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David P. Sterrv
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Goddard Space Flight Center
Greenbelt, Maryland 20771

Abs tract

Methods of classical perturbation theory developad for small
perturbations are extended to slowly (or adiabatically) perturbed
systems, with slow dependence either on time or on dynamical vari-
ables. Specifically, the extensicn is performed for the canonical
perturbation theory of Poincare and Von Zeipel, for the Krylov-
Bogoliubov-Kruskal method of eliminating angle variables, for the
general form of direct near-identity canonical transformations and
for two of its realizations, based on the "conventional" generating
function and on the Lie transform. In addition, the concepts of slow
(or adiabatic) perturbationsand of an implicit "small parameter" &
are clarified, as is the distinction between two al‘ernative defi-
nitions of adiabatic invariance, and as an example the solution of
the slowly perturbed harmonic oscillator up to and including O( ES)

is derived.
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INTRODUCTION

Perhaps the most widely studied perturbation problem in classical mechanics
is that of perturbad periodic motion. If a motion is given that is soluble and
periodic, the problem may be concisely defined as the derivation of an approxi-

mate solution for a motion that is slightly different.

This "slight change" applied to the motion is termed the perturbation and
(or "adiabatic")
it usuaily belongs to one of two types: "small" perturbations and "slow"Aonwa.
The difference between the two is best explained by assuming that the motion can
be described by a Hamiltonian, although this condition is not essentiel. In a

slightly perturbed motion the Hamiltonian may then be written
H = H(O) + E,H(l) + £2H(2) + ees (1)

where £ < 1 is a suwall numerical parameter characterizing the magnitude

of the perturbation and where the limit & -» O corresponds to the unper-
turbed motion. A typical example yuld be the motion of a planet around the

sun as perturbed by the planet Jupiter. In that case H(O) describes ‘he
planet's Keplerian motion in the sun's gravity field while H(l) describes the
lowest order of the perturbation induced by Jupiter. The zero-order Hamiltonian

E.H(l) is proportional

is then proportional to the solar mass mg while
to the mass mj of Jupiter: the ratio of the two terms will be of the order
(mj/ms) (about 10-3) and this dimensionless quantity provides a natural

choice for £ .

To illustrate a slow perturbation, consider a Hamiltonian that is slowly

dependent on the time t (slow dependence may also involve canonical variables):

H = H(p, q, t) (2)
. T e
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Then the dependence is said to be glow if the terws produced by the opera-
tion ?/Dt are by an order in £ emaller than the terms from which they
are derived, eo.g.

SH/t = 0(€ H) (3)

The preceding equation is not quite precise, since it implies that & hae

the dimension of t * . In fact, one always requires some natural time period

T against which the rapidity of the time variation may be gauged, this usuaily
being the period of the unperturbed system. With this taken into account, (3)

baecomes
DE/ Yt = 0(€H/T) (4)

and £ is clearly dimensionless.

In either type of problem there generally exists a steadily increasing
"angle variable" appear? ‘g in the argument of sines and cosines, describing
the nearly-periodic part of the motion. 0.2 way of "solving" the problem then
involvus finding a transformation to new variables, such that the angle
variable is eliminated from the equations of motion. If the system also
possesses a Hamiltonian H , the absence of the angle variable from H implies
that its conjugate "astion variable" is a constant of the motion, and this
eliminates an edditional variable from consideration. In slowly perturbed

(1). In slightly perturbed
systems, no generally accepted name exists (G. Contopoulos, who investigated

(2)

systems, such constants are called adiabatic invarients

the relation between the two types of constants has termed them "third
integrals") but they are well-known in celestial mechanics and may be derived

in a variety of ways.

|
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The purpose of this work is to show how the standard methods of celestial
mechanics, designed to handle small perturbations, may be modified to deal
with slow perturration and lead to the derivation of addabatic invariants.
Two methods will be considered here: the Poincaré-Von Zeipel method(s)"(7)
for solving the Hamilton-Jacobi equation and the Krylov-Bogoliubov procedure(7)-(12)
(or the rulated method of Kruskal). In addition, it will be shown that the -
direct form of near-~identity canonical transformations can also be adapted

to cases in which some variables are slow.
EXPLICIT AND IMPLICIT &

In the example of perturbed planetary motion the small parameter £ can be
given an explicit numerical value. In problems of slowly perturbed motion this
is often difficult to do and une may then speak of an implicit £ .

As the archtype of a slowly perturbed system, consider the "pulled-up

(13)(14)3 a simple pendulum is suspended from a hole in the ceiling

pendulum. "
and its suspension string is pulled up (or released) at a slow, though not
necessarily constant rate. Obviously, the angular froquencyfbf the pendulum
will vary and, since work is being done against the centrifugal force of the
oscillation, so will its energy E . However, as long as the rate at which
the string is withdrawn is sufficiently slow (and does not resonate with the
oscillation of the pendulum) an adiabatic invariant may ve found, equaling
E/©o 4in the lowest order.

Two points should be noted here. First, the perturbation need not be
small: by the time the withdrawal is complete, the length of the pendulum
may well have changed by a large factor. Secondly, while one can devise an

explicit £ for the problem — e.g. £ = wT , where T is the time in

e e - - ) S et i R > — .r ,,..*‘,i,. T_,_ﬁ
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which the length of the pendulum is rwduced to 1/e of its value, at the
given (inatanta.nooua) rate -- its value novhere antars the calculation.

