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INTEGRAL EQUATION FORMULATIONS OF SCATTERING
FROM TWO-DIMENSIONAL, INHOMOGENEITIES IN A CONDUCTIVE EARTH

John Robert Parry

ABSTRACT

The electromagnetic fields scattered by finitely conducting cylinders
of arbitrary cross section in a conductive half-space with an arbitrary
earth-air profile are calculated, The following conclusions of importance
to geophysical exploration are reached: 1) The ratio of real Gb to
imaginary (ﬁ} is a function of traverse position x and ground conductivity
O, as well as the cylinder conductivity ; 2) Topography can give rise
to a tilt angle of about 5° at an operating frequency of 1000hz., ground
conductivity of 1()—3 mhos/m and normal incidence of an Ey-polarized plane
wave; and 3) In no case was a zero phase observed, even for perfectly
conducting scatterers.

The problem is formulated by choosing én integral representation for
the eleqtromagnetic fields in each homogenéous region present, By enforc-
ing the %oundary conditions omn tangentialqi and'ﬁ; a set of coupled inte~
gral equations results which can be solved numerically for the unknown
equivalent surface current densities on the interface bounding each homo-
geneous region, Once these current densities have been estimated, the
fields can be calculated at any point from the general integral represen-
tations.,

The wvalidity and accuracy of the integral equations are demomstrated
by comparing numerical results with analytical results for scattering

from circular cylinders in a conductive whole-space assuming plane wave

iv



and line source incident fields, It is shown that three-dimensional source

configurations can be considered by expanding the primary current distribu-

tion and the field it radiates into a Fourier integral over a continuous

mode distribution.
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CHAPTER i

INTRODUGCTION

The determination of the electromagnetic fields scattered by conducting
inhomogeneities reduces to the solution of a vector Helmholtz equation.
Unfortunately, the classical method of solution yields analytical results
only for those inhomogeneities whose surfaces coincide with coordinate
surfaces of orthogonal coordinate systems in which the vector Helmholtz
equation is solvable by the method of separation of variables, In these
special cases, which include wedges, spheres and circular, elliptic and
parabolic cylinders, the fields in each homogeneous region are expressed
as a sum of mode functions, and the unknown constants are determined by
matching boundary conditions., This theory has led to useful solutions fox
scattering from objects of simple geometry in a conductive whole-space when
the characteristic dimensions of the inhomogeneity do not exceed about 25
wavelengths., 1In the éast, the important geophysical problems of scattering
from multiple conductors, conductors of arbitrary shape,and conductors in
a conductive half-space have received little attemtion because of the
intractability of their formal solutiom,

The possibility of a general nuﬁerical solution of antenna and
scattering problems was suggested first about ten years ago by Sinclair
(1959), and was based upon an integral equation approach investigated by
Albert and Synge (1948) and Synge (1948). In this short paper, Sinclair
pointed out that with the availability of high speed digital computers

it 15 possible to obtain numerical solutioms of electromagnetic boundary



value problems where suitable analytical solutions are often difficult to
obtain. He notes that while *. . . analytical solutions may be aesthetically
more pleasing than numeric;l solutions, . . . this is of little interestto
the engineer concerned with the design of a particular electromagnetic
system. "

Of perhaps more importance is that he notes 'also that ". . . even
when analytical solutions can be obtained for electromagnetic problems, it
1s usually found that a great amount of calculation is required to obtain
numerical values, as, for example, when wave functionms in a given coordinate
system have to be computed, In many cases, direct numerical solutiom of a
suitable differentilal or integral equation can yield the same accuracy of
result with little, 1f any, increase in the amount of computing required,!
In particular, we might note that D'Yakonov (1959 a,b) has published a
solution to a circular cylinder and a sphere in a comductive half-space,
and we have yet to witness numerical results for either of these particular
problems,

Some of the first numerical results of electromagnetic scattering
problems were presented by Mei and Van Bladel:(l963 a,b) end Andreasen
(1964, 1965 a,b), Later published work includes significent papers by
Mitzner (1967, 1968)., In these papers, the electromagnetic fields exterior
to the inhomogeneities are writtem in terms of integrals around the comtour
bounding each 1nh;mogeneity and in terms of a surface impedance boundary
condition. These integrals involve the two-dimensional Green's function
and equavalent electric and magnetic surface current densities at the
boundary of each inhomogeneity. The unknown equivaleant current densities
are estimated by enforcing the electromagnetic boundary conditions at a

finite number of points on the boundary of each inhomogeneity. In so



doing, a number of sampled values of the unknown current distribution
15 determined, from which the scattered fields can be calculated at any
point using the general integral representations. ‘

In the present study,integral representations are chosen inside the
scatterer as well as exterior to the scatterer. This appreocach removes
restrictions upon the conductivity and curvature of the scatterer inherent
in the above formulations, although it leads to more complicated integral
equations. However, it leads also to a consideration of the problem of
scattering from cylinders in a conductive half-space.

Since the coutour can be deformed into any shape desired, it is
possible to formulate and solve any scattering problem within the storage
and time limitations of a computer solution. Although this study will be
restricted to scattering from two-dimensional inhomogeneities, 1t is shown
that the incident field i1s arbitrary.

The purpose of this dissertation is to consider the theory of integral
representations as applied to solving two-glmensional geophysical scattering
probleéms., In particular, examples will be given to demonstrate the wvalidity
and generelity of this approach. However, due to the length of this subject,

a general numerical analysis of geophysical scattering problems must be left

to a later study.



CHAPTER 2

DERIVATION OF INTEGRAL REPRESENTATIONS FOR E AND W
Silver (1965, p. 201) has shown that if a two-dimensional waveguide
1s homogeneous in structure along the axial direction, only rwo independent

field components, E_, and Hy, exist, and all other quantities may be derived

y
from these. Since similar conclusions can be drawn for two-dimensional
scattering problems, the first task in treatment of scattering problems

is to obtain general representations of the axial field components,

Integral expressions for Ey and Hy were obtained by Papas (1950)
and Borgnis and Papa§ (1955) in investigating scattering from circular
cylinders of infinite conductaivity. Andreasen (1965 b) showed that their
work could be modified to general integral representations for Ey and Hy.
In this paper, Andreasen assumed that the surface impedance of the inhomo-
genelty was very small with respect to the impedance of the exterior region
so thdat his final integral representations are not sufficiently general
for earth scattering problems:

We will follow Andreasen's development to obtain general integral
representations for E and H interior and exterior to the eylinder. In
section (2-5), it will be shown that the general integral representations
reduce to those given by Andreasen 1f it is assumed that the scatterer
has a low surface impedance and that the skin depth is much smaller than
the radius of curvature., Although the integral representations in the
exterior region are modified only slightly by making these approximations,

the adyantage obtained is that the solution of the resulting integral

equations is much easier. However, if the problem of a cylinder 1n a con-

'



ductive half-space is to be examined, the gemeral integral representations

must be considered,
2-1 Derivation of Integral ExpressiPns for EY and Hy

We begin with Green's theorem (Stratton, 1941, p, 165) for any two

scalar functions & and ar ,

,’ -

J U P - o T dmolh} 5“‘3"""”—“}&(“‘"}' 1)

om A’
Yol Greqa,

In equation (2-1), B/éﬂ; is the derivative in the direction of the outward
normal to the volume of interest, which is defined in Fig. 1 as the volume
between the surfaces C1 and 02.

If we add and subtract R«v on the left-hand side of equation (2-1),

we obtain
dlvel)
j' {u(v’w‘&),q— v (v‘+k")u5,\=§ { W — wrdu (o (wea). (2-2)
dn’
Q 3

"(0! red ; o

Assuming that the scatterer is two-dimensional, then an integral
expression for Ey(ﬁ), the total electric field intensity in the source

t
free volume between C1 and C,, can be obtained by settingu = Ey(ﬁ) and

2’
AT = G(?,i;") where E;(ﬁ) and G(‘f,’e") satlsfy the equations

=0 . (2-3)

The vector p' refers to a source point on the surface and P refers to a point

in the volume between and on the surfaces G, and Cy. Applying equation (2-2)



to (2-3), we obtain

_’ t,. ., . . )
...J E;{F)fg (F_F’)o“\fai) = - E;[f ) =j l%(r)_g_f?(f:,f\ )—GIF‘P );%:Jt(r )}c‘.(&mXZ 4)

Vel are

However, equation (2-4) gives E;(ﬁﬁ at a source point in terms of the
total field around the boundary. To obtain E;(ﬁ), we invoke the reciprocity
relation of the observation point and the source point. As a result, we may
interchange p and ?' in equation (2-4) and replace G(ﬁ',?)lﬂrG(ﬁ,ﬁ') pro-
vided the Green's function is symmetric,

Morse and Feshbach (1953, p. 808) show that G(§,p') is symmetric if
1t satisfies some homogeneous boundary conditions on the boundary surfaces
in both the P and §' coordinate system. Since the choice of which function
we adopt for G(ﬁ\,'@') is optional provided equation{2-3) is satisfied (see
Jackson, 1962, p. 18), we will ensure that G(p,B') is symmetrical by choosing
the whole space value of G(p,¥'). Thus, a homogeneous Dirichlet boundary
condition exists at infinity since G(p,p') satisfies the radiation condition.

Equation (2-4) now becomes

(2-5

The total electric field intensity at any point is represented by the
sm of an incident electric field E;(ﬁ) and a scattered electric field

£ (5).
v (®



[ P, 2 pee
Ej(f) + Ej (‘ﬂ . (2-6)

—
qhbl
ol

If we let the outer surface C, approach infinity, then the second integral

2

of equation (2-5) becomes

T 26 (3 53 - Gt ')QE"L ds’
J;l l f S_. r r F én. F }
(2-7)

R
5L C
+ B (5) 36 (5 57 - 65, 5') OB, (5" "
J { y P _5.:(f,f1) f,F)__i (fs) ds
¢a n on

Stratton (1941, p. 360) states that every two-dimensional electromag-
netic field at great distances from the source can be represented by linear

., \ w8 0y ol
combinations of elementary wave functions of the form tQ“k=.L (EP]JL

Assuming that the source of this wave is on a line, then the elementary
wave functions are independant of @ and only Q{k is required, Thus, as
L

p—> @0, these {circulaxr) cylindrical waves will behave like _.2 ¢

) 0 i v P
when H0 (k ) is expanded for large p.

As C, approaches infinity, the scattered field E (e ) and G(3,9') will
behave as cylindrical waves for each point ' on C,. Consequently, both
f’

functions will behave as /_7 except for constant factors, As a

result, the second term of (2 7) becomes

ik’ AT Lhp ik ‘
o (F R &)
e IF WL

‘and the difference of the two terms under the second integral tends to zero

for each P’', and the contribution of the second integral is zero.



This is not true for the first integral since by assumption the
incoming plane waves never vanish at infinity, In fact, the first integral

is equal to —E;(ﬁ), which can be seen by applying equation (2-2) to
(VHRIE (5 ~o } (2-8)
(v+ le")G(F'?’) = - S(F*F’)

Equation (2 5) now becomes

{G‘F:f"ﬁ‘ﬂ - E;lf')éﬁiﬁ,?’)} de. @9

By comparing equations (2-6) and (2-9), it is evident that the

scattered electric field intensity is given by
£ - I t, . . ,
Ej"- {p) - j {G[f’f’ VOB, (57 - E;(F:)&LF)P,) K"QS ) (2-10)
¢ dn’ on’

S8imilar expressions for H;(ﬁ) and H;C(E) can be obtained by setting

W = H;(é) and AV = G(p,3') in equation (2+2), where

(Vs k) Hy (Fi=o0 E . (2-11)
(V) Gpp= - S(-¢)

Following a development which parallels the above, we find that

Hy () = 1y (f) +J

cl

(s o yt(s/ A5 s 5] 4o
{G(;s)f)é_ﬂ;_(r)_ Hyflf)g_cg’_(m)fds @1
on’ on’

3= ) Spp) M) - w528 (g o] ds
2 e it da’ f on' P (2-13)



Equations (2-9) and (2-10) and equations (2-12) and (2-13) are
integral expressions for Ey(’ﬁ) and Hy(p) respectively. However, since a
normal derivative of E; (') and H;(ﬁ’) 1s required rather than a tangential
derivative, these expressions are not in a particulérly convenient form.
Andreasen (1965 b) has shown that by manipulating Maxwell's equations, the
normal derivative of Ey and Hy can be transformed into more suitable
forms. Using these representations, an integral equation solution for
the unknown boundary values of F and ¥ can be formulated easily,

%

2-2 Suitable Expressions for the Normal Derivatives of Ey and I-Iy

Starting with Maxwell's first two equations and assuming a time
2 q g
- 3

dependence of \,;“Jt, then

GXE = - 2‘)—-_ = ! -ﬁ |
S Lue (2-14)
‘ﬁx?{ = é:i + T = LT‘—ELOS)E

at 3 (2— 15)

from which we may write

LpwHy = :.lej E, - 28, ; (2-16a)
a2
[/uu) Hf} = éE,K N QEE , (2-16b)
IF oK
Lo Hy by £, (2-16c)

0

WL@J

NI
]



10
and

(G-iwe) By = ikylp - oH, | (2-172)

(o-twe) £, = Hx - Mg (2~17b)
aZ on

(v-twe) B, = My | ;Lj He . (2-17¢)
ax

In equations (2-16) and (2-17), we have assumed that the Yy
dependence of all field components is of the form .Kf%j. Such an axial
dependence would arise when a primary three-dimensional current distrib-
ution and the field it radiates has been expanded over a continuous

mode distribution according to

=0 i
Y ixy,2) = _Lj P (x, by, 2z} 2 "”eﬂﬁ. . (2-18)
am J.

]

However, this problem will be discussed in more detail in Chapter 6,

when three-dimentional source distributions are considered. It 15 suf-
ficient to note here that in the special case of a plane wave obliquely
incident upon cylinders in free space, ky reduces to the axial compoment
of the free space propagation constant. Whenever a plane wave is incident
normal to cylinders in a whole-space, ky is zero.

Substituting (2-17¢) into (2-16a), them

GuoH, o _ by by I,Lj HA) - JE, . (2-19)
(T~ iwE) \ o« 2



i1

Rearranging in terms of Hx’ we find that

A
X U, - Ly éig, _ (e-wg) OB, | (2-20)
A Z
where ¥: = L~ \zj’ . (2-21)

Similarly, substituting (2-17a) .into  (2-16¢)

pwly = O, _chy (thyHz- ) @-22)
o (T-twg ) a2z

oY

Y Hy = (e-iwe) 3By Lli)‘.‘;_”‘i .

. 2-23
D dz ¢ )
Defining the positive tangental direction on the contour by
A As A (2_24)
s =Xy

and adding equatioﬁs (2-20) and (2-23),-we find that the transverse

B e
magnetic field intensity, Htr’ is given by

Xl-ﬁﬁ = llfydv;l HJ + (wcwe)(%h Ej)xg o (2-25)

Following an -analogous argument, we can obtain an expression for

the transverse electric field intensity E, . Substituting (2-16c) into

1
(2-173a)

‘ ) . | (2-26)
kq*..st)fa‘ 5 LL:! (.éEff - L&?j EA&) - %i y
* 9ﬂk) AM BZ



or

b,lE/x = leé.E.;{ - E/u[‘)é}_"_g )
3«; oz

and substituting (2-16a) into (2-17¢)

v
dux %)uu,o oz
or
X EZ = '/u.l.oi)_jig* + 1125_‘_)_% -
Ox Iz
Adding equations (2-27) and (2-29)
P . . A - - r
§ By = %w(vﬁHj]xj + LLth Ej .
Taking the dot product of & and equatiﬁns (2-25) and (2-30),
Sl - LLj My 4 (o-10e) OB
>3 an’
and k
a"z' E_g = ﬂ/uw%{ 3 L j ._Q_E.J_ %
an’ as

If we multiply (2-31) by ;uas and rearrange, then

aE.____,:leH whé“
S THEN Y AR

‘12

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)

(2-33)
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or
28, . pEX . 4 Zh My (2-34)
on’ /& ko as

where Z 1s the intrinsic impedance of the medium and is given by égJ.

Similarly, equation (2-32) becomes

T
My - 2¥ Es—jécé—%" (2-35)
an’ Zk Zk s

1f we substitute equation (2-34) and (2-35) into equations {2-9) )
and (2-12), we would obtain general integrodifferential representations
for E;(@) and H;(ﬁ) in terms of the axial and tangential components of
T and H on the contour, By applying the appropriate boundary conditioms,
ye could determine Ey’ E» HY and H_ on the boundary and, with these
quantities known, be able to calculate the scattered fields at any point
1n space., However, to conform with some of the terminology in the liter-
ature, and to obtain a more physical interpretation in certain instances,
it is desirable to introduce the concept of equivalent electric and magnetic
surface current densities (see Harringtonm, 1961, p. 106).

In brief, the equivalence principle states that many source distrib-
utions inside {outside) a given region can produce the same field )
outside (inside) that regiom*, As a result, equivalent electric and
ﬁagnetlc surface currents can be introduced to generate the same field

external (internal) to a region as do the original sources internal

(external) to that region. For our problem, these surface currents are

-

* Note that this informs us that the inverse problem is not unique,
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chosen such that the boundary comnditions, continuity of tangentiaqu and
tangential *ﬁ', are satisfied, Thus, the equivalent electric surface current
density 1s set equal to the tangential component of the magnetic field
intensity and the equivalent magnetic surface current density is set equal
to the tangential component of the electric field inten‘sj.ty at the boundary.

From the continuity of tangential -I-f, we obtain

or A X ('}TM - -ﬁ;“{ ) = 0 , (2-36)

Axoy =Rxflp = K (2-37)

b

where ©t is taken to be the outward normal from the scatterer. We conclude

then, that the equivalent electric curface current density components are

given by,
% H5§\=i> He = Kﬂ ) (2-38a)
oy xHﬁ-_—: Hj = - Kg (2-38b)
Similarly, the equivalent magnetic surface current density components are
given by, -
Es = Mj ; (2-39a)
Ej = - MS‘. (2-39b)

Upon introducing equations (2-38) and (2-39) into equations
(2-34) and (2-35), our final expressions for the normal derivative of

EY and Hy on the boundary become '

Q/
\
=1
Ny
o
M
oo
Y]
ol

PRE1. %Es , (2-40)
s

— (2-41)



15
2-3 General Field Representations for the Exterior Region
Coupled integrodifferential representations for E;(p) and H;(p)

are obtained when equations (2-40) and (2-41) are introduced into (2-9)

and (2-12),

\ de (2-42)

and

¢

Z
+J’ Ks(f’) aé( ,) da . (2-43)
1 f
¢ aﬂ

It is shown in Appendix A that the two-dimensional Green's function

is

&) = L Wy (K15-51)

! 4 (2-44)
where Hi? 1s the Hankel function of the first kind and order zero,
representlng an outgoing wave, and ¥ is the transversé propagation
constant, and is‘related to the propagation constant E of the medium
by equation (2-21).

The derivataives of the current components in equations (2-42) and
(2-43) can be eliminated analytically with integration by parts. On

carrying out the partial integratiom, and introducing equation (2-44), we

find
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z

) = &0 -

:‘f;r“[ Kylp W' Y 1p-51) L’
1

+_';_Z__|?;J mf)an (X!Ff &s +"st1;:)3“(}(¥1” J, (2-45)

and .
Hy () = Hy (5) M G )u”ur\ D ds’
y P J 42\@{ P
(2-46)
- il ‘(Msi ) 3l (Yi_5t)ds Ks(f’)su (615 l) s
gggﬁr aa 4 Dn f r
The normal and tangential derwatwes of H (‘di{a Pl) are
given by
W) - (%) [y, W ()] -
0(.3) (g') l: Wan ° fp (2-47)
Since
fé_%_?._(s)‘ -2 Z[f,) + ., 43) : (2-48)

a3 3

where Z:} kg) is any Bessel function,

Z.“('S) a (=i)° Zn{s) s

and

then

1

dZ ) < oQZo(b’)ol(h’g) ¥ 320@ + Z cxsx]éé, ]
T e 4 l I M

a) _ )
Thus, the transverse derivative of Ho (XIF-P is given by

v, HoWippt) s [ﬁi.. Ao+ A_é] Wy (/oo™ G )

dx’ da’
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Y[R (z-2% %J KOy 551

[5-5"

s

. 5> ) -
= ¥ { e F,ﬁc + SM«PZ) H, LX\F-PJI) ,
(2-50)
where % is defined in ¥ig, 2 as the angle formed by the R axis and the

line between the point of observation and a point on the contour.

From Fig, 2, we have

A s xRk sma E , (2-51)
!
A
A = (o (oc.+ !80")& 4 Sim L¢L+\60"-)§ R ) (2-52)
A I A A
i} = cos(ec-&‘ia")m + S L«.«t%")z = o Suma X FEOSL T . (2-53)

Using equations (2-50), (2-51) and (2-533, the normal and tangential

derivatives of I-{‘l}(z"\?-ﬁ ) become
o

_é‘__ Hytkif-?"): X(MPle +$'mF$0h¢c.) H?)(_X]F_Fq)

dn

Y s lp-) W LYIF-F’I) , (2-54)

and

A H 1) = Y s (peatd W L1p-p1) - (2455)
ds’ l

W

When equations (2-54) and (2~55) are introduced into equations

(2-45) and (2-46), we find
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s [ 2 T y
= P= gip - 2 ij(p KOst p-pe)d
!

' ‘LZ;-HP k(59 smlp=a) WY1 ds 4 7“ Ms () an (g =) Y IF-p)
4 4 <

e, (2-56)

and

H§ () = H; (F) + _.?_‘..I_J' MthB Wy (Xl'p-ﬁ’f)@asi
4zk ¢,

. P \ITRVEUR !
- k¥ JM', ) sim(p-) KWW 5 371’ +s.q“sif Jeostp-=) B -5)
2k % ' 1% (2-57)

Equations (2-56) and (2-57) are the desired coupled integral rep-
resentations of E;(ﬁ) and H;(ﬁ) for the extérior problem. The point of
observation, p, is exgeiior to the inhomogeneities present, and C;
represents a contour integration around each scatterer present. Once the
equivalent surface current densities are known, the field components
are détermined From equations (2-14), (2-15), (2-56) and (2-57).

From equations (2-14) and (2-56), the scattered tramnsverse magnetic

field intensity is given by

Hh=-t Vx(EJ§)=j_(E_§12~i§_y%)~ (2-58)

It follows from equation (2-49) that’
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d R - 2 2) o (p-p) = -__}{____[Lz—z’)o‘%- um')%] W p-57)
> !

- _3[5«4«‘5“- cosp2 ] H( ()5[ “’J)

(2-59)
and
(fg‘t‘i 2R 05 < =¥ [ simpi - mp ][_ﬁim,e_g_z #L’Uf'f-f’i)]o
an (2-60)

On expanding cos(F - 2), we find that

_?__ cosf F:-o{) = _é__ o8 o (- ) +‘SEA-\.&L LE-Q') ]

az IZ IF,]E’I }F-P"\
= _1 (- -1 SiMFac.oSp y S ot - SLMeLSLniF,)
)F'F'
s . wspsim{p-ad | (2-61)
Lp-f

and

_}}_w%lF, —et) = Sm'fjs}w('p-o() .
bp-pr) (2-62)

Similarly,
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__D_.S\-/W(F—d) = ;‘[' ool (- ') L Coset (z-27)

Dz Iln \"f—{?’l
= Lo.sﬁ: Cas(i'ﬁ o) > (2-63)
)!o 57l
and
; SW(F —%) = - SCMF- CoS(P-"‘L) s
5/)( \p-p"i (2-64)

When equations (2-56), (2+59), (2-60), (2-61), (2-62), (2-63), and
(2-64) are introduced into equation (2-58), we find that the scattered

transverse magnetic field intensity is given by

‘n;c -'-;L__g__g f K LP)HU)(le) )(s;’“F”:"‘"’ng) a(s'
4 > A

{

- _l‘_fg_b:z Kstf’){Sm(ﬁ-nﬁ)[“?(ﬂ'ﬁ-ﬁ'l) - HY (X 15571 )][Scm(s/x ~ tos ‘,'%ZJ
qk* ?rlF

L
1

+ (.os(/swet) (K‘ )l (oS (54 e Smrﬁ Z]F

l“ F

B ——_—

Ll I - g )] [sip2 < p2]
pedl V7

- Sm(/&»d) Mx, leIE “f_.’l lc‘osfﬁ/x £ 8B z jaﬂf' y (2-65)
£-f
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or"’“‘st - 3 . ! A A !
HE - 1%’ Ky H LB p)) (s p 2 - cos o2 ) s
E!

- %{Q_E_ |<SLF’){ Sin (pmmt) H?WIF- F’l) (sin ‘bﬁ -w@s f z)
cl

+ H?)(YIE-E’I) ({,05 (Zﬁvob)ﬁt + Stn (_:.F,-ad% )} (is’
¥ !FFF’\

- ¥ j’ M:,(F’Sics%(f-“ =) Hf’(mf-f's)imp,& - c°sp$)
o e

- HX g 1) (SinGp=a)R- costap - 2 ’E ks’ (2-66)
YJF_ pr

Similarly, from equatioms (2-15) and (2-57), the scattered trans-

verse electric field intensity is given by

R o 1 Vx (Wi g)e -eE (éﬂ_ga- é;ihf‘%) . (2-67)
(a- iwe) A 2 <

It follows from above that

—_— B : — ‘
E‘; - % MJ(FI) H?L‘(l“s-f i) (s.mp;:‘c -cosP% dds
N

{1 J
- ]?:J Mg(3) ) sim(pma) H (Y1 G-571) LsinpR - cosp )
_Y
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+ HL:) (\Q/h.)_,nt) ((55{‘1}3——01) A & gim (2pp—e) Z )i ds’
¥ip-p!

+ %[—Ej f KS(F'){U,S(F,wQ H‘Q’QKIF-F’r)Lsm P.«S’E - ceos Fg)

_L_X_I'E_ELLSWL:LP —aA) & - Cos (_-;_F, g)z)f ds. (2-68)
Kfla

2-4 General Field Representations for the Interior Region

We wish to obtain general integral representations of E;(ﬁ) and
H;(i) for the interior problem. As in the exterior problem, we begin with
the modified form of Green's theorem, equation (2-2), and set the two
scalar functions L and A~ equal Lo E;(ﬁ) and G(?,@') respectively. Since
our volume of interest is bounded 6n1y by an outer surface Cl’ Green's
theorem yields the result that

-..__d

i Wa@ *Pf"é‘/‘f"“’ G j&s.cz 69)

cl
In equation (2-69)) f is the outward normal to the volume of interest

(Fig.3) and is equal to-%' of the exterior problem, Gi(ﬁ,ﬁ') is the whole-

space Green's function of the interior region, and is given by

) P-F' l) . (2-70)



23

Thus, our integral expression for E;(ﬁ) is

i , - s -
E:j.- [Jp) = J;{C(rf ) E LP) _?__ ff j (2-71)
!

By comparing equations (2-71) and (2-10), it is evident that our
t
integral expression for Ey(ﬁ) for the interior problem 1s equal to the
negative of our integral .expression for E;c(ﬁ) for the exterior problem.

+ t -
Thus, we may write the integral representation of Ey(p) from equation

((2-56) as

-t T A L, ) n L g 5 ,
Y {,ﬁ“)= E&g&. J} Kjl{.v ) H«;(\(L,f-i: l)ﬂLg’ - (,Z[ bhx{j KS(P)SW(F— JH, LBJP'{’ ;)@ﬂs
4R J -———-f-k—--(']lzr .

- .L_E- J MS(F') cos (-t m)(X;IF-P’I)oP,S’.
4 ¢, ‘ -

(2-72)

.
Since similar conclusiomns can be drawn for Hy ('é), we have from
equation (2-37),

H§(]a)= _Y; gMﬁ')H (¥; -3 i)&s + LE[ jm LP‘Ssm(P DY AFSIVECY
42,k % 42; by

o

L

(2-73)
i _}4’ kst cost pat) FPLY; I5- ~f1)cﬂs
4 Y

From equations (2-66) and (2-68), the transverse field components

are 8 iven by



ﬁt = 1_\6.3 j Kj LF') H?) LKLIF-'P'!)(Q\M Pz; - Coslﬁ.ﬁ)oﬂ.s’

L <
1

+ Ry X J Ks{ﬁ')%Sm[F-a\Hﬁ? LK,;\F,F’I) (smp 2 - Cos[&%)

AY .‘

¢ WP ]) Ceosap-d 2 +shdgp-4)£?}dﬂ
KL}F-'F‘J

+ X" J MSLP'){ ce.s{F,—oL) H:)(Xgl‘ls-’s"l)(s’m[&&_Cosfaé‘)
ﬂ/ufw <

) (i apeR a3 T

X i?a"li"l
and
BE o X [ oMoy HOG ) Usim pR = cos p 2 )b’
nT - ( g PO p-pl) Lsin P i
4Z- k. ~Ie

L f

+ kﬁg‘:—f Mg(p”) § Sim (p-at) H?(\’;l F-F'I)(sim P& - tosf )
'q L C'

+ H?) (XLI!E-F'U (cos(’zls-»on)& +53-(1P'°‘\§):§ ds’
LORT-2E

- Z,:X'-:'_( R_g(f)“) { COS(P'OL) HE)LXL!F—F/i)ismP/?( - CcSPQ)
4}2; C

i

- H?)Df,. )p-‘is‘l) { sim (1[3»—&)2 - costfzfa-*ol)i f ds'e
¥; )P-P"l
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(2-74)

(2-75)
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2-5 Representations for-ﬁ and H When the Scatterer Has a Low Surface
Impedance

The integral representations for E and-ﬁ‘51mplify considerably
when the scatterer is assumed to be highly conducting. The reason for this
18 that—ﬁ'and-ﬁ'take a particularly simple form just inside the scatterer,
and may be assumed to be zero further from the boundary as a result of
?ttenuation.

The angle of refraction at any local site on the contour is given by

Snell's Law as

. 2 .2
Cos 8, = / | - _jk_:_z; S & . (2-76)
R;

In equation (2-76), 91 1s defined from Fig, 4 as the angie of incidence
and 92 as the angle of refraction. It is evident that 1f kt>> kz, 92
is approximately zero even far grazing exterior angles of imncidence. As
a result, the total field at any point just inside the scatterer may be
represented by a wave propagating normally away from the coutour. Following

Stratton (1941, p. 354), we may write that the transverse electric porfion

of the field must satisfy the relationship

Es = - Hy (2-77a)
(Ey =E, = HS =H = 0) and the transverse magnetic portion of the field
must satisfy the relationship
=2 (2-77b)
B =Fy b
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(E =E_=H =H =0). Z, and Z_,_ are the cylindrical surface impedances
s n y n is iy

which Stratton (p.360) shows are given by

2, (5)
Z¢5 = W 24 (2-78a)
b Zals)
and
- ) Ak Z"{S) . 2-78b)
Zaj - _/“t"‘) _ 3 n(S) (

zn(_’)) represents a radially outward travelling wave and is given by

sy < HO(VE-RE p).

Since the wave is normal to the interface, }L is zero in equatiomns (2-78) and

(2-79)

(2-79) and we find that

Z, = Mw [_’L_ - Hz(::)n(kiﬂ)] , (2-80a)

ek Lhp WO Grp)
and
ZL = 1 i I 6
Y vﬁ'—/éa [ TN )] (2-80b)
B My

. )
When ki‘o is large, we can expand H:( kir) as

oo it
Wi~ [T 6

.

o

(2-81)
= [ + O(E’:-)) ) 1
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so that
Gy . ¢ -
Hoo (bzp) - - (2-82)

where ”Bbrl >>) 5 }k‘_fl > fLL t:tru’j~ -.b < a.l‘g(‘?;f) £l ,
Equation (2-82) s a good approximation if the curvature is small comparxed

to the attenuation per unit distance. In this case, equations (2-80)

reduce to plane wave surface impedances given by

Zi ¢ T /M , (2-83a)
and kis
Z,, = -

J /aZEj ’ (2-83b)

where the subscripts on Z are taken to agree with the subscripts on E
to indicate that the plane wave impedance is calculated using the propa-
gation constant of that component of the electric field,

As well as being a very simple representation for the internal field,
equations (2-77) are important in that they relate the equivalent magnetic
surface current densities to the equivalent electric surface current

densities. When equations (2-38) and (2-39) are introduced into equatioms

(2-77), we find that

My =Z, K, (2-84a)

Ms & - (2-84b)

@Kj.

