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PREFACE
 

The objective of this program was to provide a study of RF parameters
 
of an orbiting 100-meter-diameter flight test model of a LOw Frequency Radio
 

Telescope (LOFT) operating in the 15- to 150-MHz frequency band. The study
 

included investigations of dual-polarized antenna feeds and the characteristics
 

of the reflector grid. A tradeoff study to establish design parameters of the
 

LOFT antenna was also performed. Computer programs were developed to investi­

gate effects of both axisymmetric and 0 -dependent reflector surface errors
 

on the far-field radiation patterns.
 

The trapezoidal tooth antenna feed is recommended for the LOFT
 

antenna application as a result of the feed study. The investigation of
 

reflector grids resulted in a characteristic curve of grid performance versus
 

grid mass.
 

Far-field antenna patterns at and near the mainlobe were determined
 

by a surface current integral formulation. In the angular region far from the
 

mainlobe and in the shadow region behind the reflector, Geometrical Diffraction
 

Theory was used to determine the radiation characteristics of the reflector.
 

The tradeoff study to establish LOFT design parameters resulted in
 

a recommended design. The LOFT performance characteristics for the selected
 

design are also included.
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1.1 

Section 1 

INTRODUCTION AND SUIMARY
 

INTRODUCTION
 

The objective of this program was to provide a study of RF
 
parameters in support of a Structure for Orbiting Radio Telescope (SORT)
 

research program in progress at NASA-GSFC. The SORT program has developed
 

the technology necessary for the design of large-diameter space structures,
 

the ultimate objective being a 1500-meter-diameter LOw Frequency Radio
 

Telescope (LOFT) antenna. 
Placed in a high orbit above ionospheric noise
 

and absorption, the LOFT would serve the needs of radio astronomy in the
 

0.5- to 10-MHz frequency region. The study performed by CAL was directed to
 
a 100-meter-diameter LOFT flight test model with operation in the 15- to
 
150-MHz frequency region.
 

The LOFT overall structural configuration consists of a centrif­

ugally suspended reflector grid of flexible filaments held in a parabolic
 
shape by front and back tension stays (Figure 1). The stays emanate from
 
either end of a deployable mast, which is extended along the spin axis to
 
form a central compression column. A broadband antenna feed structure, which
 
illuminates the reflector, is attached at the forward end of the column.
 

Additional information on the LOFT configuration and potential applications
 

is provided by References 1-4.
 

The three main areas of investigation were:
 

(1) Antenna feed definition
 

(2) Parametric study of the gridded reflector
 

(3) Reflector far-field patterns.
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Figure 1 LOFT BASELINE CONCEPT (REFERENCE 4) 
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The key factors considered during performance of these studies
 

are discussed below.
 

The antenna feed requirements called for continuous coverage over
 

the 15- to 150-MHz frequency band and simultaneous dual-polarization capability
 

(either two-axis linear or right-left circular). A wide variety of antenna
 

feeds were considered and their applicability to LOFT was determined. As a
 

result of this initial investigation, two feed antenna types. (the log-periodic
 

dipole and trapezoidal tooth) were selected as potential candidates and
 

investigated in detail.
 

The reflector grid, comprised of conducting ribbons, was
 

investigated to determine effects on the reflector far-field patterns as a
 

function of the reflector weight. Three major effects were investigated:
 

(1) RF leakage into the region behind the reflector, (2) antenna gain behavior
 

with variations in grid reflection coefficient and ohmic loss, and (3) increases
 

in near-sidelobe levels due to aperture phase errors caused by the reflector
 

grid. The results are presented in Sections 3 and 4. Results of the grid­

performance versus grid-weight investigation are reported in Section 3.
 

Computed reflector far-field patterns were used to quantify the
 

effects of the antenna feed, reflector grid and reflector surface distortions
 

on LOFT antenna performance. These patterns were calculated using surface
 

current integrals, implemented in computer programs, for the angular region
 

embracing the mainlobe and first few sidelobes. For the axisymmetric
 

reflector (surfaces of revolution) cases, an existing computer program was
 

modified to include the effects of the reflector grid. A second computer
 

program, developed by CAL, was used to study asymmetric reflector cases.
 

The latter program accounted for the surface distortions of the refletor.
 

attributable to thermal and torque effects. The radiation patteins far from
 

the mainlobe and in the shadow region behind the ref'Thctor were calculated
 

by the Geometrical Diffraction Theory (GDT) procedures previously developed
 

at CAL. Results are given in Section 5.
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Investigations were performed to determine the effects on LOFT
 

far-field antenna patterns of
 

(1) displacement of the feed antenna phase center from the
 

reflector focus
 

(2) feed antenna amplitude patterns
 

(3) variation of reflector F/D in the range of 0.3 to 0.5
 

(4) reflector grid electrical parameters
 

(5) approximation of a parabolic reflector by two conics in
 

the central region of the reflector
 

(6) thermal and torque surface distortions
 

(7) feed antenna aperture blockage.
 