A more complicated example is provided by the motion of a charged
particle in a slightly inhomogeneous magnetic field B . Here "slightly"
means that the derivatives 0 Bi/ x j are all of order £ smaller than
the components of the field intensity and its magnitude B . Thus the slow-
ness is in the dependence on spatial coordinates and a scale-length for

gauging it is provided by the gyratjon radius ® , glving, in analogy to

eq. (4) :
”bni/‘o::a. = O0(eB/?) (5)

Again, the value of ¢ does not explicitely enter, except through the
requirement that for the perturbation approach (known as the guiding center

theory) to be valid ths problem must satisfy "Alfven's criterion"
( $/8) (V8,/7 ) &1

An implicit € may be "made visiblo" by the following device. Consider
a Hamiltonian with slow time dependence: one may artificially introduce &

into its time derivative by writing

DE/ot = € DH/V(EL) (6)
Since
VE/DEt = 0(1)

this notation clearly displays the fact that the term is of order € ,

and for this reason the Hamiltonian (2) is often written

H = H(g. s £t)

K="k W

- 1 T TR I T T
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A similar device may be used when ther» exists a slow dependence on
dynamical variables; this can be quite useful in arranging the terms
according to their orders in & , but two things must be remembered. First,
because of the way in which £ is ii‘roduced, expressions of the k-th
order which have a factor &;k standing in front of them, will also have
"hidden inside" a factor ¢ X . Secondly, because a definite valus of & .
is never stated, such factors must be cancelled out before the final
result is obtained.

An example may be useful here. Suppose a one-dimensional motiun is given
with a Hemiltonian that has A slow dependence on t , and it is also given
that if this dependence is "frozen" (limit £ = O ) the motion is periodic.

The solution of such a motion usually begins with a canonical transformation
to new variambles (P, Q) which are tns action-angle variables of the unpertur-
bed motion. If S is the generating function of this transformation, which

in general is also slowly dependent on t , then the new Hamiltonian H' is

H'(P, Q) = H + 705/t

i

H + € 08/ (t) (7)

w0, (D)

In the transformed Hamiltonian, the first order correction H'(l) has a
factor & preceding i4, but this factor is artificial and is balanced by a
factor £1 that is "hidden inside" the term, as is evident from the deri-
vation. In practice, these factors must be cancelled before, say, the canonical

equations of motion are used.
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Consider a canonical system with 2N variables which has a slow dependence

on time. We assume that the Hamiltonian H may he expanded in powars of &
k (k
H = Z, e* ut )(g. q, t) (8)

We furthar ass.uwe that the Hamilton-Jucobi equation for &£ -- O has been
solved and that the transformation derived by it has already been applied,

deriving as action-angle variables for the unperturbed motion

(J, ﬂ‘) = (Plv ‘11)

and giving
H(O) = Jw/em (9)

with W= td(t) the slowly varying angular velocity. In the limit ¢ — O,
evidently, W is a constant and so are all the canonical variables, except

for . which is then linear in time.

To "solve" the motion we now seek a near-identity canonical transformation

to new variables (P, Q) , with

(J’o D.-’) = (Pl’ Ql)

generated by

o at) = ZPi Q + Z, eX ok g, e t) (0

such that the new Hamiltonian H™ does not depend on % . This is

somewhat similar to, but simpler than, an approach adwocated by Gardner(IS)

and investigated by Contopoulos(z), in which the same result is obtained by
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a succession of canonical transformations, each of which pushes the elimina-

tion of L* from 4" one order higher.

If H" 1s expanded in a menner similar to (8) and the time derivative

is expressed as in (7), one obtains

> e 8, g, - ) i, q ) 4

Dy X (2d®1)/5 et ) (11)

This equation contains 4N canonical variables, but half of them can be

eliminated by means of the transfermation equations
B, = B + Z g” (’bcr(m)/’bqi) (12)

Q = 9 + Z;Em(’DW(m)/ﬁPi) (13)

To facilitate the elimination it is best to follow a method introduced by
Muaon(7) and use expansion operators<12) ( » denctes operation, /P

etc. are gradient-type operators):

K, g, ) = w) (p, q+ Z&m 25®)/3p, ¢ )
(14)

- e EX w‘“/*ag)-n/aq)} . B"Np, q, )
n=1 - -

= Z:u e® plm), H’(k)(‘_g. q, t)
— = 4

where




T(o) = 1

1) Z ('acr(l)/‘api)(?/’bqi)
1

o2 ) ’30(2)/’0?1)(’0/‘0%) + o

i

+ ¥ Z, ('acr(l)/ﬁPi)(’b(f(l)/’bl",)(’bz/ﬁqﬁqj)

i, )
etc. Similarly
E(p, q, t) = D emgtn) gl q t) (16)
0
where
s .

(1) (1)
S = E ( ) 0/0P,)
i DT 1 /0 5 (17)
L/__J
i

(B ra) (0 /08 4

v1 3 (a0 g) (25 2q (2% 08))

1,J

and so forth, Substituting all this in (11) and collecting terms associated

with g,k gives

k k
Z T(m) » H'(k-m) = Zl S(n) » H(k-m) + QG'(k-l)/’D(E,t)
n=0 m=0

(18)

'E



The terms with m=O simply equal H'(k) and B(k) and will be taken
outside the summation. The terms wit: m=k also have simple form, for in

qeneral

stk) Z(’ba(k)/’bqi)(’?/al’i) + 5% (19)

vhere N(k) contains only terms with at least two differentiations.