As a result, our field representations for the exterior region, equations
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(2-56), (2-57), (2-66) and (2-68), reduce to

Ey(p) = Ey (p) _sz Ky (9 W) (¥l 1) ds?

+ Li:ﬂ ) Ks(f)Sw\(P ~2) Y LB’I{J-"I)GQS - LX erf,ng,(,o)costﬁ a)u’(xi* «:,)As)

I (2-85)

and

HE HOE T y (p) + sz (F)ks(r)un(b’lfrf'l)&s

+ .".-_Lﬂ_..J iy 1)Ky (59 sim (AWM Y1351} ds” “H Ks(5) Cos( =) HOUY 1) ds

4Z k ¢, 2-86)

The scattered transverse field quantities become

' - %’3 Ky 1) WY (ot 1) (sim pt - cox p 2 3ol
48" Je

- _lggfd__;.fks(P){gw(P-d)H Q-1 Csiom p 2 ~cos p2)
4k

+ }f?(}{lg. E'l! (cosapayr +sim up-a)ﬁ)jcﬂs'
¥la-5)

s f (7) X [,){ coslp-a) W' (¥lp 1) (sim pR-eoa )
‘1/uw
- H?)Uﬂp"-ﬁ’l) (son(2p-a)& - cos(2p- =) 5)} i")
XIF-F’!

(2-87)



29

and
,_E__ﬁsc _ —1;};3 J ZLS {F,) K'g (F.’J H‘:) (X} F" F”) (5',,\,b Pé\c - COSF 2)(34.3!
4k* Je :

l

+ k:[ le Zi_‘j {f) kj[f':"){ Svn (!5-«) Hﬁju'lf»{i") (.SEM/QQ - c.c.s!_% Q)
¢ .

+ H(:)U” 5~ _’!) (Cosklf-d-)& ¥ Sim Clp—d)é); ds’
?le‘F’l
+ __%__)’_fj Kg(3") {C.OS(F,--:#) HSS'WIP'F”)(S;MF’A —-c,osf_l.%)
4 L - ¥

L]
¥

- B Hlpgl) ((sim (p)R - Coslap0 2 )} ds’ . -88)
‘J]FLF?:



CHAPTER 3
SCATTERING FROM PERFECTLY CONDUCTING CYLINDERS

We wish to evaluate scattering from cylinders for the limiting case,
Zl =2, = 0. TFurther, we will assume that the field is constant in the
s y
y direction (ky = 0) as 1s the case, for example, when-a plane wave is

incident normal to the cylinder axis. By making these approximations,

equations (2-85) and'(z-h6) uncouple and reduce to very simple integral

1,
-

representations. As a result, the solution of the integral equations
encountered in solving foé scattering from cylinders of arbitrary impedance
is more easily understood, and in addition, many of the numerical problems
which are met may be studied individually.

Mei and Van Bladel (1963b) and Andreasen k1964) have examined the problem
of scattering from perfectly conducting cylinders. Andreasen (1965a) also
has examined the’problem of scattering from perfectly conducting bodies of

revolution, In this chapter, the principle difference from their studies

will be in the physical situation to which the solution is applied.
3-1 Basic Integral Bquations

If we assume that Z; =2; =0 and that ky = 0 1n equations (2-85)
T y ‘ -
and (2-86), then we find that the most basic integral representations

for B_ and H_ are
¥ ¥

FRRZEI RS LS Rl e-D
C

30
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and
H; (F) = H; (F) +_i%_..r KS(F') oS (’F:-aﬁ) H‘:)[’?I]P’Fl,)&g' , 3-2)
C
)
ES - - o ] Ky ) WY (It os” 5-3)
ef
and

H;,( (F) = if !(s(F’) H,QJ (&,IF-F’/) ds’ , (3-4)
9 ¥«

where we have referred to the earth pa}ameters by the subscript i,

The electric field intensity radiated by a line source may be
determined by setting the surface current demsity in equation (3-3) equal
to a delta function source, With

Kj LP_,) - IB(FL-FI) ) (3-5)
where I is the current in amps on the line source,

equation (3-3) becomes

Eyp) = T A TH (bilg-5.10)- (3-6)
Prom equation (3:-6) it is evident that the integral representation for the
scattered field given by equation (3-3) may be interpreted as the summation
of a continuous distribution of weighted line sources around the cylinder
contour, radiating into the exterror region., In fact, it i1s shown 1n

Appendix B that equation (3-3) may be derived from just such a physical
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argument, rather than the mathematical approach used in Chapter 2, A similar
use of physical reasoning could have been used to derive equation (3-4).
Before calculating the scattered fields from equations (3-3) and (3-4),
we must determine first the current distribution about the cylinder. To
. —n ot
do this, we enforce the boundary conditions on tangential E and H, For

perfect conductors, these boundary conditions are
-}t

E (3-7a)
Tt - K., (3-7b)

A

a X .
A

X

If we let the point of observation approach-.a houndary point given

-
by the vector p and apply equation (3-7a), then equation (3~1) reduces to

G0 = s [ ko, (= 4. a0
9 4

Equation (3-8) 1s a singular Fredholm integral equation of the first kind
and can be solved numerically f?r the unknown funection Ky(?ﬁ once the
contour Cl has been specified. If we assume that the incident plane wave
possesses only an axial component of electric field intensity Chereafter
referred to as Ey-polarization), then we may write that Ei(?ﬂ) in equation
(3-8) is given by

_: e.la,l«”sbn@% + 270, )

Ey(p7)= ZH, 2 ) (3-9)
where B  is the magnitude of the magnetic field intensity in air, and 4%&
is the direction of propagation of the incident wave in Fig. 2.

Similarly, when the boundary condition given by equation (3-7b) is

applied to equation (3-2), we find that
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H:; (f';"/) = - KS(F") ‘%f Kg(F’)LDS ) H‘:}(h,l;if“")i;- (3-10)
<

Equation (3-10)1s a singular Fredholm integral equation of the second kind.
1f we assume this time that the incident field possesses only an axial

component of magnegic field intensity (hereafter referred to as Hy-
polarization), then we may write that H;(Fﬂ in: equation (3-10) is given
by T ‘ng ('A(”S-l:d;q){,:,.. + Z“ Coaf?m )

W (57 = Ho.,q, ‘ (3-11)
Once equations (3-8) and &3=10) have been solved for ky(?ﬁ and‘
KS(F,)’ we can calculate the scattered axial compeonents of the field

from equations -(3-3) and (3-4). The scattered transverse components

become, from equations (2-87) and (2-88)

Ay = b [ R Rl )i ) G-t
-4 e,
and

-ET;C = /_yé_wL Ks(f'){,;os:qg,-.,{) HS)(E,lpﬁf’l)(sanﬁa-mpé)

= Kb ts -5 1) (siw(2p-2) R - coa(2p-=) 2 j ds’. (3-13)
.},l?-F’l :

312 Nomerical Solution of Singular Fredholm Integral Equations

Kopal (1955, Chapter VIII) discusses several numerical methods used

s

to solve Fredholm integral equatdons. However, the common approaches

used 1in solving integral equations which occur in scattering problems
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may be divided into two general philosophies, These are referred to as an

expansion of the unknown

1) In functions of full range support, and

2) In functions of subrange support.

In full range support, one function is chosen to represent the unknown
arpund the contour, whereas in subrange support the unknown is expanded
in functions over small intervals. In investigating geophysical scattering
problems, an expansion of the unknown 1n functions of subrange support is
preferred to an expansion of the unknown in functions of full range support
since

1) The matrix is better conditionad

2) The integration time is faster, and

3) The edges of rectangular inhomogeneities can be handled

better,

Having decided on expansion of the unknown in functions of subrange
support, there are a variety of methods available for interpolation in the
use of these expansions. A suitable method is to expand the unknown in a
set of N algebratc functions and require the integral equation to be satis-
fied at N points. We have not investigated another popular method, that
of sinusoidal interpolation, since we do not have a good estimate for the
wave number in sinusoidal interpolation,

We will discuss two sets of algebraic functions which can be used.

The first set of functions has the advantage that a solution can be obtained
clearly and easily, whereas the second set has the advantage of being a

more accurate representation of the unknown.
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3-2-1 Constant Current Density Approximation

We assume i1n all discussions that the contour of the cylinder has been
divided into N straight intervals as 1s shown in Fig. 5. Then we can choose
to represent our unknown current density by a set of algebraic functions
consisting of a constant current density over each interval. This is

represented graphically in Fig. 6, and can be written as

N

Ky = ZRued (3-14

3

- & .

where  U;(s’) ={; y (S EsTE Gsavg)
[ elsewhere

s' is the contour coordinate,

s, 15 the midpoint of the jth interval,
w, is the half-width of the jth interval

and K_ 1s the amplitude of the electric or magnetic surface
3 current density in the jth interval

When equation (3-14) is introduced into (3«8), we find that

Q(s)\fﬂ?f ') s’

th (x”20n 80+ 27cos Pu)
Zl H° £ A—.r_ysi JJ

N S._)'+WJ. é) -, & ,

=m0 2 K H UEJp-f )) 5.
=t

4 5% (3-15)

The resulting integral can be computed numerically over each interval

of the contour. Thus, equation (3-15) ‘reduces to a linear equation with

N unknowns,

R

= B K +Bl?_ 92 + . . -+B|NK3N - . (3-16)
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Tf we enforce the- boundary condition at the midpoint of each interval,

we will obtain N linearly independent equations Vlth N unknowns, and the

problem has reduced to solving a matrix of the férm

(B)(K}) = () . (3-17)

Using standard matrix inversion techniques, N sampled values of the current

distribution are obtained,

(Kj) = (B)_'(R) (3-18)

Equation (3-18) 1is an apprgximate solution of equation (3-8).
3-2-2 Quadratic Current Density Approximation

Unfortunately, the constant current density approximation given by
equation (3-14) is not always accurate, especially over those intervals
on which K(s') varies rapidly. Rather than take a smaller sampling interval
in these regions, a better approximation is to choose a set of algebraié

functions which consists of a quadratic function over each interval. Thus,

we may wrikte

N
K(s) = 2 u: 9 (3-19)
=t
where
u; {s’) = Fij + B (s’-5;) + ¢ (s™-5;)" ) (SJ-'\Q)é.Slé (s +wi) |
O 5 e‘s:wlxere, .

Equation (3-19) contains three constants per interval which are determined

by invoking three boundary conditions per interval:


http:c-sj-wfr).cs
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1) Enforce the usual E.M. boundary conditions at the mid-
point of each intervalJ
2) Enforce continuity of the quadratic fdnction at the edges
of each interval, and
3) Enforce continuity of the first derivative of the quad-
ratic function at the edges of each interval.
However, this would increase the matzix size by a factor of three, and
hence the solution time by a factor of 27(33), although superior accuracy
would be achieved,
An approximate solution which yields an N x N matrix is that which

assumes that the only unknowns are the set K, where
J

K.j = Kj(sj) = amplitude of the current density at the mid-
point of each intexrval.

With this set of unknowns, we interpolate over each interval by fitting

a quadratic function to the amplitude of the current density at the mid-
point of the jth interval and the midpoint of the two adjacent intervals,

as 1s shown in Fig, 7, While the accuracy of:thusset of quadratic functions
is not as great as that for the original set chosen, it is still greater

than the accuracy of the constant current density representation, and yet

1t requires assentially the same computer time as the constant current

density representation.

1

If we fit equation (3-19) to the amplitude.of the current demsity
at the midpoint of the jth interval and the midpoint of the two adjacent

intervals, we find that


http:hmplttude.of
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KJ = A,
k.'l-a = AJ - Bilwrw )b G (wj+wj_|)7,
KJ-H = A& + E\S(wj*wjﬂ) + C.j (wd+wj+l\ . (3-20)

By allowing the half width of each interval to be distinct in equations
(3-20), we have allowed ourselves the freedom to choose smaller intervals
for those regions where the current density varies most rapidly.

Solving equations (3-20), we find that

Hj - Kj
A 1
Bj = kJH - (t")‘j)l'ij‘ - AJ K.

=1

O+ ?;J)(wji-w )|

J¥!
i - - . . (3-21)
= Kj-HN ('*)‘J)KJ + Aj KJ-I )
& i+ AJ)
where
hj = w'l + wi-ﬂ )
W. LW,
and 4 41
Lj = &-Wjiﬂw‘iﬂ)(w\l— +W_1.) .

Introducing these values for the coefficients into equation (3-19), equation

(3-8) can be rewrittemn as

/ by (K750 @1 + 2o Q;Q)
ZH, = =

£,

N .;J'i'WJ N ,
Z ijj (g )1 (hems) - Loos) ) ds

W+ W, z
-W. d o dH J
5%
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Oed) 4 W w,

3 4w

4 d ‘ ’
kjoJ o (bt g s )( L+ 5oy ) ds

8w 3

k jHoU”F” -q)/\(s s)( A; - s’-s;)ols' .
$-w, (adg)y ® g, L.i (3-22)
As before, the remaining integrals in equation (3-22) can be performed
numerically, and thus the integral over each interval contributes to three
coefficients in each row of the coefficient matrix. It should be noted,

however, that caremust be taken in programming equation (3-22) to ensure

that the Nth and first intervals are coupled whenever the contour C

1 is
closed,
It is possible to rewrite equation (3-22) in terms of KY alone)
3
and we find that
vk, L& s @, + 2%cosB,)
EI HD £ =
-N_ J\)'I'Wj .
Z J‘ UEIF” -.:!)( (\—)\‘KSI-S‘) _ (S'-Sd)l) 015‘
4= W+ wy T
%-w— JHi d
Sies +:& -1
4 I
4 J HY (k, lp-571) £s1=3), { | + s=s )Jz’
s ~w. Gxd)) waw T.
RETEINESY 4=t
hl yl r !
; f 9 Glge ) A b 4),( M - _,‘_L)d -
a2, T\ W vw e (3-23)
.-~ W v T ger Jtt
+1 J+1

However, equation (3-22) is preferred for its greater ease in programming,
Equation (3-22) reduces to a linear equation with N unknowns, similar

to equation (3-16). By enforcing the boundary condition at the midpoint of



40

each interval, we obtain a modified coefficient matrix which yields an

improved estimate of the N sampled values of the current distribution.

- e
Y 4 el
j_ij - [8] [A]. (3-24)
A similar interpolation procedure can be applied to equation (3-10),

assuming H - polarization, and we would find that
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. £
where KSl is the amplitude of the current density at the point ? where the

‘boundary condition is being enforced,

Once equations (3-22)‘and (3-25) have been solved foxr the N sampled

values of Ky and K;, the scattered field quantities can be calculated from

equations (3-3), (3-4), (3-12),and (3-13).
3-2-3 Integration Through the Point of Singularity

When the integration is carried out over the interval in which the

boundary condition has been applied (the ith interval), the Hankel function

possesses & singularity and the contribution of this interval must be
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evaluated amnalytically. Fortunately, the argument of the Hankel function

is small in this interval, so that we can make the following approximations:

Mg (klpprl) - MO (/5575 )

oL R (3NsY) g;{ (1- & (5"e™) bt (Ss2)
2

A T 4
. (z‘w)f , (5-26)
4
and
HK:)UL )F"P,{) ~ ————--h“ 845”1 1 - k-L(S;S'l-) *+ % {h - B L'SB—Z+—-§‘1)]£“% L31+s‘1)lz
IR )
-—<__ _ 1. 5111'(31*__5!1)}} (3-27)
G S r e
where X': In ¥ = .57722 = Euler's constant,

s' 1s the contour coordinate measured from the center cof the

ith interval (see Fig. 8},
and g 1s the distance of the point of observation above the
center of the ith interval,
If lk”F’F" <£.5 , an error of less than 0,1% in the value of ﬂg(klﬁ-p‘l)
and ﬂ%&k{?-ﬁ'l) is obtained when using equatiomns (3-26) and (3-27).
Approximating the Hanyel functions by equations (3-26) and (3-27), the
contribution of the ith interval to B and B is evaluated with the point of
observation a distance $ above the contour. Having obtained these
integrals, then the contribution of the singularity to the boundary- con-

dition is taken as the limit as & approaches zero. It should be pointed
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out that since the original boundary conditions onE and H {equations
(3-7)) are derived by a similar iimiting process, this procedure is completely
rigorous,

If the point of observation is taken to be a distance 3 above the
center of the 1th interval, then the contribution of the singular interval

to equation (3-22) can be written as

gf:"h [M{ [ Hreo - (i"'a\i) H¥ot - HKOL] K
4

< L5
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W , Kl i
Hkol - J W (485" )ds 5 (3-29b)
- W;
WE 2 ) z
HKo2 = f < ﬁ; Ue“/ét*s' ),,ls’ . (3-29¢)
_WE

Equations (3-29) have been evaluatef in Appendix D assuming that

o) T
H, (EJ 5% S‘L) is given by equation (3~26). After the integrals have

been obtained, we find that

o-=0 1z

Diun (Moo = 2w, ‘ - Kw? Q‘[ w2 o Ve i "Jf
s (1Rl )y 2t Bw Y aalRe ) oW (3-302)
(-Eut)s 2] (- k)l - (1< ), ooson

Oin (Hkar) = 'O l (3-30b)
S0
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O (o) Ef{ (1 2kw ), ,%’f[( e ")wkw - - mfw:)H. (>-30¢)
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When equations (3-30) are introduced into equation (3-28), we find

that the contribution cf the singular interval to the coefficient of
KY' is
i
! ’ 2 1T - X . by
B o § (- ) 2l ) o Y (). k)
v ]Z 12 3 q

2 ‘TT 2

2 - 2 LR 8
w1 (- Fw Yy ﬁ{(u- S D LN Ay ] BE R 1D
37; 20 i 20 L 3 30
Similarly, the contribution to the coefficient of K& is
i+l

4]

B~ pwwd EU- 3__@{‘)4. 3}[(‘, LT LT - 2 kzw}j}) (3-32)
3

AN A0 g 20 2 So
and the contribution to the coefficient of ¥ - is
. ¥i-1
rd i r's
Bz-. = A By, - (3-33)

Equations (3-31), (3-32) and (3-33) are to be substituted for the
right-hand side of equation (3-22) whenever j = 1i.
A similar limiting process is required to evaluate the contribution

of the singular interval in equation (3-25), 'We have from Fig. 8 that

¢t (p-) = - m(txo"-(fs—a)) T (3-34)
s
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It follows from above that the contribution of the ith interval to equation

{(3-25) can be written as

Q@[E_L,_g_‘{[-_ﬁ; (-4) I, - I._,,]KSL
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Equations (3-36) have been evaluated in Appendix D assuming that
H‘:J(}Z‘Jg‘_;srl) is given by equation (3-27). After the integrals

have been obtained, we find that

gb—m. '(SI.) - ""H': Qm ('&w:‘ W;) = ~2¢ (3-37a)
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fin (81) = o (3-37b)
S0 :
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30
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When equations (3-37) have been introduced into equation (3-35),

then the contribution of the singular interval reduces to

(3-38)
vhich must be added to -Ks- in equation (3-35).
i

integral equatiom for Hy-polarizatlon as

Thus, we may rewrite the
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(3-39)

3-3 Symmetry Considerations

Andreasen (1964) has pointed out that a considerable amount of

computer time can be saved whenever the cross section of the scatterer

1s symmetric with respect to the z axis. In this case, it 1s possible

to expand the incident field into a sum of an even mode of x and an odd

mode of x and solve separately the matrix equations for the even and odd

modes of the equivalent current density.
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For example, assume Ey-polarization and expand the incident field

as
i - £ é
=, = 3-40
L’j Eyo t ., (3-40)
and the propagation constant as
Bo-k, vik, . (3-41)

Then it 1s evident from equation (3-9) that

-t 'l? “Losdl w p
t_jx - Z‘HQ JZ.L W E L q}m[&s{ém« Sh\?;h)(_,osl\Lklc,og Sfm(})w)

-7 Sim (bm/x"gah g’m) gumh (L,L/x"ﬁm ?m)] N (3-42a)
%: == Z H, lc[a,z Mg};“'[c,o's (é,ﬂm”s&nq)m ) simh Lé‘._«"s&«@m)

- 150 U\M,rsah%‘)m[t((z’z i 4;W)J ] (3-42b)

When the even and odd mode of the equivalent current density are separa-

ted, the coefficient matrix for each mode is given by

¢

R/w
’ ’ R
(B'ﬁ)z = _g, (Ba,j + BL,NH._,- ) , &=t (3-43a)
N/2 , ,
( BLJJ)O i J%-:i (BE').S ) BZJN“‘J) y L@ I, N/z P (3-43b)

where we have assumed that the first interval is the mirror image of the
Nth interval with respect to the z axis.

The even and odd modes of the equivalent current density are deter-
mined by solving separately the matrix equation obtained when equation
(3-43a) is equated to equation (3-42a) and equation (3-43b) 1s equated to
equation (3-42b). Thus, the total equivalent current distribution i1s given

by
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K = K, + K = | N2

K = KL

o i= LN/fZ (3-44)

)

Since matrix inversion routines are proportional to N3, it has been
four times faster to invert two matrices of order¥/2 than it would have
been to invert just one matrix of order N,

Whenever the scatterer is symmetric with respect to the direction
of propagation, only an even mode of the equivalent current exists, and

assuming vertical incidemce, it is given by

: bz

E, 2 . (3-45)

Yy, = Z H

i

The even coefficient matrix 1s given still by equation (3-43a) and,
having solved the matrix equation obtained by equating equation (3-43a)

and (3-45), the total equivalent current distribution is given by

= Kj i=1 Nz . (3-46)
3-4 HNumerical Examples

If the integrands of equations (3-3), (3-4), (3-8) and (3-10) are
smoothly varying functions along each interval, then it is sufficient to
approximate the imtegrand in this interval by a parabola. Thus,we may

use Simpson's rule with n = 2 to integrate numerically across the interval.

For example, the approximate value of the:integral across the jth interval
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of equation (3-22) is

Jtt 4 4l R

where the position vectors '6, . and Es have been defined in Fig. 9.

w iy [ (A vw)- i AR -w-]
¥ ;+)\J)-[ P )W +"’E'j—) . i W w; "'EL ’ (3~47)

To demonstrate the validity of the integral representations and their
numerical solution, we will compare the numerical results with the analytical
results obtained for the case of scattering from ci;:cular cylinders, It
is shown in Appendix C that the transverse magnetic field intensity which
is scattered by a perfectly conducting circular cylinder in the presence

of an Ey-polarized plane wave is

H(,),c (f)@) = - g}_Hg Jf{’;hg mi,"n ‘L(kR) l’ﬁ?“’e[r) Svn M@ . (3-48a)
Ao i K9 (e )

and

kS . 0
Hetod) = - il 2" 2 1™ e, | um{,a_u;)@, ). t&.{k.p}ww ,
o - R U r (3-48b)
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where en

= 1

-
A m Z
and R is the radius of the cylinder,

The induced surface current density around .the cylinder is

b h =

T S =h _
kR W (k,R)
and
M(®) - o. (3-49b)

The distance h in equations (3-48) and (3-49) is the depth from the earth-
air interface to the center of the cylinder. Since some point must be
adopted as origin for a phase and attenuation reference, the earth-air
interface has been chosen to facilitate comparison of these results with
those of the half-space problem considered in Chapter 7, 1In addition,
we will chose our incideqt field to be.the transmitted field of a plane
ﬁave incident upon a conductive half-space, This choice of incident field
also will facilitate ourmdiscussion in -Chapter 7 when we wish to estimate
the significance of coupling between the conductor and the earth-air
interface. It should be noted, however, tﬁat this still is a "ficticious” ’
model in that reflections from the earth-air interface are ignored when
computing the currents induced on the surface of the conductor and
also, 'the earth-air interface is ignored when computing the scattered fields
at this boundary.

We have from Stratton (1941, p..493) that the transmitted electric
i1eld iﬁten51ty of an Ey-polarized plane wave incident upon a conductive

half-space 1is
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where @kis given from Snell's Law, equation (2-76) as

Cmf?hf /I—%ng@&ni .

We will consider only‘ the special case of normal incidence since in
most problems of geophysical interest the transmitted field propagates
normally away from the interface even for grazing angles of incidence.
In addition, this approximation yields the greatest saving in computer

time as a result of the symmetry. Thus, equation (3-50) reduces to

| Bi/z, (3-51)
rd

i
From equation (3-51), it is evident that the desired 1ncident field for

Ey-polarization is obtained by setting (Qﬁ'\ equal to .I80° and replacing
Z! H, by

2z, Ho

1+ 21/2', (3-52)
in the pertinent equations.

The unknown equivailent electriec surface current density around the

cylinder was determined from equations (3-22) after ZIHQ had been replaced
by (3-52). The cylinder coutour was approximated by inscribing 10, 20 and

40 intervals as is shown in Fig. 10 for N = 20. By increasing the number

N of sampled values, we estimate more accurately the cylinder contour,
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the integration around the contour, and the current density distribution.

Figs. 11 through 16 demonstrate that the integral representations
derived for Ey scattering from perfect conductors are valid, and that
the numerical solution rapidly converges as N increases, We have assumed
normal incidence in this example and that: the depth z, to the top of the
cylinder 1s 20 m,the cylinder radius 1s 100 m, the incident field frequency
1s 1000 hz, and the c0ndﬁctiv1ty of the whole space is 10'3 mhos {m,

Since the induced current density 1s symmetric with respect to the
z-axis, only part of the results have been plotted in Figs. 1l and 12,

It 1s seen that the maximum current amplitude occurs on the shadow side
of the cylinder, as discussed by King and Wu (1959) for the case of
scattérlng from circular cylinders in air. However, since the cylinder
is situated in a conducting medium, the minimum current amplitude is
due also to attenuation of the incident field as it propagates through
the ground. The maxim;m errors occur at the pointsvof maximum and
minimum 1llumination, although the errors rapidly decrease to less than
1% aslN is increased,

In Figs. 13 through 16, the scattered magnetic field intensity
obtained from these N sampled values of the current demsity has been
plotted for points of observation mear the cylinder on the plane 20 m
above it. It 1s seen that a slight instability in the f£ield occurs
close to the cylinder, especrally for N = 10, but disappears as N increases.
This problem, which will be discussed below, is caused by the inaccuracy
of a parabolic approximation to the ingégration along that part of the

contour in close proximity to the observer., However, it 1s sufficient

to observe here that the instability obviously decreases as the sampling



width decreases. We see that for N = 40, the maximum error is less

than 0.5%.

It can be shown by following a development similar to that of
Harrington (1961, p. 235) or Appencix C. that the axial magnetic field

intensity which is scattered by a perfectly conducting circular cylinder

in the presence of an Hy-polarized-plane wave 1is

e
H;c(r,q) = W, gf’["t;é L ap U@,r)cmm.@ ) (3-53)

where
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As 1n equations (3-48) and (3-49), we have chosen our origin to be at the

earth-air interface.

It follows from equation (3-51) that the transmitted magnetic field

intensity of an Hy-polarized plane wave incident normal to a conductive

half-space is

i

By 2\ the”
il e Zeee -
Thus, the desired incident field for Hy-polarization is obtained by

setting Q;“ equal to zero and replacing H, by
2 U,
| + iﬁﬂéo

(3-55)
in the pertinent equations.

52
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10, 20 and 40 sampled values of the equivalent electric surface
current density were determined from equation (3-39) after Ho had been
replaced by (3-55), considering the same cylinder studied for Ey-polar-
ization, Figs, 17 and 18 show the axial (y) magnetic field intensity
obtained from these sampled values for points near the cylinder. Again,
an instability is obserxved, and although the amplitude of the oscillations
15 larger than for Ey-polarization, it also obviously decreases as the
sampling width decreases, Since these oscillations are meaningless with
respect to the actual problem, ﬁo attempt has been made to define them
properly. We see, however, that good convergence of the Hy-polarization
integral representations is obtained for N = 40, with the meximum error
being less than 1.0%.

We have already peinted out that the instabilities arise from the
inaccuracy of a parabolic approximation to the integration along that
part of the coutour in close prox1mit§ to the-observer. This can be
seen in the folldwing way: Assume that the ’equivalent surface current
density across the jth interval i1s approximately constant, Then the
contribuiton of the integral along the jth interval-to the scattered

field 1n equations (3-3) and (3-4) can be written as

S AW

<C d o ¢
Byp v oo A kiij o lbpeghdst (3-56)
4 L v,
and v
(X3 L 'S o ) ‘
IR A e U L
%j“ﬁ “ (3-57)

Since the Hankel function is singular when both the real and imaginary

parts of the argument are zero, it is evident that the value- of the

argument of equations (3-56) and (3-57) will pass through a pseudo-
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singularity for points of observation close to the contour., TFig. 19
represents a hypothetical plot of the integrand of equation (3-56) or
(3-57) for a point close to the contour, and the "best" parabola which
would be interpreted for this curve, It is seen that the area under the
parabola 1s not a good approximation to the true area,

1f the point of observation is to one side of the interval, as in
Fig. 20, then a parabolic approximation to the integration of equations
(3-56) or (3-57) is much better. Although the parabola sti1ll does not
represent a good approximation to the integrand, it 1s seen that the
area under the parabola could constitute a fair estimate of the area under
the hypothetical curve since the positive and negative errors tend to
compensate one another.

Inasmuch as this problem arises when the argument of the Hankel
funetion is small, it can be overcome by making a small argument expan-
sion and integrating analytically across these intervals as was done 1in
section (3-2-3). TFor the best accurahy, this should be done for points
of observation just to one side of the interval, as in Fig., 20, as well
as for points of observation over the interval. Thus, small argument
expansions will be used for intervals near where the boundary condition
is being enforced, as Weli as when calculating the scattered fields.

Before the swmall argument expansion is made, it is convenient to
rewrite the integral representation in a more sultable form involving as
few analytical integrations as possible, It is shown in Appendix D
that,in general, the contribution of the jth interval to the boundary

electric field intensity (equation (3-22)) can be written as
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The geometrical symbols in equation (3-58) are defined in Fig. 21.

Using the small argument approximation for HD (li 52 + 512 ) given by
equation (3-26),Equationé (3-60)- have been evaluated 1n Appendix D.
Similarly, it is shown in Appendix D that in general the contribution

of the jth interval to the scattered magnetic field intensity (equation

(3-12) can be written as

‘-l:.'sf: = -%[( Acos a:.\i + BS S'\mu{j)k -I-(A Sihe(J - BB CoSol: )3] R

] J (3-61)
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Equations (3-63) have been evaluated in Appendix D" after approximating
Hl(liéf'+ 5'2) by equation (3-27). If equations (3-58) through (3-63)
are used to calculate the contribution of the jth interval when both
]kl£l§ - ?(l and |kﬂ]§ - ?é'-are less than 0.3, then the observed in-
stabilities disappear and an accuracy comparable to that obtained on the
flanks of the scattered field results for points of observation near the
scatterer contour,

A similar analysis must be carried out for Hy-polarization. Again,
it 1s shown in Appendix D that in general the contribution of the jth
interval to the boundary axial magnetic field intensity (equat:ion 3-39)

can be written as

S B , (3-64)

where B is given by equation (3-62b). The approximate contrlbutioq of the
jth interval to the scattered axial magnetic field intemsity 1s given
by equation (3-64), but with opposite sign.

To demonstrate that equations (3-58) through (3-64) are necessary
to predict accurately 'the scattered field for points of observation close
to the scatterer without taking an axce;sive number of sampled values of
the surface current density, we have chosen a particularly good example.