The effects of small-scale reflector surface irregularities were
 

also determined using available theory for random surface errors.
 

A summary of the report is given in Section 1.2. Conclusions and
 

Recommendations are included in Section 6.
 

1.2 SUMMARY
 

1.2.1 Antenna Feed
 

The results of the antenna feed investigation are given-in Section
 

2. A summary of performance characteristics of the feeds investigated is
 

given in Table 1. The trapezoidal tooth and log-periodic dipole feeds were
 

selected for further detailed investigation and calculation of reflector
 

antenna patterns. The trapezoidal tooth feed is recommended as a result of
 

the antenna pattern studies.
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Table 1 
FEED INVESTIGATION SUMMARY 

131 
PHASE

4 1  15
1O-dBBEAMWIDTH(2) CROSS. CENTER SIDELOBE APERTURE5
 

(dere=) POLARIZATION DISPLACEMENT LEVEL EFFICIENCY
 
FEED TYPECI) E H (d) (WAVELENGTHS) (dB) %) COMMENTS
 

TRAPEZOIDAL TOOTH 110 110 10 TO 15 0.2 TO 0.4 20 60 TO 75 	 RECOMMENDED FEED AT PRESENT 

TRIANGULAR TOOTH 110 110 12 TO 15- 0 3 TO 0.4- 20' 60 TO 75' 	 MAY HAVE LESS CROSS-POLARIZATION 
THAN TRAPEZOIDAL TOOTH FEED 

ZIG-ZAG WIRE 100 110 12 TO 15- 0.85 20* 60. 	 LARGE PHASE CENTER DISPLACEMENT 

LOG-PERIODIC DIPOLE 110 170 25 0.7 17 45 TO 55 	 SHOULD BE INVESTIGATED FURTHER 
IF CROSS-POLARIZATION OF TOOTH 
FEEDS IS TOO LARGE 

SHORTENED-ELEMENT LPD 110 170 25 0.7 TO 1.2 17' 45 TO 55' 	 MECHANICAL POSITIONING REQUIRED 
WHEN OPERATING FREQUENCY IS 
CHANGED
 

VEE ELEMENT LPD 110 170 25 0.7 17" 45 TO 55 CAN NOT EQUALIZE E. AND H-PLANE 
BEAMWIDTHS 

CONICAL SPIRAL 110 LARGE 0.6 20' 60 TO 70' 	 CONTRAWOUND VERSIONS HAVE LARGE
CROSS POLARIZATION 

MULTITURN HELIX 30 TO 100 20 - LOW' 	 BEAMWIDTH TOO NARROW AND VARIES 
WITH FREQUENCY 

CONICAL TRANSMISSION LINE NOT APPLICABLE LARGE 0.0 15 TO 17 30 	 50 PERCENT SPILLOVER LOW GAIN. 
HIGH SIDELOBES 

(1) 	 FIRST SIX FEEDS PROVIDE ORTHOGANAL LINEAR POLARIZATION LAST THREE FEEDS PROVIDE DUAL-SENSE CIRCULAR POLARIZATION 

(2) 	 A 1100 BEAMWIOTH IS OPTIMUM, WHEN THE REFLECTOR F/D RATIO IS 0.5. H-PLANE BEAMWIOTH CAN BE MADE MORE OR LESS THAN 1100 WITH OTHER DESIGNS. BUT E-PLANE 
BEAMWIDTH OF THE LINEAR POLARIZED FEEDS CANNOT BE MADE LARGER THAN 110­

(3) 	 PHASE CENTER DISPLACEMENT RELATIVE TO FEED VERTEX 

(4) 	 SIDELOBE LEVEL OF LOFT REFLECTOR USING A PARTICULAR FEED. (NOT SIDELOBE LEVEL OF FEED ITSELF) 

(5) 	 APERTURE EFFICIENCY IS RATIO OF REFLECTOR ANTENNA GAIN USING A PARTICULAR FEED TO THE GAIN OF A UNIFORMLY ILLUNIMATED APERTURE ANTENNA HAVING NO 
SPILLOVER. 

'ESTIMATE 



1.2.2 Reflector Grids
 

Section 3 of the report describes the theory of reflecting grids
 

and tradeoffs relative to the LOFT application. The results of the study
 

show that the following guidelines should be used in the selection of a grid.
 

* 	 It is not important whether the orthogonal conductors are
 

connected at the junctions because the angle of incidence
 

of the feed field onto the reflector is relatively small
 

(less 	than 40 degrees for any reflector whose F/D ratio is
 

0.3 or greater).
 

* A square mesh should be used rather than a rectangular mesh
 

to keep the polarization of the reflected field nearly the
 

the same as that of the incident field.
 

* 	 Conductor thickness and conductivity need only be large enough
 

so that the term involving strip impedance, Z, is small
 

relative to other terms. As shown in Section 3, stainless
 

steel conductors only 6.35 microns thick will suffice and
 

aluminum conductors could be even thinner.
 