Sukatituting (9) then gives

s 50 . (wen) a6 pa (20)
Because the transformation reduces vo the identity transformation in the

limit of vanishing € , u"(o) equals u(o) and due to (9) it satisfies

T(k)* H'(o) = 0

(k) (0)

since T operators involve only differentiation by the gq4 , which H

does riot contain. One then obtains the basic recursion relation

(0/2n) 2o ®pa - n"(“)(z. q t) = /\(k)(?-' e t) ()

with
k-1
A ) pm), grlen)_ g(n), H(k"‘)} S 2 TT
m=1 (22)

depending only on orders lower than the k-th. If f1. enters only as an angle
variable with perbod unity, any function F(B, q, t) may be resclved into

an ''averaged' part

: - e it Lt e o e e e e o LA T T W&,T_.
| R | : . .
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1
<F> ) S‘ F daN (23)
o

and a "purvly pariodic" part with zero average

(F) = r - <P

per

The derivative of a purely periodic function is also purely periodic

and therefore, so 8

2020 - 2pn sl <cr(“)>§ (24 )

since the contribution of <<r(k’> vanishes. On the other hand, (k)

does not depend on {1 , 8o one gets the recursive relations
) . AW (25)

apa . @) (NS (26)

Once these are solved, the calculation may be advanced to the next order.

EXAMPLE 3 THE HARMONIC OSCILLATOR (26)

Thne Hamiltonian H" of a harmonic oscilla tor with a slowly time-dependent

angular velocity o(t) is
B = (1/2n) [PZ + 2il Qzl (27)

If one "freezes" the time dependence, one can solve the Hamilton-Jacobi

equation and derive a canonical transformation to action-angle variables
(J,f1 ), generated by

i —— — o — q




V o= J{(Jun/n) - w22l }* aQ (28)

Following this transformation, the new Hamiltonian H becomes

H = Jw/en  + EJ(Q'/4nW) sin4nsL) (29)

where the dash henceforth signifies the operation D/0(€t) . Let 0 of
(10) generate a transformation to (J%, N.*) such that all orders B'(k)
of the new Hamiltonian are independent of (L * . This, combined with the
fact that in the presunt case the only differentiation performed by T(m)
of (18) 48 D/0SL , allows all such operators to be ignored except
for T(o).

A further simplification is obtained by noting that H contains only
two orders, both linear in J s using the argument of (19) thie gives, for

che terms of (18) depending on H

2, s, glem) g6, 500 gle2), 5(2)
(30)

- (os/zn)’bq(k)/bn + (’30'(““1)/'3:1_)(»'/4nw) sin (42162)

In vhat follows, we will for conciseness write J instead of J* » restoring

the superscript — if necessary -—- only at the end. In analogy with (21)

we then obtain as the basic recursion relation, Ifor k > 1

(w/2n)20 ®jmn) - gk
(31)

= - % a0 ) (0/ano) sin(ann) - (gD
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Using (18) directly for k=0 , one simply gets the equality of H(o) and

H’(o) , while for k=1 this yields

(w/en) 2aWha « 1Y o L5 (0/4na) sin (4a0)  (32)
from which

) L (33)

0'(1) - J(uJ'/B:JTcOZ) cos (4n1) (34)

Higher orders, derived by the use of (31) , are

g2 (3/167) (w")%/w?

c@ L L (em) (w'/w?) etn (8nn) - \(35)
- (J/16Tw) (W'/w?)" sin (479)

#3) . o

B o (/e /w?’ s (1200)

- (J/1287w ) [(u'/m2)2J cos (8N1N.) + (J/lZBH)(w'/wz)gcos (47181)

- (3/32710) [(w'/wa)'/w]’ cos (4nn) (36)

Note that any term in an O(Elk) expression cortains the dash operator exactly

k times, corresponding to the factor €% whidden inside."

g
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At this stage egqs. (12) and (13) could be used to express (J, NL") 1in
terms of (J%, Q1 ), up to O &3). In fact, expressing the result in this
manner, in terus of "mixed variables", is not too useful, and it pays to

"invert" the result and express (J*, L.*) in temms of (J,{L) , or vice

versa. The shortest way to achieve this is by means of the direct trapsformation

tochniquo( 17) . If

y = (pa)

are the "old" variables and

2 = (_P_o 9.\

are the "new" ones, and if the relation between the two sets has the"direct"

ferm

2 =y o+ 2 kg (37)

- k=1 =

then for this to be a canonical transformation, g(k) must have the form

S(k) = gyl o gl (38)

where V 1s a gradient operateor in "conjugate phase space"

(Qv "2)

y

the X(k) are arbitrary functions and g(k) are prescribed expressions
irvolving lower orders. In particular, if (37) is the "direct" form of

the transformation generated by (10), one may choose

x(k)(g) = - O'(k)(g. ) = - G'(k)(g) (39)

(i.e. P 1is everywhere replaced by P ). The corresponding _i;(k) is
k=1

_f_(k) = - Z U(m). Vd'(k—m)(l) (40)
m=1

' . [ — rr— s v e ot et Ty




with U(m) expansion operators depending only on the momentum-like com-

ponents 3_1('") of S(m)

7 () o 5§m). tg'“), 0y ¢.0 0)

with
D L W

-V
(41)

@ o q@g %g(l)a(l):vv

-—

and so on.

Of particular interest is the derivation of the adiabatic invariant

2, = I .-.Z ¥ (k) (42)

which will now be outlined.

