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A b s t r a c t

Methods of classical perturbation theory developod for small

perturbations are extended to slowly (or adiabatically) perturbed

systems, with slow dependence either on time or on dynamical vari-

ables. Specifically, the extension is performed for the canonical

perturbation theory of Poincare and Von Zeipel, for the K.arylov-

Bogoliubov-Kruskal method of eliminating angle variables, for the

general form of direct near-identity canonical transformations and

for two of its realizations, based on the "conventional" generating

function and on the Lie transform. In addition, the concepts of slow

(or adiabatic) perturbations and of an implicit "small parameter" E

are clarified, as is the distinction between two alternative aefi-

nitions of adiabatic invariance, and as an example the solution of

the slowly perturbed harmonic oscillator up to and including 0( c 3)

is derived.
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INTRODUCTION

8

	

	
Perhaps the most widely studied perturbation problem in classical mechanics

is that of perturbed Periodic motion. If a motion is given that is soluble and
k

periodic, the problem may be concisely ddfined as the, derivation of an approxi-

mate solution for a.motion that is slightly different.

This "slight change" applied to the motion is termed the Perturbation and
(or "adiabatic")

it usually belongs to one of two types: "small" perturbations and "s_"^ones.

The difference between the two is best explained by assuming ti-At the motion can

be described by a Hamiltonian, although this condition is not essential. In a

slightl-v perturbed motion the Hamiltonian may then be written

H = H(0) +	 F H(1) +	 E2 H(2) + 1900	 (1)

where F << 1 is a small numerical parameter characterizing the magnitude

of the perturbation and where the limit 	 0 corresponds to the unper-

turbed motion. A typical example • s)uld be the motion of a planet around the

sun as perturbed by the planet Jupiter. In that case H (0) describes :he

planet's Keplerian motion in the sun's gravity field while H (1) describes the

lowest order of the perturbation induced by Jupiter. The zero-order Hamiltonian

is then proportional to the solar mass ms while 	 F, H(1) is proportional

to the mass m  of Jupiter: the ratio of the two terms will be of the order

(m /M 	 (about 
1073) and this dimensionless quantity provides a natural

choice for

To illustrate a slow perturbation, consider a Hamiltonian that is slowly

dependent on the time t (slow dependence may also involve canonical. variables):

H = H(p• qr t)	 (2)
T
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Then the dependence is said to be slow if the terms produced by the opera-

tion 'cD `'z t are by aii order in E smaller than the terms from which they

are derived, e.g.

	

''o H/ -6 t	 s	 0 (E H)
	

(3)

The preceding equation is not quite precise, since it implies that F_ has

the dimension of t-1 . In fact, one always requires some natural time period

T against which the rapidity of the time variation may be gauged, this usualily

being the period of the unperturbed system. With this taken into account;, (3)

becomes

	

H/ Z t	 -	 0( C. H/T)	 (^ )

and E is clearly dimensionless.

In either type of problem there generally exists a steadily increasing

"angle variable" appeari ,g in the argument of sines and cosines, describing

the nearly-periodic part of the motion. O_e way of "solving" the problem then

involvus finding a transformation to new variables, such that the angle

variable is eliminated from the equations of motion. If the system also

possesses a Hamiltonian H , the absence of the angle variable from H implies

that its conjugate "action variable" is a constant of the motion, and this

eliminates an additional variable from consideration. In slowly perturbe3

systems, such constants are called adiabatic invariants (1) . In slightly perturbed

systems, no generally accepted name exists (G. Contopoulos, who investigated

the -elation between the two types of constants 
(2) 

has termed them "third

integrals") but they are well-known in celestial mechanics and may be derived

in a variety of ways.
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The purpose of this work is to show how the standard methods of celestial

mechanics, designed to handle small perturbations, may be modified to deal

with slow perturl ation and lead to the derivation of adiabatic invariants.

Two methods will be considered here: the PoincaA-Von Zeipel method(3)- 
W

for solving the Hamilton4acobi equation and the Krylov-Bogoliubov procedure(7)-(11)

(or the rolated method of Kruskal). In addition, it will be shown that the

direct form of near-identity canonical transformations can also be adapted

to cases in which some variables are slow.

EVLICIT AND DIPLICIT E

In the example of perturbed planetary motion the small parameter E can be

given an explicit numerical value. In problems of slowly perturbed motion this

is often difficult to do and one may then speak of an imp_ licit

As the archtype of a slowly perturbed system, consider the "pulled-up

pendulum. 
"(13)(14): a simple pendulum is suspended from a hole in the ceiling

and its suspension string is pulled up (or released) at a slow, though not

W
necessarily constant rate. Obviously, the angular frequency A of the pendulum

will vary and, since work is being done against the centrifugal force of the

oscillation, so will its energy E . However, as long as the rate at which

the string is withdrawn is sufficiently slow (and does not resonate with the

oscillation of the pendulum) an adiabatic invariant may be found, equaling

E/w in the lowest order.

Two points should be noted here. First, the perturbation need not be

small: by the time the withdrawal is complete, the length of the pendulum

may well have changed by a large factor. Secondly, while one can devise an

explicit	 for the problem -- e.g. E c.; t , where 	 is the time in

k
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which the length of the pendulum is z%Auced to 1/e of its value, at the

given ( instantaneous) rate -- its value nowhere enters the calculation.

