied flux, and the magnetic field in the normal regions is 
HC. 

London Equation and Penetration Depth 

Prior to the discovery of the Meissner effect, Becker, Heller, and Sauter 
(ref. 17) had analyzed the electric and magnetic properties of a “perfect 
conductor” (zero resistance, but no Meissner effect). Their analysis 
predicts that any magnetic field in a material when it becomes super- 
conducting will be trapped inside the sample. This prediction was 
contradicted by the Meissner effect. 

F. London and H. London (ref. 18) postulated a fundamental con- 
tradiction between the Becker-Heller-Sauter prediction and the Meissner 
effect. They proposed that in superconductors 

n,e2 
mc J ( r )  = - - A  

where J is the current density, ns the number of superconducting 
electrons, e the charge of an electron, m the mass of an electron, c the 
speed of light, and A the magnetic vector potential. Then, starting with 
the Maxwell equation 

V X H ’ T J  4%- 
(3) 

B 

and taking the curl of both sides of both the London and the Maxwell 
equations yields 
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and 

C 

Substituting equation (4) into equation (5) results in 

n,e2 
mc2 

v x v x If=- 47T- H 

(5) 

For a magnetic field parallel to the surface of a superconducting half 
space, equation (6) is reduced to one dimension and has solutions of the 
€orm 

(7) H=H,e-X/AL 

where A L =  (mc2/4~nse2)'I2 and H ,  is the applied magnetic field. The 
x coordinate is perpendicular to the surface of the superconducting 
region. This result agrees with the Meissner effect because it predicts 
that in the bulk the magnetic field is essentially zero. The parameter 
A,,, which is called the London penetration depth, is the distance from 
the surface of a semi-infinite slab to the point where H = H , / e .  The 
shielding currents mentioned earlier reside primarily within a few 
penetration depths of a sample's surface. A typical value for AL is 
about 500 A at 0 K. The penetration depth is relatively constant except 
near the critical temperature where n, goes to zero. Table I (p. 65) con- 
tains measurements of the penetration depth for several materials. 

Mixed State 

In 1934 and 1935 Mendelssohn and his coworkers at Oxford observed 
some rather disconcerting experimental results on superconducting 
alloys. They were investigating the Meissner effect in various materials: 
mercury (Hg), lead (Pb), tin (Sn), tantalum (Ta), tin bismuth (SnBi), lead 
bismuth (PbBi), and lead telluride (PbT12). They sought to observe the 
sharp and reversible changes in the specific heat of superconductors, 
which were predicted by the thermodynamic treatments of Gorter and 
Casmir (refs. 19 and 20). Gorter and Casmir assumed that the Gibbs 
free energy of a superconductor G, was related to the free energy of a 
normal conductor G, by 

and had a magnetic field dependence of 
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From these assumptions they derived a discontinuity in the specific 
heat. Keeley and Mendelssohn (ref. 21) found that only mercury had a 
reversible magnetization. Tin and lead exhibited some hysteresis; 
tantalum was found to have even more. In addition, the alloys were de- 
scribed by Mendelssohn as being completely irreversible. There were 
other differences between the experimental results for alloys and the 
same results on elements. The empirical fact observed for elements, tha; 
the resistance and magnetic induction go to zero at the same magnetic 
field value, was not found to be true for alloys. Gorter's prediction of a 
specific heat discontinuity had been observed by Mendelssohn and Moore 
in tin (ref. 22) and by Keesom and Kok (ref. 23) in thallium. Their specific 
heat measurements were consistent with each other and with Gorter's 
prediction. But when Mendelssohn and Moore (ref. 24) investigated the 
specific heat of PbT12, which they estimated should have a large specific 
heat discontinuity, they found the result shown in figure 4. No indication 
of a discontinuity was observed. These results strongly suggested that 

I 
I 
I ,,-Predicted discontinuity 
Y 
I 

d 

.05 r 
O3 I 4 5 6 

Temperature, T, K 

FIGURE 4.-Specific heat C, of PbTI, against absolute temperature (ref. 24). 
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a fundamental difference exists between the superconducting properties 
of pure metals and alloys. 

It has since been shown (ref. 25) that even if the magnetization as a 
function of applied magnetic field curves of alloys are completely re- 
versible they are fundamentally different from figure 3. Figure 5 shows 
the magnetization that characterizes most alloys. Up to Hcl the magnetic 
field is completely excluded, but between Hcl and Hc2 the magnetic 
field inside the material increases until the material becomes completely 
normal at Hc2. Materials which exhibit this type of magnetization curve 
are called type I1 superconductors. Superconductors that have a mag- 
netization curve as shown in figure 3 are called type I. When the mag- 
netic field of a type I1 superconductor is between Hcl and HC2 the super- 
conductor is said to be in the mixed state. The mixed state is distin- 
guished from the intermediate state in that it is not a geometry effect, 
the mixed state is rather an independent equilibrium state of the 
system. 

"c1 Hc2 
Applied magnetic field, Ha 

FIGURE 5. -Magnetization against applied magnetic field for type I1 superconductor. 

-Figure 6 shows how the magnetization is affected by alloying. Starting 
with pure lead, which is a type I superconductor, increasing amounts 
of indium are added. The resulting alloy is a type I1 superconductor. 
As the percent of indium in the alloy is increased, Hcl decreases and HC2 

increases. The table accompanying the figure shows how the ratio of 
Hc2 to Hcl varies. 
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o 600 

e- A Pure lead 0.0550 ------ 
u 0 B Lead - 2.08 indium .MOO 0.1oOO 

Lead - 8.23 indium .0200 .2450 3.16 12.3 m N 

a, 

0 .04 .08 .12 .16 .20 .24 .28 .32 .36 .40 
Applied magnetic field, Ha, tesla 

FIGURE 6.-Effect of alloying on magnetization curve of lead (ref. 105). Key shows variation 
of H,,, HCz,  K ,  and Hc2/Hc1 with alloying; thermodynamic critical field, Hc=0.0550 
tesla. 

Bardeen-Cooper-Schrieffer Theory and Coherence length 

The modern era of superconductivity began in 1950 when Frohlich 
(ref. 26) suggested that superconductivity might be explained by phonon 
coupling between electrons. Frohlich was able to predict that the de- 
pendence of the critical temperature on the isotropic mass was Tc &¶-'I2. 

About the same time, this relation was discovered experimentally in 
mercury (refs. 27 and 28). These results strongly suggested that super- 
conductivity results from an electron-lattice interaction. In 1957, Bardeen, 
Cooper, and Schrieffer (B.C.S.) put forth a theory based on the electron- 
phonon interaction suggested by Frohlich (refs. 29 and 30). The B.C.S. 
theory proposes that the interaction occurs between electrons with oppo- 
site momenta and spin. 

The interaction may be visualized as follows. An electron moves 
through the lattice attracting the positive lattice toward it. A second 
electron can be attracted to the deformed region by the excess of posi- 
tive charge there. This effectively attractive interaction between the 
two electrons results in an energy gap between an electron in the B.C.S. 
ground state and the Fermi level. The energy gap A, which is related to 
the critical temperature by A kBT,, leads to the critical fields and the 
thermal properties mentioned earlier. The attractive force between 
the electrons extends over a distance which is called the coherence 
length 6.  The coherence length can also be interpreted as the distance 
over which the energy gap A cannot change drastically. The B.C.S. 
theory results in the following fundamental relation at T=O K between 
the energy gap and the coherence length to: 
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where vf is the Fermi velocity and h is Planck‘s constant divided by 
27r. Some typical values of the coherence length are exhibited in ap- 
pendix C. Prior to the formulation of the B.C.S. theory, Pippard (ref. 31) 
had predicted that a characteristic length like the coherence length 
must exist. He further proposed that the coherence length is related to 
the mean free path A by the equation 

Two limitations of the B.C.S. theory are first that it does not predict 
the mixed state of type I1 superconductors and second that it does not 
apply to current carrying superconductors. 

Abrikosov‘s Analysis of the Mixed State 

Abrikosov (ref. 32) showed that in the mixed state the magnetic field 
penetrates the superconductor in discrete flux tubes which are enclosed 
in vortices of superconducting electrons. Each tube of flux contains 
a flux quantum cpo equal to 2.07 x meter squared tesla. The exist- 
ance of the flux quantum was originally predicted by London (ref. 33, 
p. 151; see also ref. 13, p. 32). Figure 7 shows the spacial variations 
of the current density of the vortex 111, the magnetic field H ,  and the 
energy gap A in the region near a tube. Abrikosov’s analysis gives the 
following relations between Hcl ,  Hcz, and H,: 

H,, = H@)[  In (4”) - 0.271 

and 

These results suggest that the relationship between the penetration 
depth A and the coherence length ( determines whether a superconduc- 
tor is type I or 11. If A/( > 1/v‘2 then equation (13) implies that H c z  > Hc 
and the superconductor must be type 11. Equation (12) predicts that for 
a type I1 superconductor, H,, < H,. In figure 6, H,, decreased with 
alloying and H,, increased. This figure can now be understood in terms 
of equations (11) to (13). Alloying lead with indium reduces the mean 
free path and equation (11) predicts that ( will also be reduced. If ( is 
reduced while A remains constant, then equations (12) and (13) predict 
the experimental observation in figure 6. The ratio of A to ( is called the 
Ginzburg-Landau kappa K. 
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r r r 

FIGURE 7.-Spatial variations of 111, H ,  and A that make up an Abrikosov vortex. Energy 
gap A is proportional to ns. 