The real and the imaginary parts of the axial magnetic field intemsity
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have been plotted in Figs. 22 and 23 assuming an Hy-polarized plane wave
incident mormal to a conductive half-space. The depth 2, to the top of
the cylinder is 3 m, the cylinder radius is 100 m, the incident field

frequency is 1000 hz, the conductivity of the whole-space is 1()-3

mhos/m,
and the cylinder contour has been approximated by 20 intervals. It is
seen that the undesirable oscillations have been eliminated completel y
by using the small argument approximation given by equations (3-64), with
a maximum error of about 1% being obtained through 20 sampled values of
the current demsity,

The important conclusion to be drawn from Figs. 11 through 18 is
that 1f the numerical integration is inaceurate, a significant change 1n
all the sampliné widths brings about a significant change in the predicted
scattered field. We are led to believe that if the predicted fields then
converge, the numerical integration and sampling have been performed
correctly. In future discussions, a small argument approximation will
be used whenever (|k;l(p - éll)nwucﬁ .3 for any interval.

To 1llustrate the generality of the program, we will examine the
field scattered by a vertical slab which is 30 m wide and 300 m deep,
assuming an Ey-polarized 1incident plane wave. The general cross sectilon has
been drawn in Fig., 24 (a) and a detail of the contour at one corner has
been drawn in Fig. 24 b. A sharper corner for the slab could have been
chosen, but this would require a tighter sampling 1nterval to define
properly both the contour and the current density. We have assumed that
the depth tho the top of the slab is 20 m, the incident field frequency
1s 1000 hz and the conductivaty of the Whéle—space is 10-3 mhos/n,

The variation in the magnitude of the equivalent electric surface
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current density from thé top (' = 0 m) to the bottom ( s' = 312 m) of the
slab 1s shown in‘Fig. 25, The variation of the phase of the equivale;t
electric surface current deﬁsity around this part of the contour is shown
in Fig, 26. Since only slight differences are obtained 1n the current
density distribution for 30 and 42 sampled values, we have assumed that
a convergent solution has been found.

4 very interesting variaélon mn the‘magnitude of the surface current
density 1s seen to occur around the bottom limit of the slab. We see
that the current density increases around the bend in the contour and
then 1s constant on the bottom flat pertion. (Actually, there 1s a
very slight decrease in the amplitude of the current demsity at s' = 312 m,).
Van Bladel (1964, p. 388) points out that although the total current in the
neighborhood of a cormer remains finite, the-current density becomes
infinite at the corners, Thus, we may expect an increase 1in the magnitude
of the current density wherever the radius gf curvature becomes small.
For this reason, a small sampling interval is required in these regions
so that the current density is defined properly.

If we wish to study scatftering from a rectangular slab, we should not
attempt to place a sampling point at a correr, Instead,Andreasen
(1964) recommends that the current density should be sampled evenly to
each side of the corner..

The scattered magnetic field intensity calculated from these
sampled values of the current density has been plotted in Figs. 27 and 28,
It 1s important to note that the phase of H 1s dependent upon the position
of the obse;yer in space. This result will be true for any cylinder

when the electrical parameters of the earth are similar to those of this
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example,

In Figs. 29 through 32, analytical results are given for the
horizontal magnetic field intensity scattered by a perfectly conducting
circular cylinder in a whole-space having various ;onductivitles. We
have assumed normal incidence of an Ey-polarized plane wave in this example
and that: the depth zl to the top of the cylinder is 20 m, the cylinder
radius 1s 100 m, and the incident field frequency 1s 1000 hz,

It is seen that for extremely low conductivities of the whole-space,
the magnetic field intenmsity has a large amplitude and is predominantly
out-of-phase withthe incident field. As the conductivity of the whole-
space increases, Ve observe that the amplitude of the magnetic field inten-
, sity decreases, the in-phase compoment becomes larger than the out-of-phase
component and then becomes smaller again, and the peaks of the vertical
field shiff closer to the crossover,

The decrease in amplitude and change in phase of the scattered field
are caused by both the decrease in waveleggéh with respect to the radius
of the cylinder and by an increase in the attenuation of the fields as
the conductivity of ‘the Whole-§pace increases. This can be seen intuitively
from equations (3-49a). When the wavelength in the whole-space 1s very
much—greater than the radius of the cylinder, 'klR’<<[ and the oxder

x

zero of the Hankel function becomes dominant. Thus, using the small

argument expansion for H%%klR), the surface current density 1s given by
b
K { Y -1 H, =
J Q L 3 {(3-65)
K R 2 Lk R) _

and we see that it 1s independent of Q and 90° out-of-phase with the

incident field if k1 is real (which is true when the whole-space has a
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low conductivity) and h 1s small with respect to the wavelength. A4s

a result, the magnetic field intensity near the cylinder will be large.,
90° out of phase with the incident field, and the field will be that of a
line of current,

In Figs. 29 and 30, the wavelength of the incident field is always
very much greater than the radius of the cylinder and, as a result, the
magnitude of the scattered freld is large for the three cases. However,

a decrease in the amplitude of the out-of-phase component and an increase
in the in-phase component 1s observed since higher order terms become
important in equation (3-4%a) as the conductivity of the whole-space
increases and since k1 becomes larger in equation (3-65). TIn addition,
there 1s some phase shift as both the incident and scattered fields
propagate through the earth.

In Figs. 31 and 32, we see that the amplitude of the scattered fields
becomes significantly smaller as the wavelength of the incident field
apﬁroaches the radius of the cylinder and as the skin depth ( §') decreases.
Ve see also that éhe peak of the vertical éleld component in Fig. 32
shifts towards the crossover as the conductivity of the whole space
increases. The reason for this is that the surface current denmsity shifts
to being predominantly on the illuminated side of the cylinder as the
wavelength decreases. When the wavelength is very much greater than the
cylinder radius, the current density is constant around the eylinder and
this current radiatesflike a line sourcelocated at the center of the
cylinder, However, as the wavelength decreases, there is an increased
tendency for the current density to be zero on the shadow side of the

-

cylinder, as is seen in Fig, 11, so that the location of an effective
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line source is above the center of the cylinder (i.e. nearer the observer),
Thus, the peak in the vertical field component will be closer to the cross-
over, In‘addltion, we observe 1in Figs. 31 and 32 that the spacial wave-
length of the fields becomes apparent in the data for high conductivities
of the whole-space,

Since the wavelength (A) and the skin depth ( §") in the whole-space
determine the behavior of scattering from perfectly conducting cylinders, .
a simrlar trend will occur as the frequency of the incident field increases.
In Figs, 33 and 34, we have assumed normal incidence of an Ey-polarized
plane wave and that: the depth z; to the top of the cylinder 1s 20 m,
the cylinder radius is 100 m, and the conductivity of the whole-space
15 10“3 mhos/m, It is seen that as the frequency 1ncreases, the amplitude
of the magnetic field intensity decreases and the peaks of the vertical
field shift closer to the cross over, as was observed in Figs. 29 through
32, Note, hovever, that the in-phase component is larger than the out-of-
phase component at low frequencies since the ratio wavelength/skin depth
ts as large as 1n Fig., 31 for @ = 10-5 mhos/m. Nonetheless, a large
amplitude 1s observed at low frequencies since the wavelength is very much
greater than the radius of the ecylinder,

In Fig. 35, the conductivity of the whole-space has been set equal
to zero so that the effect of -the wavelength alone in determining the
magnitude and phase of the scattered magnetic field cam be studied,

It is seen that as the wavelength decreases, the amplitude of the scat-
tered magnetic field decreases, However, unlike scattering from perfectly

conducting cylinders in a conductive whole-space, the out-of-phase

component 1s always larger than the in-phase component.
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The results of Figs. 29 through 35 have been summarized in Figs.
36 and 37 by plotting the péak value of )Hx] against log (A /R) and
the phase of the peak value of‘H&fagainst log (A/R) fox two ratios of
wavelength to skin depth, Note, however, that these results assume that
the conductivity of the cylinder 1s wnfinite. Iflfinitely conducting
circular cylinders are to be examined, the wavelength inside the cylinder

must be considered also. Thus, a third axis of log ( Aby /Rcyl) could

1
be plétted out of the page and the area between Alg = 0 and A./g = 6.28
in Figs, 36 and 37 would become a volume distribution.

Fig. 36 1llustrates that the general effect of wavelength upon the
magnitude of the scattered field is to increase ]HQ as A/R increases
for a fixed point of observation. Comnsequently, as the frequency of the
incident field is increased, the magnitude of the scattered field wall
decrease, However, Fig. 36 points out also that if A2 5R, the magnitude
of the scattered magnetic field intensity is larger in a conductive earth
than 1f the same wavelength had been used in free space.

:This. interesting result is due to the factn that the magnetic field
intensity tramsmitted at the fictitious earth-air interface increases in
magnitude as the conductivity of the earth‘increases. Inasmuch as the
transmitted electromagnetic field i1s considered to be the incident field
in these examples, this indicates that the equivaleéent electric surface
current density will increase with conductivity. whenever attenuation
is not important since K& = H: at the surface of a perfectly conducting
cylidder.

This effeect can be understood best by studying the transmitted

magnetic field intensity. If we assume that k 18 equal to ko in air,

then 1t is evident from equation (3-51) that the magnitude of the trans-
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mitted horizontal magnetic field intensity will be given by

. ~ikeZ Sikez
IHH = 2 H, = \ = M= [ . (3-66)
14+ Z/=,
Vd
However, 1in a conductive medium where )\/5 =6.28 and A = A of

alr

equation (3-66), k will be given by ko -+ ik0 and the magnitude of the
transmitted magnetic field intensity will become

+hoz ~thz

[ R T

E£ '(an
*b

if attenuation is not significant. Thus, it is .evident from equation

(3-67)

{ +

i
(3-67) that for a given wavelength, ‘Hxl 1s larger in a conductive
half-space than in air whenever attepnuation is not too important.
Intuitively, 1t is expected that attenuation will not be important
for g~ R and 1%R| << 1. Consequently, it follows that the curve of
i
'Hx| versus log (A/R) will be displaced downwards with increasing A /&
- I
for. A £ 5R and displaced upwards with increasing A/$ for A 2 3R,
Fig., 37 1llustrates the variation of the phase of H with increasing
X
A/R. It 1is seen that there is a minimum in the plase of Hx for
A~ 30R and that the effect of the conductive half-space 1s to reduce
the phase of H .
pis
Figs. 38 and 39 compare the analytical solution with an approximate
solution given by Meyer (1963) which sometimes has been used to predict
plane wave scattering by conducting cylinders in a whole-space of low
conductivity, For comparison, we have assumed normal incidence of an Ey-

pelarized plane wave and that: the depth z. to the top of the cylinder

1

3

is 20 m, the cylinder radius is 100 m, and the frequency of the incident
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field 1s 10-3 whos/m. It 1s evident that for perfectly conducting
cylinders, Meyer's solufion fails to predict the amplitude and phase of
the scattered field even for free space ext;rlor to the cylinder. The
reason for this discrepancy is that his solution has not accounted for

the contribution of the incident electric field inteamsity, which 1s of

paramount importance in a whole space of low conductivity,
3-5 Accuracy and Limitations

The validity of the integral representations ‘for scattering from

perfectly conducting cylinders has been demonstrated by comparing the
numerical results with the analytical results for the case of scattering

!
from circular ¢ylinders, In general, however, the accuracy of the

numerical results can be demonstrated only by observing the solution

convergence as the number of sampled values is increased., Mei and Van
Bladel (1963b) and Andreasen (1964) have suggested that about 10 sub-
divisions per wavelength are sufficient to give a convergent result, As
a general rule, however, this seems to be applicéble only to scatterers
in free space,

In Figs. 40 and 41, numerical results)are compared with analytical
results for the horizontal magnetic field intensity predicted when a
cylinder has been sampled 14 times and 36 times per wavelength., It 1s
seen that only when the cylinder has been sampled 36 times per wavelength
do we obtain a maximum error of less than 1%. Thus, we stress that only
by checking the convergence can we ensure accuracy of the numerical

results. A general rule on the sampling interval could lead to an unrec-

ognized error since the skin depth and the wavelength interact to influence
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what sampling interval is required,

o~

In Fig. 42, numerical results are compared with analytical results
when the cylinder of Figs. 40 and 41 has been sampled 14 times and the
order n of Simpson's rule across each interval is 2 and 4, 1t 1s seen
that 1ncreasing the order n from 2 to 4 increases the maximum error im

the predicted results., However, since no significant change 1s observed

when n is increased to 6, this remaining error must represent the inac-
curacy of the current den51£y representation,

It should be noted that increasing the number 6f sampled values of
the current density 1s not aiways the most economical way to increase
solution accuracy. The reason for this is that it is more desirable to
obtain solution convergence by increasing the order n in Simpson's rule
rather than to increase the number of sampling points whenever the
parabolic approximation to the current density is accurate and the
scatterer contour is described accurately. This procedure is more
economical since the computer time requ1ged to solve a set of N lipear
equations is proportional to N3, whereas the computer time réquired to
set up the coefficient matrix is proportionsl to the product of N2 and
the order of Simpson's rule,

In Figs 40 and 41, it is seen that a émall error 1s obtained in the
predicted result when the cylinder is sampled 36 times per wavelength
and that an n of 2 is sufficient.. Although this sampling interval improved
the current density representation, it also increased the integration
accuracy to greater than that of Fig. 42 with n equal to 4. Thus, it is

evident in this example that once the current density is sampled

accurately, the order 2 in Simpson's rule is sufficient for integration
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accuracy. We note thereby that increasing the number of sampled values
of the current density 1s the best general test since it checks both the

integration accuracy and the accuracy of the current density represen-

tation.



CHAPTER 4

SCATTERING ¥ROM CYLINDERS WITH LOW SURFACE IMPEDANCE

In Chapter 3, the problem of scatteraimg from perfectly conducting
cylinders was examined assuming both Ey and Hy polarizations. Im
addition, the representation of the unknown surface current densities
and the solution of the resulting éingular Fredholm i1ntegral equétions
was discussed. In this chapter, we wish to consider the more general
case of scattering from cylinders which have both a low surface impedance
and a small curvature compared to the attenuation per unit distance,

Andreasen (1965b) has considered this problem, but it should be noted
that although he states that the field must not penetrate deeply 1nto
the scattering body, his solution also requires that the contour cur-
vature is small.compared to the attenuation per unit distance. Mitzner
(1967, 1968) has extended this work somewhat by introducing curvature
dependent boundary conditions. However, as in Chapter 2, the analysis

of this sectionclosely follows that of Andreasem, with the principle

difference being the physical situation to which the solution is applied.
4-1 Derivation of the Integral Equations

It was shown in Segtion 2-5 that if the surface impedance of the
scatterer 15 low with respect to .the surrounding whole space, and if the
curvature of the scatterer 1s small compared to the attenuation per unit
distance, then the axial field components in the conductive whole-space

can be written as

68
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where the earth parameters have been referred to by the subscript 1 and
the cylinder parameters have been referred to by the subscript 2.

As 1n Chapter 3, the unknown current densities, Ky and Ks, are
werermined by enforcing the boundary conditions on tangential'% and
“H and solving the resulting integral equations. For finitely conducting

bodies, these boundary conditions are

Ax (B - EY) =0, (4-3a)



and
Ax (W~ W) - o
(4-3Db)
Since we assume that the surface impedance of the scatterer is low
with respect to the surrounding whole-space and that the curvature of
the scatterer is smali compared to the attenuation per unmit distance,

the representation cof the fields inside the conductor is particularly

simple. Thus, we can write from section (2-5) that just inside the

contour boundary

+ _ ot

E,, = Z, Hy = 2, Ky, (4-ba)
t
Hjl = - K (4-4b)

If we let the poilnt of observation approach a boundary point given
by the position vector E” and enforce (4-3), then equations (4-1) and

(4-2) reduce to the desired coupled integral equations

£y G = Z, kG Z‘X’ZJ <7 o (i) ds”
1k, Je
R I (1) p /
- 12, Ry ‘G,J ke (57) sim (g™ ) s (g1 prt)ds
4‘% g

Y

t 3
—— )
4

S ‘sz(r) Ky (p) eos(p™ =) “&"(Y‘)F"_F, l)i 1 (4-5)
C
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and

]

”_;(13”) =~k - A Ezls(,w keGP (8 p ) s’
42 k,

- ik % (2 (P)KJ(P>SW({5 LOHY (Y17 51) ds
4Z,k, 4

- _L_}&S Ks (') cos (™= «) WOLY ) 5™ “'i)ol ’ “-6)
1 -
The integral equatlbns can be solved by dividing the contour into
N intervals and express;ng\each integral as a weighted sum of N sampled
values of Ky(F) and Ks(F)' A system of 2N linear equatioms will result
and these can be solved for the unknown sampled values of Ky(? )} and
Ks(? ). However, the solution of coupled integral equations will -be

discussed in Chapter 5, since in this chapter we will discuss only Ey—
polarized fields which are incident normal to the'fconductor, In this
case, equations (4-5) and (4-6) uncouple.

If we assume that kyl = 0 in equations (4-5) and (4-6), then the

integral equations uncouple and can be solved separately for each axial

component, We find that

é -t - Fet e tr ] ¥ -—l $
ESG) = By 7 kylp™ ,,/,_;g Ky (73 Wy (hb5e-r DA’

<
!

+ _t_ku_ j zlj (F7) Ky cos(pi-«) Hﬁ"(kll—?"_ F't) ds’ | (4-7)
1 e

{
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and

Hy ) < -k ) - .*ELJ 2 O k) W LhIpTph) s
42, <,

: (4-8)
- LIL‘.LJ Ks(p”) Cos(fs"-ﬁai) H?(lz(]?”,(;'i) ds .
4 -,

For simplicity, we will confine our study on this chapter to Ey-
polarized incident fields (equation (4-7)). It should be noted, however,
that the numerical solution of equation (4-8) is the same as the numerical
solution of equation (4-7). Its solution would not present any numerical
compllcations,

It 1s interesting to note that the first integral of equation
{(4-7) is the field scattered by a perfectly conducting cylinder and that
the additional terms account for the finite conductivity of the scatterer.
It was seen in Chapter 3 that on the basis of physical reasoning, the first
integral could be thought of as the electric field due to axial currents
at the surface of the conductor. These axial currents are equal to the
transverse tangential magnetic field intensity and are present even at
the surface of perfectly conducting scatterers.

In a similar manner, the additional terms can be thought of as the
electric field due to transverse magnetic currents at the surface of the
conductor, These transverse currents are equal to the axial electric
field intensity and are present only at the surface of finitely conducting
scatterers. As a result of the approximations made in deriving equation
(4~7), we have been able to set the transverse magnetic currents equal to

-sz(? ) KY(‘f).
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Thus, we could have derived equation (4-7) on the basis of physical
reasoning alone. The portion of the scattered electric field due to an
axial electric current would yield a term given by equation (3-8).
Similaxrly, the portion of the scattered electric field due to a transverse
magnetic current would yield terms given by equation (3-10) with H;(E@
replaced by Ei(?”) and KS replaced by M;.

The numerical solution of equation (4-7) is the same as that of
equation (3-8) or equation (3-10). Thus, the contour Cl is divided into
N sampled values of Ky(ﬁ') and each integral is expressed as a weighted
sum of N sampled values of Ky(f‘). By forcing the boundary condition to
hold at the midpoint of each interval, a system of N linear equations will
result and these can be solved for the unknown sampled values of Ky(? .

Integration through the point of singularity in equation (4-7)
also presents no problem since the contribution of each integral in the
singular interval has been examined in section (3-2-3). Thus, we can

rewrite equation {(4-7) as

E (6" = Za, (%G 4 o J Ky (73 W& Ul p=p 1) ds”

2 40‘

. H 2, (5 Ky ) cos (p) Wk pop s (4-9)
C .

!

where it is assumed that the contribution of the first integral in the
singular interval is given by equations (3-31), (3-32) and (3-33) and

that of the second integral is zero.
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Once equation (4-9) has been solved for N sampled values of Ky('é),
the scattered magnetic field intensity is given by equation (2-87) with

k_ = 0. We find that

¥y
- ik J Ky ') B (b bp-51) ([ sim g2 - conpp 2)ds
4 % ' .

R

sru\

N J ZLjLF')kJLF')% costp -0 H‘;”(h,)F_an)(sanFA ~wsp B)
400 e

E E"j) (Sm(‘lﬁ-“)& - cos(2 p~ K)Z)} aﬂs . (4-10)
JE,lF-P |

As 1n Chapter 3, it is necessary to make a small argument expansion
to the Hankel function and integrate ana~1}ytically whenever the point of
observation is close ([k}:H '(5 - ﬁ'] €  .3) to the interval over which the
integration is being performed., Both integrals of equation (4-9) have been
examined under these 'condition; in a similar analysis 1n section {(3-4).
Th'us, the first integral i1s replaced by equation (3-58) and the second
integral is replaced by (—sz) times equation (3-64).

The first integral of equation (4-10) was examined also in section
(3-4) and should be replaced by equation (3-61) whenever the point of
observation is close to the contour, However, the second integral has not
been examined and it 1s shown in Appendix D that in general the contribution

of its jth interval to the scattered magnetic field intensity can be

written as
.ﬁﬁ- = .__]E:_Z ( ’){[S(CLOSd+%DSmi}— ([SZE-F)SmoL-!-l%Gco.SaL)]/Q
| J J J d

N
N 3
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The undefined parameters are given by equations (3-59) and are defined in
Fig. 21,

Using the small argument approximation for Ho(krféz?P & ) and
Hl(kldsz-+ s> ) given by equations (3-26) and (3-27), equations (4-13) and

(4-14) have been evaluated in Appendix D,
4-2 Numerical Examples: Cylinders in a Conductive Whole-Space

Equations (4-9) and (4~10) were programmed assuming that the incident
field is the transmitted field of a plane wave incident normal to a con-
ductive half-space (equation (3-51)), Their validity can be demonstrated
by comparing the numerical results with the analytical results obtained
for the case of scattering from circular cylinders,

It is shown in Appendix C that the transverse magnetic field intensity
which is scattered by a finitely conducting circular cylinder 1n the presence

of an Ey-polarized plane wave 1s

s¢ le‘)lg ) 03 _
HP lPJQ)z 3}-”0 R L m L allHﬁ\ ('LIP) Smmq y (4-15a)
/g f m=l

and
Hy (5,8 - inojh':é) e a0 ) o M k) - uﬂ[(k,f)jcb;mg)
’2'f (4-15b)
where
2, = ~ dulkR) - cqd (bRY (4-16a)
B2k R) - ¢ HY {kR)
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R 15 the radiuvs of the cylinder
and the derivatives in (4-16a) and (4-16b) are with respect to the
argument kR,
The equivalent sufface current densities around the surface of the

cylinder are

Kj (@) = Hb _J’ Lgllréo L-“ E{\,(J;(_‘QR) N 2, H(:’“E‘ R)) cos n@l (4.:]_73)

and

ikhee o
M (§)=~Z My 2 e {d, (kR +a, Hy (k,R)) cosag |
n=o (4-17b)

where & is given by equations (4—16))and the derivatives in equation

(4-17a) are with respect to the argument k_ R,

1
In the case of scattering from conductors which have a low surface
impedance and which have a small curvature compared to the attenuation

per unit distance, it is expected that
Mo (8) ~ - 2, Ky 8. (4-18)

The distance h 1n equations (4-15) and (4~17) is the depth from the earth-
air interface to the center of the cylinder.

Figs. 43 and 54 démopstrate that the integral representations derived
for Ey scattering from highly conducting scatterers are valid. We have
assumed normal incidence in this egample and that: the depth zl to the

top of the c¢ylinder is 20 m, the cylinder radius is 100 m, the incident

field frequency is 1000 hz, the conductivity of the whole space is 10-3 mhos/m.
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and the conductivity of the ecylinder is 10 mhos/m, The equivalent electric
surface current density has been sampled 40 times and, for this example,
a maximun error of less than ,3% has been obtained.

In Figs. 45 'and 46, ;t is shown that the curvature must be small
compared to the attenuation per unit distance if equations (4-9) and (4-10)
are to predict the correct results. In this example, we have assumed
noermal incidence of an E -polarized plane wave and that: the depth z

b
to the top of the cylinder is 20 m, the cylinder radius 1s 100 m, the

1

incident field frequency is 1000 hz, the conductivity of the whole space

is 0. mhos/m, and that the conductivity of the cylinder is 10-3 mhos/m.
Since the impedance contrast is large, it is valid to assume that the total
field at any point just inside the scatterer may be represented by a wave
propagating normally away from the contour. However, since the curvature
is 0,0l/m and the attenuation per unit distance is 0,002/m, the small
curvature approximation has been wviclated, 4s a result, the convergent
numerical results predict a field whose in-phase components are in error
by 20% and whose out-of-phase components are in error by 1000%. The
numerical results are like those of a scatterer which is more highly

conducting than the actual inhomogeneity.

4-3 HNumerical Examples: Topographic Scattering

The integral representations derived in Chapter 2 can be used also
to investigate topographic scattering problems by considering the contour
C1 to be very large with respectto the wavelength of the incident field

and the topographic region of interest, As C1 becomes large, the fields
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will be determined only bylthe interface on the upper part of the cylinder
and, as a result, they will become independent of the contour chosen out-
side of this central region of interest, Thus, the contour integral

can be replaced by an integral over é;ao,qn) and, assuming ky = 0,

equation (4-1) becomes

i o , ) By .
E;(P) - & (f) - /uow.( Ky (77) ¥ (bolp-g ) ds

- L‘%K 2, ) Kyt cos(pns) KPklpp ) ds!, @19

~ R

vhere parameters of the air are referred to by the subscript o, and
parameters of the earth by the subscript 1.
The equivalent surface current density in equation (4-19) can be

thought of as being made up of two-parts:

1) a portion due to fields scattered by the topography, plus

2) a portion due to fields reflected by the half-space.

Since the topography will be confined to a central section of the contour
in all examples that will be discussed, it follows that outside a region
bounded by (-a,a), the equivalent electric surface current density arises
from fields reflected by the half-space alone. Thus, oﬁtside of the region
(-a,a), the equivalent surface current density is known and is obtained
from the analytical solution to the incident field impinging upon a flat

half-space. Consequently, equation (4-19) can be rewritten as
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E;(E) - EJI( ‘F) "/_‘l_fif‘_’[l[ kjl )Hfjtho"fi;‘f'l)ds'-l-J K§ [f.’) }P ’?o( ~"I)

a-gc

~ == 35
- Lkulg ({)') Kj {f; )coS(fb‘-“‘)H( Uzol“ "I)c‘iﬁ
4 -

2,5 K1) xsp WOLhlpp D |
a5

-~

@- 57 q-~5C

-/u‘,wj . HU(LOI s - ij (kg costealfllalppdds’, 20y
T 4

~a~5;

(S

P s;

where s  is the x coordinate of the position vector

2
L

and Ki is the equivalent current density which arises from
the incident field alone.

In this way, an infinite integral equation has been transformed
into a finite integral equation plus several infinite integrals. It
should be noted, however, that no approximations were made in going from
(4-19) to (4-20) since the interval (-a,a) always is taken large enough
to cbtain a convergent solution in the region of interest. It does
assume, nonetheless, that the half-space comtour is flat outside of
(-a,a).

It 1s possible also to transform the infinite integrals to integrals
that can be evaluated numerically over a finite interval. By rewriting

the infinite integrals as

o0
- ATJ % 1) ”“)““»‘F-F")&*’ - qk_j 2, (5% ) costp-od Wk 1p-p1)ds
! B

o N (@21
+ /B‘fﬁ)g Ky (p") n, (k1 g 1)< +LL=JZ‘3(P V¥ (3 costp—) H (k. Ip- |)ol

“a-3 Bt 1
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1t follows from (4-19) that for 'P' above the half-space, the integrals
.over (-o0, oo ) mist equal the electric field intensity reflected by a flat

half-space. Thus, equation (4-20) reduces to

E;(F) = E;(F)+ E‘;'PHCF) * Mo J\{ LF') HUU%‘P )

-~ G
:!:E_ j Lp’) Kj LF’) Cos (P..a) H(m'(kaip‘uf’l) ds
CR
L~ 52
s J Ky (37 4 Clelp-p) &+
4 J,
- E’.LEJ "(Pbkj f,)(,os(f’.': -2y Y [E}P -q)oqs . (4-22)
‘-} —~&- $

It 1s important to remember, however, that in equation (4-22) the contour
integrals involving K; are along a flat half-space while the contour
integrals involving KY are along the topographic. profile. Im addition,
(4-22) assumes that F is above the half-space,

By following an analysis similar to section (4-1), it is found that

the desired integral equation is

i i 2 va-C pe a-si o p
B (57) = 2y - BTG /wJ K () MO (b5 5 1) s
2 ).
a-s:
- E_H% L) Ky (57 cosCp= «) WY (hotptp” 1) s’
3 1,7
a-s;
Ml Snd j Kq 59 Hi:)(fz,l?”_. 5 ;) ds
T,
a5,
,%Lﬁ ngj(?) P) ces((s .x)H‘ Uz l‘a"" )00.5 . (4-23)

-5
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As in earlier examples,.we will confine our study to normal incidence
of an E -polarized plane wave. Thus, it follows from equation (2-38a)
y

and Stratton (1941, p. 493) that

< 'N & ¥ "
Kjl = H: 3+ H:z ¢ = H;cc 3 quz-l Ho
Z, +Z,
= 2, H, (4-24)
T, 4 2
and

e i !Q,&

EJ«Q'P‘ < - .z ZD _ za Ho 3‘- . (4',25)
Zo +’2‘-1

It is interesting to note that equations (4-24) and (4-25) can be
obtained analytically from equations (4-19) and (4-23) if we assume that
an Ey—polarized plane wave 1s incident normal to a flat half-space. In

this case; the equivalent electrilc surface current density 1s constant

and-équation (4-19) becomes

. ’ x
,@:ﬂec_ ‘ f ' . < ¥
Ej ) —/u,,w “ J HU(E 6”1)45 L4° f(J it [2‘3‘15&5‘1))‘ o
- (4-26)

It is showé in Appendix E that

\

J My (/5% 57) ™" ds' = iﬂ._é‘i.__‘“ n) Hoi') I(kg)

5 (' 57V A 8 oo M (4-27)
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provided Re(k), Im (k) O, Re((s )> 0, and Re(u)> -1.

Setting ¥ = 0 and p = -1/2 in (4-27), we find that

J Hﬁ) (L /5% 5‘)3@,5' S T k181 - icos &ulsx)) (4-28)

5 A,

and settingJ= 1 and p = -1/2,

oo .
j HY (ks 5 ) s =) (simk, 181 2 cos B151) . (4-29)
s s 85Ya k, 181

Thus, equation (4-26) becomes

_ aitlec . 'Lolﬁl
tf s - (BmE) K o A (4-30)

2

Taking the limit of (4-30) as ) approaches zerc and introducing the

result into (4-23), 1t 1S found that with (-a)a) equal to (O’O), then

[1
AL
~

‘——bl
B~
p
)
+
N

v 4-31
Kj . (4-31)

Note, however that to obtain (4-31), in

Zli(F”) kuf {fﬂ)
2
equation (4-23) has been replaced by Zly(?'ﬁ ,Ky(‘é”). This has been done
since the singular contribution of the last term of (4-23) had been added
to (4-23) in deriving the integral equation and now must be subtracted

before the last term can be ignored,
Thus, 1t follows from (4-31) that

Ky = 22, H (4-32)
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which agrees with (4-24). Introducing (4-32) into (4-30), we find that

Aatlee ;_LolSi -
E; - -2 %% s (4-33)
J 0 m——
£ +2
which agrees with (4-23).