A more complicated example is provided by the motion of a charged

particle in a slightly inhomogeneous magnetic field B . Here "slightly"

means that the derivatives	 Bi/-b t
i
 are all of order & smaller than

the components of the field intensity and its magnitude B . Thus the slow-

noes is in the dependence on spatial coordinates and a scale -length for

gauging it is provided by the gyrat*on radius S , giving, in analogy to

eq. (4)

' )( B1/'0 x
i
	 - 0( F- B/ F )

	

(5)

Again, the value of , does not explicitely enter, except through the

requirement that for the perturbation approach (known as the guiding center

theory) to be valid the problem must satisfy "Alfven'a criterion"

( P /B ) (-^ B 
i 
/-D x

i 
) « 1

An implicit E, may be "made visiblo" by the following device. Consider

a Hamiltonian with slow time dependences one may artificially introduce F-

into its time derivative by writing

	

II/-D t	 H/'a (,c t)	 (6 )

Since

^i H/ rb E,t	 0(1)

this notation clearly displays the fact that the term is of order E,,

and for this reason the Hamiltonian (2) is often written

	

H	 =	 H ( p . Q. Et)
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A similar device may be used when them exists a slow dependence on

dynamical variables; this can be quite useful in arranging the terms

according to their orders in E, but two things rust bo remembered. First,

because of the way in which F, is L.troduced, expressions of the k-th

order which have a factor 
E,k 

standing in front of them, will also have

"hidden inside" a factor	 E, k . Secondly, because a definite value of E.

is never stated, such factors must be cancelled out before the final

result is obtained.

An example may be useful here. Suppose a one-dimensional motion is given

with a Hamiltonian that has a slow dependence on t , and it is also given

that if this dependence is "frozen" (limit E = 0 ) the motion is periodic.

The solution of such a motion usually begins with a canonical transformation

to new variables (P, q) which are th,i action-angle variables of the unpertur-

bed motion. If S is the generating function of this transformation, which

in general is also slowly dependent on t , then the new Hamiltonian H' is

A' (P, S) - H + -D S/ `z t

H + E _^S11 (Et)	 (?)

--	 H' (0) +	 E Hl(l)
A

In the transformed Hamiltonian, the first order correction H' (1) has a

factor L preceding V., but this factor is artificial and is balanced by a

factor	 E. 
1 that is "hidden inside" the term, as is evident from the deri-

vation. In practice, these factors must be cancelled before, say, the canonical

equations of motion are used.
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THE POINCAU - VON ZEIPEL METHOD FOR SLOW TIME Dlr:PF: OCE

Consider a canonical system with 2N variables which has a slow dependence

on time. We assume that the Hamiltonian H may he expanded in powers of C_

}i = L 6k H(k) ( p p q# t)
	

(8)

We furthar asa^uue that the Hamilton-Jacobi equation for F_ -- r 0 has been

solved and that the transformation derived by it has already been applied,

deriving as action-angle variables 'Cor the unperturbed motion

( J 9 r-)
	

(pl, ql)

and giving

H(0)

	
J 0/2 7V
	

(y)

with Q= W (t) the slowly varying angular velocity. In the limit ^_ -* 0 ,

evidently, LJ is a constant and so are all the canonical variables, except

for S1 which is then linear in time.

To "solve" the motion we now seek a near-identity canonical transformation

to new variables (P, 1) , with

( J". fl!)	 (Pl, Ql)

generated by

(P,. q9 t) _	 Pi qi + L E  T(k) (LO q , t)	 (1101

such that the new Hamiltonian H" does not depend on I'L * . TW s is

somewhat similar to, but simpler than, an approach ad-orated by Gardner (15)

and investigated by Contopoulos(2) , in which the same result is obtained by
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a succession of canonical transformations, each of which pushes the elimina-

tion of .CIL * from H* one order higher.

If H" is expand in a manner similar to (8) a*+A +I+& +4r*o Am^w^+{.,^

is expressed as in (), one obtains

l.^ ^k. H*(k)(P, it t) '	 , EI
k 

H(k) ( p r q. t) +

+ E E
This equation contains 4N canonical variables, but

eliminated by means of the transformation equations

Pi s	 Pi + E £ m (,-bQ'(m)/,

qi = qi + 	 EM (I (f W c7

To facilitate the elimination it is beat to follow a

Musen(7) and use expansion operators 
(
12) (* death

etc. are gr&iient-type operators):

H*(k) ( t 
30 t) 

=	 H*(k) ( P, q 

+ EF_ m

=

	

	 On ,	 E m( -D T (m)lZP)- P /—I

m=1

fj FSm T(m)* H*(k) (to q v t)
M=O

where

i
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T(0) M 1

T(1) _	 (^^(1)/^Pi)(^/7Q1)
i

i

(-00-(1)/ P ) p (,—J (1)/'Z^P	̂ ^Qi-:-^ Q j)
i t j

etc. Similarly

S(k) (2, at t)
	

-11 
Em 3(M) * R(k) (P, qA t)	 ( 16)

m"O

where

S(0)	 1

S(1) a	 ('a U' (1)/'a ^,)('^/^ Pi)
i	 (17)

M,(2) a ^^ ( VU(2) Qi )('c ^^Pi) +
i

+	 (ZQ(1 >/^ )(^Q(1)/-Dq^)('b21- Pi- P^)

end so forth. Substituting all this in (11) and collecting terms associated

with Ek gives

k	 k

M=O	 mWO
(18)
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The terms with m=O dimply equal H*(k) and H(k) and will be taken

outside the summation. The terms wit'i mwk also have simple form, for in

general

3(k) 	
'E ('b a (k)/1 qi ) (

,-b /-a Pi) + N (k)	 (19)

where N(k) contains only terms with at least In differentiations.