GINZBURG-LANDAU THEORY 
The Ginzburg-Landau (G.L.) theory (ref. 34) is a thermodynamic 

approach to superconductivity. Ginzburg and Landau postulated that an 
additional term needed to be added to the Gibbs free energy G , ( H )  
(given by eq. (9)). The new term is needed to incorporate the kinetic 
energy (V$)2 that results when n, vary spatially. In the Ginzburg- 
Landau formulation, + is called the order parameter, but it is now 
known to correspond to the wave function of a pair of superconducting 
electrons. The number density of superconducting electrons n, is pro- 
portional to 1$12. To keep their theory gage-invariant, Ginzburg and 
Landau included a gradient term and a constant term. The total Gibbs 
free energy is 

The G,(O) term can be written as a function of + utilizing the Landau- 
Lifshitz general theory of second-order phase transitions (ref. 35). 
The Landau-Lifshitz theory states that near the transition temperature 
the Gibbs free energy can be expressed as a series expansion in 
Therefore, 

G,(O) = G, (0) + a( T )  /$I’ +5)1+14 + . 

The minimum value of G,(O) corresponds to the equilibrium value of 
($I2. Both a ( T )  and P ( T )  are temperature-dependent coefficients. 
The minimum of Gs(0) is obtained by taking the partial derivative of 
Gs(0) with respect to 1$12 and setting it equal to zero: 

388-980 0 - IO - 3 
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Equation (18) is obtained by substituting I+(' into equation (15) and 
comparing the result with equation (8): 

Near T,, if it is assumed that 

and 

then substituting for a ( T )  and P ( T )  in equation (18) results in 

This is consistent with experimental results. Near Tc, He is usually found 
to be proportional to Te - T. This agreement tends to validate the as- 
sumptions in equation (19). 

The Ginzburg-Landau equations can be derived by integrating equation 
(14) over the volume of the superconductor and then minimizing the 
result with respect to both + and A .  This can be done using the Euler 
method (ref. 36). The general results (ref. 34) are 

and 

Both equations (21) and (22) have been reduced to a standard dimension- 
less form where lengths are normalized to A, magnetic field is normalized 
to f i H , ,  and + is normalized to +H=O. The Ginzburg-Landau parameter 
K equals fi(e/fLc)H,h'. London's equation (eq. (2)) is obtained from 
equation (22) in the limit of low magnetic field, as H +  0, because 
JI= +,, and V $ =  0. 

The Ginzburg-Landau equations have been derived from the micro- 
scopic theory of Bardeen, Cooper, and Schrieffer by Gorkov (ref. 37). 
These equations can be classified as coupled nonlinear equations in + 
and A. Because of their inherent complexity they have been solved 
primarily for one-dimensional problems. A partial listing of the problems 
to which they have been applied includes the properties of super- 
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FIGURE 8. -Infinite superconducting half space. 

conductors at high fields, the critical fields of thin films, supercooling 
in type I superconductors, the dependence of penetration depth on field, 
and the calculation of the interphase boundary energy. 

It is informative at this point to derive the Ginzburg-Landau equations 
for a simple one-dimensional model. First, insight is gained into the 
Ginzburg-Landau equations. Second, the very important prediction 
that there are two distinct kinds of superconductors can be readily 
derived from the solutions. The pedagogical development which follows 
is in large part due to Newhouse (ref. 14). Consider an infinite super- 
conducting half space x < 0 (fig. 8). If H is in thez-direction and A is in the 
y-direction, then A = A ( x )  and $ = $(x). Therefore, H=dA/dx. 
Because V$ is in the x-direction, A.V$ = 0. Incorporating these facts 
into the total Gibbs free energy equation (eq. (14)) yields 

The corresponding Euler equations (ref. 36) are 

and 

where $,= a$/ax and A,= aA/ax. When $, qX, A ,  and A, are regarded 
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as independent variables, equations (24) and (25) can be evaluated 
by taking the appropriate derivatives of equation (23). The result is the 
Ginzburg-Landau equations for this geometry: 

and 

To completely determine equation (26), aG,(O)/d+ must be evalu- 
ated exactly. The a ( T )  and P ( T )  in equation (15) can be expressed in 
terms of experimentally observable parameters. Starting with the 
Maxwell equation, 

4rr VXH= - J 
C 

If V - A = 0 then V X V X A = - W A  = - dLAA/dx2 in one dimension, and 

Substituting the result into equation (27) yields 

J = - -  4e2 + 2A 

mc 

Equation (31) is obtained by substituting equation (17) into equation (30) 
and comparing with the London equation (eq. (2)): 

The penetration depth AL= (mc2/4rrn,e2) was defined by equation (7). 
For convenience in writing and reading the equations that follow, 
r = (2eX~lc) z. Expressions for a( T )  and P ( T )  are obtained by combining 
equation (31) with equation (18) and solving for a ( T )  and P ( T ) :  
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and 

Substituting into the Gibbs free energy equation (eq. (15)) yields 

Taking the derivative gives 

If dG,(O)/ax=O is substituted into equation (34) and the result is sub- 
stituted into equation (26), 

where 

and 

Equation (35) can be put in the same form as the Schroedinger equation 
for a simple harmonic oscillator with real periodic solutions if H 2 H ,  
and +* %- +: 

The solutions are real and periodic only if 

n=o, 1, 2, . . -=- H u f i  
H ,  2n+I  

The maximum value of HIH, occurs when n= 0. Therefore, the lowest 
magnetic field a superconducting material can be in without the nuclea- 
tion of superconductivity is 
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H , ~  = K V ~ H ,  (39) 

From this equation it can be seen that at K > l/* the upper critical 
field Hr2 becomes greater than H , .  This range of K corresponds to type 
I1 superconductivity. The value K =  l / f i  is then the dividing point be- 
tween types I and I1 superconductors. 

MIXED STATE, VORTEX OR LAMINAR? 

The theoretical confirmation of type I1 superconductors from the 
Ginzburg-Landau theory raises the question of the nature of the mixed 
state. What form does the flux inside the superconductor take? Histori- 
cally two models were proposed, the laminar model (ref. 25) and the 
vortex model (ref. 32). In both models the mixed state is thought of as 
consisting of normal regions, where most of the flux resides, and super- 
conducting regions, where London’s equation is obeyed. In the laminar 
model the normal regions are plane laminae of thickness 25. The vortex 
model proposes that the normal regions, often called normal cores, are 
cylinders of radius 8. The laminar model was proposed because laminae 
have been observed experimentally (appendix B) in the intermediate 
state of type I superconductors. The vortex model resulted from 
Abrikosov’s solution of the Ginzburg-Landau equations. 

Abrikosov Solution of Ginzburg-Landau Equations 

The most important solution of the Ginzburg-Landau equations from 
the standpoint of providing insight into the mixed state was found by 
Abrikosov (ref. 32). Onsager (ref. 38) and Feynman (ref. 39) predicted 
that vortices should exist in superfluid helium. Abrikosov became con- 
vinced that vortices of current must exist in a superconductor. He 
therefore set out to find a doubly periodic solution to the Ginzburg-Landau 
equations. He started out with very restrictive assumptions. He assumed 
that the superconductor extends throughout all space. The supercon- 
ductor is assumed to be near T,, which implies that l $ l 2  4 1. The mag- 
netic field inside the superconductor H is set equal to the applied field 
H,{ .  It is assumed that H ,  is just slightly less than H , z .  It is further 
assumed that K > l / f i .  

is in the z-direction 
and A is directed along the y-axis, then 

Abrikosov first sought to solve equation (21). If 
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Substituting this result for A into equation (21), ignoring the 
and taking + = $(x) give 

term, 

This equation has solutions of the form 

.2,2 -- 
+=e 

This simple analysis lead Abrikosov to a less restrictive solution of 
equation (21): 

where k and C,, are arbitrary constants. Substituting this solution into 
equation (22) and solving for A yield 

-Line of 
constant 1912 

0 1 2 

FIGURE 9.-Plot shows that for Abrikosov’s solution IJ112 has the symmetry of a square 
lattice. Spatial dimension is normalized to lattice constant, distance between adjacent 
vortex centers (ref. 32). 
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Then equation (44) is substituted into equation (21) and the 9191' term 
is included. If the resulting solutions are forced to be periodic and the 
Gibbs free energy is minimized, the spatial variation of I + l '  can be 
calculated. The solution / + I2  is found to have the symmetry of a square 
lattice in a plane perpendicular to the field direction (fig. 9). At the 
center of each vortex + vanishes and H= H, at these points. The lines 
correspond to constant and constant H .  Subsequently, Kleiner, 
Roth, and Autler (ref. 40) and Matricon (ref. 41) showed that a triangular 
lattice has a slightly lower energy (fig. 10). 

-Lines of 
constant 1#12 

FIGURE 10.-Spatial variation of [$I2 for triangular vortex lattice (ref. 40). 

Gibbs Free Energy of Laminar Model and Vortex Model 

The ultimate theoretical test is to compare the Gibbs free energy for 
both models and determine which state is energetically more favorable. 
In each case an expression for the Gibbs free energy is calculated and 
then minimized. The H,, can be determined by analyzing the dependence 
of Gfnin on H. The minimum Gibbs free energy for the two models can 
then be compared using the H , ,  values. The pedagogical development 
that follows is largely due to DeGennes (ref. 38). 
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The analysis is begun by calculating a general expression for the total 
free energy of a superconductor. The Helmholtz free energy is the sum 
of the kinetic energy and the magnetic energy: 

F s = E k i n e t i c  + E m a p e t i c  +Eo (45) 

The magnetic energy is 

The kinetic energy is 

The drift velocity v ( r )  is related to the current density by 

nsev ( r )  = j  ( r )  

The localized Maxwell equation is 

477 V X h = - j ( r )  
C 

(49) 

where h is the local value of the magnetic field intensity. Then solving 
equation (49) for j ( r ) ,  substituting into equation (48), solving for w ( r ) ,  
and substituting into equation (47) yield 

Finally, substituting equations (46) and (50) into equation (45) results in 

In the following applications of equation (51), E,=O; that is, the normal 
state energy is taken as the zero of energy. 

