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A METHOD FOR THE CALCULATION OF LARGE NUMBERS OF
DIPOLE AND QUADRUPOLE TRANSITION PROBABILITIES

By Lawrence P. Shomo, Goetz K. Oertel,*
and Charles S. FreerT
Langley Research Center

SUMMARY

A computer program is presented which selects allowed transitions and calculates
dipole and quadrupole transition probabilities for transitions with LS coupling and no
equivalent electrons, based on an extension of the Coulomb approximation formalism to
quadrupole and higher multipole transitions. Absorption oscillator strengths or f-values
calculated by (1) the self-consistent-field method, (2) the scaled Thomas-Fermi method,
(3) the Coulomb approximation method, (4) the variational method, and (5) the effective
charge method for singlet and triplet transitions in neutral helium are presented and
compared. The Coulomb approximation f-values calculated with the present computer
program are found to be in good agreement with the results obtained by the more sophisti-
cated methods.

INTRODUCTION

The present status of the knowledge of transition probabilities or of absorption
oscillator strengths (f-values) is poor compared with that of the wavelengths of atomic
spectral lines. The f-values are known only for a small number of the lines for which
wavelengths are known, and the accuracy of the available values is usually poor.

The calculation of f-values requires a knowledge of the wave functions of the two
states involved in the transition. It is necessary to employ approximations to determine
the wave functions for nonhydrogenic atoms or ions since Schrédinger's equation can be
solved analytically only for the simple one-electron atom case. Several techniques that
provide approximate wave functions have been developed. The most sophisticated tech-
nique of these is the self-consistent-field method (refs. 1, 2, and 3). Provided that
exchange and correlation effects are considered, f-values can be obtained which should
not deviate from the true values by more than 20 percent. Solution by numerical
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techniques on a computer is almost mandatory because of the complexity and iterative
nature of the self-consistent-field calculations. The computing time still becomes
excessive when very complicated systems (many-electron systems) are considered.

The scaled Thomas-Fermi method (ref. 4) provides a useful alternative. This
method is not subject to some of the limitations of the Coulomb approximation method
and is thus more generally applicable. Its accuracy is, of course, limited by the validity
of the Thomas-Fermi model of the atom's or ion's core (inner electrons plus nucleus).
The adjustment of a scaling factor, however, to provide energy values consistent with the
measured values allows for some compensation for the model's inadequacies. Even for
relatively simple systems, the computation time for the scaled Thomas-Fermi method is
less than that for the self-consistent-field method by at least one order of magnitude.

The Coulomb approximation method (ref. 5) is applicable to many lines of interest,
and for those transitions where its assumptions are met, it gives f~-values which are in
close agreement with the self-consistent-field results. Even for relatively simple sys-
tems where the time required for self-consistent-field calculations is still relatively
short, the Coulomb approximation method will result in a reduction of computing time by
about three orders of magnitude.

Radial matrix elements for the Coulomb approximation method can be fully charac-
terized by the effective principal quantum numbers and the individual electron orbital
angular momentum quantum numbers of the two levels involved in the transition. Thus,
generalized tables can be assembled in terms of these quantum numbers alone. In this
sense the Coulomb approximation method has a distinct advantage over the other two

methods.

The Coulomb approximation method is attractive because of its simplicity and wide
range of applicability. Oertel and Shomo (ref. 6) extended the Coulomb approximation
formalism to the multipole case and presented extensive tables for computing Coulomb
approximation radial matrix elements for dipole transitions s-p, p-d, d-f, f-g, g-h, and
h-i, and for quadrupole transitions p-p, d-d, f-f, g-g, h-h, i-i, s-d, p-f, d-g, £-h, g-i, and
h-j. The extension of the Coulomb approximation method to higher multipole transitions
was deemed desirable because of the need for knowledge of forbidden electric-multipole
transition probabilities in astrophysics and because large numbers of matrix elements,
both dipole and quadrupole, are required for computations of the Stark broadening of
isolated ion lines (ref. 7).

The purpose of this paper is to present a FORTRAN IV computer program which
selects allowed transitions and calculates Coulomb approximation line strengths and tran-
sition probabilities for dipole and quadrupole transitions with LS coupling and no equiv-
alent electrons, based upon the formulae presented in reference 6, and to compare the



Coulomb approximation f-values with results obtained from more sophisticated calcula-
tions for neutral helium. A listing of the computer program is presented in appendix A.
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SYMBOLS
dipole or quadrupole transition probability, second-1
coefficients generated from recurrence relation (eq. (8))
Bohr radius, centimeters
velocity of light in vacuum, centimeters/second

measured binding energy of orbit with quantum numbers n* and ¢,
centimeter-1

elementary charge

absorption oscillator strength, dimensionless

statistical weight of level « and level o', respectively, dimensionless
Planck's constant/27, erg-seconds

radial factor, (-1)l>'l\/2; I

radial transition integral

total atomic angular momentum quantum number, dimensionless
summation indices, dimensionless

total atomic orbital angular momentum quantum number, dimensionless

change in total atomic orbital angular momentum quantum number for a
transition

total atomic orbital angular momentum quantum number of parent configura-
tion, dimensionless



A individual electron orbital angular momentum quantum numbers,
dimensionless

128 larger of the individual electron orbital angular momentum quantum numbers
of two states involved in transition, dimensionless

e smaller of the individual electron orbital angular momentum quantum numbers
of two states involved in transition, dimensionless

n,n’ effective (noninteger) principal quantum numbers, dimensionless

n* integer principal quantum number, dimensionless

An* absolute magnitude of change of principal quantum number in a transition,
dimensionless

R(n,2),R(n',l") normalized radial wave functions, atomic units

Riine line factor, dimensionless

Rmult multiplet factor, dimensionless

Roo Rydberg constant, centimeter-1

T magnitude of position vector, atomic units (ag)

S total atomic spin quantum number, dimensionless

S(line) relative line strength, dimensionless

S(mult) relative multiplet strength, dimensionless

S(a,a') line strength, atomic units (age2 for s=1, a.ge2 for s = 2)

s index (1 for dipole, 2 for quadrupole)

T Ta term value of level @ and level o', respectively, centimeter-1

Too term value of series limit, centimeter-1



W (abcd;ef) Racah coefficient, dimensionless

4 charge of nucleus minus charge of inner electrons, dimensionless
z* effective charge, dimensionless
o lower level
o excited level
r gamma function
A transition wavelength, angstroms
(o) dipole radial factor
DEFINITIONS

The dipole absorption oscillator strength or f-value f(a,¢') and the transition
probability A(a,a’) for a transition between an excited level ¢« and a lower level «
can be expressed in terms of the dipole line strength S(o,a’) by

ITa - Toz" S(a,a") (1)

f(a,0) = %gi
a

Roo ezag
and
4 3
Alway =) e _1[ITa" T"‘") Slag) @
’ 6\hc ag gy R eza(z)

where ag is the Bohr radius, Tq, Ty, 8y and g, are the term values and statis-
tical weights of the levels a and o', respectively, R, is the Rydberg constant, and c,
e, and h have their usual meanings.

The line strength can be factored into angular and radial factors, that is,

S(a,a) = S(a',0) = S(line)S(mult)U2 (3)

where the angular part is composed of the relative line strength S(line) and the relative
multiplet strength S(mult). The dipole radial factor o2 is related to the radial



transition integral Ig (s =1 for the dipole case) by

2_;
02 = S2= (4)
42 -1
where
Ig = g R(n,))R(n’,2")rSdr (5)
0

I 1is the larger of the individual electron orbital angular momentum'quantum numbers [
and !',and R(n,) and R(n',l') are the normalized radial wave functions of the active
electron in atomic units. Relations for the angular factors of the dipole line strength are
given in appendix B.

Analogous expressions for the transition probability and line strength for quadrupole
transitions are given in appendix C, and they are discussed in detail in reference 6.

COULOMB APPROXIMATION

Bates and Damgaard (ref. 5) assert that for most transitions the potential approxi-
mates closely its asymptotic (r — <) Coulomb form in the region of dominant contribu-
tion to the transition integral Ig. This is due to the emphasis placed on long radial dis-
tances by the factor rS in Ig, an emphasis which becomes greater with an increase in
s, that is, higher multipole transitions. At sufficiently large electron-nucleus separa-
tions, the active electron is outside the core of inner electrons and is acted upon by a
potential which is very nearly Coulombic. The Coulomb approximation wave functions are
obtained by solving the standard central-field radial Schrddinger equation using the
Coulomb potential, subject to the condition that the solutions approach zero at large r.
The additional constraint that the energy parameter in the Schrodinger equation be identi-~
fied with the experimentally determined binding energy of the level is imposed. Since the
energy parameter defined in this manner is not, in general, an eigenvalue of the
Schrodinger equation, the solutions diverge at the origin.