Substituting ( 9) then gives

3(k)* H(0) a	 (^ `^1) ^c 6 (k)^^?S1
	

(20)

Because the transformation reduces tiro the identity transformation in the

limit of vanishing € , H*(0) equals d(0) and due to (9) it satisfies

T(k)* H*(0) a 0

since T(k) operators involve only differentiation by the q i , which H(0)

does not contain. One then obtains the basic recursion relation

(cJ/27f ) /-DT 	 rL	 H*(k)(P, q g t)	 n 
(k) ( ? I q r t)	 (21)

with

k-1

n(k) a	 [,,(M)*, e(k-m)- s(m)* g(k-m) - H (k) - '^^ %a t
mal

(22)

depending only on orders lower than the k-th. If S1. enters only as an angle

variable with peribod unity, any function F(P, q, t) may be resolved into

an ''averaged" part

.0
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1

F dfl

0

and a "puntly periodic" part with zero average

(F)per	
F	

< F

The derivative of a purely periodic function is also purely periodic

and therefore, so ^6s

^c Cf (k)/' ĉ Sl	 /'JlL ( (^))	 +	 Q (k) >	 (24 )
per

since the contribution of < Z,(k)> vanishes. On the other hand, H* (k)

does not depend on SL , so one gate the recursive relations

Cr (k)/^S1 a	 (2n /U)	 ( 
n (k) 

)per (26). 

Once these are solved, the calculation may be advanced to the next order.

MLAMPLS s THE HARMONIC OSCILLATOR 
(16)

The Hamiltonian H" of a harmonic oscil3a for with a slowly time-dependent

angular velocity 0(t) is

	

H" _ (1/2m) I P2 + 02 m2 e 1	 (27)

If one "freezes" the time dependence, one can solve the Hamilton-Jacobi

equation and derive a canonical transformation to action-angle variables

(J , 1 ) , generated by

1i fi _ -
	 ' "
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W n	 (Jc) m/7T ) - m t32 42 i dQ	 (28)

Following this transformation, the now Hamiltonian H becomes

H	 J 012 7 	 + E. J W' /4 rO)	 (29)

where the dash henceforth signifies the operation 'Z /D ( E t) . Let (T of

(10) generate a transformation to (J * , n., '*) such that all orders H*(k)

of the new Hamiltonian are independent of n * . This, combined with the

fact that in the present case the only differentiation performed by T(m)

of (15) is	 allows all such operators to be ignored except

for T(°).

A further simplification is obtained by noting that H contains only

two orders, both linear in J t using the argument of (19) this gives, for

the terms of (18) depending on H

s(m)* H(k-m) =	 s(k)* H(0)	
s(k-1)* H(1)

(30)

* (0/2n ) Jc 
Q.(k)/a 

SL + D ^(k-1)/^e SL)(W'/4n W) sin (431W

In what follows, we will for conciseness write J instead of J * , restoring

the superscript — if necessary -- only at the end. In analogy with (21)

we then obtain as the basic recursion relation, f r k > 1

( W/271 	 (k)/,-bS1) - H*(k)
(31)

- (eZ T (k'-1)/,aSL) ( c3 ' /4 r O) sin(4nr-) - (Q (It-1) ) ,

--9
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Using ( 18) directly for k-0 , one simply gets the equality of H (0) and

H*(0) , while for k=l this yields

( W/271) ^c d' (1)/a SL - H*(1) 	 J ( 0 1 /410) sin (4Aa)	 (32)

from which

H*(1) U	 (33)

4' (1)	 J (LJ'/8jcW 2 ) cos (4111)	 (34)

Higher orders, derived by the use of (31) , are

H*(2) - ( J/16JT ) ( LJ' )2/u)3

U` (2)	 -	 -_ (J/64 TT ) (W'/W2 )2 sin (8n11) -	 (35)

- (J/16n0 ) (w '/W2 )' sin (4JIR)

H*(3) 0

Q (3)	 w (J/384 JT) (CZ ' /t.3 2 , 3 cos (12 71 .n-)

i

- (J/1283TW	 (42)2	 cos (8jin.) + (J/128n)(W'/W2 )3cos (4JIfl)

I

-^ (J/32 JJ W) (o' /o2)'/w] 	 cos (47151)	 (36)

Note that any term in an 0(E. k) expression contains the dash operator exactly

-k
k times, corresponding to the factor £

	
"hidden inside."

--I
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At this stage eqs. (12)

terms of (J* , S1 ), up to

manner, in torms of "mixed

"invert" the result and ez

versa. The shortest way to

technique (17). If

and (13) could be used to express (J, r1*) in

0( 0). In fact, expressing the result in this

variables", is not too useful, and it pays to

press (J* , .j1.e) in terms of (J, 11) , or vice

achieve this is by means of the di_ rect tr r^anefo`rmation

Y a	 ( pt q)

are the "old" variables and

z V. (P, al

are the "new" ones, and if the relation between the two sets has

form
^ k^ 

(k) (Y)z ^
	

Y +
	 k=1

then for this to be a canonical transformation, 	 (k) must have

(k)	
^(k)	

f (k)

where 0 is a gradient operatpr in "conjugate phase space"

Y	 (qp -p)

the 
,C(k) 

are arbitrary functions and f(k) are prescribed ex]

involving lower orders. In particular, if (37) is the "direct"

the transformation generated by (10), one may choose

	

?((k)(Y) = - G, 
(k)
	 q) _ - T(k)(Y)

(i.e. P is everywhere replaced by p ). The corresponding f(k

k-1

f(k)	 - T U (m)a 0Cr(k-m)(Y)
m=1

a
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with U(m) expansion operators depending only on the momentum-like com-
ponents Jt (m) of	 ^ (m)

	

n (m)	 (,^ (m)P ...	 (M), 0, ... 0 )

with

U(1) Jl W. V
(41)

U(2) 7^ ( 9 V +	 n (1)^ (1) s V v

and so on.

Of particular interest is the derivation of the adiabatic invariant

zl = J* _ Z 6 k J*(k)	 (42)

which will now be outlined.

To obtain a-(k) (y) one simply uses the expressions (34)-(36)

.without_  restoring the asterisk superscript (as was originally planned).