Free energy of laminar model. - As illustrated by the laminar structure 
shown in figure 11, the local field h is determined by the London equation 
(eq. (6)). In one dimension with the assumed model, the London equation 
is 

388-980 0 - TO - 4 
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The solution in the superconducting region is 

cosh (f  ) 
cosh P h = H ,  (53) 

where P = d / 2 A  and H ,  is the field in the normal region. Then when 
equation (51) is modified for the laminar geometry, the Helmholtz free 

Differentiating equation (53) with respect to x, squaring, and substituting 
the result and equation (53) into equation (54) yield 

H g  H g  
F - 8 r d  - " L " " d ( f ) [ -  cosh2 P cosh2 ( r> + sinh' 

When equation (55) is integrated, 

/ conductor 

X 1 
FIGI JRE 11. -Laminar model for mixed state. 
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1 H $  sinh2P Fs=- - -  
87rPcoshZ P 2 

Using the multiple angle formula (sinh 2z=2 sinh z cosh z) gives 

H $  tanh P 
81r P 

F +--- 

The free energy of the normal region is 

21 

(56) 

(57) 

where ~ = h l S .  
To convert the Helmholtz free energy to a Gibbs free energy, - B H / 4 v  

must be added. Therefore, using the fact that B is the average of equation 
(53) in the superconducting region leads to 

d l Z  

(59) 
‘Osh :) HH,, ,  tanh P dxH,,, - =-- - --E--- B H  Hhtlve H (?I 

7r 4Tr 41r d o cosh P 4Tr P 

Adding the three contributions to the Gibbs free energy of the lamina 
(eqs. (59), ( 5 8 ) ,  and (57)) gives 

Minimizing G i r c m i n n r  with respect to H,,< yields H = H,,,. Then if d is 4x1, 
or greater, tanh P 1 and 

Now keeping in mind that the equilibrium state of a system corresponds 
to a minimum in the Gibbs free energy, Glaminar may be studied with 
respect to H .  If H ,  < vi, then G is a minimum when P is infinite. Infinite 
P implies infinite d or a complete Meissner effect. If H > H c / G  mini- 
mum G occurs for some finite P ,  which implies that it becomes energeti- 
cally favorable for magnetic field to be inside the superconductor. The 
laminar state becomes favorable when 
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Free energy of vortex model.-The next step is to calculate H , ,  for 
the vortex model. Once again, the Gibbs free energy is calculated and 
minimized to determine where the Meissner state breaks down. Near 
H,., the interaction energy between flux lines can be ignored. The Gibbs 
free energy of a material is equal to the number of vortices per square 
meter (B/cpo) multiplied by the Gibbs free energy per meter of a single 
vortex minus the magnetic field energy density: 

where Z is the energy'per unit length of a vortex. The energy Z can be 
calculated using equation (51): 

where l f  is the length of the flux line. This integration can be performed 
if the integral is first transformed to a surface integral (appendix C): 

l f Z = G  due [hx  ( V X  h ) ]  
x2 I 

When integration is performed on equation (65) for the surface of a 
cylinder of radius 5, the integrand is constant by symmetry and I f  cancels 
out: 

The h ( f )  and IV x h(5) I can be evaluated starting from the London 
equation 

where 
h+hL(V x V X h) = po6(r) (67) 

0 r > 5  
1 r < (  

S(r) = 

If equation (67) is integrated over the area bounded by a circle C of radius 
r, which encloses the normal core, then 

By Stokes' rule, 



23 MIXED STATE OF SUPERCONDUCTORS 

1 
If A B r 9 4, then J h  - do-= 0 because a negligible fraction r2/h2 of the 
total flux is inside C. Then V X h may be assumed constant on C because 
of the cylindrical symmetry. Therefore, 

The general solution of this equation is KO,  the modified Bessel function. 
If V X h=- dhldr,  integrating by separation of variables yields 

Now equation (66) can be evaluated at r = t  by substituting for h from 
equation (71) and for IV X hl from equation (70): 

And now, finally, the Gibbs free energy of the vortex Grortex (eq. (63)) 
can be calculated. If H < 4n-Z/cp0, the minimum in Gcortex occurs at B=O 
(type I superconductor). If H > 4rZ/cp0, then the minimum occurs when 

and magnetic field penetration occurs when 

Substituting equation (71) into equation (74) yields 

Because the original goal of this section is to compare the free energies 
of the laminar model and the vortex model, equation (75) must be alge- 
braically manipulated into a ratio of H c I / H c  so that it can be compared 
with equation (62). This is done in appendix D and the result is 
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H,, ‘TT In K 

H ,  .\/z;i; K 

-- 

Comparison of Gibbs free energy of the two models. -Now the Gibbs 
free energy of the two models can be compared. In figure 12, H,./Hc is 
plotted as a function of K for the functions derived in equations (62) 
and (76). The lower critical field H,, is smaller for the vortex model than 

r 

0 1 2 3 4 
Ginzburg-Landau kappa, K 

-2 

FIGURE 12. -Curves H,, /H,  against K fm laminar model and vortex models are compared. 

for the laminar model. When H is greater than HC1 (vortex) but less than 
H,, (laminar), the Gibbs free energy of the vortex state is less than the 
free energy of the Meissner state. And the Gibbs free energy of the 
laminar state is equal to the free energy of the Meissner state. Therefore, 
when H is between H,1 (vortex) and H,,  (laminar), the Gibbs free energy 
of the vortex model is less than the free energy of the laminar model, 
and the vortex state is more favorable than the laminar state. DeGennes 
(ref. 42) has compared the states at higher magnetic fields and found 
that the vortex state is again more favorable. Goodman (ref. 43) has 
calculated the magnetization for both the vortex model and the laminar 
model. Figure 13 shows the comparison between these calculations and 
the magnetization measurements of Joiner and Blaugher (ref. 44) on 
Moo.ssReo.15. Clearly, this result favors the vortex state. Subsequently, 
the vortex state has been substantiated by the NMR measurements of 
Pincus (ref. 45) and by the neutron diffraction experiments of Cribier 
(refs. 46 and 47). 
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m 2 .02 
c m 

0 .02 .04 .06 .08 .10 
Applied magnetic field, Ha, tesla 

FIGURE 13. -Goodman’s calculated magnetization curves for vortex and laminar states are 
compared with experimental data of Joiner and Blaugher (ref. 43.). Material, Moo.ssReo.ls; 
reduced temperature, t = T/T, =0.522. 

The most convincing proof of the vortex state is the electron micro- 
scope pictures of U. Essmann and H. Trauble (ref. 48). They deposited 
iron on a lead-indium alloy in the mixed state. The flux lines in the alloy 
caused the iron to be deposited preferentially on the regions where the 
flux lines reside. An electron microscope picture of the result is shown 
in figure 14. A triangular lattice is formed by the flux lines in agreement 

FIGURE 14. -Electron microscope picture of triangular lattice of flux lines on surface of 
lead-indium alloy (ref. 47). Distance between flux lines, - 1000 A. 
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with the theoretical predictions. The flux quantum can be calculated by 
counting the dots and knowing the field of view and the magnetic field. 
The result is very close to 2 x 10-15 meter squared, tesla in agreement 
with predictions for the flux quantum. 

This experiment implies that it is energetically more favorable to 
create additional vortices as the magnetic field penetrates rather than to 
increase the flux in each vortex. This is theoretically agreeable because 
in equation (72) doubling p,, results in a line energy of 4 2  compared to 
a line energy of 2 2  if another vortex is added. It is interesting to note 
that the flux lattice has many properties of crystal lattices, plastic 
distortions, line dislocations, stacking faults, point defects, and holes 
(ref. 48). 

FLUX CREEP 

In the INTRODUCTION mention was made of the anomalous electric, 
magnetic, and caloric behavior of alloys that was observed by Mendels- 
sohn in 1934 and 1935. These experiments had the effect of focusing 
interest on alloy systems and lead to the discovery of the mixed state 
and type I1 superconductors. Some years later, Gorter (ref. 49) suggested 
that the Lorentz force resulting from electrical transport currents 
would cause regions of superconductivity to move and that this motion 
would result in energy dissipation. This concept along with the ideas 
of the mixed state and flux quantization set the stage for the discovery 
of flux creep and flux flow. 

