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Section I
 

INTRODUCTION
 

This report covers work performed during an analytical and experimental study of the 

possible limitations existent in utilizing small-scale models for determination of 

spacecraft thermal behavior. The work was supported by the Space Sciences Labora­

tory. Marshall Space Flight Center, National Aeronautics and Space Administration. 

Huntsville. Alabama. 

It was recognized at the inception of the study effort that to uncover all possible limi­

tations in the use of spacecraft thermal models would be an impossible undertaking 

since there is little doubt that there are as many difficulties associated with the design 

of accurate thermal models as there are with complete thermal design of space hard­

ware. Associated with each spacecraft design is a potential limitation in scale factor, 

experimental accuracy, accuracy in model design, etc. While it would be possible to 
set forth a long list of potential limitations based upon the design of particular space­

craft, it is improbable that such a listing would be of material assistance to an 

investigator faced with the decision to undertake a modeling program. Therefore, 

this -study was directed toward uncovering and clarifying the broad limitations existent 

in thermal model studies so that the results could be used as a guide for the uninitiated 

model designer. In this sense, each of the sections treats individual problem areas 

of thermal modeling. 

Presentation of the model criteria in Section 2 has been included under the assumption 

that many readers have not previously been exposed to the similarity requirements. 

The criteria cover the general case where neither temnperature nor materials pre­

servation are used, and also cover each of these special approaches. 
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Sections 3 and 4 deal with the problems of selecting materials for a thermal model. 

The review of spacecraft designs completed for preparation of Section 3 furnished a 

list of materials in common use on spacecraft and led to a search and compilation of 

thermophysical properties data including changes'of properties with temperature. 

The results of the materials survey and problems associated with materials selection 

are discussed in Section 4 and materials property data presented in detail in 

Appendix B. 

It is recognized that a complete spacecraft presents the model investigator with a 

very complex thermal system when viewed in totality. However, any complete sys­

tem can be broken down into subsystems and individual components so that a satis­

factory modeling approach can be selected for the less complex units. Section 5 con­

siders modeling of simple systems such as flat plates, cylinders and spheres which 

have thermal behavior representative of the individual components. Consideration of 

these simple systems points out some of the simplifications that can be used on each 

component to achieve a satisfactory overall design. 

Section 6 presents the approaches used to model three separate spacecraft systems. 

The systems discussed are a solar probe, large aperture telescope, and large diam­

eter unfurlable antenna. Through consideration of the model approaches used and 

data obtained, it is hoped that the reader will gain insight into both the utility and 

shortcomings of thermal model studies. In all three systems it was necessary to 

distort thermal paths and use materials which were not in strict compliance with the 

model criteria. However, a review of the model test results shows that in spite of 

failure to maintain a precise thermal model design, the objectives of the study efforts 

were met. 

The special problems arising in modeling of joints and multilayer insulation systems 

are covered in Sections 7 and 8. Multilayer insulation systems are being used to 

achieve near adiabatic boundary conditions for-temperatures from 10 to 600 0K and 

pose considerable difficulty to the model designer. The systems in current use 
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utilize a wide variety of reflecting surfaces both with and without spacer material. are 

assembled in various layer densities, and may vary from 9 to 90 layers in a single 

blanket. It is obvious that no single approach can be suggested for simulation of this 

wide variety of insulation systems. However, through completion of a thorough 

model study on a single system, it is possible to demonstrate potential techniques for 

modeling other multilayer systems. Such a study was performed on a system com­

posed of aluminized Mylar spaced with Dexiglas and a complete description of the 

methods used and results of that study are presented in Section 7. 

The information presented in this report is intended to provide the reader with suffi­

cient knowledge to judge on the merits of undertaking a small-scale model study for 

experimental verification of prototype thermal behavior. As the title "Limitations 

in Thermal Similitude" implies, a concerted effort has been made to point out the 

major difficulties in pursuing a model study. As a result, many considerations con­

tained in this report are negative in nature and may leave the reader with the impres­

sion that the limitations inherent in model studies rule out the possibility of obtaining 

accurate thermal predictions from a small-scale model. The authors recognize the ­

possibility of creating a negative viewpoint and state that within their experience the 

use of thermal models has been most valuable.- The models of the solar probe and 

telescope described in Section 6 proved invaluable in demonstrating thermal perform­

ance, in providing experience on prototype materials and construction techniques, 

and in proving out techniques for thermal testing of the flight hardware. These 

models were designed, constructed, and tested for one-half the cost of the prelimi­

nary thermal analyses of the prototype. The limitations and difficulties pointed out 

in the following sections were present and considered during these studies; however, 

the problems were not sufficiently serious to detract from the successful implementa­

tion of the model studies. 

In brief, the following report is intended to provide information on the limitations of 

thermal simiilitude so that the model investigator gives each source of difficulty care­

ful consideration. The contents are not intended to place limits on the utility of using 

thermal models. 
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Section 2
 

MODELING CRITERIA
 

Design of small-scale models for thermal studies of spacecraft requires that certain 

specific criteria be followed in order that the model thermal behavior will b'e repre­

sentative of the prototype. The derivation of' criteria for thermal modeling in the 

radiation-conduction coupled space environment has been presented by numerous 

authors. (See for example, Refs. 1, 2,3,4.) In view of the general availability of 

these presentations, the derivations will nbt be repeated here. A somewhat general 

derivation of the thermal modeling criteria, derived from consideration of a differ­

ential equation describing energy transfer in an atmosphere free environment, 

results in the following statement (Ref. 1): -

K*A* T* 
%- - A*I* Q* * A*T*4 (2.1)

Lt
*I 

The starred quantities are ratios of properties between the model and prototype at 

each geometrically similar point. Thus, T* =. T /Tp for similar points on the 

model and prototype. The symbols used are defined as 

p* = pm/Pp = density ratio 

C* = Cm/Cp = specific heat ratio
 

V*= V I/V p = volume ratio
 

0* = 0I/O p = time ratioKmp -


K1 = K /Kp thermal conductivity ratio 

L* = Lm/Lp = length ratio 

A* = Aj /A = ratio of areas receiving radiation from external sources 
m p 

A* = A /A = ratio of areas perpendicular to conductivity path 
n nm np .. 

A* = A. /A. = ratio of areas involved in radiant interchange between 
In P vehicle domponents and to space 
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T* Tm/T p absolute temperature ratio 

Q* = Qm/Qp = ratio of rate of internal energy dissipation within the model 

and prototype 

1* I /I p intensity ratio of external sources of radiant energy 

Equation (2. 1) can be rearranged to provide any desired form as long as the indicated 

idealities remain satisfied at all geometrical locations and at all temperature levels. 

In deriving the form presented in Eq. (2. 1), the following assumptions were used and 

must be satisfied: 

(1) 	 Complex radiation shape factors must be identical for the model and proto­

type. This requires that comparable surfaces have the same thermal 

radiation properties. 

(2) 	 The property ratios, i.e., C*, K*, p*, A*, etc. , are single valued 

under all operating conditions for all 'geometrically similar locations. 

(3) 	 Geometric identity is required if point-by-point similarity is to be 

achieved. 

When these assumptions are met, and the model designed so that the identities in 

Eq. (2. 1) are satisfied for all elements of the model, the model will theoretically 

provide a precise indication of prototype steady state and transient behavior. For 

cases where transients are not involved, the term containing the specific heat and 

time ratios need not.be considered. 

Deviation from compliance with the foregoing three assumnptions is sometimes necessary 

during practical application of thermal modeling. Many times the selected scale ratio 

requires that some of the minor heat-flow paths be distorted to properly model more 

important regions. The extent to which noncompliance with exact modeling can be 

carried depends upon each particular situation and must be evaluated in terms of the 

effects of the resulting distortion on the primary objectives.of the program. The 

effects of deviating from strict compliance with the modeling laws and associated 

assumptions are discussed later in this report. 
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2.1 TEMPERATURE DEPENDENCE OF PROPERTIES 

In actuality, both thermal conductivity (K) and specific heat (Cp) for most materials 

vary with temperature. If K and C are strong functions of temperature in the 

prototype, then their temperature dependence must be properly scaled in the model. 

Errors caused by overlooking such effects are covered in principle by Chao (Ref. 2) 

where the temperature dependence of thermal conductivity and specific heat are 

considered. 

The analysis presented by Chao assumes simple power law functions for both K and 

C . Under this assumption, which is reasonable over a limited temperature range,P 
properties are given by 

K. =C9T (2.2)C T 
P 

The property ratios then become 

T a a (am-a)] 

mm = K*T* m T (a p (2.3) 
aP P
 

CT b b (b-b)C* - b - C*T* mat i (2.4) 
TpP 

Substitution of these results in Eq. (2. 1) gives a more explicit set of model criteria 

that includes the assumed variation in temperature of Eq. (2.2) 

(l+bm) 
T 

(bm-bp) (1+a ) a 
nTK*A*T*T 

0" A* I*
A 

Q* n 
L* 

AT*­

(2.5) 
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A basic requirement for similarity between model and. prototype is that the dimen­

sionless ratios of properties remain constant throughout for all thermal levels of the 

two systems. From Eq. (2.5) it may be seen that this is possible only for the case 

where ain = ap and b in = b p . If these equalities are not met, strict similarity will 

not be achieved. Assuming that materials are available which satisfy the equalities 

and dropping the subscripts for model and prototype gives for Eq. (2. 5) 

p*V*C*T*(l~b) Q,__ n___+b),KAT,(I+ a) 
6* = A*I* = L-A'T* (2.6) 

This result shows that the temperature ratio between model and prototype is influenced 

as a power function by thermal changes in material properties. The potential for 

locating modeling materials where a = ap and bI = bp is further discussed in 

subsection 4.3. 

A major effort during the present program was that of surveying the literature and 

compiling a comprehensive list of the thermophysical properties of typical spacecraft 

and modeling materials. A part of this activity was directed toward finding informa­

tion showing the temperature dependence of a select number of the more commonly 

used materials.' The results show that many materials do not have a power function 

dependence on temperature and that they are better characterized over a large tem­

perature range by a linear relationship of the form 

S K= (1+ 0 T)K0 

Cp =0 ( + 0T )
 

Modeling criteria to incorporate linear temperature dependence of properties were 

derived using the approach described in Ref. 1. A differential equation describing 

the thermal system is written in terms of first the prototype and then the model. 

Dimensionless ratios (e. g. , * C /C ' o a.K 
0 0 0 0 0 0 0 0 0 

In p - In p In p
P* = p /9 , T* T /T etc.) describing the relation between the model and 

0 p 
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prototype parameters are introduced into differential equa.tion providing the following 

identities: 

* T*2p*V*C*T* p*V*C*ta K*A*T* - K*A*I*T*2 = AT*4 
*40 no*T*0 P 

00* * Q* L* L* 1(2.7) 

From these identities it is easily seen that equality of all terms requires that 

a*T* "*T* - 1 (2.8)o 0 

or 

==f* = 1/T* (2.9)
0 0 

The restrictions placed on model design by Eq. (2 . 9) are severe in the sense that, 

for, the general case, the ratio betwden the model and prototype temperature coeffi­

cients must correspond to the inverse of.the temperature ratio. It is highly improbable 

that a prototype constructed of a variety of materials could be exactly modeled under 

these restrictions on the choice of model material thermal properties. This obser­

vation is substantiated by the data presented in Tables 4-1 and 4-2 and in Appendix B 

where very few materials can be selected to give a* = = I/T* at a given value 
0 0 -. 

of T*. For thermal conditions in the prototype with a strong dependence on changes 

in thermal'properties, it is possible that the model temperature ratio T* may have 

to be selected with sole consideration given to the values of aYo and P 0 , rather than 

to the choice of a convenient temperature and time scale for the test. 

Equation (2. 9 ) shows that, for a precise thermal model, the use of identical materials 

in model and prototype to provide a* = * - 1 requires that T* = 1. The first,
0 

fourth, and sixth terms in Eq. (2. 7 ) then give 

V* A* 
* L A* (2.10)0* L* 

8
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which can be satisfied only by severe geometric distortion of conducting paths and 

radiating areas or by the use of L* = '1 ,which results in construction of a full-scale 

thermal test object rather than a small-scale model. 

The material presented in this section provides the uninitiated with the general model 

criteria that must be satisfied to construct an exact thermal scale model of a proto­

type system operating in space. In presenting the criteria, a few difficulties have 

been introduced for purposes of establishing the broad limitations existing in the 

model approach. For situations where material properties can be assumed constant, 

the model design depends primarily on the selection of a model scale temperature, 

or properties ratio which can be satisfied throughout the model. The selection of a 

maximum scale ratio is frequently dictated by considerations of test facility size 

while the minimum scale ratio is limited by ease of manufacturing the smaller com­

ponents, structural rigidity, and frequently the time ratio 0*. 

For cases where temperature-dependent material properties of the prototype must 

be accounted for in the model, the selection of scale ratios is considerably more 

complex. Assuming either a linear or power law dependence for the prototype leads 

to model criteria that are severely restrictive in terms of material selection. It is 

unlikely that a model design of all prototype components could be achieved under these 

conditions without the use of geometric distortion as a means for additional control of 

conducting paths. 
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Section 3
 

TYPICAL SPACECRAFT
 

The previous section has presented the criteria applicable to spacecraft thermal 

modeling and includes an indication of the general areas where difficulty may be 

experienced. Limitations are anticipated in selection of a suitable length ratio, time 

ratio, temperature ratio, and materials properties ratio. 

The major problems involved in modeling one spacecraft may be entirely different 

from those experienced in completing a similar study on a different system. This is 

to be expected since each thermal design is in itself a unique solution to a given set 

of requirements. In spite of the variety of spacecraft thermal designs, it may be 

postulated that trends have been established in overcoming thermal and structural 

problems. Manufacturers frequently tend toward the use of aluminum and magnesium 

for skins and supporting structure due to their favorable strength-to-weight ratio. 

Honeycomb with facing sheets is receiving increasing use as a skin and mounting 

platform material due to its excellent rigidity and light weight. Stainless steel is 

used for secondary support structure, tubing, and fittings where the lighter or lower 

temperature metals are unsatisfactory. Each of these materials lends itself to a 

different solution in terms of modeling considerations. 

Overall size of the prototype may well place limits on the scale ratio used. A vehicle 

1 m in diameter and 2-m long would be most difficult to model at less than 1/2 scale 

since major components become too small to control both thermally and structurally. 

On the other hand, a vehicle 3-m diameter by 10-m long may necessitate a very small 

scale ratio to permit testing in a reasonably sized chamber. 

To gain some specific knowledge of the variety of limitations that may exist in thermal 

model studies, it became necessary to review a number of spacecraft thermal 

10 

LOCKHEED PALO ALTO RESEARCH LABORATORY 
L 0 C K II E CD MISS I I L S & SPAC E COItP A I4Y 
A GROUP DIVISION OF LOCKII ED AIRCRAFT COPPOtAIION 



designs. Through completion of the review, and presentation of the findings, it was 

hoped that general problem areas could be defined and treated in terms of their effect 

on experimental model studies. The required review was completed on 25 separate 

spacecraft. In some cases a great deal of detail was available with respect to geom­

etry and materials while in others only cursory information was received from the 

program office. 

All material received was carefully reviewed and a compilation of spacecraft geometry 

and size made. In addition, a listing of materials was compiled for purposes of 

determining general usage for spacecraft application. The sources of all information 

are indicated in Appendix A. 

The programs reviewed are indicated in Table 1 where the name,- sponsor, mission. 

general shape, and size are indicated. The sizes and shapes of space vehicles are 

highly variable and include cylinders, spheres, triangles, truncated cones, flat 

octagons, and others. None of the shapes used pose a particular problem to the model 

designer though some are such that limits will be imposed on test facilities. Some 

of the vehicles are simply shaped spheres and cylinders, have a minimum of append­

ages causing shadowing, and are spin stabilized. These represent the least difficult 

problem in space simulation since the solar source used need not have a high degree 

of collimation or uniformity. Other vehicles incorporate a variety of complex shapes 

and contain numerous solar cell panels, antenna, and other appendages that shadow 

the solar vector and also cause interreflections. Modeling of these vehicles would 

necessitate use of a facility having excellent collimation,'uniformity, and spectral 

content in the solar simulator. 

Vehicle sizes span a wide range. Some can be enclosed within a 1 cubic meter 

volume while others would require an enclosure of 105 cubic meters. The manned 

past Apollo experiments fall into the larger category while unmanned experiments 

are generally smaller and more compact. Once again there is no apparent limitation 

associated with vehicle size except that scale ratios for the smaller vehicles would 

be held near unity and for the larger vehicles a scale ratio compatible with test 
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Table 1
 

SPACECRAFT DESIGNS REVIEWED
 

Spacecraft Sponsor Mission 
External Shape 

of Appendages Approximate Sizes 
Main Body 

Apollo Applications Program 

AAP Cluster 

NASA Manned, earth 
orbital: multiple 
phase mission in­

- Total envelop 3B x 11 22 w 
including solar cell panels 

eludes rendezvous 
Multiple Docking Adapter and docking, or-

bital laboratory 
workship, and 
solar observations 

Cylindrical with 
one end a truncated 
cone 

-

-

Cylinder 2.92-rn din X 5.28­
in long, truncated cone 
2 92-m dia x 0,81-rm long 
x 0.96-m dia 

with ATM 
Apollo Telescope Octagonal outside 4 solar Octagonal of 3.66m across 

with concentric cy- panels x 3 05-m high; cylinder 
tinder Inside - 2. 13-rn dia ' 3 36-m long. 
Some external tubular framework extends 
tube structure - 1 07 i, cut from each of 
terming triangu-
lar framework 

four sides, four solar panels 
2 6 x 15 2m extending out­
ward from body-lake flower 
petals 

Orbital Workshop Cylindrical 2 solar 
panels 

6.62-m diax 15.2-rn long, 
two solar panels each 
5.35 x 8.85m 

Airlock Module Truncated cone - 6 62-in di. x 2. 92 
-in dia 

x 1.37-m long 

Laboratory Module Cylindrical with - 2.44 x 3. 66 n 
rectangular 
portions 

Solar Array System Rectangular Dimensions given above 

GO (Orbiting Geophysical 
Observatory) 

NASA Unmanned, earth 
orbital; multi-
experiment space-

Parallelepiped 2 solar 
panels; 
11 other 

Satellite fully deployed 18-rn 
long x 6.1Isnacross, parallel­
epiped 0 79 '<. 81 x 1.83 in: 

craft to study
particles, fields, 

major 
append-

solar panels each -- 2.44-m 
long x 1.83 n across: two 

and sources of 
energy in earth's 

ages booms 6 7-m long: four booms 
1 83-m long 

atmosphere and 
cislunar space 

OAO (Orbiting Astronomical 
Observatory) 

NASA Unmanned, earth 
orbital, optical 

Octagonal 4 solar 
panels; 

Spacecraft is 5 5- long x 4.94­
m wide with sun shades 

observation and 
mapping 

2 large 
booms; 
sun shades; 

extended, octagonal 2 96-m 
long x 20. 4 m across flats, 
solar panels each approx 

several J.22 x 1.37 in 
small items 

AOSO (Advanced Orbiting 
Solar Observatory) 

NASA Unmanned, earth 
orbital, solar 

Cylindrical 8 solar 
panels 

Spacecraft 3 05m long x 6.6m 
dia with solar panels deployed 

physics experi- one cylinder 2.56m long 
ments x 1.22 dia, second cylinder 

0.46m long x 1.4 mndia: 
solar panels each 2 56 x 0.76 m 

GEOS (Geodetic Satellite) NASA Unmannod, *earth Octagonal: trin- Spacecraft 102n long 
orbital; study cated octagonal x 1 14 m across 
carth-s magetic cone, spherical 
field and provide antenna dome 
data for worldwide 
geodetic reference 
guide 
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Table 1 (Cont.) 

Spacecraft Sponsor 

ATS (Applications Tech- NASA 

nology Satellite) 


P-l USAF 

Nimbus NASA 

Multi-purpose Communi- Comsat 

cations Satellite Corp. 


Pioneer Vi and VII NASA 

Mariner Mars Orbiter NASA 

Orbital Tanker NASA 

OTES (Optical Technology NASA 
Experiment System) 

AGENA USAF 

Multipurpose Space LOCKHEED 
Exploration Spacecraft 

Mission 

Unmanned synchronous 
orbit: to develop con-
cepts ii the application 
of space technology to 
communication, mete-
orology, navigation. ­
and earth resources 
management 

Unmanned, earth 
orbital, multi-
purpose host satel­
lite launched from 
another orbiting 
vehicle 

Unmanned, earth 
orbital; weather space-
craft for R&D tests of 
new sensors, subsys-
tems, and system con­
figurations 

Unmanned, earth 
orbital, 
communications 

Unmanned, inter-
planetary to study 
interplanetary 
phenomena 

Unmanned, inter-
planetary Mars 
orbital 

Unmanned, earth 
orbital; delivery of 
cryogenic propel-

lants into orbit 

Manned, earth orh-
ial; observations 
of spacial bodies 

Unmanned, upper 
stage booster and 
earth orbital, 
various USAF and 
NASA Scientific 
Missions 

Unmanned; inter-
planetary; no 
specific mission 
defined, proposed for 
scientific exploration 
of entire solar 
system 

External Shape
of 


Main Body
 

Parabolic an-
tenna of cylin-
drical experi-
ment package 

Modified octagon 

Dumbbell with 
lower cylindrical 
section and upper 
hexagonal section 

Cylindrical and 
triangular box 

Cylindrical 

Various configu-
rations proposed 

Various configu-
rations proposed, 
conical, c3lindri-

cal 

(lindrical (two-
meter concept) 

Cylindrical 

Solar reflector 
parabolic shaped 

Appendages 

2 solar 
panels 

Small 
booms 

2 solar 
panels 

Large 
solar cell 
panels, 
several 
antennas 

2 antennas 
and 
3 booms 

Solar 
panels and 
antennas 

Solar 
panels and 
antenna 

Antenna 
and solar 
panels 

Approximate Sies 

Parabolic antenna 9. ISrm (la: 
central structure. equipment
experiment packages 1. 4 in 
dia 7 2 m long: solar pinels 
extend beyond outer edge of 
Parabolic antenna 

Spacecraft 0.92 m X 0.92 n 
x 0.31 an deep 

Spacecraft 2.96m tall x 3 4 m 
across with solar panels 
deployed: lower cylinder 
1.4 in dia 

Various spacecraft sizes de,­
pending on configuration 
selected, ranging from approx. 
13.7 mx 9 15m: antenna sizes 
vary from 9.15-m dia to 1 52 m 
x 0.92 in, main body approx. 
3.36-m long x 1.83 m across 

Cylindrical section 0.94-m dt 
9 0 92-m high, top antenna 
1.32-M long; 3 booms 1.63-m 
long 

Spacecraft envelope approx. 
4.9 m dia x 3 36-m high 

Conical 1: base 10m dia 
x 13 7 n high; Conical 2: base 
10m diax20m high, Cylindrical. 
10 in dia x 27 n long 

Telesoope barrel. 2 6 D die 
, 12 in long; Manned section. 
3.05 in dia x 1 83 n high; 
System diameter with solar 
panels deployed: l.3m dia 

Cylnder 1 52 n dia 5 5 m 
long 

Spatoeiaft 31 in diii 17 m 
high 
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Spacecraft Sponsor 

Surveyor NASA 

Mariner NASA 

Voyager (Lockheed Pro- NASA 
posed Configuration) 

Explorers NASA 

Lunar Orbiter NASA 

Ringor NASA 

ESRO 11 (European Space EUROPE 
Research Organizatien) 

San Marco ITALY 

U K. 3 UNITED 
KINGDOM 

Table-i (Cont.) 

Mission 

Unmanned, lunar 
lander, studies of 
lunar surface of 
Apollo 

Unmanned, inter-
planetary, studies of 
planet features, pri-
marily Mars and 
Venus
 

Unmanned, inter-
planetary; orbit Mars 
and land instrument 
package 


Unmanned. earth 
orbital and inter-
planetary, diverse 
variety of space 
nissions 

Unmanned, lunar; 
photographing of 
lunar surface 

Unmanned, lunar 
hard landing, photo-
graphy of lunar 
surface
 

Unmanned, earth 
orbital, study of 
cosmic rays and 
Solar astronomy 

Unmanned, earth 
orbital; upper atmos­
pheric studies 

Unmanned, earth 
orbital: variety of 
experiments to study 
global atmospheric 
noise, galactic radio 
noise, electron 
density, etc. 

External Shape
of 

Main Body 

TrIangular 

Octagonal 

Conical in part 

Various shapes 
depending on 
mission 

Somewhat resem-
ble truncated 
cone 

Conical structure 
mounted on hexag-
onal bus 

Cylindrical 

Spherical 

Cylindrical 

Appendages 

Solar 
panels and 
antenna 

Solar 
panels and 
antennas 

Antennas 

-

Antenna, 
booms, 
solar 
panels 

4 solar 
panels: 
booms, 
antennas
 

2 solar 
panels; 
antennas 

Antennas 

Antenna 

Solar 
panels, 
antennas 

Approximate Sizes 

Spacecraft 3 05 m high x 4 27lm 
across extended legs 

Octagon 1.3 in across x 0.51 in 
high; spacecraft in flight 5 5 n 
across ular panels , 2 9 in 
high 

Main body 3 66 m dia x 6.1 in 
long, high gain (circular) 
antenna extends 3.66 in beyond 
main body of craft en one side, 
medium gain antenng extends 
'2 in beyond spacecraft on 
the other aide 

Various sizes, however, in 
general relatively-small (i. e., 
D 915 i di; 0 46m octagon,
etc.). Some have solar panels 
that extend beyond main body 
making total speecraftenvel­
ape longer 

Spacecraft 1 68m I 5,65m, 
ucrosa 

Spacc.r-ft 4 6m span-acioss 
solar panels, 3 2 m high 

Cylinder 0.76 m dia x -9.2 m 
long 

Sphere 0. 66m dra 

Cylinder 7.1 dia . I.22In high; 
spacecraft 3.2 n across x 1.83 in 
high 
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facility size would be necessary. Problems associated with manufacture of miniature 

items limit to some extent the scale ratio for small vehicles. The minimum scale 
ratio for modeling of the larger items will be limited by satisfactory maintenance of 

thermal properties for conducting paths and insulations. Previous experience at LMSC 

on actual models indicates a lower limit for L* on the order of 1/7th, though this is 

not necessarily a fixed yalue.' 

Given that adequate space simulation facilities are available wherein a 1/7th scale 

or larger model can'be tested,. then it becomes apparent that the most dominant prob­

lems facing the model investigator lie in the area of materials selection. The space­

craft design review revealed that an extremely wide variety of materials are used 

for spacecraft construction. A complete listing of materials used in the 25 programs 

studied was compiled during this study and required many pages of single-spaced 

entries. It is doubtful that its inclusion herein would serve a useful purpose. However, 

it is of interest to consider the materials receiving most common usage and their 

most frequent application. 

Table 2 presents a summary of the materials observed to be most frequently utilized. 

The listing shows that a wide variety of metallic and nonmetallic materials are in use 

on spacecraft. It also shows that no single material is commonly employed to accom­
plish a given task. Skins are made from various aluminum alloys, magnesium 

alloys, stainless steels, and berylliums. Support structure and fasteners are also 

made from a variety of metals and nonmetals. The wide variety of materials used 

leads to the need for individual treatment of each modeling problem and the fact that 

a material may or may not be found that satisfies the model criteria. 
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Table 2 

TYPICAL SPACECRAFT MATERIALS AND GENERAL USAGE 
Materials Typcal Uses 

Aluminum 

1100 Solar cell substrate, thermal control louvers 

2014 Skins, primary and secondary support structure, honey­
comb facing 

2024 Skins, primary and secondary support structure, antennas, 
shields, honeycomb core and facing 

2219 Skins, primary and secondary support structure, pro­
pellant tanks, pressure vessels 

2319 Skins, pressure vessels 

3003 Skins, honeycomb core and facing 

5052 Primary and secondary support structure, antennas, 
honeycomb core and facing 

6061 Primary and secondary support structure, antennas, 
booms 

7039 Tank structure 

7075 Skins, primary and secondary support structure, honey­
comb core and facing 

7079 Skins, primary support structure, propellant tanks, 
pressure vessels, solar cell array support structure 

7106 Propellant tank 

7178 Honeycomb facing 

356 Casting material, secondary support structure 

Magnesium 

AZ-31B Skins, primary and secondary supporting structure, 
variety of uses for special ports 

H-K-31A Skins, primary and secondary support structure, solar 
cell arrays structure 

HM-21A" Skin, primary and secondary support structure 

HM-31A Extrusions, primary and secondary support structure 

ZK-60A Extrusions, forgings, primary and secondary support 
structure 
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Table 2 (Cont.) 

Material 

ZK-62A 

AZ-80 

Magnesium-Lithium 

LA141A 

Stainless Steel 

A286 

304 

321 

347 

17-7PH 

PH14-8Mo 

Maraging Steel (19 Ni) 

PH15-17Mo 

Beryllium 

Commercially Pure 

Be-Cu Alldy 

Lockalloy (62%, 38% Al) 

Titanium 

6 Al-4V 

8 Al-lMo-1V 

5 A1-2.5 Sn 

13V-llCr-3Al 

Honeycomb 

Aluminum Core and 
Facing 

Aluminum Core, Titan-
ium Facing 

Aluminum Core, 
Magifacing 

Typical Uses 

Castings, primary and secondary support structure 

Primary support structure 

Primary and secondary support structure 

Primary and secondary support structure, tubing fittings 

Secondary support structure 

Skin, primary and secondary support structure, tubing, 
fittings 

Tubing, fittings, fuel tanks 

Honeycomb core and facing for skin structure 

Honeycomb core and facing for skin structure 

Special parts 

Special parts 

Skins, primary support structure 

Secondary support structure 

Skins, .primary and secondary support structure 

Primary and secondary support structure, fuel tanks, 
pressure vessels 

Primary support structure, fuel tanks, insulation pene­
tration supports 

Fuel tanks, pressure vessels 

Shock absorber tubes 

Skins, primary afid secondary support structure 

Skins, primary and secondary support structure 

Skins, primary and secondary support structure 
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Table 2 (Cont.) 