To derive (41), note that only one component of canonical momentum enters

the calculation, so that

U(1) .s	 J*(1) (rb/ -D J)

(43)

U(2) =	 J*(2) (rDII J) +	 (J*(1))2 -b2/-ZJ2

The second-derivative tome may be safely ignored, since all orders of

a" (k) used here are found to be linear in J . Finally, the components
of the conjugate gradient V contributing to z1 are simply

/-'bcr(k)!, yl = '^ C1(k^^'^Sl..
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For the first order, f(l) vanishes aid one obtains

1*04" 	 X4"(1)/Il

a J ( W'/2 W 2 ) sin (451a	 (44)

"	 The next terms are

j*(2) = (J/8)	 Q2)2 + ( JA W) (W'/O 2 )' coo (4AVO

(45)
r

J*(3)	 (J/16) (W/ W 2 )3 sin (4n sQ -	 (J/80 ( jZ ' /L3 2)'4 sin(4-na)

THE "OLD" NOTION OF ADIABATIC INVARIANCE

In some texts of mechanics (si) and in the older literature, the definition

of adiabatic invariance differs somewhat from the one given here. The alter-

native definition is usrally applied to one-dimensional systems (though

generalizations for everal dimensions exist) and is as follows:

"Given a slowly perturbed periodic motion, consider the action

integral

J =	 p dq	 (46)

evaluated over one period of the unperturbed system. As the

system is perturbed, an "instantaneous" J may be evaluated

at any time by "freezing" slowly varying quantities. Then J

has the property of adiabatic invariance: if the system undergoes

a finite perturbation -- e.g., a finite change of the Hamiltonian

from Hl to H2 -- the corresponding change in J may be made

arbitrarily small by stretching out the perturbation over a

sufficiently long time."
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The action variable J of (46) is the same as the zero-order action

variable with which the previously-developed perturbation scheme begins,

tut its "adiabatic invariance" differs in two respects from what was

earlier defined as adiabatic invariance. First, there exists here no

hierarchy of invariants each of which is conserved to some specified order

and secondly, the definition concerns itself with the cumulative change

in J over a long period in time. In fact, this property does not follow

automatically from the definition of adiabatic invariance used earlier.

It is nevertheless an extremely useful property, since it allows one to

derive, using only the unperturbed variables, a quantity with long-term

invariance properties, without even spe_cifyim the perturbation.

Since J is the zero-order part of J* , we may use (12) to obtain

(compare also eq. 44)

J*	 J - E '7c U' (1)^' ̂
5_L
	 0( E.2)

(47)

= J +	 J*(1) +	 0( E2)

As in (12) 9 Q(1) means	 Q(1 ) (J* , Sl, t) ; since J* is a constant

of the motion, only a and the slow direct dependence on t contribute
to the variation of the first order correction J *(1) . The basic reason

for the "long-term adiabatic invariance" of J, stated earlier, is that

by the arguments of eq. (24) J*(1) is purely periodic in a , and there-

fore "nearly" purely periodic in t . Gver long time intervals, its vari-

ation is therefore bounded, causing the long-team conservation of J to

be better than might otherwise be expeoted.
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To demonstrate this, expand (47) to

J	
J*	

-	
J"(1)( JN, f1.^ t)	 + 0( E2)

(48)

= J" _ 
F- 

J"(1)(J",n
- , 0) - E?t '^J(l)/'c^( Et) + .. + 0( E2)

Let a time T = 0( F- -')  pass. The first term on the eight is conserved,

while the second one will vary only through the variation of a. . Since

the dependence of this term on fl is periodic, the resulting contribution

is bounded and due to the factor preceding it, of order C . The next term is

also 0(E ) and the save holds for higher terms in the expansion of the

slow direct time dependence of J" (l) . The 0( F, 2) terms may contribute to

di/dt a term of form E 2 Y , but its contribution to the total change

of J will again be of order

(T
J yV dt = 0( ^ 2T)	 0(F )
0

Hence the longterm variation of J is 0(E ) .

The variation of other dynamical quantities, on the other hand, will

be finite. For instance, for H

T	 T

A H	 S (dH/dt) dt = J (1c H/-Z t) dt
0	 0	 (49)

=	 T (I H/Z t)aver, _	 (ET)	 aver

and each factor here is 0(1). Thus by making E- arbitrarily small, but keeping

T = 0( Cl ), the variation of J may be made as small as is desired while

that of H remains finite.
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THR POINCARE - VON LE IPEL . MMOD FOR ., SLOW DEPRKDMC3

ONCANONICAL V& `LES

Let a perturbed periodic motion be given, represented by a Hamiltonian

H s E E  H(k) ( p q 	q)
	

(50)

with ( pl , ql ) the action-angle variables 0,11.) of the unperturbed motion;

Since we have already derived methods dealing with slow time dependence, we

will simplify matters by not including such a dependence here. The motion

represented by H(0) alone is assumed to be periodic and solubles we shall

r. -.at require at this stage that H (0) has the fom (9), but we note that it

must be independent of S1 , since J is a constant of the unperturbed motion.

Instead, we shall assume that the canonical variables y i fall into

two groups: "normal" variables for which "i/Z yi maintains the same order

in & and "slow" ones for which it raises the order by one level. It is

useful to define parameters that distinguish between the two groups: let

equal 0 or 1 depending on whether q i is normal cr slow, and let S i

play the same role for p i One can then define

	

i	 F,,T` qi 	 (51)

	

SP i	 ^, pi	 (52)

so that ( for example) I0 H/ 'b i and '-b H/'b TP i are always of the same

order as H itself.