Tube Magnetization Experiments 

Flux creep was first observed in tube magnetization experiments 
(ref. 50). The experimental setup, shown in figure 15, consists of a 
tubular sample with pickup coils inside and out. A probe for measuring 
magnetic field is in the bore of the tube. The magnetic field inside the 
tube H' is measured as an external magnetic field H is applied. Any 
flux that jumps into or out of the tube will be observed as transient 
induced voltages in the pickup coils. Abrupt changes in the flux in a 
material are referred to as flux jumps. Figure 15 also shows a plot of H' 
as a function of H for a 3Nb-Zr alloy at 4.2 K. Induced currents in the 
sample shield the bore from the external magnetic field H up to 0.31 
tesla (curve A). Then the magnetic field begins to penetrate the bore 
and H' approaches asymtotically the value of H at very high field. 
When the external field is reduced (curve B), the magnetic field is trapped 
in the tube and the trapped field exceeds the applied field. The field H' 
becomes equal to zero at -0.31 tesla. When the same experiment was 
performed on a niobium powder sintered tube, the experimental data fell 
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Pickupcoil P2 7 ,,-Pickup coil PI 
I_w 1 r&<O-Samp\e 

7-- 
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Pickupcoil P2 7 [ ,,-Pickup coil PI 

External magnetic field, H, tesla 

FIGURE 15. -Experimental setup for tube magnetization experiments is shown and mag 
netic field in the bore H of the tube is plotted against the field H outside the tube (ref. 49). 
Tube material, 3Nb-Zr; tube temperature, 4.2 K. 

on a straight line when the magnetic fields H and H’ were related by 

where w is the tube thickness, I A ! I = H - H ’ ,  and H * = * ( H ’ + H ) .  
The Bo and ac are constants. Kim, Hempstead, and Strnad were able 
to show that lA!l is proportional to the current in the sample, which 
leads to the critical state equation 

If J ( B  + Bo)  > ac, then magnetic flux enters the tube. 
Kim, Hempstead, and Strnad also made two other very interesting 

observations. If H is held constant, they found that 141 decays loga- 
rithmically with time. Apparently the shielding currents decay in time, 
the magnetic field enters the sample, moves through it, and into the bore 
of the tube. They also noted that when the external field was being in- 
creased the flux entering the sample induced observable voltages in 
pickup coil PI but not in Pz (see fig. 15). When the magnetic field was 
being decreased, the flux leaving the sample induced observable voltages 
in pickup coil Pe, but not in P I .  The smallest signals measured were 
estimated to correspond to 20 to 50 flux quanta. One possible explanation 

xw-sao o - 70 - 5 
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for this observation is that flux enters the sample in unmeasurably small 
increments, perhaps individual flux quanta, but leaves the sample in 
increments of 20 to 50 quanta. 

Flux Motion Resistivity 

The observed decay of superconducting currents implies the existence 
of a resistance in the tube. The resistivity p of the tube can be derived 
by using a long solenoid approximation to get the current and by ap- 
proximating the tube with an equivalent LR circuit. The result is 

21raw dH' 
p = H ' - - H z  t 79) 

The existence of a mixed state resistance suggests that if a transport 
current is applied to a material in the mixed state, voltages should be 
observed. Kim, Hempstead, and Strnad (ref. 50) have in fact observed 
such voltages in NbZr. Figure 16 shows that these experimental data are 

Current density times magnetic field intensity, JH, ( A h 2 )  tesla 

FIGURE 16. -Voltage V is plotted as function of JH for curves corresponding to given cur- 
rent densities. Curve f is a plot of V against J ( H + B , )  for all other curves (ref. 49). Alloy, 
3Nb-Zr wire; wire temperature, 4.2 K. 
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fitted by an equation of the form 

Anderson and Kim (ref. 51) suggested a possible mechanism for the 
apparent movement of magnetic flux in type I1 superconductors. 
Anderson and Kim called the flux movement “flux creep” and postulated 
the following mechanism (see fig. 17). Flux quanta penetrate the sample 
individually when the sample goes into the mixed state (fig. 17(a)). But 
once inside, the flux quanta form into bundles (fig. 17(b)) which are ap- 
proximately the penetration depth in diameter. Inside each bundle the 
Abrikosov triangular flux lattice structure is postulated to exist (fig. 14). 
The postulate is consistent with the flux jumps observed in the pickup 
coils. They further postulate that the free energy of a superconductor 
varies spatially due to inhomogeneities, strains, dislocations, and other 
physical defects. These free energy variations provide pinning sites for 

Average barrier height, 

(d) 8n 

Average barrier height, 
F, - JpBdZ 

+,, -ad4 

FIGURE 17.-Sketch of Kim-Anderson flux bundles and some other properties of flux creep 
mechanism (ref. 49). 
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the flux bundles. The strained regions have larger free energies than 
the unstrained regions (fig. 17(c)). These maxima in the free energy of 
the material represent minima for the free energy of the flux lines (fig. 
17(d)) because less energy is required to establish a normal core. The 
pinned flux lines therefore are surrounded by a free energy barrier. 
Anderson and Kim estimate the maximum free energy barrier to be 

where the size of the inhomogeneity d is assumed to be about equal to 
eo. They further propose that a Lorentz type force acts on the flux bun- 
dles. This concept was suggested by the empirical critical state equation 
(eq. (78)). Flux creep occurs when the flux bundle is momentarily ther- 
mally excited to a free energy greater than the pinning energy. The 
Lorentz force then causes the bundle to move until it is caught by a 
pinning site (fig. 17(e)). Apparently, the thermal energy must then be 
lost to other flux bundles or to the crystal lattice; otherwise, the bundle 
would not become repinned. 

Anderson and Kim have aIso postulated that the rate R at which 
flux lines hop from one pinning site to the next is proportional to the 
negative exponential of the total barrier free energy. The total free 
energy is composed of two parts-the fraction p of equation (81) that is 
effective in pinning and the free energy associated with the Lorentz 
force. The Lorentz force per unit length of a flux line is 

h = c  J Q ~  

where c is the speed of light and cp,, = hc/2e. The force on a whole bundle 
is 

JQBL' J H A V  -- JQonB1' 

fL= c= -- C C (83) 

where cpB is the flux in a bundle, n B  the number of flux lines in a bundle, 
and 1' the effective length of a flux line (distance between pinning 
sites). The associated free energy FL as a function of position x is 

This free energy of the flux bundle reduces the effective barrier free 
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energy that is pinning the bundle. The total effective barrier free energy 
FT is then 

In this equation p is an adjustable parameter that ranges between zero 
and one to allow adjustment for the fraction of the maximum pinning 
energy that is effective. Next Anderson and Kim use the postulate that 
the number of flux bundles with a certain free energy decreases expo- 
nentially with the free energy. This implies that the thermal activation 
of flux lines in the bundle over a free energy barrier is governed by a hop 
rate R of the form 

In this equation coo, which is the vibrational frequency of the bundle, is 
estimated to be between 105 and 1010 hertz. The flux bundles move in 
the direction of the gradient of magnetic pressure a, which may be 
defined as 

Then if the pinned flux bundles are viewed as a supply of flux lines, 
the flux entering and 1eaving.a small volume obeys the diffusion equation 

These equations ((85), (86), (87), and (88)) can be combined to study flux 
motion in the tubular geometry of the tube magnetization experiments. 
In one dimension the diffusion equation becomes 

aH a (POR 
at A ) 

and the magnetic pressure is 

H a H  a=--- 411. ax 

(89) 

Then taking the time derivative of a and substituting for aH/at  from 
equation (89) yield 
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If equation (86) for R is written in terms of a (by substituting eq. (87) 
into eq. (85) and then substituting the result into eq. (86)) and the result 
is substituted into equation (91), then 

where 

If the magnetic field is assumed to be uniform, then aH/ax = 0 and the 
first term on the right side of equation (92) vanishes. The remaining 
differential equation has a particular solution of the form 

This result agrees with the logarithmic time decay of the magnetic field 
trapped inside tubes of Kim's tube magnetization experiments (ref. 52). 
Furthermore, if equation (86) is solved for a (as described in the derivative 
of eq. (92)) and it is assumed that there is some critical R, which cor- 
responds to the lowest hop rate that can be observed experimentally, 
then an equation very much like equation (78) can be derived. 

Kim and Anderson also derived the experimental result equation (80) 
and the power dissipation from Faraday's law: 

1 aB V x E = - -  - 
c at 

In one dimension, 

where Fo = p (H38m) e$. Integrating with respect to x gives 

(94) 

9 0 %  e (-2.3 E - -  
I- xc 
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The power dissipated P is then 

The existence of power dissipation is consistent with the severe thermal 
instabilities observed in superconductors that carry high current density 
in large magnetic fields. 

Kim, Hempstead, and Strnad (ref. 49) have found that in the limit of 
large values of a the exponential hop rate law (eq. (86)) is no longer 
applicable. Instead, R is proportional to a. This might be expected be- 
cause for large a, Fo- (a/at)kT becomes comparable to kT. This new 
regime is called the flux flow state. 

FLUX FLOW 

Early Flux Flow Experiments 

Kim, Hempstead, and Strnad first observed the flux flow state as a 
deviation from the flux creep results (ref. 49). In figure 16 the composite 
curve f would be a straight line if flux creep were the only cause of the 
voltage. But at larger values of a, the curve bends over indicating that 
a new mechanism is contributing to the voltage. They measured the 
voltage-current - magnetic-field characteristics of several different 
materials. Figure 18 shows some examples of their results for NbTa and 
PbIn. These measurements were made with the magnetic field perpen- 

Current, I, A 

Sample 
208-2 

-- 208-X (Cu plated) 

(a) Two samples of Nbo.5 (b) Comparison for three dif- 
Tao.5 with different ferent magnetic fields and 
amounts of pinning. also for plated and un- 
Temperature, 3 K; mag plated samples of Pbo.82 
netic field, 0.2 tesla. Ino.17. Temperature, 2 K. 

FIGURE 18.-Flux flow voltage is shown as function of current (ref. 53). 
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dicular to both the surface of the samples and the applied current. Volt- 
age appears when the current is greater than some magnetic-field- 
dependent onset values. The voltage is directly proportional to the 
current above the onset current. The voltage is also observed to be an 
increasing function of the magnetic field (fig. 18(b)). At temperatures 
sufficiently below the critical temperature T,, the ratio of the flux flow 
resistivity pf to the normal resistivity p n  obeys the simple relation 

This relation is very suggestive of a law of corresponding states. A re- 
sistivity like pf would be observed if the current flowed uniformly through 
the superconducting regions and the normal cores of the flux vortices. 