Mater.al1 Typical Uses 

Aluminum Core, Fiber Skins,, primary and secondary support structure 
glas Facing 

Magnesium Core and Skins, primary and secondary support structure 
Facing 

Stainless Steel Core Skins, primary and secondary support structure 
and Facing 

Fiberglas Core and Skins, primary and secondary support structure 
Facing 

Fiberglas Core, Skins, primary and secondary support structure 
Nylon Facing 

Nylon-phenolic Honey- Skins, primary and secondary support structure 
comb Core, Fiber­
glas Facing 

Plastic Core and " Skins, primary and secondary support structure 
Facing 

Insulation and Miscellaneous Materials 

Nylon Secondary support structure, netting, thermal insulator 

Teflon Secondary support structure, thermal insulator, multi­
layer blanket 

Foam (Various Types) Thermal insulation 

Fiberglas (Various Secondary support structure, thermal insulation, 
Types) honeycomb 

Multilayer insulation Thermal insulation (high performance) 
(Various forms) 

Mylar-alum composite Primary and secondary support structure 

Textolite Thermal insulation 

Rexolite Thermal insulation 

Mo filled Nylon Solar panel hinges 

Silicone Rubber Cushioning material 

Bakelite Battery case 
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Thermal designers are increasing their reliance on multilayer insulation to provide 

thermal isolation of.internal components from the external environment. Here again, 

no single multilayer system is preferred with the trend being to design the insulation 

to meet the needs of each individual requirement. The various types used on the 

spacecraft studied included: crinkled aluminized Mylar, crinkled aluminum foil 

spaced with glass-fiber paper, aluminized Kapton (fl-film) spaced with glass-fiber 

paper, single-side aluminized Mylar, embossed aluminized Mylar, double aluminized 

Mylar spaced with glass paper, aluminized Mylar spaced with Teflon, and aluminized 

Mylar spaced with Dacron. These systems were designed using from 5 layers per 

blanket to 90 layers per blanket and at unspecified layer densities. 

It is immediately apparent that no single modeling approach or material exists for 

application to the wide variety of multilayer insulation blankets. Each problem will 

require design of a special model blanket and, where the model design is critically 

dependent on conductivity, confirming laboratory measurements are necessary. The 

possible procedures for modeling of the multilayer systems are treated in more 

detail in Section 7. 

Modeling of thermal control surfaces also poses a problem in the design of a model. 

Spectrally selective white paints, pure metallic surfaces, anodized surfaces, second 

surface mirrors, and solar cells with filters are examples of materials used whose 

surface absorptance is a strong function of the spectral content of incident energy. 

The model must duplicate the surface absorptance and infrared emittance properties 

to maintain the required equality of complex shape factors (_ * = 1) and thereby 

attain the required component thermal levels. This is most easily achieved using the 

same surface coatings and surface geometry. In some cases, an accurate duplication 

of surface coating properties may be difficult to achieve since the spacecraft manu­

facturer may use a coating process that is unavailable to the model manufacturer. 

It has also been observed that batch to batch differences in paint formulations often 

exceed acceptable tolerances in terms of solar absorptance and infrared emittance. 

However, the fact that these difficulties are overcome in manufacture of the prototype 

suggests that satisfactory procedures exist for duplication of coatings on the model. 
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As was the case for multilayer insulation, it will be necessary to perform laboratory 

'measurements on the model surfaces to assure that the desired reflectance absorp­

tance, emittance, and transmittance properties have been attained. 

Numerous other special purpose materials are also in wide use in spacecraft construc­

tion. The list includes a variety of glasses for viewing ports, solar cell cover slides, 

visible and infrared optics, and also for structural elements. Various types of Teflon, 

plastics, epoxies, impregnatic glass fabrics, laminates of Mylar and aluminum foil, 

laminates of epoxies and fiberglass, and composites of plastics and aluminum in 

honeycombs are found in current use. These kinds of materials pose difficulties in 

that their thermal properties tend to be nonreproducible since manufacturing proc­

esses are variable. Here again, the model designer must carefully evaluate the use 

of these materials in terms of their impact on vehicle thermal behavior and seek 

individual solutions to simulation of that behavior. Both analytical and experimental 

tools must be available so that confirmation of satisfactory model material proper­

ties is possible. 

The review of spacecraft designs completed during this program provided a vast 

amount of information on current practice in spacecraft thermal design. This infor­

mation was compiled and given careful study in terms of the problems associated with 

the design and testing of thermal models. The results of this study failed to reveal 

any unique limitation existent in thermal modeling of the systems studied. Vehicle 

size and shape in combination with test facility capabilities will influence both the 

selection of scale ratio and the degree of geometric identity between prototype and 

model. No limiting scale ratio was suggested by the information reviewed though 

the larger vehicles would have to be reduced by approximately 1/5th to fit in most 

available test facilities. Previous modeling programs completed in this laboratory 

disclosed that accurate design, construction, and testing of a model at less than 1/6th 

scale is possible though considerably more difficult than at a larger scale ratio. The 

difficulties are associated with manufacturing tolerances, maintenance of required 

path conductances, particularly where thermal isolation is desired for prototype com­

ponents, and in inclusion of real sized instrumentation on components without influ­

encing the thermal environment of the component being measured. 
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In addition, as the scale ratio is reduced to lower values it becomes increasingly 

difficult to select materials which suit the model criteria and geometric distortion 

of conducting elements becomes mandatory. This experience suggests that proposals, 

for modeling at-less than 1/6th scale should receive careful review before their 

implementation. 

The review further indicated that standardization of material usage is completely 

nonexistent which increases the model investigators materials selection problems. 

Thermophysical properties of the materials are frequently not specified or the 

reported properties-are in variance with values reported in current literature. 

Needed information must then be sought out or confirmed prior to model design. The 

following section considers the materials related problems in more detail. 
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Section 4 

THERMOPHYSICAL PROPERTIES OF MATERIALS 

The conclusions reached in Section 3 point to the fact that model design is strongly 

dependent on the availability of materials having thermophvsieal properties compatible 

with the model criteria. This section considers the materials selection problem in 

more detail and includes a listing of materials and their properties for quick refer­

ence during initial stages of model design. Consideration is given to the materials 

problems associated with temperature preservation and materials preservation 

models. 

The performance of any materials property survey requires the completion of an 

extensive search of available literature from which the required data are compiled. 

During this process it was found that for many materials the values reported b3 

separate investigators were in considerable disagreement and that most sources leave 

out statements of accuracy based on measurement procedures. Wide tolerances were 

especially encountered for thermal conductivity data where alloying and heat treatin' 

can have gross effects. Disagreement also exists in changes of properties with tem­

perature, particularly at temperatures below earth ambient. The differences observed 

frequently required that judgment be exercised in including or rejecting certain data 

and also that averaging be employed. Therefore. while the data reported are considered 

the best available for initiation of model design, the reader is cautioned that values 

given may not be an accurate representation for a specific sample. 

4. 1 THERMOPHYSICAL PROPERTY DATA 

The data required for model design include density (p) , thermal conductivity (K) 

specific heat (Cp) thermal diffusivity (a) , and thermal expansion coeffieicnt (desig­
p

nated herein as u). Values for these properties at room temperaure are given in 
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Appendix B, Table B-I, for many of the materials in current use on spacecraft as 

determined by completion of the survey presented in Section 3. The listed properties 

are also useful for selection of materials to be used in model design since the list 

includes most available structural materials. 

The data presented cover a wide range of values which vary from material to material 

and vary considerably for alloys of the same basic material. The variation of alloys 

is greatest in terms of thermal conductivity. The alloys have sufficient variation of 

K that for steady tate modeling, it is entirely possible that an aluminum alloy. could 

be used to model another aluminum alloy for moderate length scale ratios. For 

example, for temperature preservation modeling (i.e. , K* = L*) . 2020-TO alumi­

num can be used to model 1100-H14 aluminum for an L* = 1.05/2.20 S 0.48 or 

2020-TO cdn be used to model 6061-TO for an L* = 1.05/1.71 = 0. 615. A similar 

situation exists with the magnesium and stainless steel alloys. 

The general variation of material properties tabulated in Table B-i is presented in 

chart form on Figs. 1 and 2. The thermal conductivity and specific heat are shown 

here for the major categories of materials. This form of data presentation permits 

a rough initial selection of model materials following which the more accurate tabu­

lar values can be used. 

Figure I shows the large range of K covered by presently used materials and shows 

that, except for the middle region (0. 017 to 0.07 W/cm-°K), a material can be found 

to meet most modeling needs. For modeling of aluminum it is possible to obtain a 

K* anywhere from 1 to 1/25th using metals. Much lower values could be obtained 

substituting honeycomb materials for the aluminum. Modeling of the nonmetallics. 

except for Fiberglas which has wide variations, appears more difficult than for 

metals since the range spanned is not as great. 

Figure 2 presents the variations observed in,'specific heat. The range spanned here 

is roughly 1 order of magnitude.in contrast to the 3 orders of magnitude for conduc­

tivity. From this observation it can be inferred that transient modeling, where the 
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term p*V*C*T*/.* is important, may be more difficult than steady state due to 

difficulties in
p
selectinga required p*C* . Where the inodel design is limited to such 

a selection, the inference is correct. 
p
The difficulty is more apparent when the values 

of p*C* are considered as shown in Fig. 3. As shown on that figure, the value of 
p 3

pCp varies over a very limited range at 3.0 : 1. 5 J/cm -°K. The model designer 

is therefore limited to a very narrow region of p*C* which poses design difficulties 
p 

in transient studies. Figure 4 and 5 present additional information on pC K and 
p 

pCp/K for use in model material selection. 
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Fig. 3 aneof pCi 'rVarious M3/aterials at Rtoom Temperature 
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As shown in Section 2, the variation of thermophysical properties with temperature 

is also of concern when highest model accuracy is desired. Therefore, it was of 

major interest to gather together data on temperature dependence and include this as 

part of the study effort. The results of the data gathering effort are presented in 

gra:phical form in Appendix B, Figs. B-I through B-40. 

The curves of conductivity and specific heat show that these properties can vary over 

a wide range and emphasize the importance of considering this thermal influence when 

designing a model. Unfortunately, the temperature dependence data for all prototype 

materials are not always available; therefore, special property measurements or 

extrapolation of existing data are sometimes necessary to construct a reliable thermal 

model. 

As stated in Section 3, many materials used in spacecraft design are not shown in 

Table B-I. Those not shown include a wide variety of adhesives, thermal control 

coatings, special laminated composites, Fiberglas and Fabriglass, optical materials, 

corrigated structures, and special types of honeycomb. It was virtually impossible 

in this work to include representative data on this wide variety of materials. For 

data on adhesives and optical materials, the designer is referred to various data 

publications issued by specific manufacturers. Radiative properties of typical ther­

mal control coatings may be found in Ref. 5. 

A wide variety of multilayer insulation was found to be used in spacecraft thermal 

control. Table B-2 (Appendix B) presents the effective thermal conductivity as a 

function of layer density and boundary temperatures for a number of the more 

commonly used systems. Other property data may be found for some of the com­

ponent parts in Table B-I and for various others in Ref. 6. Section 7 of this report 

also gives experimental values of conductivity for the commonly used blanket of 

double aluminized Mylar with'glass-t5aper spacer material. In selecting property 

values from the literature for multilayer insulation, the model designer should keep 

in mind that the thermal conductivity is greatly influenced by both hot and cold 
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boundary temperatures, by the number of insulation layers, layer density, penetra-. 

tions, edge effects, and changes in-bulk temperature of the blanket. It should also be, 

noted that'at the present time there is a paucity of conductivity data for many of the 

multilayer insulation systems for other than low temperature boundary conditions. 

4.2 TEMPERATURE -COEFFICIENTS 

For most materials used in spacecraft and modeling design, the temperature depend­

ence can be represented over certain temperature ranges by either an exponential or 

linear function. In most cases, one function or the other better represents the behavior; 

:however, for some materials either can beused over.a limited temperature range. 

In Section 2, thermal modeling criteria were presented for three separate cases of 

temperature dependence of thermophysical properties. They consisted of: 

a Properties constant with temperature [Eq. (2: 1)] 

' e Properties vaiying as a power function of temperature [Eq. (2. 6)] 

* C Propertiesvarying as a linear function of temperature [,Eq. (2.7)] 

The coefficients a, b. E, C, , o K 'and C for these three cases were 
00 0' 0 

deterrmined for the materials plotted in Figs. B-i through B-40 and are presented in 

'Tables 3"and 4. Log plots of properties of materials are given in Figs. B-41 through 

B-54 to further demonstrate their thermal behavior. 

The coefficients presented in the tables were calculated using the method of selected 

points and the graphical results in which two points are selected that best approximate 

a representative straight line. The two coordinated points are used for-solution of 

the equations and determinationof the required coefficients. For this program, simple 

computer programs were written for solving the necessary two simultaneous equations. 

In view of the procedure used, the results reported in Tables 3 and 4 represent the 

authors' best interpretation of approximate straight line functions. Variations in 

coefficient values can occur as a result of differences in judgment or with differences 

in temperature range requirements for a particular program. 
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Table 3
 

COEFFICIENTS FOR THERMAL CONDUCTIVITY DEFINING TEM\-PERATURE
 
-... .DEPENDENCE CHARACTERISTICS 

Material 
T 'pe

of 
Function 

Temperature Range 

(K) 
From To 

a ( K 
(W/em-K 

.90 
CK-I1 

Ko 
(%/cm-°K) 

Constant 

Aluminum 

2024-T4 Poer 110 535 0 555 &053 - - -
5052-TO Linear 

Linear 
260 
320 

320 
380 

-
- -

-5 
-8 

81 
68 

x 10 -3 
10 -3 

-1.86 
-D-883 

-

Power 260 380 1.83 3.88 x10­ 5 
- - " 

6061-TO Power 60 300 0.431 0.147 -
Power 300 500 0.254 0 404 - -

7079-T6 Power 150 550 0.535 0.060 --

Magnesium 

AZ-31SB-CAZ-31B-024 Power 120 580 0.587 0,027 
- -31A-TO Power 295 540 0.261 0.236 
HK-31A-T6 Power 295 540 0. 369 0. 113 
l(-3JA-!i24 
NK-31A-TO 
HK-31A-T6 

Power 
Linear 
Linear 

295 
295 
295 

540 
540 
540 

0. 206 
-

-

0,351 
-

-
9.33 
5.26 

X10- 4  

x 10 -3 
0.824 
0.359 

PK-31A-H24 
HM-21A 

Linear 
Power 

295 
295 

540 
535 

-
0.054 

-
1.01 

2.45 X 10-4 
-

1.13 
- -

Linear 297 542 - 1.59 10­
4 

1 30 

Stainless Steel 
304 
347(a) 
347( b 

) 

Power 
Linear 
Linear 

80 
110 

12 

930 
1560 

50 

0.413 
-

1.25 

0.014 
-

4.53 x 1O - 4 

-
1.40 

-

10-3  9.88 x 10 -2 

347(b) 
47 (b) 

Linear 
Linear 

50 
80 

80 
300 

0. 665 
0.472 

4 43 
0. 010 

x 10-3 
-

-
- ---

Eer- Ilhum 

Comm. 
Comm. 
Comm. 
Comm. 

Pure(c) 
Pure(c) 
Pure(d) 
Pore(d) 

Linear 
Linear-
Linear 
Linear 

255 
700 
100 
200 

700 
1300 
200
500 

-
-
-
-

-
-
-
-

. 

-6.17 
-5.57 
2.98 

x 10-4 
Io - 4  

'l0 - 4 -

2.21 
2. 04 
0.795.67 9]0 0544 

Comm. 
Comm 
Comm. 

Thire(d) 
pure(d ) 
Pare(e) 

Power 
Power 
Linear 

100 
200 
250 

200 
500 
700 

0.272 
0. 620 

-

0.296 
0. 045 

- -4.49 

-

x s0- 4 1.44 
-

Comm. PFre(e) Constant 700 850 - - 0 999 
Comm Pure(e) 'Power 250 700 -0.225 4.50- -

tockalloy
(62%Be, 38%A) Power 300 815 -0.475 32.4 -

(a) 
(b) 

From Ref. 
From Ref. 

2, Appendix B 
6. Appendix B . 

(C) From Ref. 
(d) From Ref. 

1, Appendrc B 
6, Appendix B 

(e) From Ref 3, Appendix B 
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Table 3 (Cont.) 

Materal Type Temperature Range('K) ao K CoConstant 
of 

Function From To 
((W/em-'K) ('K-) (W/em-_K) 

Titanium 
6AI-4V(f) Linear 310 1140 - - 5.71 10- 3  2.33 x 10-2 
6AI-4V(g) Power 15 100 0.968 5 13 x 10 

-
-

6AI-4V(g) Power 100 300 0.514 4.02 x 10 - --

Fused Silica 
coming 7140 Power 

Power 
70 

150 
150 

1150 
0.635 
0.110 

4.09 
8.34 

x 10 
­ 4 

x 10 
- 3 

-

-

Polyurethane Foam 
(h)
(,) 
(j) 

Power 
Power 
Power 

300 
240-
315 

335 
410 
370 

0.727 
1.25 
1.76 

8.93 
2.91 
9.97 

x 10-6 
x 10- 7  

x O - 9 

-­
-

Fiberglas 

Fig. 19 Power 
Power 

225 
450 

450 
530 

0.522 
-0. 862 

3.24 
1.54 

%10 
- 4 

Poweer 530 660 0.543 2.28 x 1 -4 -­
£ Power 230 280 0.717 8.58 xi10 - 5 

. 
I 

Power 
Power 

280 
365 

365 
670 

-0.258 0.02] 
-0 412 3.94 x 10 

­ 4 
- . 

Fiberglas 

Fig. 20 Linear 230 475 - 0.489 2.25 x 10 -4 

Mylar Power 90 250 0.207 4.74 x 10-4  -

Constant 250 333 1.49 x 10- :1 

Kapton Power 300 390 0.166 6.j7 x 10 
­ 4 

Fused Quartz Power 
Power 
Linear 
Power 

s0" 
150 
400 
750 

150 
400 
750-

1100 

0.945 8.50 
0 505 7.67 

1.92 5.5 

x I 
x 10 

-4 

xi 8 

-­
-

3.72 x 10-4  
-1--8 

-­

1,39 x0 -2 -

lHoneycomb A 
Hone3icomb B 
Honeycomb C 
Honeycomb D 

Linear 
Linear 
Linear 
Linear 

102 
92 

225 
285 

233 
245 
427 
370 

-
-
-
-

-
-
-

1.76 
1.11 
5.01 
7.94 

x 10-2 
x 103 
a 10 - 3 

a 10-3 

2,74 
1.04 
7.67 
2.91 

x 10-3 
x 10-2 
x 10- 3 . 
X 10-3 

-
-

Honeycomb E 
'Honeycomb E 
Honeycomb F 

Linear 
Linear 
Linear 

225 
450 
227 

450 
600 
420 

-
-
-

-
-
-

0.68 
-8.95 
9.15 

x 10 - 3 
x 10 

-
3 

2.86 
-2.32 
4.25 

X 10-5 
x 10- 3  

x 10 
-4 

-
-
-

Nylon Power 10 50 0. 599 0.024 
Power 50 100 0.390 0.054 - -
Power 
Linear 

100 
10 

300 
50 

0. 107 
-

0 195 
-3 21 

... 
x 0 ­ 3 -4.68 xl0- 3 

Teflon (PTFE) Linear 285 590 - -7.45 xc 10 - 4 -6.07 a 10- 4 

Teflon (TFE) Power 3 10 0 386 1 8 10-4 

Power 10 100 0.297 6.31 x 10-4 
Power 
Linear 

100 
3 

330 
10 . 

0.041 
-

1.98 x 10- 3 
.... 

6.24 X 10-2 6.18 x 10 
-2 

Linear 125 330 4 26 x 10 
-3 

1.18 x 10-2 

(f) From Ref. 
(g) From Ref. 

1, Appendix B 
8, Appendix B 

(h) From Ref. 16, Appendix B 
(i) From Ref. 15, Appendix B 
0 ) From Ref 17. Appendx B 
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347 

Table 4
 

COEFFICIENTS FOR SPECIFIC HEAT DEFINING TEMPERATURE
 
DEPENDENCE CHARACTERISTICS
 

- ¢pe Temperature Range a Constant 

Material - ("K)Function From To /gn--'K) ( 
0K-

) (J/gm-'K (/ - 'K) 

Aluminum 

2024-TO Power 150 540 0.318 0.145 ­

2024-T4 
 Power 67 400 0.422 0.077 - -

Linear 400 600 - 5 733 x 10-4. 0.764 
Linear 600 730 .- 4 730x 10

-3 
0. 268 

-145 300 0.353 0.012 

Constant 300 550 ­

6061-T Power 
- 0.092 

7075-TO Power 145 200 0.560 0.037 -
Power 200 500 0.489 0,048 

7075-T6(a) Power 145 700 0.353 0.111 
Power 250 600 0.312 0.141 -

Magnesium 

AZ-31B(b) Power 117 410 0.288 0.192 -


Power 410 600 0.184 0.358 ­

AZ-31B(c) 
 Power 420 760 0.382 0.111 -..
 

IIK-31A Linear 310 550 - 4.31 x 10-4 0.914
 
Linear 550 750 - 1.53 x 10-3 0.617
 

- o
Power 300 535 0.190 0.344 
Linear 300 535 - - 5 . 10- 0.863 

HM-lA 4 

Stainless Steel 

Power 55 400 0.310 0.076 - -­

" " Linear 350 1530 - 4.88 x 10
-4  

0.410 

-
Beryllium Power 150 300 2.314 3.42 x 0 6 -

Power 300 450 0.544 0.086 
* Linear 450 1530 - - 579 x 0

-4 1.91 -

Lockalloy Power 300 500 0.482 0.109 ­
(62% Be, 38%Al) Power 500 850 0.181 0.707 "
 

-7

Titanium Power 22 60 3.08 4.76 x 10 -2-2  


100 - - -5.12 x 10 -7.17 X 10 

Power I00 1150 0.415 0.048 . -

Linear 225 800 - - 5.21 x 10-
4 

0.469 

(6A1-4V-0). Linear 60 

-3 

Fused Silica Power 125 400 0.828 6.58 x 10 ­

(Corning 7940) Power 400 1600 0.256 0.199 -


Honeycomb -2 -2
A Linear 220 550 ­ 7.35 x 10 4.66 x 10 

A Power 220 550 0.968 4.31 x10 
-3
 

B Constant 225 580 -" 
 - 118 
C Constant 220 615 - 107 
D Constant 200 620 - 0.545 

-
Nylon Linear 235 460 - -1.26 x 10 -0.567 

4.73 x 10-3 -
Teflon (TFE)(d) Power 10 300 0.949 

- - 20.266 0.221Pover 00 400 -2 
9.1 x 10-3 3 7 Y 10 

Linear 10 300 -
-3

Linear 300 400 1 04 x 10 0.770 
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Table 4 (Cont.) 

Material Matria of
of(-R) 

Function 

Temperature Range 

From To 
b (J/gnv-K) (I 1 ) 

(OK-I) 
(/K) 
(j/ginK) 

C a 
(J/gm-'K) 

Teflon (TFE)(e) Power 
Linear 

300 
300 

525 
525 

0.309 
-

0.167 -
1. 18 x 10 -3 

-
0.722 

Polyurethane Foam 

Type A 
Type B 

Linear 
Linear 

240 
297 

495 
422 -

0 015 
-1 25 x 10 -3 

0.263 
2.96 -

Type C Constant 300 422 - - 1.72 
Tape D Constant 300 422 -­ 1.675 

Glass Fabric Rein­
forced Polyester 

Type A Linear 310 550 -0.64 -5.0 x 10 
-3 

Type B Constant 290 610 .-.- 1.157 
Type C Power 300 570 -0.0702 1.43 - -

Glass Fiber Rein­

forced Epoxy 

Type A Power 233 555 0.698 0.016 - -

Linear 233 555 - 7.07 x 10 
-3 0.27B 

Type B . Power 
Linear 

235 
350 

350 
500 

0.162 0.429 -
5.59 X 10 

-3 
-

0.376 

Resin Cements 

A Linear 307 342 - - 1.45 < 10-2 -0.419 
A' 
B 

Linear 
Linear 

315 
207 

333 
342 

-
-

-
-

-1.49 
-0. 167 

x 10
-2  

0.235 
-2.71 x t0- 2 

Br Linear 315 333 - - -1.28 , 10 
-2 

-0.435 

Mylar Linear 
Power 

0 
10 

. 295 
295 

-
0.964 

-
5.88. x 10 -3 

0.118 0.038 

(a) From Ref. 1 , Appendix B 
(b)From Ref. 1 Appendix B 
(e) From Ref. I , Appendix B 
(d)From Ref. 12, Appendix B 
(e) From Ref. 20, Appendix B 
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The temperature 'ranges used to compute the coefficients are given in the tables along 

with the assumed linear or power function dependence. For some materials, coeffi­
cients were calculated over a given temperature range for both linear and power 

dependence.
 

4.3 MATERIAL AND TEMPERATURE PRESERVATION MODELING 

Considerable attention has been given in.previous literature to the use of either 
"Temperature Preservation" or "Material Preservation" techniques. These are, 

as the terminology implies, models that are designed to identically duplicate the 

temperature of the prototype or that are constructed from materials identical to those 

of the prototype. There are certain practical advantages to be gained in selecting 

one or the other of these approaches in designing a model, While experience has 

shown that the design of a- model using preservation of either materials or tempera­

tre is frequently not possible and that a more general approach is necessary, 

these preservation techniques will be considered as a starting point for discussion 

of potential limitations in modeling of spacecraft. 

4.3.1 Temperature Preservation With Constant Thermophysical Properties 

As shown in Section 2, the general criteria for thermal scale modeling can be stated 

as 

" * K*A*T**V*C*T* A*I = AT* 
* A 1 *=*= L* 

In cases where temperature preservation is desired in the model, the temperature 

ratio T* is specified as unity and the modeling criteria become: 

p*V*C* n A(
S A * Q* L* A* (4.) 
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= A= A* = L 2 and V* = L 3 

For conformance with geometric similarity A* 
n i 

Eq. (4. 1).becofnes': 

p*L*C* = I*- K* 1 (4.2) 
*2 =0 = . 

From this reduced form, the following relations are obtained for this case: 

K* =L* (4.3) 

P .2L p= p*C*K(* (4.4) 

This result shows that steady state modeling requires the selection of model materials 

whose thermal conductivities aie less than those of the prototype in accordance with 

the chosen length ratio. For small length ratios, this is often a severe limitation, 

especially in modeling components where poor thermal conductors are used in the 

prototype. For example, let us assume that a Fiberglas or reinforced plastic honey­

comb is being used for a spacecraft skin or instrument supporting panel. Referring 

to Fig. 1 (or Table B-i in Appendix B), the thermal conductivities of these materials 

are found to be in the range of 0. 00069 W/cm-°K at room temperature. Scanning the 

list for materials having lower conductivities, it is seen that only one, polyurethane 

foam, islower with a K of 0. 0004 W/cn- 0IX. For strict geometric identity, the 

overall scale factor L* is limited to a value greater than L* = K* = 0. 004/0. 00069 

= 0. 58 or not quite a half-scale model. Assuming that this L* ratio was satisfactory 

for the model as a whole, it is doubtful that the foam would be used as a substitute 

for honeycomb because of its strength characteristics. Table B-2 (Appendix B) shows 
that multilayer insulation systems have thermal conductivities perpendicular to the 

layers lower than Fiberglas honeycomb by 3 orders of magnitude. However, for most 

applications, modeling honeycomb using multilayer'insulation is totally impractical 

due to the nonload bearing capabilities of multilayer insulation. -The only case where 

such a scheme might be practical is where only one dimensional heat flow was of 

concern and no loading was required for the multilayer blanket. 
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For modeling of metals, the materials problem is less difficult since some scale 

factors might present limitations whereas others would not. Take, for example, 

the typical case of an 0. 060-in. thick 2024-T4 aluminum skin with a conductivity of 

1.2 W/cm-°K. Steady state modeling with a length scale ratio down to 0. 11 (i. e. , 

about 1/10) is possible using 321 stainless steel with a thickness of 0. 0066 in. 

However, this exact thickness of stainless steel may.be difficult to procure as off­

the-shelf material in the width sizes required for the model. Considering the same 

aluminum skin and an L* = 1/2, a material with a K = (1/2) (1. 21) = 0. 605 W/cm-"K 

would have to be located.. Searching Table B-1 for a suitable material, it is found 

that none of the materials meet the exact requirements; however. some of the mag­

nesium alloys come close with conductivities of 0. 502 and 0.76 W/em-°K). Therefore, 

a small compromise in L* can be made to allow selection of a material and with 

strict geometrical similarity. 

When the temperature preservation model must also serve for prediction of transient 

behavior, the model design is additionally complicated by the necessity for maintain­

ing a proper time ratio as given by 0* = p*C*L* [Eq. (4.4)] . This ratio assures 

an equal time constant for all elements and is set to some degree by selection of 

materials for maintenance of required path conductances. Complete satisfaction of 

Eqs. (4. 3) and (4.4) under transient conditions with temperature preservation can 

present some difficulties for the designer, Using the previous example of 0, 060-in. 

thick 2024-T4 aluminum skin being modeled with'AZ31B-H24 magnesium to give 

K' = L* = 0.76/1.2 = 0.627, it is found that 0* = p*L C* = 0.444 for strict 

geometric similarity. Now suppose the prototype also utilizes HM21A-T8 for various 

portions of the internal primary supporting structure. This material has a K of 

1.37 W/cm-°K; therefore, to model it properly, a material with a K - (1.37) 

(0. 627) = 0.86 must be found. Searching the list of Table B-i, it is seen that oly 

one material, 2020-T4.or T6 aluminum comes close to satisfying the requirements 

of K*.. Using these materials and calculating the corresponding 0*, we get 
*
0* p*L*C = (1. 52),(0. 627) (0. 875) = 0.835 , where a value of 0.92 J/gmn-°K was 

assumed for the specific heat of 2020-T4 aluminum. This value of 0* fails to match 

the skin required value of 0* = 0. 444. 
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This leads to consideration of distortion of the conductive heat flow path in order to 

meet the modeling criteria. For metallic components such as skin structure or sup­

porting structure, thermal gradients across the material thickness are generally small. 

Under these conditions the important heat flow paths to model are those in the longi­

tudinal or circumferential directions. Separating the thickness dimension from the 

other length dimensions shown in Fig. 6, the criteria for the case of T* = I become 

K*L*t* = 2 
L* 

or 

K* L* 	 (4.5) 

/ 

and 

-0= p*C*t* 	 (4.6) 

2 

where t* is the thickness ratio. A* , M* = L 2I't*and 
n 	 1 

Lf
 

QR 

,* 	 L,
 

Fig. -6 	 Heat Flow in the Longitudinal 
and Circumferential Directions 

In Eq. (4. 5), distortion of t* from the geometrical similar case ol t* = L* introduces 

an additional variable in the relationship between K* and L* and allows more freedom 
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in design of the modeled'element. To satisfy Eq. (4,6),requires that 0* = p*C*t*. ­

be the same for all materials. Manipulation of t*from pure geometrical identity gives 

more flexibility in meeting the 0* requirement. Of course, the t*values in Eqs. (4.5) 

and (4. 6) must be the same for any one specific material being modeled. 

Wheh distortion'techniques -are employed, the important external radiating areas A. 

and I must'be modeled according to L*. 