As before, let a generating function

^1 (Pr q)	 Pi qi +E Ek Q' (k) (P, q )	 (53)
i	 k=1

a T_
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define a near-identity traneformi tion to a new

canonical set(P, c^) , with the new Hamiltonian H* independent of the

transformed angle variable A " (a term with k : 0 could be included,
but since it may not depend on . Y it is not useful here). Again, the basic
equation is

H*(p, g)	 H(P, q)	 (54)

and this again is expressed in Dowers of E and expressed solely in terms

of (p, q). Since P	 no longer appears, it helps to redefine 	 1p,	 as

1
i	 Tpi

and this will be the definition used in the remainder of this section. Iz^

analogy with (14) one finds

H* (k) (P, g)	 exp	 L, Em L^ (-bO-^m)/-b p )(^^^ q ) +^ H*(k) (pO q)

m=1	 i	
i	 i

	

exp E 
& m+ S" +T! ('Z'3-

	 Ip i )(z /(7ct i) +► H*(k) (P9 q)
i,m

exp EJ 
£ m 	 (-^,(m- SL— C0/,ZrPi)P 	 i ) ^► x*(k) (PO q)

m	 i

6 m `►(m)* H
	 (56)

M=O

'i►ith V(m) suitable operators and T(m) vanishing for all non-positive

values of m . Expending the exponential gives

(55)
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V(0) = 1

(57)

VW n

i

and so forth; because these operators are expressed solely in terms of T i

and Q^ i , their action on any function maintains the ordering in powers

of	 .

Similarly

	

H(k) ( p p q)	 a	
E £

m R(m) * H (k) (P, q)	 (58)
M=O

with

R(0) s 1
(59)

	

R(l) _	
(,^Q..(1- E^ - ^C )^Qa? i )('Dlb tP i)

i

and so forth. Substituting these op ,̂%ratora and collecting terms associated

with F, k then gives, in analogy with (18)

k

EI V(m)* H*(k-m) - R(m)* H(k-m) t	 0	 (60)

M-0

Again, the terms with m-0 and m=kk are separated. For the latter orms

one gets, in analogy with (19)
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V(k)Q(k- S^ - ^^ )I'c)^P i )( c'^ /c7 i ) +	 M(k)
i
	

(61)

R(k)	 (,^ tT (k- S^— lS^ 
)^^c'^^ i ) +	 N(k)

with AW and N(k) involving only lower orders. By taking k=O in (E0)

one again fizide

R*(G) a	 H(0)	 (62)

so that (60) becomes, for the generq ►l case

H*(k) + L.^ ('^Q'(k-	 ^a1Pi)(,Z H(0)/'DQ i) -
(63)

('(̂ 
^(k- ^^- ^^ )^ 

i )(^ H(0)^'b^ i )	 G(k)

where

k-1

G(k) = H(k) + 2] [R(M)*  H(k-m) - V(m)* H*(k-m) + (M 
(k)_

N (k) )* H(0)

M-1	
(64)

involves only given functions and lower orders. For every k e relation

of this type is obtained, constituting a k-th order recursion formula for

the derivation of H* (k) and Q
... (k)

Now the action-angle variables assoesiated with the zero-order periodicity

(and used here in "mixed" form)

(J* , S1) _ (pl , ql)
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are assumed to be "normal", so that the left-hand aide of (63) will include

a term

(^D Q (k)I'^n )('Z 
H(0)/,D 

J")

of
if 'Ur 	appears nowhere else, the equation assumes the form, ( 21) and

is solved in the same manner.

On the other hand, if	 CT' (k) appears anywhere also in (63), it may

not be passible to derive it, for the equation then becomes a partial

differential equation for C r 	. To prevent this from happening, it

is required that for all (pi , qi ) appearing in H(0) other than the

action-angle pair

S 1 + 'Ei
	 rj
	

1
	

(65)

Hence the recursion can be carried out A:

(1) H(0) has normal dependence on pl but does not depend on ql

(2) H(0) may depend on any "slow" variable.

(3) H(0) may depend on any "normal" variable, provided its

canonical conjugate is "slow".

Furthermore,it may be shown by extending the present calculation that

(4) H may include a term H (-1) of order E -1 , provided it depends

only on slow variables having slow conjugates. Such terms are then

transformed intact to the new Hamiltonian.

As an example, the Hamiltonian of a charged particle in a time-independent

electromagnetic field 	 , in the regime of guiding-center motion, may

`	 (15)(19)
be brought to the form
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H	 P2 2/2m + pl W /2 JT + 
E -le 0(o) + Q( F- )	 (66)

a
	 Here (pl , ql ) are canonical variables associated with the rapid gyration,

(p2, q2 ) represent the motion along field lines and (p 3 , q3 ) describe

the identity of the guiding field line, which changes slowly with time

(in the references, subscripts 1 and 3 have reversed meanings); the

variables (Plt ql' p2 ) are "normal" whereas the remaining ones are "slow".

Furthermore, the gyration frequency w and the lowest order 	 0 (0) of

the electric potential are both functions of slow variables only. The last

term is of order C
-1 

,  since its derivatives are proportional to the
of the

components of the lowest order Aelectric field E, which are of order

unity.

Evidently H meets all the previously stated conditions except for one:

if	
¢(0) 

contains q2 , condition (4) is violated, since p2 is not

slow. One therefore must impose an additional requirement that 'b 
o(0)/Z q2

vanishes: this reduces to the well-known restriction in guiding center

theory that the electric field may have no zero-order component parallel

to the magnetic field.

DIRECT CANONICAL TRANSFORMATIONS WITH SLOW VARIABLES

The generating function U (k) gives the transformation equations

as in (12)-(13), in "mixed" form. To bring them to the "direct" form (37)

it is useful to generalize (38) for cases in which slow variables are

present, and this will now be done.
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Let

Y	 (pr q)

be a canonical set and

Y = ( q v -p)

be its conjugate (17). One may now define an index F  equaling 0 or 1

depending on whether yi is "normal" or "slow" , and an index 	 i which

has a similar relation to	 yi 	With this notation it is possible to define

vectors Y and Y satisfying relations similar to (51) and (52)

Y  =	 F 11 Yi 	 (67)

Yi =	 n'' yi	 68)

As with quantities defined in (51) and (52). 41 0/7c Yi and- ea/eb Yi are

always 0(1).