To obtain Q'(k) (z) one simply uses the expressions (34)-(3%6)
without restoring the asterisk superscript (as was originally planned).
To derive (41), note that only one component of canonical momentum enters

the calculation, 2o that

L) R O N YA X))
(43)

@) 2) (/P3) + % (J"(l))2 ~%/23°

The second-derivative terms may be safely ignored, since all orders of

¢(k) used here are found to be linear in J . Finally, the components

—

of the conjugate gradient V contributing to g; are simply

~a®ry - Ac¥0a
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For the first order, ;fl) vanishes aad one obtains

L - aePha

= 7 (w'/2u?) sin (4001) (44)

The next terms are

22 L /8) (w/ed® + (3/40) (0'/wd) cos (47150)
(45)

J’(3) = (J/16) ((Q'/w2)3 sin (4nsL) - (J/8w) [((A'/wz)'/wjlsin(m{l)

THE _"OLD" NOTION OF ADIABATIC INVARIANCE

In some texts of mechanica(’o and in the older literature, the definition
of adiabatic invariance differs somewhat from the one given here. The alter-
native definition is usually applied to one-dimensional systems (though

generalizations for several dimensions exist) and is as follows:

"Given a slowly perturbed periodic motion, consider the action

integral .
J =§pdq (46)

evaluated over one period of the unperturbed system. As the
system is perturbed, an "instantaneous" J may be evaluated

at any time by "freezing" slowly varying quantities. Then J

has the property of adiabatic invarience: if the system undergoes
a finite perturbation -- e.g., a finite change of the Hamiltonian

from H1 to H, -- the corresponding change in J may be made

2
arbitrarily small by stretching out the perturbation over a

sufficiently long time."

TR T - o . - ERTNCRI IR E % v S ot I
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The action variable J of (46) is the same as the zero-order action
variable with which the previously-developed perturbation scheme begins,
tut its "adiabatic invariance'" difrers in two respects from what was
earlier defined as adiabatic invariance. First, there exists here no
hierarchy of invariants each of which is conserved to some specified order
and secondly, the definiticn concerns itself with the cumulative change
in J over a long period in time. In fact, this property does not follow
automatically from the definition of adiabatic invariance used marlier.

It is nevertheless an extremely useful property, since it allows one to
derive, using only the unperturbed variables, a quantity with long-term

invariance properties, without even specif the perturbation.

Since J is the zero-order part of J* , we may use (12) to obtain

(compare also eq. 44)

¥ = 7 - e,’bo"(l)/’bﬂ + 0o(ed)
(47)
= J + EJ’(]') + 0(62)

As in (12), G(I) means (S(l)(J', S, t) ; since J" is a constant
of the motion, only {1 and the slow direct dependence on t contribute

(1)

to the variation of the first order correction J*'"/, The basic reason
for the "long-term adiabatic invariance" of J, stated earlier, is that

by the arguments of eq. (24) J*(l) is purely periodic in L , and there-
fore "nearly" purely periodic in t . Over long time intervals, its vari-
ation is therefore bounded, causing the long-term conservation of J to

be better than might otherwise be expected.




- m -
To demonstrate this, expand (47) to

Ioa o - et a, ) o+ o(e?)
(48)

= o - eV a0 - €2 25 Y (er) 4.+ 0(£3)

Let a time T = O 8'1) pass. The first term on the right is conserved,
while the second one will vary only through the variation of . . Since

the dependence of this term on {1 is periodic, the resulting contribution
is bounded and due to the factor preceding it, of order £ . The next term is
also O(€£) and the same holds for higher terms in tne expansion of the
slow direct time dependence of J'(l) . The O( 82) terms may contribute to
dJ/dt a term of form €2~V , but its contribution to the total change

of J will again be of order £ :

7
E,ZJ‘V it = o(g’r) = o(e)
0

Hence the long-term variation of J is 0O(E).
The variation of other dynamical quantities, on the other hand, will

be finite. For instance, for H

p T
AE = S(dﬂ/dt) dt = f(mn/%t) dt
0 0 (49)

= T (/D) =  (e7) (/L))

aver. aver
and each factor here is O(1). Thus by making £ arbitrarily small, but keeping
T = 0f E,-l), the variation of J may be made as small as is desired while

that of H remains finite.
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THE POINCARE -~ VON ZEIPEL METHOD FOR SLOW DEPENDENCE
) (¢) Vv

Let a perturbed periodic motion be given, represented by a Hamiltonian
k  (k
1 o= 3 ¥, g) (50)

with (pl' ql) the action-angle variables {J, N.) of the unperturbed motion;
8ince we have already derived methods dealing with slow time dependence, we

will simplify matters by not including such a dependence here. The motion

(0) alone is assumed to be periodic and soluble: we shall

(0)

represented by H

Lot require at this stage that H has the form (9), but we note that it

wust be independent of {1l , since J is a constant of the unperturbed motion.
Instead, we shall assume that the canonical variables Yy fall into

two groups: "normal" wvariables for which ’B/’b Yy maintains the same order

in & and "slow" ones for which it raises the order by one level. It is

useful to define parameters that distinguish between the two groups: let Yi

equal O or 1 depending on whether Q is normal c¢r slow, and let 9 i

play the same role for Py - One can then define

Qy = 5&"-1 (51)
oy = a?‘pi (52)

so that (for example) H/ MR 4 &nd QHNH TP 4 are always of the same
order as H itself.
As before, let a generating function