* 	 A uniform-size mesh should be used throughout the reflector 

surface to minimize phase error attributable to the grid. 

* 	 The grid must have continuity in orthogonal directions; a
 

weave with poor contact between adjacent conductors is
 

unsuitable.
 

* 	 The grid has the most effect on radiation patterns at the
 

highest operating frequency.
 

1.2.3 Radiation Near Mainlobe
 

Radiation characteristics of the LOFT antenna at and near the
 

mainlobe are given in Section 4. Tradeoffs relative to antenna feed selection,
 

reflector F/D ratio, effects of reflector surface errors, antenna feed aperture
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blockage and the reflector grid are described in detail. Reflector far-field
 

patterns illustrating the tradeoffs are provided. The following trends and
 

conclusions were derived from the antenna pattern data:
 

* 	 The conic surfaces degrade performance more at high
 

frequencies than at low frequencies.
 

* 	 Feed phase center displacement degrades performance more
 

at low frequencies than at high frequencies. This occurs
 

because phase displacement was deliberately minimized at
 

high frequency.
 

* 	 At 15 and 30 MHz, some of the tabulated sidelobe levels are
 

not much higher when feed phase error is included. This
 

occurs because the first one or two sidelobes blend into the
 

mainlobe. The deleterious effect of feed phase error will then
 

show up as a much wider mainlobe beamwidth at the 20-dB points.
 

* 	 Feed phase center displacement relative to the reflector focal
 

point should be less than 0.4 wavelengths. This can be
 

accomplished with a fixed position, trapezoidal tooth antenna
 

but not with a fixed position, log-periodic dipole antenna.
 

" The optimum reflector F/D ratio using a trapezoidal tooth
 

feed is 0.5, if maximum gain is desired. When conic surfaces
 

and feed phase center errors are included, the worst case
 

sidelobe level is 19 dB. If F/D = 0.4 is used, gain is
 

lower by 0.4 to 0.6 dB and the worst-case sidelobe level is
 

20 dB.
 

* 	 The optimum reflector F/D ratio using a log-periodic dipole 

feed is 0.4. The worst case sidelobe level is 17 dB and the 

gain is 0.7 to 1.6 dB lower than the gain obtainable with a 

trapezoidal tooth feed. 

* 	 Patterns using a trapezoidal tooth feed are essentially
 

axisymmetric. E-plane patterns using a log-periodic dipole
 

feed have 10 to 15 percent wider beamwidth than the H-plane
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patterns. Some radio astronomy applications require an
 

axisymmetric mainlobe.
 

* 	 Cross-polarization in the 45' plane is 1 to 2 dB worse using
 

a log-periodic dipole feed as compared to a trapezoidal
 

tooth feed. It is emphasized that cross coupling in the feed
 

has been neglected. A small F/D ratio also degrades the
 

cross-polarization.
 

a 	 Surface errors due to thermal and torque effects will not
 

seriously degrade antenna performance.
 

1.2.4 Radiation Far From Mainlobe
 

In Section 5, the radiation characteristics of LOFT in the region
 

far from the mainlobe and in the shadow region behind the reflector are
 

described. Far from the mainlobe, in the illuminated region in front of the
 

reflector, the principal radiation components are direct radiation from the
 

feed, scattering from the random perturbations of the reflector surface and
 

diffraction from the reflector. Geometrical Diffraction Theory (GDT) is.
 

used to provide calculations of the pattern from the reflector in this region.
 

In the shadow region, tradeoffs relative to leakage of feed radiation
 

through the reflector grid are discussed. It was found that:
 

* 	 In the illuminated region, direct feed radiation is the most
 

significant radiation mechanism (for random surface error less
 

than 0.03-m RMS).
 

* 	 In the shadow region at the higher frequencies, feed leakage
 

through the reflector grid for typical grid designs is
 

larger than diffraction around the reflector.
 

* 	 Reflector panel billowing should be kept below 0.03 meter
 

RMS (0.1-m peak-to-peak) to keep far-out sidelobe level
 

below that due to other radiation sources.
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* 	 A reflector grid with 8.6-dB transmission loss at 150 MHz
 

gives feed leakage in the shadow region 40 dB below the mainlobe
 

peak across the 15- to 150-MHz frequency band.
 

* 	 The gain in the backlobe direction is -1.0 dB relative to
 

isotropic, independent of frequency.
 

* 	 An F/D of 0.4 instead of 0.5 can reduce sidelobe level only
 

in the shadow region (due to reduced reflector edge illumination)
 

but feed leakage through the reflector grid must be signifi­

cantly reduced for a reduced sidelobe level to be realized.
 