We now seek the condition for a near-identity transformation (37) to

be canonical. Actually, in what follows the recursion may still be carried out

even if the transformation is not a near-identity one and	 (0) terms are

included (satisfying appropriate conditions) but we shall not develop this

possibility here. One them :finds, as a condition for canonical behavior
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C yi r Yj ]	 L zi' Z jl

a C Yi +	 Ek (k) r Yj + E 
e m ^ jm)

(69)

k-1
-m)

	

k } ( k)	 (k)	 (m)	 (k

	

ly, r Y^] +	 J i r Y^^ - C,;	 r Yi^ + L^ L J
ms	

i r
l

Expressing derivatives in terms of Y and Y gives

EaO	
s

Y.

IT t 
^ S+ rT 

(mac ^'1 Ys ) ('^ b/" Ys )	 (70)
S

In particular

[a, Yj =	 E, " (`a a/'a Y1 )	 (71)

Thus

0 	 [k+ A ('^^(k)^ti.) - ^k+^^ (^^Jk)^^-JYi)

lc^l
(72)

k-1

+ _k+k+ AS + r. j ('^ } (m)/,a Y ) 	 (k-m)^ Y )

	

F	 17	 Ji	 si	 s
s	 m=1

Dividing by F A `+ '63

r
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ku D i+ p^+1

(73)

k-1

	

+	 k+ rs+Qs-AL-QJ E (^')^n^e)(^^k-m)I^Yg)

s	 m=1

It is useful at this point to red afine k for each term so that all powmrs

of E become g k and also to replace m by

M = m- A ,
	

(74)

Because the exponent of E differs for each term in (73), the new summation

over k will begin at a different value for each term; this summation limit

may, however, be uniformly set equal to 1 if it is assumed that 	 (u)
i

vanishes for non-positive values of u . With these changes, (73) gives

	

0 -	 ^k ( ,k+d^ )I"bY^) - (.^.(k+pa)Ic7 Yi ) +

k=1

(75)
k- Q i-1

+^ (^ 
`S M+ 0 ; )I^ Ys) ('.^ }. jk-M- 1"s - S + p^ )I^ Ys )

M=I-A i	 s

This suggests the introduction of new "staggered" vectors

(k)	 (k+ p )	
(76)
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i.e.

^(k)	 (k) if	 i = 0

i
k) _	 (k+l) if Q i 1

(77)

It i.s also useful ( in analogy to what was done ',n ref. 17) to introduce

a curl operator in I space. With this notation (75) may be rewritten as

( D 
Y 
X ^-(k) )

U
	-

(78)

k-1- rg— 0 8+ © ^

N 
SM)I(K)/,Z Y)

	^(k-M ^- - b s)/,^ Ya)
a	 M=l

This equation may in principle be used to derive 	 (k) recursively,

but this turns out to be a rather inconvenient approach. It is more

useful in determining the degree of arbitrarinefis associated with a

near-identity canonical transformation of the form (37). Let two such

transformations be given, characterized by "staggered" vectcrs ^.(m)
a

	

	
and z(m) V ich are identical for orders up to and including the (k-1).

For the k-th order one finds that the right-hand side of (78), which

depends only on lower orders, is identical for both expansions, giving

Y X	 ( y (k) - z(k) )	 0	 (79)

S-
 _. 	 -
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from which

	

(k)	 z(k) + ^y ,/(k)	 (80)
Y_
	 1L

Thus the arbitrariness in specifying the canonical transformation at each

level of I(k) is contained in the gradient in Y space of an arbitrary

scalar	 W. The general form of ^.(k) for a canonical transformation

may be written, in analogy with (38)

	

(k)	 /(k) /(k) + F (k)	 (81)Y

where F(k) is a vRctor involving orders of ,(m) lower than the k--th

and aonetitutes one particular solution of (78). In the following sections

two such particular solutions will be derived, analogous to those found in

ref. (17) for ell perturbations.

DMIVATIO%T BASED ON T (P, )

Let a near-identity transformation of n = 2N variables

	

y = ( p , q)	 z = (p,
	

(32)

be given by (37), and let a generating function ( 53) be assumed to produce

the same trtmaformatione via the equations ( 12) and (13). In what follows

the relation between (37) and ( 53) will be established in a way resembling

what was done in ref. ( 17) for the case when no slow variables are present.

As before, the calculation may be broadened somewhat beyond what is done

here, since the method only requires that canonical momma transform in

near—identical fashion.
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With the notation of (51) and (55) eqe. (12) and (13) give

Pi 	pi -	 E k	 (k)/'Z qi)

= p 
_ L ^k+ f (''8 0.(k )/ 	 i; )i 

	

= qi. +	 E 
+ S, (,Z a(k)/r.6 

IT' i)

All functions on the right depend on mixed variables (P, S) ; to introduce

a dependence on y , it is useful to define "partial vectors" adding up to

	

(k)	 ( 1(k), ... 	 ^ (k) , 0, . , .	 0)
(85)

	

® (k)	 _	 ( 00 ...	 09 $ (k) , ...	 ^(k))
From this

pi	 pi +	 E,kIT 
ik) (Y)	 (86)

	

Q'i s qi + 21 6k ()N+i(Y)	 (87)

If the veatoks UT (k) are known # they may also be used to expands any

function of mixed variables (P, q ) in terms of y , e.g.