In cases. where two- and three-dimensional heat flows are important. distortion of the 

conduction heat flow path cannbt be done without distortion of the point-to-point tem­

perature identity betwd&n the model and prototype. Sometimes the three-dimensional 
heat flo ban-be approximated satisfactorily by constructing composites of different 
materials' or by Tislitting" as suggested by S. Katzoff (Ref. 7) to modify the conduction 

path. ­

4.3. 2 Tipeiature Preservation With Power Function Dependence of Thermo­
physical, Properties 

- a -bWhere properties can be represented by K T and C = C T and T* - I 

the model criteria are 
- %-F
 

(b-b) (a -a) 
p*V*C*T m

" 
p 

A 
- TA* T rn p 

n p - ' A* (4.7) 
-0* I 

The fundamental requirement of pointwise similarity between model and protolype 

through maintenance of single valued ratios of properties, temperatures, and heat 

rates necbssitates elimination of dependence on the prototype temperatures. This 

can be achieved only by selection of materials having a = a . When this is achieved,tm p 
and geometric similarity maintained, the model criteria become 

. .'*L*C* _* =-Q* = - (4.8) 
0" L $2 -L*
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Satisfying the criteria of K* = L* concurrently with 0* = p*C*L* for the case of 
transient heat flow for all components in the design is again 'very challenging. 

Taking, for example, the case of a 2024-T4 aluminum prototype skin and considering 

a 1/2 scale model, the Kp from Table 3 is found to be 0. 053 over the temperature 
range of 110 to 535°K, which means that a material with a K mn = Kp K* = (0. 053) x 
(0. 5) = 0. 0265 must be located to satisfy the model laws. Scanning the table we find 

that AZ-3tB-0 magnesium with a K 0. 027 is the only material that comes close to 
meeting the requirements for the temperature range of interest. However, the 
criteria a.m ap and b m = p) must also be satisfied. From Tables 3 and 4 we 
find that ap 0. 555 (for 2024-T4 Al), am = 0.587 (for AZ-31B Mag), bp 0.422. 
and bi = 0.288. Therefore, the required equality is closely approximated for a 
steady state model with a slight mismatch occuring in the b exponents which influences 
the transient condition. Thus, this modeling situation was satisfied with the tempera­

ture behavior. of magnesium modeling that of the aluminum for a length scale ratio of. 
0. 5. Similar matches may or may not be found for other materials used in the pro­
totype a-nd the difficulty of complete model design rapidly increases as more prototype 

materials are encountered, 

4.3. 3 Temperature Preservation With Linear Dependence of Thermophysical 
Properties 

In this case, the thermal properties are expressed in the form K Ko(I + P0 T) 
andanCp = Ca (1 + a0 T). Derivation of model criteria, with T* = 1 gives: 

p*V*C* p*V*C a* K*A*O_ O O_ " o n K*A*p*onr-­
0 00 A*I* Q* L - o o A* (4.9)0* 0* L*(4) 

Again for geometric similarity V* - L*3 and A* = L* 2 giving 

p*L*C* p*L*C* 09* K* -* 

0 0 0 0 9*0* = _Q! * = 1 (4.10) 
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This result, similar to that for a power function temperature dependence, necessitates 
=selection of materials with rY* j* = 1 to obtain equality of the various terms. 

0 0 1 

This requires materials to be selected with aOm zop and Picn = POp and introduces 
the same difficulties as those associated with a = a and b b . A scan of 

m p m p 
properties given in Tables 3 and 4 immediately demonstrates that the few materials 

having equal coefficients considerably limits the investigator. 

4.3.4 Materials Preservation and Nontemperature Dependence of Properties 

The modeling with materials preservation under the assumption of nontemperature 

dependence of properties, p*, C*, and K* are equal to unity and the modeling 

criteria become 

A'T*
 
V*T* A*I* Q* = At* 4 (4. 11) 

0* F*L 

For geometric similarity, A* =A* A* L*2 and V* L* and the following
n 1I 

relations are obtained: 

T* =-Q-l/ (4.12) 

28* = (4.13) 

For Eq. (4. 12) it can be seen that T* increases as the length scale ratio decreases. 

This eventually leads to a limiting condition when the length scale ratio has decreased 

to the point where the maximum operating temperature for any of the model materials 

has been reached. The relationships between T* and L* from Eq. (4. 12) and 8* and 

L* from Eq. (4.13) are shown plotted in Figs. 7 and 8, respectively.. For a 1/4 scale 

materials preservation model, T* = 1. 59 which means that a spacecraft operating 

at 294°K (70'F) would be modeled at T m = 1,59 (294) = 4670 K (380 0 F). This tem­

perature would not be too severe for most materials; however, some problems would 
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Fig. 8 Influence of Scale Ratio .Selection on Time Scale 

40 

LOCKHEED PALO ALTO RESEARCH LABORATORY 
L 0 C K 14 E E D M I S S I L E S & S P A C C C 0 M P A N Y
 

A GROUP DIVISION Or LOCVIMCED AIRCPAFT CORPOPATION
 



begin to occur with aluminized Mylar and some of the insulating materials such as 

nylon. For a i/i0 scale model, T* = 2.16 and the average model temperature 

becomes T = 2.16 (294) = 6350 K (6850F) . This level eliminates the use of mostm 

nonmetallic materials including many of the widely used thermal control paints. 

Additidnal problems arise in the elevated temperature model since the incident energy 

rate per unit area, given by'l*, must be increased by sizeable amounts. Equation 
= 
(4. 1i) gives the ratio of incident energy as I* = T*4 (1/L*)4/3 . For the 1/4th
 

4
 
scale model, this gives I* = (1. 59) = 6.4, and for the 1/10th scale model 

I* = (2. 16) 4 = 21.7. These high levels of incident flux required by the model rule 

out the use of this procedure on systems that require collimated solar energy for 

proper simulation. Current simulators are seldom designed for flux levels above 

two suns and are totally incapable of 22 suns over a reasonably sized test volume. 

Assuming an upper limit of two suns for an available solar simulator leads to a 

limiting scale ration of L* = (I/T*)3/4 = i/i. 68 using materials preservation. Of 

course, whete the test boundary conditions can be provided without solar simulation 

the limiting scale ratio can be further reduced. Two programs described in Section 6 

have utilized procedur6s wherein solar simulation was not required at high flux ratios 

allowing a materials preservation model at an L* = 1/6.43. 

From Fig. 8 it can be seen that a 1/10 scale model 'would require a time scale ratio 

of 1/100. This is beyond the useful limit for modeling of near-earth orbital vehicles 

since the orbital transient for the model would have to be run in less than 60 see. 

As was the case for a temperature preservation model, it is possible in some cases 

to introduce geometrical distortion to reduce the problems encountered. Considering 

once again that we can neglect gradients through skins and other regions constructed 

of tl.in material, it is possible to state the model criteria as 

I
1/3  
T* - (t*/L*)1/3 (I/L*) (4.14) 

2
0* = (4. 15) 
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http:I/L*)(4.14


=These forms were derived assuming A* = A1 - L* 2 and A* L* t* . The form in
I I nEq. (4. 14) shows that distortion of the thickness ratio t*, toward lower value, i.e. 

t* < L*, reduces the thermal level of the model. For example, if L* = 1/2 and 
=V " 1/4 then T* = 1. This is the so-called case of concurrent materials and tem­

perature preservation modeling; however, this-terminology is misleading since the 

system is not a point by point similar model due to the distortion required. It may 

appear surprising that distortion reduces T* but has no apparent influence on the 

time scale 0*. This comes about through the ratio of energy storage capacity to the 

rate of energy absorption and/or internal dissipation. 

Considering the internal dissipation-rate, we find 

- Q* -* *T -- t*(t*/L*)1/ 3 (1/1*) 1 / 3 

Thus, as t* is reduced to lower T* , it is also necessary to further reduce Q* to 

compensate for the time constant and maintain it at 0* = L 2 . Likewise, external 

energy levels must be reduced-according to I* = (t*/L*24/3 instead of I* = (1/I,*) 

as for the undistorted case. 

In all cases where geometric distortion is employed to reduce temperatures and flux 

ratios, it is necessary to give careful consideration to the influence of distortion on 

the temperature field and heat flow path being studied. The distortion assumes a two­

dimensional temperature field and maintenance of radiation shape factors. Where 

distortion changes these fundamental assumptions to the extent that the temperature 

and heat flow fields of the model no longer maintain similarity, then the model quite 

obviously will serve no useful purpose. 

4.3.5 Materials Preservation Witl Thermally Dependent Properties 

The need for geometric distortion of the materials preservation model has been­

related to the necessity for reducing temperatures in the model to reasonable levels. 

This necessity is made even clearer by considering the fundamental properties of 
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materials. Materials preservation assumes that the model has preserved.the thermo­

physical properties of the prototype since identical materials are used. In addition, 

the method generally requires that the model temperature be el.evated .(T* - L*-1/3.). 

The need for a -T* v 1, except for distorted models, results in a change of thermal 

properties which in itself degrades model accuracy. This influence is more readily 

seen by writing the materials preservation criteria with temperaturedependent 

properties. 

For power function dependence of properties, assuming that K1 = = 1, b m = bp 

and a m -= a p (reasonable assumptions for considerable changes in temperature). the 

model criteria are 

A* T*(1 + a)
pV .T(I + b)

P, A*I* Q* AT* (4. 16) 

Solution of tje"above terms with strict geometric similarity gives 

- "T*= L*( l /ars) 
" a - ­ 3a., * = L*2L 

The dependence of T* and 0* on the absolute values of a and b introduces a con­

siderable limitation. The fundamental precept leading to model design is that all 
components of the model have the same temperature and time scales relative to the 

prototype. Yet the above result indicates that this can be achieved only for cases 

where all prototype materials have identical values of a and b. The low potential 

for such fortuitous circumstances may be rapidly evaluated by scanning the values 
given in Table 4. Identical values for both, constants in different materials or even 

for different alloys is extremely rare, 
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4 

As one would expect, similar results are obtained in considering thermal properties 

'with linear temperature dependence. Assuming for materials preservation that 
K* = C* = 1, Eq. (2.7) gives 

0 0 

p*V*a* T*2 A* T* A*3*T*2 
p*V*T* 0 n noAT*
 

0* 0* A**Q*-


Quite obviously equality of the above terms requires 

a*'T* =* T* 1 
0 0 

a*= * = 1/T*
0 0 

However, for materials preservation a*o /3 = 1 which gives T* = 1, and through
0 0 

further manipulation L* = 1 follows. Thus, a material preservation approach 

apparently requires that a full-scale thermal system be constructed. The indication 

obtained by considering a linear temperature dependence differs little from that 

obtained using a power low temperature dependence where only for L* = T* 1 

can the influence of the constants a .and b be completely eliminated. 

When thermal changes of materials properties are introduced into the model criteria, 

we find that an accurate model exists only for the case of T* = L* = 1, which is a 

full-scale system. This apparent limitation in using the materials preservation tech­

nique is a serious one since material properties vary as a function of temperature for 

nearly all known structural materials. The assumption of materials preservation is 

obviously negated through thermally induced properties variations. 

In a practical sense it becomes apparent that'prior to excluding the feasibility of using 

a materials preservation model it is necessary to evaluate changes in overall thermal 

behavior due to thermally induced property canges. For example, the heat conduc­

tion in an insulated rod is given by 

dT 
-K A n -Q = 
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When K =K (I + jiGT) the equation becomes 
00 -

. -

T dTKA(I+ x" = n +oT) 

and integration between, the limits x 1 , x 2 , and T T gives 

T1 -T:,n KA - ('I + T)/2j2o]2-

The model laws dervied from this result are 

-. . .." K*A* T* 13*K*A*T* 2 
* 0 n
 

- .... .i. ". . . . -x..* .-. x ..
 

Thus: we see by inspection of the derived model laws that equahty requires 

.tT*=, 

0.0
and wi~th P!* =I (material9 preservation) we mustmodel to T* 1 However, the 

question must be asked as to the importance of the influence in the modef and 

prototype. If (T1 + T 2 ) go/2 << 1, then the model conditions dictated by inclusion 

of p0 may be neglected. For aluminum at an average temperature of 3001K, 

Table 3 gives - - 5.81 x 10 . At an average temperature of 300°K, 

(T1 + T2 ) jo/2 - 1.74. For these values 3 can not be neglected. However. for 

HM21A Magnesium, 1 . 59 x 10- 4 , (T1 + T2) (o/2 0. 647, and thermal 

property changes could be a minor effect on overall performance. 

It becomes apparent that the decision to pursue a materials presentation model should 

be based upon an analysis of the prototype system to determine the sensitivity of 

prototype thermal behavior to changes in properties. For a steady state system. the 

analyses should evaluate the relative importance of radiation and conduction in 
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establishing component thermal levels,. If thermal radiation dominates the distribu­

tion of energy, then variations in conductivity will be of minor importance. For 

transient systems, the importance of heat capacity and changes in C should also bep 
investigated. The results of such an analysis on the prototype may well show that 

an accurate materials preservation model is both a feasible and practical tool for a 

detailed experimental study of the prototype system. 

4.3. 6 Summary of Materials Problems 

The material presented in this section has shown that a wide variety of common and 

special materials are in current use on spacecraft. The wide variety of material and 

applications will introduce considerable difficulties to the model designer. The rela­

tion of materials properties selection to a model design has been presented and dis­

cussed in terms of the generally apparent limitations. The difficulties in the materials 

preservation and temperature preservation approaches have also been introduced and 

related to materials properties. 

Upon consideration of the contents of this section, one must conclude that a major 

general limitation in thermal modeling is that of materials availability. Conductivi­

ties of structural materials cover a range of nearly 4 orders of magnitude. Metals 

are grouped in the range 0. 10 to 2.0 W/cm-°K and nonmetals from 0. 001 to 

0.01 W/cm-°K. 

From 0. 01 to 0. 1 W/cm-°K, it is necessary to fabricate composites or laminates 

since materials are not generally available with conductivities in this range. There­

fore, to model a low conductivity metal with T* = 1 (K* ; L*) becomes difficult 

for L* lass than 1/2. Likewise, modeling of the low conductivity materials is a 

problem since they are chosen for inherently low values of K and a less conductive 

system is unavailable. 

The transient model presents similar difficulties in materials selection since p C 

must also be considered. The range of p C for all materials is quite small as p 
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3 
shown by Fig. 3. The total range for available"materials is from 1. 5 to 4.4 J/em 3- K 

which means that control of the time constant 0* is limited in terms of p C alone. 

For temperature preservation T* = I , K* = L*, and the time ratio is given by 

rials are again grouped near the higher values. A considerable lack of materials are 

0* = p*C*L# p*C*K*. Figure 4 was compiled to demonstrate the values of 

p C K 
p p ' 

for materials both as an aid in materials selection and to show that most mate­
p

found for 0. 007 < p C. K < V. 5 which causes material substitution difficulties when 
p. 

prototype materials'are on either edge of this range. Likewise, the inverse -thermal 

diffusivity p Cp /K has been plotted in Fig. 5 to aid in materials selection. This 

property is represented over a wide range by the available materials though there 

are definite lower and upper limits where a selection to fit a model design may not be 

available. 

The discussion of temperature dependence of materials properties, and the data pro­

sentud on thermal coefficients. delnonstrates the very real problems associated with 

modeling over a wide temperature range. The model criteria for a materials substi­

tution model require matching of the thermal coefficients. This restriction consider­

ably narrows the field of available model materials since K, p*, and C* are 
p

usually tied down by the selection-of T* and L*. For a materials preservation model. 

the criteria state that an accurate solution exists only for T* = L* - 1 since no 

changes in properties can exist between the model and prototype. In view of this 

finding, it is apparent that materials preservition models should first receive careful 

analytical study to determine whether material property changes will seriously 

degrade model performance. 

In addition to model design difficulties associated with materials selection and match­

ing ei temperature coefficients. there exists the problem of ascertaining the actual 

properties of materials used on the model. Manufacturers information on thermal 

conductivity, density. and specific heat is usually limited to room temperature values 

and of questionable accuracy in terms of batch-to-batch variations. Alloying and heat 

treating of metals causes wide variations in thermal conductivity. For nonmetals varia­

tions in chemical composition, density, and process temperature can occur that change 
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the thermal conductivity and make manufacturers data unreliable. At low tempera­

tures there is a general lack of accurate data on thermal properties of common mate­

rials since manufacturers and users are not commonly involved in low temperature 

applications. In view of the difficulties faced by the investigator in obtaining accurate 

data, he must have available the necessary apparatus for determination of the thermo­

physical properties of materials used in model design. Checks must be made dn 

quoted values of thermal conductivity, specific heat, density, spectral reflectance, 

and absorptance in the incident energy spectrum, and infrared emittance and reflect­

ance in the spectrum associated with model temperature. Only through performance 

of such measurements can be model properties be as well known as those prescribed 

for the prototype. 
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Section 5
 

MODELING OF SIMPLE SYSTEMS
 

Some insight to delineation' of the limitations existent in attempting to accurately model 

complex spacecraft systems can be gained through consideration of the thermal 

behavior of simple geometries. For example,.'the one-dimensional steady state heat 

conduction through an infinitely wide plane honogeneAis plate is described by the 

relation 

T12
 

* Q.-kA (5.1f 

for which the similaritv criteria are 

, k*A*T k*L*T (52 
....- X*.. = k'L--(.2 

It is easily seen, from either Eq. (5. 1) or (5. 2), that temperature preservation in 

the model will be otained, i.e. = I' if k*L* :. 

That is,as long as the plate thickness of the model is chosen so that (xi-x)11 

(x 1-x 2 )' Qmk/Q K or heat rates through the model are controlled according to 

* .. . km (x1 -x2)m 

.Qin =-.Qp kp (xl-x 2 )p 

then the prototype conditions are strictly preserved. This ilat plate problem is 

extremely simple and has few difficulties that lead to a limitation in the modeling 

approach. It is necessary to select materials with accurately known properties and 

thicknesses, and to measure or control heat rates with reasonable precision to obtain 
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excellent model results. Geometrical distortion of the model is entirely permissible 

for the flat plate one-dimensional heat flow. 

For thick-walled hollow cylindrical and spherical shapes, the modeling approach 

becomes more complex. The energy-transfer per unit length through the walls of an 

infinite cylinder is given by 

t t1 
Q/L -27k -2 t2 t1 r (5.3) 

and the temperature field by 

(t1 -t 3 ) Anr + t 2An r 1 - t 1 In r 2 (5.4)
Pnr 1/rl2 In rI/r 2 

A derivation of the similarity criteria from these equations shows that the tempera-: 

ture field is preserved only if An (rl*/r2 *) = 0, i.e., rl* = r 2 *. Thus, a geo­

metrically identical model must be constructed and the ratios of temperatures at 

identical locations will be given by 

T* = Q*/k*L* 

The geometrical identity introduced by the cylindrical shape leads to a considerable 

restriction of acceptable length ratios -which can be accommodated using available 

materials. This results in a practical limitation of the modeling approach since 

cylindrical construction materials normally come in standard wall thicknesses which, 

in many cases, may not provide an exact match to the desired length ratio of a com­

plex model. Jacob (Ref. 8) has replaced Eq. (5.3) by the form 

Q kA- 2 (5.5)
n r2-r 
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so that a direct comparison could be made with the solution for a flat plate as given 

by Eq. (5. 1). In this form 

A= Lr (r 1 +r 2 ) (5.6) 

a mean area, and 

+ 11 (r2/rl) 
(5.7)2 ( /rl) - 1 n (r/r±) 

a shape factor whose value reflects the departure of energy transfer through a cylin­

der from that through a flat plate. Values of the shape factor are given by Jacob as 

r2/r 1.0 1.1' 1.2" 1.3 1.4 1.5 2.0 4.0 
I. 000 1. 601 1. 003 1. 006 1. 010 1.014 0.140 1.155 

These numerical values show that a thick-walled cylinder whose ratio of outer to 

inner diameter is less than 1. 4 has a temperature field and energy transfer rate 

within 1% of that of a flat plate of equivalent mean area. Therefore. for a prototype 

with 0 < r 2/r I :s 1. 4 , it is"apparent that geometric distortion of the cylinder wall 

thickness is allowable in design of a small-scale model. Removal of the restriction 

r = r 2 * makes the model design considerably less difficult since selection of wall 

thickness can be, combined with model conductivity. 

The difficulty of modelinga hollow sphere is similar to that encountered with the 

long cylinder. For a hollow sphere -withinner diameter r1 and outer diameter r 2 

the temperature t at radius r is given by 

(t 2 /r1-tI/r 2 )t (t.2 +t r2) (/f/r ) (.s 
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and 

t1 -t 2 t - t 

4rk7rk (5.9)(1/ri - 1/r2) (/r - 1/r 2) 

The derivation of model criteria from these equations gives 

r */r2* = 1 *(5.10) 

and 

k*T*r 1I k*T*r 2* (5. 11) 

both of which must be satisfied. As for the cylinder, these criteria demand exact 
geometrical similarity for preservation of the temperature field. The simplification 
of Eq. (5. 5) can again be made for the sphere where 

A '47r(5. 12) 

and 

= 1/2 + r 1 /4r 2 + r 2/4r 1 (5.13) 

Values of 4 for various ratios of r /r 2 are 

r2/r I 1.0'. 1.1 1.2 2.0 

4 1.000 1.002 1.008 1.125 

These values show that a thick-walled sphere can be distorted in thiclness for 
0 < r 2/r < 1. 2 since the departure from a simple flat plate solution is less than 

1%for values in this range. 
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The results for the flat plate, cylinder, and sphere arc useful in determining the need 

for geometrical identity between the model and ptototypo under steady state conditions. 

For most structures used in spacecraft where these shapes are employed, the radius 

ratios fall well below a value of r 2 /r I < 1. 2 within which range the wall thicknesses 

can be distorted. For radius ratios above 1. 4 for the cylinder and 1. 2 for the sphere. 

it becomes necessary to design the model more carefully to assure compliance of the 

thermal system with the model criteria. Under these conditions the model designer 

will be considerably more limited in'seledtion of length, property, or temperature 

ratios due to the unavailability of material sizes which match his design approach. 

The solutions desctibe the temperature field in simple systems whose boundary tem­

peratures are fixed and kifown. In most eases, these boundary temperatures are 

functions of the radiative or convective boundary conditions whose influence must be 

considered in deriving the model criteria. 

Infinite and semi-infinite flat plates, infinite cylinders, and spheres have been 

thoroughly analyzed for solution of numerous conduction and cofiduction-convection 

heat transfer problems. The solutions to these problems have frequently been pre-' 

sented in generalized forms in terms of the nondimensional Diet. Fourier, Reynolds, 

Prandtl. and Nusselt numbers whose values are a measure of the thermal similarity 

existing in geometrically similar systems. Unfortunately, only a few generalized 

solutions have been presented for..the radiation-conduction efivironment which fact is 

primarily due to the nonlinear dependence on temperature of radiant heat transfer 

and the necessity to solve most of these problems using. thermal analyzer computer 

programs. However, under conditions where the thermal environment surrounding 

the system of interest permits linearization of the fourth power temperature depend­

ence of the net radiant interchange, then it is possible to define a radiation coefficient 

and utilize the generalized forms presented for convection-conduction coupled 

systems. 
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The net energy trknsfer rate between opposed black surfaces at temperatures T1 and 

T2 (TI > T 2 ) is given by the fourth power law as Q/A =(T14 - T2 5. Since 

4 43 2 2 3Tl -. T24 ) (TI +T 1 T2 + TTIT2 + T 2 ) (T I - T2 ) 

+ T23).
a definition for hr , the radiation coefficientis hr = o(T1 3 + T 12 +T 1T22 

Using the radiation coefficient permits computation in the form q/A = hr(T - T2 )1 
which, given that h is essentially constant, linearizes the temperature dependencerand considerably simplifies the solutions of many radiant heat transfer problems. 

Numerical values for hr are more conveniently presented in the form 

h r +x 3r ; 1+x+x 2 (5.14) 
1 

where 

x=T 

-or, since the equation is symmetric in T1 and T2 

hr = 2 3 (5.15) 

where 

T 

Equations (5.14) and (5. 15) are shown graphically in Fig. 9. A frequently used 

approximation for the above defined hr is h' = 4oTa where Tav is the average 
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CO-1.0 0 ­ h r 

8
~T

900 

'~-~80 

-70 - r 
b 60 - hr 

50- , - 0.5 
40 - 0.4 

30 - . -" 0.3 

pZz 20 - 0.2.0 

20q-.; -- -$ (h hT)/h ~ 
10 - 0.1 

0 0 

0 1 2 3 4 
T2 /T 1 (or T 1/T 2) 

Fig. 9 Exact and Approximate Forms of the Radiation Coefficient 

temperature given by Tar (T + T2)/2. Using this form o_*vcs 

3 -2(1 + x3x + x ) (5.16) 

where 

T
 
2
 

- 1­

and 

+3 (1 + 3x + 3x2 x 3) (3S

aT 2 
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where 

T 1
 

This relation is also plotted in Fig. 9 along with the error, (hr - h P/hr ' incurred 

through its use. For the range 0.80 < (T2/T 1 ) < 1.20, the error in using the 

approximate form is on the order of 1% while for 0.64 < (T 1/T 2 ) 1.60 it is no 

greater than 5%. 

The majority of solutions to heat conduction problems with convection heating or cool­

ing assume that the surface heat transfer coefficient is constant. This assumption 

is reasonable for many situations where average convection heat transfer coefficients 

are defined in terms of Reynolds, Grashof, and Prandtl numbers characterizing the 

system. The use of an average coefficient is also appropriate for many radiation 

problems where the surrounds may be considered as equivalent to a blackbody at 

fixed temperature T , and the body of interest has limited variations in time or 

space about some mean temperature T1 . In this case q = hr (TI -Ts) and hr is 

assigned a value at the mean surface temperature. The relative variation of hr [with 

temperature T 1 by differentiation of Eq. (5. 15)] is given by 

Ahr "x + 2x 2 +3x 3 ATI TI 

-I 2 3 T1r 1+x+x +x s 

and, where the approximate form is used, by 

Ah' 2 . AT, T 

r 3x + 6x2 +3x 1 

r i + 3x + 3x2 3 1 s 
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A few selected numerical values for these equations are as follows: 

T1/T s Ah/h A' 1W 

0 0 0 

0.2 0.24 AT 1/T 1 0.5' AT 1/T 
0.5 0.73 AT1/T 1 1.0 AT1/T 10.7 1.07 ATI/T 1 1.24 T1/T1 

1.0. 1.5 AT 1/T 1 1.5 AT1/T 1 

2.0 2.27 AT 1/T 1 2.0 AT 1/T 1 

5.0 2.76 AT1/T 1 2.5 AT/TI 
10 2.89 ATI/T 1 2.73 AT /T 1 

00 3 AT 1 /T 1 3 AT /T1 

The indicated values may be used as a measure of the error involved in assuming a 
constant heat transfer coefficient. The error is frequently negligible for the tempera­

ture ranges and heat transfer rates associated with spacecraft hardware. 

The purpose of the preceding discussion of a radiation coefficient is to provide a 
foundation for the use of previously established solutions for simple systems in a 
convection-conduction environment as a guide in estimating behavior for similar 
geometries in a radiation-conduction environment. The purpose of establishing pro­
totype thermal behavior using an average heat transfer coefficient is not to obtain an 
accurate measure of energy rates or thermal levels, but rather to gain insight into the 
limitations that may exist in constructing a thermal model of the system. For example, 
solutions for the time-temperature histories of flat plates, cylinders, and spheres 
are available in generalized form in terms of the Fourier numbers (!0/f 2 ) , Biot 
number (M/k) , and position ratio (x/2). The variables used in these dimensionless 
ratios are: a k/pC = thermal diffusivity, 0 = time , k = characteristic thickness 
or length, k = thermal conductivity , h = surface heat transfer coefficient, and 
x = distance from zero reference in direction of i. These solutions are in chart 
form (Heisler, Groeber, Gurney-Lurie charts) and cover a wide variety of problems. 

By reference to charts for the case of a flat plate with heat transfer at one surface 
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and the other insulated, it is immediately apparent that for k/! > 100 (L/ 2 > 0. 2), 
2 = plate thickness, the plate may be considered as isothermal since the exz-tnal 

resistance to heat flow overshadows the internal resistance For this case, the plate 
temperature is.a function of the product (h/k) (a 6/2) = h/pCf . For the radiant 

environment h is proportional to a-T3 , giving Oh/pCA = OuT3/pC > (1/100) X 

(0. 2) = 1/500, as a value below which the plate may be considered as isothermal. 

The same conclusion can be drawn for isothermal temperature in the solid inifinite 

cylinder and solid sphere where A is replaced by the radius r. For times and prop­

erties which fall outside of the range k/hl > 100 and aC/A2 > 0. 2, it is necessary 

to consult the charts to determine the extent of temperature differences caused by 

a transient condition. 

The validity of the above interpretations is borne out by the investigation of Harris 

(Ref. 9) wherein he considered the temperature history of a rotating fiat plate in 

space with one surface exposed to the space environment and the other adiabatic. 

A fourth power radiation boundary condition was used for the emitting exposed sur­

face which was irradiated by and absorbing solar energy during each half-cycle of 
rotation. Energy was absorbed during the first half-cycle with no illumination 

during the second half. The analyses assumed adiabatic edges for the plate and 

solved the one-dimensional heat transfer equation to obtain temperature histories 

dluring rotation for the front and back plate surfaces. The solution was numerical 

using a digital computer. 

The solutions obtained for front and back temperature histories were presented in 
terms of Fo = dO p/,2 (6p = period of rotation), = pC/aETav3 (E= surface 
emittance . T = average surface tdmperature based upon thermal equilibrium with 

the average solar irradiance fot one complete cycle), and n = O/ep (the relative 
time from the beginning of a cycle). Two summary figures presented by the author 

are of particular value for purposes of this discussion. The first, which presents 

the maximum and minimum temperatures of the front surface during a complete 

cycle, is shown in Fig. 10. 
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Fig. "10 	 Maximum and Minimum Temperature of the Front Surface 
of a Rotating Thick Plate in Space 

Some general observations may be drawn from the figure that are useful in considering 

model design. For values of p. < 0.1, the front surface of the plate will reach the 

same naximum regardless of the'value of F° =aGpi 2. This region corresponds to 
oplow volume heat capacity'per unit area combined with a long period of rotation so 

that the front surface is in equilibrium with the solar input. The minimum tempera­

ture will, of course, depend on the modified Fourier number F since stored energy
0 

must be conducted to the surface and emitted to space. For F0 > 10, the maxima 

and minima front surface temperatures approach those for F0=0 o. This indicates 

that the designer has considerable freedom in his approach to modeling prototypes 

with large F if the transient front surface temperature is of primary interest. For 
0

4) > 10 2 , the front surface temperature is nearly invariant over a complete cycle. 