In deriving (4-22) and the subsequent results, it was assumed that
the point of observation was above or level with the flat half-space.
However, 1f the topographic profile includes a valley which extends below
the half-space, it is not valid to replace the integrals over (-m,e0)

in equation (4-21) by E°TeC
¥

whenever F is below the half-space.
To establish what value the integrals do yield, it is necessary to
remember that in applying the equivalence pranciple in section (2-2),
the same fields were obtained only within the volume of interest, For a
point of observation outside the volume of interest, the predicted fields
will be zero since the boundary conditions have been satisfied by the
equivalent surface current densities (sée Harrington, 1961, p. 106).
Thus, the total field will be zero when the point of observation is below
the half-space, and it follows from (4-19) that the integrals over (-0, o)
must be equal to the negative of the incident electric field intensity.
This result can be obtained analytically if it is assumed that the
incident field is an Ey—polarized plane wave incident normal to a flat
half-space. In this case, the equivalent electric surface current density
15 constant and for a point of observation below the half-space, the infinite

integrals of (4-21) become

AN

) 4 b \'%}1"‘5‘1

(4-34)

T Mo 1(5 joo\-l:o[.llo\/ Srs ) ds’ _ b8 Z, K‘r’c Wy (e 855 ¢ )ells’ .
1.1
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Using the results of (4-28) and (4-29), equation (4-34) yields

§1
- Z 12 k; ,Q.th . (4-35)
2
i

Introducing the analytical values for K§ from equation (4-24), the

contribution of the infinite integrals is found +to be

P &zkolél

) (4-36)

which 1s the negative of the incident field,

We can summarize these results by rewriting the integral equation

(4-23) as "
Ei - Z -—//) k w lt - EM¥‘ C(-‘”o’.p) I ‘ ft s
ylp = 2 7 Kyg™) +{ s, P - E(’an’)f)
2 £ (F )
O~ 37 [r R 5‘: ¢
¢ ) " ’ 7 - ad - ‘) Y &
+MJ Kytpy o (bt p e )ds + ""‘LLJZ'J% JKy(pd costp-S W kgt pr0) oL
4 -5, 4 3§
- (4-37)
reflee o4
where -E (§ ") 1s the electric field intensity reflected by a
¥y
flat conductive half-space and is to be used when the point
of observation is above or on the flat half-space,
i
E (F”_) iz the incident electric field intemnsity and is to be
used when the point of observation is below the flat half-
space,
and
R"’gl.. . Gr"s;_
o2 i . ) R t - VLU S _ 4l S f
Tk, 5 p )—MJKJ () Ho Lbalp-p Nds' 4 i:[z.ﬂ(f)Kjtchﬂs(ﬁ U lealzZgn)ds’
4 1 (4-38)

“a-4; -t~ s,
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It should be remembered that the contour integrals in (4-38) are along a
flat half-space while the contour integrals in (4-37) are along the topo-
graphic profile.

If we assume that an Ey-polarized plane wave is i1ncident normal to
a flat half-space, then Ki 15 constant and equation (4-38) can be re-

written as

A s @-5;

{ ?b T (% ! - tf t) z !
Ttk F)e e Ky J MU TT ) k82, K J by %:{iﬂs’)oés :

—q~ 5z 4 —-2- 5 (4"39)

Speci1al care must be taken at the edges of the interval in which

K 1s assumed 'to be unknown to ensure that the unknown parabolic current
y .
distribution 1s continuous with the known current distribution. This

is accomplished by assuming that the Oth and Nth + 1 intervals lie out-

side (-a,a), that v, and We 4

should be approximately equal to W,

and W, to ensure that the parabelic fit to the current density 1s not

N

violated.

If, however, the incident field 1s an Ey~polarized plane wave

incident normal to a half-space, then it is valid te assume that W

o
and WN + 1 are infinite since the parabolic fit to the current density
is not violated. 1In this case, consider the general integral

A 'SJ-FWj
s ) ! 4-40
J KSLF)F(f’;P yds' (4-40)
S.—w-
dd

where A is a constant and F( E”;P’) is the kernal of the integral,
to represent each integral along the topographic profile in equacion
(4-37). Then the contribution of the first interval to (4-40) 1is

(compare with equation (3-22) as WN%l = ﬁa—a-ao)
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S,+w,
A{K S FGe (1 - 3750} ds’
2 Paf ( -
<+ W, i
PR Pty sis d } e
5w, W‘*‘W

Similarly, the contribution of the last interval to (4-40) is

S&-I-WN ; ;
A { Kﬁuj F(5% B (H- <~ Sy )cis

SN_.WN WN+ ‘VN_t
$u+ Wy (4-42)
- K -—JJ ) S{_ SN Qﬁg’ .

In particular, when the boundary condition is applied in the first

interval, (4-4l) reduces to

3 + W, &.
A Ky j wr(ﬂ ) e (4-43)
5= 1

and when the boundary condition is applied in the last interval, (4-42)

reduces to

Ly + Wy
Ay, | Flgprds S
Sy Wy
An expression for the scattered magnetic field intemnsity 1is obtained
by following a similar analysis for equation (4-10). Assuming that the
contour 1s flat outside the interval (-z,a) and that the equivalent surface
current density arises from the incident field, then it would be found

that

——EE M,?iec o+ = o
H, () = { ﬂ‘ (5" )} - I,k p)
(P )

4—%%J ) (P)HULE)PF'ﬂﬁmﬁm—-@spz)ﬁs

e
IS
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G- 87
>

+ Eﬁ S (p)ﬁﬂpﬁcu(ﬁwx)H “IP )[&mﬁa.-ampz)i’
4z,

—~G~ %;

G~S,
Jz (5 k) O olp s I) (sim(2p-)R - cos(ap-<)£)ds’
s, ) bp-ge]

4.?’:o
. (4-45)
where s is the x coordinate of the point of observation,

lec
Hiif (Fuﬁ) 1s the magnetic field intensity reflected
by a flat conductive half-space and 1s to be used when the
point of observation is above or on the flat half-space,

~Htg{is the incident magnetic field intensity and is to be used

when the point cof observation is below the flat half-space,

and
-~ a=sy
Lkt ) = ':H 4 EIH ) (5 p2 - cocp 2 )4

<

+ _BE_J’ Zi 15} Ky (5} cos(p-=) H2Y bl 5-5)( <o - cosﬁf-'-’-)eﬁs’

- S‘

Q- §7
- b fz (59 K (5 HO (bl pr) sin (23R - cosCap - ~a ) s’
'qz - a8 Jk \f fi

(4-46)

As 1n equations (4-37) and (4-38), the contour integrals involving K;
are along a flat half-space while the coﬁtour integrals involving K
are-along the topographic profile,

. It is shown in Appendix D that the trigonometric expressions can be

written as



90

S‘mF 2 - ( 5ICGS:>L + SS’?/haL) ) (4_473.)
(§1+$r2) L2
Cosﬁ = <! Sonot = gc_c.sa{ (4-47b)
z Y )
(674 q"%) 7"
coslp-«)= =8 (4-47¢)
TN/ >
()2
S%[ﬂpnd)=(§;fﬂshd +2ﬁgcuq_ , (4-474)
i + T
and (8 +s )
@e’stlf-’:-d) = (Sz—stz)cc-SoL- 25'8 s ok ) (4-47e)
(8% s™)

where the parameters are defined in Fig. 21.
Thus, expanding the trigonometric expressions according to equations (4-47),
not“.i.ng that the half-space 1s parallel to the x-axzxis (= -90°),) and
assuming that the incident field is an Ey-polarized plane wave incident

normal to the half-space, then equation (4-47) can be rewritten gg

IHi’enﬁf{!): ELD kz(g“{-/i-l'T %) FZ KE[ b >
P Lo fy ol X+ L2)- Rz &y | (87T - $,-T,)R
) Tro 5 _szo__)
e8(T- 2m)2 ] (h-t9)

where Il, 1'2, I 1

5 =6
(3-63b), (4-13a), (4-13b), (4-14a), (4-14b) and (4-14c)

, 19, 110 and Ill are glvet} by equations (3-63a),

‘respectively, with a = -a-s, and b'= a-s .
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It should be noted that equations (4-40) through (4-44) must be
considered at the edges of the interval (-a,a) to ensure continuity of
the known and unknown curxrent distributions in equation (4-45).

Equations (4-37) and (4-45) were programmed assuming tﬂat the
incident field 1s amn Ey-polarized plane wave incident normal to a conduc-
tive half-space. Their validity can be demonstrated by comparing the
numerical results with the analytical results obtained for the case of
reflection from a conductive half-space, equatiom (4-24).

It should be noted, however, that it is noé necessary to sample the
contour at least ten times per Waveleﬁgth to describe adequately the
equivalent surface current density while testing the validity of the
integral representations, The reason for this is that with normal inca-
dence the equivalent surface current density is comskant. As a result,
the contour can be described by any number of intervals if integration
accuracy is maintained,

To take advantage of this fact, the integrals over the contour
section (-a,a) in equation (4-37). were replaced by equations (3-58) and
(—Zzs) times equation (3-64), and those in equation (4-45) were replaced
by equation (4-11), In this form, all independent integrals in equations
(3-58), (3-64) and (4-11) were integrated numerically with the integration
tolerance being specified by an integration sampling rate per wavelength.

The concept of an integration sampling rate per wavelength was
chosen to correspond to the integration accuracy that would be obtained if
the contour had been sampled evenly at this same rate, Fox example, 1f
a cpntour section one wavelength long~had been sampled previously by 10

intervals of equal width, then the same accuracy can be achieved by one
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interval with an integration sampling rate of 10, This 1s equal to an
n of 20 in Simpson's rule for this interval width, but in generai n will
be different for each interval, although the integration sampling rate
will be the same,

Table 1 demonstrates that the integral‘representatlons are valid
for topographic scattering problems and summarizes the accuracy and
convergence of the solution as the numerical variables are changed., It
should be remembered that since the incident field is normal to the
interface at all points and tﬁat since the curvature is zero, equations
(4-37) and (4~45) represent an exact formulation of this particular problem.
Thus, Table 1 is a good indicatacn of solution accuracy and convergence
under various numerical conditions,.

In this gxémple, we have assumed that an Ey-polarized plane wave is
normally incident bo a horizontal interface and that: the height z of
the observation point is 100 m above the interface, the incident field
frequency 1s 1000 hz, the conductivity of the upper region is 0, and the
conductivity of the lower region 1s IOL3 mhos/m. In particular, Tabie 1
assumes that the point of observation is at x = -400 m. This point was
chosen over x = 0 (the center of the half-space contour) since Hz always

is given by a computer round-off error of about 10714

at the center of any
contour symmetric with respect to the z-axis., Thus, by choosing x = -400 m,
Hz 1s proportional to the accuracy of the solution rather than the computer
round-off.

In Table 1, "a" 1s the half-width of the contour section (-a,a)

within which the surface current density 1s assumed to be unknown, N is

the number of sampling points of the equivalent surface current density
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ta Real (H,) | Imag. (Hy)| Real (Hy) |Imag (H,)] N Int, rate] Re
Analytical Results
.9894 .01251 0. 0.
Numerical Results
600,000 |1.0127 |.00511 8x10~3 | 2x1073 14 10 .3
9944 | .01104 210 |5x107% 14 20 .3
9897 | .01266 7x107> | 2x107° 14 20 .5
300,000 |1.0124 | .00528 9x1073 | 3x1073 12 10 .3
.9944 | ,01105 1xk1073 | 5x10-4 12 20 .3
9942 |.01103 | 1x10™° |5x107% 12 30 3
9917 | .01280 55107 | 4x10™7 22 10 .3
.9897 | .01268 1107 |3x1076 22 20 .3
.9896 |.01267 | 7x107° |1x105 12 20 .5
.9895 | .01267 8x10™> |2x1075 12 30 5
50,000 , {1.0129 | .00520 8x10™3  |3x1073 8 10 .3
.9943  |.01093 2x1073  [sx107% 8 20 3
.9908 .01275 1x10°%  |3x107° 8 10 .5
,9896  |.01264 | 8x10™> |1x107? 8 20 .5
20,000 | 1.0131 |.00546 95107 |3x1072 6 10 3
9946 | .01103 2x10"%  |5x107% 6 20 .3
.9897 |.01269 9x107% |5x107® 6 10 .5
.9896 |.01268 | 8x10  |3x107° 6 20 .5
5,000 .9894 | .0125L 1x10:i2 1x10:iz 4 10 .3
.9894 |.01251 1x10 1x10 4 20 .3
9894 |.01251 1x107 14 |1x10714 4 20 .5
Table 1. Magnetic field intensity reflected by a horizontal interface between

air and a conductive earth:

Ey-polarization,,x = -400 m, 2, = 100 m,
f = 1000 hz, ¢ =0mhos/m,

and’ €,y = 10 ” whos/m.
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within (~a,a), int. rate 1s the integration sampling rate per wavelength
and Re is that value for which the small argument solution to equations
(4-37) and (4-45) is used iflkﬂr] £ Re over the entire width of a sampling
interval,

It 1s evident from the data of Table 1 for a = 5000 that equations
(4-37) and (4-45) are an accurate formulation of the problem whenever
]koaf<<: Re/2, This is not surprising since the small argument approxi-
mations are very accurate for these small arguments and they are used to
evaluate all integrals Whén the contour section (-a,a) is so short,
However, whenlkoa} > Re/2, both Simpson's ru}e and the small argument
approximations are used to evaluate equations (4-37) and (4-45), in which
case the usual solution accuracy of 1% or better is achieved.

It is evident from the data of Table 1 for a = 300,000 that the
solution accuracy can be increased by raising the number of sampling
points within the interval (~a,a) or by increasing Re, as well as by
increasing the integration sampling rate. This result is actually more
a function of the manner in which the program has been written than
the numerical nature of the solution. The reason for this 1s that the
small argument approximation 1s used only When]kd £ Re for all points on
an interval.

As an example of why this 1s a programming effect,it should be
noted that the small argument approximation would ﬁot be used to calculate
the contribution of an interval to the fields ﬂflkra( ~ 01 andlkrdnj.a
(where r, and rb are the radial distances -to each edge of the interval)
and Re were .3, Instead, Simpson's rule would be used and significant

integration errors would be incurred unless a large integration sampling

rate had been specified.’ However, by choosing an Re of .5, the more
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accurate small argument approximation would be used for this interval
and solution accuracy would be improved substantially, Alternatively,
the contour could have been sampled more frequently and the interval of
this example might now be sampled twice such that Ikral’” .01, lk%zlﬂJ-Og
and lkrb|«a.4. Thus, even with an Re of .3, a more accurate solution
Would'be obtained since the small argument approximation would be used
for the interval (ra,rc) whereas numerical integration would be used for
the interval (rc, rb).

It is apparent that the above situation can arise in equation
(4-37) whenever small interval widths are adjacent to large interval
widths and/or in equation (4-45) whenever the’point of cobservation is
close to the contour (lkrl<<A). As a reéult, it 1s necessary to choose
small contour sampling widths near the points of observation and gradually
%ncreése the contour sampling widths on éach side away from the points
of observation., In this way it is possible to sample accurately the
equivalent surface current density with the smallest possible matrix
size 'and Stlil be assured of obtaining a Solution accuracy of about 10“5.

To illustrate the application of the method to topographic
scattering problems which cannot be handled analytically, the field
scattered by the hill of Fig. 47 has been considered in Figs. 48 thiough
51. In this problem, the contour has been computed in meters according
to the Gaussian distribution

)"
Helﬂh‘t = 100 & . (4-49)
In Flgs, 48 through 51, it is assumed thait an Ey-polarized plane

wave is incident normal to the topography and that: the point of
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observation Z 1s 150 m above the half-space, the incident field frequency
o

1

is 1000 hz, the conductivity of the upper medium i 0, and the conductivity
of the lower medium is 10-3 mhos/m,

The vertical magnetic field intensity has been examined in
Figsi 48 through 50 to establish solution convergence, This field was
chosen over the horizontal magnetic field intensity since 1t 1s more
sensitive to both the inhomogereity and round-off errors.

It is evident from Fig, 48 that for this example, a contour
section bounded by (-10,000?+ 10,000) [ie (-Aair/30, +-;&air/30i, is
sufficient to describe the unknown surface current density. 1In Figs.

49 and 50, the sampling densiéy required within the horizontal region
(-10,000, + 10,000) has been tested for solution convergence. On the
baéﬁs of Figs, 48 through 50, 1t was decided that an accuracy tobetter
than 1% (at the peak value of Hz) could be obtained if the contour was
sampled 44 times Qithin the contour section bounded by (-10,000, + 10,000).

In Fig. 51, the horizontal magnetic field intensity scattered
by the hi1ll has been plotted assuming a constant flight level of 150 m
above the half-space and also, assuming a contour flight level which is
150 m above the interface. It is seen that by contour flying, the peak
electromagnetic response of the hill has been reduced by a factor of
two. 1In addition, the electromagnetic response has been held to a
constant over the central portion of the hill, However, even by contour
flying, there has been an approximate increase in the peak value of
real (Hk) of 12% as a result of topography.

It should be noted from Fig. 47, however, that since the curvature

L e
approximations have been viclated in this example, real (H) will be about
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207% too large whereas imaginary Eﬁ) may be meaningless, Nonetheless,
1t has been feasible to estimate these errotrs since the curvature
viclation and electrical parameters are approximately the same in each
problem, As a result, it is possible to estimate that for the contour
flight example of Fig., 51, there should be an actual increase in the

peak value of real (Hx) of about 10% as a result of topography.



CHAPTER 5

SCATTERING FROM CYLINDERS WITH ARBITRARY IMPEDANCE

In Chapters 3 and 4, an integral equation solution to scatﬁerlng
from perfectly conducting and highly conducting cylinders was discussed.
In this analysis, the general integral representations were investigated
under simplifying assumptions sc that each numerical difficulty could be
studied 1ndividually,

Having examined some particular problems encountered in formulating
an integral equation solution tc geophysical scattering problems, we are
prepared now to examine electromagnetic scattering from cylinders with
arbitrary impedance. Once this analysis has been completed, any two-
dimensional problem cam be formulated and solved (within the time and
storage limitations of the computer), including the very important
problem of scattering froé cylinders in a conductive half—;pace.

5-1 Derivation of the Integral Equations

The general coupled integral representations of E;\('[';') and H;(;,')
in the exterior medium were given in Chapter 2 (equations (2-56) and

{2-57) as

d@)

t ] 2 R !
B, () = EL) - zY [ Kepouy (¥ g-p1) s
T f TE,"L T

———ma—

+ (F kﬁ b’;j' Ks () ‘Sim(,&-—ot) H?)LK\\F-FH) s’
4k ‘

1
1 -

L
t

; (5-1)
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and

MG = By ) + X S My (5 He (¥ 15-p ) ds”
azk,

- ey ) [ M- (- B L¥3-71) 4
25 Je

1
- G) - d
+ _L__}_(! Kglr') cC-SLF.—m') H, (.B"ip'—r'i)‘&s »

4 Cl (5'2)

where the earth parameters have been referred to by the sub-

script 1.

The transverse field intensities are obtained by-adding the incident

transverse magnetic field intensity and transverse electric field intensity
to the scattered transverse field quantities (equations (2-66) and

(2-68)), and we find that

s 3 VL N - R

&

- ,?ejl’( K._.,(F’:fﬁ(}f,,ﬁ-,f?’)als'_ 2{[" YM ﬁ;s(l F Vs’

4 E, <, ‘fju,w (5-3)
and ’
B - B p e L J N RN ors
- ﬁ.ﬁ. ! M, (Y, 5,70 znffj" Ks (IR, (%, 5,0 ds"
e Rl (5-4)
where
FLY, PP = H(')[X lp-p ) simp R - cosp2) (5-5a)
E(‘K)F,F') = SEM(F“"‘) H?(b’lf—ﬁ‘!}(sfmﬁﬁ - cospﬁ)
- H?)[XIE"EI;) (Qstlﬁ.-at)& +s€m(=1js—u\z‘?) , (5-5b)

Yip-p')



100

and

——

F.;S (X! F' P') = &63(#‘4) HL:) (\ﬁ'l F-FrD (Sé«/ﬁ,}'}ﬂ(_os Fg)

Wy ;
HR\XI—E_“Q'I) (sin@@p-=)2 - cos(Ap-)Z) .
X‘F‘F’ 1 (5-5¢)

Similarly, the integral representations of the fields inside the
scatterer are obtained from equations (2-72), (2-73), (2-74) and (2-75).
It 1s found that

t z '
EyGY = 2 [ kIR lpnds
R g ! 2 P

4 2 ~C

i
. Q) - '
~ iZ, ?ﬁLJ K () sim (- H, Ulef~ 1)as

42, ¢

- 1% f M (Feos(p-O MO8 1p.51) 4’ (5-6)
SIS
1 &
H}{F)= - 2{:, J M.'IIF,) H&)(KLIF_F’[)&SI
2k 4

+ ;E _,LXIS MS(F’,\ Sim | p-ot) H(,})(‘o’,_)F.F'I)QQS'
e N o (5-7)

~ _—f:lz_ f Ks(5) cos (}B ) H%I) (,XllF-F’I)oisf 5
4 Je,

Tt 'Xs ‘M - ,
wF) = -t | KGR 550
4k, ¢,

' }Q{ PRI BRI, e

i ) 4}11&) G
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- . 3 A= Y
EF ) = - LEEL mg(P)r,-ﬂu’z,f,f)&s;
43 c,

f‘“sf Crppdds - A% [ Falt,fp)ds),
4k 2

(5-9)
where the cylinder parameters have been referred to by the subscript 2,
dF,(¥,5.3), F 5 =7 T N ;
and F, ( wff ) Z(XZ'P’P ) and FB(X“P'F ) are given by equations
(5-5).
The unknown current co ts K K
n mponents y(Ei), S(?'), My(F) and Ms('g)
are obtained by enforcing the boundary conditions on tangent:l.al_.E- and H
and solving the resulting integral equations., We have from equation (2-53)
that the tangential unit vector .g, is given by
2= - Shway R o+ ocoswp 2
(5-10)
where .; 15 the normal into the cylinder at the boundary
pownt, Thus, the tangential components of B and T in the transverse plane
are found by taking the dot product of (5-10) with equations (5-3), (5-4),

(5-8) and (5-9). We find that exterior to the cylinder,

HE(§) = 3.y (5) & H’f’f Ky () 6,06, p,57) s
B

- lef[ K K Ks(F)G quf r)&,s - __\____S NS(P)GEUI)F: )0[5
¢

4k J Yo 2, (5-11)
and
Y ng..,( K
£, (P) = S-E{A{}n) + i¥ g 5(f)6| Kl)f)f) Y
),
k x\ j MSLF V6,00 s’ 28 S K6, 04, 715
{5-12)

1k, ¢
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Interior to the cylinder,

HI ()= -_% jtp)c 05, p,p70ds’

sk x:g kelF) G’z(ﬁ,?,f')is" J M3 & Lb',!f r’)&s 1
4Ry e /u 20 (5-13)

1

Eslz)= - y gM(PJGLK,P )ds’

\zj 5y ‘ Ms ()G, (Y, —-—')&s Z,X" Ks(37) G (X, s’
+ * sip i, Uiy > S\p
q_&g_;_ y Paf > i) st )

! T

(5-14)
where G LX)F!P’B = ‘5\'-? (‘(!F P" (5-152a)
6 (%57 = - HP(olp-571) costp-+i) (5-15b)
CI(X)F’F') = - 3—‘-&([5-&)C05(F-9(;_) H:)(YPP,P’I)
{(5-15¢)
+ Q) Ef)meaFa{xL\)
le 4 di
6, a g ) = - con (prdeost prei) Ho (Y15
+ W) cos p-a-=1)
X\F,F’l (5-15d)

If we let the point of observation appreach a boundary point given
N P . = .,
by the position vector P and equate tengential components of E and H,

we obtain the desired coupled integral equations:
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y

T

By () = .gzjcf’ 2,57 W05 » 2Y WG N- —11)]&‘
4, By BN

~ L} Kgp) simd A‘)[Zl ky ¥ J-I(:)('b' l'fi-?'l)_,, zh Y, H@)(h’ll"i "I)J&s
1 <% F :El | :ﬁ

!
: j Ms 3&5(P~¢)[}’ EA ) S VAT P’JGQ.S

4
4

Wy (7 - JM ‘e”[ 5 u“’m,ﬂ ) 4 x W’w 'P"“’J&ﬂ
4 ¢ Zk,

-

(5-16)

1

i

ij M GG siml - 2 k¥, HOQE 125 + Bata xﬁ’tmyigfl)]cﬂs
4 2 Z b

Z

e I {

(5-17)

..__Z._g K. {'F’) cbs((}-—,ﬂ[’ w)(’\s“ “ ?, [) .].X Hﬁ)(} ‘Plf ...r[)]@ﬁ_s
4 Je

Q,Aﬁﬁ(]s’*’) = -1 quy’)[):_(l (%, [,”F’)+‘6 6, 6, 7% *’)]&s

4 i
+,‘_‘{_5

t
ks u X “ _y ’
Ks{Fq[hﬁ AR OPR R ANC N A )]&s
< :L /v’-z

t

+

g MS(P [\6 G LX‘}I’F 54. K G'(X.“(, iF ]&s (5-18)
Cl }ll /Alw

5y -

and

" 3 -t _y ¢
B (- -1 [ Mgthg’ 6, (0, g o I
+ | T

Ml k¥ 6,00, 57 + & 0 75| 4
f [ f EI"

2 ‘
-1 Kstgs’)[ Z,}’,l Gy (X, F")") + 50 6.3[‘52,?”,‘“’) ds' - (5-19)
4 Sc I 2 !
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Equations (5-16), (5-17), (5-18) and (5-19) are four coupled integral
equations with four unknown current components Ky(ﬁ‘), KS(?’), MY(F )
and MS(§ ). They are solved by dividing the contour into N sampled
values of each unknown current components and solving the resulting system
of 4N linear equations for the unknown sampled values of IS,(‘E;), KS(F),
M&(ﬁ), and MS(F). The solution of four coupled integral equations is
similar to the solution of two compled integral equations, which is
discussed in section {(5-3).

If we assume that ky = 0, then equations (5-16) and (5-18) uncouple
from equations (5-17) and (5-19) and can be solved separately for each
axial component of the total field., However, we will confine our study
to Ey-polarized incident fields, in which case it is sufficient to consider
equations (5-16) and (5-18) alonme. It should be noted, however, that the
numerical sclution of equations (5-17) and (5-19) is the same as the
numerical solution of equations (5-16) and (5-18). 1In fact, the calcu-
lation of the scattering matrix would not be much more difficult even
if k§ were not assumed to be zero, The only differences would be that
a larger storage would be required for the matrix and 1its inversion
would be more time consuming,

Assuming that ky = ( and confining our study to E_-polarized

¥
incident fields, we find that the integral equations reduce to

) < s J Ky o[ Wl ) o ?Uulﬁtﬁ")]‘i*'

4

- LJ Ms(p Costp —d)[ W2 b, 5l by Wb, [5 l)]e@s (5-20)
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and

e T

3. Hﬁ, [P e : 1 kg(F)Cas[fs dl)[/& Hﬁ)LhIF"F'I)+L M“ {k, }"” ”’i) ds’

§

ky, H

|

M, LF’) d.ros(f:,"- ) c»s([s"- o ) [
C,

} _, O s .
: bz l)+k Ho ket pr)] s

“‘I

1

t 'S"‘s(?"w‘@ﬁ ] l[ WOhIp ) o B () 57 5 'i)]ois‘. (5-21)
AT

Assuming that the incident field is the transmitted field of a Ey—

polarized plane wave incident normal to a conductive half-space, then

s " ~t l?1"?' y (5-22)
t5 [P ) = ‘QZI Hp R }
V43 /z,
and §.~ﬁ; (Fﬂ) . s B, &_lez . (5-23)

| + &/z,

Once Ky( § ) and MS(‘F) have been estimated from equations (5-20)
and (5-21), the total or scattered magnetic field intensity is calculated
from equation (5-3) or (5-8) by setting ky = 0. Depending upon which
region the fields arve desired, it is found that

-ﬂh (F) :%;S KH(P")H)UHP P I)(Smr?ux —CosPZ)A-’*
(&

t

~ by g Mg () cos(p-a) B Lk 15 )sinp R - cos g 2) ol s
2 ¢

+__k_l_ MSEF') LL[lEve )(SW(QF a(]/x @s(&ﬁ_..()z)&s
42, ¢, X( \F 7 \ (5-24)
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exterior to the cylinder, and
T : i ) . A A Coa
Hh (‘P’) = —i}_i_:.j Kle’) H(:}“:z[F..?’})[Sm pR - cos p2)ds
[al

b [ Mk e D g - cnp)d

42, :

v b S Matp) Hy (by 15570 (sin tap- IR = costap-d 2 )ds'

42, Je, /)zdf‘if’_’i (5-25)
interior to the cylinder,

It is interesting to note that the general integral equation (5-20)
can be reduced to the integral equation for cylinders with low surface
impedance (equation (4-7)) by'a different derivation than discussed in
sections (2-5) and (4-1), If it is assumed that k2 becomes very large
with respect to k; and that the curvature of the cylinder 1s small, then
only that part of the contour in the immediate vicinity of the point
at which the boundary condition is being enforced contributes to the con-
tour integral of the interior field representations. Under these con-
ditions, the contour integral can be replaced Sy an integral over the
interval (-op, c0) since the fields will be indepeﬁdent of the contour
chosen outside of this region of interest, Consequently, equation (5-20)

can be rewritten as

E, 7 = /‘ﬂj Ky (P MG Lol poi)ds’ - i, j’ Mep7) cos =) B (ke 31) e
4 e, 4 ¢,
e [ﬂ___ﬂ_ﬂz“’ Fulp?) f o Lo/ %57 )ds
-h-o 4 )
* (5-26)

o)
- (ks M§(~E~)J’ cos (%) H(:‘(us%a‘)&c'_] .
4  “Zw
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Noting that

(5-27)

Cos(F”-d) = )

S?..+S|'L
for a point of observation just inside the cylinder, then the last two

integrals of equation (5-26) can be evaluated analytically from equations

(4-28) and (4-29). Thus, equation (5-26) reduces to

A W ot ]
‘ 7Y = qu (F”) Ky (F” Ms(ﬁn) 4+ M kjff') Ho)qulD -P ‘)OQS
3 P T2 2 4

|

— ik [ Ms(p s (pr- A HP (k15 s ds.
“a“gc, PRty

On replacing Ms(F ¥ by 'zgyKy as discussed in section (2-5), we find that

(5-28)

£y (%) = Zuy(57) Ky(p) 4_&_5 Ky 9 B b1 prepri) ds”

+ %&f Z, LYKy () cos(p'=) D ( ky ) ds’. (5-29)
cl

Equation (5-29) agrees with equation (4-7).
As in Chapters 3 and 4, it 1s necessary for integration accuracy
to make a small argument approximation to the Hankel functions whenever
Ik]l?-?f' 15 less than 0,3 and integrate the resulting expressions
analytically, Fortunately, the necessary integrals have been studied
already in Chapters 3 and 4, From equations (3-8) and (3-10), we can
write that the small argument contribution of the jth interval to

equation (5-20) 1s
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il = (g )+ g Lh i)

poikd Bk 5 ) 4 S Bl 57 ),
4 4 (5-30)

where Eyj k, "E‘”, F') 'is given by equations (3-58}, (3-59) and
(3-60) with current component I%(p,),
and Bj (k’—F”’ F’) is given by equations (3-62b) and (3-63)
with current component MS(P').
S8imilarly, the contribution of the jth interval to the scattered

magnetic field intensity (equation (5-24)) can be written from equatiomn

{4-10) as

H‘h‘} (F) = “%l{ (A Cosoty + [ Siimati)/,ét + Lﬂs-thd:‘ —-Egcosxj')g]

- _El_ i[ﬁ.(c usd.j + Bbsimulﬂ -/_L_((QZE— F) slf/\aotj + 2156 Ccsdjﬁ-&\

4'Z| i

+[ S(Csiﬂdl - S:Dcos\ﬁ‘) +i_( [51]_—'_- FSCoSe{:} - 13@—5&&.})]3} 3 5oy

1

where A and B are given by equations (3-62) and (3-63) with current

component K (-P-)’
y
and C, D, E, F, and G are given by equations (4-12), (4-13)

(4~14) with current component M (F)_
s
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The small argument approximation to equation (5-21) is obtained by
taking the dot product of 8 and equation (5-31) with opposite sign.
Thus, from equations (5-10) and (5-31), the small argument contribution

of the jth interval to equation (5-21) is found to be

s. H;\;,(F ) = H%JU:,,F”,F’) 3 H%J&z,p'j_ﬁ') , (5-12)

H _UQ)FH)F') - —-%’i[ Asimtot-r.ocj) + BScos(Gzr«}]

{ 8 [C <Sim Lcli—ak:)) + )SC&S (D‘i,watj }]

O ks

wl[(SzE—F)Cosuz-ogHaEG S%urc{,)] ,  (5-33)
k

where A and B are given by equations (3-62) and (3-63) with
current component K_Y(E';'),J
and C, D, E, F, and G are given by equations (4-12), (4-13),

and (4-14) with current component M (@ ).
s
5-2 Integration Through the Point of Singularity

Integration through the point of singularity in equation (5-20)
presents no problem if it is noted that the limit taken when applying
the boundary conditions is from both sides of the interface. Thys, we

~

find that
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Los {F-o{) = ____—_-_é_"__ (5-34)
31-\ s
for a point of observation just outside the cylinder, and
Cos(P—d} = b
Viicaaind )
]/ St
(5-35)

for a point of observation just inside the cylinder. Since

A H
Con (k8 | ) WU o mgn
4 .