In terms of the Coulomb approximation wave functions R, the radial transition
integral Ig (s =1 for dipole, s =2 for quadrupole, etc.) for transitions between levels
(n,?) and (n',l") is obtained from

o0
Ig = go R(n,)R(n' 2")rSdr

n+n',n+n'+1 -1/2 o ' ' ' '
=2z 1Z ; E"(n +1+ DI - DT(@' + ' + HT(n' - zé] Z Z ayay, SO e T2 (min'/mn) nen'+s-koK' g, (6)
a*lnnn'+ k=0 k'=0




where I denotes the gamma function. The principal quantum numbers n and n' are
noninteger (except for hydrogenic configurations) "effective’ principal quantum numbers
and may be obtained from

1/2
0o 2(109737) / G
T, -T

in terms of the series limit T (in units cm-1), the measured term value T, and Z
the charge of the nucleus minus that of the inner (core) electrons (i.e., Z =1 for neu-
tral atoms). The normalization factor proposed by Hartree (ref. 8) for hydrogenic

radial wave functions was used although it is not accurate for noninteger principal quan-
tum numbers. The error thus introduced, however, was shown to be quite small for most
cases of interest (ref. 6). The coefficients ay were generated from the recurrence
relation

ap = nzall{zllz(l +1)~-Mn-kK(n-k+ lﬂ (8)

with ag = 1. The coefficients ay: are given by equation (8) with n and ¢ replaced
by n' and ', respectively, and with agy. = 1. The integral over the exponential func-
tion in equation (6) can be evaluated as

. n+n'+s+1-k-k'
_m Tn+n' +s+1-k-Kk" (9)
Z(n +n")

In order to avoid the divergence of the wave functions at the origin, the summation is cut
off by the condition k + k' <n +n' + s -~ 2, which amounts to neglecting powers of r less
than 2 in equation (6). Thus, the basic assumptions of the Coulomb approximation of Bates
and Damgaard are violated when the contribution to the transition integral is large in the
core and small at long distances (i.e., when the active electron is in an inner orbital with
very small amplitude outside the core, or due to cancellation outside the core region).

COMPUTER PROGRAM

A FORTRAN IV computer program was written to calculate dipole f-values, and both
dipole and quadrupole wavelengths, transition probabilities, and line strengths for all of
the allowed (dipole and quadrupole) transitions for a given element and stage of ionization.
The program is restricted to levels with LS coupling and no equivalent electrons. It cal-
culates the radial matrix elements by the Coulomb approximation formalism developed in
reference 6 and described in the present paper. The program is based upon the equations
presented in this paper and is listed in appendix A.



The transition parameters can be calculated for all the allowed transitions in a
given element and stage of ionization, or the transition parameters can be calculated only
for certain allowed transitions by restricting the input data to only those levels involved
in the desired transitions. The program operates as follows. The program selects one
of the input levels as the initial level and then scans all other levels and applies dipole
and quadrupole selection rules to determine the allowed final levels. As each final level
is determined, the required transition parameters are calculated. Then, another level is
selected as the initial level and the process is repeated. This procedure continues until
all the input levels have been chosen as the initial level.

The Coulomb approximation method described in this paper and in reference 6 is
utilized in subroutine BATES. The output of this subroutine (RSQUAR) is the value of the
radial transition integral squared, that is, Ig. Racah coefficients (ref. 9) are calculated
in subroutine RACAH according to the relation

W(abed;ef) = (-1)2P+C+A (abe) A (bdf) A(afc)A(edc) XZ -1)P(B + 1)!{(s-a-b-e):

B
XxX(B-b-d-f)i(B-a-f-c)(B-e-d-c)(a+b+c+d-p)!
><(a+d+e+f-3).'(b+c+e+f-B)Z] (10)

where

1/2
AGjk) = | G+1 =BG ¢k - DIk + 5 - 3): (11

i+j+k+1)

is calculated in subroutine DELTA and where the summation in equation (10) is over those
integer values of B for which the factorials are meaningful. Extensive tables of Racah

coefficients are available (ref. 10).

The computer program offers several options controlled by a set of option variables
as follows. When OPQUA = 1, only dipole transitions will be calculated; but when
OPQUA = 2, both dipole and quadrupole transitions will be calculated. When OPFVA =1,
dipole f-values and dipole transition probabilities will be calculated; when OPFVA = 2, no
f-values or transition probabilities will be calculated; and when OPFVA = 3, dipole
f-values and dipole plus quadrupole transition probabilities will be calculated. The line
strength, wavelength, and the angular frequency are calculated regardless of the value of
OPFVA. The option controlled by NPROP was introduced to provide an easy means of
checking the program results by hand calculation. This option provides the entry values
for the tables of Coulomb approximation radial matrix elements that were presented in
reference 6. The correct value of the radial matrix element for use in the hand calcula-
tion can thus be obtained from these tables. When NPROP = 1, these table-entry values



will be printed out for each transition; but when NPROP = 2, they will not. The value of
the option variable NLITO is the upper limit of An* (the absolute magnitude of the dif-
iference between the integer principal quantum numbers for the two levels involved in the
transition). The program will not consider any transitions with An* greater than
NLITO. An upper limit is set on NLITO by statements in the program which require
NLITO = 9.0. The first input card contains the values of these four option variables
OPQUA, OPFVA, NPROP, NLITO as required by FORMAT statement 140.

The second and third input cards contain information defining the atomic system
under consideration. The second card contains the following input variables:

ELEMNO atomic number of element

Z core charge of atomic system

NOLEV number of input terms (NOLEV is independent of J-values)
Any number =90 of no-equivalent electron and LS coupling terms can be
used.

NOSER number of series in atomic system (the limit NOSER < 10 is contained

in the program)

The second input card contains the values of the variables ELEMNO, Z, NOLEV, and
NOSER as required by FORMAT statement 3.

There will be NOSER input cards like the third card, that is, one card is required
for each series. Each card will contain the following input variables:

CAPSS(I) total atomic spin quantum number of Ith series designation

CAPLS(I) total atomic orbital angular momentum quantum number of Ith series
designation

SLIM(I) series limit (in units ecm-1) of Ith series

Thus, the next NOSER input cards (starting with the third input card) each contain the val-
ues of the variables CAPSS(I), CAPLS(I), and SLIM(I) for one of the NOSER series as
required by FORMAT statement 7.

The next series of input cards define the terms of the atomic system. A sequence
of two input cards is required for each term. There are NOLEV of these two-card



sequences for the atomic system. The first card of the sequence contains the following

input variables:

NLITT() principal quantum number of Ith term

LLITT() individual electron orbital angular momentum quantum number of Ith term

CAPS(I) total atomic spin quantum number of Ith term designation

CAPL(I) total atomic orbital angular momentum quantum number of Ith term
designation

PARITY(I) parity of Ith term (PARITY(I) = 0,2 means odd or even parity,

respectively)
CAPSP(I) total atomic spin quantum number of Ith term's parent configuration
CAPLP(I) total atomic orbital angular momentum quantum number of Ith term's

parent configuration

Thus, the first card of each two-card sequence defining a term contains the values of the
variables NLITT(I), LLITT(I), CAPS(I), CAPL(I), PARITY(I), CAPSP(I), and CAPLP(I) as
required by FORMAT statement 6.

There are NOJ J-values (total atomic angular momentum quantum numbers) cor-
responding to a given term, where NOJ is an integer Z1 calculated in the program. The
second card in the two-card sequence contains the energy level values of the term cor-
responding to each of the term's J-values (i.e., TJ(N,J), N = 1,NOJ (of the Ith term)).
The term values must be listed on the card in order of increasing J-value. TJ(N,I) is the
energy level (in units cm=-1) of the Ith term and Nth J-value. Thus, the second card of
each two-card sequence defining a term contains the values of the variables TJ(1,I),
TJ(2,I),. . ., TI(NOJ,I) as required by FORMAT statement 4.

In order to clarify the foregoing instructions, a sample input deck is listed at the

end of the program in appendix A. This sample input deck con:gains six levels of neutral
; 2q\3 350 3,50 2 2ay310
helium, namely, 2s(28)3S1, 2p(2S) PO’1’2,3p(2S) P0.1,20 3d(2s) Dj93 4p(28) Pg 120

4d(2S)3D1’2’3 (where the superscript 0 indicates odd parity). The term values used are

those of C. E. Moore (ref. 11). Comment cards have been inserted in the sample input
deck to explain each input data card.
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A sample computer program printout follows the sample input deck listing in
appendix A. This printout is a partial printout for the sample input deck (partial in that
only the printout is given for the case in which the 28(23)351 level is selected as the ini-
tial level by the program). The designation INITIAL LEVEL used in the program print-
out refers to the lower state involved in the transition. The printout for a given initial
level consists of the initial level identification with appropriate parameters, followed by
a list of the allowed final levels. This list of final levels consists of (1) the final level
identification and (2) the calculated transition parameters for that line (provided it is an
emission line, i.e., A >0). Further, the final levels in the list are grouped as quadru-
pole transition levels (with subgroups |AL] =0, 1, 2) or dipole transition levels.

The output variables are presented with the printout variable name listed first and
the program variable name (used internally in the program) listed next to it in brackets.
The definition of the variable is given except when the variable has already been defined
as an input variable.

A EAAAPl\i] dipole or quadrupole transition probability

ABS. OSCILLATOR STRENGTH [FAAPN] dipole absorption oscillator strength or f-value
CAPITAL L [CAPL(I)]

CAPITAL S [CAPS(T)]

DIFFERENCE [DIFE] n; -my_

ELEMENT NUMBER [ELEMNO]

J [J(N,D)] Nth J-value of the Ith term

LAMDA [XLANQ dipole or quadrupole transition wavelength in angstroms

LITTLE L [LLITT()

LITTLE N [NLITT(1)

N STAR OF LARGER LITTLE L VALUE [:STARN(LGRﬂ 0 (where n is effective
principal quantum number)

N STAR OF SMALLER LITTLE L VALUE [STARN(LSM)] n;_

11



PARENT TERM CAPITAL L [CAPLP(I)]
PARENT TERM CAPITAL S [CAPSP(I))
PARITY [PARITY(T)]

RAA [RAA()] <r2> for a given level

S(a,a")

S [S] SVICR quadrupole
0
S(a,a") .
0

WAADP ENAADP:[ quadrupole transition angular frequency (w = 27f where f is
frequency)

WAAP [WAAP] dipole transition angular frequency (w = 27f where f is frequency)

z (2]

This computer program was run on a Control Data 6600 computer system in which
14-place precision is standard. It is recommended that more than 8-place precision be
employed if possible, since 8-place precision will give accurate Coulomb approximation
results only for transitions with n + n' less than approximately 10 (ref. 6).