The region corresponds, for the steady periodic case, with the previously determined 

value of pUi/drO =500 for isothermal conditons as determined from Heisler charts 

for a flat plate with a sudden change in surface temperature. 
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The second summaW-7 figure compiled by Harris is shown in Fig. 11. Here, the 

author presented regions of F and 95 within which the front and back surfaces were 

nearly identical throughout each cycle. Thus, for the values, showvn, the plate may 

be considered as isothermal within 1/2, 1, or 2%. The range of F. and 0 covered­
by the figure covers maximum amplitude steady-periodic response (F0 > 10 ) through 

steady-state equilibrium where T = T ( > 10 S ). 
+av
 

103
 

10 2 

C1
 

S10 

0-00 	 1/2% 

-

i0
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16 10 1 100 1 10
 

=CcpI) Tau 3 o 

Fig. 11 	 Regions of Fo and 5 for Isothermal Conditions in a Rotating 
Thick Flat Plate 

Of particular interest to the model designer is that the 1% isothermal condition is 
3 2achieved throughout the range of interest for )F° = k/oTav > = 10 . Once again 

this corresponds with the findings obtained for flat plates, cylinders, and spheres by 

inspection of Heisler charts. This value of OF0 > 102 is, in a sense, a limiting 
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condition for conducting a model investigation under transient or steady-periodic con­
ditions. If the prototype object provides a (PF0 > 102 ,. then it is apparent that the 
model design can be relaxed in terms of geometric identity since temperature differ­

ences in thickness are not a governing parameter in overall thermal performance. 

However, for prototype objects having OF0 < 102 , it is necessary that the model 

preserve all prototype properties so that the thermal graident and front-to-back phase 

differences match the prototype. Where both the front-to-back gradient and phase 
must be preserved, it will be found that model design is considerably more difficult. 

Most spacecraft components exposed to the external space environment are constructed 

of sufficiently thin, high conductivity material to fall in the high range of F and F T. 
0 0 

For example, a spacecraft skin or other enclosure constructed of aluminum and having 

c = 1, k - 1.76 J/sec cm-°K, p = 2.8 gm/cm 3 , C = 0.837 J/gm-°K, k = 0.127 cm 

(50 mil), and an operating temperature near 300'K gives 

k 0 
F° = -- = 4.65 0 (0pin sec) 

0 pCc 2 p p 

Fo( = k 3= 0.904 x 104 

acET Iav 

For this material and thickness it is apparent that it may be assumed isothermal 

through its thickness. Also, since ¢ c (2 x 10 3)/0p, it will exhibit nearly steady 

state behavior at T = T for periods of input flux variation on the order of 10 see avand maximum steady-periodic fluctuations for periods in excess of 2 x 10 see 

( 5.5 hr). Since the value of Foe is an order of magnitude greater than required 

for isothermal conditions, it is possible to distort the model from strict compliance 

with the model criteria. This is allowable as long as F remains greater than 10. 
However, consideration must also be given to the mo.del time ratio so that proper 

values of F and P are.separately attained to properly match the steady state or 

steady-periodic behavior. 
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Many other examples can be presented using the guidelines presented by Heisler 

charts, the referenced work of Harris, or similar parametric studies of simple 

systems. Each example will demonstrate the regions of.prototype design, material 

properties, and environmental conditions where considerable freedom exists in 

model design or conversely where strict compliance with the model laws is essential. 

A reasonable estimate of the limiting parameters must be established by the investi­

gator for each case in order to establish the required accuracy of model construction 

and test operation. 
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Section 6
 

MODELING OF COMPLETE SYSTEMS
 

Thefeasibility of designing and testing a thermal model of a complete spacecraft has 

been demonstrated through completion of such work on the Mariner IV vehicle (Ref. 10). 

The model built for that work was 1/2 scale and was complete in all thermally impor­

tant details with the prototype system. The results obtained from tests on the 

Mariner II model were, for the most part, within ±5°K of results obtained during 

thermal testing of the flight hardware, although a temperature difference as large as 

300K was observed for'one component. 

While theMariner IV model is presently the only known attempt at modeling a com­

plete vehicle, which fact considerably limits the broad conclusion to be drawn from 

that work, other experimental evidence is available to substantitate that scale model 

studies can provide meaningful results. References 11 to 13 report experimental 

results on modeling of complex configurations under transient conditions: Ref. 14 

reports modeling of a spin stabilized solar probe; and Ref. 15 considers the thermal 

and structural modeling of a large space telescope. A study of results obtained from 

these later investigations leads to the conclusion that reasonably simple models can 

provide excellent indications of prototype performance. 'The later studies did not 

include comparisons to either flight performance or space chamber tests of a proto­

type since they were completed on the basis of information available during conceptual 

design stages. However, comparisons to analytical predictions obtained from 

computer-analyzer programs were made and these led to quite useful conclusions with 

regard to the fundamental design approach, the need for improvement of the computer 

model, and to the need for modification of the experimental small-scale model. 

These studies are specifically referred to here since they will be discussed in detail 

in this section. Readers interested in obtaining a more complete coverage of the 

literature will find numerous works referenced and discussed in Refs. 16"and 17. 
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The limitations encountered in modeling complete systems are as many and varied as 

the systems themselves. Limits exist in the selection of an acceptable length ratio 

due either to prototype or test facility size. Model designs are limited by the avail­

ability of materials that meet the requirements imposed by selected values of p', 

C, and k* and by the accuracy of available materials property data. The experi­

mental results are limited in accuracy by inherent errors in procedure and instrumen­

tation) which errors are either magnified or reduced through the temperature (T*) 

and time (e0") scales employed. 

It is not possible to provide a simple statement that sets forth the absolute limits 

existent in using thermal modeling procedures for all varieties of complex spacecraft. 

Such limits vary as a function of spacecraft size, geometry, and thermal design. For 

example, the problems associated with small-scale modeling of a spacecraft having 

major outer dimensions on the order of 2 m may well be associated with the need for 

high precision in manufacture of subcomponents to accurately preserve radiation view 

factors and path conductances at their required values. On the other hand, the major 

limitation in modeling a larger vehicle, with outer dimensions on'the order of 80 m, 

may be in obtaining materials that have a low thermal conductivity and that also pre­

serve the necessary ratios of p* and C* to match the overall e*. The following 

paragraphs present examples of model studies on complex systems to further illus­

trate the limitations imposed by prototype characteristics. 

6.1 SOLAR PROBE MODEL 

Under a separate program, a study was performed to establish the test techniques 

applicable to thermal qualification testing of an advanced Pioneer Solar Probe 
(Ref. 18). The vehicle would extend space exploration to within 0.2 A. U. of the sun 

where the 'outer skin would experience 25 solar constants. Since the mission extended 

from I to 0. 2 A. U. (I to 25 solar constants) the vehicle design required use of the 

most advanced thermal control techniques available making a thorough thermal quali­

fication test mandatory. 
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The conceptual spacecraft configuration is shown in Fig. 12. The main body of the 

spacecraft is 0.91 m in diameter and approximately 0.91-m high with an antenna 

reflector and dipole extending approximately 1. 32 m above -the top of the vehicle. 

Thb external surface of the upper solar cell array is covered with a mosaic of filtered 

silicon solar cells and optical solar reflector (OSR) thermal control surface. The 

surface of the lower solar cell array is covered entirely with solar cells which are 

protected by a variable aperture heat shield that is programed to allow a maximum 

solar cell temperature of 366°K. The viewing band is entirely covered with OSR 

and has twelve penetrations of various sizes and shapes that provide experiment 

apertures and sun sensor and boom mountings. All apertures are covered with a 

layer of aluminized polyimide film with the exception of two which are open. The 

experiment booms, are entirely coated with OSR. 
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Fig. 12 	 P~roposed Configuration of Advanced P~ioneer 
Solar Probe Spacecraft 
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The spacecraft is spin stabilized at 60-rpm; however, both the antenna reflector and
 

lower array heat shield are despun and remain fixed with respect to.the solar vector.
 

The external surface of the heat shield is coated with OSR, while the inner surface 

that faces the lower array is aluminized to provide for minimum thermal coupling with 

the main body. The antenna reflector has OSR on the convex surface and white thermal 

control paint on the concave surface. 

All interior surfaces are thermally-isolated from the exterior by high-performance 

multilayer insulation attached to the skin inner surfaces. Additional isolation from 

exterior surfaces was obtained using insulating spacers located between all internal 

to external structural attachment points. Heat leaks through the insulation and"50 W 

of internal power are radiated to space by an active louver system located directly
 

below the equipment platform. The louvers are designed to maintain equipment plat­

form temperatures at near-earth ambient levels (2720 to 305 0K) throughout the entire
 

mission.
 

A thermal-analyzer computer program was established on the basis of available pre­

liminary design information and was used to predict prototype performance during 

one solar orbit. The results obtained forecast that the basic design would function 

satisfactorily, although maximum temperatures would, in some cases, closely 

-approach maximum allowable limits for the materials used. Predicted minimum 

(at 1 A. U. ) and maximum (at'0. 2 A. U. ) temperatures for several locations are given 

in Table 5. 

Several approaches were considered as having potential for provision of required 

levels of energy during thermal testing of the spacecraft. Sources considered were 

carbon arcs, xenon compact arcs, -filtered xenon compact arcs, and high intensity 

quartz-ericlosed tungsten filament lamps. 
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Table 5
 

PREDICTED SOLAR PROBE PROTOTYPE TEMPERATURES
 

Temperature (OK) 

Component Minimum Maximum 
(iA.U.) (0.2 A.U.) 

Antenna Reflector 233 519 

Upper Solar Cell Array 284 636 

Experiment Viewing Band 144 304 

Lower Solar Cell Array 336 360 

Experiment Booms 182 333 

Internal Equipment Platform 284 293 

Additional computations were made to determine prototype temperatures under expo­

sure to these sources in order to establish the thermal errors caused by the spectral 

mismatch between each source and the solar energy spectral distribution. The 

results of the computations showed that use of a collimated source of filtered xenon 

energy would result in the, least thermal error, while tungsten lamps would result in 

the greatest error. Unfortunately, thermal simulation of the mission would require, 

afthe minimum, a 1. 5-m diameter beam with intensities from I to 25 solar constants 

which exceeds the state-of-the-art in simulator designs using either compact xenon 

or carbon arc sources. The development of such a-source for the test effort would 

obviously be extremely expensive. 

Further studies of the utilization of tungsten lamp energy were deemed desirable to' 

establish the feasibility of utilizing this form of incident energy in combination with 

a normalization of test results to solar energy through use of a highly refined thermal­

analyzer computer program. Such a procedure had the potential of thermally exer­

cising the flight hardware through prescribed limits (i. e. , go-no-go quality assurance 

testing) and at the same time of proving the validity bf analytical predictions. To 

establish the validity of this approach, the study program undertook the design and 

construction of a thermal scale model and the establishment of a thermal analyzer 
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program for prediction of model behavior. The model was then to be tested using a 

1 solar constant carbon-are simulator and various arrays of high intensity tungsten 

filament lamps using incident fluxes equivalent to 1 to 25 suns. 

In view of the intent of the program, i. e. , to investigate test procedures, it was not 

considered necessary to construct a model with geometric identity in all details and 
with strict compliance with the model laws. To undertake that task would have required 

an increase in scope of the program to include the development of a more exact thermal 

analyzer program., additional prototype thermal design, and a complete thermal test 
effort. Since such a study exceeded the available funding level, it was decided to con­
struct a geometrically similar 1/2 scale system whose thermal performance, though 
not identical to the prototype, would be equally as sensitive to external thermal inputs 

with surface solar absorptance and infrared emittance properties distributed in the 

same manner as for the prototype. 

Model design was accomplished under the following ground rules: 

(1) Steady state conditions could be assumed due to the use of a high spin rate. 

(2) Temperatures for the model should be of the same as those of the spacecraft. 
(3) The design of the model should comply insofar as possible with the model 

laws for steady-state conditions given by 

K*A* T* 
A*I* == n 1 (6.1)AI* * 	 A* T*4 

(4) 	 Major thermal paths should model, as closely as possible, those used in 

the thermal analyzer program to describe the prototype configuration. 
(5) 	 External surfaces should have the same thermal sensitivity to external 

source spectral variations as the spacecraft. 

(6) 	 The size of the model should be approximately one-half that of the space­

craft for compliance with the test chambei capacity. 

(7) 	 The same thickness and layer density of multilayer insulation would be 

utilized. 
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The advantages and limitations of each of these ground rules were carefully con­

sidered and will bereviewed herein for purposes of demonstrating the adequacy of 

the approach. 

6. 1. 1 Steady State Assumption 

Computations were performed on the prototype concept to establish surface tempera­

ture transients during one revolution of the spin-stabilized spacecraft at 0. 2 A. U. 

from the sun. At this orbital position, the lower solar array shield is nearly closed 

and the upper solar array is subjected to a maximum variation in input flux Results 

obtained from the computations indicated that steady-periodic transients in skin tem­

perature would be less than 10 C, and that periodic inputs from the booms and antenna 

were negligible. These findings permitted use of the steady state modeling criteria 

given by Eq. (6. 1). The use of steady-state criteria considerably simplified model 

design though model rotation was still necessary to obtain the proper distribution of 

surface irradiance. 

6. 1. 2 Temperature Preservation 

Numerous approaches could have been used in modeling the Pioneer vehicle to obtain 

information on its thermal performance. A model could have been constructed with 

T* < 1 and I* < 1 to reduce required levels of incident flux and associated tempera­

tures. The actual values of T* and I* would, of course, depend upon the selected 

value of L* and the availability of materials with the required thermal conductivities. 

In lieu of this approach, a decision was made to pursue a design and T* 7- ] for 

purposes of gaining additional knowledge on the behavior of construction, insulation. 

and surface coating materials at the highest test temperatures. Thus. the use of 

T* - 1 was not selected on the basis of modeling considerations but rather on the 

desire to obtain additional information from the model that was not directly related to 

the thermal test requirements. 
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6. 1. 3 Pioneer Model Laws 

For-steady-state conditions with T* 1 , the model criteria of Eq. (6. 1) become 

K*A* 
A* = Q* n* =A (6.2) 

2 2* 
For regions where geometry can be preserved, i.e. , X'*2 =L = 2 1 n te= = At, then 

I* = K ' (.3) 

L*2 (6.3)L* = 1 

A main requiiement of the model is that it preserve the proper relationships between 

externally absorbed energy, surface emission, and internal energy dissipation so 

that surface temperatures of the model properly scale those of the prototype. For 
temperature preservation, it is seen by inspection of Eq. (6.2) that proper scaling, 

.2
 
i.e., T* = 1, requires that Q*/A = A*I*/A* = 1. Considering that A* = A* = L 

for external surfaces, it is required that internal energy dissipation be modeled to 

give Qm = Qp (Lm/Lp)2 and that absorbed external flux be contolled to give Im = I 
(absorbed). A design to meet the criteria Q. = Q -(L /L ) was .easily achieved 

m p M p
by use of resistance heaters placed inside of boxes which were in turn firmly attached 

to the instrument platform. The energy dissipation of the heaters was controlled and 

continuously monitored to guarantee proper. simulation. 

Control of absorptance on external surfaces was considerably more difficult and is 

representative of the limitations encountered in model design. The prototype, as shown 

by Fig. 12, has three separate zones with distinctly different solar absorptance proper­
ties. The upper solar cell array consisted of both solar cells and OSR (second surface 

silvered fnirrors) to provide an overall ratio of solar absorptance to infrared emittance 

(%s/e) of 0.45. The viewing band was all OSH with experiment openings, both open 

and closed, to give an overall se = 0. 10! The lower array was all solar cells giving 
an overall as/ = 0. 84. To properly duplicate these values on the model, on both a 
total and spectral.basis, would have required the use of identical materials in the 
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proportion of surface coverage. While this requirement presented no difficulties in 

fabrication or assembly, it was deemed undesirable in terms of the materials cost 

for solar cells. Thus, the availability and cost of surface materials became a major 

limitation in pursuing the design of an exact model of the solar probe. The use of 

alternate materials with different spectral properties would obviously result in a 

modification of thermal performance since the sources to be used during test. i. e., 

a carbon are and tungsten filament lamps, have quite different spectral emission 

properties. However, this undesirable variance from the model criteria was deemed 

acceptable for the program as long as the detailed thermal analyzer program could be 

used to interpret model performance in terms of actual prototype performance. There­

fore, the model surfaces were coated with combinations of OSR and black paint in 

proportions that preserved the ratio of cs /c for each section while not separately 

preserving a~ and E. The computer analyzer program was altered accordingly to 

comply with the model boundary conditions. 

6.1.4 Structural Members 

Design of the internal structure of the model was accomplished in strict compliance 

with the model criteria using a scale ratio L* = 1/2. Conductive paths were controlled 

in geometry and materials properties to give K*A* X* = (L) 2 . The design of brackets,
nboom attachments, and other conductive members required materials substitution and 

geometric distortion to meet the existent criteria. 

The external skin of the prototype consisted of honeycomb materials whose thermal 

conductivity properties could not be properly modeled at 1/2 scale using a homogeneous 

material. However, computations showed that the skin served only as a structural 

mounting surface for the solar cells and OSR and played a negligible role in distribut­

ing energy around or through the inner boundary composed of multilayer insulation. 

This permitted use of a stainless steel skin (0.030-cm thick) that was broken into four 

major sections to preserve isolation of the separate surface zones being studied. This 

approach was permissible only because of the high resistance of multilayer insulation 
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in the perpendicular direction in combination with the rapid spin rate of the satellite 

which provided uniform circumferential temperatures. In the absence of either of 

these prototype conditions, the model skin would have to strictly comply with the 

model criteria requiring the use of special honeycomb materials. 

6. 1. 5 Multilayer Insulation 

Compliance with the model laws requires tf.At thermal conductivities be reduced ac­

cording to K* = X* = 1/2 (for T* = 1). With multilayer insulation, these are diffi­

cult criteria to meet since the material is nonhomogeneous, requiring control of both 

the perpendicular and parallel thermal conductivity, and is nonreproducible in the 

sense.that identical insulation wraps may differ by a factor of 2 in thermal conductiv­

ity. In addition, most prototype designs strive for the minimum conductivity possible 

with a given number of layers making it difficult to further reduce the conductivity 

for a small-scale model. These difficulties were recognized during study of the solar 

probe and were clarified by use of the computer analyzer program using various 

values of conductivity for the multilayer insulation. The computations revealed that 

increasing the wrap thermal conductivity from the prototype design Value of 8. 6 x 10- 6 

W/cm-OK (5,x 10- 4 Btu/hr-ft-°R) to 1 x 10- 4 W/cm- K (5.8 x 10- 3 Btu/hr-ft-°R) 

would not result in a noticeable increase of internal temperatures or decrease of 

-external surface temperatures. This finding confirmed that energy entering the 

internal region from booms, support brackets, and instrument ports was dominant 

over that passing through the insulation blankets and permitted a relaxing of the model 

criteria calling for an insulation with K. = 1/2 kp. Therefore, the model was 

constructed using an insulation identical to that of the prototype which allowed direct 

observation of its thermal performance and of its stability under the high tempera­

tures to be experienced by the prototype. 

6. 1. 6 Model Performance 

The completed 1/2 scale thermal model is shown in Fig. 13. The model was tested 

at 1.04 solar constants of carbon are energy and at 0.9, 1. 12, 4.92, and 9.0 solar 

constants of tungsten lamp energy. A test was not made above 9 suns of tungsten 
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Fig. 13 	 1/2 Scale Thermal Model of Pioneer 
Solar Probe Spacecraft 

energy due to excessive skin temperatures due to higher than expected surface 

absorptances for tungsten lamp energy. Some tests were performed using a lamp 

array of 28 lamps and some with an array of 6 lamps to observe changes due to 

filament temperatures. A brief summary of thermal tests using the model is pre­

sented in Table 6. 

The computed values were determined from the thermal analyzer program using 

model design and test boundary conditions. As can be seen by inspection of the data, 

the tungsten filament lamps resulted in highei than anticipated surface temperatures 

which led to high internal temperatures. Studies following completion of the test 

program showed that the higher temperatures were caused by higher than anticipated 
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Table 6
 

MODEL TEST RESULTS FOR SOLAR PROBE
 
(Temperature °K) 

Source Solar Carbon Arc Tungsten Solar Tungsten Tungsten Solar Tungsten 

Intensity Solar Constants 1.04 1.04 0.90 4.92 4.92 4.22 9.0 9.0 

0 0 
Number of Lamps 
Internal Power Watts 29.5 29.5 

28 
29.5 30 

28 
30 

6 
30 6 

28 
6 

0 

-

X 
m 
i 
U 

Approach 

Location 

Upper Solar Cell Array, 
Outside Surface 

Computed 

246 

Test 

260 

Test 

282 

Computed 

359 

Test 

416 

Test 

387 

Computed 

418 

Test 

482 

C,0 

.. 
Upper Solar Cell Array, 

Inside Insulation 
268 271 285 1. 314 338 336 337 374 

0-

Mn 
. Viewing Band, 

Surface 
Outside 204 230 278 257 386 336 288 434 

> > 
: 

0 zLower 

Viewing Band, Ifside 
Insulation Surface 

Solar Cell Array 

270 274 286.' 279 333 325 266 364 

0 
> 
o0 

upper section, Outside 
Surface 

332 336 . 324 360 361 364 360 370 

> 0 
Lower Solar Cell Array 

upper section, Inside 
Insulation 

255 255 251 266 272 276 254 288 

Experiment Booms 218 239 277 354 376 344 277 430 

Equipment Platform 278 278 282 283 298 300 261 310 



lamp emission at wavelengths beyond 5A. The existence of'considerable energy at the 

lower wavelengths results in an increase in 01/E for the OSR surfaces. Tests were 

made on the lamp arrangement using a thermopile detector, both with and without a 

quartz filter, roughly to evaluate the energy distribution of the source. Table 7 pre­

sents the results obtained. 

Table 7 

ENERGY DISTRIBUTION OF TUNGSTEN SOURCE 

Source Condition Lamp Voltage Percent Energy 
Below 5g Above 5g 

Tungsten, 28 lamps 

0.90 sun :0.3 16 84 
4.92 suns 40 42 58 
9.0 suns 63 47 53 

Tungsten, 6 lamps 

1.12 suns 34 51 49 

,4.22suns 115 62 38 

The source data presented in Table 8 in combination with the model, test results 

allowed the computation- of the effective alE ratio for each of the three major sections. 

The results of the computation are given in Table 8. 

The data obtained from model tests, lamp calibration, and the computer analyzer 

proved of considerable value in recommending the source conditions necessary for 

testing of the flight hardware. The fact that an exact model could not be constructed 

due to funding and material limitations did not detract from the overall worth of the 

study since model results were referenced back to the prototype using the computer 

analysis. The combination of a test model and computer model proved most advan­

tageous for completion of the program objectives in spite of the many areas where 

the model criteria were not satisfied. 
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Table 8
 

EFFECTIVE a/c OF MAJOR SECTIONS FOR VARIOUS SOURCES
 

Source Condition Upper Array Viewing Band Lower Array 

Solar 0.45 0.10 0.84 

Carbon Arc 0.45 0.10 0.84 

28 Lamp Tungsten 

10.3 V 0.92 0.87 1.0 
40 V 0.79 0.64 0.99 
63 V 0.76 0.58 0.98 

6 Lamp Tungsten 

34 V 0.74 0.56 0.99 
115 V 0.66 0.43 0.98 

6.2 ORBITING TELESCOPE MODEL 

The second complete system which serves to demonstrate the modeling approach is 

that of a large aperture orbiting telescope. The program of interest was the perform­

ance of a preliminary thermal study on the conceptual design of a 2-m aperture reflec­

tive telescope in synchronous orbit (Refs. 15 and 19). 

The 2-m telescope prototype configuration used for this study is shown schematically 

in Fig. 14. The overall length of the telescope tube is 12 m with an aperture of 2. 38 m 

in diameter. The telescope consists of a 2-m-diameter active optical segment primary 

mirror arranged in a hexagonal array of three regular hexagonal segments. 

The arrangement provides a Cassegranian f/3 parabolic reflector optical system. The 

secondary optic is mounted on a supporting structure at a distance of approximately 

4.76 m from the primary and is maintained at that distance by three quartz spacer 

rods which are erected after achieving orbit and furnish the required structural sup­

port duing the orbital mission. The telescope barrel consists of five multilayer insu­

lated aluminum honeycomb cylinders and one plastib honeycomb cylinder at the barrel 

opening. Each cylinder collapses over the adjacent cylinder toward the primary mirror 
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Fig. 14 Schematic of 2-m Telescope Conceptual Design 

to minimize volume during the launch phase. After injection into a 24-hr synchronous 

orbit, the telescope is erected and placed into operation by a crew of astronauts who 
dock with the telescope's manned support section utilizing a LEM vehicle. 

Optimum thermal-optical performance of the telescope requires minimal thermal 

gradients in the optics, particularly in the primary mirror segments, elimination of 
thermal transients imposed by the varying thermal inputs during orbit, and an average 
steady-state temperature near the inversion point of the thermal expansion of fused 

quartz which is in the range of 150 0K. 

Preliminary thermal design studies resulted in a thermal design that could provide 

near-optimal thermal conditions through utilization of passive thermal control tech­

niques in combination with an active sun shutter at the telescope tube opening. The 
shutter would control the amount of direct solar illumination of the telescope 
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interior. The analysis completed in support of thermal design showed that use of the 

following materials and thermal control surfaces would be required to achieve the 

program objectives. 

o Plastic.honeycomb, 2.54-cm thick; for the front cylindrical section. 

O Aluminum honeycomb, 1. 27-cm thick, for the other five cylindrical sections 

which are also insulated on the interior with 1.27 cm of high performance 

mulilayer insulation. 

-6 An optical solar reflector thermal control surface material, having a solar 

absorptance of 0.05 and infrared emittance of 0.80, for all exterior surfaces 

- of the telescope tube and mounting platform. 

O .A highly diffuse optical black paint coating for all interior surfaces except 

for the primary mirror and a band on the surrounding telescope tube 

immediately adjacent to it, surfaces of the primary mirror mounting plat­

form, and the reflecting surface of the secondary mirror. 
0 First surface aluminum coating for all interior surfaces not coated with the 

black paint. 

The proposed mission for the telescope anticipates operation of the system in both 

an earth-oriented and a space-oriented configuration. These orientations result in 

entirely different thermal responses due to the differences in solar illumination of 

the exterior and interior surfaces and operation or lack of operation of the sun 

shutter. 

The model study was again initiated by establishing a complete thermal analyses of the 

conceptual prototype system. A thermal-analyzer computer program was formulated 

on the basis of prototype properties and used to provide information on heat flow rates, 

temperatures, surface absorptances and, through variation of material parameters, 

an indication of the design sensitivity to changes in material thermal properties. The 

results of this study were used as major source of information for model design. It 

should be emphasized that the computer model contained numerous assumptions on the 

conductance of joints and structural attachments, on the influence of multilayer 
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insulation edges, and on the temperature dependence of thermophysical properties. 

These influences would be observable in the model by comparison with the computer 

results. 

The overall results obtained from the analytical studies showed that the primary 

mirror would be nearly uniform in temperature at 175°K and undergo less than 10K 

transients. The analysis also showed that the secondary mirror support rods could 

be expected to have a considerable temperature difference from end to end (- 25OK) 

and to experience considerable transients (-&7°K). Finally, the analysis showed that 

the multilayer insulation would provide a nearly adiabatic wall with respect to energy 

entering the tube aperture and would effectively damp out external surface tempera­

ture transients. -These three operating conditions were used as primary guidelines 

during design of the telescope model. 

6.2.1 Telescope Model 

It was desirable that the model not only provide a direct indication of thermal per­

formance but also, where possible, of the influence of thermal performance on optical 

performance. To meet both objectives requires concurrent satisfaction of both 

thermal and structural similarity criteria. The thermal modeling ctiteria are, as 

previously stated, 

K*A* T* 
P*V= A*I* = Q* n A'T*4 

6* - I X 

The criteria for structural modeling can be derived in generalized form from a force 

-balance on an elemental volume with applied forces and moments or from a particular 
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case wherein a force balance is performed on a specific structural member. The 

resulting criteria using either procedure are: 

Effect- Scaling Law 

Forces- F* o=*L* 2 = E*L*2 y* (AT)* 

*Moments ** a-*L*3 = E*L*3 r (AT)* 

iLinear Distortions y* = e*L* = L'y* (AT)* 

Angular Distortions V* = tL* = (t L*/E*) =L*.*(AT)* 

In the above equations, o- is normal stress, e is strain, 7 is shear stress, E. is 

the modulus. of elasticity, and y is the coefficient of thermal expansion.- The laws 

are derived under the assumption that materials are functioning in the elastic region 

so that distortions are linearly proportional to forces, moments, and thermal effects. 

While it was desirable to determine directly from model measurements the influence 

of thermal effects on optical performance of the primary mirror, it became apparent 

from the analytical results that this would be very difficult using either mechanical or 

strain gage measurement techniques. The prototype primary mirror was expected 
to experience an overall change in temperature of e:I°K during each orbit with tem­

perature differences from edge to center of less than 1/2°K. At 175°K, the coeffi­
- ,
cient of thermal expansion for quartz is approximately 2 x 10 7 °K-l Therefore, 

total dimensional changes in the prototype mirror would be on the order of 0. 2 1 in. /in. 

This value lies below the sehsitivity of normal strain measurement techniques. In the 

model, the measurement would be even more difficult since its size, as dictated by 

the available 8-ft diameter test chamber, would have to be on the order of 1/6th that 

of the prototype. Dimensional considerations of this type are indicative of the inhet­

ent limitations in concurient thermal and structural modeling of optical systems. 

In each modeling problem it is necessary to initially establish the ratios of T*, 0*, 

and L* that will be used throughout the model design. In most cases this initial 

selection of ratios is determined on the basis of an analytical prototype thermal per­

formance study. Results of the study provide needed information on thermal levels 
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and, through parametric' studies. on the sensitivity of majotr compOenCts to changes 

in properties and boundary conditions. For. the telescope it was apparent from tile 

analytical work that the wodel temperature would have to be elevated above that or 

the prototype to properly model external surface temperatures. External surface 

temperatures on the prototype were predicted to be as low as 750 K during earth 

shadowing with a high near 200°K under direct solar irradiation. The liquid nitrogen 

cooled walls of the test chamber have an operational temperature of 82 0K which exceeds 

the predicted prototype skin temperatures. To achieve satisfactory modeling condi­

tions it is necessary that the temperature ratio used in design of the model be on the 

order of 1.5 so that chamber background thermal levels will not influence model test 

performance. 

A second consideration in selecting model ratios for the telescope is the time ratio 

involved. For the telescope prototype, the steady-periodic period in synchronous 

orbit would be 24 hr. It was desirable to accelerate this period as much as possible
 

to avoid 24-hr continuous operation of the test facility while awaiting steady-periodic
 

- conditions. Acceleration of the test model period to no more than 2 hr was considered
 

appropriate in terms of the necessary test conditions. 

Having established the desired range of scale ratios (i.e. , T* 1. 5 . o* - / 2. 

L* - 1/6) . it becomes a matter of successive approximations in preliminary design 

of each major component to permit selection of a final set of scaling ratios that can 

be achieved throughout the model design. For the telescope, it was found that a mode 

design for the primary mirror had the least flexibility. Therefore. its design led to 

establishment of scale ratios for the remaining elements. 