At first thought it seems unlikely that the current could flow uniformly 
through both the superconducting regions and the normal regions. The 
superconducting regions should simply electrically short the normal 
regions. If, however, the flux flow state is similar to the flux creep state, 
then the flux lines move under a Lorentz force. Also, the motion might 
generate electric fields that drive current through the normal cores. This 
would result in a resistivity that is proportional to the number of flux lines 
inside the superconductor. The model just described was first proposed 
by Kim, Hempstead, and Strnad (ref. 53). 

The flux flow voltage can be expressed as a function of J and H. Figure 
19 shows a type I1 superconductor with the magnetic field perpendicular 
to the current and to the surface of the superconductor. The vortices are 

Y 

FIGURE 19. -Nux flow state. 



35 MIXED STATE OF SUPERCONDUCTORS 

indicated by simple current loops. The magnetic flux density equals the 
density of flux lines multiplied by the flux quantum: 

The magnetic intensity and the current density are related by Ampere's 
law: 

The magnetic pressure is 

And if the magnetic pressure is distributed evenly over all the flux lines, 
the Lorentz force on each flux line per unit length is 

f L = y  JCPO ( 102 ) 

When the Lorentz force is greater than the pinning force, the flux line 
moves. It is further postulated that the flux lines experience a viscous 
drag force. The flux line accelerates until the viscous drag force balances 
the Lorentz force: 

ji = qv1. (103) 

where 7) is a viscosity parameter and V I ,  is the terminal velocity of the 
flux line. The power P dissipated per unit volume by the viscous flow is 

Therefore, it is possible to derive the voltage per unit length V from 
equation (104) for P = VJ and H = np,: 

(P V = >  JH 
7)c' 

The linear dependence of V on J is in agreement with the experimental 
results shown earlier (fig. 18). The magnetic field and the temperature 
dependence is shown by figure 20. The flux flow resistivity pf= V/J is 
directly proportional to the magnetic field when T 4 T,. 
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Magnetic field, H, tesla Temperature, K 

FIGURE 20. -Normalized flux flow resistivity plotted against magnetic field at several 
reduced temperatures for N h 2  Tao.s. Resistivity also shown plotted against temperature 
at several values of magnetic field. Flux flow resistivty is normalized to normal state 
resistivity (ref. 54). 

Other Flux Motion Experiments 

There are other experiments which support the concept of flux 
motion and the flux flow voltage. Pearl (ref. 55) proposed to test the 
concept of a potential difference resulting from flux motion. He proposed 
to produce a continuous motion of flux lines by some external means 
and to look for a voltage. Later (ref. 56) he built such an apparatus 
(fig. 21). Magnetic field lines extending from the screw to the iron shell 
could be moved through the superconductor by rotating the screw. No 
transport current was passed through the sample, and yet voltages 
were observed across the sample that were roughly proportional to the 
rate of rotation. 

,-Iron shell 

rMagnetized screw 

Motion of 
f f lux lines 

Mixed state magnet 
area 

FIGURE 21. -Apparatus used by Pearl to investigate flux flow voltage (ref. 56). 
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Hans Meissner (ref. 57) performed another experiment which tends 
to confirm the concept of the motion of flux lines under a transport cur- 
rent induced Lorentz force. Meissner introduced a flux bundle on one side 
of a tin (Sn) film and observed it some time later with a pickup coil 
on the other side of the film. The flux flow velocity is determined by 
measuring the transit time and the film width. Meissner has observed 
flux flow velocities between 3 X  lo' and 50X 1W meters per second 
with current densities up  to 1oY amperes per square meter. 

Another experiment on thin films by Giaever (refs. 58 and 59) con- 
tributed results which were consistent with the flux flow model. Giaever 
investigated the properties of two parallel thin films, 1000 A thickness, 
in a perpendicular magnetic field. When he passed current through the 
primary film, he observed voltages across both the films. Figure 22 
shows the model he proposed to explain these results. Both films are 

FIGURE 22. -Flux sharing model proposed by Giaever to explain his experimental results 
(ref. S9). 

assumed to share the same flux bundles. When the transport currents 
in the primary film are sufficient to overcome pinning, the flux moves in 
both films. Therefore flux flow voltages are observed in both films. 
Some of Giaever's results are shown in figure 23, which shows the 
voltage in the primary film when the current is applied to both the 
primary and the secondary films. The family of curves shows that the 
current in the secondary apparently exerts a force on the flux line which 
can either add to or subtract from the force exerted by the current in 
the primary. 
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Current in primary, Ip mA 

FIGURE 23.-Voltage across primary film platted against primary current for various cur- 
rents in secondary film (ref. 59). Temperature, T= 3.65 K. 

Theoretical Basis for the Flux Flow Voltage 

The exact nature of the source of the flux flow voltage has caused consid- 
erable controversy. The fact that pf is proportional to H, or the number 
of normal cores (eq. (98)), suggests that the voltage is caused by transport 
current flowing through the normal cores of moving flux lines. However, 
Hempstead and Kim (ref. 60) suggested that the flux flow voltage was an 
induction voltage. Several authors (refs. 61 and 62) have argued that in 
the standard flux flow experiments the flux lines move across the sample 
but that aB/at = 0 and therefore no induction voltage can exist. Other 
authors (refs. 63 and 64) argued that aB/at = 0 means only that '7 X E = 0 
and not that E = 0. 

Goodman (ref. 65) has successfully derived the flux flow voltage from a 
local version of the second Ginzburg-Landau equation. Ignoring the 
first term on the right side of equation (22), the starting equation is 

where a is the local value of the magnetic vector potentia1,j is the local 
current density, $=&,ei*, and VB is defined by the relation 
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where n B  is the number of flux quanta per bundle. He also defines the 
average density of vortex lines N and an incremental area d§. It is as- 
sumed that d§ is much larger than the distance between flux lines. Then 
taking a line integral of the Ginzburg-Landau equation yields 

Converting equation (108) to surface integrals using Stokes' theorem gives 

16we:" [ (V X a)  - dS - Nq,] (109) -TL ( V X j )  * d S = - - - -  mc 
4w 

Recalling that $5 = ns and X i  = mc2/4wnse2 and substituting yield 

where H and J are the mean field and current density. Equation (110) 
can be written in either of the following forms using Ampere's law 
(V x H =  (4wlc)J): 

or 

( l l l a )  

( l l lb )  

Thus, if N is known, J and H are specified. Next Goodman assumes 
a vortex line continuity equation: 

aN vx ( w , , X N ) = -  
a t  

Then taking the time derivative of equation (1 10) gives 

Substituting equation (112) and Faraday's law of induction (V X E =  
a t ) )  into equation (113) yields 
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Equation (115) is obtained by eliminating the curl on both sides of the 
equation and setting a Jlat = 0: 

E=%X C 2 ) L )  (115) 

Goodman has ignored any possible constant terms and gradient terms 
in equation (115). Equation (115) is identical to the electric field that is 
measured by a stationary observer in a coordinate system moving with a 
changing magnetic field (ref. 66). 

THEORIES OF THE MOTION OF VORTICES IN SUPERCONDUCTORS 

Before going into the two major theoretical models that have been 
proposed for flux flow, it is possible to gain some insight into the problem 
by a simple analysis of the change in momentum resulting from the 
motion of a single vortex. Figure 24 is a sketch of a normal core (radius 
r) moving with velocity vL. Outside the core the superconducting elec- 
trons of the vortex are assumed to have momentum: 

When the vortex moves as showc, the superconducting electrons on 
the front boundary of the core are converted to stationary normal 
electrons. The resulting momentum loss in the boundary layer is ap- 
proximated by 

FIGURE 24.-Normal core (radius r )  moving with velocity VI.. 
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(117) 
d p  - (Number of eIectrons)(Momentum change) - (mn,ds)pe 
dt Time interval dt 

- __ - 

Setting VI, = ds/dt and substituting equation (116) into equation (117) 
gives 

Finally, substituting for 6 from cpo = hc/2e yields 

1 n,e 
-- dp---- W ' c p O  dt 2 c 

Because an equal amount of momentum must be added on the right side 
of the vortex, the resulting momentum lost must be twice equation (119). 
The theories of Bardeen-Stephen and Nozieres-Vinen (which follow) 
postulate mechanisms for this momentum loss. The rate of change of 
momentum corresponds to a Magnus type force (ref. 67), which acts on 
the vortex and is perpendicular to its direction of motion. 

Bardeen-Stephen Theory 

Two theoretical models have been proposed which attempt to explain 
the phenomena of vortex motion in type I1 superconductors. The theory 
of Bardeen and Stephen (ref. 68) finds that, if the transport current 
causes a force on the flux line, the resulting motion generates an electric 
field that drives the current through the normal core of the vortex. 