(83)

(84)
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F(p. q) • Y(Y +^ ^k Ji 
ki )

M ezp	 k( TT 
(k) 

'a A Y) a P(y)

n	
ezp 

r ^k	 ( j, (k- I s̀ ), •D /-by 	 s i,(Y)

^.k L(k)w F(Y)	 (88)

kno

where, if we collectively denote all "slow" components of y by 	 and

all "normal" ones by ,E and if J1 (k) and J1 (k) denote vectorsit	 - r
composed of the corresponding components of n(k)^

L(o)	 1

L(1) =	 31W -a/a xr
(89)

L(2) 71i(.2)'^/a r	 +	 (1^ w z E$

+	 Jt(1) n (1) : (^Z h r)( Ib/a x)_r _ r

and so forth. Note that 
aiaoe& 

is implicit, T1 (1) and 31 (2) should

have factors E-1 and 6-2 ''hidden inside", since they are teamed up

with the corresponding positive powers in (86). For the same reason L(2)

should contain a factor E -2 and indeed, inspection of the last equality

in (89) shows that all terms there have a.:ch^factor

Substitution in (83) yields

-.... ^..e._ 	.^......^. ......^^..^...... 	 ,^	 «,	 ....^.e-..tee,...
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Pi 	pi _
	 ^k+Ci	 ^m j,(m) * ('^Q'(k)/"-^ (Q i)

m

Pi -	 E k	 (-c a-	 1 ^ )/ ,a(Q i) +

E 
i	 (m)	 (k-m- ^^ )

	

(90)

m=l

where all terms of 9- are viewed as functions of y ,.i.e. with p

replacing P wherever the latter originally appeared. This should be

identical to (83) and therefore

k-1

JT (k) ^` - 
, ^ Q. (k— ^^)^^^ i _	 L(M)  

'b
^,.( k-m- d'^ )/I C i

m=1	
(91)

The highest order of L(m) appearing on the right is k-1 ( c' (0) only

appears if	 T i= 1 , for if it depends on "normal" variables, the trans-

formation is no longer one of near-identity: this is the reason for the

change in summation limit) and this is therefore also the highest order

of JI (a) appearing on the right. Thus (91) is a usable recursion relation

for deriving J1 
(k) •

expanding (84) in a similar manner gives

k-1
rbCr(k- SL )I r^ 	 + T L(m) e (,-Z Cr (k-m- ^^	

F i)

m=1
(92)

where the definition of	 i reverts to (52)
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Now if

yi o QJ

then

fin -TI i i D i ' si
and if

yi 0 pi

then

Yi - Q i	 Ai a	 fi

Inspection then shows that (91) and (92) may be combined to one equation

k-1

zi a 3i -	 ^k O(r (k^ °`)/-^ i + T 
L (m)e 	 (k-m- nt) jb Yt

M=1
(93)

Z(k)
Thk% dependence on	 p i	 may be removed by introducing defined

in (76). Then, using the gradient operator in Y apace, (93) becomes

k-1
(k)	

z
-	 Q Y (T(k) -	 L(m) e

0 Y
T(k-m) (94)

mx1

Since it has already been established in (81) that,( ') is arbitrary

within some gradient in Y space, the summation term represents a parti-

cular solution of (78)0



z	 ezp ( F, LW) * y

(with the exponential operator defined by its series ezpansior

In what follows the form of the Lie transform in the presence

ables will be derived;., again following closely the derivation

simpler case when all y ̂very on the same scale (17) . Let M

in E

W	 k W(k)(Y)

and let operators LW 
(k)

be defined through

If one

defines (compare ref. 17, eq. 35)

(96)

34 -

LIE TRANSFORMS WITH SLOW VARIABLES (16)

If LW is the operator denoting Poisson b4--acketing with a ;function W of

the ^anonical variables

L
W (f ) _	 [ f, W ]	 (95)

Then it may be shown
(17)(19)(20)(21) Lhat the transformation from

y = ( p t q ) to
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then

LW
a

-'1

S

(100)

where the lower limit of k in the last summation may be chosen as 1

if quantities with negative or zero index are understood to be zero. This

gives

A .^
 LLw	 s

Expanding a typical component

zi _
	

l + (E FIl

Fk N(k) *

(k' rs'^S)/^Ys)('Ys)	 (101)

of (9C )

C 
LW

(k) ) +	 (	 k LW(k) ) 2 +	 * yi

(C r`Yi)

6k M (k+ rL )* Y
i

where the M (k) all have the form

M(k) =	 LW (k)+ N(k)

with N(k) some operator involving lower orders. One then gets
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^ik) =	 y ^k+ 0 ^ )

	

=	
M(k+ rL+az) * Y

i

ILW(k+ r + 6L)* Y 	 + N(k+ f ^ + &^) * Y 

I-) X ^;D Yi + N (k+ t"; + A t ) * Y1
	

(104)

which again 13 the sum of a gradient in	 Y apace	 and an expression

involving lower orders which ( presumably) is a particular solution of (78).

ME KUWV - DWOLTUBOV - KRUSIML MMOD WITH SLOW VARIABL8S

Krylov and Bogoliubov(9)(10)(ll) investigated the solution of a set of

n equaV ,°_. A vectorially represented by

dy/dt -	 ,/	 E k g(k) (y)	 (105)

k-0

with

`(0) 	 (O, 0, 090 O, g(0)I
	

(106)

ensuring that in the "unperturbed" limit F_ . - v. 0 , yn alone varies and

all other components of y (to be collectively denoted by y ) are

constant. It is further assumed that the unperturbed system is periodic

and that yn is an angle variable appearing only in the amgie-amgument of

periodic functions. The zero-order growth of y  is then assumed to be

linear, from which follows that gn0) may depend on y but not on Y. .
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To eliminate the periodicity from this motion,'Krylov and Bogoliubov

used a near-identity transformation to new variables z , given in a direct

r	 form inverse to that of (37)

y	 z ♦ 	 e  (k) (Z)	
(107)

The new variables, which can be derived by a suitable recursive method,

have the property that the equations by which they evolve do not contain

the transformed angle variable z  on the right-hand side but have the

form

dz/dt	 k h(k) (z)	 (108)

The first (n-1) equations of this set, representing dz dt, then

form an autonomous set not involving z  and can be solved independently.