Numerous comment cards have been incorporated into the listing of the computer
program given in appendix A to assist the reader in understanding the functioning of the
program,

The sample input deck in appendix A can be used as a test deck by comparing the
printout generated for the initial level 25(28)381 with the sample printout also given in

appendix A.
RESULTS AND DISCUSSION

The results of calculating f-values for several transitions in neutral helium by
several different methods are presented in table I. The f-values are averaged over the
J-values of the initial levels by using the appropriate statistical weights and summed
over the J-values of the final levels.

12



Wiese, Smith,
Transition Glennon
(ref. 13)
11s - 2lp | 0.2762 SP
3lp| .0734 sP
4lp | 0302 W
slp | .0153 LS
6lp | .00848 LS
2ls -2lp | .3764 SP
3lp| .1514 SP
4lp | 0507 W
slp | .0221 DK
6lp| .0128 T
2lp - 3ls | o480 W
4ls | 00824 T
513 | .00308 CA
6ls | .00153 T
2lposlp | 711w
alp} 122 T
5ID | .0436 T
6lD | .0213 CA
233 - 23p | .5391 sSP
33p | .06446 SP
43p | .0231 W
53p | .0114 DK
¢3p | .00608 DK
23p - 335 | .0693 W
435 | o118 T
535 | .00365 CA
638 | .00176 CA
2%p-33D | 609 W
4$p| 125 T
53D | .0474 T
63DJ 0215 CA

TABLE I.- ABSORPTION OSCILLATOR STRENGTHS FOR NEUTRAL HELIUM

Coulomb
approximation
(a)

0.2531
.06825
.02795
.01414
.008134

.3723
.1492
.04865
.02218
.01209

.04806

.008579
.003213
.001593

.7104
.1207
.04346
.02105

.5457
.05982
.02370
.01143
.006372

.06813
.01014
.003581
.001720

.6168
.1244
.04759
.02374

Self-consistent-field
method

0.2719
.07203
.02738

.00793

.3578
.1646
.0508

01257

04640
.00824

.00151

,1253
.1205
.04308

6002
.05705
.02083

01639
.01159

.6234
.1229
.04668

2Calculated by computer program in appendix A.

Scaled Thomas-Fermi
metheod

0.342
242
.0684
.0296
L0157

L0278

.00549
00211
.00105

.575
114
.0436
.0218

.538
.0638
.0256
.0124
.00694

.0692
0105
.00376
.00182

.611
123
.0472
.0236

Variational
calculation of
Goldberg
(ref. 17)

0.389
157
.057
.0252
.0136

755
.118
.0418
.019¢9

542
.0826
.0270
.0123
.00665

.553
.129

L0612
.0260 J

bcalculated by linear interpolation in original tables of Bates and Damgaard (ref. 5).

Notation:

SP Results of variational calculations from reference 14.
W Results of variational calculations of A. W, Weiss presented in reference 13.

LS Results of Low and Stewart quoted in reference 15.

CA Coulomb approximation results presented in reference 13,
DK Results of reference 19 modified by Wiese, Smith, and Glennon (ref. 13).
T Results of reference 16 modified by Wiese, Smith, and Glennon (ref. 13).

[] Stewart-Rotenberg scaling factor is less than zero (see appendix D),

(} Coefficient of fractional parentage used.

Variational
calculation of
Hylleraas

| (ref. 18)

0.3555
.0722
.0282

.0082

.392
.150
.0682
.025
.012

.0479%7
.00686

.1357
.132
.04313

.559
.052
.031
.013
007

.07662
.00520

.8530
.0792
.04951

Sum rule
modified
calculation
(ref. 19)

0.370
.156
.0503
.0221
L0124

.535

.0768
.0232
.0114
.0061

Coulomb
approximation
(b)

0.3719
.1431
04970
.01936

.04859

.008308
.003041
.001491

.7006
.1168
.04106
02054

.5319

.06478
.02581
.01022

.07204
.008939
.003159
.001527
.6089
L1192
.0455

Effective
charge
method

0.3861
.2948
.08728
.03818

.02304
.004150
.001519
.0007502

.6947
.1199
.04355
02115

.6686
.1876
06502
.02999

.02700
.004288
.001488
.0007089

.6969
.1325
.04958
.02446
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Perhaps the two most extensive sources of information on experimental and cal-
culated f-values available to date are two National Bureau of Standards publications:
namely, an extensive bibliography on atomic transition probabilities by Glennon and Wiese
(ref. 12) and tables of atomic transition probabilities for hydrogen through neon selected
after extensive evaluation of all available material by Wiese, Smith, and Glennon (ref. 13).
The f-values chosen in reference 13 as the best values available are presented in the sec-
ond column of table I. The results in this column include (1) those of A. W. Weiss calcu-
lated by a variational method in a manner similar to that used by Schiff and Pekeris
(ref. 14), (2) Coulomb approximation results calculated by Wiese, Smith, and Glennon with
a computer program made available to them by H. R. Griem, and (3) those of Low and
Stewart (unpublished but quoted by Dalgarno and Stewart in ref. 15). Coulomb approxi-
mation results calculated by the computer program listed in appendix A, which uses the
Coulomb approximation relations given in the present paper, are presented in the third
column of table I. The self-consistent-field results including exchange effects (Hartree-
Fock method) are those of Trefftz and associates (ref. 16). In addition to exchange
effects, they attempt to take into account certain correlation effects, noncentral nature of
the real system, and configuration mixing through the introduction of parameters of inter-
electron distance. The scaled Thomas-Fermi results were made available by John
Cooper of the Joint Institute for Laboratory Astrophysics, Boulder, Colorado. These
results were calculated by the scaled Thomas-Fermi method of Stewart and Rotenberg
(ref. 4). (See appendix D for discussion.) Also presented are the f-values obtained by
the variational calculations of Goldberg (ref. 17) and Hylleraas (ref. 18) and f-values
modified by Dalgarno and Kingston (ref. 19) such that they satisfy four different sum
rules. Coulomb approximation results calculated by linear interpolation in the original
Coulomb approximation tables of Bates and Damgaard (ref. 5) are listed in the ninth col-
umn of table I. Finally, results obtained by an effective charge method are given. The
effective charge method utilizes eigenfunctions of the Schrddinger equation for hydrogen
with an effective charge Z*, where Z* is chosen such that the hydrogenic energy eigen-
value equals the measured energy value En*,l of the system, that is,

*2

2 DEpk,

Z* = —
R (12)

where n* is the integer principal quantum number.

A problem encountered in attempting to compare f-values calculated by several
methods is the lack of knowledge of the true f-value and the difficulty in estimating the
error introduced by the different approximations. In making comparisons among the
present tabulated values, the values presented in reference 13 may be used as a general
standard, although in certain cases, which are discussed, some of the present values may

be more accurate.
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For singlet transitions, the scaled Thomas-Fermi method is not rigorously appli-
cable. The comparison of the new Coulomb approximation results (third column of
table I) with the values from reference 13 is quite favorable. The good agreement of the
Coulomb approximation f-values for triplet transitions with the values from reference 13
is immediately apparent. For triplet states, the scaled Thomas-Fermi method is appli-
cable, and when significant differences exist between the scaled Thomas-Fermi results
and the Coulomb approximation results, one can expect that these differences are due to
significant contributions to the transition integral by the core region of the wave functions
involved. As the levels involved in the transition become more highly excited levels, one
expects the difference between the scaled Thomas-Fermi and Coulomb approximation
results to decrease due to the decreasing contribution of the core regions for such wave
functions. The results for the 23P - n3D series in table I clearly show this trend with
the 23P - 63D transition having the smallest difference for the series (about 0.6 percent
compared with a 1.1 percent maximum for the series). However, this trend is not evident
for the 23S - n3P and 23P - n3S series where the orbits involved are generally closer to
the core. The average difference for the 23S - n3P series (about 5.9 percent) is larger
than that of the 23P - n3S series (about 3.9 percent) as was to be expected due to the
presence of the 235 level with large core penetration in each transition integral of the
former series. For triplet transitions with a significant difference between the results
of the two methods, the scaled Thomas-Fermi results can be expected to be the more
accurate. The fact that some of these Coulomb approximation results are in better
agreement with the values from reference 13 may not be significant.

The effective charge results are generally poor. This failure of the effective
charge method can be attributed to the fact that the method fits a hydrogenic wave function
for all values of r, including the generally insignificant core region. Although the Bates-
Damgaard Coulomb approximation is poor in the core region, it is certainly best for
larger values of r.

Reference 13 gives Coulomb approximation results as the best available values for
several of the transitions listed in table I. For these cases, the present Coulomb approx-
imation results (presented in the third column of table I) should be more accurate since
the values from reference 13 were obtained by interpolation in the tables of Bates and
Damgaard. Some feeling for the size of the errors introduced by such interpolation can
be gained by comparing the present Coulomb approximation results in the third column of
table I with the results in the ninth column of the table which were calculated by a com-
puter program that interpolated linearly in the Bates-Damgaard tables. The results
often differ in the second significant figure.

It was to be expected that the Coulomb approximation results for the series of tran-
sitions involving the ground state of neutral helium would, in general, be least accurate
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due to the large contributions to the transition integral from the core region of the (two
equivalent electron) ground state. The values from reference 13 for this series were all
calculated from variational wave functions (one partial exception to this statement is

the results of Low and Stewart (118 - 51P, 11S - 61P; see ref. 15) who used modified
hydrogenic wave functions for the upper levels and a variationally determined wave func-
tion for the ground state). The Coulomb approximation results for the 113 - nlP series
were obtained by multiplying the computer program results by the proper coefficients of
fractional parentage, since the computer program does not handle equivalent electron
transitions in its present form. The differences between the Coulomb approximation
results and the values from reference 13 are indeed generally larger for this series of
transitions than for any of the other series presented. The results for the 11S - 21p
transition differ by about 8.7 percent, whereas those for the higher transitions in the
series differ by not more than about 7.9 percent (the percent differences quoted are rela-
tive to average value of the two results). The self-consistent-field results are in better
agreement with the values from reference 13 for the two lowest members of the series.
For the other members of the series, the Coulomb approximation results are in better
agreement than are the more sophisticated self-consistent-field results.