Bardeen and Stephen assume that the Lorentz force Jcpo/c is the 
driving force on the flux lines. They assume that the most important 
scattering process is electron-lattice scattering rather than electron- 
electron scattering. An isolated vortex is considered; the temperature 
is near T=O K and the mean free path is assumed to be greater than 
the coherence distance. Bardeen and Stephen assume that the flux line 
contains a normal core. This means that the energy gap A is equal to 
zero inside the core. Outside the core there is assumed to be a tran- 
sition region where the energy gap increases from zero to its equilibrium 
value. They further assumed that the transport current density and the 
normal current density generated by the motion are small compared 
with the supercurrent flow just outside the core. Then they studied the 
current distribution in the transition region starting with the equation of 
motion from the local London theory: 
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where po is the chemical potential per unit mass with zero current and 
field. They succeed in deriving expressions for the components of the 
velocity of the normal and superconducting electrons. Combining these 
equations with calculations of the power dissipation inside and outside 
the core, they obtain several interesting results. First, the velocity of 
electrons inside the core is equal to the velccity of the electrons in the 
transport current. If the core radius r,, is assumed to be related to H,Z by 

the law of corresponding states (eq. (98)) can be derived. They also con- 
clude that the Hall angle OH is equal to the Hall angle of the normal ma- 
terial at the magnetic field in the normal core; therefore, 

tan O H = ( = ) H  

where T is the normal electron relaxation time. This same result was 
obtained earlier by Miller (ref. 69) using a two fluid model. 

Nozieres-Vinen Model 

The other theoretical model was proposed by Nozieres and Vinen 
(ref. 70). Nozieres and Vinen proposed that the motion of flux lines is 
analogous to the motion of vortices in liquid helium. The vortex of super- 
conducting electrons is subject to a Magnus force, which is perpendicular 
to the direction of vortex motion. DeGennes and Matricon (ref. 71) had 
proposed a similar concept earlier. They considered the force on a flux 
line with an applied transport current. In a reference frame moving at a 
constant velocity VI, ,  superfluid electrons represent the current 

Therefore, the force per unit length on the flux line is 

The Nozieres and Vinen model incorporates the following assumptions. 
The penetration depth is much greater than the coherence length. The 
material is homogeneous, with the mean free path much greater than the 
coherence length. The temperature is near 0 K so that no normal excita- 
tions exist outside the core. The velocity distribution of the other vortices 



MIXED STATE OF SUPERCONDUCTORS 43 

is assumed to be constant over the core of the vortex, with a sharp bound- 
ary assumed for the core. Far outside the core the London equation is 
assumed to be obeyed. The entire development is carried out in the 
crystal lattice frame of reference to avoid problems with the effect of the 
positive background. Then, using the London and Maxwell equations 
together with Euler’s equation for a nonviscou.s charged fluid (ref. 33), 

4 V s - V L )  -av, 1 
dt at  at 2 

- + (vS* V)vS=*+- G(v,  -vL)* 

where vs is the total superfluid velocity and VI, is the velocity of the flux 
line, they derive Bernoulli’s theorem for the charged fluid: 

(126) 
m 
2 p + e V + -  (vS-v,,)2= Constant 

Next they derived the force on a line by considering the flow pattern in 
the vortex frame. To do this they constructed a cylinder of radius r S- 5 
which was concentric to the flux line. Then, summing the electromagnetic 
forces, the fluid pressure, and the forces caused by the net momentum 
flowing through the surface of the cylinder yielded the total force as 

where vSl is the local superfluid velocity in which the line is moving. 
This force per unit length is the Magnus force. 

The concept of using the equations of fluid mechanics to describe 
superconductivity is not new, it was first proposed in 1933 (ref. 17). 
London derives equations (125) and (126) in a discussion of these earlier 
attempts (ref. 33). 

Then when the vortex core is approximated by a normal cylinder with 
radius a, the electrons in the core are assumed to have a uniform drift 
velocity vnc. At the boundary between the core and the remainder of the 
vortex there is a discontinuity in the superconducting wave function. 
Following Bardeen and Stephens, Nozieres and Vinen assume wRC = vSl. 
They also assume that the Magnus force is divided evenly between the 
region outside the core and bulk of the core. The surface part of the 
total force would come from an electrostatic contact potential at the inter- 
face. They then assume that no contact potential exists and set the re- 
maining half of the Magnus force equal to the rate that momentum is 
being lost in the core. This gives the equation of motion of the normal 
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This equation may be compared to the Bardeen-Stephen result if the 
relation between core radius and field is 

When this is substituted into equation (128) the resulting equation is then 
solved for the resistivity and yields the law of corresponding states 
(eq. (98)). The Hall angle that results from the Nozieres-Vinen analysis 
is independent of magnetic field: 

eH,z 
mc tan OH=- 7 

Comparison Between Theoretical Predictions and Experimental Results 

An obvious experimental test of these two theories is to measure the 
Hall angle and determine whether or not it has a magnetic field depend- 
ence. Figure 25 shows the Hall angle predictions of the two models. The 

Niessen and 
Staas (NbTa) 

Nozieres-Vinen theory __-_---- ---- 

I%* * 
Magnetic field, H 

FIGURE 25. -Theoretical predictions of Bardeen-Stephen and Nozieres-Vincn are compared 
with experimental results. 



45 MIXED STATE OF SUPERCONDUCTORS 

presently available experimental data are also included in the figure. The 
results of Niessen and Staas (ref. 72) on dirty (mean free path +eo) 
NbTa does not agree with either theory. Very recently a similar experi- 
mental result was obtained by Hake (ref. 73) on TiMo. Hake also finds 
the Hall angle in the mixed state to be greater than the Hall angle in the 
normal state. However, because both theories assume pure materials 
these results are interesting but not surprising. The Hall angle results of 
Reed, Fawcett, and Kim (ref. 74) on high purity niobium (resistance 
ratio, R3oo/R4.2 = 1550) agree more closely with the Bardeen-Stephen pre- 
diction. However, other experiments (by Fiory and Serin) on niobium 
(resistance ratio, R300/R4.2 =3000, refs. 75 and 76) pointed out the 
effects of pinning. Both theories assume that there is no pinning. There- 
fore, in order to distinguish between the two theories the effects of pin- 
ning must be eliminated. Fiory and Serin first proposed to do this by 
de-pinning the flux with a 20-kdohertz, 1.50X10-* tesla magnetic field 
superimposed on a constant magnetic field. The direct current density 
used was 1.350X lo7 amperes per square meter. They obtained results 
(ref. 75) which more closely agreed with the Bardeen-Stephens theory. 
In their second paper (ref. 76) they used direct current densities of 
1.1 X lo8 amperes per square meter to overcome the pinning. Their re- 
sults this time agreed with the Nozieres-Vinen prediction. By way of 
comparison, the maximum current density used by Reed, Fawcett, and 
Kim was 1.090x lo7 amperes per square meter. Still another experi- 
ment performed on niobium by B. W. Maxwell (ref. 77) supports the 
Nozieres-Vinen model, Maxwell measured helicon resonance parameters 
in the mixed state. Relating these measurements to the Hall angle he 
found it to be field independent. The present experimental evidence 
seems to support the Nozieres-Vinen model when pinning effects are 
overcome, whereas the Bardeen-Stephens model applies when pinning 
effects are still effective. Nozieres and Vinen (ref. 70) suggest that an- 
other crucial experiment would be the measurement of the dispersion of 
helicon waves in very pure materials (oC7 % 1). The theoretical predic- 
tions are 

Nozieres-Vinen model 

Bardeen-Stephens model 

eH k 2 X 2  - 

eH (131) 
k2hY - - 

mc He, 

where w is the frequency of the helicon waves. This experiment must 
await higher purities than are presently available. 
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RIGIDITY OF FLUX LATTICE 

The Abrikosov flux structure has a rigidity that results from the 
repulsive force between flux lines. DeGennes (ref. 42) has derived the 
force between two vortex lines. He starts with the assumption of a 
modified London equation: 

The delta function terms are added to include the contributions to the 
field resulting from two flux lines at r1 and r z :  

The free energy of this system is given by equation (51), and equation 
(65) is 

F=- h x  ( V X h )  .du 
8lT A2 I 

It is understood that the surface of integration is the cylindrical surface 
of the two cores (Ir- ril =e). The indicated vector operations in the 
integrand of equation (134) result in eight terms: 

The first term and the last term represent the selfLenergy (eq. (65)) of 
each vortex line. DeGennes assumes that the current ( ' J x h )  at one 
vortex core due to the other vortex can be neglected. Therefore, in equa- 
tion (135) the second, fourth, fifth, and seventh terms are dropped. The 
remaining two terms represent the interaction potential between the two 
flux lines U12: 
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From equation (70) and its general solution K o ( x )  the modified Bessel 
function of order zero, 

and 

Therefore, 

The other term in equation (136) gives an identical result. Therefore, the 
interaction energy is 

Substituting the field at vortex line 2 due to vortex line 1 (eq. (138)) into 
equation (141) results in 

The modified Bessel function 

KO (9) + Ee-r~dA 

for large r12 and 

for small r12 .  Figure 26 shows a plot of Ko(r lz /h) :  note that it becomes 
very small at something less than r12/h=3. The force exerted by one 
flux line on the other can be calculated from the potential Ulz: 
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X 

FIGURE 26. -Modified Bessel function plotted against its argument (ref. 78). 

where x= r l z / X  is taken as one axis in a rectangular coordinate system. 
DeGennes then identifies ahIz/ax as - (4?r/c)j,, which is just the current 
density predicted by Maxwell’s equation V X H =  (4mlc) J. This gives 
a force 

which is a Lorentz type force. The flux lines are therefore forced apart, 
but they cannot leave the superconductor because if they did more 
energy would be required. The additional energy would be needed to 
create surface currents large enough to exclude more magnetic flux. 
The repulsive force between flux lines therefore results in rigidity of the 
flux lattice. Kim, Hempstead, and Strnad’s theory (refs. 49 and 53) of flux 
flow implicitly assumes that the entire flux lattice moves as a unit. 