é—?o CB?-* Sf‘l)’/z 7

-.-WL

the contribution of each term in the second integral of equation (5-20)
adds to zero., The contribution of the first integral of equation (5-20)
in the singular interval is found by applying equations (3-31), (3-32)
and.(3-33) to each of the Hankel functions and summing the results’

It should be remembered, however,that equations (3-31), (3-32) and
(3-33) are accurate only if the small argument approximation to the Hankel
function 1s valid., When examining scattering from highly conducting
cylinders, it is quite possible that although |k1| W, £ .3, |k2l wW;>.3
where wl is the half width of the singular interval, This problem can

be overcome by going back to equation (3-28) and rewriting HKOO and HKO2

as
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HK0O = fu g HOUk/EET s +1J U (s s |

el ¥ e £ (5-37a)
and

Hkoz = fun J' S‘?’H“ (by 525t} ds’ +zf "H)Uz Vs’

S=0 ¢
& (5-37b)

where
€= - 3 {5~37c)

—— it -

Il

Thus, the integrals are approximated analytically over the interval
(—E)g) from equations (3-30a) and (3-30c) and numerically over the
mtervals (-w; ;5) and (g‘w; ). These results are then inserted
into equation (3-28) to obtain the contribution to the singular intexval.

In the singular interval, ol 2et, SO that equation (5-21) can be

rewritten as

9« & [ g ot A Akl o
C

H T

- S Ms(p')cos’“tp”-v:)[_k._ Ho (l3270) + b I-\?(_Lzlf“,’if’l)]&sl
4 3 Z

& Ms(5 )C,csa(rn-aé)): WP Lkl p DI H,’(L 575 fi)}aﬁs .

FR Zlpy! P”‘f'

(5-38)
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It 1s evident that the contribution of the first integral of
equation (5-38) is zero hy comparing 1t with the second integral of
equation (5-20). The contribution of the second integral of equation
(5-38) also is zero and this can be shown by examining the term involving
Hg) (k } f - p‘ D. oOn expandu}g MS(F’) the contribution of the terms

involving g (k,} P‘”— P"I) can be written as
o 1

+ ! [ e s _.Il] Msu. *._A.L[_____A'LI" - _I_Z] M‘a-| ?
T

H—Ai Wi AWy ’L"’L LA WL*-WL“ i (5-39)
where
T = L (8 J (“)le Jst “Jcﬂs ) (5-40a)
o 8 5
bl #) ""WL 3
Yo L myy [RE ey g 5-40b
Qm ( j’ 5! O)Ll?l s )is ) , ( )
3"'0 - 81-{‘-5'&
and

Dim ( f ' > ‘—‘ L/§ +s' ) (5-40c)
(S-ﬂ.w-f? “~ Wi & -{—S

Equations (5-40) have been evaluated in Appendix D assuming that

Hm(kl{ 67351) is given by equation (3-26). It is found that on taking
)

E—ao[ *p"‘ ti“;i") 0& ]

the limait

(5-41a)
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I,zo (5-41b)

and

I, = 0. (5-41c)

Rewriting (5~41lc) as

E [ sf (_s %5 4y ‘@,.L(s +5 )J],s W‘,ﬁn Cs'z;staﬁs'jf
5 Z 5'14-5 gk PURIS S
$4nd

S/So 208
~ . { s‘r E««(s 357) ds' L 25w, ,,MnsoSE)(S-m
5—-0

g/ S'z-e- s* W, {5
20 .

2
then it is apparent that on taking the limit as

B

is

(5-43)
Since a similar analysis involving H (k if” F'I ) would yield an analogous
result, the contribution of the second integral of equation (5-38) 1s

Zerc.,

Noting that

(’_osa(f}*ok) - zm"(f:,~ac),| = 28T
(5 s %) (5-44)

*then the contribution of each term in the third integral of equation (5-38)

can be written as

- { L {[ (D‘SII‘i -5, - (E“‘\i) (_:IBZ'I‘O-I?_) - (251.11\ “I?’—-)] "
42 T

S~ 0 R
wc"‘”m ¢

M., [ 871,-T, agizu-lg] - M [)\chs“‘i,: L) . as'T, - I3J§ , (5-45)
L

i+ /\;_ W, + Wiy, ?L I+ W; + W /I‘:[

97 13, Ig, I,5s and 111 are given by equations (3-36)

and (4-14).

where I, I
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These 1ntegrals have been evaluated in Appendix D assuming that
Iﬁ?ﬂclél+ s'* ) and ﬁn(k,fs‘+s’z )} are given by equations (3-26) and
1
(3-27). Thus, if the integration is performed over two intervals as in

equations (5-37), then it is found that

Oon (25 Ty=T)z - 40 - he[(g_ wﬁ‘)m{(\- 26 g vke

5-—-0 i £

w.

{2 2 A ) ! ¢
_(é_ 13ks g _ 2 L}, (ks') GQs , (5-46a)
z 288 ¢ <!
le (85°L-L)=o (5-460)
S0
and
oo (38°T, -Tu) = L 2w o Chw) - Hkoo) (5-46¢)
p )

where HKOO is given by equation (5-37a)
and £ is given by equation (5-37¢).
The contribution of the third integral in the singular interval is

thus found by applying equations (5-45) and (5-46) to each of the Hankel

functions in the third integral of equation (5-38) and summing the results.

5-3 Numerical Solution of Coupled Integral Equations

The coupled integral equations (5-20) and (5-21) can be solved in
essentially the same manner as when solving the Fredholm integral equations
of Ghapters 3 and 4. The integrals in each equation are approximated by a
weighted sum of N sampled values of Ky(F‘) and MS(F'). When this is done,

the integral equations reduce to a system of 2N linear equations of the form
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(&Y = (e)kg) + (e )lms) | (5-472)
(H;S = (C2|)(kj) + (C'-’-Z)(MS) 3 (5'4713)
where (011),

(012), (021) and SCZZ) represent square matrices of order

N and CE;)’(HEE)’ (Ky) and (M) represent column matrices of
length N,

Being cognizant of the matrix nature of equations (5-47), (K ) and

¥y
(M ) can be obtained by treating (5-47) as two linear equations with two
s
unknowns. On solving these equations, it 1s found that the best form of
the solution is

-1 3 -1 s
(M) = {[(q,xc,,) T(ea) - (cznj { [eakea) JCeR)- () )]  (5-488)

U(j): (cn)-‘(e_‘;) - (CH)—I(CH.)(M;)

where the superscript -1 denotes the matrix inverse.

and

(5-48b)

Equations (5-48) are preferred to other forms since the solution is

well behaved even when studying reflectidon from a flat half-space,

In
this case, G;, = C

91 = 0 and equations (5-47) uncouple, but equations

(5-48) sti1ll give the correct solution,

5-4 Numerical Examples

Equations (5-20), (5-21) and (5-24) were programmed assuming that

the incident field is the transmitted field of an E_-polarized plane
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wave incident normal to a conductive half-space (equations (5-22) and
(5-23)). As 1n Chapter 4, their validity is demonstrated by comparing
the numerical results with the analytical results obtained for the case
of scattering from finitely,conducting crrcular cylinders (equations
(4-15), (4-16) and (4-17)).

In Chapters 3 and 4, it was seen that an n of 2 in Simpson's rule
was sufficient in general for integration accuracy across each interval,
Although this will still be true in equations (5-20), (5-21) and (5-24)
for those integrals involving the exterior Green's funection, 1t may not
be sufficient for those integrals involving the intexrioxr Green's function.
The reason for this is that with large values for the conductivity of
the scatterer, the modulation of the integrands of the interior integral
representations by the Hankel functions becomes sufficient to affect
integration accuracy.

To overcome this problem, equations (5-20), (5-21), and (5-24)
were rewritten in the form of equations (5-30), (5-32), and (5-31)
respectively. In this form the order n in Simpson's rule is specified
separately for each region and all independent integrals 1n equations
(5-30), (5-31) and (5-32) are performed numerically.

Figs. 52 through 55 demonstrate that the general integral repre-
sentations are valid, although the accuracy and convergence obtained 1s
not as good as that realized in Chapters 3 and 4 for more highly comducting
scatterers. In this example, we have assumed normal incidence of an
E -polarized plane wave and that: the depth z

1
y
is 20 m, the cylinder radius is 100 m, the incident field frequency is

te the top of the cylinder

-3
1000 hz, the conductivity of the whole-apace is 10 mhos/m and the con-

ductivity of the cylinder is 10-2 mhos/m,
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It is seen in Figs, 52 and 53 that except for imaginary CMS), an

accuracy to about 1% has been obtained with 40 sampled values of the

N
equivalent current densities., However, an accuracy to only about 5%
has been obtained for imaginar& ;) and, as a result, the fields cal-
culated from these currents have an accuracy to about 37 with 40 sampled
values.

Fig. 56 indicates that much better convergence is obtained if the
conductivity of the cylinder is increased from 10-2 mhos/m to ].0—l mhos/m.
For comparison, this example has been calculated élso using the integral
representations derived for conductors with a low surface impedance and
aismall curvature, It is evident that in this example the general integral
representations are required to predict imaginary (H,) accurately.

As the conductivity of the cylinder is decreased below 10"2 mhos/m
(assuming that all other parameters of Figs, 52 through 55 remain fixed),
the accuracy and convergence of the solution become increasingly unsatis-
factory., In Fig, 57, the horizontal component of the magnetic field
intensity scattered by a cylinder with a conductivity of O has been
plotted for 20, 30 and 40 sampled values of the equivalent surface current
densities. Although an accuracy to less than 3% is attained in estimating
the equivalent surface current densities, a surprisingly large error of
147 to 30% results for real (HX).

Consequently, the scattered magnetic field intensity was calculated
using analytical values of the equivalent éﬁrrent densities on the surface
of a circdlar cylinder with a conduc;ivity of 0. Since an accuracy to

better tham 37 was attained, this indicated that mo programming errors

existed which had not been detected in earlier tests.
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However, the possibility existed also that these large errors might
be due to the fact that the numericalchllnder was a polygon rather than
a circular cylinder, To test this likelihood, a twenty-sided polygon
with a conductivity of § was sampled 42 times. It is evident in Fig. 57
that the results closely duplicate the data for a forty-sided polygon,
suggesting ‘that the errors are not dependent upon ;urvature.

Nonetﬁeless, Neureuther (1969) believes that this test still does
not exclude the possibility that the solution is curvature dependent.
The reason for this is that by sampling a twenty-sided polygon 42 times,
the sampling points have been shifted closer to each corner of the polygon
where the influence of the polygon curvature will be more important. A4s
a result, it will be necessary to solve the integral equations assuming
that a circéular cylinder has been sampled 20 times rather than assuming
that a twenty-sided polygon has been sampled 20 times before the impor-
tance of curvature can ge resolved,

However, it would appear that the accuracy could be limited also
by requiring a very accurate knowledge of the equivalent surface
current densities whenever the ;eflection coefficient is small, The
reason for this can be understood best by examining Figs. 58 through 60
in which the problem of a cylindér having the same electrical parameters
as the surrounding whole-space has been considered, Since no field is
scattered, the tangential surface current densities are equal to.the
tangential components of the incident field, Ky = H;, M, = -E;, and

equation (5-24) reduces to
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ﬂ;f (:b') = ‘I:.;_f_:' f H; (}S'J ‘L;‘)U?{‘F-F’I)(sim Pé‘c- (_09{5 2)&5’
CI

+ _E._ j‘ Ej {F') ¢os (p~ «) Hﬁ)[E,IF-F‘l>(sLuf>£ - Cos‘ﬁli)a{s'
12, Je,

-~k [ etts) H?)[hii*ﬁ-ﬂ"l)( Sm(ap-)3 - Cas(zp-«:)%):is' )
1 I T ']F'F’l ;

(5-49)
This result, which always must be true for any point of observation
exterior to the cylinder, is deduced mathematically in section (6-1).
As a result, 1t is evident-thatthe accuracy obtained in predicting
the scattered fields 1s directly dependent upon an accurate knowledge of
the scattered fields around the boundary of the inhomogeneity, since in

general

-y

Hy'(5) = _L__L_L HEGIK Ul 5 t) s p 4 - cosp 20
4
!

+ _E__g By () ces(p-) W (k5-5* W sinp & - ws p2)ds’
e .

4z,

- & kJ () W Lt sim R p -0 & - ces(ap-<32 )ds".
1z, e, }liF§Pﬂ

(5-50)
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Thus, it is expected that the accuracy and convergence of the general
integral representations will be poor for those problemg in which the
reflection coefficient is small,

In Figs., 58 through 60, a maximum error of 8 x 10“2 Amps/m (2.27%)
in imaginary (MS) vields a maximum error in real (Hk) of 3.5 % lO- Amps/m,
Similarly, for N = 30 in Fig. 57, a maximum error of 7 x 10_2 Amps /m
(1.8%) in imaginary (Mg) ylelds a maximum error of 3.0 x 10‘ Aﬁps/m
(19%) 1n real (HX). Since the scattered field is small with respect to
the incident field at the contour ([Es°1/f]E°|«J .043 and B /1EY o .12
for ® =0 and, |E°¢] £|EY] ~ .089 and [E°C1/|1HY &~ .16 for & =17), a
significant percentage error is obtained in calculating the scattered
fields even though the equivalent surface current densities are known to
an accuracy of 2%

This conclusion is substantiated by the results of Fig, 61. In
this examply we have assumed normal incidence of an Ey—polarlzed plane
Wave:and that: the éepth z, to the top of the cylinder is 20 m, the
cylinder radius 1s 100 m, the incident field frequency is 1000 hz, the
conductivity of the whole space is 0, and the conductivity of the cylinder
18 10-3 mhos/m. Tt is seen that an accuracy to about 2.5% in lHX\
1s achieved since the scattered magnetic field (which is more important
than Ey in this example) now is much larger than the incident field
(lE;CI / 1Eyi|~,24 and IHZCIHH:;m 17.5 for@= 0.). It should be noted,
also, that the general integral representations are required to compute
this example since the curvature approximation would have been violated
had the solutions of Chapter 4 been used (compare TFigs, 45 and 61),

To 1llustrate the application of the method to problems which cannot

be handled analytically, the field scattered by the vertical slab of
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Fig. 24 has been plotted in Figs. 62 and 63. It is assumed that an EY-
polarized plane wave is incident normal to the slab and that: the depth
z, to the top of the slab is 20 m, the incident field frequency is 1000 haz,
the conductivity of the whole-space is 10-3 mhos/m, and the conductivity
of the slab is 1.0-1 mhos/m.

Since only a 1% change is obtained in the scattered magnetic
field intemnsities as the number of sampled values of the equivalent
current densities is increased from 30 to 62, we have assumed that a
convergent solution has been found., fThis fact is suggested also by Fig.
56 in which a cylinder having the same electrical parameters and about
the same contour length as the slab of Figs. 62 and 63 has an accuracy to
abour 1% for 30 sampled values,.

It is interesting to note that at this frequency and with these elec-
trical parameters, the inflexions of imaginary 6{-) are indicative of
¢ylinder width., Tt is evident f£rom Fig, 62 that the slab brings about
a significant decrease in imaginary (Hx) between x = * 50 m whereas
the circular cylinder of Fig. 56 has a flat response between x = % 50 m,
(Actually, there is a very slight decrease in imaginary (i) over the
circular cylinder.) The reason for this behaviour is that we are
observing each corner of the slab (where the radius of curvature is
small) respond to the incident field, This will be discussed more
thoroughly in section (7-3) where it will be seen that the corners
mainly affect imaginary (Ky). As a result, the effects of corners are

apparent in imaginary Eﬁs.
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CHAPTER 6

TWO-DIMENSTIONAT. AND THREE-DIMENSTIONAL INCIDENT FIELDS

In Chapters 3, 4 and 5, an integral equation soluticn to scattering
from cylinders in a conductive whole-space was examined., 1In the derivation
of these integral equations, however, it was assumed implicitly that the
incident field was that of a plane wave.

We will show now that this assumption is unnecessarily restrictive
and that the integral representations are valid for any two-dimensional
source configuration. TIn fact, any three-dimensional source configuration
can be considered by expanding the primary current distribution and the
field 1t radiates into a Fourier integral over a continuous mode distrib-

ution and solwving this two-dimensional problem.

6-1 Deravation of the Integral Representations Assuming Any Two-Dimensional
Source Configuration

If the incident field is other than that of a plane wave, 1t 1is
invalid to write that the axial components of the total electric and
magnetic field intensities satisfy the homogeneous Helmholtz equation in
the efterior region (assuming that this 1s the region which contains the
sources). However, since the scattered field intensities always satisfy
the homogeneous Heimholtz equation, 1t is valid to write that in the exterior

region

(v’*+|e1)'£“(p)= 0 (6-1)
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and
X2
(Q"+h’)l~£ "}: 0.
s
(6-2)
The exterior CGreen's function remains unchanged and must satisfy an
inhomogeneous Helmholtz equation given by
S 2 . — -
(v k) 6 (}s}f.‘ﬁ < -S(f'
(6-3)
Thus, 1t follows from section (2-1) that if equations (6-1) and (6-3)

and equations (6-2) and (6-3) are introduced separately into equation (2-2),

then
P | [ G 560 28 U
e, o’ ol (6-4)
and

Hy (p) - j{c (Pf f)'h(ﬂ(f")aé( i f&st) (6-5)

since the contribution from the outer contour C2 tends to zero as 02
approaches infinity.
However, the incident field does satisfy the homogeneous Helmholtz

equation 1n the interior region since by assumption this domain is source

free, Thus,

(T ¥) E (f) > (6-6)

and
(T4 k)l ()= 0 (6-7)

in the interior region. In addition, the exterior Green's function is

defined m the interior region by equation (6-3).
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As above, it follows from section (2-1) that 1f equations (6-6) and
(6~3) and equations (6-7) and (6-3) are introduced separately into equation

(2-2) for the interior region, then

ngc‘{é‘e(/.j.— SEJ )_%(f’)aé (ffl)j (6-8)

and

ozg c,(” bl (P),H(P)ac; (“,j,gg' (6-9)
2y an
since the Green's function possesses no singularities i1n the volume

integral inasmuch as F refers to any point ir the exterior region.

Adding equations (6-8) to (6-4) and (6-9) to (6-5), it is found that

—s¢ o t T, R, _, ' <! (6-10)
%‘ﬂ’j {G (5,2 (57 - & (228 (M’)} 4
<, aa’ on
and
H;‘ef)-ﬂ.J" {c‘%iy );m g7 - M (f')ae( Fif }a[s' . (6-11)
CI

Upon adding the incident field intensities to equation (6-10) and

(6~11Yy, the desired integral expressiong are cbtained:

Eq () &)+ J { "')_%(FJ %*(r”% .5 j ' e

and

Hy(ﬁ);‘ 1“}(?) %—l{ F )g_g j M;(F')'&;(W’)}cﬂs‘_ (6-13)
n

]
i
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It is evident on comparing equatiomns (6-12) and (6-10) with equatioms
(2-9) and (2-10), and equations (6-13) and (6-11) with equations (2-12)
and (2-13), that the integral expressions for E;(F) and H;(?‘) are unchanged,
Since the integral representations of the fields in the interior region
remain unaltered for two-dimensional sources, it follows that the general
field representations given in sections (2-3) and (2-4) are valid for any

two~dimensional source distribution,.

6-2 Wumerical Examples: Electric Line Source

The electric field intensity at a point of observation P radiated

by an electric line source located at PL is given by equation (3-6) as

Ey(p) = h/uJA]ij I‘Ifg) (‘éf"F“FL’) } (6-14)

where I is the electric current flowinmg in the scurce.
For simplicity, we will confine our examples to scatterlng from
perfectiy conducting cylinders, in which case the desired integral equation
1s found to be (from equation (3-8})

I.H:O(L;f}'-l;,_/) = -f'l(]tp’)H:J(L,Ip-ﬁ'i)ﬁs’, (6-15)

<

Once equation (6-15) has been solved for ("3 the scattered transverse
prs

magnetic field intensity is given by equation (3-12) as
— SL . ' , |) , ) “ ) ~ P
W (5. ik, f Ky G (b 3D sim e - conp ) ds’- 6-16)
4 e

To demonstrate that the integral representations are valid for two-

dimensional source configurations, we will compare the numerical results
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with the analytical results for the case of scattering from circular
eylinders, It can be shown by following a development similar to that of
Harrington (1961,p. 236) that the field scattered by a perfectly conducting
circular cylinder in the presence of an electric line source. which is

parallel to the cylindexr is given by

¢ X [ A . -
£ g) = - g T L €. ag Hn (ha ) KD (Ba) cosm (g7, 61D

= 1 1 4 '
Hiad) < ihT 2 énaﬂ’H&\)LL,,\L)[_r}_ K ()= KOk cosn (347
4 £ “
(6-18a)
and °
-4 3 (1) ;
H,:((";LY) = .“_I Z A, H;) @,;.,_) ”,a (fz,,\) Sim m (‘?‘q J)
2/\ m=l
{(6-18b)
where
a, = - dn (kR | 6-19%)
B (kR)
and (6-19b)
| = O
fa - { 2 i 2 21 ]

The coordinate system is defined in Fig., 64,

It is interesting to note that the "reflection coefficient” a 1is
the same as that obtained for the case of an Ey-polarized plane wave
(equation (3-48)) scattered by a perfectly conducting circular cylinder.
Harrington (1961, p. 237) notes that in general the "reflection coefficient™”
1s independent of che incident field. Thus, we can write immediately from

equations (4~15) and (4-16) that the field scattered by a finitely conducting

circular cylinder in the. présence of an electric line source which is
i
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parallel to the cylinder axis 1s given by equations (6-17) and (6-18) with

a, = -~y (RRY -¢q 4, (&, R) (6-202)
W, (k&) - ¢q H:)’U*; R)
and
Co = Zadu (RR) (6-20b)
ZI ‘s":\. (k"LR)

where the derivatives in (6-20) are with respect te the argument
(kR) .
This solution is similar to that given by Wait (1952).

Figs. 65 through 67 qemmnstrate that the integral representations are
valid for two-dimensional source configurations and that the solution
converges as the number of sampled values of the current density 1s increased.
We have assumed in this example that an Ey—polarlzed electric line source
15 located 20 m above the top of a perfectly conducting cylinder and that:
the cylinder radius 1s 100 m, the incident field frequency is 1000 hz, and
the conductivity of the whole-space is 10—3 mhos /m,

It is seen that a larger number of sampled values of the current
density is required to cobtain a 17 error than when the incident field
15 a plane wave {(compare Figs. 65 through 67 with Figs. 11 through 16). The
reason for this is that the field of a line source falls off ;uch m;re
rapidly than that of a plane wave, As a result, a small sampling interval
1s required for line source scattering problems to describe accurately the
rapid current variation around the cylinder.

However, 1t 15 evident from Fig. 65 that a small sampling interval is

required only on the upper portion of the cylinder since this 1s where the

largest current densities are located. At an angular distance of WZQ from
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the top of the cylinder, the surface current density is 1/20 of the maximum
value whereas at an angular distance of /2, the surface current density
1s 1/100 of the maximum value, Thus, a small sampling interval is required
only between = /4,

With this fact in mind, the cylinder was sampled 26 times using the
sampling distribution of Fig., 68. Intervals 1 through 8 and their mirror
image about the z-axis have the same sampling distribution as used in
Figs. 65 through 67 for N equal to 50. Then, the cylinder was sampled 3
times to a @ of ///2 and the lower half of the cylinder was sampled only
5 times,

A maximum change of 0.1% from the results of Figs., 66 and 67 was
obtained in the horizontal interval (-100,100). The changes were largest
at x = £100, since the point of observation is closer to the less accurate
sampling here than at x = 0. However, the fields close to x‘= 0 are of most
interest to the field geophysicist since this is the region of maximum
f1eld. intensities. Here, the changes are less than 0.01% from the reSulté
of Figs. 66 and 67. Thus, by an appropriate choice of interval distribution,
it seems possible to obtain about the same numerical accuracy independent
of the incident field using the same number of sampled values of the
surface current density,

To illustraée the application of the method to problems which cannot
be handled analytically, the field scattered by a perfectly conducting
vertical slab (Fig. 24) has been plotted in Figs. 69 and 70. In this example,
it 1s assumed that an Eympolarized line source isg located 20 m above the
top of the slab, the incident field frequency is 1000 hz and the conductivity

3

of the whole-space is 107~ mhos/m.
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The slab was sampled 30 and 42 times using the general sampling
distribution of Fig. 24. Then, choosing a sampling distribution with a
line source in mind, the slab was sampled twice as often as for N = 42
to a depth of 125 m on the slab (the depth at which the current was 1%
of the peak value), and pnly 9 times on the rest of the contour, Since
a change of less than 1% in the predicted Ffield occurred when the contour
was sampled twice as frequently (effectively), we can assume that a
convergent solution has been found, In addition, Figs. 66 and 67 suggest
that in a similar problem, an accuracy of greater than 1% can be obtained
if a smooth contour is sampled 500 times per wavelength, Since this sampling
rate 1s true for N = 50 on the slab contour above a depth of 125 m, this

result suggests also that a convergent result has been obtained for N = 50,

6~3 Integral Representations Assuming Any Three-Dimensional Source
Configuration

Harrington (1961, p. 292) notes that "a three-dimensional problem
having cyvlindrical boundaries can be reduced to a two-dimensional problem
by applying a Fourier transformation with respect to y (the cylinder
axis)." For three-dimensional source configurations, we seek a solution to

the three dimensional Helmboltz equation

( 3 +-é7;- +§L— + ki) E;c(”‘:j;%) =0 . (6-21)
o’ v 22t
Thus

s oo vy ~2 y
E_'i (“JLJ‘:E) = .‘ Ej {«,])Z),Q. J -él‘lj (6-22)
el -
will be a solution to the two-dimensional Helmholtz equation

(il.. +i_.i + Yl) E;(?,'D‘J) =‘-O>

w3 (6-23)
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where X1= hz-- \13 -

We can write immediately the solution to equation (6-23) from equation (6-10)
as

RACANE Jgfmﬁ,)az Giyd- & (,,*EJ) oy ¢ (P.o')faus

(6-24)

)

Z - o)
- =7 FA —t
where ﬁ (JO'P ) - ry K, (XIF_F I)
or, on applying a Fourier transformation to the incident field with

respect to ¥y

& (k) = 5, ke [ 455,00 28y ( ,)- 20 @,L_ff (f}f?}k’.«s—zw
.c‘I 1
Once equation (6-25) has been sol‘.ved for E;( F'k}’)’ the three-
dimensional solution is obtained from the inversion
= -
ey, > _L f & (x kjsz)*‘:"gy 4, (6-26)
27 _J)_, -
ﬁquatlon (6-26) asserts that the y dependance of Ey (x,y,2) (and
all other transformed quantities) is of the form e.:‘L kY ¥, Since the inte-
gral representations derived in sections (2-3) and (2-4) are for just such
an axal dependence, equation (6-25) can be solved once k is specified.
Thus, 1t is evident that a three-dimensicnal problemyhaving cylin-
drical boundaries can be solved by expanding the three-dimensional incident
fields into a Fourier integral over a continuous mode distribution and
solving equation (6-25) for a number of discrete valués of ky. Conse-
quently, the three-dimensional solution is obtained by fitting a curve

. ¢
to a weighted sum of sampled values of Zy(?,ky) and performing (6-26)
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numerically.,
If the incident field 1s a plane wave in free space incident obliquely
to the cylinder axis, them we can write that

ZL., (Ac:'.osé Smf}’iﬁ +j8rm O +2ws 50543,;,‘)

E;(/X,\y)a): ZH, = , (6-27)

vhere 4 is defined in Fig. 2,
and @ is the angle'in an axial plane between the direction
of propagation and the plane normal tc the axis of the cylinder,

The transformed incident field 1s cobtained from equation (6-22) and is

found to be
1 8, (acsin P + Zeos P
Z t Yo [ m
&, (x, Ejjz) = At K, ‘ §(hsin 0-ky)  (628)
wheare

h/o.-.- bacbsggvb‘}—k\;. .

Equation (6-28) indicates that whenever the incident field varies har-
monically as et k? along the cylinder axis, equation (6-26) need be solved

for one value of ky only, 1In the case of a plane wave in free space

incident obliquely to the cylinder axis, ky 1s given by

kj = kesin® .
(6-29)

It should be noted,'however, that this value of k.y is to be used solely
in the exterior integral representations. For interior integral represen-
tations, kY 1s determined in each region from Snell's Law,

If the incident field 1s a plane wave in adconduct}ve whole-space

incident obliquely to the cylinder axis, then equation (6-28) is invalid

and 1nstead, equation (6-23) must be solved for a number of discrete values
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of ky' Unfortunately, it is seen from the physics of this situation that
the problem does not possess a solution since the plane wave amplifies
in thé negative y direction. )

Neveftheless, 1t 1s not surprising that a solution does not exist since
the problem is unrealistic in that it requires’a source with an infinite
power supply at infinity. This complication has been ignored in earlier
chapters by assuming that a plane wave incident normal to a conductive
half-space exists at the earth-air interface and attenuates from this
point as it propagates into the earth., Essentially, it was sufficient
to assume that a plane wave generator existed at the earth-air interface
since this closel& approximated the actual situation,

If oblique incidence is required, it will be necessary to assume
that a plane wave generator exists at (x,0,z) and that the wave attenuates
in the positive and negative y directions from this "source"”, However,
obliquely incident plane waves propagating in a conductive whole-space
are not important in most problems of gecphysical interest. The reason
for this 1s that the transmitted field at the earth-air interface propa-
gates normally away from the boundary even for grazing angles of incidence,.
Thus, when discussing plane wave scattering by cylinders in a conductive
whole~space, 1t 1s adequate to consider norxmal incidence.

These problems do mot arise when a plane wave is incident obliquely
to a cylinder in a conductive half-space, In this case, the plane wave
is harmonic in the exterior region (air) and the problem need be solved for

one value of ky only.



CHAPTER 7
SCATTERING FROM CYLINDERS IN A CONDUCTIVE HALF-SPACE

In Chapters 3, 4 and 5, integral equation solutions to scattering
from cylinders and from topography were examined. It was seen that any
problem could be formulated by choosing an appropriate integral repre-
sentation in each region present and a solution obtained by solving the
resulting integral equations,

Having established the validity of the integral representations and
the subroutines written to effect their solution, it is possible now to
combine the cylinder and topdgraphic results to study scattering from
cylinders of arbitrary cross section in a conductive half-space with an
arbitrary earth-air profile, Although this chapter will be concerned
with normal incidence of an Ey-polarized plane wave, the results of

Chapter 6 can be used to extend tfhe analysis to sources of arhitrary

configuration and polarization.
7-1 Derivation of the Integral Equations

If it is assumed that the primary field is a nérmally incildent Ey-
polarized wave (ky = 0), then it follows from equations (2-56) and (2-66)
that the integral representations for B and‘ﬁ'in the region exterior to
the half-space are }

R
4 e,

(7-1)

b T K G) @@ lulpp)d

133



134

and

Wy Y= Hy (s _;szkglpl s - e J'Mg(f)?’;(ko,ﬁ?’)&s:(7-z)
13 :

where

=5 _ ) ‘ - A A
FFF )= Wi 1) (sinp d - mp ) .

and
‘Iggs UZ’P‘F’) = e {p - =) HS’(HF-F’()(s‘w Fs/?c - caaf&f‘.:,' b}
(7-3b)

- (‘)(‘E‘F -'5 C_S:M(QIS--{)A': _..m{_:lﬁ-d)g).
Pare

The parameters of the exterior region have been referred to by the subscript

0 and the equivalent surface éurrént densi§ies on contour 1 have been
superscripted 1, The nomenclature for the‘éontours and regions present
is shown in Fig. 7L.