6.2.2 Primary Mirror Model Design 

A number of approaches were considered for modeling of the three segment, quartz 

primary mirror within the limits of reasonable operating temperatures, length ratios. 

time constants, and ease of fabrication. Consideration was given to the use ol both 

plastics and metals for purposes of obtaining.a sufficiently high value of *, the 
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ratio of thermal expansivities, to permit direct strain measurements. However, the 

thermal conductivittes of these materials exceeded allowable lower and upper limits 

of K* that could be used in combination with the necessary scale ratio (less than 1/5 

to fit in the test chamber) and maximum temperature ratio (no greater than 2). This 

can be seen by consideration of the steady-state criteria, K*A* T*/x* = A*T. 
n i 

For identical geometry, as required for proper figuring of the mirror, A* = A. 
n I 

and the relation reduces to K* = L*T*3 . With the allowable span of length and tem­

perature ratios (i. e., 1/7 < L* < 1/5 and 1. 5 < T* < 2), the selection of materials 

is limited to 0. 48 < K* < 1. 5. Unfortunately, neither metals nor plastics have 

properties which would provide ratios within this range, and therefore the selection 

was limited to glass. A study of thermophysical properties of glasses, followed by 

numerous mirror designs, indicated that Pyrex was the best material for construction 

of the primary mirror. A comparison of some of the properties of fuzed quartz 

(Corning 7940) at 1750 K and of Pyrex at room temperature, the region of operation of 
J\ the model, is presented in Table 9.. 

Table 9
 

PROPERTIES OF QUARTZ AND PYREX
 

Quartz Pyrex 
.(175K)293K 

Thermal Conductivity (W/°K-m) 1. 12 x 102 i. 1 X 0

Specific Heat (J/g-°K) .0.464 0.690 

Density (gm/cmn3 ) 2.3 2.45 
X 10-7  -6 

Thermal Expansion Coefficient (cm/cm-K) ;2 3.77 x 10

KI 1.008 
O* 1.5 

p
p* 1.06 

-In addition to considerations of test chamber size, selection of the length scale ratio 

was based upon the practical consideration that considerable reduction in cost could 

be achieved by the purchase of glass blanks for the primary mirror as off-the-shelf 
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items. These considerations led to selection of a scale ratio L* = 1/6.43. For this 

length ratio, and the use of Pyrex, the ratios preserving the influences of radiation 

and conduction in Eq. (6. 2) yields the following for identiral geometry: 

T* = (K*/L*)1/3 - [(1.008)(6.43)] = 1.86 

6* = p*C*L*2 /K* - (1.06)(1.5)/(6.43)2(1. 008) = 1/26 

These ratios were quite satisfactory in terms of being easily attainable during labora­

tory testing of the model. The temperature ratio of 1.86 raised the model temperature 

from the prototype level of 175 to 3260 K, a range easily produced in the liquid nitrogen 

shrouded test chamber. The time ratio of 1/26 reduced the 24-hr orbital period of 

the prototype to approximately 55 min for the model and allowed acceleration of the 

test program. Figure 15 presents a photograph showing the primary mirror, secon­

dary optics, and support rods. 

144 

. . c. € 

Lw' . e 

Fig. 15 1/6.43 Scale Model of 2-m Optical System 
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6.2.3 Secondary Support Rod Model Design 

While direct measurement of thermal distortions on the model of the primary mirror 
was not possible, such was not the case for the secondary support rods. Analytical 
predictions indicated cyclic thermal changes for the rods on the order of 1 251K with
 
a temperature difference between the rod ends 
on the order of 300 K . This magnitude 
of thermal variations coupled with the overall rod length permitted a model design 
that included direct measurement of rod elongation. 

Since the design required conformance to the primary mirror ratios T* 1. 86 and 
0* = 1/26, material properties and available sizes were sought which provided these 

values.- Thin wall stainless steel and titanium tubes were considered along with live 
varieties of laboratory glassware. During this selection process, the thermal effects 
of required instrumentation leads and-black surface coatings as required by the proto­
type were accounted for. The best match to the requirements was obtained with Pyrex 
tubing with an outside diameter of 12 mm and an inside diameter of 10 mm, and a 
2-mil coating of black silicone thermal control paint. Each of the three support tubes 
was instrumented with four equally spaced thermocouples and a pair of unbonded 
strain gages. The pair of gages provided two legs of a Wheatstone bridge for measure­
ment of the total expansion of the tubes. While the tube dimensions were carefully 

selected to meet the thermal modeling requirements, the design obviously failed to 
meet the structural modeling criteria given previously since geometric identity is not 
provided in the model. The use of 12-mm-diameter tubing results in severe geometric 
distortion of the prototype except for length dimensions. For this reason, the relation 
between forces, moments, and thermal stresses was not preserved in the model. 
However, since the support rod system was not constrained at both ends, thermal 
stresses in the rods did not introduce forces or moments into the support system 
Under these conditions, geometrical distortion was allowable mad rod elongation was 
related only to the thermal expansion characteristics. The elongation f atio for the 

rods is given by 

y* L*y*(AT)* = 1(i/6.43)(1.86) t*/3.46 
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Taking a coefficient of thermal expansion for Pyrex equal to 3.77 .Y 10- 6 cm/cm- , 

for the temperature range of 294 and 422°K and an expansion coefficient for fusCd 

silica of 2 x 10- 7 cm/cm-'K for the prototype operating lcmperatures gives 

y* =4/3.46 = 5.45. 

6.2.4 Telescope Model Multilayer Insulation 

The problems of modeling the multilayer insulated telescope tube were significant 

since the tube supported large circumferential thermal gradients and experienced a 

considerable thermal transient during its earth-oriented orbit. In view of the imill­

ance of the tube insulation in providing an adiabatic wall, an experimental program 

was undertaken to develop criteria for modeling the insulation and honeycomb skin 

system at an elevated temperature ratio. 

Insulation tests were designed to investigate the possibility of using a materials pre­

servation approach and a T* > 1 in design-of the 1/6.43 lelescope model. For most 

solid materials, thermal conductivity does not vary with changes in the length ol the 

heat flow path. This is not the case for multilayer insulation where. in addition to 

being temperature dependent, the thermal conductivity is also dependent upon the 

number of layers in the wrap and upon the wrap density. Consequently. reducing 

insulation thickness according to the specified length scale-ratio can cause sizable 

changes in thermal conductivity. 

The insulation studies involved the design, construction, and testing of two insulation 

models having similar thermal behavior. The larger of the two models was 76 cm 

in diameter and 186-cm long. The smaller model was geometrically identical to the 

larger and was designed to be a half-scale thermal model of the larger system. 1I.. 

diameter Was similar in size to that planned for the 1/6.43 scale thermal model. 

The size and configuration of the insulation models were chosen on the basis of test 

chamber size and a desire to duplicate the difficulties associated with fabrication of 

the insulation required for the prototype telescope and the telescope thermal model. 

Temperature conditions for the insulation models were scaled relative to the prototype 
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system, with the temperature ratios (T*) for the full- and half-scale models being 

1.44 and 1. 82, respectively. 

Characteristics of the multilayer insulation for the larger insulation model were 

identical to those planned for the prototype telescope. The insulation consisted of 

36 alternate layers of double aluminized Mylar and glass-fiber paper. This gave a 

blanket thickness of approximately 1.27 cm with a layer density of 28.3 layers/cm, 

which in terms of insulation performance gives a minimum effective thermal conduc­

'tivity (or optimum heat flux per unit thickness) for the boundary temperatures of 

interest to the prototype. The results obtained from tests of the large wrap were 

compared to analytical predictions and then extrapolated to higher thermal levels for 

application to the 1/2-scale smaller insulation model. 

The model criteria for materials preservation are that p*, C , and K* be equal 

*to unity giving T* = (/x*)1/3, where x* is the insulation thickness ratio. For 

identical geometry, x* = L* and the 1/2-scale insulation model would use 18 layers 

of insulation. However, the increase in model temperature (T* = 1.26) results in 

a lower wrap conductivity so that KI K (i. e., K* 1). This change in mate-S p 
rial properties requires that the approach used preserve the relation K*/x* = 2 
through distortion of insulation thickness. Following this procedure resulted in 

-selection of a 27-layer wrap for the smaller insulation model. 

Test results obtained from the 36 layer and 27 layer wraps are presented in Figs. 16 

and 17. Figure 16 presents the total heat input to the models as a function of hot 

boundary temperature. In this figure the 1/2 size (27 layer) results have been 

referred to the 36 layer system through the model ratios T = (1/1.26)Tp and 

Qm = (1.59)Q. 

The test results presented in Fig. 17 show the thermal conductivity of the two wraps 
2 2as a function of the radiation potential a(Th + Tc)(Th + T0 ) where Th and T. are 

the hot and cold boundary temperatures, respectively. These results have not been 

normalized through the model laws. 
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Fig. 17 	 Thermal Conductivity of Two Insulation Models 
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The performance of the full- and half-scale insulation wraps proved that the material 

could be modeled and provided the data required for design of the 1/6.43 scale model 

wrap of the prototype telescope. 

For the telescope tube, it was of primary importance to model the insulation in such 

a manner that average model interior temperature would provide reasonable predic­

tions of prototype conditions. The predictions obtained from the thermal analyzer 

program indicated that the average temperature of the telescope interior would not be 

strongly dependent on changes in insulation conductivity for approximately one order 
-
magnitude about the assumed value of 4.8 x 10 5 W/OK-m. This range of freedom 

permitted design of the model wrap to be based on the average temperatures predicted 

for the prototype and avoided the necessity to design for either maximum or minimum 

values. The prototype mean temperature selected for use in design of the model wrap 

was 1220K, corresponding to a model mean temperature of 227 °K. 

The model wrap was-based upon the use of identical materials and the properties 

determined from the insulation experiments. The previous choice of-L' = 1/6.43 

and T* 1. 86 required that the perpendicular conductivity model according to 

K*/x*= 6.43, where x* is the ratio of insulation thickness for identical wrap densi­

ties. The closest approach to meeting these requirements was a 13-layer wrap with 

an expected K* = 2.36 at the selected average temperature. Thus, x* = 13/36 = 1/2.78 

and K*/x* = 6. 56 instead of the required 6.43. 

It is apparent that the dependence of K* on x* , such that a specific thickness must 

be chosen to meet a specific K at a single temperature, allows adjustment of 0* 

only through changes in p and C on the model. However, since identical materials 

are used in the model and prototype, the wrap itself cannot be varied to provide the 

lecessary adjustments. In addition, for the insulation it was determined that the 

tempetature dependence of C results in C* = 1. 88, thus 

0* = p*C*L*x* 1/9.35 
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rather than 1/26 as required. The large value of Q* for the insulation alone led to the 

necessity of considering the elimination of an external skin on the model and lumping 

the heat capacityof skin and insulation together. With this approach, the ratio of 

total heat capacitance becomes 

(P V Cm)insul
(P*V*C*)total = n (ppVpCp)insumPPVpCp)sk 

For the prototype properties, computation yields (p*V*C)total = L*/3. 58 and 

0* = 1/23. This value is more in line with the required time constant and was used 

for the model. -' 

Darkening of the tube-interior was necessary and required the use of a' 2-mil coating 

of black Thermatrol whose capacitance, when added to the insulation. resulted in an 

increase of the time ratio to 0* = 1/17.8. 

The final design of the model insulation provided an overall skin system whose per­

formance was expected to adequately simulate that of the telescope tube. While the. 

distribution of heat capacitance was not identical to the prototype. this fact in itself 

would not alter the transient response. The most serious alteration of the transient 

behavior would be expected to be due to the differences in temperature dependence of 

specific heat and thermal conductivity for the model and prototype systems. 

6.2.5 Complete Telescope Model 

The completed model consisted of the primary mirror, secondary mirror and 'support 

rods, manned section interface mounting platform, five multilayer insulated tube 

sections;' one noninsulated front tube section, -and a manually controlled sun shutter. 

Energy was supplied to outer boundaries of the model with separately programed 

tungsten filament lamps that maintained surface temperatures at levels prescribed by 

the prototype thermal predictions. The assembled test model and lamp bank arc 

shown in Fig. 18. 
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Typical results obtained after steady-periodic conditions were achieved are presented 

in Figs. 19 to 21. Figure 19 compares analytical and model predictions for the 
interior temperatures of Section B, the first insulated section near the barrel opening. 
The model predictions indicate an overall lower average temperature for Section B 
as well as a faster response of the surface to opening and closing of the sun shade. 
The more rapid response of the model surface was anticipated in view of the gross 
nature of the thermal analyser program where only two nodes were used to model the 
tube wall which consisted of 1. 27-cm multilayer insulation and 1. 27-0m of aluminum 
honeycomb. Such a simplified mathematical model would not result in an accurate pre­
diction of interior surface temperatures for the first surface layer of insulation. No 
satisfactory explanation was found for the overall lower temperature of the test model 

predictions, indicating the need for a more thorough analysis of the energy transfer 

mechanisms in this region. 
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Figure 20 shows a comparison of test results and analytical predictions for Section D, 
the midpoint of the barrel, where the average of internal temperatures prediced by 

the test model are again low and the response to transientinputs more rapid than the 

analytical forecast. A comparison is also presented for the primary mirror tempera­

ture where close agreement was obtained with the analysis. Figure 21 shows the 
temperatures predicted by the test model for regions surrounding the primary mirror. 
These results clearly demonstrate the thermal stability of the mirror as related to 

its environment. 

Temperatures on the prototype primary mirror were predicted-from the test results 
and model ratios to be constant with-time to within ± 0. 5°K. Front-to-back tempera­

ture difference predictions indicated less than ±-0. 40 K and edge-to-edge temperature 
differences were less than 0. 15°K. These values fall well within the design goals of 

the prototype and confirm that the techniques selected for mounting the primary mirror 
to the manned interface structure were adequate in providing the required thermal 

isolation. 

From the results obtained on the model, a maximum change in rod length for the 

prototype during its orbital transient was predicted, and a corresponding change in 

optical path between the primary mirror and exit optics was determined. The exact 
measurements of thermal expansion of the rods using strain gages were compared 

to computed values calculated from the temperature data and expansion coefficients. 
The results of the measurements are shown in Fig. 22. Exact agreement between the 

measured and computed values was not obtained. This was due to the fact that tem­
peratures were known at only four locations on the rods requiring a gross estimate of 

the temperature distribution at the hot end. The results were satisfactory, however, 
in showing the feasibility of modeling the linear deformation of the quartz support rod 

members. As previously mentioned, structural modeling on the primary mirror was 
not attempted due to the very much lower deformations anticipated for the mirror 

sections. 
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Fig. 22 	 Total Deformations of Secondary Support Rods 
on the 1/6.43 Scale Model 

The data obtained on thermal deformations of the rods permitted predictions of 

changes in optical path length of the prototype system and showed that compensation 

by adjustment of.the primary mirror mount was entirely possible. 

6.2.6 Summary of Telescope Model Study 

The study completed on the telescope model provides several examples of both the 

advantages and limitations existent in using the model approach. The advantages of 

the method for this study were several. The model provided a direct indication that 

the overall approach used in thermal design was satisfactory. Thermal transients 

and gradients in the primary mirror fell below minimum acceptable levels. It was 

determined that average internal temperatures for the earth-oriented condition were 

established for the most part by sun shutter operating schedules rather than by the 

absolute performance of the tube insulation. Significant differences were observed 

between the analytical and experimental predictions for temperature distribution 

inside the tube which indicated the need for improvement of the analytical model for 

this region. Determinations of this type, during early stages, permit timely concen­

tration of effort on clarification of performance uncertainties well before hardware 

design. The ability to run the tests at an elevated temperature and at an accelerated 

time scale was a very significant advantage over prototype test efforts. 
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The limitations observed during the study included difficulties in conforming-strictly 

to the model criteria for several important regions. , The secondary support rods w/ere­

modeled in accordance with the thermal criteria; however, the structural criteria 

could not be satisfied. Noncompliance to the structural criteria was necessitated by 

the need for stiffer members in the model than those provided by the scale ratio 

SL* = 1/6.43. 

Exact modeling of the multilayer insulated tube sections was not possible due to lack 

of appropriate materials to duplicate the insulation and honeycomb skin conductivities, 

and an inability to model the distribution of heat capacitance as found in the prototype. 

These difficulties were solved in a'satisfactory manner for the telescope system. 

However, it is doubtful that the model design approach used would be satisfactory for a 

system whose thermal behavior was entirely dependent on the insulation properties. 

Exact modeling of the primary mirror supporting structure was not possible due 

simply to a lack of design information on the prototype system. This led to the choice 

of a support system with maximum thermal isolation of the mirror from the mounting 

structure. The low conductance achieved may not be entirely representative of the 

prototype. 

Advantages and limitations similar to those existent in the telescope model program 

will be found in nearly all hardware studies. Their influence on the value of the 

results must be evaluated on the basis of a careful analyses of the prototype and 

model designs for each specific thermal system. 

6.3 TWENTY-FOOT-DIAMETER UNFURLABLE ANTENNA 

The third and last complete system to be considered in this report consists of an 

orbiting 20-ft-diameter unfurlable antenna where thermal deformations of the 

parabolic shape are of prime concern. 
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A schematic of the system under consideration is shown in Fig. 23. The antenna 

extends from flexible mountings on the outer surface of the cylindrical spacecraft 

which houses necessary electronic components to performf the flight mission. The 

required parabolic shape is provided by flexible ribs that furnish support for a 

metallic coated loosely woven cloth whieh serves as the reflecting surface. Prior to 

launch, the supporting ribs are wrapped around the spacecraft and locked in that 

position. When orbit is achieved the locking mechanism is released and the ribs 

unfurl to provide the necessary antenna shape. 

Fig. 23 Prototype Configuration of Unfurlable Antenna 

The nylon cloth consists of woven threads which are coated with a thin metallic over­

coating to provide desirable electrical properties and then again overcoated with a 

dielectric to obtain an acceptably high infrared emittance. The cloth weave is non­

uniform with roughly twice as many threads running in one direction as there are in 

the other. This is shown by the enlarged viewvn Fig. 22. Each thread has a diam­

eter of approximately 0. 025 cm with an average spacing between threads of 0. 18 cm. 

The weave provides a normal transmittance-of incident energy equal to 67%. 
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The supporting ribs have a slight curvature to provide the necessary spring action and 

final rigidity and become smaller in height as they extend farther from the central 

vehicle. Their thickness is constant at 0. 317 cm. " 

During early design stages, it became apparent that a thermal acceptance test of the 

system would be desirable so that thermal deformations of the antenna could be 

measured and the influence on antenna electrical performance evaluated. However, 

the overall vehicle size exceeded that of available test facilities which led to a study to 

determine the feasibility of modeling the system at roughly one-half scale. The 

objective of the model would be to provide data on the antenna and cloth thermal and 

structural behavior. Thermal modeling of the central satellite vehicle was excluded 

from the scope. . 

The major difficulty in'modeling of the antenna is associated with the thermal and 

structural properties of the woven cloth. The cloth is a nonuniform weave resulting 

in variable structural properties in the X and Y directions. Laboratory measurements 

also disclosed that the coefficient of thermal expansion of the cloth is a strong function 

of temperature and both positive and negative coefficients were observed over the 

temperature range of interest (165 to 360 0K). 

Recalling that the structural modeling criteria are given by 

22 
Forces F* = -*L*2 = E*L* y*(AT)* 

Moments M* = . 3 =-*LE*YL* 3 at* (AT)* 

Distortions y* = "e*L* = L*y*(AT)* 

The thermal criteria are, as before 

K*A* T*nT, 
AV*=Q =- = Al? 
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Preservation of forces, moments, and distortions in the antenna requires that a 

specific, single valued, ratio of E* * be obtained under all operating conditions. To 

achieve this objective for a material whose thermal and structural properties are 

completely nonlinear becomes a major limitation in pursuit of a modeling program. 

The purpose of the remaining discussion in this section is to consider procedures 

which potentially circumvent the limitations imposed by the antenna cloth. 

A.cursory examination of the properties of woven fabrics leads directly to the conclu­

sion that materials are not available that would provide a constant E*-y* over the 

temperature range of interest. Likewise, fabricating a "model" of the cloth using a 

different weave holds little promise unless a sizeable program is devoted to the develop­

ment effort. Under'these conditions it becomes necessary to use the same cloth in the 

model as is used in the prototype and also a T* = 1 which guarantees preservation of 

the'required thermal-structural properties. 

With T* = 1 and identical cloth in the model, the thermal model criteria, based upon 

cloth properties, become 

A*11
A*I* =Q* 1 

1 L* 

Quite obviously, the resulting L* = I dictates a full-scale 'thermal model which fails 

to circumvent the problem of test facility size. 

An*evaluation of the above result requires that one review the procedures used to 

derive the general modeling criteria. As previously mentioned, the criteria may be 

based either upon dimensional considerations applicable to the dominant heat transfer 

mechanisms existent in the radiation conduction coupled spacecraft system, or upon 

a specific equation resulting from an energy balance on a given system. Either 

approach shouldresult in identical modeling criteria. 

For the specific case at hand, i. e., the thermal behavior of the cloth, an energy 

balance on a single strand was established and included terms for solar absorption 
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and infrared emission on the outer surface and a term for conduction along the thread. 

Internal energy dissipation was not included. Because of the complex nature of the 

doubly overcoated thread, each of which contains roughly 20 strands, an exact analyti­

cal determination of the relative importance of internal conduction and external 
radiation in setting the temperature distribution along the thread length was not obtained. 

However, the results of hand computations coupled with laboratory measurements 

indicated that conduction along the threads was of secondary importance when compared 

to radiative equilibrium of the outer surface. It was observed experimentally that 

illumination of a circular area of antenna cloth within a simulated space environment 

resulted in heating of the spot, but that areas removed from the spot by 5 to 10 thread 

diameters experienced a negligible increase in temperature. These observations permit 

the assumption, for purposes of designing a model, that point to point temperatures 

in the cloth are set entirely by radiation equilibrium with the surroundings and that 

thermal conductivity can be neglected. Therefore, the thermal model criteria for 

ihe cloth become A1 I* = A*T*4 , and with T* = 1, A* = A*. The previous assump-I i I I 
tions of identical surface properties in the model and prototype still apply. These 

criteria may be satisfied by use of the same cloth in the model as that used in the 

prototype. 

Use of the same cloth in the model and prototype gives E* = f, y* = 1, and with,
 

T* = 1, as desired for the test, the model criteria become:
 

For the cloth
 

T* = (AT)* = E* = L* = c* = F* = 1 

AM = A* 

For all remaining components 

T*= (AT)* = at = F* = 1* = 1 

A* M6*** = Q*= AI "= =A. 
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F* = E*L*2 1 ; E* )2 

3-M* = E*L*3 7* ; '"L* 

y* L*
 

The thermal and structural properties of the ribs must be in accord with the above 

criteria. 

The first modeling approach to attempt in any program is to establish a design where 

identical geometry can be used in the model and prototype. This is of particular 
importance where both thermal and structural properties are to be studied since con­

ducting paths and strength properties are both of importance. For the ribs, preser­

vation of geometry with FT* = *= T* = 1 gives A* = A = At = L 2 . The mate­
n 1 

rial must,- for roughly a one-half scale model, then conform to K*- 1/2,E* 4. 

A survey of solid materials was performed in search of properties which would satisfy 

these values at the model temperature. Table 10 presents a partial list of the mate­
rials reviewed and covers the full range of properties studied at room temperature. 

The summary provided in Table 10, which spans nearly the full range of available 

material properties, ci early indicates that no material has both the conductivity and 
stiffness required for solution of the problem. For example, while ingot iron 
(available in sheet form) and phosphor bronze provide a K* near 0.5, their E* is far 

removed from the necessary value of 4. Additionally, only a few materials .have an 
Y* that approaches unity. -The largest thermal expansion coefficient found for any 

metal having a low thermal conductivity was 0. 91, that of a iron base alloy (W545). 

However, its E* and K* are not acceptable. The remaining materials surveyed led 
to the conclusion that a nondistorted, geometrically identical thermal-structural 

model could not be designed from- commonly available material. 

- 99 

LOCKHEED PALO ALTO RESEARCH LABORATORY 
L O C K H E EO M I S S I L E S ?. S P R C E C 0 M P AY, y

A GROUP DIVISION OF LOCKHEED AIRCPAFT CORPORATION
 



1 

Table 10
 

MATERIAL PROPERTIES AT ROOM TEMPERATURE
 

Type K K* ExlO6 E*
(W/cm-oK) (Newtone/M 2 ) (OK)-l 

7075 A1 x 104 61.21 1 6.9 1 21.2l10-


Ingot Iron 0.66 0.54 20.6 x i0 4 2.8 12.2 x 10-6 0.58
 

Low Carbon Steel 0.47 0.39 20.7 x104 2.9 15.1x10- 6 0.71
 

Iron Base (Cr-Ni)16-25-6 0.26 0.21 . 19.5x104 6
2.7 16.9x10- 0.80 
Iron Base (Cr-Ni)W545 0.18 0.15 19.6 x 10 4 2.7 19.2 x 10 - 6 0.91
 

Stainless Steel 304 0.16 0.13 19.3 x 104 2.7 17.3 x 10-6 
 0.81 
Cobalt Base Alloy 0.23 0.19 23.4x104 3.3 16.9x10 6 0.79
 
Haynes 25 L-605
 

Phosphor Bronze 521 0.62 0.52 611. 0 X 10 4 11.5 18.2 x 10 - 0.86 

That no single material conforms to the model design is not unusual considering the 
restrictions already placed on the model. In fact, when more than one scale ratio 

,is fixed because of scale size, materials limitations, or some other requirement, 
it is the exception rather than the rule that geometric identity can be maintained. 

The apparent lack of a suitable material for maintenance of geometrical identity forces 
the designer to consider geometrical distortion to satisfy certain of the model criteria. 

For the antenna ribs it is necessary that the model preserve stiffness, elongation, 
solar absorptance and infrared emittance to provide the necessary similarity of thermal 
distortions. Since the ribs are long, slender, of uniform thickness, attribute their 
rigidity mainly to the curved cross-section, and have negligible thermal gradients 
through the thickness, it is a possibility that similarity could be obtained through geo­
metrical distortion of thickness. Assuming that thickness distortion is allowable, 
it is possible to pursue a design where the rib thickness does not conform to L* while 
the overall design provides proper values for F* and K*A* Representing the rib 

n 
thickness by t and its cross-sectional area by A gives

n 

A* = L*t* 
n 
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where the rib major dimensions are still represented by L* i.e. , they are not dis­

torted. The thermal modeling criteria for the ribs may now be written as 

K*A*n A*
Q* =-A* = 
I I)" I 

Q,= L,- k*L*t* L,2 

L* 

which gives 

* t* =L*2/K 

The structural criteria become 

F*= E*L*= E*L*t*= 1 

t* = /E'L* 

These results show that a length ratio for the model will depend upon the thermal and 

structural properties of the material used. Solving the two independent relations rot, 
1/3L* gives L* = [K*/E*I . Table 11 presents computed length and thickness ratios 

for a variety of potential modeling materials. 

Table 11 

LENGTH AND THICKNESS RATIOS FOR THICKNESS DISTORTION 
(All Properties at Room Temperature) 

K* E* L* t* a*Material Type 

Phosphor Bronze - 0.515 1.54 1/1.44 0.935 0.855 

Magnesium AZ 61 A-F 0.486 0.625 1/1.08 1.73 1.19 

Nickel Base.AlloyJU500 0.202 3.0 1/2.46 0.82 0.830 

304 Stainless Steel 0.134 2.69 1/2.72 1.01 0.814 

Iron Base (Cr-Ni) Alloy W545 0.153 2.73 1/2.62 0.96 0.907 
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Of the materials listed in alle 11, the best solution appears to be obtainable using 
the iron base alloy (W545) which gives an L* - 1/2.62, a-t* -'0.96 and an 
a* = 0.907 . The greatest drawback here is that 7* is 10% too low; however, as 
was previously indicated, none of the high strength materials have an a as large as 

aluminum. The t* of 0. 96 would allow use of the same gage materials for the model 

while T* = F* = 1 are also obtained. The measured distortions of the model would 
be in accordance with L* = 1/2. 62. 

An actual model-of the unfurlable antenna was not designed, constructed, and tested. 
Therefore, test data are not available for inclusion in this report. The program 

planned for the model study called for considerable additional analytical work to be 

performed to assure that the suggested thickness distortion was thermally and struc­
turally allowable. The variation of K* and y* with temperature from 100 to -300'F 
was to be established either from the literature or by direct laboratory measurement. 

It is entirely possible that changes in thermophysical properties over this range could 
seriously degrade model performance. Additional work was planned to confirm the 
assumption that thermal conductance in the antenna cloth could be neglected in modeling 
the system. 

It is obvious that the deviations taken from the model criteria would result in less than 
an exact simulation of prototype behavior. However, the test effort on a model of 
the system could be used as a basis for confirming the accuracy of analytical predic­
tions and thereby establish the confidence required for prototype design. 

6.4 SUMMARY OF COMPLETE SYSTEM MODELING 

There are many other complete systems that could be used as further examples of the 
problems associated with modeling of complete systems. The three described by this 
report were included since all required information was available to the investigator. 

.They provide typical examples of some of the limitations existent in modeling of com­
plex systems and offer examples of satisfactory methods for achieving a realistic 
thermal model. Other prototype systems have been studied and reported in the 
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literature, and demonstrate other sources of difficulty. -Since each separate space­

craft design has unique features, it is obvious that no general solutions can be offered 

for accomplishment of model studies. What is important to note is that possibilities 

frequently exist for achieving a model design using geometric distortion, materials 

substitution, temperature ratios'bther than unity, and compressed or expanded time 

scales. These methods are best utilized in conjunction with a thorough thermal 

analysis so that the sensitivity of prototype thermal behavior to changes in design 

parameters can be properly evaluated. 

The combined analytical and experimental programs used for study of the solar probe 

and large aperture telescope serve as examples of programs where limits imposed 

by the prototype were successfully overcome so that a meaningful model test could 

be completed. Results obtained from the test programs provided a realistic base for 

evaluation of the prototype designs and also clarified the accuracy of analytical pre­

dictions. Following completion of the programs, it was possible to suggest prototype 

design changes and changes in analytical procedures with an attendant increase in 

confidence that the finai prototype thermal designs would be successful. 
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Section 7
 

LIMITATIONS IN MODELING MULTILAYER INSULATION
 

7.1 INTRODUCTION 

Multilayer insulation as commonly used in the aerospace industry is constructed of a 

number of layers of highly reflective radiation shields with or without an interposed 

low-conductivity spacer material. Mylhr of 0. 25-mil thickness which has been alumi­

nized on both sides to approximately 500 A thickness is a common reflective shield. 