DeGennes’ result (eq. (144)) is essentially valid when the flux lines are 
more than a penetration depth apart. If the flux lines are less than a 
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penetration depth apart, then all the terms of equation (135) which were 
discarded must be included. 

VISCOUS DRAG FORCE 

In the section on FLUX FLOW, a viscous drag force on the moving 
flux lattice was postulated (p. 33). It was needed to explain why the flux 
lattice does not accelerate indefinitely. The proposed mechanisms for 
the viscous drag force are discussed in this section. In actuality some 
combination of these effects, perhaps even all of them, may contribute 
to the viscous drag force 

f = qv1, (145) 

Before proceeding with the various models for the viscous drag force, 
it is useful to derive an empirical expression for the viscosity parameter q. 
This result can be compared with the results of the various theories to 
evaluate them. Dividing equation (105) by J yields the flux flow resistivity 

Then, substituting this for pf in the law of corresponding states (eq. (98)) 
and solving for 7 yield 

Equation (147) can be written in several alternate forms (ref. 53) using 
the expression for H c 2 ( 0 )  derived by Maki (refs. 79 and 80) and using 
several relationships between the fundamental parameters: 

q e m p i r i c a l = q h N ( O )  A, (148a) 

~ 6 . 4  X 10-12yTc (1 48b) 
or 

(148c) 

where N ( 0 )  is the normal state density of electron states, y is the elec- 
tronic specific heat constant, and cn is the normal conductivity. Equation 
(148) points out that qemi,irieal depends only on N ( 0 )  and Ao. Notably it is 
independent of the mean free path of the electrons. 
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The first viscosity mechanism to be discussed is normal eddy-current 
damping, which was first proposed by Volger, Staas, and Van Vijfeijken 
(ref. 81). If equation (145) is substituted into equation (104) for FI,, the 
power dissipated is 

At low temperatures where the only normal electrons are in the core, the 
total power dissipated should be equal to the number of cores n times the 
power dissipated in each core: 

As mentioned previously, when flux moves there is an associated elec- 
tric field (eq. (115)). When the applied current and field are perpendicular, 
E = -  (vI./c)H. An expression for q is obtained by substituting this into 
equation (150) on the right, substituting equation (149) into equation 
(150) on the left, and solving for q: 

1 T t 2 H b r e  q =- // HZ0,., dxdy= 
pnc2 pnc2 

Maki's expression (refs. 70 and 71) for Hc2(0) can be manipulated into 
the form 

Then if equation (151) is multiplied and divided by 

Kim, Hempstead, and Strnad (ref. 53) have pointed out that equation 
(153) is only equal to equation (147) near Hc2, and the q given by the 
normal eddy-current damping model is always much less than the 
empirical value. Therefore, this mechanism may well exist, but it is by 
no means the primary source of viscosity. 

Stephen and Bardeen (ref. 82) proposed a cycloidal damping scheme. 
They pointed out that if a flux line does not move too fast,yhe entire 
vortex structure moves as a unit. Under these conditions the electrons 
in the vortex move in a circular path when the flux line is stationary 
v,( I"). But when the vortex is moving, the electrons move on a cycloidal 
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path v,(r-vLt). This situation is somewhat analogous to the motion of 
an electron in crossed electric and magnetic fields. Stephen and Bardeen 
argue that likewise in the case of vortex motion an electric field must be 
present to exert the force that results in the cycloidal motion. If 
R = ( T -  vl,t),  the acceleration experienced by the vortex electrons is 

If the flux flow motion is steady state, av,>/at=o. Because the vortex is 
assumed to be rigid, dr/dt=O. The electric field associated with the 
force on the vortex electrons is 

(;) E =  ( V L .  v )vs (155) 

A detailed analysis of this electric field in the region of the vortex core 
indicates that inside the core the field is constant and equal to 

where p is the momentum of the paired electrons defined by the quantum 
condition 

2 p . d l = h  (157) f 
Then 

and e is the radius of the circular path of integration. Differentiating 
equation (158) and substituting into equation (156) gives 

Now a viscosity parameter can be calculated by equating the total rate 
of dissipation to the dissipation in the core: 
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Then if equation (159) is substituted into equation (160), solving for 7 
yields 

(161) 

Multiplying and dividing by p: = h2c2/4ee2 in equation (161) gives 

Equation (162) is 746, or roughly one-half the empirical viscosity (eq. 
(148~)). 

Tinkham (ref. 83) has suggested an additional source of damping. It 
results from the variation of i,!i when the flux lines move. At a point inside 
a material which is in the flux flow state, the superconducting wave 
function oscillates between i,!io (superconducting state) and 0 (normal 
state) as normal cores pass through the point. Tinkham approximates 
the frequency of this oscillation by w VI./(. The superconducting elec- 
trons thus gain and lose the condensation energy 0 / 2 ~  times each second. 
If the instantaneous value of JI lags behind the value appropriate for the 
moving Abrikosov structure by a time r, then a fraction WT of the energy 
is dissipated. This energy goes to the production and/or heating of normal 
electrons. Tinkham approximates the Gibbs free energy by the second 
term of equation (33), which is the Ginzburg-Landau expression. Then 
equation (163) is obtained by multiplying and dividing the approximation 
by $8 (eq. (36)): 

For convenience, 

The power dissipated per unit length is the amount of energy lost per 
cycle times the number of cycles: 

Again the plan is to set the power dissipated to qvf and solve for 7. But 
before doing this Tinkham approximates x2 and T .  He assumes that the 
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relaxation time is limited by the uncertainty principle 

ti n ( l + P )  
T=-=-- A A. ( I -@) 

where t = TITc or the reduced temperature. He further approximates 
x 2  by 

) ( 2 = 1 - p  (166) 

where b = B / H c z .  Then substituting equations (165) and (166) into equation 
(164), setting P equal to q u i ,  7 can be solved for 

This expression is quite different from ?empirical. It has both a tem- 
perature and magnetic field dependency. However, the temperature 
and magnetic field dependence in qempidcal was ignored. Therefore, it 
is possible that equation (167) is, in fact, more exact. If equation (167) is 
substituted into equation (146), 

Then for dirty (mean free path 4 eo) superconductors 

and 

Substituting these into equation (168) gives 

If h 2 ( 0 ) / P ( T )  is set equal to (1-t4) and equations (165) and (166) are 
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substituted into (169), 

Tinkham (ref. 83) then adds this to his own generalized version of the 
normal eddy current damping model and obtains 

(171) 
ef= b 
p n  (1 + t z )  (1 -be) + bz+ ( b - b 2 ) t  

Note that at t = 0, pf /pn = H/H,Z and at H = Hc2, p f /p ,=  1. This relation 
can be compared directly with the experimental results (see fig. 27). 
The agreement is remarkably good, especially at low temperatures. 
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FIGURE 27. -Flux flow resistivity qormalized to normal resistivity is plotted against applied 
magnetic field normalized to upper critical field He*. Tinkham’s (ref. 83) results are 
compared with experimental results. (Temperature in Kelvin degrees represented by 
T. ) 

It has been suggested by Kim, Hempstead, and Strnad that the mecha- 
nisms of Bardeen-Stephen and Tinkham are independent (ref. 53). Their 
relationship may be better understood when experiments are performed 
in sufficiently clean materials. The Bardeln-Stephen model should be 
dependent on the mean free path, because it depends on collisions in 
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the vortex core. The Tinkham result is independent of mean free path. 
Both predictions are the correct order of magnitude to explain the 
experimental results. 

FLUX PlNNlNG MECHANISMS 

In the FLUX FLOW section, the onset of flux flow was described. 
When the Lorentz force is sufficiently large the flux lattice moves and a 
voltage is observed. It is thought that a minimum Lorentz force is nec- 
essary to overcome the pinning forces exerted by crystal imperfections 
on the flux lines. The nature of these pinning forces is discussed in this 
section. The primary sources of pinning are thought to be dislocations 
and impurity atoms. Figure 28 attempts to show schematically several 
different types of pinning mechanisms. In sintered materials such as 

‘\ f i ~ m p u r i t y  atoms , f  
‘dDislocation lines 

FIGURE 28. -Cross-sectional view of three different pinning mechanisms. 

Nb3Sn, where the sintering is incomplete, precipitates and cavities are 
thought to be the most important pinning mechanism (ref. 84). A flux 
line will become entwined in the defects (fig. 28) such as to minimize 
its energy taking account of the distance between flux lines and the size 
and density of the impurity atoms and cavities. Friedel, DeGennes, and 
Matricon (ref. 85) considered the case where one line is pinned by each 
cavity. They estimate the pinning force Fp to be 

by equating Fp to the line energy (eq. (72)) and setting X = d’,  the distance 
between two pinning sites. If the density of cavities and/or precipitates 
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is such that it becomes likely that each flux line is pinned by more than 
one cavity, then presumably Fp should be divided by the number of 
cavities per line. At magnetic fields near Hc2 the situation becomes more 
complicated. If the cavity radii are large enough and the distance be- 
tween flux lines is small enough, then it becomes almost impossible to 
assign the pinning sites to particular flux lines. Complicating the problem 
still further is that the flux lines form into bundles. So if a bundle is 
pinned the force on the bundle is the composite Lorentz force on all 
the flux lines in the bundle. Under certain circumstances it may be 
energetically more favorable -for the bundle to fragment rather than 
remain pinned. The flexibility of the flux lines also decreases at higher 
magnetic fields because of the repulsive forces between flux lines. 
Therefore, flux lines cannot bend to contact pinning sites. 