CONCLUDING REMARKS

The agreement of the Coulomb approximation f-values (absorption oscillator
strengths) with the presently accepted f-values for neutral helium (i.e., the values from
U.S. Dep. Com. NSRDS-NBS 4) is indeed satisfactory except for those transitions which
involve the ground state. For most situations, where inaccuracies of about 10 percent in
f-values can be tolerated, the Coulomb approximation f-values for the 115 - nlp series
are also adequate. While it should be understood that the Coulomb approximation may
not work as well for other atoms, its nearly uniform success for neutral hélium is
impressive. The present results suggest that in situations where systematic calcula-
tions of large numbers of f-values or related quantities are required, the Coulomb
approximation method should be used whenever applicable and be checked against the
scaled Thomas-Fermi method when significant core contributions to the transition inte-
gral are expected. This procedure should reduce computing times considerably. The
only alternative method for systematic calculations presently available is the self-
consistent-field method which usually entails long computing times and which probably
does not result in significant improvements over the scaled Thomas-Fermi method when
the latter method is applicable (i.e., for those transitions which result in positive values
for the Stewart and Rotenberg scaling factor). The variational method does not provide a
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practical alternative for systematic calculations, since it involves time-consuming trial
and error calculations and becomes exceedingly complex for excited states.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., July 31, 1970.

17



APPENDIX A

FORTRAN IV PROGRAM FOR CALCULATING DIPOLE AND
QUADRUPOLE TRANSITION PROBABILITIES

A listing of the computer program described in the main text is given in this
appendix. A sample input case and the resulting output listing are included.

Computer Program Listing

PROGRAM TRAPRD (INPUT,CQUTPUT,TAPES= INPUT,TAPE7T=0UTPUT])

INTEGER ELEMNO,OPFVA,OPQUA

REAL NLITT,LLITT+JsNOJSy NLITO

DIMENSION NLITT(90),4LLITT(90),CAPS(90),CAPL(90),CAPSS(10},SLIM(10)
1,TLIM(90)4NOJS(90),J(10+90) yTJ(10+90),CAPLP(90)sAVETJI(90),STARN(90

2}sPARITY(90)4CAPSP(90)+CAPLS(10},RAA(90])
DATA RYDBGD,CyHBAR, ALPHA,AOBOHR+PI/1.0973731E+05+2.997925E+1041.05
1450E-27+7.29720E-0345 5.29167E~-09+3.1415927/

FORMAT STATEMENTS

[z el ReNe]

FORMAT (I5+F5.1+215)

FORMAT(6F12.4)

FORMAT (7F5.1)

FORMAT (2F5.15F15.4)

101 FORMAT(1X33HDELTA L EQUALS O QUADRUPOLE TERMS//)

102 FORMAT(1X9HLITTLE N=4F540+11Hy LITTLE L=4F5.,0412H, CAPITAL S=,F5.1
1912H, CAPITAL L=4F5.1+9Hs PARITY=4F3.0)

~NOoSW

103 FORMAT(1X24HINITIAL J VALUE =9F5.1910H, RAA=,F10.3//)
104 FORMAT (1X72H FINAL J VALUES ) WAADP
1 LAMDA }

105 FORMAT {(4XF5.1+12XE12.4+5XE12+495XF1l6.1)

106 FORMAT(1X33HDELTA L EQUALS 1 QUADRUPOLE TERMS//)

107 FORMAT(1X8HJ VALUE=,F4.1y5X26HABSORPTION LINE #&kkdkkikk//)

108 FORMAT (1X33HDELTA L EQUALS 2 QUADRUPOLE TERMS//)

109 FORMAT (1X13HINITIAL LEVEL)

110 FORMAT (1X11HFINAL LEVEL)

111 FORMAT (LX29HPARENT TERM CAPITAL S=+F5.1412H, CAPITAL L=,F5
1.1)

112 FORMAT (1X12HDIPOLE TERMS//)

113 FORMAT (1X32HN STAR OF LARGER LITTLE L VALUE=,F8.3)

114 FORMAT (1X33HN STAR OF SMALLER LITTLE L VALUE=,F8.3)

115 FORMAT({1X60H****%BOTH STATES HAVE BEEN ASSIGNED THE SAME TERM VALY
1 E %kkikk)

116 FORMAT (1X72H FINAL J VALUES S WAAP
1 LAMDA )

118 FORMAT (1HL///7/1X15HELEMENT NUMBER,I5,9Hy WITH Z=4F4.0)

119 FORMAT(4XF5.1412XE12.4//)
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125 FORMAT (1X1L1HDIFFERENCE=,F8.3)

126 FORMAT (1X3HA= +El2.4//)

140 FORMAT(3110,fF10.1)

511 FORMAT(13H4 NOSER GT 10)

717 FORMAT (26H ABSe OSCILLATOR STRENGTH=El2.493H A=E1l2.4//)}

833 FORMAT(//24H ERROR, WRONG TERM LIMIT)

834 FORMAT(/////3HEL=13,4HLEV=13,3H N=F5.1,3HSL=F5.143H S=FS5.1,43HBL=FS5
10193H J=F5.1)

835 FORMAT(///7//74H TJU=F12.2410X6H TLIM=F12.2)

916 FORMAT(///715H*%%%%/[ [/ /)

DATA READ IN AND ORGANIZED

READ(5,140} OPQUA,OPFVA,NPROP,NLITQO
READ(5,43) ELEMNO,Z.NOLEV,NOSER
100 DO 67 1=1+90
TLIM(I}=0.
IF{I.LT.11F SLIM(I)=0.
67 CONTINUE
I=0
IF(NOSER.LE.10) GO TO 510
PRINT 511
sTOP
510 CONTINUE
I=1+41
READ (5,7) (CAPSS(I)+CAPLS(I)ySLIM(I)sI=1,NOSER)
DO 10 I=1.NGLEV
READ(5+6) NLITT(I) LLITT(I) CAPS(I) CAPL(I),PARITY(I),CAPSP(I),CAP
1LP(I}
DO 9 M=1,NOSER
IF(ABS{CAPSP(I)-CAPSS(M))eLT..5.AND.ABSI{CAPLP(I)=CAPLS(M)).LT..5)
1 TLIM(I)=SLIM(M)
9 CONTINUE

THE NUMBER OF J VALUES OF A TERM CALCULATED

DIFF=ABS(CAPL{I)}-CAPS(I)})
SUM=CAPL(IN+CAPS(I]}
NOJS(I1)=SUM-DIFF+1.
NOJ=NOJS(I)+.001

J ARRAY MUST BE IN ASCENDING ORDER

READ(5+4) (TJ(N+I)eN=1,NOJ)
DO 801 N=1,NOJ
XN=N

801 J(NI)=DIFF+XN-,99999999

LOOPS 871,872 GENERATE MISSING TJ VALUES

SAVET=0.

DO 871 NK=1sNOJ

IF(TIJINKs I)oLTLTLIM(I)}) GO TO 871

PRINT 833

PRINT 8344 NKe IsNLITT(I) LLITT(I}»CAPSS(I) CAPLS(I)JINK,I)
PRINT 835, TJ(NKsI),TLIM(I)
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CONTINUE

DO 872 NK=1,NOJ
IF{TJINKs I) el TaledTIJ(NKsI)=SAVET
CONTINUE

CONTINUE

INITIAL LEVEL SELECTED AND ITS PARAMETERS CALCULATED

DO 12 I=1.NOLEV
X=0.0

¥Y=0.0
NOJ=NOJSI(I)

CALCULATION OF AVERAGE TERM VALUE
(THE AVERAGE TERM VALUE IS THE AVERAGE OF THE ENERGY LEVEL VALUES,

EACH WEIGHTED BY THE APPROPRIATE STASTICAL WEIGHT, COMPOSING THE
TERM. THIS AVERAGE TERM VALUE IS USED TO CALCULATE THE EFFECTIVE
PRINCIPAL QUANTUM NUMBER FOR THE TERM. )

DO 600 N=1,NCJ
X=X+TJ(Ns I} *¥(2.%J(NsI)+1.)
Y=Y+2.*J(N'I)+lo

CONTINUE

AVETJ(I)=X/Y

EFFECTIVE PRINCIPAL QUANTUM NUMBER CALCULATED FOR EACH TERM
( SEE EQUATION (7))

STARN(I)=SQRT(Z**2%RYDBGD/(TLIM(I)-AVETJ(I)))

CALL BATES(STARN(I}LLITT(I},STARN(I},LLITT(I)2.+Z,RAAI)
RAA{I) = SQRT(RAAI)

CONTINUE

INITIAL LEVEL SELECTED

DO 915 I=1.NOLEV

NCJ=NOJS(TI)

DO 15 N=1,NOJ
IF(NLITT(1).GT.9.5) GO TO 15

INITIAL LEVEL PRINTED 0OUT

PRINT 118, ELEMNG.Z

PRINT 109
PRINT 102y NLITT(I),LLITT(I) CAPS{I}+CAPL(I),PARITY(I)

PRINT 111, CAPSP(I},CAPLP(I)
PRINT 103, J(NsID,RAA(I)

DELTA CAPITAL L = 0 QUADRUPOLE TERMS

IF(OPQUA.EQ.1l} GO TO 760
PRINT 101
F=2.
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DO 17 MN=1,NOLEV
QUADRUPOLE SELECTION RULES APPLIED IN NEXT 8 STATEMENTS