Spacer materials vary from none (in which case the reflective layer is mechanically 

deformed from perfect smoothness in order to lower conductive heat transfer) to a 

variety of low-6onductivity materials (nylon, polyurethane, glass fibers) in a variety 

of forms (foams, nets, fiber mats). The properties of these multilayer composite 

insulations vary a great deal as can be observed in Table B-2. The dominant charac­

teristic of all multilayer systems is the very low effective thermal conductivities 

(- 10 - 7 W/cmo K) which are attainable for one-dimensional heat flow perpendicular 

to the insulation layers. 

The temperature dependence of all MLI systems precludes exact reduced scale model­

ing of MLI with the approach commonly referred to as "temperature preservation" in 

which T* = 1 and prototype materials are replaced in the model by materials with 

conductivities reduced according to KI* = L*. Attempts to model according to the 

"materials preservation" scheme (T* > 1) will also be limited by the strong tempera­

ture dependence of the heat transfer properties of the MLI. Consequently, the construc­

tion of a thermal model for even the simplest of insulated systems involves distortion 

of the temperature field from that of an exact model. Insight into applications where 

approximations of prototype conditions may lead to.serious errors and procedures to 

minimize these errors, as well as some recent experiment results, are discussed in 

succeeding sections. 
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The investigation of spacecraft summarized in Section 3 disclosed that applicationof 

high performance insulation could be broken down into two broad categories. 'Type I. 

where it is used as a "relatively adiabatic" barrier to direct radiation entering a tem­

perature controlled area; and Type II, where it is used as a carelully designed mini­

mum heat transfer insulation system. The most common application is Type I. where 

the MLI is installed around an instrument package which has a close 'thermal connec­

tion to other actively and/or passively controlled components of the vehicle. -In these 

situations, the MLI provides a low-weight, economical, and reliable means of elini­

nating a variable and unwanted thermal load to a thermally sensitive area of the vehi­

cle. The thermal performance of the prototype MLI for Type I applications is 

generally less than that anticipated on the basis of published one-dimensional -values. 

This situation arises wherever the insulation system has a large number of "penetra­

tions" (e.g., relatively high conductivity supports and wires) passing through the in­

-sulation blanket. 

It has been shown analytically (Ref. 20) and experimentally that penetrations and othe r 

edge effects will degrade one-dimensional insulation performance significantly. Parth' 

because of degradation and partly because of low weight per layer. the prototype insul ­

ations for Type I applications are overdesigned to the point where an order-of­

magnitude increase in the, insulation effective conductivity yields relatively minor per­

turbations in the temperature level of the package., . -, 

The construction'of moderately reduced scale thermal models for Type I applications 

can be accomplished without a great deal of attention to accurate modeling of the MLI 

thermal properties. In practice (Refs. 14 and 15), the model insulation is commonly 

furnished with a distorted thickness so that the one-dimensional heat flow perpendicular 

to the insulation layers is in accordance with the modeling criteria. This is done as a 

rough approximation with the knowledge that the two-dimensional beat flow and time 

constants of the insulation will be seriously distorted. 

In the case of Type 11 appiications, a more exact modeling is required'because the 

absolute properties of the insulation and heat flow paths are of prime importance. 

105 •
 

LOCKHEED PALO ALTO RESEARCH LABORATORY
 
L 0 C K H E ED MI S-S I t C S& 5 P A CE C 0 1MP ANH Y
 
A GROUP DIVISION Or LOCKHEED AIRCRA"I CORPOPAIION
 



One 	important example of this situation is the application of MLI to containers for 

long-term cryogenic storage wherein an accurate prediction of boiloff rate is crucial 

to sizing the prototype. Here the insulation is installed in large area blankets with 

precautions taken to thermally isolate penetrations from the insulation. One­

dimensional heat flow is purposely achieved through careful design of the prototype for 

these cases giving the appearance that modeling would be straightforward. However. 

since material preservation is absolutely required and temperature preservation is 

also desirable (due to the strong temperature dependence of MLI heat transfer at these 

temperatures), modeling would seem impossible. In practice (Ref. 21), the problem 

of modeling the Type II system is approached using identical materials and tempera­

tures, and with insulation discontinuities (joints, penetrations) scaled to the area. 

The largest question arising in the procedure is to what extent the two-dimensional 

heat flow fails to follow an area ratio assumption. This question is usually answered 

with the aid of thermal network calculations which may or may not (due in large extent 

to unknown variables and ungovernable parameters) be susceptible to extrapolation to 

prototype sizes. One important parameter that is seldom mentioned in connection with 

such problems is that of constructing and installing ML systems with any high degree 

of reproducibility. 

Further discussion of the Type II case will be given in the next section in which the 

modeling criteria are developed. For Type I applications, the same modeling pro­

cedures should be followed when feasible, although the experimental effort required 

to develop an accurate insulation blanket may be considerably shortened by relying 

on published MLI data. 

7.2 	 MULTILAYER INSULATION MODELING AT ELEVATED TEMPERATURE 
(T* > 1) 

For very low temperatures in the prototype, it is frequently advantageous to work 

with elevated model temperatures. When MLU is an important thermal component, 

such modeling requires an accurate knowledge of the temperature-dependent proper­

ties of the prototype insulation. A relationship has been developed and successfully 
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employed to correlateexperimental data on one-dimensional MLI heat flux and bound­

ary temperatures (Ref. 22), and is given by: 

T4 . 6 7  Q/A B(T'+ T (T H - TT) _ (7.1) 

Where T H and TC are the hot and cold boundary temperatures, N is the number 

of layers per unit thickness, and t is the insulation thickness. The coefficients B 

and C relate to solid conduction and radiation heat transfer in the insulation and are 

temperature independent. The solid conduction coefficient is dependent on the layer 

density (the conduction is essentially controlled by interface contact resistance be­

tween layers) and is determined by fitting Eq. (7. 1) toexperimental data. The co­

efficient C can be evaluated from basic optical properties of the components of the 

MLI. The appearance of temperature to the 4,67 power is a result of the temperature 

dependence of the reflective shield emissivity. In many cases, experimental data can 
4 4 

T4be satisfactorily fitted by Eq. (7.1) with the radiation term in the form - TC 

where C is treated as a free parameter to accommodate a slowly varying emissivity. 

Although it is not possible to explicitly define a thermal conductivity for MLI due to 

its discontinuous properties, it is useful for understanding of the modeling approach 

to make use of an effective thermal conductivity concept. This may be defined by 

dividing Eq. (7.. 1) through by (T H - T C )/t. Thi' conductivity can then be used to 

characterize the insulation overall performance based on boundary temperatures. 

The effective conductivity is given by 

1, 4.67\/4.'67 
K B(T +(T C) (7.2' 

Using this definition the heat flux is 

= IA" (T Tc) (7.3) 
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As shown by Eq. (7.1), the conductance of MLI depends not only on material proper­

tics but also on spacing of the layers. At wide spacings, where the layers are not in 

contact, the conductivity is totally a function of thermal radiation transfer through the 

multiple layers. As the blanket is made thinner, solid conduction begins to increase 

the conductivity until at high layer densities (i.e., approximately 40 layers/cm) the 

conduction is dominant in determining the insulation properties. 

Heat flow in a direction parallel to the insulation layers is governed by a thermal 

conductivity which is typically two to three orders of magnitude higher than the con­

ductivity normal to the insulation layers. The parallel conductivity is generally con­

stant above room temperature for MLI systems employing a spacer material and 

exhibits a linear temperature dependence down to cryogenic, temperatures (Ref. 23). 

Since conductance along the layers degrades the one-dimensional properties, insula­

tion systems designed for maximum efficiency are constructed with barriers to mini­

mize parallel heat transfer. A first approximation to MIU modeling is therefore taken 

as the preservation of heat transfer in the normal direction. Once this is accomplished, 

the effect of distortion on heat flow in the parallel direction can be evaluated quanti­

tatively from the modeling criteria. 

Recent measurements on an aluminized mylar-silk net MLI system, using a fixed 

number of layers at various densities, show the increase in heat flux as layer spacing 

is-decreased. The measurements were made using fixed boundary temperatures of 

2780 K and 800 K. Results for zero spacing were obtained by extrapolation from the 

lowest density used. 

Heat Flux Density (Q/A) for Various Layer Densities in MI 
(aluminized mylar-silk net) 

Layer Density Layer Density Heat Flux Density 
Layers/cm Layers/in. W/M 2 

-
1. 64 x 10 100 
-


40,1 3.36 x 10 116 


60 6,76 x 10-124 

-
80 12.0 x 10 131 


100 18.9 x 10 
-

39 


55 140 35.2 x 10
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Assuming that the radiation term in Eq.. (7.1) accounts for the heat flux at zero lay-rs 

per cm, it is-seen that the conduction term becomes of equal importance for a spacing 

as low as 16 layers/cm. At 31 layers/cit, the conduction begins to dominate the 

system. It is of interest to note that most wraps in current use utilize densities on 

the order of 30 layers/cm. 

7.2.1 Material Preservation at Elevated Temperature 

The basic criteria for constructing a complete system thermal model are given by: 

p,V*C*T*= I*A *T* 

S*= A.T*4 Q* 
 (7.4) 

where the nomenclature is as defined in section 2.1. Thus, to medel a prototype for 

which radiation and solid conduction are intercoupled. it is necessary that 

• A.
 

"K*= 	 I L*T*3 (7.5) 
n 

in order to preserve the temperature field. If geometric identity is maintained 

(i.e., A.' = L*2 etc.) then all conductivities must be in the ratio 

3-3 L,.3 * - .. 

K* =L* " (7.6) 

With materials preservation, "K* = 1, and the temperature ratio is given by 

=T* , 	 (7.7) 

However, this immediately becomes an approximation due to the temperature depend­

ence of the conductivities of all materials used in the prototype. 
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As shown by Eq. (7. 1), the MUI conductivity is strongly temperature dependent. 

Therefore, errors can be quite significant for even slightly reduced materials preser­

vatiol scale models operated at elevated temperatures. To circumvent increases in 

thermal conductivity due to an increase in temperature, it is possible to distort the 

wrap thickness so that t* > L* with T* maintained at the proper value for the inner 

and outer boundaries only. 

An estimate of the distortion required can be gained through use of Eq. (7. 1). From 

that equation the model criteria for MLI are given by: 

6 7=*_A*B*T* 2 C*A*T*4. (7.8)t- t*N* 

Using a materials preservation approach, it is assumed that the m6del wrap will be 

constructed using the same materials as the prototype (gives C* = 1), and layer 

density and compressive load will be the same (B* = N* = 1). However, the number 

of layers and thickness will not be identical to the prototype (t* 1). Using this 

assumed approach on the model gives 

AT4. 6
7 

• A*T* 2 = t* 
. 

("9* t* 

This relation can be satisfied only for T* = 1 indicating that an elevated temperature 

model cannot be achieved for a wrap where conduction and radiation are of equal im­

portance. The-data presented above show that this condition is present for layer den­

sities in the range 0 < N :5 24 layers/cm. For densities greater than the upper 

limit it is apparent that conduction dominates the behavior and as an approximation 

the radiation term in Eq. (7. 1) can be ignored for formulation of model criteria. For the 

the higher layer densities, the model criteria for the insulation become 

*"AT*2
t* (7.10) 
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Recalling that the criteria for the remaining components with K* = 1 are 

Q.=A*n T* =A T,4
 
L* I
 

gives 

2 A* T* 
t* L* 

L . 2Since for the perpendicular direction A* = A* = and the model is designed to 
n3 1/3conform to T* = (1/L*) , we find 

t* = T*L* = (1/L*) 1/ 3 L* = L . 2/3 (7.11) 

Thus, on th6 basis of a conduction dominated MLI system, it is found that the number 
of layers, or conversely the insulation thickness should be modeled to two-thirds of the 

overall scaling ratio for a materials preservation model. For example, if a materials 
preservation model were designed to a scale ratio of L* = 1/2 and the prototype con­
tained a 36 layer wrap of MI then the model wrap would have t* = (1/2)2/3 = 0.63 

and consist of 22 layers. This example is discussed in more detail in section 7.3 

where tests were performed to establish the validity of this approach. -

If an MLI system is 6mployed in which the solid conduction term of Eq. (7.1) is small, 

the K* ratio would increase faster than T*3 . The model criteria for this case are 
according to Eq. (7. 1)given by 

C*A= 4.67 (7.12)
t*N* 

Once again, this ratio must be the same as the conductive ratio for all other portions 

of the spacecraft. Therefore, we must preserve 
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4.7 K*A*T*
 
T*4C-AT4 _ n, (7.13) 

t*N* L* 

As before we assume that C* N* = K* "= 1, A* = A* M' for the perpendicular 
n T g 

direction, and that the temperature ratio is given by T* = (I/L*)I /O This gives 

for the thickness ratio 

2 2  t* (1/L*)0 . (7.14) 

This result indicates that the model would require an insulation with a t* > I for 

L* < 1 . This situation is not the usual one since most wrap densities are not in the 

very loose regime where radiation dominates. 

Prototypes for which the assumption of one-dimensional flow is invalid, or at best is 

a poor approximation., can still be adequately modeled according to the preceding 

methods. Whether thle model will be seriously in error will depend.on a combination 

of the scale ratio, the temperature dependence of the particular MI-d, the type of use 

for the MLI (see section 7. 1), and the nature and size of the temperature gradients in 

the MiI. An exact evaluation of the errors introduced by MLI thickness distortion 

can often only be answered, with the help of a complete thermal network analysis or 

subsidiary experimentation. 

In general, the necessity to use t* > L* will serve to increase the heat transfer in 

the parallel direction. If the insulation temperature levels are essentially fixed by 

external conditions or insignificantly perturbed by the nonnodeled parallel heat trans­

fer, then the conductive heat transfer in the parallel direction, Q*, is modeled 
p 

according to 

=Q(7.15) * 
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L*2 / 3 where Q* is the normal _scale ratio for materials preservation heat transfer 

for all other components of the model. K* has been taken as unity although it has a 
p

slight temperature dependence (Ref. 23). This enhanced heat transfer in the parallel 

direction (over and above that called for by the modeling criteria) will result in an 

increased heat transfer in the normal direction due to degradation of K, of the moodel] 

in the vicinity of penetrations. On the other hand, it will have a small effect on the 

normal heat transfer when it arises from gradients along the boundary layers of insu­

lation. The latter case is presented in the discussion of recent experimental work in 

section 7.3. 

A commonly occurring prototype configuration is an IMLI blanket attached to thin sup­

porting skin. The skin may be treated as isothermal in the normal direction and in 

most cases will have a much higher conductance than the insulation in the parallel di­
rection. Thfs, the insulation dominates the heat transfer in the normal direction and 

the skin dominates the heat transfer in the parallel direction. In this case, the model 

will be accurate, particularly if the MLI boundary not in contact with the skin is not 

subject to highly assymetric heat loads and can therefore be taken as fairly isothermal. 

Even for the cases in which the surface has sizeable temperature gradients. the model 

will produce good results for the total heat transfer through the insulation. 

For completeness, it is convenient at this point to mention the availability of distor­
tion of the skin. This is necessary in problems dealing with highly elevated model 

temperatures in order to allow for the temperature dependence of the skin material. 

or in other cases it is simply convenient to use a substitute skin material prescribed 

by 

K*t = L* (7.16) 

s s
 

7.2.2 Transient Modeling 

T 3From Eq. (7.4), the time scale ratio for the condition I/L* is given by 
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I2*0 (7.17) 

which reduces to 

0* = 2 (7. j ­

for identical thermal properties and geometry. If the one-dimensional steady state 

model is employed for the MLI, it will operate with a time-scale ratio of 

0* C*.--\ 0* (7. 

For moderately elevated temperatures, C* ;1 and the time constant of the insula­

tion is lengthened by the thickness distortion parameter t*/L*. 

Equation (7.19) can be rewritten in terms of the MIS thermal properties as 

0* = 0* K'0* (7. 20)I I 

As both CI and K1 increase with increasing temperature (CI having a weaker tem­

perature dependence), 0*/0* will increase with decreasing scale ratio or increasing 

T*. 'Thus, transient behavior of a MLI model will be considerably distorted from the 

remainder of the model. This may not be a serious detriment to the model when the 

one-dimensional steady state performance is modeled correctly and sets the average 

hot and cold boundary temperatures and the Mi transient is small compared with 

other transients in the system. This is often the case where the MLI is supported by 

a thin skin. The skin can be taken as a lumped heat capacitance, and in most cases 

will have a heat capacity per unit area many ties that of the entire thickness of the 

insulation. Under these circumstances, large cyclical heat fluxes on the outside layer 

of insulatiofi will result in only minor temperature excursions from the average at the 

inner skin. 
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I 

It is sometimes feasible in dealing with simple systems that can be modeled for ma­

terial preservation steady state conditions to allow the transient response to follow 

0* of the insulation. Thus, for a MLI and supporting skin combination for which the 

skin may be treated as isothermal, requiring 0* = 0* yields 

P*C*V* 
S ss C* L*A (7.21) 

or 

P*J* (7r.22) 

Since the quantity on the right side of Eq. (7.22) increases rapidly with ifhcreasing 

temperature, the modeling will require a material substitution. Alternately, the skin 

thickness may be distorted so that Eq. (7. 21) yields 

p o*/5 N = G\* (7.23) 
S s T77/ 

Here the same skin material can be used and the thickness'distortion may allow for 

any temperature dependence of the skin specific heat. 

A second application can arise wherein the steady state model is accomplished for the 

above system with the skin distorted according to Eq. (7.'16) to preserve parallel 

gradients in the skin. In this case, the time scale ratio for heat flow in the normal 

direction (for which the skin is isothermal) and for heat flow in the parallel direction 

are both given 

0* P*C* L*2  (7.24) 
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Requiring the transient response of the skin in the parallel direction and of the MLI 

in the normal direction to be equal results in 

p* C* 

S* = (7.25) 

s 

The MLI experiment described in Section 7.3 gives values of C* Kt of 1.7 for a 

half-scale model. Although Eq. (7.25) appears restrictive in selection of a substitute 

material for the model, the tables of Section 3 show that the condition can be satisfied 

in many cases. A high-conductivity alloy of aluminum or stainless steel could be 

modeled with a lower conductivity alloy of the same type. With a scale ratio as high 

as 1/6.5 and C* I= 4.5, suitable substitutions appear feasible. 

7.2.3 Modeling of MLI with Undistorted Thickness 

Multilayer insulation maybe modeled with no distortion of the insulation thickness 

from the length scale ratio by using Eq. (7.3) to define a length scale ratio in terms 

of the MLI parameters: 

L* 3 -f(tp I t (7.26) 

When the insulation has a small solid conduction term and the prototype temperatures 

T 3are high, K% may change with temperature at a rate higher than . In such 

cases, reduced scale modeling is not possible. With most insulations this will not be 

the case, although the model based upon MLI properties will have a higher T* for a 

given L* when compared with the usual material preservation modeling approach. 

Other materials of the prototype must be modeled with substitute materials with con­

ductivities increased in proportion to that of the insulation: 

K* = Iq (7.27) 
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Alternatively, the steady state model may employ distortions to match conductances 

where allowable. 

The MLI transient response will scale as 

= Pr L*2 (7.28) 

and since the temperature dependence of pICI is considerably less than that of the 

conductivity, the insulation time scale ratio is reduced below the material preserva­

tion value of L*2 . To model the transient response throughout the system in accord­

ance with the insulation transient requires that the substitute' materials comply with 

K** V9 (7. 291 

This condition is sufficient for niodeling only when the condition of Eq. (7.28) is ir­

material (e.g. , the material can be ass'umed isothermal). since otherwise both KI 

and p* C* must scale as their insulation counterparts. Thus, the conditions im­

posed on the substitute materials are very restrictive and the modeling would require 

the use of some typ& of distortion such as was discussed under material preservation 

modeling. 

As an example of the application of this modeling, an extrapolhtion of the conductivity 

data reviewed in section 7.3 will be utilized. Prototype insulation hot and cold bound­

ary temperatures of 350 and 2500 K are assumed. if the model temperatures are ele-

L4vatedby T* = 1.26, the resultant K 1.62 gives = 1/1.23 by Eq. (7.26). If 

the prototype temperatures are doubled (giving T1,-= 7000K the maximum permissible 

insulation test temperature), the-calculation results in L* = 5.76/8 1 For1/1.39. 

this insulation and example prototype, the modeling is severely limited in available 

length scale ratio. This situation would improve for lower protot. 1)O temperatures. 
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and for the telescop model discussod in seRcian 7.3 a V:Ih of L' j 1/;.[3 Was pos­

sible. Another application could exist in cryogenic stnragi' Mluluam except for the 

limitations discussed in section 7.5. Also, -this modeling is limited to cases in which 

the prototype insulation temperatures can be fairly -well defined beforehand, 

7,3 ELEVATED TEMPERATURE EXPERIMENTS WITH MLI 

In this section, a review of the experimental results of material preservation model­

ing of MIS will be presented. These experiments are reported in more detail in 

Ref. 15 and a portion of the program described therein was to establish the feasibility 

of constructing thermal and structural models of large-aperture space telescopes. 

Completion of the program required definition of the one-dimensional MLI heat trans­

fer characteristics of the insulated system and tests to confirm the behavior of the 

insulation under the modeling concepts developed under this contract and previously 

presented in section 7.2. 

The insulation investigated consisted of 36 layers of alternate sheets of 0.0064-mm­

thick (1/4 mil) double aluminized Mylar and glass-fiber paper (Dexiglas*). The in­

sulation thickness was controlled to approximately 1. 27 cm, with a resultant nominal ­

layer density of 28.3 layers/cm. This insulation was attached to a stainless steel 

skin using Teflon buttons on 15.2-cm centers. These buttons consist of a thin Teflon 

thread (0.081-cm in diameter) holding together two thin Teflon disks.' The length of 

the thread establishes a maximum insulation density, the density between buttons 

being in general slightly less. 

The configuration used to determine the one-dimensional heat flow characteristics of 

the insulation is shown in the sketch of Fig. 24. The insulation was wrapped internal, 

to the stainless steel (0. 064-cm) cylinders in three sections with two butt joints and 

two corner joints. (The edges of the latter were protected from direct radiation heat 

inputs by the interposition of Dexiglas insulation.) Insulated end plates covered the 

*C. H. Dexter and Sons Paper Co. 

118 

LOCKHEED PALO ALTO RESE.ARCH LABORATOWY 
L O C K H E E D I S E S & S P A C E C 0 Mp A I,1Y 
A GPOUP DIVISION OF LOCKH1&EEI AJ1CiAfl CORPOPATION 



0.318 016.3 

76cm] 1cm 

XTERNAL N 
SjjIN 

0. 

OINTIRNAIA 
-INSULATIC"' 

1.27 Oi 
0.64 

MULTI LAYER 
INSULATION -_ IUiIS 

CORNEiDn lIAIIL 

Fig. 24 Test Arrangement.One-Dimensional 

ends of the cylinders, giving a dlos6d insulation system. All surfaces interior and 

exterior were painted with a high-emissivity (E - 0.92 ) black paint. 

The testing of the insulation systems was performed in a vacuum chamber with liquid 

nitrogen .cooled ivall . The interior of the cylinder was opetated at various uniform 

hot boundary temperatures by an internal heat source. This source consisted of sev­

eral tungsten filament lamps, with the heat input to the system determined from a 

measure of the power input to the lamps. 

A half-scale model of the prototype shell was constructed with scaling according to 

material preservation. The insulation installed on this shell was designed according 

to the one-dimensional heat flow results of the fill-scale tests and the criterion of 

section 7.2. 

Three sets of steady-state temperature data were obtained for the iull-scale insula­

tion and used to define a linear relationship between the experimental conductivity 

and the radiative potential: 
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P = CiT 0 + + Tj) 

The data are shown in the plot of Fig. 25 along with a calculated conductivity curve 

based on calorimeter data (Ref. 6). The calculated curve is representative of an 

insulation with no buttons or joints and a carefully established one-dimensional heat 

flow. The approximately three-fold higher conductivity of the test insulation is not 

unexpected; such findings are normal for this material. 

Values of K* were calculated. from this curve and are presented in Table 12, where 

the primed variables refer to the half-scale model. In this calculation, Th = 1.26 T_ 

and the T0 values are assumed unchanged as they are closely coupled to the unsealed 

liquid nitrogen wall. This was acceptable since small changes in TG do n6t have a 

large effect on the value of P or X. Over the full scaling range of the experimental 

data (T H = 220° K and T H = 3350 K, giving the maximum TH = 422°K), the 

variation in K* is 20 percent. The full-scale point chosen for modeling was taken as 

3.0 

A FULL-SCALE INTERNAL WRAP 

- CALCULATED, C 120'KT0 

* 2.0 

1.0 A i 

1 2 3 " 4 5 6 

Fig. 25 Insulation Thermal Conductivities for the Full-Scale 
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Table 12
 

COMPAtBISON OF MEASURED AND CALCULATED THERMAL
 
CONDUCTIVITY MODEL RATIOS (K*)
 

To TH T'H P PI 
-
(K) ( ('K) (W/om2 -°K x 10 --4 ) (W/cm 2 -°K x 10-4 ) K*meas K*eale 

120 220 277 1.21 2.05 1.30 1.46
 

121 270 340 1.94 3.41 1.42 1.57
 

125 335 422 - 3.34 6.01 1.54 1.68 

2700 K, with a resultant K* = 1.42. From Eq. (7.2), t* = L*K* - 0.71. The num­

ber of layers N' for the model isdetermined from a constant layer density condition 

as 

NI = Nt* 

= (36) (0.71). 

= 25.6 

The actual insulation for the half-scale model was taken as 27 layers, t*= 0.75. 

This overdesign Was used to permit adjustment of the insulation by removal of layers 

rather than adding. The 27-layer wrap corresponds to a K* = 1.50 and represents 

an exact result for T 315°K, TH &397*K, and P = 2.86 X.10. 

The experimentally determined conductivities are presented in Fig. 26. The half­
scale data exhibit very nearly the same slope as the calculated curve, and a fairly 

good correlation can be obtained by increasing the solid conduction term of Eq. (7. 1) 

by a factor of 5.5. In comparing the two sets of experimental data, it can be ascer­
tained that the half-scale results ekhibit a slightly higher solid conduction component 

and a smaller radiation heat-transfer component. The former could easily result 
from a slightly compressed insulation in the half-scale case or could reflect the in­

creased conduction via'the unscaled Teflon buttons. The lower radiative heat transfer 
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Fig. 26 	 Insulation Thermal Conductivities for the 
Full and Half-Scale 

occurring in the half-scale insulation apparently results from lessened joint and edge 

effects. This is an unexpected result as the two-dimensional effects arising from in­
sulation joints should have-relatively'greater effect on the smaller model, particularly 

with the high thickness distortion of the insulation. Thus, the inferred reduction in 
two-dimensional heat flow effects must reflect better quality ofjoint and edge construc­
tion in the half-scale model than in the full-scale model. 

A comparison of the interior hot boundary temperature for the half- and full-scale 

test is made in'Fig. 27. The total heat input and temperatures of the half-scale tests 

have been multiplied by 1/0.63 and 1/1.26, respectively, to produce a direct com­
parison with the full-scale results. A straight line has been fitted to the three points 

of the full-scale tests and can be used to estimate the deviations of the half-scale model 
points. Excellent agreement is achieved, with the modeled temperatures falling 

slightly below those observed in the full-scale case. If allowance is made for the 
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Fig. 27 	 Correlation of Internal Temperatures for 
One-Dimensional Heat Flow 

5%-over design of the insulation (1.4 layers out of 27 layers), the heat rate of all the 

points would be reduced. This would result in the higher temperature points.model­

ing to temperatures higher than needed and the lower temperature points still model­

ing to temperatures lower than desired. Thus, with the correct number of insulation 

layers, the data of Fig. 27 would reflect essentially the behavior of the conductivity 

curves and to a lesser extent the effect of nonconstant K values for the various 

temperature conditions. 

As an example of the influence of the temperature vIariation of the conductivity on the 

insulation distortion, the half-scale data can be used to represent the behavior of a 

prototype insulation. If these data are used to model the same temperature point 

(2700 K), 	 the calculation used previously withAhe full-scale insulation data now gives 

S1.25. Thus, a prototype of 36 layers would scale to half size with t* = 0.625 

and N' 22.5 layers. This 15% reduction in the insulation thickness gives a much 
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smaller distortion of the insulation and shows that insulation with lower temperature 

dependences are more easily modeled. 

Transient tests were performed with the full- and half-scale insulations.by modifica­

tion of the one-dimensional test configuration. The three insulated cylinders were 

separated to provide thermal isolation with regard to solid conduction in the axial 
direction. The insulated end plate was removed from Section B and replaced with an 

uninsulated cylindrical Section A. Variable temperature levels of this section and the 
top of the insulated cylinders could be maintained by a system of tungsten filament 

lamps which directly illuminated the outside of these regions. This system was tested 

With a constant heat flux input to the top of the insulation and a cyclically controlled 

temperature distribution on Section C. 

Representative temperature data for the full-scale insulation system are shown in 

Fig. 28. These transient data were obtained after numerous heating and cooling 

cycles had established reproducible temperature behavior. Data for the half-scale 
system are shown in Fig. 29, where the temperature and time values are scaled by 
factors of 1/1. 26 and 4.0, respectively. The tendency of the internal insulation tem­

peratures of the half-scale model to lag behind those of the full-scale model in the 

cooling portion of the cycle is mainly due to the too-slow cooling rate of Section A of 

the smaller model. Section A was modeled accurately, however, for the heating por­
tion of the cycle, and here the interior insulationtemperatures show a slightly slower 

transient response. Less than half of this effect arises from the distortion of the 
p*V*C* of the insulation occurring from the thickness distortion and the temperature 

dependence of the specific heat. The remainder of the effect results from the identical 

paint thicknesses used on the interior surfaces of both models. 

Within the accuracy of the experiment, the relative transient behaviors of the tem­

peratures on the bottom exterior of Section C are identical. Comparison of the abso­
lute value of the minimum temperatures results in considerable error because this 

area is controlled to a considerable extent by the unscaled cold wall. 

124 

LOCKHEED PALO ALTO RESEARCH LABORATORY 
t O CK H E C MDIS$SI L E S & S F A C E CO1A PANY 
A GROUP DIVISION OF LOCKHIED AItCKArt COt ' o.AT0 

http:insulations.by


420 

400 	 ­

380 	 ­

340D 
B A 

s 08o ~~ 	. ...- V - -­
280 

260 I~ 
L 

g 240 

ra 	 220 

200 

180 

160 - FULL SCALE 

1 20 -

100o 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

I I I I I 

TIME (hr) 

'Fig. 28 	 Transient Temperatures; Section-A Cycled and Top Exterior of Sections B, 
C, and D Subjected to Average Heat Flux 

A compilation of the temperatures at the end of the heating and cooling cycles is given 

in Table 13, along with the errors occurring for comparison of half-scale predictions 

of full-scale behavior. At the end of the cooling cycle, the interior temperatures are 

somewhat low owing to the subcooling of Section A by the cold wall. At the end of the 

heating cycle, the temperatures are in good agreement, with only the previously 

mentiohed discrepancy found for the hollow exterior temperature of Section C. 