Conclusions and recommendations derived from the study results are
 

given in Section 6. Section 6 also presents the parameters and expected
 

performance characteristics of an optimum 100-meter-diameter LOFT antenna
 

configuration.
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Section 2
 

ANTENNA FEED INVESTIGATION
 

The feed antenna is placed at the focal point of the parabolic
 

reflector to receive the radio energy redirected from the reflector. The feed
 

should meet the following requirements:
 

* 	 Frequency: 15 to 150 MHz, preferably without electrical or
 

mechanical tuning.
 

* 	 Feed Amplitude Pattern: Proper beamwidth for illumination of
 

a parabolic reflector with F/D ratio between 0.3 and 0.5. The
 

pattern should be frequency independent and axisymmetric.
 

* 	 Feed Phase Pattern: There should be a point on the feed
 

antenna about which the feed phase is constant. This point
 

(called the phase center) can be placed at the focal point
 

of the parabolic reflector and thus minimize aperture phase
 

error due to the feed. Ideally, the location of the feed
 

phase center should remain stationary with frequency variations.
 

* 	 VSWR: Low (e.g., < 3:1) over the entire frequency range,
 

preferably without mechanical or electrical tuning.
 

* 	 Polarization: Polarization diversity is required. The feed
 

should provide either orthogonal linear or dual-sense circular
 

polarization.
 

* 	 Structural Requirements: The feed structure should be sufficiently
 

simple to permit deployment in orbit.
 

The properties of feed antennas investigated on this program are
 

described hereinafter.
 

The following antennas are discussed:
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LINEAR POLARIZED FEEDS
 

Log-Periodic Dipole Array
 

Shortened Element Log-Periodic Dipole Array
 

Log-Periodic Vee Dipole Array
 

Trapezoidal Tooth Array
 

Triangular Tooth Array
 

Zig-Zag Wire Array
 

CIRCULAR POLARIZED FEEDS
 

Conical Spiral
 

Multiturn Cylindrical Helix
 

CONICAL TRANSMISSION LINE FEED
 

Table 1 provides a summary of the results of the antenna feed
 

investigation. Two feeds were selected as providing the best match to the
 

LOFT feed antenna requirements: the trapezoidal or triangular tooth feeds.
 

These feeds, along with the log-periodic dipole array as an alternate, were
 

investigated in greater detail. Results of these further investigations are
 

given in Sections 4 and 5.
 

2.1 LINEAR POLARIZED FEEDS
 

2.1.1 Log-Periodic Dipole Array (Figure 2(A))
 

The log-periodic dipole array [5] has 3-dB and 10-dB E-plane beam­

widths of about 600 and 1100, respectively, and this beamwidth is practically
 

invariant (± 10 percent) for all designs which give a well-formed antenna
 

pattern. The H-plane 3-dB beamwidth can be varied from 900 to 140 and the
 

10-dB beamwidth from 1500 to 2600. The narrower beamwidth is achieved with
 

a long array having a small expansion angle cc and large adjacent dipole 

length ratio ( r = 0.97). In-all cases, the H-plane beamwidth is at least
 

1.5 times wider than the E-plane bjeamwidth. The phase center moves farther 

from the dipole array vertex (feedpoint) as the array is made with small 
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ANTENNA FEED 

(A) BASIC LOG - PERIODIC DIPOLE ARRAY 

INU CTIVE LOADING 

(B) SHORTENED - ELEMENT LOG - PERIODIC DIPOLE ARRAY 
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expansion angle in an attempt to narrow its H-plane beamwidth. A dipole array
 

with an H-plane 3-dB beamwidth of 1070 has a phase center 0.72 wavelengths
 

from its vertex. The phase center could be moved to 0.5 wavelengths from
 

vertex by redesign of the array,but then the H-plane beamwidth would be
 

more than twice as wide as the E-plane beamwidth.
 

The position of the feed phase center relative to the reflector
 

focus governs the phase uniformity over the antenna reflector aperture.
 

Referring to Figure 3, the phase center displacement, P, relative to the feed
 

vertex is proportional to wavelength. When a fixed position feed is used for
 

a 10:1 frequency range, the feed should be positioned such that the phase center
 

at the upper frequency limit is slightly closer to the parabolic reflector than
 

the focal point. At the low frequency limit, the phase center displacement
 

to the focal point is then almost equal to the phase center displacement
 

from the dipole array vertex.
 

The phase error (phase lead) at the edge of the reflector aperture
 

relative to the center of the aperture as a function of reflector F/D ratio
 

and displacement of the feed phase center from the reflector focus, S, is
 

given in Table 2.
 

Serious degradation of the far-field patterns will occur for aperture
 

phase error greater than 90'. The advantage of using a large F/D to minimize
 

the effects of feed phase center displacement from the focus is illustrated in
 

Table 2. It is also desirable to maintain the feed phase center displacement,
 

S, as small as possible. A phase center displacement, S, of 0.36 wavelength
 

can be obtained with a trapezoidal tooth antenna [6] and others.
 