IF{ABS(PARITY(I)=-PARITY(MN)).GT..5)G0 TO 17
IF(ABS(CAPS(I)-CAPS({MN)).GT..5) GO TO 17
IF(ABS(CAPL(I)-CAPL(MN})}.GT..5) GO TO 17
IF{ABS(LLITT(I}+LLITT(MN)).LT.-5) GO TO 17
IF(ABS(CAPSP(I)=-CAPSP(MN}).GT..5) GO TO 17
IFCABS(CAPLP(I}-CAPLP(MN}).GT-.5) GO TO 17
IF(ABS(LLITT(I)-LLITT(MN))«GT«2.5) GO TO 17
IF(O0.S5LTABSILLITT(I)-LLITT(MN)) cANDLABS(LLITT(I}-LLITT(MN))elLT.1
1.5) GO TO0 17
IF(ABS(NLITT(I)-NLITT(MN)).GT.NLITG) GO TO 17

FINAL QUADRUPOLE LEVEL IDENTIFICATION PRINTED 0OUT

PRINT 110
PRINT 102y NLITT(MN} LLITT(MN),CAPS(MN)},CAPL(MN),PARITY (MN)
PRINT 111y CAPSP{(MN) ,CAPLP{MN}

DISTINCTION MADE BETWEEN LEVELS WITH SMALLER AND LARGER LLITT

BIGSML=LLITT(I)

IF(LLITT(I)-LLITT(MN)<LT20.) BIGSML=LLITT(MN)
IF(ABS(BIGSML-LLITT(I}) oLTee«5) LGR= 1
IF{ABS(BIGSML—-LLITT(MN}) .LT..5) LGR= MN
IF(ABS(BIGSML-LLITT(I)) oLTa..5) LSM=MN
IF(ABS(BIGSML-LLITT(MN)) oLTeo5) LSM=I
DIFF=STARN(LSM)-STARN(LGR}

IF(NPROP.NE.1) GO TO 905

COULOMB APPROXIMATION QUADRUPOLE RADIAL MATRIX ELEMENT TABLE
ENTRY POINTS PRINTED OUT

PRINT 113, STARN(LGR)
PRINT 114+ STARN(LSM)
PRINT 125, DIFF

SQUARE OF QUADRUPOLE RADIAL TRANSITION INTEGRAL CALAULATED

CALL BATES(STARN(I)yLLITT(I),STARN(MN),LLITT(MN)},F,Z,RSQAVE)
PRINT 104

CALL RACAH (LLITT(I) CAPL(I)sLLITT(MN) CAPL (I} CAPLP(I) FsW2)

PROPER COEFFICIENT CHOSEN FOR TRANSITIONS WITH EITHER O CHANGE,
ORy + OR = 2 CHANGE IN LLITT. ( SEE EQUATION (C5) )

COEFF=24/3e%(2%J(Ny I} #1a)%(2.%CAPL{I)+1.)*%2%RSQAVE
TFCABS(LLITT(MN)=LLITT(I})eLlT.o5) COEFF=COEFF*BIGSML*(BIGSML#1.) %*(2
1.*¥BIGSML#1.)/((2.%BIGSML—1.)%(2.*%BIGSML+3.))
IFCABS(ABS(LLITT(MN) =LLITT(I))=2¢) oL Teo5)COEFF=COEFF*3,%{BIGSML—-1.
1 )*BIGSML/(2.%(2.*BIGSML-1.})

NO=NOJS({MN)

DO 16 M=1,NO

FF((TI(MsMNI=TJI(NyI) )L TeOIPRINT 107,J(M,MN)
IFC((TI(MyMNI-TI(N,I))LT.0.)GO TO 16
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FURTHER QUADRUPOLE SELECTION RULES APPLIED IN THE NEXT 5 STATEMENTS

IF(ABS(J(N,I}-J(MyMN}).GT.2.5) GO TO 16
IF(ABS(J(NsI)+J(M,MN)).LT.1.2) GO TO 16
IF(ABS(NLITT(I)-NLITT(MN}).GT..5) GO TO 751
IFCABS(LLITT(I)~-LLITT(MN}).GT..5) GO TO 751
IF{ABS(J{NsI)-J(MsMN)) oLT.o4) GO TO 17

751 CALL RACAH (CAPL(I)sJ(NsI)sCAPL(I)}J(MsMN),CAPS({I),FsWl)

QUADRUPOLE TRANSITION PARAMETERS CALCULATED AND PRINTED OUT

S=COEFF*W1*x&2%W2%*¥2% (2, *¥J(MyMN) +1.)
IF(TI(NS IV eEQaTJ(My, MN) I PRINT 115
IFITJ(Ns I)EQ.TJ(M,MN})IGO TO 222
WAADP=2, %P I*CR(TJ(N, I)-TIJ(M,MN) I *(~1.)
XLAM=1,0E8/(TJIN,I)-TI(M MN})*(-1.)
PRINT 105,J(MyMN) ¢Sy WAADP,XLAM
IF{OPFVA.NE.3) GO TO 16
AAAPN=ALPHA% (AOBOHR/C) **4 /(3204 *(2.*%J(MyMN)+1.) ) *¥WAADPH%5%S
PRINT 1264AAAPN
GO TO 16
222 PRINT 119,J(MsMN),S
16 CONTINUE
17 CONTINUE

DELTA CAPITAL L = 1 QUADRUPOLE TERMS

PRINT 106
DO 310 M=1,NOLEV
IFCABSINLITT(I)=-NLITT(M)).GT.NLITO) GO TO 310

QUADRUPOLE SELECTION RULES APPLIED IN NEXT 8 STATEMENTS

IF(ABS(PARITY(I)-PARITY(M)) .GT..5) GO TO 310
IF(ABS{CAPS(I)-CAPS(M)) .GT..5) GO TO 310
IF(ABS{ABS(CAPL(I)-CAPL{(M))-1.).GT<.5) GO TO 310
IFCABS(LLITT(I)+LLITTIM) )L T..5) GO TCO 310
IF(ABS(CAPSP(I}-CAPSP(M})}.GT..5) GO TO 310
IF(ABS(CAPLP(I)-CAPLP(M))}.GT..5) GO TC 310
IFCABS(LLITT(I}-LLITT(M)).GT.2.5) GO TO 310
IF(0e5LT.ABS{LLITT{INI-LLITT(M) )« ANDLABS(LLITT(I)-LLITT(M)) .LT1.5

1) GO TO 310
FINAL QUADRUPOLE LEVEL IDENTIFICATION PRINTED OQUT

PRINT 110
PRINT 102, NLITT(M),LLITT(M),CAPS(M),CAPL(M),PARITY (M)

PRINT 111, CAPSP(M),CAPLP(M)
DISTINCTION MADE BETWEEN LEVELS WITH SMALLER AND LARGER LLITT

BIGSML=LLITT(I)

ITF(LLITTC(IN-LLITT(M) L T<0.} BIGSML=LLITT(M)
IF(ABS(BIGSML=~LLITT(I}) .LT..5) LGR= [
IF(ABS(BIGSML=LLITT(M}) oLTee5) LGR= M
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IF(ABS(BIGSML-LLITT(I)) 4LT..5)} LSMN=M
IF(ABS(BIGSML-LLITT(M)) oLT..5) LSH=I
DIFF=STARN(LSM)-STARN(LGR)
IF(NPROP.NE.1) GO TO 904

COULOMB APPROXIMATION QUADRUPOLE RADIAL MATRIX ELEMENT TABLE
ENTRY POINTS PRINTED OUT

PRINT 113, STARN(LGR)
PRINT 114, STARN(LSM)
PRINT 125, DIFF

SQUARE OF QUADRUPOLE RADIAL TRANSITION INTEGRAL CALAULATED

CALL BATES(STARN(I) 4LLITT(I) STARN(M)LLITT(M),F,y2Z,RSQAVE)
PRINT 104
CALL RACAH (LLITT(I)CAPL(I)sLLITTI(M)CAPL(M),CAPLP(I),F,H3)

PROPER COEFFICIENT CHOSEN FOR TRANSITIONS WITH EITHER O CHANGE,
OR, + OR - 2 CHANGE IN LLITT. ( SEE EQUATION (C5) )

COEFF=24/3%{2.%J(Ny I} +1a)% (2. %CAPL(I I +1.) %(2.%CAPL(M) # 1. )WIk%2%R
1SQAVE

TF(ABS(LLITT(M}-LLITT(I)) «LT..5)COEFF=COEFF*BIGSML*(BIGSML+1.) *(2
1-*BIGSML#1.)/((2.%BIGSML~1.}*(2.*%BIGSML+3.))
IFCABSCABS(LLITT(M)=LLITT(I))=224)elT+e5)COEFF=COEFF*3,%(BIGSML~1.)
1 *BIGSML/(2.%(2.%BIGSML-1.))