If y represents a perturbed periodic canonical system with a

Hamiltonian of the form (50), then the canonical equations of motion

have the form (105) and the Krylov-Bogoliubov method can be used to

eliminate the angle variable yn = .f1 . Unfortunately, unless precautions

are taken (22)(23), the z variables will in general not be canonical, so

that the transformed variable corresponding to the canonical conjugate of

yn will in general not be a constant of the perturbed motion, as is

automatically achieved by the Poincare-Von Zeipel method.

On the other hand, the Krylov-Bogoliubov method has a much wider validity

and can be used in non-hamiltonian systems. A similar elimination,procedure

which derives the transformation in the form (37) has been devised by
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Kruskal (8)(12) , who followed it by the derivation (for canonical systems

only) of a constant J of the motion, obtained by an ingenious application

of integral invariants (it is the same constant as is obtained by the

Poincare-Yon Zeipel method).

Here the Krylov-Hogoliubov method will be generalized for the case when

slow variables are present. As with the Poincare-Von Zeipel method, this

allows the restrictions on the form of the zero-order equations -- embodied
some

in g(0) -- to be eased. Speoifloally, Avariables other than yn are now

allowed to have a zero-order variation and this variation (as in the

canoni-cal method) is passed intact to the "reduced" equations involving z .

The calculation will be done for the transformation (107) i the treatment

of Tvuekal's method, using (37), follows practically identical steps and

will therefore be omitted.

Following the notation of (89), let R and r denote the slow and normal

components of r , and let IL Rk) and '►I rk) be corresponding components

of '-It (k) . Substituting (107) in the left-hand side of (105) gives, with
the definitions (67)(68) extended to r variables

dy/dt a dz/dt +
EF

,k C-b y (k)/,D za ) (dz /dt)

k, s

= dz/dt +"^k 
( ^.T ,^(k- Cs )/ 

c7 Zs) 2] ^m h(m)

k, s	 m=0

k-1

= dzfdt +	
Ek V-1 

( ,-D -q 	
m — rs )/,a Zs) h(m)	 (109)

mM P

ftyressing a typical term of the right-hand side of (105) in terms of z

R

-I- -
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gives, in a manner similar to (88)

(k) (Y)
	 =	 g(k) ( z +, Em ' (m) )

exp,
	 ('''l e®)•/'ac s )	 * g(k)l:^

m, s

03Cp 
	

m (	 (m- rs 
).'^1-a Zs ) 1 ^► g(k)(2)

m, s

E Em K(m) * g(k) (z) (110)

The operators K (m) resemble those of (89) but with-
11
(m)

 everywhere

replacing 71 (m) . Substituting preceding results in (105) gives

k-1

dz/dt	 k	 [,(m)*  g(k-m) -	 ,^1 k-m- rS )^,, eh(m)

k=0	 m=l	 e

+ (K(k)* g(0) )	- 	 (k- rs )1,-a Zs ) • g(0)

	

s	 —

+	 (1 - SkO) g(k)	 (111)

where the factor preceding the last term denotes that it be omitted for k = 0

(in that case it is already counted as the term involving K (k) ) and where in

the summation preceding tUs term h(0) has been replacid by g (0) , which

equals it since in the limit E-* 0 eqs. (105) and (108) coincide.

Comparison with (105-) shows that the expression in the square brackets
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equals h(k) (z) , and this equality 'forms the basis of the ,recursive deri-

vation of h(k) and	 (k) .

The situation now resembles that of (63): in order that the recursion be

at all possible, unknown components o!	 (k) must appear in (111) only

once, otherwise the result is a partial differential equation and cannot

be easily integrated. One term which alal s1 contains (k) is contributed.

by the last summation in (111) and equals

('aI(k)/n z n ) 8n°)

since9(0) does not vanish and zn , the transformed angle variable, is

"normal". No other appearance is permitted, hence

g(0) ,z 0	 for	 r a -o	 (?12)

or, stated in words, "Only slow variables and the principal angle variable

Fre allowed to have a zero-order variation."

(k)	
the term contain

In addition, YL 	 could enter through h K , which has the form

(compare eq. 89)

(113)

with N(k) containing lower ordezu. No problem arises here pro

	

	 (k)
_r

is derived first and
(k) 

only afterwards% because of (112), this term

is absent in the first part of the derivation, while in the second part those

components of "I(k) that appear in it are already known. In either case one

gets

i
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(^i	
(k)/,Z zn) g^0) +	 h(k) (z)	 •	 (k)	 (114

where (k > 0)
k-1

^(k)	 K(m)* 6_ (k^) -	 (k- d; - rs )/ ', Z® ) h(m)

~	 m=1	 s
(115)

+ (K (k)* g(0) ) + g(k) _	 (rb-a(k- rS )/, Zs) g(0)

s ^ n

depends only on lower orders. The Dolving of (114) then resembles that

of (21)

CONCWSION

In the preceding sections the main methods of classinal oer'turbation

theory have been extended to slowly (or adiabatically) perturbed systems.

At the same time, the basic concepts associated with such systems (e.g.

adiabatic invariance and implicit E ) were examined and clarified.

The restrictions on the forms of the zero-order equations for slow

perturbations have been derived and are generally less severe than for

small perturbations. The extension of the methods themselves is relatively

straightforward, involving mainly the shifting of indices for quantities

corresponding either to slow variables of (as 'n the case of I*(k) ) to

variables with slow conjugates. With the use of expansion operators the

treatment is only slightly more complicated than for small perturbations.
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