To summarize, the log-periodic dipole array always has a wider 

H-plane beamwidth than E-plane beamwidth, which is essentially fixed at 

600 (3 dB) and 1100 (10 dB). The H-plane beamwidth can be minimized only 

at the expense of large phase center displacement. The advantages of the 

dipole array are that it can be constructed in one plane rather than two 
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Table 2
 
APERTURE PHASE ERROR WITH
 
PHASE CENTER DISPLACEMENT
 

F/D RATIO S = 0.72 A S = 0.36) 
(degrees) (degrees) 

0.30 179 96 

0.35 147 80 

0.40 122 66 

0.45 104 56 

0.50 87 47 
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inclined planes and that two orthogonal dipole arrays can be constructed on a
 

common axis with little cross-coupling. Thus, crossed-linear or dual-sense
 

circular polarizations can be achieved with less than 25-dB cross-coupling [7].
 

2.1.2 Shortened-Element Log-Periodic Dipole (Figure 2B)
 

The dipole elements can be shortened physically and tuned to
 

resonance with inductive loading in each element [8]. An array whose longest 

dipole element has been shortened from the usual 0.5 A M ( A j = wavelength 

at lowest operating frequency) to 0.25 XM and all preceding dipole elements 

of length 0.25 AM Z / 0.5 A M have also been shortened to 0.25 A M 

has been analyzed. This shortened-element dipole array is compared with a 

dipole array having full-length-elements in Table 3. 

The phase center displacement for the vertex, P, for operating
 

wavelength A e 0.5 k, is 0.75 X for the shortened dipole array, because
 

both arrays are identical over this wavelength range. However, when A
 

approaches A M , the phase center for the shortened-element array approaches
 

1.2 A . It thus results that a shortened-element dipole array is not 

applicable to the LOFT antenna because (1) the phase center is too far behind
 

the parabola's focal point at the low-frequency end of the band, (2) the array
 

is 1.7 times longer, if the longest element lengths are halved, (3) more dipole
 

elements are required and (4) approximately 20 loading coils with reactances
 

ranging from 100 to 950 ohms [8] are required.
 

If any array having inductively loaded shortened elements is
 

constructed with the same number of elements and the same array length as an
 

array having full-length elements, it will have a degraded front/back ratio,
 

wider H-plane beamwidth and higher VSWR at the lower operating frequencies.
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Table 3
 
CHARACTERISTICS OF SHORTENED-ELEMENT AND FULL-LENGTH-


ELEMENT LOG-PERIODIC DIPOLE ARRAYS
 

PARAMETER FULL-LENGTH 
DIPOLE ARRAY 

SHORTENED-ELEMENT 
DIPOLE ARRAY 

E-PLANE BEAMWIDTH (3 dB) 620 620 

E-PLANE BEAMWIDTH (10 dB) 1090 1090 

H-PLANE BEAMWIDTH (3 dB) 1070 1070 

H-PLANE BEAMWIDTH (10 dB) 1900 1900 

FREQUENCY BANDWIDTH 10:1 10:1 

PHASE CENTER DISPLACEMENT 
FROM VERTEX (P) 0.75 A SEE TEXT 

LONGEST DIPOLE ELEMENT LENGTH 0.5 AM 0. 2 5AM 

TOTAL ARRAY LENGTH 0.78 AM 1.38 AM 

TOTAL NUMBER OF ELEMENTS 18 24 
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2.1.3 Log-Periodic Vee Dipole (Figure 2C)
 

Higher gain dipole arrays have been achieved by operating the
 

dipole elements in a 1.5 A or 2.5 A mode and tilting the dipole halves
 

toward the boom-forming Vee dipole elements [9]. The performance of this
 

antenna in the 0.5 A mode [Reference 9, Figure 8] was examined to determine
 

if a wider E-plane beamwidth could be obtained with the same H-plane beamwidth
 

as compared to a straight dipole array. Such was not the case, however; the
 

ratio of E- to H-plane beamwidths for the Vee dipole array was the same as that
 

for the straight dipole array. Therefore, the problem of H-plane beawidth's
 

being much wider than E-plane beamwidth remains for any dipole array. Of
 

course, two dipole arrays arranged onto inclined planes could be used to
 

narrow the H-plane beamwidth until it equals the E-plane beamwidth, but
 

simpler structures, which will be discussed next, are available.
 

2.1.4 Trapezoidal Tooth (Figure 4A)
 

Trapezoidal tooth arrays provide patterns suitable for illuminating
 

a parabolic reflector [6, 10]. Like the dipole array, the E-plane beamwidth
 

is almost invariant with different designs (670 at 3-dB points, 1050 at 10-dB
 

points). The H-plane beamwidth can be made equal to or wider than the
 

E-plane beamwidth by varying the angle between the inclined planes containing
 

each trapezoidal tooth structure, and/or by varying the adjacent tooth dimension 

ratio r . The E- and H-plane phase centers are at different distances from 

the structure's vertex, but both can be made less than 0.4 A [6]. 