The good correlation obtained in these transient experiments indicates the. adequacy 

of the one-dimensional heat flow model used for the insulation. This was accomplished 

in the presence of sizable temperature gradients on the external skn, with the result­

ant insulation two-dimensional heat flow. These parallel gradients were properly 

125 

LOCKHEED PALO ALTO RESEARCH LABORATORY 
L O C K H E E I, S SI E S & S P A C E C O 1M P A N Y
 

A GROUP DIVISION Or LOC9IUELD AIRCRAFT CORPORATION
 



400' 
TIME AND TEMPERATURES 

380 SCALED ACCORDING TO 
T*= 1.26 AND 0* = 0.25 

360 

340 

QAvg.320-

300 
280D e B"- " 

C) 280 

260 

240 

220 

H 200 1 

160 

140 -

120 HALF SCALE 
1001­

80 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

TIME (hr) 

Fig. 29 	 Transient Temperatures; Section A cycled and Top Exterior of Sections B, 
C, and D Subjected to Average Heat Flux 

modeled by correct modeling of the highly conductive skin, the influence of the insula­

tion on the parallel direction temperature distribution being small. 

The larger inaccuracies arose from an unmodeled surrounding temperature and 

errors in the thermal control of the heat inputs to Section A. The distortion of the 

transient response attributable to the distorted insulation thickness was minor for 

this half-scale test. 
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Table 13
 

MODELING RESULTS FOR SECTION A CYCLED AND TOP EXTERIOR
 
AT CONSTANT HEAT FLUX
 

(T* = 1. 26; Temperature - ° K)
 

cation 	 Tp Tm Tm/T* AT
Fall-Scale Half-Scale Predicted 

End of Cooling Cycle 

Interior B 144 170 135 -9 

Interior C 146 180 143 -3 

Interior D 149 184 146 -3 

Exterior C 210 269 213 3 

-12Exterior C. 105 117 93 

Top Section A 140 152 121 -19 

Bottom Section A 142 155 123 -19 

End of Heating Cycle 

Interior B 317 398 316 	 -1 

-2Interior C 304 381 302 

-4Interior D 302 375 298 

Exterior C 213 270 215 2 

-Exterior C 121 136 108 -13 

Top Section A 318 403 319 1 

Bottom Section A 409 508 404 -5 

The final portion of this program, which involved multilayer insulation modeling, was 

the testing of a 1/6.43-scale ratio model of-a proposed 2-m aperture OTES (Optical 

Technology Apollo Extension System) telescope. The model geometry for this tele­

scope was presented in section 6 and is shown in Fig..14. The prototype insulation 

to be modeled consisted of 36 layers of the previously tested MLI with a nominal 

1.27-cm thickness. The performance of the model was compared with the results 
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obtained from a thermal analyzer network computation used to define prototype 

behavior. 

To provide an insulation which would nominally model the OTES prototype insulation, 

the data of the preceding ML experiments were utilized to determine a scaling cri­
terion for specifying the number of layers. The more precisely 'defined thermal con­

ductivity versus radiative potential curve for the half-scale insulation model was 

used in characterizing the prototype insulation. 

The boundary temperatures calculated for the prototype system were in some cases 

much lower (- 600°R) than could be achieved in the test chamber with a liquid nitro­

gen cold wail. It was therefore necessary to extrapolate the data of Fig. 26 down to 

P = 0.36 x 10-4 . This was accomplished by allowing the linear curve to fall to zero 

as P approached zero in the same manner as the calculated -curve. For the boundary 

10-4 
temperature extreme corresponding to P = 1.02 x , I* remains fairly constant, 
ranging from 2.35 to 2.56. This behavior is coincidental with the prototype tempera­

tures lying in the region of sharply decreasing K. 

To determine the insulation configuration for the model, K* = 2.36 was used, 

giving 

t*= kL* = 0.367 

n =n t* m p 

n = 36 (0.367)m 

nm =13.2 

This value for the number of layers for the model -(n ) is further reduced (maximum 

reduction of 5%) ,by the n/(n - 1 ) dependence of the radiative component, so that 

13 layers were taken for the model. 
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The time-scale ratio for one-dimensional heat flow through the insulation is given by 

Eq. (7.2) as I(CC L*2 . For this case, C* = 1.88 (Ref. 6) results in 8* = 1/9.35 

compared with 1/41.3 for pure materials preservation and with 0* = 1/26 desired 

for the overall telescope system. 

The telescope model was tested with precalculated cyclic heat inputs and the data were 

compared to prototype predictions of a thermal calculation. The trend of the data was 

for the experimental internal temperatures to be about 200 K too low; This discrep­

ancy was not associated with the performance of the insulation. However, the exact 

behavior of the model insulation therefore cannot be assessed from the experiment and, 

in fact, an accurate evaluation would require an experiment similar to the one­

dimensional heat flow experiments used earlier in this work. 

7.4 TEMPERATURE PRESERVATION 

The problems associated with modeling of MLI using an identical material approach 

were seen to be associated with obtaining a model wrap thickness with the desired 

t4K* = 1 and the distribution of the two-dimensional field since the required ; L# . 

These same problems are existent in modeling MLI where a temperature preservation 

approach is desired. According to the criteria given by Eq. (2. 1), the temperature 

'preservation (T* = 1) model must be designed to provide satisfaction of 

K* A* 
Q, V* C* n A.* (7.30)0* L* 

L2 ,
From this we find that a geometrical similar model, A* = A = must have
 

n 1
 

K* = L* (7.31) 

and 

0* = p*C*L* = p*C*.K* (7.32) 
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Reduction of model material thermal conductivities in proportion, to the length ratio 
[Eq. (7.31)] is feasible for many of the structural components. However, such a 
reduction for the Mi insulated regions is frequently not possible since the prototype 
system has already been designed to have minimum properties at the prototype tem­
perature. In addition, not only would the perpendicular conductivity require reduction, 

but .also the parallel conductivity which, as previously mentioned, is dominated by 
solid conduction along the layers. Concurrent and controlled reductions of conductivity 
for both directions through implementation of materials substitution is highly unlikely. 

The most practical approach to modeling MLI with T* = 1 has been found by these 
investigators to be -the use of identical materials with thickness distortion. Once 
again this leads to considerable distortion of heat transfer in directions parallel to the 
layers, the influence of which must be assessed for each complete model in terms of 

overall system thermal performance 

Using model criteria derived from Eq. (7. 1) with T* = 1 gives 

_.':~B o. . BA* _* CA* 

tQ** t* N* (7.33) 

From Eq. (7.30) Q* L* , therefore' 

B*t*FA* - C** N*A* 2L2(.4 (734) 

Using an identical wrap results in B* = C* N* = 1 , and assuming that thickness 

L. 2distortion does not result in surface area distortion (i.e., A* - for insulated 

inner and outer surfaces ) gives 

t* = 1 (7.35) 

Satisfaction of this result means thiat an identical wrap is used for the model as that 

for the prototype resulting in complete geometric distortion of the prototype insulation 
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thickness (i.e., t = t instead of t = L* t ). This procedure results in 
mn p mn p 

L . 2accurate preservation of Q* - for heat transfer perpendicular to the layers. 

Heat transfer parallel to the layers is obviously increased above that in the prototype. 

For the composite system, where one-dimensional heat transfer has been assumed 

for the model MLI, it is still necessary that all remaining components be modeled in 

accordance with Eq. (7.30) where strict geometric compliance assures proper simu­

lation of the complete heat transfer system. From that equation with T* = 1, we 

find that the system time response is governed by 

0* = p* C* K* (7.36) 

If the transient behavior of the MLI regions is an important consideration in setting 

the time response for the complete system, it is then necessary that the system 0* 

be the same as the insulation 6*". Since we have selected an identical wrap for the 

model as that used in the prototype, the relation that must be satisfied for the system 

is 

p* C* K* = *= 1 (7.37) 

:The difficulty of applying Eq. (7. 37) can be ascertained by referring to the property 

charts of Section 4. These charts show that there is relatively little variation in pC 

(about 1:2), and thus Eq. (7.37) will limit K* 1/2. This materials limitation sets 

the scale ratio. As a specific example, the magnesium alloy AZ8C-T5 can be modeled 

with 410 stainless steel with p*C.K* = 1.03 and T* = L* = 1/1.83. The modeling 

of other components of the system to satisfy the transient condition 0* = 1 can, of 

course, be accomplished with geometric distortion so that the K* = L* requirement 

can be relaxed. This approach is useful in treating the combination of MLI and sup­

portive skin. 

Assuming that the heat flow in the MI! remains one-dimensional, then multidimen­

sional heat flow modeling for other components would still be accomplished according 
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to the conditions of Eqs. (7. 30). Satisfaction of the criteria in the case where a thin 

skin acts as supporting structure for the MLI and dominates the heat flow processes 

in the direction parallel to the insulation thickness can frequently be accomplished 

through thickness distortion. * In this case the heat transfer area is represented by 

A* t* L* and the criteria became 
n 

:"" p*-*L*2t * -"p*C0*t K*t*=L*2 =Q* . (7.38) 

The steady state conduction parallel to the skin requires that the conductivity be 

modeled according to 

K*s = t*$ (7.39) 
.5 

The modeling of the transient behavior of the skin to match the MI transidnt requires 

that 

0* = P*C*t* 1 (7.40) 

In many practical cases, the skin may be treated as isothermal in the perpendicular 

direction. Therefore, Eqs. (7.39) and (7.40) specify the conditions to be satisfied 

for multidomensional heat flow in a thin skin. (This type of distortion is. also applic­

able to other components where assumption of isothermality along the small dimen­

sion isvalid, e.g., thin wall tubing.) 

*The assumption of one-dimensional flow in the MLI with temperature gradients 
along the supportive skin can only be approximate. However, because of the large 
ratio (- 100:1) of the parallel to perpendicular conductivities of typical MU, the 
approximation is a good one for closed insulation systems. 

132 

LOCKHEED PALO ALTO RESEARCH LABORATORY 
L 0 C K H 0 MMIEI S S IL E S & S P A C E C 0 M P A N Y
 

A GROUP DIVISION OF LOCKHEED AIUCPAIT COR'OkATIOII
 



Equations (7.39) and (7.40) may be combined to give criteria for the thermal proper­

ties as 

p* C*
K* 1 (7.41) 

s L*2 

The application of this equation can be made (see Section 4) to model aluminum alloys 

with stainless steel alloys, giving L* 1/1.4. Again, Eq. (7.41) is only necessaryP 

in cases for which the transient model response must be mated with that of the insula­

tion. Otherwise, the restriction of Eq. (7.40) is lifted and Eq. (7.39) can then be 

easily satisfied. 

7.5 TEMPERATURE PRESERVATION EXPERIMENTS 

In this section, the experimental portion of this program involving the application of 

the criteria developed in section 7.4 will be described. Temperature preservation 

was chosen as very little modeling has been attempted with this method for which the 

insulation was a sensitive component of the system. Thus, one of the objectives of 

this study was to investigate a system in which the characteristics of the MLI domi­
nated the thermal modeling problem. At the same time previous experience has 

demonstrated the need for careful one-dimensional heat flow characterization of the 
MI. For these reasons, the system decided upon conisted of a 36-layer MU[ cylin­

der with closed ends wrapped on a lightweight stainless steel tubular framework. 
The outer boundary was subjected to a controlled (± 0.2-K) room temperature en­

vironment and the internal temperature controlled by axial heating wires from which 

the internal power dissipation was accurately measured. One-dimensional steady 

state and transient data were taken for a prototype system and 1/2- and 1/4-scale 

models. Two-dimensional heat flow effects were introduced by cutting a circular hole 
through the insulation and the steady state and transient measurements repeated. An 

attempt was made to enhance the sensitivity of this two-dimensional test by construct­

ing a high quality insulation blanket with the minimum number of two-dimensional per­

turbations from joints and buttons. 
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7. 5. 1 Multilayer Insulation Test Articles 

The insulation used for prototype and scale models consisted of 36 layers of 0. 25-mil 

thick Mylar aluminized on both sides separated by 3-mil thick glass-fibre paper 
(Dexiglas). This insulation was installed on a lightweight cylindrical framework con­
structed from thin wall stainless steel tubing. The innermost layer of insulation had 

a single aluminized surface with the nonaluminized high emissivity surface facing into 

the cylinder to facilitate isothermal conditions interior to the cylinder. 

The insulation was supported from the framework by a number of button attachments. 
The buttons were, made from two 1/2-in. teflon disks held to either side of the insula­

tion by a 0. 030-in. Dacron filament which penetrates through the insulation thickness. 

The prototype and scale model insulation systems are shown in Figs. 30 and 31 mounted 
to the vacuum chamber door. In this photograph the vertical strips running under the 

buttons are 1/2-in. Dacron ribbon which serves to distribute the suspension weight 

throughout the insulation blanket. The entire system is suspended from the door by 
10-mil stainless steel wires which attach to the internal tubular framework. 

All of the systems tested had three insulation joints. All of these joints were of the 

staggered overlap variety. In these installations these joints consisted of four nine­
layer blankets butted together in a staggered fashion such that no single discontinuity 

existed through more than 1/4 of the blanket. Two of these joints were used on the top 
and bottom flat ends where the cylindrical portion of the blanket was folded over the 

corners to join with end insulation. The third joint was an axial joint where the two 
sides of the cylinder insulation met. An additional joint was necessary for the larger 
(178-cm length by 96.5-cm i.d.) prototype system due to the limited available width 

of insulation materials. This was a circumferential joint located in the central plane 

of the cylinder. 

The insulation test articles were instrumented with 3-mil copper-constantan thermo­

couples. Ten of these were located on the internal surface and served to define the 
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Fig. 30 Prototype Insulation Test Article 
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Fig. 31 One-Half and One-Quarter Scale Instulation Test Articles 
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hot boundary temperature. An additional set of thermocouples was installed on the 
exterior. This surface was then painted black to provide good thermal coupling with 
the chamber wall. The internal heaters were made from 10-mil resistance wires 

positioned near the axis of the cylinder. 

7.5.2 Test Procedures 

Following the installation of the test articles the vacuum chamber was evacuated to 
1 x 10'-5 mm Hg and the insulation allowed to pump out for 24 hr. At this time a 
transient heating cycle was performed in which the interior temperature was raised 
rapidly to the operating level (420°Iq and the decay in heater power monitored. After 
steady state conditions has been attained, the one-dimensional heat flow data were re­
corded and the heater shut off. The decay of the internal temperatures was recorded 
as a cooling transient. The heating transient experiment was essentially a function of 
the insulation only while the cooling transient depended on the internal framework and 
heater assembly thermal mass. The steady state data served to define the effective 
insulation conductivity. Only single temperature points were taken for the scale 

models whereas three temperature points were obtained for the prototype system. 
These latter data gave the temperature dependence of the insulation and allowed cor­
relation with other experimental data. 

Two-dimensional effects were introduced into the insulation by cutting a hole (approxi­
mately 15-cm diameter for the prototype) through the insulation. This hole was then 
shielded with a single disk of aluminized Mylar at the cold boundary side. The inside 
surface of this shield was painted black and the outside surface kept as a low emissivity 
aluminum. With this arrangement, the radiation coupling of the exposed edges to the 
hot interior was maximized giving a large two-dimensional perturbation of the insula­
tion around the hole. The increase in heat flow via radiation from the low emissivity 
side of the aluminized Mylar disk was small and calculatable. Additional thermo­
couples were placed around the hole to measure any radial gradients and one thermo­
couple placed in the center of the aluminized Mylar shield. 
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Steady state and transient data were obtained for this configuration in a manner simi­

lar to that-for the one-dimensional configuration. 

7.5.3 Test Results 

The data acquired for the steady state experiments are presented in Table 14. The 

heat flow through the insulation is the net heat flow arrived at by subtracting calculated 

lead wire conduction losses (Ref. 24) from the observed heater power. It should be 

noted here that the insulation thickness, t, was not identical for the different test 

articles. The thickne'sses given in the table are approximate thickness measured 

after testing was completed. This error in insulation thickness is responsible for the 

inaccuracies in the modeling of Q/A. The inability to maintain a uniform thickness for 

the three 36-layer insulation blankets is attributable to the light-weight framework and 

the *factthat a minimum number of constraining button attachments were used. Thus, 

the larger area, specimens were less firmly constrained allowing the insulation to fluff 

out to much lower densities between buttons. 

Table 14 

STEADY STATE DATA 

Prototype 1/2 Scale 1/4 Scale 

1-D 27 D 1-D 2-D I-D 2-D 

Temp. Internal (0 K) 418 368 318 419 420 419 418 419 

Temp. External (OK) 302 303 302 302 302 303 302 303 

Q Insulation (W) 5.461 2.329 0.456 7.594 1.916 2.579 0.622 0.928 
2Area Ins..(cm. x 10 ) 6.90 - 7 - 1.815 - 0.472 ­

(A*)-1 1.0 3.80 14.63 

Q/A (W/cm2 &10 7.9 0.337 0.066 .56 1318 
t(cm) 2.54 .1.91 1.27 

K x 10 17.32(W/cm iKeff) 13.18 10.48 17.06 14.43 
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The three temperature points for the prototype configuration are plotted in Fig. 32 

against the expected temperature dependency. The agreement with the predictions of 

Ref. 22 is quite good. This agreement is only possible if the value of t = 2.54 cm is 

employed. This infers that the insulation was operating with essentially one­

dimensional heat flow and that the joints and other instrumental penetrations contrib­

uted minor two-dimensional effects. 
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Fig. 32 Insulation Conductivity Variation With Temperature 

The two-dimensional steady state data presented in Table 14,was used to determine. 
a Q2-D for the insulation which represents the increase over and above the insulation 

one-dimensional heat rate which is induced by the presence of the out out. To do this 
a radiative heat balance calculation was performed for the low emissivity shield sur­

face and the chamber wall. This and the original, one-dimensional heat rates were 

subtracted from the total heat rate to obtain Q2-D' The results are presented in 
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Table 15. Although the calculation of the shield heat rate cannot be performed accu­

rately, it can be seen that this value is at most 15% of the increase in the one­
i 

dimensional heat rate, the -remainder ariing from the two-dimensional heat transfer 

occurring in the insulation. The values of Q- are plotted in Fig. 33 against Lj, 

the ratio of the hole diameter. (This diameter could not be exactly controlled to the 

L* ratio of the models.) The data show a behavior which can be described by 

Q- (Lh)1.51
2-D 

From the development of section 7.4, the two-dimensional behavior could be expected 
2"0
to be '. This would assume that the internal walls of the hole were isothermal 

or nearly so. That this was not the case can be shown by calculation of the interior-to­

hole view factors. These view factors are not scaled correctly due to the varying and 

somewhat uncontrollable insulation thickness. Therefore, it can be said that the data 

have shown the presence and trend of two-dimensional heat flow effects althrough the 

exact magnitude of these effects in a correctly modeled system are not demonstrated'. 

Table 15 

.TWO-DIMENSIONAL STEADY STATE DATA 

Prototype 1/2 Scale 1/4 Scale 

'QTdtal O'V) 7.594 2.579 0.928 

QShield (W) 0.737 0.21 0.086 

Q1-D (W) 5.461 1.916 0.622 

.Q2-D (W) 1.39 0.45 0.22 

Q*- (W) . 1.0- . 0.346 0.156 
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Fig. 33 	 Two-Dimensional Heat Flow 
Variation With Scaling Ratio 

The transient response of the systems was to be originally determined by observing the 

decay of heater power after rapidly raising the interior boundary temperature to a fixed 

value with all initial temperatures at ambient conditions. Since it was difficult to scale 

the initial fast temperature rise, the experiment depended on observing the power de­

crease Q i - Q after the leading term had dominated the process. This procedure 

proved inaccurate due to the marginal precision of the instantaneous power measure­

ment and the persistence of second-order transient terms associated with the nonideal 

temperature buildup. 

The cooling data for the one-dimensional case are shown in Fig. 34. These data are 

used to give fairly accurate values of the time constant. The results of these evalua­

tions are given in Table 16 together with the calculated time constant (-r) of the in­

sulation and insulation plus framework thermal mass. The inclusion of the framework 

improves the absolute correlation of the time constants but has little effect on the time 
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Fig. 34 One-Dimensional Cooling Data 

Table 16 

ONE-DIMENSIONAL TRANSIENT DATA 

Ss IINS 	 TsCALC 
OBS (min) INS (min) CAL 

(min) 


Prototype 1388 1267 	 1334 

1/2 Scale 1049 . 0.756 . 897 0.708 952 0.714 

1/4 Scale - 689 0.496 .687 0.542 741 0.555 

constant ratios. The largest error in r* is 10% for the 1/4 scale model. No error 

can be expected from the varying insulation thickness as the time constant is a func­

tion of k/t Q/A AT which was measured in'the steady state experiment. 
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The transient two-dimensional cooling data is presented in the graph of Fig. 35 and 

compared to the one-dimensional case in Table 17. The prototype cooling data were 

lost due to a vacuum chamber malfunction and were not rerun since the heating curve 

data were assumed to be valid at that time." 

1.04 

0)0) 

0.1
 

I I I _ 
200 400 600 800 1000 1200 1400 

B(min) 

Fig. 35 Two-Dimensional Cooling Data 

Table 17 

TRANSIENT DATA COMPARISON 

2-D 2-D T1-D 1-D 

-1/2 Scale 777 - 1050 

1/4 scale 576 0.741 690 0.657
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7.6 CONCLUSIONS 

The problems associated with reduced scale modeling of multilayer insulation for 

space applications are extensive and lead to severe limitations when a precise model 

of the insulation is necessary., Many of these limitations stem from the difficulty in 

reproducing the prototype insulation wrap at reduced scale. In many applications the 
insulation is overdesigned to the point where degradation of its performance has little 

effect on the overall thermal performance of the system. In these cases, one­

dimensional steady state insulation modeling will meet most of the requirements. 

The strong temperature dependency of thermal properties makes elevated temperature 

studies unattractive except when the insulation plays a minor role in the thermal de­

sign. Even in the latter cases premodeling insulation tests are advisable except in the 

simplest of insulation geometries. Temperature preservation modeling eliminates one 

of the above problems but requires insulation thickness distortions. 

The modeling of transient heat flow conditions in multilayer insulation can be accom­

plished accurately only with severe distortions and material substitutions of other 

prototype system materials. This procedure is probably not feasible except in simple 

two-component systems. 

When two-dimensional heat flow is present, the modeling is increasingly difficult. 

Limitations arising from tvo-dimensional effects are not easy to establish. Where 

the insulation performance is critical, the evaluation techniques that have been used 

consist of isolating and testing of the prototype two-dimensional heat flow area. This 

approach has been used in several cryogenic tank storage tests, in the Lunar Module 

Vehicle (Ref. .25) and in large spacecraft thermal protection design efforts at Lockheed 

Missiles-and Space Company. In each of these cases the isolation of two-dimensional 

tests are used as a design aid. A full-scale flight qualification thermal test is gen­

erally required for each vehicle. 
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Although many difficulties are encountered in constructing precise insulation models 
successful models have been constructed for systems in which extensive use was 
made of multilayer insulation (see section 6). In these systems the insulation was 
constructed according to the one-dimensional modeling criteria. Many multilayer 
insulation thermal design problems of this type can be successfully attacked with 

thermal modeling. 
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Section 8
 

SPECIAL COMPONENTS
 

Special spacecraft components frequently require a unique thermal design to assure 

maintenance of thermal levels within narrow tolerances. In each of these cases, the 

model designer is required to furnish a smaller scale system which simulates the 

prototype behavior. Fortunately, the very fact that a special design has been gene­

rated results in a well characterized system whose boundary conditions and design 

parameters have been specified and tested in detail. The information generated for 

specification of prototype design then becomes available to the model investigator and 

special procedures-can be implemented to obtain similarity within the constraints of 

model criteria. 

The special components under consideration for present and future use include: 

extremely high and low conductance joints; resistance heater stabilized components; 

adiabatic walls using multilayer insulation; phase change thermal sinks; cryogenic 

refrigerated sensors; high and low temperature emitter panels; heat pipes; and other 

special thermal components and systems. For each of these special components, the 

model designer must establish a thermally similar system in the model. It is fre­

quently possible to avoid complete duplication of the component through artificial pro­

vision of boundary conditions similar to those of the prototype. For example, the 

performance of emitter panels may be duplicated through forced cooling loops in cases 

where panel behavior is in itself not of prime interest. Resistance heater stabilized 

components can be accurately simulated using temperature monitoring and external 

control of electrical energy. Adiabatic walls can be provided on the model using 

methods identical to those of the piototype as long as the mismatch of thermal con­

ductance at very low values is of minor -importance. The approaches nedessary for 

modeling of systems using phase- change heatsinks, heat pipes, cryogenic refrigera­

tors, and special joints will obviously be unique in terms of each application and will 

not be covered in detail herein. However, it is of interest to consider the rather 

formidable problems that arise in connection with thermal modeling of joints. 
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In cases where a joint has been carefully designed to provide a maximum or minimum 

resistance, the modeling problem will be amenable to accurate solution since design 
practices similar to the prototype can be utilized. However, when a common joint 

assumes an important thermal role, the modeling problem is considerably more 

complex. 

The thermal model criteria for a joint are based upon relations that describe the heat 

transfer between the opposing surfaces. Considerable work has been done by numerous 
investigators to establish and confirm the required joint conductance theory. 

A coefficient of joint conductance for two mating members in imperfect contact has 

been defined as 

h AT (8.1)AAT 

where 

q = heat flux 

A = apparent contact area 

AT = temperature drop across the interface 

A good deal of experimental data is available on measurements of h for various 

materials and methods of contact. However, little success has been achieved in 

satisfactory correlation of the results with theoretical models. 

While advances have been made in predicting joint conductance for carefully con­

trolled joints in laboratory experiment, success in applying these theories to common 

engineering joints has been limited. 

Recent work in this field shows promise for developing an appropriate joint conduct­

ance relation. Particularly notable is the work by Clausing and Chao (Ref.. 26) and 

the work by Rice (Ref. 27). 
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clausing and Chao have attacked the joint conductance problem assuming that macro­

scopic effects are dominant which differs from previous assumptions that microscopic 

effects dominate the conductance. 

Clausing and Chao found the joint conductance relation 

h brg(x (8.2) 

where 

k = thermal conductivity
 

b = diameter of the apparent contact area
 

x = constriction coefficient (a/b Fig. 36)
 

g(x) = constriction allevation factor 

The value bf g(x) has been determined as 

g(x) 1-1.40925x + 0.29591x3 + 0.05254x5 + 0.02105x7 "+ ... (8.3) 

P
 

2a
 
.­

1 1d, 

Hr 

2b
2 

2Pb2b 

P
 

Fig. 36 Geometry for Clausings :Relation 
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Further, for most metals it can be shown that 

x ='1A85 (r id) (8.4). 

where 

P = contact pressure
 

E = modulus of elastoity
 

d = total flatness deviation (d = d + d2 Fig. 36)
 

Substituting Eq. (8.4) into Eq. (8.2) gives: 

2.7 (E~b1/3k 

h = 
b7rg(x) (8.5) 

A different approach to determining joint conductance was taken by Rice. Using 

dimensional analysis and considerations of important parameters, he .derived the 

following relation for a perfectly flat but roughened surface: 

h CkYL (8.6) 

where 

C = a constant
 

a = a constant
 

k t
thermal conductivity 

m = rms value of the slope of the surface roughness
 

a rms value of the surface roughness
 

p = contact pressure
 

H = microhardness
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Rice plotted available experimental data on log-log coordinates and found 

a = 0.85. 

C = 0.55 

Thus,. Eq. (8.6) becomes 

h = 0.55 k XP 0.85 (8.7) 

8.1 -JOINT SQALE MODtLING CRITERIA 

The general modeling criteria for a joint may be derived through equating the relation 

for heat transfer through a joint to that for conduction and radiation transfer elsewhere 

in the system. This results in 

K*A* T* 4h*A*T* = n = AT
L*
 

and for geometrical similarity 

T*3L* = (8.8)
I4* 

For a material preservation model K* 1, E* = 1 and the joint must conform to 

* -h* =L (8.9) 

Applying this requirement to Calusing and Chao's results, Eq. (8. 5), and rearranging 

gives 

d*d* (8.10) 
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For geometric similarity b* = L* and 

d *(g(x) )3 
P*= L-( (8. i1)% x) 


Using a similar procedure to reduce Rice's result, Eq. (8. 7), to materials preserva­

tion modeling criteria gives 

p, 1:18
=[ m 


Assuming that identical materials produce the same surface roughness on a macro­

scdpic level, i.e., m* = I and a'* = 1 results in 

p, L,-1.18 (8.12) 

The difference in results obtained for Eq. (8. 11) and (8. 12) is due to the inclusion of 

surface waviness in Clausing's relation [(Eq. (8. 2)]and the assumption of a perfectly 

flat surface with microscopic roughness by Rice [(Eq. (8. 6)] . The inclusion of g(x)* 

in Eq. (8. 11) is necessary since it is a function of pressure as well as total flatness 

deviation. These properties will not be the same in model and prototype even though 

identical materials are used. 

In the case of a temperature preservation model T* = 1 and Eq. (8. 8) becomes 

h* - 1 (S.13) 

Using h* 1 , and b* = L*, in the Clausing Eq. (8. 5) yields 

P* L* [g(x)* (8.14) 

Likewise, using the same relations in Rice's Eq. (8.'7) gives 

= [* (8.15) 
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Once again the major difference in results is the inclusion of macroscopic waviness 

in Clausing's relation. 

The above results for scaling of h through control of joint geometry, pressure, rough­

ness, and waviness are indicative of the difficulties to be found in joint modeling. The 

problems in modeling are essentially the same as those in controlling joint conductance 

in.the prototype. 

As has been shown, the joint conductance value for members in contact is extremely 

sensitive to the surface conditions. Rice's equation presents a reasonable prediction 

for perfectly flat surfaces. Clausing and Chao's results take into account some sur­

face waviness but depend on an accurate determination of the ratio of total area to 

actual contact area. This value is difficult to determine for common engineering 

joints. 

Both of the results presented here require uniform pressure at the joint. This 

generally is not achieved for bolted or riveted jointed. Some work has been performed 

trying to scale bolted joints (Refs. 28 and 29); however, the best scaling achieved was. 

on the order of 30% under very carefully controlled conditions. 

'The presence of surface films on joined metals has not been included in analytical 

treatments. Surface films present problems even when using material preservation 

techniques since the thickness of a film on a given material with similar surface con­

ditions will tend to be constant and uncontrollable. Scaling of the film thickness to 

conform to model criteria would be most difficult. Duplication of surface film 

properties for a temperature preservation model would be even more difficult since 

material substitution would be necessary. 