T = ) rgy + 3 ec®e o (53)
i k=1

.,“ ) ‘ . . Lt " e ) . s s ad i ™ STy e a8 ] ”"i“"’"‘,, . - J
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define a near-identity transformution to a new
canonical set (_E_’_. g) , with the new Hamiltonian B independent of the

transformed angle variable (. * ,\a term with k= 0 could be included,
but since it may not depend on L it is not useful here). Again, the basic

equation is ,
H*(B, @) =  H(p, 3) (54)

and this again is expressed in lowers of € and expressed solely in terms

of (_Ig, q). Since p no longer appears, it helps to redefine ’TPi as

P, = £ B (55)

and this will be the definition used in the remainder of thie section. Ir

analogy with (14) one finds

H'(k>(§. ) = exp {Z__\iﬁm ; (7’("(“1)/D Pi)(/b/’D qi)} . H’(k)(z- C_1_)
m=1

=  exp {Z &m-o-SH-T; (QO'(m)/’D‘IPi)('f)/DQi)} . H’(k)(g. q)

i,m

oxp Z;J Em Zi‘ (DU(m- 8i- tu)/’aﬂ)i)(fb/,a Qi) L H'(k)(_li. g)

= Z am "‘m)ﬁ H*(k) (56)
m=0

with V(m) suitable operators and J () vanishing for all non-positive

values of m . Expanding the exponential gives




-?2] -

o o
(57)

v ) (2at= %= )/ap ) (0 /pw,)
i

and so forth; because these operators are expressed solely in terms of P {

and QW g their action on any function maintains the ordering in powers

of £,
Similarly
x“‘)(g. qg) = Z‘ el LV n(“)(g, q) (58)
n=0
with
RO L
(59)
R L ) (actE-Rpg 0/om,)

i

and so forth. Substituting these opsrators and collecting terms associated

with €% then gives, in analogy with (18)

k
Z‘J {v(“‘)f prlen) _ gla), n(k"“‘)} = 0 (60)
w0

Again, the terms with m=0O and m=k are separated. For the latter verms

one gets, in analogy with (19)

E X.. X




WL 3 (agle S ap y0ne,) + 8 o
i 61

R . ) (el RS ng)op) + w0
: .

k)

vith :4(1‘) and N( involving only lower orders. By tsking k=0 in (€J)

one again finds
EO(O) - 8(0) (62)

so that (60) becomes, for the genersl case

H'(k) + }_;J {(10'(1"' 5 - K")/’bﬂ’i)(’b H(o)/’Dﬁi) -

(63)
- (fbcr(k- 8‘.-'6‘» )/DQi)(/bH(O)/»aﬂ)i) } o G(k)
where
k-1
k) o gk, Z{R(m)’ glem) _ )y H*(k-m)} + 92 y(k)y, 40
m=1l (64)

involves only given furctions and lower orders. For every k 8 relation
of this type is obtained, constituting a k-th order recursion formula for
the derivation of H*¥) ama g (),
Now the action-angle variables associated with the zero-order periodicity

(and used here in "mixed" form)

(J*v n—) = (Pl' ql)
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are assumed to be "normal", so that the left-hand side of (63) will include

a tem
(ra® )20/ 5%
1 ok o
appears nowhere else, the equation assumes the formA(Zl) and

is solved in the same manner.

On the other hand, if (T(k) appears anywhere else in (63), it may
not be possible to derive it, for the equation then becomes a partial
differential equation for c‘k) . To prevent this from happening, it
is required that for all (’1' qi) appearing in H(o) other than the

action-angle pair
By + ¥y > 1 (65)

Hence the recursion can be carried out if:

(1) H(o) has normal dependence on p, but does not depend on g,

(2) H(O) may depend on any "slow" variable.

(3) H(o) may depend on any 'normal" variable, provided its
canonical conjugate is "slow".

Furthermore,it may be shown by extending the present calculation that

(4) H wmay include a term H(—l) of order g"q', provided it depends

only on slow variables having slow conjugates. Such terms are the»

transformed intact to the new Hamiltonian.

As an example, the Hamiltonian of a charged particle in a time-independent
electromagnetic field , in the regime of guiding-center motion, may

be hrought to the form (15)(28)

o — : . - - T T a1 B




H = p22/2m + plw/ZJT + 5-1043(0) + O(E) (66)

Here (pl. ql) are canonical variables associated with the rapid gyration,
(p2. qz) represent the motion along field lines and (ps. q3) describe

the identity of the guiding field line, which changes slowly with time

(1n the references, subscripts 1 and 3 have reversed meanings); the
variables (pl. Q) pz) are "normal" whereas the remaining ones are "slow".
Furthermore, the gyration frequency w and the lowest order ¢ (0) of
the electric potential are both funcsions of slow variables ornly. The last
term is of order E,—l. since its derivatives are proportional to the

of the
comporients of the lowest orderAelectric field E, which are of order

unity.

Evidently H meets all the previously stated conditions except for one:
if ¢)(O) contains g, , condition (4) 1is violated, since p, 1is not
slow. One therefore must impose an additional requirement that ’EQS(O) /D q,
vanishes: this reduces to the well-known restriction in guiding center
theory that the electric field may have no zero-order component parallel

to the magnetic field.