NO=NOJS (M)

DO 33 NX=1,NO

IFCITICNXsMI=TI(NsI)) el TaO)PRINT 1075 J(NX,M)
IFC(TIINXsMI-TI(NyI))eLT.0.)GO TO 33

FURTHER QUADRUPOLE SELECTION RULES APPLIED IN THE NEXT 5 STATEMENTS

IF(ABS(J(NXyM)I=J(NyI)).GT.2.5) GO TO 33
IF(ABSCJINXyMI+J(Ns [})elTele2) GO TO 33
IF(ABSINLITT(I)=NLITT(M )J.GTe..5) GO TO 752
IFCABS(LLITT(I)=-LLITT(M ))eGT.-5) GO TO 752
IFCABS(JUN+I)=J(NXyM)) .LTee4) GO TO 310

CALL RACAH (CAPLU(I}+JUN+I),CAPL(M) 4J(NXsM)sCAPS(I),F,W4)

QUADRUPOLE TRANSITION PARAMETERS CALCULATED AND PRINTED 0OUT

S=COEFFX*W4x%k2% (2. %J(NXyM)+1l.)
IF{TJ(N+T) JEQ.TJ(NXyM))}PRINT 115
IF(TJ(NsI)oEQ.TJ(NX,M))IGO TO 333
WAADP=2.%PI*C*(TJ(Ns I)=-TJ(NXsM))*(~-1.)
XLAM=140E8/(TJUINLI)=TIJ(NXsM))I*(-1.)
PRINT 1054J(NXsM} Sy WAADP,XLAM
IF(OPFVA.NE.3) GO TO 33

AAAPN=ALPHA* (AOBOHR/C)} *%4/( 320 ¥(24*¥J(NXsM)+1. ) ) *WAADP*%5%S
PRINT 1264+AAAPN

GO TO 33

PRINT 1194J(NXsM),S

CONTINUE

CONTINUE
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DELTA CAPITAL L = 2 QUADRUPOLE TERMS

903

PRINT 108
DO 31 M=1,NOLEV
IFCABSINLITT(II-NLITT(M))GTNLITO) GO TO 31

QUADRUPOLE SELECTION RULES APPLIED IN NEXT 8 STATEMENTS

IF(ABS(PARITY(I)~ PARITY(M)).GT««5) GO TO 31
IF{ABS({CAPS(I)-CAPS( M)} GT4.5) GO TO 31

IFCABS (ABS(CAPL(I}-CAPL(M))=-2.).GT..5) GO TO 31
IFCABS(LLITT(I}+LLITTIM}) .LT.25) GO TO 31
IF(ABS(CAPSP(I)-CAPSP(M)) .GT..5) GO TO 31
IF(ABS(CAPLP(I)~CAPLP(M)) .GT..5) GO TO 31
IF(ABS(LLITT(I)-LLITT(M)).GT.2.5) GG TO 31

IF(0.S5LTAABSCLLITT(I)=LLITT(M) ) ANDLABS(LLITT(I}-LLITT(M}).LT.1.5

1) GO TOo 31
FINAL QUADRUPOLE LEVEL IDENTIFICATION PRINTED OUT

PRINT 110
PRINT 102y NLITT(M) 4LLITT(M)+CAPS(M),CAPL(M),PARITY(M)
PRINT 111, CAPSP (M), CAPLP(M)

DISTINCTION MADE BETWEEN LEVELS WITH SMALLER AND LARGER LLITT

BIGSML=LLITT(I)

IFCLLITT(I)=-LLITT(M) eLToO0e) BIGSML=LLITT(M)
IF(ABS(BIGSML-LLITT{I})) .LT..5) LGR= 1
IFCABS(BIGSML-LLITT(M)) <LT.e5) LGR= M
IFCABS(BIGSML-LLITT(I}) «LTea5) LSM=M
IFUABS(BIGSML-LLITT(M)) oLT..5) LSM=I
DIFF=STARN(LSM)-STARN(LGR)

IF(NPROP.NE.1) GO TO 903

CaQuULOMB APPROXIMATION QUADRUPOLE RADIAL MATRIX ELEMENT TABLE
ENTRY POINTS PRINTED OUT

PRINT 113+ STARN{LGR)
PRINT 114+ STARN(LSM)
PRINT 125, DIFF

SQUARE OF QUADRUPOLE RADIAL TRANSITION INTEGRAL CALAULATED

CALL BATES(STARN(I) o LLITT(I),STARN(M), LLITT(M),F,Z,RSQAVE)

PRINT 104
CALL RACAH (LLITT(I) CAPL(ID4LLITT (M), CAPL(M)4CAPLP(I}sF,W5)

PROPER COEFFICIENT CHOSEN FOR TRANSITIONS WITH EITHER O CHANGE,
ORy + OR - 2 CHANGE IN LLITT. ( SEE EQUATION (C5) )

COEFF=2%(2.%J(NyI)+2a ) *¥( 2. %CAPL(I)+1s) % (2.*%CAPL(M)+1.) % W5%%2%RSQA

1VE/ 3.
TF{ABS(LLITT(M)=LLITT(I)) oL T«5)COEFF=COEFF*BIGSML*(BIGSML+1.) *(2.

1 *BIGSML+1)/((2.%BIGSML~1.)*(2.%BIGSML+3.))
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IF(ABS(ABS(LLITT(MI-LLITT(I})~2.
1 *BIGSML/(2.%(2.*%BIGSML~-1.))

NO=NOJS(M)

DO 699 NX=1,NO

) eLTae5)COEFF=COEFF*3,%(BIGSML-1.)

IF((TJINXsMI=TI(NsI) D)oL ToO0.)PRINT 1079 J(NX,M)
TF((TIINXoM)I-TJ(N»I})elLT.0.)GO TO 699

FURTHER QUADRUPOLE SELECTION RUL

IFCABS(J(NXsMI=J(NyI)} .GT.2.5)

IF(ABS(J(NXyMI+Ji{Ns I 1) oLlTa1.2) G
IF(ABSINLITTC(ID=-NLITT(M })oGTee5
IF(ABS(LLITT(I)=LLITT(M )).GTaeS
IF(ABSCJ(NsIDN=J(NXsM)) oLTec4) GO
CALL RACAH (CAPL(I),J(N,I),CAPLI(

QUADRUPOLE TRANSITION PARAMETERS

S=COEFF*Wo¥%2%(2.%J( NXyM)+1.)
IF(TJ(NSTD.EQ. TJ(NXs M))PRINT 115
IF(TI(NGI)EQ.TJU(NX+M)IGD TO 444
WAADP=2.*%PI*C*x(TJ(N,I}=TJ(NX,M))
XLAM=1.0E8/(TJ(NyI)=TI(NXsM))*(~
PRINT 105+J(NXsM)+Se WAADP+XLAM
IF(OPFVALNE.3) GO TO 699
AAAPN=ALPHA*(AOBOHR/C) *%4/ (3204 %
PRINT 126+AAAPN

GO TO 699

PRINT 119+J(NXsM),S

CONTINUE

CONTINUE

DIPOLE TERMS

CONTINUE

F=1.

PRINT 112

DO 50 M=1.NOLEV
IF(ABSINLITT(II-NLITT(M)}).GT.NLI

DIPOLE SELECTION RULES APPLIED I

IFCABS(CAPLP(I)-CAPLP(M))} .GT..5
IF(ABS(CAPSP({I)-CAPSP(M)) .GT..5
IF(ABS (ABS{PARITY(I)-PARITY (M))-
IF(ABS(CAPLII)-CAPL(M)) .GT.1.5)
IF(ABS(CAPL(I)+CAPL(M)) .LT.0.5)
IF(ABS({CAPS(I)-CAPS(M)) .GT..5)
IFCABSCABSILLITT(I)I=-LLITT(M))~-1.

DISTINCTION MADE BETWEEN LEVELS
BIGSML=LLITT(1I)

ES APPLIED IN THE NEXT 5 STATEMENTS

GO TO 699
g0 T0 699
) GO TO 753
}) GO TO 753
T0 31
M) 3 JINX,sM) ,CAPS(I),F,W6)

CALCULATED AND PRINTED 0OUT

*(—lo)
1.}

(2.%J(NXgM)+1e)} )X WAADP % %5%S

T0) GO TO 50
N THE NEXT 7 STATEMENTS

) GO TO 50
) GO TO 50

2.).GT..5) GO TO 50
GO TO 50

GO TO SO

GO TO S50

).GT..5) GO TO 50

WITH SMALLER AND LARGER LLITT

IFCLLITT(I)=LLITT(M) oL T.0a)BIGSML=LLITT(M)

IF(ABS(BIGSML-LLITT(I}) .LT..5)

LGR= 1
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IF(ABS(BIGSML=LLITT(M)) <LTe.<5) LGR= M
IF(ABS(BIGSML=LLITT(1I)) .LT..5) LSM=M
IF(ABS(BIGSML-LLITT{M)) oLT..5) LSM=1

P=9,%STARNI(LGR) *%2%ABS(STARN(LGR)*%¥2-BIGSML*%2) f(Z*%2%4.%(4.%BIGSM

1L*%2-1.))
DIFF=STARN(LSM)~STARN(LGR)

FINAL DIPOLE LEVEL IDENTIFICATION PRINTED OUT

PRINT 110
PRINT 102y NLITT(M),LLITT(M),CAPS(M),CAPL(M),PARITY (M)

PRINT 111, CAPSP(M),CAPLP(M)
IF(NPROP.NE.1) GO TO 707

COULOMB APPROXIMATION DIPOLE RADIAL MATRIX ELEMENT TABLE ENTRY
POINTS PRINTED OUT

PRINT 113, STARN(LGR)
PRINT 114+ STARN(LSM)
PRINT 125,DIFF
STARNL=STARN(LGR)

SQUARE Of DIPOLE RADIAL TRANSITION INTEGRAL CALCULATED

CALL BATES(STARN(I) 4 LLITT(I)sSTARN(M), LLITT(M},FsZ,RSQAVE)
PHISQ=RSQAVE*4 o *7%%2 /(9 ¥ STARNL %#2%ABS (STARNL*%2-B IGSML *%*2) )

PRINT 116
CALL RACAH (LLITT(I) CAPLCI)sLLITT(M) CAPL{M),CAPLP(I)+F4WT)

NO=NOJS (M)

DO 49 NX=1.NO
IFC(TI(NXsMI-TUINsI) )L ToOIPRINT 1074JINX,M)

IFC(TIINX oy M)=TIINsI)ieLTo0.3G0 TO 49

FURTHER DIPOLE SELECTION RULES APPLIED IN THE NEXT 2 STATEMENTS
IF(ABS(J(N+I)+J(NXsM))LTL0.5) GO TO 49

IFCABS(J(NsI}=JINX,M)) .GT.1l.5) GO TO 49

CALL RACAH (CAPL(I)»J(NsI},CAPL(M) J(NXsM)4CAPS(I)sF,W8)

DIPOLE TRANSITION PARAMETERS CALCULATED AND PRINTED OUT

SRAAP=(2.*J(NXs M) 41, ) *{2.%¥CAPL(T)+1.)*(2.%CAPL(M)+1.) *BIGSML*(4.%B

LIGSML*%2=14 ) W TH%2%W 8%% 2

PRAAP=SRAAP*pP

RAAP=PHISQ*PRAAP

SAAPN=RAAP *(2.%J(NysI)+l.)
IFCTJ(NSID.EQ.TJINXsM)}PRINT 115
IF(TJ(NsI)EQ.TJ(NXyM))GO TO 555

WAAP=2 %P I*CE(TJI(Ns I I-TI(NXsM) ) %(~-1.)
XLAM=o1E9/{TJIN,I)-TI(NXsM) )%(-1.)