Crossed-linear polarization can be obtained by arranging four
 

trapezoidal tooth structures as sides of a pyramid. However, cross-coupling
 

exists between orthogonal pairs resulting in some elliptical polarized radiation
 

when only one pair is excited [ii]. Even a single pair of trapezoidal tooth
 

structures radiates cross polarization, which is only 15 to 20 dB below
 

the desired polarization [10], probably due to direct radiation from the
 

currents on the inclined booms.
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2.1.5 Triangular Tooth (Figure 4B)
 

Useful design data exist for this type of antenna [12]. It is similar
 

in performance to the trapezoidal tooth. The triangular tooth structure might
 

have less cross-coupling between orthogonal pairs in crossed-linear polar­

ization feed system, because the longitudinal end pieces of the trapezoidal
 

teeth are replaced by end points. No experimental verification of this
 

expected reduced coupling is known at present, however.
 

2ol.6 Zig-Zag Wire (Figure 4C)
 

The Zig-Zag log-periodic antenna is similar in appearance to the
 

triangular tooth structure; the difference being that the central booms are
 

eliminated, leaving a pair of Zig-Zag wires lying in inclined planes. It has
 

been reported that the expansion angle of each Zig-Zag structure and the
 

angle between the inclined planes should both be less than 300; otherwise,
 

pattern breakup occurs [13]. Thus, the maximum attainable E- and H-plane 3-dB
 

beamwidths are 600, and the phase center is 0.85 A from the vertex. Further
 

experimentation with emphasis on obtaining clean, low-sidelobe, wide-beamwidth
 

patterns is required to evaluate this antenna as a parabolic reflector feed.
 

2.2 CIRCULAR POLARIZED FEEDS
 

2.2.1 Conical Spiral (Figure SA)
 

Much useful design data have been obtained by Dyson [14]. E- and
 

H-plane beamwidths differ by less than 100, and antennas can be designed with
 

3-dB beamwidths anywhere from 400 to 1300. The conical spiral is circularly
 

polarized, with axial ratio less than 3 dB. The phase center will be from
 

0.4 to 0.7 wavelength behind the vertex for 3-dB beamwidths from 105' to 700
 

respectively. The conical spiral antenna has a cleaner pattern, with a
 

smaller backlobe when wide spiral arms are used. Wide arms can be replaced
 

with wires following the edges of each arm. Satisfactory patterns can also
 

be obtained with thin-wire tight spiral angle arms, however.
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Attempts have been made to obtain both senses of circular polari­

zation by contrawinding another pair of conical spiral arms over the original
 

pair of arms. Results were poor; the originally low axial ratio of a singly
 

wound antenna was made very large by the addition of the contrawound arms [15].
 

The conical spiral antenna is one of the more difficult antennas
 

to implement, but should be considered if only right or left handed circular
 

polarization is suitable, because the pattern shapes are excellent for parabolic
 

antenna feeds.
 

2.2.2 Multiturn Cylindrical Helix (Figure 5B)
 

All antennas considered above are backfire; maximum radiation is in
 

the direction opposite to the transmission line wave propagation (toward
 

feedpoint). The multiturn, cylindrical helix [16] is a broadband forward­

fire antenna. Dual-sense circular polarization with axial ratios less than
 

2 dB has been obtained with contrawound versions [17]. Despite these
 

advantages, the multiturn helix appears unsuitable for LOFT application
 

because:
 

* 	 The beamwidth is too narrow and decreases with increasing 

frequency. The widest beamwidth obtained varied from 

300 to 700 over a 5:1 frequency band. 

* 	 A 9:1 frequency band requires 8 arms for each sense circular
 

polarization (16 arms for dual sense). A relative phase of
 
450 is required from one am to the next. The multiturn
 

helix is considered relatively difficult to implement for LOFT.
 

* 	 Sidelobes 3 dB below the main beam occur for narrow
 

frequency ranges within the operational band [18].
 

2.3 CONICAL TRANSMISSION LINE FEED
 

A sketch of a parabolic reflector using a conical transmission line
 

feed is shown in Figure 6. The feed consists of equispaced conducting strips
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lying on a cone. These strips can be some of the front tension stays and
 

therefore, no additional structure is required to implement this feed. In
 

contrast, all feeds covered in Sections 2.1 and 2.2 require a separate
 

structure at the end of the central support column.
 

The feed consists of an equispaced conducting strips lying on a cone.
 

A six-conductor transmission line with 600 spacing between lines is shown in
 

Figure 6, but N conductors with 360/N degree spacing can be used. The apex
 

of the cone is at the parabolic reflector's focal point. The phase center of
 

the conical transmission line is at this apex independent of frequency [19].
 

Therefore, this feed does not have phase error resulting from phase center
 

shift as a function of frequency as experienced with log-periodic feeds.
 