Clausing and Chao have reported that joints made with dissimilar materials frequently 

exhibited directional effects. That is, a higher temperature drop is measured across 

a dissimilar metal joint depending upon the direction of heat flow. This phenomena quite 

obviously introduces a definite limitation in modeling with T* = 1 since material 

substitution is necessary. Since the cause of directional effects is not entirely under­

stood, there are as yet no criteria to use as guidelines in model design. 
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Strain relieving due to changes in temperature and temperature dependent thermal con­

ductivities also change joint conductance. Since in material preservation the tempera­

tures of the model may differ substantially from that of the prototype, these effects 

must be considered in terms of model thermal performance. 

It must be concluded that analytical and experimental results on joint conductance 

indicate that accurate thermal modeling of common engineering joints is not within 

the grasp of current technology. Predictable metal-to-metal joints have been manu­

factured. However, this has been accomplished only for very simple geometries using 

extreme care in surface preparation and cleanliness. Attempts to predict the thermal 

conductance of assembly line engineering joints (i. e., bolted, riveted, spot welded, 

etc. ) have generally been completely unsuccessful. 

In recognition of the wide variations observed in joint conductance, it is becoming 

standard practice in spacecraft manufacture to design all thermally important joints 

to have either maximum or minimum achievable conductances. Where this is done 

through shorting straps, filler compounds, or insulating standoffs, then the model 

designer can pursue the same solution to slimina.te thermal dependence of the com­

ponent on joint conductance. Where a thermally important joint is found as a result 

of model tests, then suggestions should be made to the prototype designer to institute 

procedures to eliminate the thermal sensitivity to joint properties. 
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Section 9 

CONCLUSIONS 

A discussion of the num'erous limitations facing the thermal model designer has been 

included in each of the major sections of this report. Therefore, only a review of 

the major conclusions drawn from the study are included in the following paragraphs. 

The review of spacecraft geometrical and thermal designs disclosed that all of the 

vehicles considered were amenable to thermal modeling. Size and geometry of the 

prototypes are not presently considered as a limitation in thermal modeling tudies. 
The smaller vehicles representative of unmanned satellites can be modeled at between 

1/2 and full scale and the larger ones down to 1/7th scale. At the smaller scale 

ratios, the problems associated'with model construction, instrumentation, and 

materials selection become increasingly difficult. Scale ratios in the range 1/2 to 

1/4 are far more convenient in terms of these problem areas. 

Model designs.based upon either materials preservation or temperature preservation 

techniques are more difficult to achieve than those requiring neither of these restric­

tions. Setting a value for T*, K*, C , or 0, restri&s the total flexibility avail­

able in selection of the most promising property and length ratios for a given model. 

When all model ratios are left unrestricted, it is possible to pursue several model 

designs and select the most optimum in terms of closely matching the model criteria 

with a minimum of distortion. When one of the ratios is initially fixed, the number 

of possible designs is considerably reduced. Thus, the most desirable model approach 

is to make no apriori decisions on scaling ratios thereby maintaining maximum flexi­

bility in model design. 

Of the two preservation techniques, that of tenperature preservation is preferred 

over materials preservation. Using temperature preservation permits materials 
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substitution and, through selection of appropriate materials, compliance with model 

criteria which include the influence of thermally dependent thermophysical properties. 

Distortion of thicknesses will often be necessary to accomplish the required matching 

of thermal paths; however, the dependence of the model on material properties can 

be preserved. 

Materials preservation is the least promising model approach since the required change 

in model temperature (i. e. T* = 1/3) negates satisfaction of K* = C* = 1 . 
p

Most materials experience sufficient changes in K and C with temperature toP 
significantly alter the assumed preservation of initial properties. It has been sug­

gested by previous investigators that this difficulty can be eliminated through mate­

rials preservation with T* = 1: Satisfying the model criteria with both restrictions 

requires geometric distortion of all components which in most complex systems is 

not possible. 

Other difficulties associated with materials preservation when T* 1 are the need 

for intense solar simulation and high temperature ratios. Since most present-day 

solar simulators are limited to I* on the order of 2, length ratios on the order of 

I/i. 68 are the smallest available using materials preservation and true solar simu­

lation. Smaller length ratios require higher intensities (1* = L* - 4/3) which are 

provided using infrared simulation and may result in high temperature failure of 

surface coatiigs, 

Studies of simple shapes such as flat plates, cylinders, and spheres with prescribed 

boundary conditions are useful in establishing design limits in scale ratios for the 

complete model. The analyses of a rotating thick plate presented in Section 5 led to 

the establishment of dimensionless parameters whose values provide ranges within 

which similarity may be assumed even though the model criteria are not strictly 

adhered to. For example, when (K/oreT 3 L) > 102 for the prototype then a negli­
avg 

gible thermal gradient will exist through the thickness of a rotating plate. The model 
3can then be designed with any larger value of (K/acT L) as long as other con­avg

trolling parameters are adhered to. Additional information of this type can easily be 

obtained through use of Groeber charts for the simple shapes. 
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Studies of the multilayer insulation systems provided several indications of limitatiois 

existent in modeling of this material. For any prototype using multilayer insulation 

simply as an adiabatic boundary, there exists the possibility of overdesign of the 

prototype: That is, many such designs suffer negligible changes in temperature of 

enclosed surfaces for order of magnitude increases in insulation conductance. In 

these cases,- modeling must only accomplish a satisfactory adiabatic condition and 

accurate modeling of blanket properties is unnecessary. For applications where per­

formance is significantly dependent on the blanket conductivity, the model design is 

considerably more difficult. 

For modeling multilayer insulation with temperature preservation, the best approach 

appears to be maintenance of K*/t* = 1 using the same blanket materials with fewer 

layers. This corresponds to concurrent preservation of materials and temperature 

through geometric distortion and allows the designer to use prototype blanket proper­

ties. Most important is that the approach avoids temperature dependent properties 

of alternate materials. Using a distorted thickness results in distortion of the three­

dimensional thermal field in the vicinity of penetrations. However, this is generally 

not of importance for most practical systems. 

A materials preservation approach with T* 0 1 is most difficult for the multilayer 

system since the temperature dependence of these insulation systems is quite strong. 

Performance of the study then requires that a thorough experimental program similar 

to the one reported in Section 7 be conducted to accurately specify the thermal con­

ductivity of the model. The difficulties associated with laboratory measurements of 

X for the material are considerable since the measured wrap must correspond in all 

details with that to be used on the model. In general, it is undesirable to pursue a 

design approach of this type due to the need for a sizeable supporting effort on mate­

rial property measurements with little guarantee that desired thermal properties and 

temperature coefficients will be achieved. 
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Modeling of common joints with any degree of acceptable accuracy does not appear 

to be a possible procedure at the present time. The influences of surface roughness, 

waviness, and contact pressure are interrelated and sufficiently uncontrollable so that 

design of prototype joints with prescribed properties is not possible with less than 

30% error. A larger error can be anticipated in the model joint in view of size effects, 

surface preparation difficulties, and other unknowns. Modeling of special joints with 

designs tailored to circumvent a thermal problem is entirely possible since the 

influence of surface properties will normally be absent in the prototype. 
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Appendix A
 
SOURCES OF INFORMATION FOR REVIEW OF
 

SPACECRAFT DESIGNS
 

All sources of material used for the review covered in Section 3 are presented in 

tabular form in this appendix. Readers interested in obtaining the details of a 

particular spacecraft design are referred to the sources indicated here. 
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Space Co. for NASA/Marshall Space Flight Center Apollo Applications 
Program Office under Contract NAS 8-21003. 

2. 	 ATM Thermal Control Study, Augmentation Task No. 32, LMSC-A842323, 
5 Sep 1967, prepared by LMSC for NASA/MSFC under Contrace NAS 8-21003. 

3. 	 Final Report for Multiple Docking Adapter (MDA) Thermal Model, Augmen­
tation Task No. 14, LMSC/HERC-A842023, 6 Jul 1967, prepared by LMSC 
for NASA/MSFC under Contract NAS 8-21003. 

4. 	 Cluster Thermal Model, Final Report, LMSC-A842205, 1 May 1967, 
prepared by LMSC for NASA/MSFC under Contract NAS 8-21003. 

5. 	 Part I, Contract End Item Detail Specification, Performance and Design 
Requirements CEI 014000A, Multiple Docking Adapter for Apollo 
Applications Program AAP-2, NASA-CP114A1000026A, 22 May 1967, 
prepared by Systems Criteria Section, Systems Requirements Branch, 
Vehicle Systems Division, Propulsion and Vehicle Engineering Laboratory. 

6. 	 Cluster A Design Reference Mission (DRM), LMSC-A842147, 11 Mar 1967, 
prepared by LMSC for NASA/MSFC under Contract NAS 8-21003. 

7. 	 Personal Communication with Members of LMSC Orbit Thermodynamic 
Analysis Group, Oct 1967. 

OGO (Oribiting Geophysical Observatory) 

1. 	 Final Report, Orbiting Geophysical Observatories I, I, and II[, p. 2-1 
through 2-77, furnished by W. E. Scull, Project Manager for eGO at 
NASA/Goddard Space Flight Center. 

2.* 	 W. E. Scull, "The Mission of the Orbiting Geophysical Observatories," 
The Observatory Generation of Satellites, NASA-SP-30, Mar 1963, pp. 1-10, 
prepared by Goddard Space Flight Center, Greenbelt, Md. 

3. 	 G. E. Gleghorn, "The Engineering Design of the Orbiting Geophysical 
Observatories," The Observatory Generation of Satellites," NASA SP-30, 
Mar 1963, pp. 11t24, prepared by Goddard Space Flight Center, Greenbelt, 
Maryland. 

*Also published in Advances in the Astronautical Sciences: Scientific Satellites, 

Vol. 12, 27 Dec 1962, edited by Irving E. Jeter, Western Periodicals Co.,

North Hollywood, Calif.
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0GO (Cont.) . 

4. 	 G. J. Gleghorn and W. T. Wiggins, "Design and Development of the 
Orbiting Geophysical Observatory, " Civilian and Military Uses of 
Aerospace, annals of the New York Academy of Sciences, Vol. 134, 
Art. 1, pp. 205-233, 22 Nov 1965. 

5. 	 J. B. Rittenhouse and J. B. Singletary, Space Materials Handbook, 
2nd Edition, Supplement 1, M-54-65-1: ML-TDR-64-40, Dec 1965, 
Lockheed Missiles &.Space Co., Sunnyvale, Calif. 

6.-	 J. B. Ritterhouse and J. B. Singletary, Space Materials Handbook, 
2nd Edition, Supplement 2, L-58-67-1: AFML-TR-64-40, Mar 1967, 
Lockheed Missiles & Space Co.., Sunnyvale, Calif. 

OAO (Orbiting Astronomical Observatory) 

1 	 R. R. Ziemer and J. E. Kupperian, Jr., "The Mission of the brbiting 
Astronomical Observatory," The Observatory Generation of Satellites. 
NASA SP-30, Mar 1963, pp. 45-52, prepared by Goddard Space Flight 

-Center, Greenbelt, Maryland. .­

2 .*.W. H. Scott, "The Engineering Design of the Orbiting Astronomical 
'Observatory, " The Observatory Generation of Satellites, Nasa sp-30, 
-'Mar 1963, pp. 53-62, prepared by Goddard Space Flight Center, 

Greenbelt, Maryland. . ­

3. 	 L. H-" Hemmerdinger, "Thermal Design of the Orbiting.Astronomical' 
-' Observatory, " Journal of Spacecraft and Rockets, Vol. .1, No. 5, Sep-Oct 
_.1964, pp.-477-483.
 

4. 	 J. Mockovciak, Jr., "Engineering an Earth Satellite, " Mechanical 
Engineering, May 1963, pp 48-51. 

5. 	 J. B. Rittenhouse and J. B. Singletary, Space Materials Handbook 2nd 
- Edition, Supplement. 2, L-58-67-1: AFML-TR-64-40, Mar 1967, Lockheed 
*Missiles & Space Co., Smmyvale, Calif. 

AOSO (Advanced Orbiting Solar Observatory) 
i. J. C. Lindsay, "The Mission of the Advanced Orbiting Solar Observatory," 

The Observatory Generation of Satellites, NASA SP-30, Mar 1963, pp. 25-30, 
prepared by Goddard Space Flight Center, Greenbelt, Maryland. 

2* A. J. Cervenka; "One Approach to.the Engineering Design of the Advanced 
'Orbiting Solar Observatory," The Observatory Generation of Satellites, NASA 
SP-30, Mar 1963, pp. 31-44, prepared by Goddard Space Flight Center, 
Greenbelt, Maryland. 

*Also published in Advances in the Astronautical Sciences: Scientific Satellites, 
Vol. 12, 27 Dec 1962, edited by Irving E. Jeter, Western Periodicals Co., 
North Hollywood, Calif. 
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AOSO (Cont.) 

3. 	 AOSO Phase I Final Report, Thermal and Structural Sections, (pp. 1-7 
through 1-279), furnished by F. J. Cepollina, NASA Goddard Space Flight 
Center. 

GEOS (Geodetic Satellite) 

1. 	 J. E. Phenix, "Structural Design Analysis and Testing of the GEOS Satellite," 
Technical Memorandum TG-730, Sep 1965, The John Hopkins University -

Applied Physics Laboratory, Silver Spring, Maryland. 

ATS 	4 (Applications Technology Satellite) 

1. 	 AnAdvanced Study of an Application Technology Satellite (ATS-4) Mission,. 
Vol. 1, Book 1, Final Study Report under Contract NASw-1410, General 
Electric Co., Missiles and Systems Div., Philadelphia, Penn., Nov 1966, 

.(NASA-CR-81767, Doc. 665D4529, Vol. 1, Bk. 2). 

2 . Final'Report ATS-4, Vol 3 of 8, prepared by Fairchild Hiller Space Systems 
Division for Goddard Space Flight Center, CR-81603, Dec 1966. 

P-l1 (Orbital-Launched Satellite) 

1. 	 Lockheed P-il Orbital-Launched Satellite (sales.brochure), 15 Feb 1964, 
Lockheed Missiles & Space Co., Sunnyvale, Calif. 

2. 	 Personal Communication with Pat Denicore of LMSC P-11 Structural 
"Design Group. 

Nimbus 

1. 	 R. A. Stampel and H. Press, "The Nimbus Spacecraft System," Aerospace 
Engineering, Vol. 21, No. 7, Jul 1962, pp. 16-28. 

2. 	 Space Materials Handbook, 2nd ed., Supplement 1,op. cit. 

3. 	 Drawings containing some information on materials and spececraft 
-, configuIration: 

"Mechanical Interface Design Spec. Control Drawing, ", General Electric
 
ER475J207702.
 
"Mechanical Interface, Nimbus Altitude Control Subsystem, " General
 
Electric 47J207723.
 
"Sensory Ring Configuration," General Electric 47J209953.
 

Multi-Purpose Communications Satellite 

1. 	 Multi-Purpose Communications Satellite Study, Final Report, Vol. I, 
Satellite Design, LMSC-A881659, 20 Jul 1967, Lockheed Missiles & Space 
Co., Sunnyvale, Calif., prepared for Communications Satellite Corporation. 

2. 	 Personal Communications with LMSC personnel. 
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Pioneer 	VI and V.11 
1. 	 Space Materials Handbook, 2nd ed., Supplement 2, op. cit. 

2. 	 Personal Communication with J. P. Kirkpatrick and J. Frank, NASA 
Ames Research Center, Mofiet Field, Calif. 

Mars Orbiter 

1. 	 Mariner Mars 1969 Orbiter Study, Final Report M-29-64-1, 4 Oct 1964, 
prepared by Lockheed Missiles & Space Co., Sunnyvale, Calif., under 
Contract JPL-950877. 

2. 	 "Mariner Mars Orbiter Structural Analysis, " Interdepartmental Communi­
cation, Lockheed Missiles & Space Co., Sunnyvale, Calif., 11 Aug 1964. 

Orbital Tanker 

1. 	 Orbital Tanker Design Data Study, Final Report, Vol. 11, LMSC-A748410, 
30 May 1965, prepared by Lockheed Missiles & Space Co., Sunnyvale, 
Calif., for NASA/MSFC under Contrac NAS 8-11326. 

OTES (Optical Technology Experiment System) 

1. 	 Optical Technology Experiment System (OTES), LMSC Input to Phase I 
Final Technical Report, LMSC-A820889, 1 Sep 1966, submitted by Lockheed 
Missiles & Space Co. to The Perkin-Elmer Corp. in support of Prime 
Contract NASA 8-20255 (MSFC). 

2. 	 Study for an Optical Technology Apollo Extension System, Interim Report, 
No. 8319, 15 Apr 1966, prepared by The Perkin-Elmer Corp. for 
NASA/MSFC. 

3. 	 Additional information obtained as a result of LMSC activity on, research 
Contract NAS 8-20411 (Thermal Similitude). 

Agena 

1. 	 Standard Agena Space Vehicle Model SSOI-B, Description Manual, LMSC-
A397890, 15 Oct 1967, Lockheed Missiles & Sapce Co., Sunnyvale, Calif. 

2. 	 Personal Communication with C. MacQuiddy of LMSC Agena Engineering. 

3. 	 Drawings:
 
Structure - Forward Section, No. 1393253 (LMSC)
 
Structure - Aft Section, No. 1393373 (LMSC)
 
Tube Structure - Forward Section, .No. 1395062 (LMSC)
 
Ring Segment- Forward Section Structure, No. 1395156 (LMSC)
 
Beam Assembly - 30, Aft Section, No. 1393214 (LMSC)
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Advanced Multi-Purpose Space Ek5ploration Spacecraft 

1. 	 Starlet/Starlite System, Technical Description, LMSC-A847990, 17 Apr 1967, 
Lockheed Missiles & Space Co., Sunnyvale, Calif, (LMSC Proprietary 
design). 

Surveyor 

1. 	Space Materials Handbook, 2nd ed., Supplement 2, op. cit. 

2. 	 Surveyor V, A Preliminary Report, NASA SP-163, Dec 1967, National 
Aerbnautics and Space Administration, Washington, D. C. 

3. 	Personal Communications with J. Fortenberry, J. Smith, and B. C. Jones, 
Jet Propulsion Laboratory, Pasadena, Calif. 

4. 	 Drawings: 
Surveyor Spacecraft-General Arrangement, 3025125 (Hughes Aircraft 
Company) 

'Subassembly 	 installation drawings' useful for defining details of con­
figuration: Hughes Aircraft Co. Nos. 230084-3, 230093-2, 230108, 
230126-3, 230128-3, 230135-2, 230136-1, 230167-3, 261336, 261487, 
264238, 264272, 264292, 264449-3, 276167, 276500, 285919-3, 

-286124-2, 3025733, 286405, 286582-1, 292005, 292130, 3025093, 
3025156, 3025188, 3025203, 3025262, 3025288, 3025353, 3025354. 

Mariner 

l.-	 -Space Materials Handbook, 2nd ed., Supplement 1, op. dit. 

-Voyager 	(LMSC proposed Configuration) 

1. 	 Voyager Spacecraft System Proposal, Vol. 1, 22 Feb 1965, LMSC-A733418, 
Lockheed Missiles & Space Co., Sunnyvale, Calif. 

I.x 'Space Materials Handbook, 2nded., Supplement1, op. cit.
 

2. 	Space Materials Handbook, 2nd ed., Supplement 2,op. cit. 

3.-	 J. M. Madez and R. C. Baumann, Structures for Small Scientific Satellites, 
NASA-TM-X-55285, Jul 7, 1965. 

Lunar Orbitor 
--1. Space Materials Handbook, 2nd ed., Supplement 2, op. cit. 

Ranger 
I ' Space Materials Handbook, 2nd ed., Supplement 1, op. cit. 
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ESRO II (European Space Research Organization) 
1. 	 D. M. Squires and C. R. Hume, "Structural Design of the ESRO II Solar

Astronomy Satellite," presented at the Colloque Sur Les Structures De 
Satellites, 8 Jun 1965, copies available through AIAA Technical Information 
Service. 

2. "The Design of ESRO I, TI Systems In Space: A Regular Survey of Space
Engineering Progress, 1965.
 

3. 	A. W. Lines, "Design of Spacecraft for Experiments inthe ESRO Scientific
 
Program," Journal of the Royal Aeronautical Society, Vol. 69, No. 1965,
 
pp. 759-762.
 

San Marco (Italy) 
1. 	 L. Broglio, The 	San Marco 1-A Scientific Satellite, XVI International 

S.: Astronautical Congress, Athens, Greece, 1965. 

2. 	 "The Structural Configuration of the San Marco Satellite," Sciences Et 
Industries Spatiales, 9/10, 1966. 

U. K. -3 (England) 
1. 	 J. L. Blonstein, Progress with U.K. -3, 1965, British Aircraft 

In addition to the references listed above, the following documents were found to
contain useful information on spacecraft configurations and/or materials: 

1. 	 TRW Space Log, a quarterly publication of TRW Systems Group, Redondo 
Beach, Calif., (pertinent information on the foregoing spacecraft in:
Vol. 4, N6. 3, Fall 1964; Vol. 5, No. 2, Summer 1965; Vol. 5, No. 3,
Fall 	1965; Vol. 6,No. 1,Spring 1966; Vol. 6, No. 2,Summer 1966;

'Vol. 6,No. 3, Fall 1966; Vol. 6, No. 4,Winter 1966-67; Vol. 7,No. 2,
Summer 1967; Vol. 7, No. 4, Winter 1967-68). 

2. 
Review and Evlauation of Recent Structural Development Programs, Vol. 1,
15 Aug 1966, R-ME-IT-10044, Internal Note, NASA, Marshall Space Flight 
Center. 

3. 	 Proceedings of the AIAA/ASME 8th Structur es, Structural Dyanmics, and 
-Materials Conference, Palm Springs, Calif., Mar 29-31, 1967. 

4. 	 Program 461 Spacecraft Materials Hadbook. LMSC-A327227, May 1964 
Lockheed Missiles & Space Co., Sunnyvale, Calif. 

5. 	 Proceedings of the AIAA Fifth Annual Structures and Materials Conference, 
Palm Springs, Calif., 1.-3 Apr 1964, AIAA Publication CP-8. 

6. SpaceMaterials Handbook, Second Edition, Jan 1965, edited by C. G. 
Goetzel, J. B. Rittenhouse, and J. B. Singletary, ML-TDR-64-40, Air
 
Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.
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Appendix B
 

THERMOPHYSICAL PROPERTIES
 

The table and figures of this appendix contain information on the thermophysical 

properties of materials in current use on spacecraft. The information may also 

be used to assist in initiating design of a thermal model. 

The data represent best values available at the present time and are not intended 

as an accurate value for a specific sample. Considerable differences in properties 

are frequently found on the literature surveyed requiring judgment and averaging 

to be used to establish values for the following compilation. Therefore, the reader 

is likely to find numerical differences between the quoted values and those measured 

for a specific sample. However, the data are considered an excellent indication of 

variations in p and Cp for various metal alloys, insulations, 'and composites, and 

of considerable aid for initiation of model design. 

Following the presentation of data in numerical and graphical form is a listing of 

references used for preparation of this appendix. 
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Table B-i 
THERMOPHYSICAL PROPERTIES OF TYPICAL SPACECRAFT AND
 

MODELING MATERIALS
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Table B-i (Cont.) 

DSm/cmMaterial l 
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Table B-2 

EFFECTIVE THERMAL CONDUCTIVITY OF MULTILAYER INSULATION AS A FUNCTION 

OF LAYER DENSITY AND BOUNDARY TEMPERATURES 

= 

rn 
0= 3t 

uhrit~ayer Insulation DesnsiltionDensitI on 

10 

Keff (W/cnr IKX 10) through Multilayer 

Layer Density (Radiation Shields/t.) 

30 so 70 90 110 130 150 

Uncompressed 

(g/cm ) 

Uncompressed 
Thickness 
(cm)l 

Shields Spacers 

m 
a 
-' 

-: > 

- 0 
O 0 

>' 

I. 
Siagle-auminized crinkled Mylar 
(0.25 mi NRC-2), Mylar forms 
integral spacer (300/78*K) 
Same as above (295/21 ° 

K) 
Double-alumnized Mylar (0.25 mil) 
with Tissuglas (0.6 mil thick)
spacers (300/78"K) 

-

-

-

0.056 

-

0.052 

0.029 

0.045 

'0.060 

0.052 

0.081 

0.025 

0.005 

0.101 

0.026 

0.080 

0.125 

0.030 

0.152 

0.037 

0.0168 

0.0376 

0.56 

0.33 

10. 

20 

10 

Integral 

Integral 

11 

0 -H 

00 
= ' : 

P2 
o" (} 

n 
'> 

x 
> 

7"(0.25 
-m -

o > 
0 0 

00Ahi-nied 

0 
zat 

z-< 

' 

Double-a!umimzcd Mylar (0.25 ri) -

with Dexiglas (2.8 mil thick) 
spacers (300/78*K)
Same as above with bu~ttns on 
S-in. centers (278/77'K) 

Same as above with buttons on 
8-in centers (278/21K) 
Crinkled double-alun mzed Mylar r 

ril) with Tissu.glas 
(0.6 mad) spacers (300/786K) 
Crinkled double-alusminized Mylar 
(0 15 mil) with Tissuglas 
(0.6 rod)spacers (300/78K)

Poly3mzde Fin, with0 1 
Dcxiglas (2 8 call thick) 
spacer (600/273*K) 

alot and cold boundary temperatres given as 

-

0.137 

0.062 

0.82 

(=D:,oc°K) 

0.055 

" . 

0.085 

0.043 

0:37 

0.048 0.050 0.055 0.064 

0. 057 (120 rad. shields/In.) 

0. 045 (120 rMd. shields/in.) 

0.070 0.068 0.073 0.033 

0.038 0.041 0.054 -

0.97 1.09 1.23 1.39. 

-

0.099 

-

-

0.048 

0.0144 

0.0128 

0.069 

. 

0.509 

,0.89 

1.018 

1.27 

10 

40, 

40 

10 

10 

10 

II 

.40 

40 

11 

11 

11 



Table B-3 

VALUES OF p C , pGpK, and p Cp/K FOR VARIOUS 

SPACECRAFT MATERIALS 

Material 

Temp = 295°K 

-. P p 
J/gm-oK 

Temp = 295°K 
p Cp/K 

21 
cm K2 

Temp = 295 0 K 
P Cp/K 

sec/cm2 

Aluminum 
1100-0 2.4932 5.5349 .1.1231 
1100-H14 2.4932 5.4850 1.1333 
1100-HI8 2.4932 . 5.4352 1.1437 

2014-TO 2.6880 5.1878 1.3927 
2014-T4 2.6880 3.2525 2.2215 

2014-T6 2.6880 4.1395 1.7455 
2020-TO 
2020-T4-T6 
2024-TO 2.5576 4.9362 1.3252 
2024-T3-T4 2.5576 3.0947 2.1137 
2219-TO 
2219-T6 " " 
2219-T87 2.7168 3.3960 2.1734 

-3003-0-H18 2.5208 4.4366 1.4323 
'5052-T0-H32-H34: 2.4656 3. 4025 1w 5158 
6061-TO 2.5920 4.4323 1.5158 
6061-T4-T6 2.5920 4.0176 1.6723 
7075-TO 2.6880 4.5965 1.5719 

7075-76-7651 2.6880 3.4944 2.0677 
7079-T6-T651 2.640 3.300 2.1120 

7178-T6-T651 2.7168 3.3960 2.1734 
356-T6 2.546 3.8445 1.6861 

Magnesium 
99.9+% pure i.7922 2.7600 1.1638 
AZ31B-0J12Y 1. 77 1.3452 2.3289 
AZ31B-F 1.7877 1.3587 2.3522 
AZ80-T5 1.890 0.9488 3.7649 
HK31A-0 1.8437 1.9543 1.7393 
HK31A-H24 1.8437 2.1018 1.6173 

1.3642HM21A-T8 1.869 2.5605 
HM31A-T5 1.890 1.9845 1.8000 
ZK60A-F 1.922 2.2487 1.6427 
ZK60A-T5 1.922 2.3256 1.5884 

ZK62A-T5 1.9055 2.077 1.7482 
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Table B-3 (Cont.)
 

Temp = 295°K Temp - 295°K Temp = 295"K
 
Material 

Mag-Lithium 
LA141A-T7 

Stainless Steel 
A-286 
304 
321 

347 

410 

18-8 

Beryllium 
Comm. Pure 
Lockalloy 
Be-Cu . 

Titanium 
Comm. Pure 
6 Al-4V-0 
5A1-2.5 Sn 
13 V-I Cr- 3 Al 

Optical Materials 
7940 F.S. 
Fused Quartz 
Pyrex 


Nylon 

Teflon (PTFE) 

Teflon (FEP) 

Plexiglas 


Fiberglass
 
181 glass/selection 

YM31A/DER Eposy 


Mo-015 Ti 

Alloy 510 (Phospher 


(Bronze)
 

Pure Aluminum 


p Op p Cp/K p Cp/K 
J/°gm-k cm 4 oK2 1 

1.943 0.8549 4.4159 

3.3306 0.7894 14. 0532 
4.025 0.6802 23.8166 
3.945 0.5286 29,4403 
4.025 0.648 25.0000 
3.565 0.980. 12.9636 
3.623 0.576 22,7862 

3.5154 6.3980 1; 9315 
4.4091 7.4514 2.6089 

-3.4860 3.9392 •3.0850 

2.3452 0.3987 13.7953 
2.3691 0. 1722 32. 5873 
2. 5422 0.2135 30.2643 
2.6190 0.1807 37. 9565 

1.606 0. 02136 120.75 
1.518 0.02095 110.00 
1.930 0.02181 170.79 

1.767 0.00636 490.83 
2.2365 0.00380 1315.59 
2.4921 0.00523 1186.71 
1.534 0.00230 1022.67 

1.9474 0.00253 1498.00 
1.563 0.00719 339.78 

2.661 3.180 2.2268 
3.336 2.302 4.8348 

2.425 4.947 1.1887 
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Table B-3 (Cont.) 

Material. 
Temp =- 295K 

P CP 
Temp 295K 

P C1 /K 
Temp = 295 0 K 

p Cp/K1 

j/gm 0K cm 4 -K 2 sec/c-

Pure Copper 3.428 13.232 0.8881 
95% Cu 5 Al 
(Alum Bronze) 

75 Cu, 25 Sn(Bronze) 2.970 0.772 11.423 

85 Cu, 9 Sn, 6 Zn 3.350 2.030 5.5281 
(RedBrass) -

Molybdenum 2.560 3.098 2.1157 

Pure Nickel 3.969 3.572 4.410 

Tungsten 2.586 4.215 1.5865 

Silk 0.080 2.91x10 -5 174.5 

Cotton 0.103 6.077x10 - 5 

Honeycomb 
ASTEC Mat. A 
Alum/Alum 1/4" th 
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Fig. B-40 Specific HIeat of Mylar
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Fig. B-4Al Logarithmib Dependence of thle Thermal Conductivities of Vari­

ous Aluminum Alloys 
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Fig. B-42 	 Logarithmic Dependence of the Thermal Con­
ductivities of Various Magnesium Alloys 
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Fig. B-43 	 Logarithmic Dependence of the Thermal Conductivities of Stain­
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