As in Chapter 4, it is assumed that the half-space contour is flat
outside an interval boundéd by (-a, a) and that outside (-a, a) the equi-
valent surface current densities arise from fields reflected by the half-
space alone, Thus, equations (7-1) can be rewritten from equations (4-22)
and (4-37) as

e 5@ s [ G Tl
- Eg () .
a-s;
-,&_,:]ef K5 W (k-3 0s” Ek"f Msc,o)c.ﬂqs Rl 1) -4

~a-s; ma-%
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and equation (7-2) can be rewritten from equation (4-45) as

-3 . (7“5}

+ ik fk [Ja)F(k,ifr’)eﬂc. - _E__f )F sz‘.”» )oés

4 g, o5,

—-2-5;

where s 18 the x coordinate of the point of observation,
reflec oot .

Ey ( F ™) is the electric field intemsity reflected
by a flat conductive half-space and is to be used when
the point of observation is above or on the flat half-
space,

-E;( F-) is the incident electric field intemsity and is to

be used when the point of observation is below the flat

half-space,
- reflec

r (Ff’,") is the magnetic field intensity reflected

by a flat conductive half-space and is to be used when the
point of observation is above or on the flat half-space,
—Htr( F' ) is the incident magnetic field intensity and is to
be used when the point of observation is below the flat
half-space,
Fl( R"l F 1?-') and F3( h"lF 'F ) are given by equations {7-3)
G-
o VIO ) PO
IE(ksf’s/")* ﬂlof K (‘ JH (’-’ I)
4 ..

s \ (7-6)
- _;_lz_f Mg [F')ccﬁ (P-¢\H, (HF-FG)&S')

{
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s Kj (F')H?)CEIP-F’D( Sim 3 x - cx3 g )éés’

a~s;
- _.__J, Ms (f/}Cﬂ(P“ﬂ‘->Hb Ud]n f”) CS*ﬂer mPE)aQS
-&.,_st a-7

+ i& M5 (") i‘fg ﬁ~’,)[3hﬁ(apnd\£—&-ﬁ£1ﬁ— «2)ds".
42 —a-s; }d -II

It should be noted that,as in Chapter 4, the contour lantegrals involving

(K; ) M:;') are along a flat half-space while the contour integrals involving
CK; s Msl) are along the topographic profile,

The integral representations for-E and H in region 1 do not follow
directly from Chapter & since it is not evident what result the infinite
integrals involving (Kyl ’ Msi) will yield. To establish the value of these
integrals, we will examine the electric field intemsity transmitted into

a homogeneous earth assuming normal incidence of an Ey»polarized wave

(ky = 0). In thisg case, we can write from equation (2-72) that

!
E;'i'[?)z /u_:qa:)[ Kj (f' )I!mUz lf"f I)JP.S - QL, M (f )Cr&(fb-d-)]‘ik (k l,d P’l)‘ﬂsl
- .l (7-8)
As in the exrerior reéion, it is assumed that the half-‘s'pac;e contour is
flat outside an interval bounded by (-a, a) and that outside (-a, a) the
eqilivalent surface current densities arise from filelds reflected by the

half-space alone. Thus, equation (7-8) can be rewritten as

-8 -

E;{F"/‘i;—‘-‘—’[f k:, (53 WY Cytpeprils ,_J’ K5 G uﬁ’(k,lf,rn)&s']
i e a-s;
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gt to . .
-;_lﬁ[ J’ My (57) st pmn) W Chufpp 0 e + J ME () emlp-=) H?’(&.fF-F’!)JlsJ
4 L. Ly,
. a~-$; (7-9)
e [T D - [T W0 ) b
4 ~2-8, Rt
By rewriting the infinite integrals of (7-9) as
e rbkg (F') H:)(HF-F”)OQ" - fhf Msi(F’) o (}s—“)H?’(LJF'f") ds’
q -ob 4 — 0
a~5; @ g- (7-10)
3¢ . , "zp ) , ,
‘ﬂ%‘{ k:g (f’) Hij(h’P.F'l)Js +%£-Lf Ms (.F’)Cdﬂ(ﬁ-—d,) Hg (LJF-F I)Cﬂs N

~&=57 —d~ 5

it follows from (7-8) that for F below the half-space, the integrals
over (_.mo’oo) must equal the total electric field intensity transmitted
into a homogeneous earth by the flat half-space. Consequently, equation
(7-9) reduces to
S &G - L )
a-s; (?-11)

Q=57
+ /i? ( Ky (5 W (_,h!};-g'l)als'- _b%_‘fM_.'; (37) e (p-ot) WO Cel-pt s

s —a~-$;

1f § 1is above the half-space, the integrals over (--o,c0 ) must
equal zero. The reason for this is that the integral representations pre-
dict a null field for points of observation outside the volume of interest
since the boundary conditions have been satisfied by the equivalent surface
current densities (see Harringtom, 1961, p. 106).

Thus, in general the fields inside a conductive half-space can be
written as

t + o oy
E { ef“t‘j‘c),-s ».->§ - Fe iy
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&-5g a-S;
4 /u_(_kd-[ XS (F')H‘;‘,’Uz.lf-]fl) ds' < ik J’ M (7Y casl ) H‘i’(hlf.};ft)&s‘,

4 (7-12)

-GS - &~ 5
where D('F+ ) designates that this term is to be set equal to
zero when the point of observation is above the flat half-
space,
and Eytrans( F ©3~ ) is the electric field intensity transmitted
by a flat half-space and is to be used when the point of obser-
vation is below or on the flat half-space.

It can be shown analytically that the infinite integrals of equation
(7-10) yield the transmitted electric field intensity for 'F below the
half-space and zero for"F above the half-space if it is assumed that the
incident field is an Ey-polarized plane wave impinging normal to a flat

i
half-space. In this case, K.y is constant and is given from equation (4-21)

as

Ky = _22, H, -

Z,+%, (7-13a)

Similarly, Mi is constant and is found from {(2-39b) and (4-25) to be

1 e fle
Mg = - (E}“ +E§4 Y. . 22,2, H, - (7-13b)
Z,+ Z,

Introducing equations (7-13) into (7-8) and assuming that F is below
the half-space, then equation (7-8) becomes

By (F7) = Zz ok “°"‘[ f“”‘i’wé"fs“)‘*" rid j W, r-—sasfu&’] .
2(2,+2) ) (8w (7-14)

L o0
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Using the results of equations (4-28) and (4-29), then (7-14)

btecomes

f .
E;‘ G°) - _azz_, J’L‘IS (7-15)
) 2.4 Z,

On comparing equation (7-15) with (5-22), it is evident that the infinite
integrals of aquation (7-10) yield the transmitted electric field iaten-
sity when F is balow the half-space, 1I1f "rg' is above the half-space,

(7-14) becomes

E;'[Ta*)* Zaztifok;[f G)U?rb/ 55 )cﬂs- SJ (nL Jsi}g‘z)ds"] .
2(z.42,) Ldg WoTs (7-16)

Introducing the results of equations (4-28) and (4-29) into (7-16); i
. -
is found that Eyl( P } is zero.
-
A similar analysis can be followed for Ht:_i( ‘f‘; ) in region 1 begin-
V. S
ning with equation (2-74), or by computing H from (7-12) using Maxwell's

equations. It would be found that

- [y ] e Bt
Hy, (F ) 7-17)

- __!J, k (P )F Ue”f’f )DQ,, + _‘S_ Q;‘;:(F')—% ({z”j;'Fr)o?_sz
4 Ja :

42, J_4. 5,

b . \ .
where 0(} ) designates that this term is to be set equal to zero
¥

when the point of observation is above the half-space,
trans b= s . . . . N
H. . (F >~ )} is the transverse magnetic field intemsity trans-

mitted by a flat half-space and is to be used when the point
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of observation is below or on the half-space,
-
Fl(hJ)F =) and E. ( k"P P /) are glven by equations (7 3),
Iﬂ(iﬁ*§\ F’ )} is given by equation (7-7).

When a cylinder is present in the ground, equations (7-12) and
(7-17) must include a contour integral around the cylinder boundary,
Thus, in the present problem, (7-12) and (7-17) can be rewritten as

t or - + T p——

Ej’ (f) { ‘l'rn_mf ) ) f - TE (E,,F‘.’a )

e G

a5 (7-18)

G~ S;
#/ELT»Y K;(F')H:)UZJ ) ds' - c,le M, (5 \..n(ja =L)Hf’((el‘ 1) de

-a&-57

("‘-‘-—-3

a-5;

- e J K W Ukl s & ik, g Melp") e (p-o) H(alf5 1"
4
d C

4
and z
=&
1. (=) - 5 T -,
o (7 - {ﬁg‘&‘zpr)? + Tuthopp)
h

(7-19)

~2-3, 4 1 La-8

- __‘_*!g f k 3T e ds o by fn;cfa"@u,,;s,;-oaés'

ik, [ K7 GO (K, ie Me GOE (b 5.5V de"
+ | I3 G“WP, s .
;—L PR ) f PRk, pop

The parameters of the half-space have been referred to by the subscript
1 and the equivalent surface current densities on contour 2 have been
superscripted 2 (see Fig. 71).

It should be noted that the integral representations for an interior
reglon, equations &2-72) through (2-75), were derived assuming that the

normals on the contour, are into the interior region. Since the normal
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on G, has been chosen as into the inhomogeneity in Fig. 71, the opposite
sign to that of equations (2-72) and (2-74) has been taken for all inte-
grals in region 1 around CZ'
- — .
Finally, the integral representations for E and H in region 2

follow directly from equations (2-72) and (2-74). Assuming normal inci-

dence of an Ey—polarized field, it is found that

E:z(F‘) =/u-££3j k;LF’) lfg)&zlp_?’l)is'.{!ﬂzf Mg Cf’3cm95~d) H?)CEIIF-F’I)OQB; (7-20)
4 e, 1 ¢,

and

..-._f_.- . 1—'1..'5 - = ! t_,f"." ) Fi
Hy ()= —c_b,_f Ko Gp)F, Ly 5,7 )ds" & _EYM,; FIRappdds’, (-2
4 < 427’ 4
— : . A . .
where T ( hﬂ?!ﬁ ) and rF3( Ry, i p ) are.given by equation (7-3),
and the parameters of the inhomogeneity have been referred to by
the subscript 2,

i The unknown current components K&( F ) and Mg( F ) on contours 1 and

2 are obtained by enforcing the boundary conditions on tangential‘E‘and

—
H and solving the resulting integral equations., We have from equations

(2-53) that the tangential unit vector 2 1s given by

AN " A A
S“-‘—Smdiﬁc ¥ty £ (7-22)

where «; is the normal at the boundary point.
o
Thus, the tangential component of Htr in each region is found by
‘taking the dot product of (7-10) with equations (7-5), (7-17) and (7-19).

It is found that
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...é Tt,;(p‘)
i (7-23)
+ LL,JY K\ﬁr(i’)g(‘b"sf‘if yds' - IZa f”slf)g Uto,t; f')oac
-4_51. 20 -85
—_—
i, () - { o(5*) } 2T (b ,5557)
Sl F 2‘ ?{.fb.m:(_ ","') + f f’f
= i, k[{‘)éLL, ads' 4y [T b, 5,5 o’
J;h ' i 1[31)" +421' ‘[Qi‘:: (f)é’r C”P'f 7-26)

1

ks G e, “"sF)p'mf-’ - -k-f He (5 6,k 55 s’
= 4z, I

and

(7 25)

o ) = - ,,Lfkdt;s')e OO LTI azju;(,, 6 Uy, 57 0ds”

where
6 L 5,5 ) = & Flh5) (7-26a)
& g, F) = - 0 (klpp1) e (p=si) (7-26b)
Gg (k,p;‘f’)a -G prat) coa( p~at;) H‘f,) Uﬁ)@-p’l) (7-26c¢)
)LHE E") m()}‘l-—dwo{;) ,
4 J!’alp 5l

A - [3 Q F )" ;.L_.j k (.r )@' Ualflf )OQS- '___J, Ms(-f’) é Uz!f ]”)'}is .
4

=837 G

(7-27)
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If we let the point of observation approach a boundary point on Cl

given by the position vector F” and equate tangential components of
e P R .
B and H, it is found that

E;, (Fﬂb = { ) E;-E.F[.“( ,,o,f)j N { O(Frm.) } _ IEU“’)F';’F’).'IE(k’P';F’)

EY(z0 Erans s, 0.~
(!: D) Ej (F )

+ MJ };i (F }[ g)lho|P”“F'l) +/& HS’(&(IF,(‘F,,z]JSI (7-28)
Ho

-.as

- 3 v u — P
";f W (pemp= b Lulpzp) + W0 U 5% )]s

-a.g

‘/(“1 f £P )HQ U’- ’f”r 0025 3 £Lf MS (F’)m(fs ..4,} "1)(.’2,"'”"")

<
and

- J@H £ g
g‘ H L(_ﬂ) - I . (__no-t)i [ O(-”"') §+ ' I”(&"fF”)F’)
f‘ r > A ""'gh:u\s -

:s-.Hﬁ

+ 'sL._f :f jﬁ::«.{w coo( Eﬂgt)[hﬂf)(&,if.?'iﬁ—k }Uz !f" ’!) ds’

&~ ‘3L

,:j
4

-a~§;

(F’)t‘.ea(F or.)m(ls at)[’l, Hoﬁl,[fﬂp) |z Hq,[H‘ -'Jaﬂs

(7-29)

3 S‘a’g LP")cn(:lF -t ol )[H?U:Jp‘ 5 ‘) ¥ I-lm[lz,'f: N ds’
Z lf’ fs'l . Z"‘E' )

~G~ 37
W S iy /
- ih ! Ky (5 o (g WP CRIp D s’ J’M;e,sm[;zdsmc/s-ﬁ)lt(&iﬁ 1)d:

1

42

-.‘&.j Mg (p) con (ap ot ~etz) M Cedzs5 1) ols’.
42' C‘ - /g’)PILPvl
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Similarly, if we let the point.of obServation approach a boundary
point on 02‘ given by the position vector ‘P’” and equate tangential
R e,
components of E and H, it is found that

o = { D{F'”*) }+ Ie“‘wf’” F) /ule KﬂLF'jH“LLIf”‘“’I)aﬂs'

Etru\s (F o o,—-)

J =g,
a-s;
s ib, J M () o (p"=) Y Lhi 5. 51) s
ZR
+,£.__.( K2 (‘n’) Y Ue'_m_,l) A/LL‘_H (.IZ }fﬂ: "I)]aﬂg (7-30)
S
- _1_[ My ‘P’)mfp"’-«)[,k (5 )+ B oy n]gﬂs
4 e '
and
0 = { O(E’J) } - g‘I“Uan”:F') L'S’ kl (P’) c"""(f-"{’-d )NUJUQI..M"_,‘)&S
.rs\‘ Ht\ a:.-‘.(_mb ) 4 -a‘s;'
+ __k_; r-ﬁi (f’) A (fs"'~x)cw((b“io¢5) HY Ut,lf” ! )aD
42, J e ‘
@3t (’) ._mr__, Dﬁ
- kl Ms( "} o (a.P U ateorf) H Uzl l) s
A2y Loy Al "” 5 (7-31)
i S Ky (5 e (g y[,a u?’(b,tfs":ﬁf()+L,u?’LL,IF”zF«:Wu
4 Je
T

1 ( M (")M(P”{ i)m(Pm‘ [h H?[h’f_m—* F’ ') H (L: ‘r f"l Cés
4 Z

-C ]

4 (.

._m' .-I 2 -—-'
r- ' E ‘f P
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Equations (7-28) through (7-31) are the desired coupled integral
equations with two unknown current components K&( § ) and Mg( F ). They
are solved as in Chapter 5 by dividing (-a, a) and C2 into a total of N
sampled values of each unknown current component, When this 1s done, the

integral equations reduce to a system of linear equatiocns of the form

()" = (A 0K) + (B + (AN M)+ CBLIMT)

(o) = (A XKy )+ (B KD+ (R XME) + (B UMY, (7-32)
(0)" = (a3 XKy + (BYIKG) + (AT KM+ (BT, MHDY
©)Y = (A2dkg) + (82 Xk3Y + (A% M3 ) + (BZ(MD) .

if Bij refers to the boundary upon which the boun-

The superscript on A
dary condition is being enforced when each matrix 1s determined, The
primes on (Ey), (HS) and (0) indicate that these column matrices are
modified due to the contour integrals involving (Ki R Mi) on conktour Cl.

Equations (7-32) can be rearranged into a system of 2N linear
equations of the form of equations (5-47). It is found that

‘E_g ’ = (H:: Bl: )( K:'(’_) + ( ﬂl; Bné )( M;)
(o) nr B Ky P ALY ! (7-33a)

( HS)’= (n;, ) )( K;) . ( . BL )( M,;) :
. 1 ey k; Az /UM (7-33b)
Equations (7-33) are solved in exactly the same manner as equations (5-47).

Their solution is given by equations (5-48) 'by treating each partitioned

1j'
Once Ky(ﬁ§ ) and MS( F ) have been estimated from equations (7-28)

tri A, B, »
matrix ( iy 7 iJ) as C
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through (7-31), the total or scattered magnetic field intensity is calcu-
lated from equation (7-5), (7-17) or (7-19), depending upon which region
the field 1is desired, Exterior to the half-space, the scattered

magnetic field 1s given by

= g - peflec o —
H{T\D (F} = { H‘h_‘__ (F *) } - IHLb":th’)
- e (57)

- $ J,a-s,: K:; [(3’) H?, (bo]i‘,-;,-"l) (Sfml‘.’: A~ mﬁé)ﬂaf

1 e, (7-34)
a~%; o) . _ . - ;
- :{k_;_ g M:.fﬁ"‘i""(ﬁ""‘) H, UZJ;:-F })(Sw{saa mﬁz)a@s
o a5

+ __!_13_ a'vfitp’) H?}(l’-ot"ﬁ-“g") { sim (3[5'-"‘3/2 - m(ﬁ.f.’.wﬂ)?‘:)o@s'
92, J.a-3; /ﬁalp-p’l

where.?H ( k, 5§ 'Ff) is given by equation (7-7).

It should be noted that as in Chapters 3, 4 and 5, it 1is necessary
for integration accuracy to make a small argument approximation to the
Hankel functions whenever |kif§-§'l(,5 and integrate the resulting ex-
presSions analytically. However, since the integral representations of
this chapter are the same as those of Chapter 5, this problem has been
discussed previously in section (5-1)} (equations (5-30) through (5-33)).
Similarly, integration through the point of singularity has been examined
in section (5-2).

It is interesting to note that eguations (7-30) and (7-31) reduce to
(5-20) and (5-21), the integral equations for scattering from cylinders in
a conductive whole-~-space, if we assume that the earth-air interface is
horizontal and ignore coupling® between the cylinder and the interface.

* The term coupling wi1ll be used to describe the electromagnetic inter-~
action between the cylinder and half-space contours which modifies the

equivalent surface current densities on the cylinder surface from their
whole-space value,
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In this case, K'(F) and M'( F ) arise from the incident field alone and,
¥y 5
as a result, (-a, a) can be set equal to (-0., 0.). Thus, equations

(7-30) and (7-31) reduce to
’ o Yo ) it g v ¢ 4
i Eti.ff(_’.,nf /-‘-‘-‘f»j *s ff’)[ o Chlp =) « g Ml 57 [ s
3 £ 4 ¢, M
fM: (39 ca(pe [gu‘;’(m;ff,-qpLlu‘,"(gzlgf'ﬁu)]aﬁsg
C

F

(7-35)

'bi(‘-‘

and

{ o(F") } = J_-.f kg (3) e (" )[b MG 5 1)+ by WO UV f'f-f] s
g. H-b“toau(Fo'-) 4 .

2

’ u o U} RS W
- _‘__L M:- (Ff) CB'J(F'"_.d( )cc:} (Po‘f/..o[i} [% HO)UE.}F --F ’)-}- ?__ !42 U;Z[P _/, ])Jaﬂs

4 3 2 (7-36)
+ LJ' Msl57) eos (ap™= o) Uz,!p”’_? L H Uﬂ (57 ”f)]cﬁsl .
.q . PII/ F' ’—Ill ,.-I

Assuming that the cylinder is below the half-space, it is evident on
comparing equations (7-35) and (7-36) with (5-20) and (5-21) chat these
are the same integral equations as derived to examine scattering from
cylinders in- a conductive whole sﬁace. In (7-35) and (7-36), the inci-

dent field is the field transmitted into a flat, homogeneous half-space,

7-2 Numerical Examples

(7-3L)
Equations (7-28), (7-29), (7-30%Aand (7-34) were programmed assuming

that the incident field is an E -polarized plane wave incident normal to
¥
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i -
a conductive half-space, 1In this case, Ky and M; are comstant and given
i
by (7-13), Furthermore, the Integrals IE and IH reduce to expressions
which are similar to equations (4-39) and (4-48)., Thus, we can rewrite

(7-4) and (7-5) as

IE(le,hﬂ :’&J@'K‘;S W (/5o Mds” o %ﬁ“éj H_\:j_%___%______,__ f'fs'l)‘ﬂ"& (7-37)

—-&=5; -a-5,

and

Ly

ey, - ;;_lz,k;(&:r,;wzé) . %:[(5‘1 ) ali-z,,),g
{7-38)

10
(3-63b), (4-13a), (4-13b), (4-14a), (4-14b) and (4-l4c) res-

where Iy , I, , T, I, I, and Ill are given by equations (3-63a),

pectively, with a = -a-s; and b = a-s;

tWhen the point of observation ( F ) is on the half-space, a limiting
process similar to integrating through the singular interval {section 5-2)
must be taken before (7-37) and (7-38) can be evaluated, Noting that this
limit 1s taken from opposite sides of the interface in each region, it is
found that for points of observation in air, equations (7-37) and (7-38)

reduce to

T by 55 = o 1 D }““""} +%§ ) (7-39a)
4

S-»0
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and

T, ke 5,57) - K;(_l__;:+1|zo Qi 1}5)-14_;% FT-T,{ R (7-30)
Pef 2 42, d»o .

Similarly, for points of observation in the ground,

T o0) _ ME (7-40a)
IE Uﬂ f )o ‘)« /u B! K /gfo { MK D} 147:_5_ ,
and

-I (_}’, ,_I_.v)-s kl ..L. __L.!{.Ow ji’ - _’iél_ s SII“I‘ "}3‘
H-Pupd -‘J( > 4 (>0 ) 4Z, S-vi (7-40b)

If follows from section (5-2) and Appendix D that

"3u - G- 57
O, iumf Lin J HO (L5557 }ds' + f 4O (s’ I)&uf »ﬁ,’[hs')als
S0 §o -&g g e
= [5 ) k" (E -63) £ Lll Lé'u—é Y 9¢§€ull-|= )z&«ﬂlg
A T iz

- R S, T | l’LL 3_ " _ _ )
g TLEL)'Q“YE""" +§E(£‘* )-8 E,e)j (7-41)
~ &L a~Sg
o WA [ ()

.-.G.-'Sé Fu

~

where _
{ eﬁ. = + .:...?..... -
& T k)

Equation (7-41) states that HR0O is approximated analytically over ("e,l)ef&)

by taking the limit as §—= 0 of the small argument solution given
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in Appendix D, and numerically over the intervals (-a-sj , - & ) and
(&, s a—si). The subscripts on € imply that if EX>' —a-si‘l or
£LL> (a-sl), - EJL or &, 1is to be replaced by =a=§; Or a-5; respectively,
and the First or second integral of (7-41) ignored.

It is shown in Appendix D that I?. can be evaluated analytically, and

it 1s found that

Do (T,) - i Jq s H. Udéﬂ“)&s
&0 $=>0 v 3F i’

-~ 5,

“ ~a-5. 1} ) -G
,J)E[HD (k) scl) i, (kla J)]

(7~42)

Finally, it follows from section (5-2) and Appendix D that

Lia (8'7,-74)~ ﬂm{ JH“’(,EJéH"’)aﬁs ) f (TR F

E=0o =0 ($7e 5™ Za-s; (%"
= . 2 I R N _}i (su-f)—ﬁ_(ﬁ‘éag)f
ﬂ:( & eﬂ) 2 { Y
-g;_szgd_éf(ﬁkﬁj+&[%0<£§ ﬁfﬁﬂﬁl (7-43)
: [2( SE ()] e2d] &K &Y

(-2 A o 10 (20 e8) - (-9

-4 =S¢
] f 0 Cels1) di” 5O ds'.
- ’s', £y s’

As 1n equation (7-41), “E,Z or Ea is to be replaced by -a-s, or a-s_

ta-s;

respect:wely,’ 1f E,g)' { —a-si] or £, > (a-si) and the first or second

integral of (7-43) ignored,
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Assuming that the incident field is an E -polarized plane wave im-

y

pinging normal to a conductive half-space, then

i ih2”
[ ~ Ky _
ES ) =2, H ) (7-44a)
and
F/
A - 7 . . - E'zcz
3 . (37} = ~simot; U T
4 F ¢ Mo (7-44b)
The reflected field intensities are given by equations (4-24) and
(4-25) as
'Flar, -I "
s . o 2
Eq (P ) = - 2, 2 -2, Ho 2 N (7-45a)
T Z 42,
and
-bN'P{EC ;) a2
$., (57) = —sin oy Z,-%, HO.JL" . -5y
£°+'2|

Finally, the transmitted field intemsities are given from equations

(5-22) and (5-23) \as

_traay y - I,I( z”
B (7)== 422 Nor ', (7-462)
Zo1 2|
and
-""tc-ans _ _'EL t/{
g - Lf-;'”)a - Aswmo; Z W2 .
T {(7-46b)

Z,4 2,
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It should be remembered, that_ equations (4-40) through (4-44)
must be considered at the edges of the interval (-a, a) to ensure con-
tinuity of the unknown current distributions with K; and yi.

Figs, 72 through 79 demonstrate that the integral representations
derived for scattering from cylinders 1in a condective half-space are valid
and that the solution converges rapidly for these electrical parameters as
the sampling rate is increased, In Figs. 72 through 78, we have assumed
that the conductivity of the air is equal to the conductivity of the
half-space (10_3 mhos/m), so that the solution must reduce to the solution
for scattering from circular cylinders in a conduct ive whole-space., It
should be noted, however, that since the entire integral equation must be
solved (i.e., no expressions in equations (7-28) through (7-31) reduce to
zero when this assumption is made), such a test forms an accurate check on
the formulation of the problem for scattering from cylinders in a conductive
half-space,

In addition, we have assumed normal incidence of an Ey-polarized
plane wave in Figs. 72 through 78 and that: the height Zo of the point

of observation above the half-space is 1 m, the depth Z_, from the half-

17
space to the top of the cylinder is 19 m, the cylinder radius is 100 m,
the incident field frequency is 1000 hz, the conductivity ¢ of air is
1073 mhos/m, the conductivity ¥} of the half-space is 10_3 mhos/m, and
the conductivity 93 of the cylinder is 10-1 mhos/m,

Fig. 72 indicates that with these electrical parameters a contour
section bounded by (-1000)+ 1000) is sufficient to describe the unknown

surface current densities, Fig. 73 shows that an error of less than 2%

in the peak value of real (H,) is achieved if the half-space profile is
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sampled 20 times. It is seen also that a slight instability arises in
the field, although the amplitude of the oscillations decreases as the
sampling width on the topographic profile decreases,

As 1n the examples in Chapter 3, these oscillations arise from the
inaccuracy of the numerical integration across intervals of the contour
in close proximity to the point of observation. It was noted in section
(4-3) that the integration inaccuracy 1s a result of the manper 1n which
the program has been written since the small argument approximation is
used only when \krl-ﬁ Re for all points on an interval., As a result,
it was found that the numerical ilntegration was inaccurate across any
interval in which part of the contour is greater than Re while most of the
contour 135 much less than Re.

1t was seen from Table 1 that for such an interval, solution accuracy
could be increased by railsing the number of sampling points within the
interval (-a, a) or by increasing Re. WNote, however, that Re cannot
exceed the validity of the small argument expansion for the Hankel func-
tiong, Figa. 73 and 74 indicate that these oscillations are a result of
Integration Inaccuracies since their magnitude is quite dependent upon
the sampling rate (Fig. 73) and the value of Re (Fig., 74).

To overcome this problem, the program should be rewritten so that
both the small argument approximation and élmpson's rule can be used in
integrating whenever Re falls within an interval. Since these oscillations
amount to less that 1% of the total field with an Re of .5 and careful
sampling, the present program has not been changed, However, before a
general analysis of scattering problems is undertaken, this change should

be made to aveoid an unrecognized error,
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Fig. 75 shows that by sampling the topographic contour 29 times and
the cylinder contour 30 times, an overall error less than 27 of the peak
value of HX has been achieved for the horizontal magnetic field intemsity,
Similarly, Fig. 76 shows that with the exception of several discrete
points, an exrvor of less than 2% of the peak value of B has been achieved
for the vertical magnetic field intensity as well.

The discontinuities in Hz are observed only when the point of obser-
vation is near the contour and directly over the edge of two intervals,

In this case, the contribution to the fields comes mainly from that part
of the contour in the i1mmediate vicinity of the point of observation.

As a result, the discontinuity in the parabolic £it to the current density
(see Fig. 7) predominates -and a poor estimate of the scattered field 1s
obtained,

Further observations which point to the break in the current density
as the origin of these discontinuities in Hz are:

1) The magnitude of the error in Hz decreases (Fig. 76) as

the paraboiic fit to the surface current density improves
(1.e., as the number of sampled values on the topographic
contour 1ncreases).

2) The magnitude of the error is larger for points of obser-

vations near the cylinder (i.e., the parabolic fit is

least satisfactory in those regions of the contour where

the field intensities vary most fapidly).
Thus, the discontinuities in HZ are predictable and can be excluded from
the smooth profile of HZ whenever they occur,

Figs, 77 and 78 show that when the topographic profile has been
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sampled 29 times. and the cylinder contour 30 times, an exror of less than
1% has been obtained in estimating Ky while an error of less than 6% has
been obtained in estimating M,. However, since the peak value of M is
about 1/3 the peak value of Ky, this decreased accuracy in estimating Ms
is not surprising,

Figs. 72 through 78 hive demonstrated that the formulation of the
problem of scattering from cylinders in a conductive half-space reduces
to that for scattering from cylinders in & conductive whole-space if the
conductivity of the alr is set equal to the conductivity of the ground,
A second check on the formulation of the problem and the program is to
set the conductivity cof the cylinder equal to the conductivity of the
ground. In this case, the solution must reduce to the solution for plane
wave reflection from a homogeneous half-space,

Fig. 79 shows that the sclution does reduce to that -for reflection
from a homogeneous half-space., In this example, we have assumed normal
incidence of an Engolarized plane wave and that: the height Z0 of the
point of observation above the half-space is 1 m, the depth Zl from the
half-space to the Eop of the cylinder is 20 m, the eylinder radius is
100 m, the incident field frequency is 1000 hz, the conductivity ¢ of
air is 0., the conductivity 9, of the half-space is 1073 mhos/m and the
conductivity T, of the e¢ylinder is 1'.')-3 mhos/m,

It is seen that an error of about 3% has beer obtained with 20
sampled values on the half-space contour and 40 sampled values on the
cylinder contour, This accuracy is not surprising since it was observed
in section (5-3) that solution accuracy was poorést when the reflection

coefficient was small. (In this case, the reflection coefficient is
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zero.) However, it does indicate that when the reflection coefficient on
the cylinder is small, the numerical results will have an error of less
than 3% of the half-space value,

Figs. 80 through 84 give the convergent numerical solution for scat-
tering from a circular eylinder in a conductive hzlf-space, We have
assumed normal incidence of an Ey—polarlzed plane wave and that: the
height Z, of the point of observation above the half-space is 1 m, the
depth Z1 from the half-space to the cylinder is 20 m, the cylinder radius
is 100 m, the incident field frequency 1s 1900 hz, the conductivity ¢
of air 1s 0., the conductivity Q: of the half-space ie 10-3 mhos/m, and
the conductivity T of the cylinder is 10-1 mhos/m. The topographic
profile has been sampled 41 times between (-2100)+ 2100) and the cylinder
contour has been sampled 30 times., It is estimated that with these
parameters an error of less than 2% of the peak value ofug.has been
obtained,

Fi1g. 80 shows that the peak value of real (Hx) for a circular cylinder
in a conductive half-space is about 10% greater than that obtained for
scattering from a cifcular cylinder in a conductive ?hole-space when the
field transmitted into the half-space is. taken as the field incident upon
the cylinder. It should be remembered that this whole-space solution
ignores couﬁling between the cylinder and the earth-air interface and
the boundary condition which must be met by the scattered field at the
earth-air interface., The large re;ponse of real (H ) observed on the

is due mainly X
flanks of the anomalxhto the magnetic field intensity reflected from a

homogeneous half-space.