DIRECT CANONICAL TRANSFORMATIONS WITH SLOW VARIABLES

o (k)

The generating fwiction gives the transformation equations
as in (12)-(13), in "mixed" form. To bring them to the "direct" form (37)
it is useful to generalize (38) for cases in which slow variables are

present, and this wiil now be done.

e T
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Let

y = (pq)
be a canonical set and

_5:' = (%o “P-)

(17)

be its conjugate . One may now define an index r

i equaling O or 1
depending on whether ¥y is "normal" or "slow" , and an index A i which
has a similar relation to i’ri . With this notation it is possible to define

vectors Y and Y satisfying relations similar to (51) and (52)

I, = gfy, (68)

As with quantities defined in (51) and (52), /9/Y, and /Y, are

i
always 0(1).
We now seek the condition for a near-identity transformation (37) to

be canonical. Actually, in what follows the recursion may still be carried out

even if the transformation is not a near-identity one and §§O)

terms are
included (setisfying appropriate conditions) but we shall not develop this

possibility here. One then rinds, as a condition for canonical behavior




[5'1' YJ] = ['zi' zj]

o [y » D )+ Demel™]

k-1

(69)

ARSI 1/ AR A R LM el

m=1l

Expressing derivatives in terms of Y and _Y_ glves

[ab] = ). -7 )vARy)

= )T (AT ) v/Y) (70)

8

In particular

AR £% (2e/71)) (71)
Thus

o = Y& RPAT) - gt P
k=1

k-1 ~
+ Z: z£k+As+|; Z (/ag-j(.m)/,a Ts)(/bggk-m)/bYs)}
8 m=1

Dividing by g2 43

(72)

}




vzt

-
k= A .
o - }: ic (22¥/21) - g%zt .

k;-Ai+ Aj-t-
\73)
k-1
N R T (foﬁ"/ﬂ_)(”b;g“’/n,)}
8 m=1

It is useful at this point to redefine k for each term so that all powers

of & become gk and also to replace m by

M o= m- A (74)

Because the exponent of £ differs for each term in (73), the new summation
over k will begin at a different value for each term; this summation limit
may, however, be uniformly set equal to 1 if it is assumed that Eﬁ“)

vanishes for non-positive values of u . With these changes, (73) glves

0o = Zg‘ (3R T) - (BFAIpT) s

k=1
(75)
k-4 -1
v Dyl Tyl T bi by )
M=1- A 8

i

This suggests the introduction of new "staggered" vectors

(k+A'L)

}(k) = T (76)

3

¥ r“‘"‘““‘x



i.e.

K
§) = Qik) if A, =0

i
(77)

i“) - i"*l) it A, =1

It 48 also useful (in analogy to what was done *n ref. 17) to introduce

a curl operator in I sapace. With this notation (75) may be rewritten as

(Ty7 39,
(78)

K~-1- rs- AB+ A.

J
- ). ) (2 éi“)/a T )23 B -bday)
8 M=1

(k)

This equation may in principle be used to derive } recursiveliy,
but this turns out to be a rather inconvenient approac;. It is more
useful in determining the degree of arbitrariness associated with a
near-identity canonical transformation of the form (37). Let two such
transformations be given, characterized by "staggered' vectors }(m)
and !_(m) w.ich are identical for orders up to and including #:he.(k-l).
For the k-th order one finds that the right-hard side of (78), which

depends only on lower orders, is identical for both expansions, giving

Vy X (’é(k) - g(k)) = 0 (79)

o~
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from which
}(k) - _x_(k) . VY X(k) (80)

Thue the arbitrariness in specifying the canonical transformation at each

(k)
&

level of is contained in the gradient in Y space of an arbitrary

scalar 'ka). The general form of ‘bﬂk) for a canonical transformation

may be written, in analogy with (38)

}(k) - ‘V‘YX(R) + F.(k) (81)

where '_Fk) is a vactor involving orders of '5§m) lower than the k-th
and gongtitutes one particular solution of (78). In the following sections
two such particular solutions will be derived, analogous to those found in

ref. (17) for small perturbations.

DERIVATION BASED ON (R, q)

Let a near-identity transformation of n = 2N variables
y=(p, q) z=(p Q) (32)

be given by (37), and let a generating function (53) be assumed to produce
the same trunsformations via the equations (12) and (13). In what follows
the relation between (37) and (53) will be established in a way resembling
what was done in ref. (17) for the case when no slow variables are present.
As before, the calculation may be broadened somewhat beyond what is done
here, since the method only requires that canonical momenta transform in

near-identical fashion.
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With the notation of (51) and (55) eqs. (12) and (13) give
P, = p - Z:’ X (20 a4

= Py -Zak*[" (2 gy i) (83)

o = o + ) ¢ (2 /ap))
- q +Zg“*“(®a(")/faﬁ>1) (84)
3

All functions on the right depend on mixed variables (P, q) ; to introduce

a dependence on y , it is useful to define "partial vectors" adding up to

S(k)
a® . (3, L 3 e 0
(85)
Q(") e (0 .. 0,50, ... 3
From this
o= +Z:Ekn§k)(!) (86)
q = 5 +) 5o (o1)

If the vectors J_'[(k) are known, they may also be used to expand any

function of mixed variables (P, q ) in terms of y , e.g.
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F(B, q) Fy+) £” a(k))

ox {Z en®a/op) o wy

oxp {Z, e~ Z, (D (= 13 2/ Y.)} « ¥(y)
0

Z: ek (),
om0

F(y) (e8)

vhere, if we collectively denote all "slow" components of y by R and
all "normal" ones by p and if J| gk) and 7\ ik) denote vectors

composed cf the corresponding components of g_'\(k) ’

L(o) = i

(89)

2. alsnr o+ it o/0en

T gf‘l):_\ 1(‘1), (v /7z)2/> z)

and 80 forth, Nete that” "€ 1is implicit, 1Y) ana 72 enourd
have fuctors € > and 5'2 “hidden inside", since they are teamed up
with the corresponding positive powers in (86). For the same reason L(Z)
should contain a factor g'z and indeed, inspection of the last equality

in (89) shows that all terms there have av.ch:factor .