Each strip conductor is connected to the rim of the reflector because best
 

antenna patterns are obtained with this configuration. The Ee radial field
 

component reversesdirection at the surface of the cone, including the conductor
 

strips and if the reflector extended outside the cone, there would be a 1800
 

phase reversal of the aperture rield distribution for the E. component.
 

This phase reversal reduces gain and increases sidelobes.
 

The multiconductor transmission line is excited with equal amplitude
 

and a progressive phase shift of 360/N degrees from one conducting strip to
 

the next as illustrated in Figure 6. This excitation gives a circularly
 

polarized aperture field at the reflector center and nearly so over a large
 

portion of the reflector surface. The six-conductor excitation can be
 

realized with a network of 3 dB and 4.8 dB, 1800 hybrids and 3 dB, 900 hybrids
 

[20,21]. An eight-conductor excitation can be realized with a network of
 

3 dB, 1800 and 900 hybrids. The 3 dB, 1800 and 900 hybrids covering a 10:1
 

frequency band at VHF are available [22]. Broadband VHF 4.8 dB, 1800 hybrids
 

are not yet available.
 

Linear polarized reflector illumination can be obtained by com­

bining in a 3-dB, 1800 hybrid the mode having a progressive 360/N degree
 

phase advance with the mode having a 360/N degree phase delay. The
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resultant mode has a cosine (n r /IN)amplitude distribution (n=0, 1, ...N-l) 
whose phase is either 00 or 1800 as given by this cosine function. Crossed­

linear polarization can be provided with a sine (nTi IN) excitation. These 

linear-polarized excitations could be implemented directly without generating 

the 	two circular polarized modes.
 

In Appendix A, the field equations for the transmission line feed
 

are given and discussed relative to performance characteristics for LOFT.
 

Also included in Appendix A is an analysis of aperture blockage effects for
 

the case in which a transmission line feed is used as a backup to a feed
 

antenna such as the trapezoidal tooth feed described in Section 2.1.4.
 

The aperture blockage effect of eight or less conductors is in­

significant (as shown in Appendix A) if the width of each conductor is less
 

than 0.1 meter. Therefore, up to eight conducting tension stays can be
 

added to the front of the reflector if desired as a transmission line
 

feed backup. It is not certain how close the conducting strips can be
 

brought to the focal point without disturbing the feed fields incident on
 

the reflector.
 

The 	disadvantages of the conical transmission line feed are:
 

(1) Only half the feed power illuminates the reflector; the other
 

half is lost as spillover.
 

(2) 	Cross polarization is large at angles off the mainlobe peak.
 

(3) 	Close-in sidelobe level will be at best 18 dB below the mainlobe.
 

(4) Far-out sidelobe level is higher than that obtainable with
 

trapezoidal tooth feeds, because edge illumination, and hence
 

edge diffraction, will be greater and feed-back radiation will
 

be higher.
 

(5) 	Gain is 2 to 3 dB lower than the gain obtainable with a log­

periodic feed.
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(6) The transmission line feed excitation network for a polari­

zation diversity antenna is relatively complicated.
 

The advantages of the conical transmission line feed are:
 

(1) No phase error due to feed phase center shift as a function of
 

frequency as experienced with log-periodic-type feeds.
 

(2) Ease of deployment in the LOFT application when compared
 

to other type feeds.
 

At present, the disadvantages appear to outweigh the advantages.
 
Therefore, the conical transmission line feed is not recommended as a primary
 

feed antenna but could be used as a backup feed.
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Section 3
 

REFLECTOR GRIDS
 

The reflecting surface of the LOFT antenna is comprised of a.
 

conducting mesh. It is desirable to reduce the mass of the reflector as
 

much as possible, while retaining high grid reflectivity and low transmissivity.
 

Therefore, grids with conductor spacings much larger than conductor widths,
 

were studied extensively during the program. Flat strip conductors are
 

preferred over round wire conductors, because their mass is less for the same
 

reflection coefficient and,they are more immune to meteorite damage [4].
 

Strip thickness was so thin (0.0005 inch or less) that the finite conductivity
 

of the material had to be taken into account.
 

3.1 DESCRIPTION OF GRID
 

The reflector grid investigated consisted of orthogonal conducting
 

strips lying in a flat plane (Figure 7). Strip spacing, width, and thickness
 

need not be the same in the orthogonal directions. The orthogonal strips may
 

or may not be connected at the junctions. The finite conductivity of the
 

metal strips has been taken into account. Flat plane analysis is applicable
 

to a parabolic reflector, provided the radius of curvature of its surface is
 

large compared to a wavelength and provided the grid spacing, width, and
 

thickness do not change appreciably-over distances comparable to a wavelength.
 