Fig., 81 shows that the peak value of real (H ) is about 10% less
. Ul 2888
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than that obtained for scattering from a circular cylinder in a conductive
whole-space when the field transmitted into the half-space is taken as

~

the field incident upon Fhé cylinder, As ébove, the whole-space solution
ignores coupling betweeé the cylinder and the earth-air interface, and
the boundary condition which must be met by the scattered field at the
earth-air interface, The reason thét the peak value of (Hx) is greater
than the whole-space solution while the peak value of (Hz) is less is
that the horizontal magnetic field intensity refliected from the half-
space has not been added to the whole-space scattering solution. This
has been done in ¥Fig, 82 and it is seen that now the peak value of (Hx)
1s about 20% less than that obtained for a cylinder in a conductive
whole-space,

Figs. 83 and 84 show that the effect of coupling between the cylinder
and the earth-air interface on the induced surface current densities is
to reduce the electrical surface current densities by about 10% and the
magnetic surface current density by 20% in this example. WNote from Fig.
78{ however, that the same accuracy cannot be attached to M as to Ky.

It is easy to argue that the effect of coupling between the cylinder
and the earth-air interface is to decféase the equivalent surface current
densities, This is seen by examining the polarization of the fields as
they are modified by each boundary:

1) VWhen the incident field is transmitted into the conductive

ground, the polarization of the wave remains unchanged
ar (-+Ey s FHD.

2) The field scattered by the more highly conducting cylinder

will possess an Ey-polarization 180° out of phase with the
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incident electric polarization, Directly above the top
of the cylinder, the polarization of the scattered Ffield
will be (-13'.y 5 +H;:).

3) The field reflected £y a dielectric medium back into a

conductive medium will have the same electric polarization

as the original wave, but the magnetic field intensity will

undergo a 180° phase shift, As a result, the polarization

of the field reflected back into the ground directly above

the cylinder will be (--Ey s -Hk).
The "effective' incident field that is scattered by the cylinder 1s the
sum of fields 1) and 3). Consequently, it is apparent that ccupling
between the cylinder and the earth-air interface will decrease the equi-
valent surface current densities,

The surprisingly small coupling effect can be reconciled by noting
that the half-space contour in the immediate vicinity of the cylinder is
in the static region ( kR <<#) of the fields scattered by the cylinder.
In this region, it appears that the reflection at the half-space interface
is small. By analogy, we can examine the response of a sphere in a con-
ductive half-space to a static uniform electric field. The solution to
the sphere problem has been investigated by Grant and West (1965, p. 425),
and they note that interaction between the sphere and the earth-air inter-
face is less than 10% if (Z1 + R) 2 1.3 R, where Zl is the depth from the
earth-air interface to the top of a sphere of radius R. In Figs, 84 and
8s, (Zl + R) = 1.2 R and it is seen that the half-space solution differs
from the whole-space solution by 10% for K§ and about 20% for Mg.

To illustrate the convergence of the method for VLF scattering
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problems, the field scattered by a circular cylinder has been examined in
Fig. 85 assuming that the incident field frequemecy is 30,000 hz., Further,
we have assumed norma% incidence of an Ey-polarized plane wave and that:
the height Z_ of the point of observation above the half-space is 1 m,

the depth Zl from the half-space to the top of the cylinder is 19 m, the
cylinder radius is 100 m, the incident field frequency is 1000 hz, the
conductivity ¢ of air is I0-3 mhos/m, the conductivity ¥, of the half-
space 18 10'3 mhos/m, and the conductivity T, of the cylinder is 1071
mhos/m.,

Since the conductivity of the air and ground are taken to be the
same, the numerical solution must reduce to thé analytical solution for
scattering from a circular cylinder in a conductive Whole—spéée. It is
seen that an error of less than 2% of the peak value of real (Hx) has
been achieved with 39 sdmpled wvalues of the topographic contour between
(-285, 4285) and 30 sampled values of the cylinder contour,

The field scattered when the vertical slab of Fig. 24 is placed in
a conductive half-space has b;en plotted in Figs. 86 through 80, 1In
addition, the vertical field scattered by this slab in a conductive
whole~space kFig. 62) has been plottéd in Fig. 87 for comparison of the
half-space and the whole-space solutions, We have assumed normallinci-
dence of an Ey-polarized plane wave in this example and that: the height
Zo of the point of observati;n above th; half-space is 1 m, the depth
Z1 from the half-space to the top of the cylinder is 20 m, the incident
field frequency is 1000 hz, the conductivity @ of air is 0,, the con-
ductivity T, of the half-space is 10-3 wmhos/m, and the conductivity T,

of the cylinder is 107 shos/m.
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It is evident that the main effect-of the half-space is to reduce
the amplitude and phase of the scattered field, aS'was-the case for the
ecircular cylinder of Figs. 80. In particular, it is seen that the in-
flextions of imaginary Tﬁ} which were cbserved for scattering from
finitely conducting slabs in a conductive whole-space are still present.

It was noted in section (5-4) that these inflextions 1in imaginary
Eﬁb were caused by each corner of the slab responding to the incident
field. This is seen most clearly in Fig, 89 where the equivalent elec-
tric surface current density on the right half of the slab has 'been
plotted. It is evident that the upper right hand corner of the slab, even
though it has been smoothed, brings about a negative peak in imaginary
(Ky) at a distance of 25 m around the conkéur frow the top of the slab.
The upper left hand cormer of the slab will bring about a similar res-
ponse,

ey

Thus, the observed inflex_ions in imaginary (H) can be explained by
treating the peak 1n imaginary QKy) at_each corner as a line source,
Whenéver the radius of curvature is small, the current density will
remain finite but exhibit an increase in magnitude. It should be noted,
however, that the work of Mei and Van Bladel (1963b) in studying scat-
tering from perfectly conducting rectangular cylinders indicates that
this behaviour does not occur for Hy-polarized incident fields (or at
least it will not be as marked}.

The field scattered by the topographic profile of Fig. 47 has been
considered in Figs. 91 through 95. In this example, we have assumed
normal incidence of an Ey-polarized plane wave and that: the height

Z0 of the point of observation above the half-space 1s 150 m, the
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incident field frequency is 1000 hz, the conductivity o of air is 0.,
and the conductivity ¢7 of the half-spaée is 10-3~mhos/m.

In Figs. 91 through 93, imaginary (HX) has been examined to establish
solution convergence. Since imaginary (HX) is }ess than 10% of real tHx),
a solution convergence of 1% in Figs. 91 through 93 establishes comver-
gence accurately for cther components also. It 1s evident from Figs. 91
and 92 that an error of about 3% (at the peak value of imaginary (Hx)
can be obtained if the contour is samplad 33 times within the contour
section (-1100, +1100).

The decrease in accuracy obtained when the contour is sampled 43
times 1s a result of integration inaccuracies as was discussed for
Figs. 72 through 74. This is seen even morge clearly in Fig. 52 where
the solution has been obtained for an Re of .3 and .55 when the contour
has been sampled 57 times between (-1100, +1100). Note that the largest
departure from the convergent solution oecurs in both Fig. 91 and 952
at x = =900 m, since the integration inaccuracies occur at the edges of
the interval (~1100, +1100) where large interval widths have been taken.
As in earlier examples, it can be demonstrated alsc that this is an
integration accuracy problem by increasing the sampling demsity., Conse-
quently, the contour has been sampled twice as frequently between
300 « | x| £ 1100 as for N = 57, and an Re. of .3 was retained., It
is evident from Fig, 92 that an accurate solution has been obtained in
this manner.

Fig. 93 indicates that. a contour section bounded by (-5000, +5000)
is sufficient to describe accurateiy the unknown surface current density.

On the basis of Figs, 91 through 93 it is seen that an error of about 3%
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(at“the peak value of imaginary (Hx), or about ,2% at the peak value of
real (Hx) ) can be achieved if the contour is sampled 43 times within
the contour section bounded by (-5000, +5000).

In Figs. 93 and 94, the magnetfc field intensity scattered by the
hill has been plotted assuming a constant flight level of 150 m above
the half-space and .a contour flight level of 150 m above the topographic
profile. It is seen that as in Fig. 51, the peak electromagnetic response
of H.x is reduced by a factor of two by contour flying., However, even by
contour flying, there has been an approximate increase in the peak value
of real (Hx) of about 6% as a result of topography. It should be noted,
however, that éhis value 1s approximately one half the response predicted
in. Chapter 4 when the low surface impedance solution was applied to this
problem., (It is interesting to note that in a similar problem, Ward
(1967b, p. 271) deduced a topographic response of 10% on the basis of
physical reasoning alone.)

Ié is evident from Fig. 95 that by contour flyiug the peak response
of Hz 1s reduced by about 10% and the position of the peak value (Hz)
shifts away from the cross over. The shift in peak HZ away from the
cross over is in accordance with the fact that the point of observation
is further from the current sources than when the fields are observed
on a constant flight level,

To illustrate the application of the method to the most general
problem of scattering from cylinders in a conductive half-space, the
field scattered by a vertical slab within a hill has been plotted in
Figs. 97 through 102, The geometry of the problem is shown in Fig. 96.

In Figs. 97 and 98, we have assumed normal incidence of an Ey—polarized
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i
plane wave and that: the height Z, of the point of observation above

the half-space is 150 m, the height Z1

of the cylinder 1s 50 m, the incident field frequency is 1000 hz, the

from the half-space to the top

conductivity 9; of air is 0,, the conductivity q, of the half-space
1s 10“3 mhos/m, and the conductivity T, of the cylinder is 1071 mhos/m,
The field scattered by the hill alone has been plotted for comparison,
and it is evident that with these electrical parameters the fields scat-
tered by the slab predominate over those scattered by the hill, It is
not evident from a study of imaginary (Hx)’ however, that the cylinder is
a slab. The reason for this is that it could be argued that the inflexion
of the peak value of imaginary (HX) arises from the contribution of the
fields scattered by the hill. Nonetheless, it would be possible to
identify the scatterer as a slab since the hill does not give rise to
the observed inflexion in scattered Hz.
In Figs, 99 and 100, the conductivity of the slab has been increased
from 10"1 mhos/m to 10, mhos/m., All other parameters of Figs, 97 and 98
remain unchanged., It is seen that the amplitude of the scattered fields
has increased and the inflexions in imaginarynfﬁ) are absent. It 1is not
surprising, however, that these inflexions will disappear as the slab
conductivity is increased since we observed in Figs, 25 through 28 that
they are not present when the slab is assumed to be perfectly conducting.
In Figs, 101 and 102, the conductivity of ;he half-space has been

decreased from 10-3 mhos/m to 10-4

whos/m, but all other parameters of
Figs, 97 and 98 remain the same, Tt is evident again that the amplitude
of the scattered fields has increased and the inflexions in imaginary

(H) are absent. 1In addition, it is seen that the fields scattered by
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the hill are only about 2% different from the half-space value. Note,
however, that topography still is important since if modifies the field
transmitted into the half-space from a plane wave to a wave propagating
normally away from the hill profile.

The increased amplitude observeﬁ when the ground conductivity has
been decreased is expected from Fig, 36 since 7\//A , where A is the
largest dimension of the body, has increased by a factor of 3., The dis-
appearance of the inflexions in imaginary'ab, however, was not antici-
pated, A study of imaginary (Ky) around the slab contour indicates that
there 1s a slight increase in the magnitude of imaginary (Ky) at the
corners, but not as marked as in Figs, 97 and 98 and not sufficient to
be observed on a plane of observation 150 m above the half-space,

Mei and Van Bladel (1963h) have shawn that the current density is
singular at the corners of a perfectly conducting rectangular slab when
the incident field is an Ey-polarized plane wave, Figs. 25 and 26 indi-
cate that the currént density on a perfectly conducting slab is well
behaved if the corners are rounded as much as in Figs. 24.

Figs. 99 through 102 show that for a large reflection coefficient,
no inflexions in imaginary ?E) are observed, However, Figs. 97 and 98
indicate that inflexions are observed with a smaller reflection coefficient,
Thus, we conclude that the inflexions observed in imagihary ?E} over wide

slabs are dependent upon the reflection coefficient and the radius of

curvature at the slab corners.



CHAPTER 8

CONCLUSIONS
8-1 Summary

The purpose ¢f this dissertation has been to consider the theory of
integral representations as applied to the solution of two-dimensional
geophysical scattering problems., The examples given have demonstrated
that for two-dimensional source problems, equations (2-56), (2-57),
(2-66), and (2-67) are the most general integral representations of the
fields in the exterior (source) region. Similarly, equations (2-72),
(2-73), (2-74), and (2-75) are the most general integral representations
of the fields in each homogeneous interior (source free) region. In
addition, it was shown in section (6-3) that these two-dimemsional inte-
gral representations can be used to solve for scattering from cylinders
assuming three-dimensional source configurations by expanding the primary
current distribution and the field 1t radiates into a Fourier integral
over a continuous mode distribution,

Using these integral representations, it was shown that the solution
to any two-dimensional scattering problem could be obtained by choosing
an appropriate integral representation in each homogeneous region present
and solving the resulting integral equation. It was found that for plane
wave scattering problems, an error of less than 57 can be obtained without
difficuity if q;_‘j] > 10-2 mhos/m or d‘c_.‘f /%NM&E 10 for frequencies up
to 30,000 hz, Since these cylinders constitute a large proportion of the
scatterers encountered in electr&magnetic prospecting, this solution

165
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accuracy is considered satisfactory., In those cases where $5|<1ﬂ-2mhos/m

or Gzﬂl/@- < 10, the reflection coefficient of the cylinder is

jrowhc{

small and solution accuracy decreases,

Solution convergence generally was established in several steps:

L)

2)

3)

4)

The numerical problem was examined first for the case of

scattering from a circular cylinder assuming that the
cylinder was about the same size and had thé-same electrical
parameters as the general problem, The conductivity of the
air was set equal to the conductivity of the ground and the
numerical solution was compared with the analytical solu-
tion for scattering from circular cylinders in a conduc-
tive whole-space. In this way, a general impression of
solution accuracy and convergence was obtained,

The width (-a, a) of the contour.section required to des-
cribe the unknown surface current densities om the half-
spaée was determined for the general problem,

The integration accuracy on both the topographic and cylinder
contours was decided,

The distribution of sampling points necessary on each con-

tour was found by increasing N, Although general rules

cannot be given to suggest the sampling densities that

‘might be required, several observations can be made:

a) The magnitude of the equivalent surface current
densities will be large and vary rapidly on those
parts of the contour having 2 small radius of

curvature (see Figs. 25, 26, 88 and 89). Conse-
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quently, a small sampling interval is required in
these regions to represent accurately the surface
current densities.
b) The equivalent current densities are equal to the
tangential components of the total electromagnetic
field quantities on the boundary. Thus, in those
problems where attenuation is significant or the
incident field strength falls off rapidly, the scat-
tered field is determined primarily by that portion
of the scatterer contour closest to the source and
point of observation. Consequently, small sampling
intervals are required in these regions only. 'CFor
example, see the fields scattered by a circular
cylinder in the presence of an electric line source,
Figs. 65 through 68.)
5) Although not always investigated, an estimate of the size
of numerical round-off with the sbhove numerical parameters
can be obtained by setting all conductivities'equal to that
of the half-space (see Fig. 60).
It is important to note that in those examples where integration accuracy
was not maintained (see Figs, 13 through 18, 72, 73, and 88), the result
was apparent as an oscillatory behaviour iﬁ scattered“ﬁ‘when none was
anticipateﬁ.
It would be misleading to state that the program accompanying this
thesis solves the problem of scattering from a vertical slab buried under

a hill (Figs. 95-97) in 2 minutes on a CDC 6600, or equivalently, about
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10 minutes on a CDC 6400, The reason for this is that the convergence
tests listed above require a considerable amount of computer time before
the desired equivalent surface current demsities can be computed, However,
it should be remembered that once an accurate estimate of K and M has been
obtained, the fields can be studied in detail using a small amount of
computer time since it is only mecessary to solve the integral equations
once for each scattering problem.
It would appear that solution accuracy can be improved andf/or solution
time reduced in several ways:
1) The work of Zaki (1969) can be followed to account for contour
curvature,
2) The work of Green (1965) in studying finite difference problems
indicates that it might be possible to extrapolate the results
obtained at several sampling densities to a more accurate

solution.
8-2 ' Conclusions

As a -result of applying integral representations to investigate
geophysical scattering problems (assuming normal incidence of an Ey-
polarized plane wa%e in most cases), the following important observations
and conclusions have been reached,

1)} The phase of-ﬁ is dependent upon the position of the observer

in space, even for perfectly conducting scatterers (see
Figs. 27 and 28).

iy v
2) The phase of H rormally is not zero, even for perfectly con-



3)

4)

5)
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ducting scatterers because of the importance of the
axial electric field intensity:(see Fig., 37).

Coupling reduces the induced surface current densities
;pproximately 10% to 20% assuming a standard ground con-
ductivity of 10--3 mhos/m, a cylinder conductivity of
10”1.mhos/;5 a frequency of 1000 hz, and a separation
of 20 m between the top of the conductor and the half-
space (see Figs. 83 and 84).

Inflexions in imaginary ) can occur in the field scat-
tered by a single conductor if the radius of curvature
on the upper portion of a finitely conducting scatterer
is small at several sites (see Figs. 86 "through 90).
These inflexions are dependent upon the radius of cur-
vature and the reflection coefficient on the slab contour
(see Figs. 97 through 102).; Note, however, that these

results probably are applicable to E_-polarized incident

¥
fields only.

A smooth hill 600 m wide and 100 m high with a maximum slope
of 31° increases real (W) approximately 117 over that field
reflected by a flat half-space assuming a standard ground
conductivity of 10-3 mhos/m and a constant flight level

of 150 m, The result of contour fiying over this hill at
150 m is to reduce the peak horizontal response of the

hill by a factor of two and yield a constant field intensity

over the central position of the hill, The peak response

of H, is reduced about 10% and shifted away from the cross
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over (see Figs. 94 and 95). When the conduetivity of the
ground is reduced to 10"4 mhos/m, the fields scattered by
the hill are less than 2% different from the half-space

values (see Figs. 101 and 102).
8-3 Extensions and Applications

The above observations and conclusions were reached in demonstrating
the validity and utility of the integral representations, It is clear
that many important questions will be answered when a gemeral mumerical
analysis of scattering from cylinders in a conductive half-space is under-
taken, Furthermore, the work can be extended to study some of the most
basic scattering problems encountered in geophysical exploration. Some
of the general problems which now can be investigated include the
following:

1) The effects of overburden on the scattered field can be

studied like the half-space solution by choosing a fourth
integral representation in the homogenecus overburden layer.
Outside (-a, a) we assume that the layer is flat and the
equivalent surface current demsities arise from the primary
field incident upon a flat layer overlying a conductive
half-space, Alternatively, a finite overburden layer can
be considered by treating the overburden as having a
catenary-like cross section.

2} The fields scattered by cylinders in a conductive half-

space assuﬁing Hy-polarized incident £f£ields can be examined
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by programming ‘the H&—polarization solutions given in this dis-
sertation.
Scattering from multiple conductors can be considered by choosing

an integral representation in each additional scatterer present.

4) The magnitude, phase, and geometry of the fields scattered by

5)

6)

cylinders in a conductive half-space assuming finite sources can
be studied by following the methods outlined in Chapter 6. When
the finite dimensions of the dipéle become important and/orx
coupling between the ground and source is important, the tech.-
niques of Chapter 6 may not be satisfactory. Instead, the
problem should be considered as an antenna scattering problem
and thé current distribution on the antenna included as an
unknown. Work in this direction for dipoles over a lossy earth
has been reported in an abstract by Arens and Embry (1968).

An analysis of scattering from finitely conducting bodies

of revolution can be undertaken by extending the woFk of
Andreasen (1965 a) to include interior integral representations
and applying the results to geophysical scattering problems.
Note, however, that this solution requires that the incident
field be expandable into a set of orthogonal TE and TM modes
propagating along the symmetry axis of the body considered,

The- time response of 'fields scatteréd from cylinders of arbi-
trary cross section can be studied by transforming frequency
domain results into the time domain. Although this may not be

the most economical manner in which the problem can be solved,
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it is straight-forward in principle,

7) Since elastic waves obey the same Helmholtz equation as electro-
magnetic waves, the amalysis of this dissertation can be repeated
to investigate seismic scattering problems, Acoustical scatter-
ing problems have been investigated in some detail in the liter-
ature (for example, see Mitzner (1967b), Copley (1968), and
Schenck (1968)), but the results were not applied to seismic
exploration problems.

In each of the above cases, an analysis should be under-
taken to determine where approximate solutions that have been
developed are valid and more expedient. In those situations where
approximate solutions are not available, it is important to deter
mine when approximations can be made to the numerical scattering
solution. For example:

2) The much simpler solution discussed in Chapter 4 can be
used to describe scattering from the cylinder (but not
the half-space) whenever the-cylinder can be treated
accurately as having a low surface impedance.

b) 1If coupling between the cylinder and the half-space can
5e ignored, the scattering problem can be considered in
several Earts and a solution can be obtained more ac-
curately and quickly than if the entire problem were sol-
ved once,

The application of the results of this thesis to plane wave scatter-

ing by cylinders encountéred in geophysical exploration leads to the

following important conclusions:



1)

2)

L3

In AFMAG surveys, the ratio of real EE) to imaginary ?ﬁ) is a
function of traverse position x and ground conductivity §,, as
well as the cylinder conductivity T,. In addition, the magni-
tude of the scattered field is highly dependent upon the con-
tribution of the electric field intensity—;L so that it cannot
be ignored. As a result, investigations such as that by Ward
and Fraser (1966) in which the contribution of the electric
field intensity and host rbck'conductivity have been 1ignored

are likely to have a limited application to AFMAG interpretation
for cylinders,

Topography can give rise to a tilt angle of about 5° at an oper-
ating frequency of 1000 hz., ground conductivity of ].0“3 mhos/m.
and normal incidence of an Ey-polarized plane wave according

to the analysis presented in Chapter 7, However, before these
results can be applied directly to AFMAG interpretation, an
investigation must be undertaken in which the incident plane
wave can assume an arbitrary polarization and angle of incidence,
The reason for this is that- in air, the incident AFMAG fields
are propagating at grazing angles to the earth-air interface
with a vertical electric and horizontal magnetic polarization,
This direction of propagation. will not affect the conclusions
reached in 1) since the field tranmsmitted into the half-space
will be propagating normally away from the earth-air interface
even for grazing angles of incidence. Thus, both Ey and Hy

polarizations are possible,
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3) In no case has a zero phase been observed. Even perfectly
conducting scatters buried in a conductive half-space will
produce an out-of-phase response for plane wave incident
fields. This result is particularly significant since early
work such as that by Ward and Fraser (1966) had indicated that
AFMAG fields scattered by a perfectly conducting cylinder would
yield no gquadraturs response,

4) Conclusions 1) through 3) are equally important for V.L.F.-
E.M, studies, The conductivity of the bedrock and the elec-
tric field vector must be included in any analysis, and the
incident field should possess an arbitrary polarization and

angle of incidence.

The above extensions and applications indicate that integral
equation formulations represent a powerful technique for solving
many of the complicated electromagnetic scattering problems encounter-
ed in geophysical exploration., By verifying approximate solutions
which have been developed and continuing the analysis of this disserta-
tion where none exist, electromagnetic interpretation in mining geo-

physics can be based on sound theoretical investigations,
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APPENDIX A

DERIVATION OF THE TWO-DIMENSIONAIL GREEN'S FUNCTIMN

The two dimensional Green's function in an infinite region is given
> ! z

in many texts (see Noble, 1962, p, 239), but the proof is gemerally left
to the reader. For this reason and for the sake of completeness, a general
derivation of the two-dimensional Green's function is given. It follows

a development similar to Fuller (1968) in obtaining the. three-dimensional
Green's function.
We wish to obtain a particular solutidén to.the inhomogenedus scalar

Helmholtz equation.

(7% &) G(:x,,j,z -J«'}J',z’) = -5(»:—«’)5(}-5’) s(z-29) .

(a-1)
Assume that both G‘(x',y‘,z; x',y',2") and Sx - xYH § v - y')g(z -z"

have a Fourier Transform given by
- a[iz#(d"“')*%(y'j,) +[%(?_2/é] .

Clrygyes a2 } ! f’S (t, bj}w}x. Bl Bl -
é(ﬂ:—mz)gfj—j‘?; S(Z-‘E’) . (.9-71"]3 yj | ) i

—ol

(A-2)

Substituting equations (A-2) ‘into (A-1) and carrying out the

operations, we find that a sufficient condition for a solution is

(ko by bpde - |
j Ry Yy 2 (k;{-‘idtﬁk [z;- k-_;) {4-3)
Thus, ’

oo ok
2 ( .

(;Cx,;z‘,x' ¢ 27 =_1
P rky - )

(a7)

B s * ]

(a-4)
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-

Transforming to polar coordinates such that the position vector A

A AL A
1s xi + yj +2k, then

b (a-n’) + 2 (y-g') 48, (z-2') = )= k],\ﬁ]wsg)
la 4»&7' {-L = k> (A-5)
T a4ty - Koo db dodg -

bu

Equation (A-4) becomes
2o ¥ 27 b 1x-x’lcos ®
(& (A x ) =

LQ J vt (‘{f?— kl)

J R-pllcose , sme(ﬂa@@
(27«") Jok™)

A swodb 4644

i

1
k——"—"\
},;::

-}ac.

——
\a
_nr"-
o1
b
, o~
}Q 5
~
Pl
by
>
\_.-:‘
S
_-N"‘

‘IT' [A

4
1
r—"“"‘l
¢
| A=
»
-
I
S
1)
b
9‘5-.----
L
-
L"'-"_"—N
& Y o
L.
EN
]
L}
>,
1SN
A
e

. o thIX-A)
= - L S‘ | = &L! - (4-6)
4T Ix-A [h:‘-lzl)

The integrand of equation (A-6) has poles at £ k where k is a complex

i

number given by ac_H:(S . In the complex plane, kl |k1] eiél =U§u{-°591 + 1 smg).

For 0¢ & £ T, sinp, is positive, so that

b

X -Z0 R 2 klces 8, ~ XXkl sm D,
2 = = 2 . (4-7)
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Thus, the integrand of equation (A-6) approaches zero as ki —»~ oo,

and we can add the dashed contour shown without changing the value of

the integral, i

(A-8)

Equation (A-8) gives the three-dimensional Green's function in an
infinite region. The .two-dimensional Green's function 1s obtained by

integrating out the axial dependence of equation (A-8). Thus, in two

dimensions

® ik /ix-a* + t*alz-2)" .
Glpp) = Pl dt (4-9)

Sy ;ot) \/(;K—/x')z vt (-2

where t = ,‘j"jl .
Ward (1967, p. 131) shows that

, 6o kR
(e 1K, ik A )

2 i
where R =/x2 + v -+ 22 and Ko is a modified Bessel function

of the second kind of order zero..
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We have the relationship from Watsen (1966, p. 78) that

- {DFI o _
Ko(ﬂ = _2'._ l!:.‘ 2 H\) ["ﬂ y T F <q'rjt £ . (4-11)
Thus,
! - ; N 1 P
G(P,,B )= :’g hy (kY (e-xr? s 202 ’X)= f 5 U“l"‘f’ l)' (A-12)
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APPENDIX B

ALTERNATE DERIVATION OF THE FIELD SCATTERED

FROM PERFECTLY CONDUCTING CYLINDERS

We wish to solve for the field scattered from perfectly conducting
cylinders in a conductive whole-space, éssuming an incident electric field
polarization which 1s parallel to the axial direction of the cylinders,

To support this scattered field, we postulate the existence of electric
currents which are induced such that the boundary condions on E and H
are satidfied,

We have assumed that Ei possesses an axial component only. Further-
more, .we will assume that the i;cident field is constant in this direction.
As a result, theﬂinduced currents will possess an axial component only
and, from this, the scattered electric field musé be axial also.

This scattered electric field must satisfy an inhomogeneous Helmholtz

equatinn given by

TV ES (2) - - iam ke ()
()G = - dpo by s -

To solve equation (B-1), assume that both E;‘(x,y,z) and $¥x,y,z) have a

Fourier Transfiorm given by

_ ¢ U%«‘-“* J*L 2)

Ey (&,3)3) } = f E(E’-"JL L ﬁj Ee (B-2)
Ky (x,y,2) o ) « (6, by e

When equations (5:2) are introduced into equations (B-1) and the

operations carried out, we find that a sufficient condition for a solution

1ls


http:more,.we
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a(kxy Ej; ke ) = 9&&)3(&5‘ s j, (M 4 ) 5 (3-3)

where

gk, by, )

{
/E;{-l».; »Q; -

Then, by the convolution theorem, we can write the solution in (%,y,z)

space as
ch (Klﬂjaj ..-=mi/um G(M,J)i’)ﬁ‘ Kj (/K)ff}z)

(B-4)

where G(%,y,z) 1s the three;dimensional Green's function and

15 the inverse Fourier Transform of gk, k - k).
Thus,
s Z(E,.j(-l- 5+L z,)

G’(/&]:]SZ) = g\ JL‘QQ(Z GQL . B-5
oy (bt o o3 - %) ®-3)

We have evaluated equation (B-5) in Appendix A so that we may write
tha
G(z,y, z}) = L .
4 7A (B-6)

When equation (B-6) is introduced into equation (B-4), we find that

the scattered electric field intensity is given by

. o blz-x11 ,
Ej (/x)j;z) = E/gm jjg Kj(}\")x' ix’aﬂj'on (B-7)
47 |x-A1

where

‘I—X(’ = l./(""")t LCy-j’SL#(B-2()1
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However, since s}x',y‘,z') 1s constant along the, axial direction,

equation’ (B-7) reduces to

K 2 . . J\yldﬁrlﬂz ‘

- 5C
t_? (/x, 2) = E&w J
;/(,«—}k')IJ-CY-j')“ i(z-2

47

°° ‘ 7 i/l Ly-y') '+ (2-29)F°
‘ (B-8)

- -0

This integral has been evaluated also in Appendix A, from which

we may write

> ) T - ’
E;c(&’ 2) = -7{-4_‘*} Jf chd“) 2’) Ho, (k ‘/(’L‘“')l + (2-89 )J&rig ‘ (B"'g)
o)

Since the cylinders are assumed to be perfectly conducting, I%(x,‘z')
1s a surface current demsity. Thus, equation (B-9) reduces to a contour

integral representation for the scattered electric field intensity,

l{f (p)= - /uﬁ_cg_:(‘ K €%) HS)(E](E“—F;’)&S' , . (B~10)
1 % '

Whered ]P-_F’! - /(A—m’)l-n-(e—i“}—z“.
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APPENDIX C'
SCATTERING FROM A FINITELY CONDUCTING CIRCULAR CYLINDER

The solution for plane wave scattering from a finitely conducting
circular cylinder in a conductive whole-space is very important for
testing the validity of the integral equation scattering programs which
we have developed, A solution which can be compared with that given
by Wait (1959) is given below,

If we assumé that the incident plane wave is Ey-polarized, then we

can write, referring to Fig. 103

§

]

[+ Y]

o

L]
~

& - -
E:?= kE, = = Ee 2 'f . (c-1)
Using the cylindrical wave transformation given by Harrington (1961,

P. 231), equation (G-~1) can be rewritten as

7

EL = Ea g,‘ é'!l Z i’n'Jm Ckgf))':n@= bpiLLl‘kz i—“gn JM (.éff) Cs '}@ bl

J Mz oD A

(C-2)

where
- - O
8!\,{ |, n )
2) flz.!'