Substitution in (83) yields

YT
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Pl o= py - ZJEM‘Z "1™ s (2e/qy)
m

1®) 4 (qqlen- m/facai)} (%0)
m=1

vhere all terms of ( are viewed as functions of y , i.e. with p
replacing P wherever the latter originally appeared. This should be

identical to (83) and therefore
k-1

g . o aeletqg, - 7 ), el Rng,
w=l (91)
The highest order of L(m) appearing on the right is k-1 ( O (0) only
appears if ¥ 4= 1 for if it depends on "normal" variables, the trans-
formation is no longer one of near-identity: this is the reason for the
change in summation limit) and this is therefore also the highest order

of J_I(") appearing on the right. Thus (91) is a usable recursion relation

for deriving {l(k) .

Expanding (84) in a similar manner gives

k-1
eik) . qc(k-'&)/qwi + ZIL(”). (facr(“‘“‘"‘)/’aTPi)
=

(92)
where the definition of W 4 Teverts to (52) .
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Now if
yi'qj
then
171--?3 b Ay o= 8
and if
Yy = Py
then
L= Qy i 43 = ¥

Inspection then shows that (91) and (92) may be combined to one equation

k-1
zi = yi‘ -ng{’bq(kn Ai)/’b?i + Z: L(m)ir-bq'(k-m- 42)/,,0 ?1}
m=1 ( ) ‘
93

The dependence on A 4 may be removed by introducing }(k) defined

in (76). Then, using the gradient operator in ¥ space, (93) becomes

k=1
A 7T DM MY A B
m=1

Since it has already been established in (81) that ’b.(k) is arbitrary

-

within some gradient in :i_' space, the summation term represents a parti-

cular solution of (78).




LIE TRANSFORMS WITH SLOV VARIABLES (16)

It LW is the operator denoting Poisson biracketing with a function W of

the zanonical variables

L, (£) = [g ] (95)

(17)(19)(20)(21)

Then it may be shown {‘hat the transformation from

Y"(_po g)to

z = ep(EL) »y (96)

(with the exponential operator defined by its series expansion) is canonical.
In what follows the form of the ILie transform in the presence of slow vari-
ables will be derived, again following closely the derivation for the
simpler case when all y; vary on the same ecalo(17) « Let W be expandable
in €

v = ) 5y (o7)

and let operators Lw(k) be defined through

er, = ) g1 (%8)
If one
m(comparo ref. 17, eq. 35)
K oo yleed) (99)
- - - T e e I NS A G |
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then

= - ) € @®nag)(/ay)

(100)

)
) ek ) x5 8at A,
8

where the lower limit of k 4in the last summation may be chosen as 1

if quantities with negative or zero index are understood to be zero. This

glives
)
Lw(k) = L (/DX“"‘G'A‘)MYS)(’D/’»YB) (101)
s

Expanding a typical component of (9€)

N
]

‘ {1 + (Zek Lw(k)) + %(Zekh,,(k))z»f..} A
Z gen®) . (gt Y,)

Z gk ylir 0D Y, (102)

where the M(k) all have the form

M(k) - Lw(k) + N(k) (103)

with N(k) some operator involving lower orders. One then gets

e —— T TN » T B o T e L e e oo T R



(k) (ke 4¢)
i i
- H(k* r;-Q-A;) . Yi

(ks I + A;)
= Lw i + N ¢ » Yi

N(k‘.‘ r"_ + A()’ Y (104)

= ’)X(k)/"*a Yi + {

which again i3 the sum of a gradient in 'f space and an expression

involving lower orders which (presumably) is a particular solution of (78).

THE KRYLOV - BOGOLIUBOV - KRUSKAL METHOD WITH SIOW VARIABLES

Krylov and Bogoliubov(g) (10)(11) investigated the solution of a set of

n equat? .~ vectorially represented by

aar = 7 ¥ g¥y) (105)
k=0
with
5(0) = (Ot Oy ... Oy 8510)) (106)

ensuring that in the "unperturbed" limit ¢ — 0 , Ya alone varies and
all other components of Yy (to be collectively denoted by i ) are
constant. It is further assumed that the unperturbed system is periodic
and that Y is an angle variable appearing only in the angle-avgument of
periodic functions. The zero~order growth of Yo is then assumed to be

linear, from which follows that gx(‘o) may depend on '3/' but not on Y
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To eliminate the periodicity from this motion, Krylov and Bogoliubov
used a near-identity transformation to new variables 2z , given in a direct

form inverse to that of (37)

y =z + Z, ekvl(k)(z-.) (107)

The new variables, which can be derived by a suitable recursive method,
have the property that the equations by which they evolve do not contain
the transformed angle variable g, on the right-hand side but have the

form

dz/dt = Z:ekg(k)(z) (108)

The first (n-1) equations of this set, representing dZ/dt, then

form an autonomous set not involving z and can be solved independently.