PRINT 1059 J(NXsM)ySAAPNsWAAP+XLAM

IF(OPFVA.EQ.2) GO TO 49
FAAPN=2,%A0BOHR/ (3. % ALPHAXC*(2.%J(NyI)+1.) ) X WAAPXSAAPN
AAAPN=4, ¥*ALPHA®ACBOHR*#* 2/ (3 4 *C*4 2% (2. %J(NXyMI+1. ) ) 5 WAAP*%3%x SAAPN
PRINT 717+ FAAPN,AAAPN
GO TO 49

PRINT 119+J(NXsM},SAAPN
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49 CONTINUE
50 CONTINUE
15 CONTINUE
915 CONTINUE

10
11

PRINT 916
sTaP
END

RACAH COEFFICIENTS CALCULATED ( SEE EQUATION (10} )

SUBROUTINE RACAH{(AyB+CyDsEsFoW)
W=0.

CALL DELTA(A,B,E,D1)

CALL DELTA(B,D,F,D2)

CALL DELTA(A,F4C,D3)

CALL DELTA(EsDsC,D4)

SUM=0.0

DO 10 N=1,20

X=N

Y=X+.,000001

Tl=Y-A-B~-E

T2=Y-B-D-F

T3=Y-A-F-C

T4=Y-E-D-C

TS=A+B+C+D=-X

T6=A+D+E+F=X

T7=B+C+E+F~X

IF(TleLTe-.5)G0 TO 10
IF(T24LT.=.5)G0 TO 10
IF(T3.LT.=-.5)G0O TO 10
IF(T4.LT.-.5)G0 7O 10
IF(TS.LT.=-.5)G0 TO 11
IF{T6.LT.-.51G0 TO0 11
IF{T7T.LT.~-.5)G0 1O 11

DENOM= GAMMF(T1+1les0}%* GAMMF(T2+1l.,0)% GAMMF(T3+41.,0)%
1 GAMMF(T4+1.,0)% GAMMF(TS5+1.,0)*% GAMMF(T6+1.,0)*%GAMMF(TT7+1.,0)
XNUM= (-1.)}**N%*GAMMF (X+2.,0)
SUM=SUM+XNUM/DENOM

CONTINUE

K=A+B+C+D

W=(=1e ) X*%K%D1%D2%D3 * D4 *SUM
RETURN

END

THE DELTA FUNCTION CALCULATED ( SEE EQUATION (11) )

SUBROUTINE DELTA(EM, ENsEL,D)

D=0«

IF(EM+EL-EN.LT.=-45)G0 TO 20

IF(EN+EL-EM.LT.-.5)G0 TO 20

IF{EM+EN-EL.LT.-.5)G0 TO 20

GT= GAMMF(EM+EN~-EL+1 440 )%GAMMF(EN+EL-EM+1.,0)% GAMMF(EL+EM-EN+1.
1 +0) /GAMMF( EM+EN+EL+24,0)
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IF(GT.LT.0.) WRITE(6+10) EM,EN,EL
FORMAT(18H IN DELTA GT NEG+3E17.8)
D= SQRT(GT)

CONTINUE

RETURN

END

SQUARE OF THE COULCMB APPROXIMATIGN RADIAL TRANSITION INTEGRAL
CALCULATED { SEE EQUATIONS (61,(8),(9) )

SUBROUTINE BATES(STAR,L+STARP,LP,ALFA,Z,RSQUAR)

DIMENSION A(50),AP(50)

REAL L.LP

IF(STARP=-LP.LT..2) GO TO 15

MAX=STAR+STARP+ALFA-.99

S=STAR+STARP

A(l)=1.

AP(l)=1.

IF(MAX.LT.2} GO TO 11

DO 10 I=2.MAX

XI=I~-1
ACIDI=A(I-1)*(~1)ASTAR*®(STAR-L-XI}*({STAR+L-XI+1.}/(2.%XI)
AP(TI)=AP(I-1)%(-1.) *STARP*( STARP-LP-XI)*(STARP+LP-XI+1le}/(2.%XI}
CONTINUE

GT= GAMMF(STAR+L+1l.,40}*GAMMF(STAR~LyO0)*GAMMF(STARP+LP+1.+0)
1 *GAMMF(STARP-LP,0)

IF(GT4LYa0s) WRITE(64+20) STARyL4+STARP

FORMAT( H IN BATES GT NEG+3E17.8)

F=2.%%SRSTAR®X( STARPH+ALFA+2. )%ASTARP**(STAR+ALFA+2.)/ (S**(S+ALFA+3.
1)%Z%*xALFA%* SQRT(GT))

MAX=MAX+1

SUM=0.

DO 12 K=1.,MAX

DO 13 KP=1.MAX

IF(K#KP.GT.MAX) GO TO 12
IF(STAR+STARP+3.+ALFA-FLOAT(K+KP).LT..2) GO TO 15
SUM=SUM+A(K) *AP(KP) * (1. /STAR+1./STARP) k% (K+KP) *GAMMF ( S¥ALFA+3.~FLO
1AT(K+KP),0)

CONTINUE

CONTINUE

SUM=SUM*F

RSQUAR=SUM**2

GO TO 16

RSQAR=0.

RETURN

END
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Sample Input Deck

c CARD 1 ( OPTIONS )}
c OP QUA, OPFVAZNPROP,NLITO
2 3 1 2.0
c CARD 2 ( ATOMIC SYSTEM DEFINED, HELIUM I )
c ELEMNO,Z,NOLEV,NDSER

2 1. 6 1

c CARD 3 ( THERE IS ONLY 1 CARD LIKE CARD 3, SINCE HE I HAS ONLY 1 SERIES )
c CAPSSUI1),CAPLS{I),SLIMI(I)

«5 0. 198305.7

c THE REMAINING DATA CARDS ARE IN TWO-CARD SEQUENCES WITH ONE TWO-CARD
c SEQUENCE FOR EACH INPUT LEVEL ( THUS THERE ARE SIX TWO-CARD SEQUENCES,
c SINCE NOLEV = 6 )
C 1ST CARD QF 1ST SEQUENCE
C NLITT{1),)LLITT(L),CAPS(L),CAPL(1)+PARITY(1),CAPSP(1),CAPLP(1)
2. 0. l. 0. 2. 0.5 O.
C 2ND CARD OF 1ST SEQUENCE
c TJ(Ny1)yN=1yNOJS (1ST LEVEL )

159850. 318

c 1ST CARD OF 2ND SEQUENCE

c NLITTI2V,LLITT(2),CAPS(2),CAPL(2),PARITY(2),CAPSP(2),CAPLP(2)
2. 1. 1. 1. 0. 0.5 0.

c 2ND CARD OF 2ND SEQUENCE
c TJINy,2),N=1,NOJ (2ND LEVEL )

169082.185 169081.189 169D081.111
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c 1ST CARD OF 3RD SEQUENCE
c NLITT(3),LLITT(3),CAPS(3),CAPL(3),PARITY(3),CAPSP{3),CAPLP (3}

3. 1. l. 1. 0. 0.5 O.

c 2ND CARD OF 3RD SEQUENCE
c TJ(N;3)yN=1,NOJ (3RD LEVEL )

185559.277 185559.085 185558.920

c 1ST CARD OF 4TH SEQUENCE
c NLITT(4),LLITT(4)yCAPS(4),CAPL(4),PARITY (4),CAPSP{4),CAPLP(4)

3. 2. 1. 2. 2. 0.5 0.

c 2ND CARD OF 4TH SEQUENCE
Cc TJ(Ny& ) ,N=1,NOJ (4TH LEVEL )

186095.900 186095.900 186095.900

c 1ST CARD OF STH SEQUENCE
" NLITT(S5),LLITT(5),CAPS{5),CAPLI5),PARITY(5),CAPSP(5),CAPLP(5)

4. l. 1. 1. o. 0.5 0.

c 2ND CARD OF 5TH SEQUENCE
c TI(N,S)I,N=1,NOJ (S5TH LEVEL )}

191211.420 191211.420 191211.400

c 1ST CARD OF 6TH SEQUENCE
C NLITT(6),LLITT(6),CAPSI6)Y,CAPL(6)PARITY{6).CAPSP{6&),CAPLP(6)

4. 2. 1. 2. 2. 0.5 0.

c 2ND CARD OF 6TH SEQUENCE
c TJ(Ny6)yN=L,NOJ (6TH LEVEL )