The total electric field intensity at any point in space is represented
i -
by the sum of an incident electric field E and a scattered electric field
y

s5C

By

=

M,
*
i

_t
3 3 ©-3)
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To represent outward-travelling waves external to the cylinder, the scat-

tered field must be of ‘the form

—2C ;éﬁ X _a u)
[;j = F = m% L& a, “n (E(J)Casmt? .
Inside the cylinder, we expect standing waves which are finite at the

origin., Thus, we seek solutions of the form

E—jﬂn'{; _ E;.n-ié‘);é Z-“gﬂ LI\J"‘ Lklr) Cosmig) .

e
At the cylinder boundary, the condition that tangential E 1s con-
tinuous must be met. Since we equate each coefficient of cos;n@ 5

this implies that

(c-4)

(c-5)

Jﬁ. U?i R) + th H:?([glg) = hn JA(E’*R) . (0'6)

To obtain a second equation between a

n and bn, we will enforce

P
continuity of tangential H, that 1in%. We have from Maxwell's first

equation that

H, = -2 (&) - :_z(_(_ %a’,_ga‘?), -7
/aw /uw f 3@ ar

Thus, from equatioms (C-2), (C-4) and (C-5), we have that

. kb , h
Hy = 15 MEZ ey (kp)cosnd (c-82)
/U,UJ MmO
< fé ,; ' Y
H? = EEO 2 lA 1%;;(. "&,_n 4’\.’_!1(: Lk{f’)(‘““@ , (G-8b)

pue
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int P -2 ’
H‘g - LE, _gk'LZ I-n'é:’n b,l \L Uzlf) cosm@ . (C-8c)

me O

In equations (C-8), differentiation is with respect to {J Continuity

of tangential bt implies that

2[4 (BR) + o (kR = 2,6, 4 (b,R) (@-9)

where we have equated each coefficient of CDSmQ, and now differentiation
is with respect to the argument (kR) of equation {(C-9).

Solving equations (C-6) and (C-9) for a , we find that

a = - L kR ~cuLlkR)
WO (BR) ~ ¢, HY7(E,R)

(C-10)

where Cm = Zz —L‘,( L—z R)
Z, J] (k,R) -

| Jﬂ:(_hR)= z \'m (klR}"’ ‘J,,“,(kfﬁ) >
£ R

4

0D - a_dih® - 1 (kR
and £2R ‘

WOk R) = o KO CRRY - 0 (KR .
"

I1f we set

" (C-11)
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then the scattered electric field intensity is given from equatiom (C-4)
as
_3¢ E[e;ll}f - u(" (b »)
Ey (p,8)= 2 Mo & 1 & a B Uyp) cosn G-12)
vhere a_ is given by equation (C-10).
From equations (C-7) and (C-12), the transverse magnetic field inten~

sity is given as

E.Izih = Y i -
HP KF:@)= &EHO.?- % mi Qh”i,([z,‘a) Smmtg )

Ap 7

(c-13)

and

o

Hg’c (jh)@) = iHo£ik;kM§o 1_*“8,\ &y 51& H‘:‘: [kuf’b - H:;};([?'Pg cosm(g,
!

where a_ is given by equation (C-10).

(C-14)

The equivalernt electric and magnetic current densities on the

surface of the cylinder, assuming E_-pdlarization, are given from equations

y
(2-38a) and -(2-39b) as

-t

t t (C-15)
Ky = Hs = lg

H

]

it .
- - Ey . (C-16)
Thus, from equations (G-8a) and (C-8b), the equivalent electric current
density is

- . ' : O]
Ky(3) - o Z e &’,\(\L‘Ue‘m ta W, Uz‘R))cemQ,
H o (c-17)

and from equations. (G-2) and (C-IZ), the equivalent magnetic current density

is
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- X2
Ms(g) = - LS Y (U1 R + ag O (R cos m§.
e (c-18)

where a is given by equation (C-10).
n
The derivatives in equation (C-17) are with respect to the argument
(k'R), and are given in equation (C-10).

4 useful approximation and check on our solution 1s to study the

asymptotic results as € —w oo, In this case
O by) = Vpwe 2. (c-19)
T =
Since

lim 4 6® = [2 o (RR-F - T )
/R Tk, R ¢ 2 (c-20)

(Watsom, 1966, p. 195),

then . .
Low LR o 4 2 ws(kR-T . T )
e (R /T 9 2
- 2 3 ()3; R - _E - (mir)_;?: ) N
J/ en
ﬂzfi ¢ ‘ (C-21)
and
i o {b5R) - tes{bR- T4 . »Th)
gz.—’co Jn: (k. R) Ces ﬂzi[{ - g = (ne)T/2)
. {C-22)
Thus,
Liws €, = Dim  pok cos|kR- T4 - aT) - O, (e

kz"'""'"" | T M, b, cos {kR~ g = (mn) Tl )
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and hence the reflection coefficient reduces to

a = h' L (kR
H! (kR)

Except for a different time dependency, this is the same reflection

: (G-24)

coefficient as obtained by Harrington (1961,p.233) for scattering from
perfectly conducting cylinders.
Introducing equation (C-24) into equations (C-12), (C-13), and

(G-14), the scattered field quantities become

sc Zé,lz =2 ®
Ej (}EJ 8) @ "2, Hp-g' m% A ﬂgﬂ J,,:(kj.g) Hm (ér) COSA'I.'? N (0-25)
B2 (4R)

M3

mitd (B R YO (bp) sinmd | (C-26)

<< ah
H ( ﬁ’) = "11”0 JLIL’
f ’D) i ”—m———sm (b‘iz

3

YW

and

o G §) = -1 *LJME 5%, 4 (kR Y m O - H:i,(la‘o) sl (C-27)
g fl - - . m=0 n 4:. i f
’ Y (kR fg,lo

The equivalent electric and magnetic current densities reduce to

ibh & " 1y 7
Ky(9)= el e 2 7, (L/kR) - LR K (;e,a))wm@-) (c-28)
. m=o IE?(EED

and

Ms (&) =0 . (C-29)

If we introduce the Wronskian relationship (modified £rom Watson,

1966, p. 77)
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-1

o kR, (kR) - L, (KROK, (he) . =2
14

)

R (C~30)

ey

then

4 RRHC (L R) - 4, GRHRY = 4, (bR H (6B - 4 RIH(hR)

= - 2‘1 . (0-31)
Tk R
Thus, equation (C-28) reduces to
thh 2 .
Ke(9) o ally, o Z g, wsm@ . (c-32)

Thr 77 O (1, %)
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APPENDIX D

SOLUTION FOR POINTS OF OBSERVATION CLOSE TO TEE SCATTERER CONTOUR

When investigating the scattered fields close to the scatterer
contour (lkllF-F'\ << | ), we found that a parabolic approximation to the
integrand of each integral was inaccurate across those intervals near
the point of observation. This was due to the pseudo-singular behaviour
of the Hankel function, and we stated that this problem could be overcome
by making a small argument approximstion to the Hankel function in this
region of the contour integration and integrating the resulting expression
analytically,

To integrate anaiytically, it is ;onveniept to translate the
(x - x', z - 2') coordinate system to one which has its ?' axis parallel

A
to the contour interval and its & axis normal to thé interval and through

the point of observation, Thus, it is evident from Fig. 104 that
this yields

I g

’ — NT
2 = - ('P"- F')*S .,
S = (3-3")-% (0-1)
. P=F
Since
A7 Q‘)A. . o} A ~ ]
s = e.‘.crac‘ac-}?o XK 4 gin (o +90 )E-.— —Suw el x F Loso Z
~ | . oy A oy b ol 7 o ?
& & S (L4 99)R + tos (44 F°)E = otk - sima Z (D~2)
we find that
’
s’ 2 (x-a")smad ~ (2-27) cos (D-3a)

& = [ eareosd 5 (22" simu] | (D-3b)
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Similarly 5

(x-x') = s sinet - & cos o |

(D-4a)
(2-27) = ~ (s'cosat +8sima) .

(D-4b)

D-1 Perfectly Conducting Scatterers: Ey-Polarization

The problem of the pseudo-singular behavior of the Hankel function

first arises when estimating the surface current density on a perfectly

conducting scatterer assuming E_-polarization. Thus, we must evaluate

i) - 2k [Pk MO (k25 ds”

54 TJ y Pl Te LRLp-p >
e .

(D-3)
for | kil F”——F' i <<

The surface current density Ky(P') over this

interval 1s given from equations (3-19) and (3-21) as

kj (s) . 1 - ‘ Lﬁl*Aj)(st-C;)

- Ls'—ci}l K.
A- 4. g
) J
$-c. (s- e ) A% (e s d” -
+[ & . s CJ)JK‘?J”' -J'/\.(s Q) Al csjgj_' 1 (0-6)
Aj (_f—h\j) tj(l-!-)ij) Aj(l+/\_)) ,Z:J(H-AJ)
where A, . WJ. W
/\J = W!- + w:|+l 3
. w.j +WJ‘I
= {w, 4w, Xw;+w )
LJ W_] +WJ“ J - 7
(3 = ('X—AS) £im ols

1

When equation (D-6) is introduced into equation (D-5), we find the
following solution to our problem:
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A-

Ej {F/J) Sy { [ hgoo - (1=A) (Hkbl-- <JHKOO) - (HKoz- 2¢ Hial-}f;}-{kboi}f&j
9 0 L

+ Ky HKket - cJ- Hkeo s Hkoz - 15 HKol +ch HKao]
[+ A- T
J J J

- )‘.i ij_’l. A (Hkoi_c\'j Hkeo) . HKoz - Jc}yxoz ,‘C;ono-fjj

- ) . i
1423 L AJ tJ

b :
where Hkeoo = J H:’ (Z‘/Bl-l—s"')ds f , (D-8a)
3

(D-7)

T /~h ¢ }lf)(é/éz,ts'!)eas’ , (D-8b)
‘ a

b L
HEo2 =J S0 ()57 )ds. (0-8c)
.

- Oy
Equations (D-8) can be evaluated amalytically after HD uz 3es’")
has been approximated by equation. (3-26). However, the following inte-

grals will be required to caxrry out this integration:

I A

Js’f’;ﬂ i‘f (8%s™ ) yl£9(= 1 [;'zﬂn‘é}f (1'13’—)%—_1_(;’1'. A (;'7151))] £C  (D-9b)
2 2 2 2

a3

k (514_::1)'/36@5(: s’h}f_’f (gﬂ-{_ z-)ifz.- (gf_ S‘G_M""gsf ) L C , (D-9a)
2 .

il

W s

3 3

]s'zﬂn_{é (5146'1)%' .. _j[-"g/ﬂuﬂ (5’151)%'_( ,3- 8:.5.- 4‘33&“.:—‘: )]_'_c ’ {D-9c)
2 2

JS'ignB’L (51+ S,z)'/z 51= ;l_[sltp“ﬁ (Stiéz)yg "_I__( ‘i- 5-’.5;?-4’ 84}" (9‘151))]+C’(D_9d)
2 .

<
2 2'2
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+ & ¢ PR S 5
[ k) b [ (s s e, 0o
2 5 2 M2 6 '

j siﬂhé’_’z (5L+s'1)‘/fis' = _f[s"}»}’_lg (S'iél)vz__!_(_slé_ ig"+545'i§%h(s’iél)ﬂ +C, (D-9£)
2 b 2 2 M3

2

where we have used the facts that

j i) & ¥h (55 ds' - oY J s ¢ 1 ﬁu'}% (/35" Ms (0-10)
E 2 2

j,@n 3(—")45, - s'qeust') -/ s’ (s ds’ , (0-11)
' j(s’)
f:f(j’) ﬂnj(s') ds’ = F(,s')ﬂuj(s’) - ‘IF(S’)?’(S‘) ds’ ; (D-12)

j(s')
with Fls) = /f(s')aﬂs' )

and g(s") and £(s') are assumed to be rational functions.
Introducing equation (3-26) into equation (D-8a) and carrying out
the integration, we find that

o [ K bea) L @ (B2, w—s‘w-mk’(b*-«*)}
oo (1 )(0-)- £ (94 L T

o132 oL
. 5t ) Ak (e 3) e oy 28 B e TR (45)
+%"\_$B(Iﬁ%““f?) T(+ Q(' 4 n-) 2

¢ RB-a0) (i- Pl_é.i)(b%- 3(1;,,:‘% - t“'“'-gi))} . (0-13)

26 b
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Similarly, introducing equation (3-26) into equation (D-8b), we find that

HKot ~ 1 (I -B,’._;'Si)(bl—f)_ k(b4 4)+_ﬂ—,:*{k1§(b’:a‘\+_1zf(b4,gﬁ)}
2 9 Jo 47 *

+

—

s Kb h%"’*-‘_xs"d&}hxk 28ty
{b(l_hqé_l_a?&_l_;)ﬂui_[bd) &(\ % E) ( )

2 e

g ) - s (bea- ST b bres” }
¥ L0 E2

s & ¥8” (D-14)
Finally, introducing equation (3-26) into equation (D-8¢), we find that
Hkoz ..I... (I - El_é.l)( bg"‘"‘-g) - _k-f “35' Qs) + .f-_{ ﬁl (53~a3] +E (_bg-ag)
3 4 20 ar (3 5

R e IR (RO 3 )"
37 4 20 20

, ?,,El (Ei‘ ) (I ) _‘Eisil ( K __ 31(5-‘&-5 (ﬁw"%’_-mtf)))}'(n—ls)

eo - lo 3

Having estimated the current density on a perfectly conducting

ks

scatterer, we now wish to calculate the magnetic field intensity close
to the scatterer. Thus,
Eo L b - (l)k , -ﬁ_ -~ A&!
H(F):_;,_S Ky 53 b (kip 57 )| simp %~ ecep B[ ds
4
a,

must be evaluated for lk]lF-F'}<4 } . Translating our coordinate system

(D-16)

via equations (D-4), then

= - (D-17a)

2

Smi& - z-2° - (s'cosac +Ss{m¢)
z 2y
ra (Fes) 72
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and

CDS(’:’, = - - s'svv\d-; BCQISG( .
I__._F;} (S {_S,a) /2 (D-17b)

Thus, after approximating _the current density by equation (D-6), the

following form of equation (D-16)is obtained:

T—l - _L_Il_ {(ﬁ Cosot + 8B gimat) A + (Asin —SBL:»::L)%—] , (D-18)
1
where
A :[ 1, - 0-A) (T~ 31‘1) - Ty -2q1p - d;,TJ Ky,
& &

s Ko\ T -cT, L;"“J%*’"—}L]
A -
J

- )\,k [f\- (I vC-I]_‘ - I‘(—ZC}IS+C;J:2] N

J jj-l 4 EYN 2 (0-192)
B = [IE - U-?\-I) (I,,-‘:J-I,] . I -2¢ i +?"I,] 57_,
} Zij“ ]‘ T - r.;]', 4 .__Tg "'?"ijl +§I,]
b+ .XJ i AJ T,

- >\.{- K_‘f'«t[’\i(l‘z' c-I‘) - IB ’z“iI:' +€? I‘:! ) {(D-19b)

14 ] Aj L‘}

) rL D_2
T - (0 W (BT (D-20a)
! } (51+$f'l)‘/2.

b .
I, - ] s Ht,)(}e/él+s'z Ms’ , (D-20Db)

(8% s )Y
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T f’ s H,G) (b/5%s™ s, (D-20c)
q

léz+sfl)Va

I, - f” SO (S s

{D-20d)
(5’+sﬂ)yz

Introducing equation (3-27) into equation (D-20a) and carrying out

the integration, we find that

T ow ok (B8 b K tb‘—«‘J_z_:[:z_ ' - e
' ?{(l ‘?—X » 24 ¥ m( 3 é)

() S ()]

2 le 76

z 1.‘/2 act 12 L 2 2\ VY
2 b (1= B ) Sk (b53) " L (L 0 Bk (248)
R e R B

s _E_'(biﬁ) _(. Bt X[ﬂ_ (ﬁw«‘-l-’--:fam _Q))J} (D-21)

Equation (D-20b) can be integrated analytically for all values of the

argument, and 1s given by

I, - J 09 [H("Uzl/é_‘;‘_]sﬂa . 1[ (bS5 )= 1 (b))

(0-22)
Equations (D-20c) and (D-20d) can be rewritten in terms of equations
(D-8a) and (D-8b) through integration by parts. Thus,
j HU [B/8%s )]als
X
0 b() /
4 U > J TR I
= 1 { a H:)(E,/ ¢1+5‘) - b A, (éd b*4d ) +f b, (k)53 -)@ﬂsf) (D-23)
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and

b .
e s"‘g{[uj"fé/ﬁs"%u'
k . - ols

-1 { & K (JET) - O LS, 2 f O ]
i : .

(D-24)

The remaining integrals 1in equations (D-23) and (D-24) have been estimated
previously by equations (D-13) and (D-14).

D-2 Perfectly Conducting Scatterers: H&-Polarlzation

In estimating the surface current density on a perfectly conducting

scatterer assuming Hy-polarization, tha expression

. b
He G o - K;(-E”) - %é_ J Kstpd cos (o= (157 g ) s @-25)
g

must be evaluated for fkf}F” F”] <<l . Since

fol (F4:-$) = -8

1 /——W ) (D-26)

and KS(F') is given by equation (D-6), equation (D-25) can be rewritten
as , ’
uj‘(ﬁ“h - sE”. + 154 B
4 (D-27)
where B 1s given by (D-19b),
The magnetic field intensity scattered by perfectly conducting cylinders

assuming Hy—polarlzation is given by an expression similar to equation (D-25):
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se

Hg (5 _,J_J Ke(5) cos(p -=) . ‘5 sr1) ds. (D-28)
9 Je

As a result, it is evident that the integration across the jth interval

for points of observation close to the contour can be written as
o (D-29)

D-3 Scatters with Low Surface Impedance: E -Polarization

The integrals that are necessary to evaluate the electric field
intensity for points of observation near the surface of a highly con-

ducting scatterer assuming Ey—polarization have been estimated also.

The expression

_ ‘ ) |
By () = By 1) Ky +/u_9.J Ky HO (ki 51) s
2 4 (

‘\§ , ; « o) w !
+ 321[5_ j -Z;'j (is’)\(j(f)eos(*;;—d) H, ('HP - p 1) ds
a :

(D-30)

must be evaluated for lk”?fp'l << | ., The first integral has been

estimated by equation (D-7) and the second integral is just z, (Fﬁ
times the integral of equation (D-28) across the jth interval.
However, a rather complex expression results when we wish to estimate

the scattered magnetic field intensity close to the contour of highly
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conducting scatterers. The expression

b -
Hfr\(?)= %X Rj(‘?’)H?)(HF-F”)l Sim p& - cos F’%]"ﬂsr
2

+ J %_j(f’}kj(fi {LCSJCP“&) SWP NU L‘ /f) U)“’ & "')S-W(jjs — [ X
o *‘”‘Ja

(') A ‘
- —ol H = ry .
ZCox(ﬁ )ur.\[& (klapl) _Eﬁl)“”’(af {]Z}cﬂs R (D-31)
must be evaluated for “!“F—'ii’l 441 | Since the first integral has been
estimated by equation (D-18), we will consider only the second integral
of equation (D-31). Once the trigonometric functions are expressed in

the (s! &) coordinate system as

Simf% = - (S'cosx +3 Sma) \ (D-17a)
(STes) 7>
Cosp = s'sima -8 conu D-17b)
F T ¥ !
(5hes™) V2
C_oi(is—ol): C°‘J3 Cosal + sau(g St = -J - (D-26)
(s%¢s™ )72
Son(p-) = Simd ot oL - o f gimod = -5’ , (D-322)

(s*+s'™)2

simtilp-d.) Stmpco'S(/%-’d) veosp ‘“M([A ~o) = (:5~$ Y sind 258 cosa , (D-32b)
(55}

LoS(fllé AL} - c_asﬁ cm(P-x) Smﬁﬁm(f&-ﬂz CS s’ )c,bSaL 2s stwt s (D-32¢)
(")
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the second integral of equation (D-31) can be written in the form

" S 2 (FOKSG “.S {cosu + 9 Swwt) Hy (B/&%™) ((31*5 Sund 426 Scusa) Hy (/BT IR
“i/uw Teest

6(5 Sinet — 50&54)}{ (!a‘/&fs'l) ((.S “5)cosa ~ 1555:.«:;) 1 .SH‘."1 ] f
STes' A (8% )
(D-33)

Thus, introducing equation (D-6) into equation (D-33), our solution 1s

L %S(Fl){ [5( Ceosw + 8 Dsins) - | ((S‘E-F) Sine :_SGCMJ,Q
Yo r

+ [8 (Cswme - SD cose 4 | ((5";;-;:)(;;:.4 -28 Grma)| 2 (D-34)
I b

where
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(D-35b)
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E :['Tﬁ- (lwz\-s(Lo-tzijJ- (I vlol’ 4-C-J%).[kj

J
T 2
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. A- >
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and

I, = J s (.fsts%s'E)&S' ) (D-36a)
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b odY (BfE +s'*)cﬁs , (D-36b)
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Is [ b WO (5575 )ds' . (D-36d)
Q

Z
8y

i~
Lo
u

b -

. Hil)(kféi-hs{ _)CQS
‘i d .r?-) 3fh
= J < H(f “2\/5 +s’ )JS K (D-37b)
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o [} s

(D-37e)
(shes'®) ™2

Before equations (D-36) and (D-37) can be evaluated, the following

integrals will be required:

J /Qw‘q} (514‘5’1)‘/:15,= (..me‘ly&m __I__j 1+s'1)a?ls' + C)
s 2z by

&xs’ st (D-38)
and
T 2 ‘f?. - 2 2 :
Jsiﬂh‘%(s 4" :ﬂn(SHIJ{,guﬂé +_\_Jm(.51+‘31) + €
87}9'1 2% 2 4 (D-39)

where equation (D-39) has been obtained through integration by parts

We can show that the remaining integral in equation (D-38) does not

possess a closed form solution by transforming variables according to
| i

.

s' =&x. Thus, i .

b/S  B/S
J’ ,@,‘ L51+$'1)i,-. J &! H—/}(')J:! = ,GMS '(:amﬁ‘ ' _,Qu(\u(l)c& v (D-40)
6(1*/&1) §> 5 1+ &%
a alg afs

The last term of equation (D-40) is given by Grdber and Hofreiter
(1961,p. 112) as

bis b5
S.,Qu( ) de . 10w 4 ( nm‘).‘fa,;'m 1 +£'F2 ‘H%c) "jz(!:.iﬁj Y(D-41)
ot 2 als 2 z

a/g
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where i:l(fx) j/x il t)@ft jr “l‘i @Qu 3

o - x
:b _,_g; ?or fn} st (D-42)
=]

Since the evaluatioh of (D-41l) would invélve the numerical calculation
of fourintegrals, the quickest numerical solution would be to evaluate

equation (D-38) as 1t is written, However, by rewriting the integral

Of (D—BB) as
eg/3c 305 ‘b ) ’
| bl [ deGtand [T L
Jf,{ 5’14_51 S/go 53 205 L
~ 2SS - o) ,Ms 480" l[ﬂn‘a-t-l R -H] )
S?- 30 8/ 4_5 "5 208
3o

where we have assumed that a<§ < b,
the numerical integration is performed over the smallest width necessary.
Introducing equation (3-26) into equation (D-36a) and carrying

out the 1ntegrétlon, we find that

I~ L{th . taa) o B ()12
5( S é) 4 ( ﬂ,;')
+ ggl-l_w_h(w'_@-m&) L LTl
v L3 2 3 S 7

1 ‘Z
- _lg}{ b & _?f_lt_(kﬂst)h- 2 Ou¥k (aﬂﬁ?’)/— (L-a -8 (t'h -
4 2 2 s

"1&)%: (D-43)

I(a,b) f,ek s (0-44)
sTe 8t

Qe

where
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Similarly, introducing equation (3-26) into equation (D-36b), we find that

v e B Rz ) Ak B
lf

2 ‘l—l*-sa 3 it G e

Z

NESGEIE A2 (48M) - k_‘[b?»,e“y_!_a(ﬁsﬂ’/@
A il
_ 'L‘Qk &[f‘BZ)Vz. (B’L— & 62,(7”. 52 )] } . {D-45)

q,+5

By rewriting equations (D-36¢) and (D-36d) in terms of proper

fractions, we obtain integrals that have been estimated already. Thus,

7
a S e

b U —
L =j i (/57 )de" - éj B (RN (D-46)

Q
where the first integral has been estimated by equation (D-13) and the
second integral has been estimated by equation (D-43).

Similarly, equation (D-36d) becomes

[

- f HEOSTTT  _s sz"’UMsFM -47)

z
! i Shestt

where the integrals have been estimated by equations "(D-14) and (D-45)

respectively.
Introducing equation (3-27) into equation (D-37a) and carrying out

the integration, we find that

I yk[_ t' b T a _hl(l,.a)_,zzit b e
[ sl,( 5 g) 3 x E’sl(bﬂa" Qua*)
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EY o' b - a2} - 5k (b-a)

(gt BN eg) - 0]

+ z%um EENL (6547 - @ Ik (a0
W 4

(D-48)

where I(a,b) is given by equation (D-44).
Equation (D-37b) can be rewritten in terms of integrals already

estimated 1f it is integrated by parts. Thus

b
Iw =’j < H(‘)UZ ]Sz+£¢1)(ﬂsl - Q)Uz}sz,,_sn.)éi [ J&sr
q (5*s* )3 ds L (8457
b
Y
[§L+311) i’z . $L+-Sn' A (j-:. +S )3/2.
b
T_=0 § Ho(k/aed") | gOBRT) | k| & H:)(EJ,S"H”'MS'} . (D-49)
0 ; (4_2457');1 (L 52)2 31_‘_51’-

where the remaining integral has been estimated by equation (D-45).
The remaining three integrals, equations (D-37c}, (D-37d) and
(D-37e) can be written in terms of estimated integrals by expressing them

as proper fractions. Thus, equation (D-37c) becomes
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I, =Jkn‘."(u§f::"n)ﬂas'- f b (/% )t 0-50)
A a

(5% st) /> (g7 + )"

where the integrals have been estimated by equations (D-21) and (D-48)
respectively,

Simlarly, equation (D-37d) becomes

b 2 4 1z
I, = j U B[S j o' W2 (b/5%s Ms (0-51)
a a

CSZ"S'L) Yz {3 +“$/z)‘5/2

where the integrals have been estimated by equations (D-22) and (D-49)
respectively,

Finally, equation (D-37e)becomes

T f ‘%h/a' e ds’ f < HY (b5 s ©0-52)
q

.t)'/z a L§ !7-)3I2

where ithe integrals have "been estimated by equations (D-23) and (D-50)

respectively.
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APPENDIX E

EVALUATION OF AN INTEGRAL OF THE SONINE-GEGENBAUER TYPE

To obtain the desired integral, we will evaluate

J (Bs ) Ha (k/ 5% 5" ) g E-1)

(s +59)°"

first. (E-1) can be rewritten in terms of the modified Bessel function

K_ since we have from Watson (1966, p..78) that

i . - .
Ky (2) = ‘li"""”% b lGe) | =7 <mgz £ Ta i
or
L2 .
)= 42 s K, (-22) (E-3)
Wi
Consequently, (E-1) becomes
-2l .00 +
20 0 [ () Ky (oak/ e sT) A
i (5745707 (E-4)
Je

However, since (E-4) can be considered to be a Hankel transform, we find

from formula (35) of Erdelyi et al (1954, p. 72, Vol. 2) that

(':?- 5’)9/?.

A
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;u JJ(bs)KLJa/s PSS el I
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&L%ﬁ b (JL‘ )b Ea K, (5/b-1) (E-5)

i (-2k)° $ M
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provided b> 0, Im(k)> 0, Re(S)>0, and Re(u)>-1.

On rewriting (E-5) in terms of Hankel functions, we find that

-J {bs) Ho 3 57) <504 - Lﬂ (‘/_-) ww,lii.t?' E-5) )

(572 /p{a (E~6)

&
provided b>» 0, Im(k)> 0O, Re(S )> 0, and Re(}l > -1,
Although it is not obvious, it would seem that equation (E-6) is
valid in the limit as Im{k) approaches zero and Re(k) is greater than
zero. This is easy to demonstrate for the special case when all the para-

meters in (E-6) are real,

13}
Watson (1966, p. 179) gives an integral representation for Ho(z) as

~ L(Fe w)
-
-0 E(u- w)
l‘ f (48 S fi(& , E-7)
e tw
oo
provided -~ W< w« T ‘an& }&J-arjz/ < /2 .
Setting ) equal to zero in (E-7), then (E-1) can be rewritten as
‘o wd - S (o~ &)
J {bs ) AP % “ duds’ (E-8)
,n :)571 )

On interchanging the oxder of integration and setting W= X _____ )
[5'2151)1/"
(E-8) becomes )

00\4..."" S
1[ 23 &__fo )J&')"’M‘k’aﬁixx
"

(E-9)
o 7

The dnner integral of (E-9) can be evaluated from equation (4) of Watson

(1966, p. 394), so that (E-9) becomes

T
< -2 TL'—R——/x _‘T )
L/u m/“t o &,g ,
k}ul ' (E-10)

L2
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provided Regfu )>-1, Re(k)>0,

Setting x = K2 - b2

S a

and assuming for convenience that k> Db, then

(E-10) reduces to an integral representation of the form (E-7). Thus, we

find that

J J {bs") H UW )Iﬂﬂ"e’

(1+§ )O/?—

b...
. (l;**‘:.) g, (5
A A (E-11)

provided k>b>0, 9> 0 and Re(u)>-1.

By assuming that k>»b and that all parameters are real, we have avoided
the problem of considering the valid:ity of deformed contours for the
integral representation of Hd (z) which otherwise would have arisen.
Consequently, 1t would seem that (E-6) is valid at least in the
special case Re(k)>b>0, Im(k) = 0, and Re(8)>0.
1f we take the-limit of equation (E-6) as b-=0, we obtain the formula

of interest to our scattering problem. Noting that
, M -
Cun. (“fuu’”) ~ L6 (E-12)
“ [ J— Q’ur‘(/u-f‘l‘) )

~
then equation (E-6) reduces to

[_5 +3")bh_ /&ﬂ“ 3—,1.&-1 St )

(E-13)
provided Re(k)> 0, Im(k)2 0, Re($)> 0, and Re(/u)> -1.

It may seem difficult to justify using (E-12) for all s' since
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at some point during the integration the product bs' will violate thas
small argument assumption, However, it can be shown by using a stationary
phase argument (see Papoulis, 1962, p. 139) that if b zs small enough so

that (E-12) is accurate up to that value of s' where the large argument

approximation
) T , 4 sp=0t V2 g/ T 0T
H,y Uh/s‘ﬁ-é ) e ) 2 s A " T )
L5:2—+51-)0/z ’ Tk (E-14)

1s valid, then that part of the integral for which (E-12) is inappropriate
contributes a negligible amount to the integral,
It should be noted that (E-13} could have been established by rewriting

(E-13) in terms of the modified Bessel function K, as was done -for equation

3
(E-1).. Then, considering (-ik) to be a complex constant and setting
v = (S;?_ +82)l/2

, the resulting integral can be treated as a K-transform
qnd evaluated using formula (13) of Erdélyi et al (1954, p: 129, vol, 2).
However, since it would have been difficult to confirm the validity of
(E~13) for Im{k) equal to zero using this approach, (E-13) was established

through (E-1).