If y represents a porturbed periodic canonical system with a
Hamiltonian of the form (50), then the canonical equations of motion
have the form (105) and the Krylov-Bogoliubov method can be used to
eliminate the angle variable Yo = 1 . Unfortunately, unless precautions
(22)(23)

are taken , the 2z variables will in general not be canonical, so
that the transformed variable corresponding to the canonical conjugate of
Y, will in general not be a constant of the perturbed motion, as is

automatically achieved by the Poincaré-Von Zeipel method.

On the other hand, the Krylov-Bogoliubov method has a much wider validity

and can be used in non-hamiltonian systems. A similar elimination procedure

which derives the transformation in the form (3%7) has been devised by

- - e i e e — . . TSI | i | e ea ey _-v;mm»-cmf.w- s /\J«.;,&.‘.T._r_-yﬁh‘_j” ’7 IL
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kruskal(®)(12) | who followed 1t by the derivation (for canonical systems
only) of a constant J of the motion, obtained by an ingenious application
of integral invariants (it is the same constant as is obtained by the
Poincaré-Von Zeipel method).

Here the Krylov-Bogoliubov method will be generalized for the case when
slow variables are present. As with the Poincaré-Von Zeipel method, this

allows the restrictions on the form of the zero-order equations -~ embodied
in g(o)

- to be eased. Spocifiaally::n;'.ariablea other than y, ere novw
allowed to have a zero-order variation and this variation (as in the
canonisal method) ie passed intact to the "reduced" equetions involving 3z .
The calculation will be done for the transformation (1(77) ; the treatment
of Kruskal's method, using (37), follows practically identical steps and

will therefore be omitted.

Following the rnotation of (89), let R and r denote the slow and normal

compcnents of g , and let ‘vtl(lk) and “_’\’ik) be corresponding components

of ’!l(k) . Substituting (107) in the left-hand side of (105) gives, with
the definitions (67)(68) extended to z variables

dy/dt = dz/dt + Z ek (’“on(k)/’azs)(dzs/dt)

k, s
= dg/dt + Z: gk ('Ton(“‘r‘)/azs) Ze"‘ hﬁ‘“)
k, 8 - n=0
k-1
= dg/dt + Z,ek ) (’D‘q("'”'r‘ )/'azs) hg'“) (209)
— -

Bxpressing a typical term of the right-hand side of (105) in terms of 2
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gives, in a manner similar to (88)

KOO ARLHOR

o
<
~
}

il

exp {Z. Em (lgm)'?/ﬁ 28)} * E_K(k)(.z.)

m (Dt (n M)

]

Z. g™ k@)y gl)(5) (110)

(m)

The operators K(m) resemble those of (89) but with " everyvhere

replacing n(m) . Substituting preceding results in (105) gives

k-1
ag/at = Zek Z{K(m)' e - 5 (fbn(k-m- ) zs)-ng“‘)}
k=0 m=1 8

+ (K(‘k)i g(o))

Y L * ). &

s+ Q-8) §(k) } | | (111)

where the factor preceding the last term denotes that it be omitted for k = O
(in that case it is already counted as the term involving K(k) ) and where in
the summation preceding this temm 1_3(0) has been replaced by g_(o) » which
equals it since in the limit € -0 eqs. (105) and (108) coincide.

Comparison with (1CS) shows that the expression in the square brackets

T e S e . T ST
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equals g‘k)cz) , and this equality forms the basis of the recursive deri-

vation of B and -v\(k) .

-

The situation now resembles that of (63): in srder that the recursion be

at all poseible, unknown components of ~1(k) must appear in (111) only

once, otherwise the result is a partial differential equation and cannot

(k)

be easily integrated. One term which always contains 1 is contributed

by the last summation in (111) and equals

(~ Yl(k)/,D zn) 8(0)

n

since g(o)

n does not vanish and 2, the transformed angle variable, is

"normal". No other appearance is permitted, hence

(0)
g ' =0 for \"Ea =0 (112)

or, stated in words, "Only slow variables and the principal angle variable

are allowed to have a zero-order variation."
(k) the term contai

In addition, M could enter throughv\K , which has the form

-

(compare eq. 89)

x(k). §(°) = &19‘)-?/'35 + N(k>j g(o) (113)

(k)

k) containing lower orders. No problem arises here provided 'vl r

with N(

is derived first and (k) only afterwards: because of (112), this temm

LR
is absent in the first part of the derivation, while in the second part those
components of Tl(k) that appear in it are already lmown. In either case one
gets
— — .
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(’31(“)/0 z,) s,(f’) O },(k) (114)
where (k > 0)
k-1
Z(k) i, Z.» {K(m), gl m) Y -(k-u; - T )/’”s) ng"')
m=1 8

(115)

o @y g0y gk - Y (Qj(k-r;)/fazs) ef,""
s#n

depends only on lower orders. The Bolving of (114) then resembles that

of (21)

CONCLUSION

In the preceding sections the main methods of classinal verturbation
theory have been extended to slowly (or adiabatically) perturbed systems.
At the same time, the basic concepts associated with such systems (e.g.
adiabatic invariance and implicit € ) were examined and clarified.

The restrictions on the forms of the zero-order equations for slow
perturbations have been derived and are generally less severe than for
small perturbations. The extension of the methods themselves is relatively
straightforward, involving mainly the shifting of indices for quantities
corresponding either to slow variables ot (as “m the case of ir(k)) to

variables with slow conjugates. With the use of expansion operators the

treatment is only slightly more complicated than for small perturbations.

§ s A i B o s Lo SR a2l ""'“‘«“Tm -
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