The cavity pinning mechanism has also been studied by Silcox and 
Rollins (ref. 86). Silcox and Rollins determined the interaction potential 
between nearest neighbors empirically from magnetization measure- 
ments (refs. 87 and 88) to be 

where a is the nearest-neighbor distance between flux lines. Then they 
assumed a density of pinning sites and equated the force of each pinning 
site to HclpO/4r.  Using these assumptions they calculated the magnetic 
induction and the associated magnetization curve. Their results showed 
increasing hysteresis with increasing defect content. These results were 
very similar to the experimental results of Livingston and Swartz (refs. 
87 and 88). Narlikar and Dew-Hughes (ref. 89) found that magnetic 
hysteresis in Nb was v ~ r y  sensitive to the dislocation density. Webb 
(ref. 90) calculated the pinning force on an infinitely long flux line due 
to one screw dislocation. He assumed that the nonuniform stress field 
of a dislocation provides the pinning mechanism. He calculated that in 
Nb with a dislocation density of 1014 per square meter, the pinning force 
would be 2 x 1 0 4  newton per meter. Yamafuji and Irie (ref. 91) have 
criticized Webb’s calculation for assuming static conditions and for 
ignoring the lattice energy of the Abrikosov structure. They analyzed the 
case of a linear flux lattice moving with a constant velocity in the pinning 
potential shown in figure 29. They also assume that the individual flux 
lines in the lattice are displaced from their equilibrium position as the 
line moves through the potential well. The displacement from equilibrium 
is denoted by &. If the deformation results from a Hooke’s law force, 
then the equation of motion is 
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(174) 
MAX + q A x  + k A x Z - 2  dU 

where M is an effective mass per unit length, q the viscosity parameter, 
and k a restoring force constant. Considering the energy lost as a flux 
line moves past a pinning site yields a pinning force 

FIGURE 29.-Pinning site potential assumed by Yamafuji and Irie (ref. 91). 

As the flux lattice moves past a particular pinning site, it is distorted. 
When the flux line is pulled free of the pinning site the deformation 
energy is transferred to vibrational energy of the crystal lattice. The 
vibrational energy in turn is dissipated to the viscous medium. Recently 
the present status of the relationship between critical current density 
and the pinning site has been reviewed by Livingston (ref. 92). 

PRESENT SITUATION AND UNSOLVED PROBLEMS 

In recent years considerable progress has been made toward a thor- 
ough understanding of the mixed state of superconductors. The present 
understanding is, however, far from complete. The brilliant experiments 
of Trauble and Essmann have proved the existence of the Abrikosov 
lattice. The flux creep theory of Anderson and Kim is in satisfactory 
agreement with the experimental results. Kim, Hempstead, and Strnad 
have correlated the voltage - current - magnetic field relations of type 
I1 superconductors by experiment and analysis. Their flux motion hy- 
pothesis and the law of corresponding states are in agreement with a 
considerable amount of experimental results. The motion of flux lines 
has been substantiated by the experiments of Hans Meissner. The 
existence of an associated voltage has been afirmed by Pearl's experi- 
ments, and Goodman has derived the flux flow voltage from the Ginzburg- 
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Landau equations. The voltage is found to be the voltage that results 
from a Lorentz transformation between a moving system and a stationary 
system. The theoretical analyses of Bardeen-Stephen and Nozieres- 
Vinen have suggested possible mechanisms for the phenomena of flux 
flow. Several mechanisms have been suggested to explain the viscous 
drag postulated by Kim, Hempstead, and Strnad. The results of Tink- 
ham’s oscillating-wave-function damping scheme are extremely close 
to experimental results. 

As impressive as the rate of progress toward a complete understanding 
of the mixed state has been, several areas need further theoretical and 
experimental analysis. The flux flow state must be incorporated into 
either a time-dependent Ginzburg-Landau theory or a still more general 
theory. Attempts toward a time-dependent theory have been made by 
Stephen and Suhl (ref. 93) and by Schmid (ref. 94). Schmid’s solution 
incorporates a relaxation time for the order parameter that is similar to 
Tinkham’s (ref. 83). At the Stanford superconductivity conference John 
Bardeen reported on his attempts to provide general solutions for super- 
conductors where the energy gap parameter varies in space and time 
(ref. 95). 

The experiments of Trauble and Essmann (ref. 48) proved that the 
mixed state is composed of individual flux quanta. More recent experi- 
ments (refs. 96 to 99) utilizing these same techniques have produced 
results which indicate that the triangular lattice of flux lines is not 
always found. Much of this evidence supports an intermediate state in 
type I1 superconductors. Essmann (ref. 100) interprets these results 
as an indication of an attractive interaction between flux lines. 

Trauble and Essmann (ref. 96) have also studied flux flow in lead foils. 
They applied magnetic field and current and deposited small magnetic 
particles onto the sample. With no transport current through the film 
they found a flux structure consisting of flux bundles of about 50 quanta. 
When a field of 6.0X 10-3 tesla and a current density of 1.2x 108 amperes 
per square meter was applied, the sample was in the flux flow state. 
Under these conditions an evaporation time of about 1 second produced 
the picture shown in figure 30. The dark areas correspond to the regions 
of the sample that the flux lines moved through. The result shown in 
figure 30 is unexpected. If the flux lattice moved through the sample 
as a rigid entity the sample surface would be expected to be blackened 
evenly. Instead, figure 30 shows that the flux lines flow along specific 
paths. Clearly this experimental observation is contrary to the Kim, 
Hempstead, and Strnad flux flow theory, which assumes that all the flux 
lines move together. 

There is other evidence which points to limitations of the flux flow 
model. Hans Meissner has observed that when the current reaches a 
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FIGURE 30.-Electron microscope picture of flux flow in lead foils (ref. 96). Magnetic field 
intensity, H=6.0 X 10-3 tesla; current density, J =  1.2 X 108 amperes per square meter. 

certain value he can no longer observe flux moving across the sample. 
This current level corresponds to flux flow velocities equal to the velocity 
of sound. Since superconductivity in the Bardeen-Cooper-Schrieffer 
formulation is a phonon coupling of electrons, it would not be surprising 
at all if the flux lines had some maximum velocity. These ideas were 
presented by Meissner (ref. 57). It has also been observed by Hudson 
and Jirberg (ref. 101) that in niobium the voltage is never directly pro- 
portional to the current (fig. 31). This is contrary to the prediction of 
Kim, Hempstead, and Strnad (eq. (105)). If the number of flux lines in 
motion varies, it is possible to explain almost any nonlinear flux flow 
voltage. Trauble and Essmann have in fact observed instances where 
part of the flux moves while another part is held stationary by pinning. 

Magnetic 
field, 
H, 

Current, A 

FIGURE 31. -Resistive transition nearH,z (ref. 101). 



APPENDIX A 

PLOTS OF CRITICAL FIELD AS FUNCTION OF TEMPERATURE 

The curves below are plots of critical magnetic field as a function of 
temperature for several elements. The source of the curves is reference 
102. 

0 .4 .8 1.2 1.6 
Temperature, K 

FIGURE 32. -Critical field as function of temperature, 
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The intermediate state has been optically observed using an experi- 
mental technique that ,takes advantage of the Faraday rotation effect. 
Some pictures taken by Faber (ref. 16) are presented in this appendix. 
In these pictures of an aluminum plate the dark areas are the supercon- 
ducting regions in the materials. 

(a) H = 0 (trapped flux). (b) H = 0.27 H,. 

FIGURE 33. -Intermediate state. 
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(c) H = 0.38 H,.  (d) H = 0.53 H,. 

(e) H = 0.79Hc. (f) H=0.9 H,. 

FIGURE 33. -Concluded. 



APPENDIX e 
INTEGRAL TRANSFORMATION 

The purpose of this appendix is to demonstrate the integral transfor- 
mation mentioned on page 32. The integral under discussion is 

Integration can be performed if the integral is first transformed to a 
surface integral. The necessary transformation can be derived from the 
divergence theorem and the vector identity: 

V ( A X B ) = B  * ( V X A )  - A * V X B  (C2) 

(C3) 

If A = V  X h and B=h,  then 

(C4) 

Recognizing the term with the (V X h ) z  integrand as the second term in 
equation (.64) gives 

Then recognizing the integrand of the volume integrand as the London 
equation (eq. (6)) yields 
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APPENDIX D 

DERlVATlON OF EQUATION (76) 

This appendix shows the steps necessary to derive equation (76) from 
equation (75). In order to get started several equations must be borrowed 
from the Bardeen-Cooper-Schrieffer theory (refs. 26 and 27): 

where N is the density of states at the Fermi energy per unit (energy 
(31303). Substituting for A gives 

Dividing equation (Dl) into equation (75) gives 

Substituting cpo = ch/2e into equation (D3) yields 

Then substituting A = ( mc2/4rrne2) lI2 for one of the A's gives 

Finally, replacing N with rn2vF/2rr2fi3, K = A/[ and V F  with film ( 3 r 2 n )  l/3 

can give the desired result: 
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Element 

Al 
Cd 
Hg 
In 
Pb 
Sn 
T1 
V 
Nb 
Ta 
NbTi 
NbZr } 
Nb& 

MIXED STATE OF SUPERCONDUCTORS 

TABLE I. - SUPERCONDUCTING PARAMETERS 

Energy gap, 
2 N O )  

0.34 x 10-3 

1.65 
1.05 
2.67 
1.15 

3.05 
1.40 

65 

Coherence length, 
60, 8, 

16 OOO 
7600 

4400 
830 

2 300 

380 

Penetration depth, 
A(O) ,  8, 

500 
1300 

380 to 450 
640 
390 
510 
920 

440 

These materials vary considerably 
with composition (refs. 103 and 104) 
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