191438.830 191438.830 191438.830
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Sample Printout

c

c HELIUM 1

g OPTION VARIABLE VALUES ARE 0OPQUA=2,0PFVA=3,NPROP=14NLIT0=2.0

ELEMENT NUMBER, 29 WITH Z= 1

INITIAL LEVEL

LITTLE N= 2y LITTLE L= Oy CAPITAL S= 1.0, CAPITAL L= 0.0, PARITY= 2
PARENT TERM CAPITAL S= «5¢ CAPITAL L= 0.0

INITIAL J VALUE J= 1.0, RAA= 21.790

DELTA L EQUALS O QUADRUPOLE TERMS

DELTA L EQUALS 1 QUADRUPOLE TERMS

DELTA L EQUALS 2 QUADRUPOLE TERMS

FINAL LEVEL

LITTLE N= 3, LITTLE L= 2y CAPITAL S= 1.0, CAPITAL L= 2.0, PARITY= 2
PARENT TERM CAPITAL S= «5¢y CAPITAL L= 0.0
N STAR OF LARGER LITTLE L VALUE= 2.998
N STAR OF SMALLER LITTLE L VALUE= 1.689
DIFFERENCE= -1.309
FINAL J VALUES S WAADP LAMDA
1.0 2.6306E+02 4.9438E+15 3810.2
A= 5«.7319E+00
2.0 4.3842E+02 4.9438E+15 3810.2
A= 5.7319E+00
3.0 6.1379E+02 4.9438E+15 3810.2
A= 5.7319E+00

FINAL LEVEL

LITTLE N= 4y LITTLE L= 2y CAPITAL S= 1.0y CAPITAL L= 2.0y PARITY= 2
PARENT TERM CAPITAL S= «5¢ CAPITAL L= 0.0

N STAR OF LARGER LITTLE L VALUE= 3.998

N STAR OF SMALLER LITTLE L VALUE= 1.689

DIFFERENCE= -2.308
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FINAL J VALUES S WAADP LAMDA
1.0 3.47T44E+01 5.9502E+15 3165.7
A= 1.9120E+00
2.0 5.7907€E+01 5.9502E+15 3165.7
A= 1.9120E+00
3.0 8.1069E+01 5.9502E+15 3165.7
A= 1.9120E+00

DIPOLE TERMS

FINAL LEVEL

LITTLE N= 2y LITTLE L= 1, CAPITAL S= 1.0, CAPITAL L= 1.0, PARITY= O
PARENT TERM CAPITAL S= «5y CAPITAL L= 0.0 .
N STAR OF LARGER LITTLE L VALUE= 1.938
N STAR OF SMALLER LITTLE L VALUE= 1.689
DIFFERENCE= - <249
FINAL J VALUES S WAAP LAMDA
-0 6.48T7E+00 1.7390E+15 10832.0

ABS. OSCILLATOR STRENGTH= 6.0643E-02 A= 1.0342E+07

1.0 1.9463E+01 1.7390E+15 10832.0
ABS. OSCILLATOR STRENGTH= 1.8191E-01 A= 1.0338E+07

2.0 3.2438E+01 1.7390E+15 10832,0
ABS. OSCILLATOR STRENGTH= 3.0318E-01 A= 1.0338&+07

FINAL LEVEL

LITTLE N= 3y LITTLE L= 1, CAPITAL S= 1.0, CAPITAL L= 1.0y PARITY= O
PARENT TERM CAPITAL S= «5y CAPITAL L= 0.0
N STAR OF LARGER LITTLE L VALUE= 2.934
N STAR OF SMALLER LITTLE L VALUE= 1.689
DIFFERENCE= -1.245
FINAL J VALUES S WAAP LAMDA
«0 2.5533E-01 4.8426E+15 3889.7

ABS. OSCILLATOR STRENGTH= 6.6464E-03 A= 8.7900E+06

1.0 T7.6598E-01 4.8426E+15 3889.7
ABS. OSCILLATOR STRENGTH= 1.9939E-02 A= 8.7898E+06
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2.0 1.2T66E+00 4¢8426E+15 3889.7
ABS. OSCILLATOR STRENGTH= 3.3231E-02 A= 8,7896E+06

FINAL LEVEL

LITTLE N= 4y LITTLE L= 1, CAPITAL S= 1.0y CAPITAL L= 1.0, PARITY= O
PARENT TERM CAPITAL S= <59 CAPITAL L= 0.0
N STAR OF LARGER LITTLE L VALUE= 3.933
N STAR OF SMALLER LITTLE L VALUE= 1.689
DIFFERENCE= -2.244%
FINAL J VALUES S WAAP LAMDA
-0 8.2923E-02 5«9073E+15 3188.7

ABS. OSCILLATOR STRENGTH= 2.6331E-03 A= 5.1819E+06

1.0 2.48T7T7E-01 5.9073E+15 3188.7
ABS. OSCILLATOR STRENGTH= 7.8994E-03 A= 5.1819E+06

2.0 4.1461E-01 5.9073E+15 3188.7
ABS. OSCILLATOR STRENGTH= 1.3166E-02 A= 5.1819E+06

33



APPENDIX B
RELATIVE LINE AND MULTIPLET STRENGTHS FOR DIPOLE TRANSITIONS

In the notation of Shore and Menzel (ref. 20), the line strength may be factored as

S(a,0") = S(a',0) = RlzineRzznult 12 (B1)
where Ry, . and Rt are the line factor and multiplet factor, respectively, and I

the radial factor. They are related to the customary relative line and multiplet strengths
(tabulated by Goldberg in refs. 21 and 22) and the radial factor o by

r2
. line
S(line) = B2
(line) = 5o 1 =
S(mult) = 25(2S + 1)(4@ - 1>R12nu1t (B3)
2
o2 = I (B4)
l>(4l§ - 1)

where S is the total atomic spin quantum number and I, is the larger of the individual
electron orbital angular momentum quantum numbers ! and 1'.

The radial factor I is related to the radial transition integral Ig by

1= (1”7 5 (B5)

Under the restrictions of LS coupling and transitions involving no equivalent elec-
trons, the relative line and multiplet strengths can be expressed in terms of Racah coef-

ficients W(abcd;ef) (ref. 9) as

Sine) = &+ V@I + 1) w21 57.150.51) (B6)
(25 +1)
and
S(mult) = (28 + 1)L + 1)(2L"' + 1)z><4z§ - 1)w2(sz'L' ;L11) (B")

The usual notation has been used for the total atomic orbital angular momentum quantum
number L and the total atomic angular momentum quantum number J; the subscript 1
indicates that the quantum number refers to the parent configuration. Racah coefficients
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can be found in tabular form (ref. 10) or can be calculated by computer (eq. (10)). In
order to generalize the results to equivalent electron configurations, coefficients of
fractional parentage are required (ref. 20).
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QUADRUPOLE RELATIONS

For quadrupole transitions (ref. 23), the transition probability can be expressed in
terms of the quadrupole line strength as

5
Alg,a') = _1 e_z. 6 _c__1_<lTa - Tol S(a,0) (C1)
? 320\lic/ ag g, Re e2,4

The quadrupole line strength can be factored analogously to the dipole line strength

as
" o vy 2R 2 )
S(a,a') = S(a',0) = 3 RineRmuit I (C2)

where the angular factors can be expressed as

: 1/2
Ryine = (157777 E2J +1)@J + lﬂ / W(LJL'J";S2) (C3)
and
L1-I-L' 1/2
Rmult = (-1) l@L+1fo+lﬂ W@Lvnuq% (C4)

The radial factor is given by

( 1/2
l:l(l + 1)(21 + 1)} Ip (Al = 0 transitions)
(22 - 1)(22 + 3)

(C5)

1/2
) (< + 1)(l< +2) I (Al = £2 transitions)
2(21< + 3)

where Ip is the quadrupole radial transition integral Ig (defined by eq. (6)) with

s =2.
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SCALED THOMAS-FERMI METHOD

The scaled Thomas-Ferm. method of Stewart and Rotenberg (ref. 4) makes use of
the Thomas-Fermi statistical model of atoms and ions. The potential due to the core of
a multiple electron atom can be approximated by the potential of an appropriate Thomas-
Fermi ion at all radial distances (since outside the Thomas-Fermi ion the potential
becomes the correct Coulombic one), namely a Thomas-Fermi ion with net charge and
nuclear charge equal to the core charge and nuclear charge of the actual atom or ion,
respectively. Stewart and Rotenberg introduce a scaling factor which allows for uniform
contraction and dilatation of the Thomas-Fermi core in an effort to compensate for the
inadequacies of the Thomas-Fermi model. The scaling factor is determined by requiring
that the energy parameter be identical to the measured energy value of the system.
Stewart and Rotenberg have shown that the wave functions obtained by the scaled Thomas-
Fermi method compare favorably with the wave functions obtained by the more sophisti-
cated seli-consistent-field method. In the region outside the Thomas-Fermi core, the
scaled Thomas-Fermi method yields radial wave functions which are identical to the
Bates-Damgaard Coulomb approximation wave functions except for a difference in the
normalization factor.

A problem sometimes encountered in applying the scaled Thomas-~Fermi method
deserves mention. A Thomas-Fermi ion exists only when the binding energy of the sys-~
tem is greater than the corresponding hydrogenic value. When this requirement is not
met, a negative Stewart-Rotenberg scaling factor results which implies that the Thomas-
Fermi ion has a radius smaller than zero, that is, no Thomas-Fermi ion exists. In such
cases the Bates-Damgaard Coulomb approximation should be used.

Such a situation exists in neutral helium for all the singlet states given in table I.
Instead of abandoning the scaled Thomas-Fermi method for the singlet states, the binding
energies of the singlet states were replaced by the average energies obtained from

_ E(singlet) + 3E(triplet)
B 4

Eav (1)
This artifact makes the Stewart-Rotenberg scaling factor positive and finite for all the
singlet states. The results of these calculations for the singlet states are presented in
table I (enclosed in brackets), but in general they may be expected to be less accurate
than the corresponding Coulomb approximation results.
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