3.2 ANALYSIS OF REFLECTING GRIDS
 

The procedure for finding the reflection coefficient for arbitrary
 

angle of arrival and arbitrary polarization of the incident field is given in
 

Reference 23. In general, the procedure is very complicated, and the
 

polarization of the reflected wave is not simply related to the polarization
 

of the incident wave. The only case considered in this study was: the
 

plane of incidence (plane containing-normal to the grid and the incident ray,
 

Figure 7) parallel to one of the conductor sets, and the polarization either
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perpendicular or parallel to the plane of incidence. Arbitrary polarization
 

can be handled by resolving the incident field into perpenditcular and parallel
 

components. The case analyzed is applicable to antenna reflector grids
 

consisting of radial and circumferential strips. The following equations
 

assume strip spacing is much larger than strip width, which is the case of
 

interest here.
 

The voltage reflection coefficient R. for perpendicular polariza­

tion,(only a E, component) is
 
-f
 

±- 2d~ 
 2dx _____x 

C+ COS (1) 

A = wavelength
 

CI = strip spacing defined in Figure 7
 

w =strip width defined in Figure 7
 

S = angle of incidence 

Zx = impedance of strips of width w-'t and thickness tx 

The strip impedance Z. is given by 

t)S=I- i coth 
x 2aaU' 28 

where G- is the conductivity of the strip material and 5 is the skin depth
 

given by [24]
 

/
 
= meters a- mho/meter

2 - /0xiO F frequency in hertz 

Equation (1) is valid whether the orthogonal strips are connected at
 

the junctions or not: In fact, the strips parallel to the X-axis have no
 

effect (under the assumption of large spacing relative to strip width) for
 

perpendicular polarization.
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--

The voltage reflection coefficient Rllo for parallel polarization
 

(only a Ee component) with the strips unconnected at the junctions is:
 

ZyCz (2) 
aycc 60wcosO 

where
 

I+8 coth (iti)t_
Y 2 a- 5 u- 28 

The voltage reflection coefficient R1l, for parallel polarization
 

with the strips connected at the junctions is
 

-f
 

01Kin2 2c4. + ZdY(3) 
-d -/)eWr 6 0 /-/cosG0 

where I +" (f t)t 
Z 
 Z coth 26
 

The % and v subscripts on at and t are omitted because equation 

(3) is valid only when the orthogonal strips have the same width and thickness.
 

At normal incidence, 0 = 00, equations (2) and (3) are identical and the
 

reflection coefficient is the same, whether the strips are connected at the
 

junctions or not.
 

In all cases, the voltage transmission coefficient T is
 

T= 1+f* (4) 

When strip conductivity is infinite, the strip impedance Z is zero
 

and:
 

1212 * ITi2 
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3.3 

or the sum of reflected and transmitted power equals incident power. For
 

finite conductivity, equations (1), (2), or (3) with (4) yield
 

JRI 2 * ITI 2 < f 

as expected, because some of the incident power is dissipated in the strip
 

conductors.
 

If the grid conductors are round wires of radius r , rather than 

flat strips, replace w- with 4r , and impedances Z. and Zy with appropriate 

round wire impedances [25]. 

Equations (1) and (3) were incorporated into the surface integral
 

computer program, which computes antenna gain and pattern (Appendix B). Both 

equations are needed, because the incident polarization of the feed onto the
 

reflector surface has in general both parallel and perpendicular components
 

relative to the plane of incidence. The coordinate system used for equations
 

(1) and (3) and shown in Figure 7 was transformed to the coordinate system
 

used in the surface integral computer program.
 

A weaved grid (Figure 8) without electrical connection between adjacent
 

conductors is unsatisfactory for fields polarized transverse to the conductors
 

(X-direction). Fields in the X-direction induce currents in the X-direction,
 

but the weaved grid shown cannot support such currents, thus its reflection
 

coefficient is low. A weaved grid therefore must have good and reliable
 

connections at the junctions to provide high reflectivity for arbitrary
 

polarization.
 

COMPUTED RESULTS FOR CONDUCTING GRIDS
 

Some results on grid performance relative to the LOFT application
 

are given in this section. Grid performance is governed by operation at the
 

highest frequency of interest, where the reflection coefficient is lowest.
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The magnitude of the reflection and transmission coefficients as 

functions of grid spacing are given in Figures 9 and 10 for the following 

conditions:
 

Frequency P = 150 MHz (highest frequency in band) 

Normal Incidence 0 =0 

Square Mesh Grid i= dy = d 
34d 20 centimeters 

= =
Equal Strip Widths = i = 

= 0.3, 1, 3 and 10 millimeters 

Equal Strip Thicknesses 	 tx =t = e = 6.35 microns 

Strip Material 	 Aluminum o-= 3.72 x 107 mho/meter 
Stainless Steel o-= 1.43 x 106 mho/meter 

The thickness used was the practical minimum which can be fabricated 

[4]. The conductivities are handbook values [26]. The measured conductivity
 

of a sample stainless steel strip conductor was 1.6 x 106 mho/meter. Reflec­

tion and transmission coefficients for infinite conductivity strips are
 

within 0.5 percent or less of the values shown for aluminum. Even 6.35­

micron-thick stainless steel has sufficiently low impedance, when the strip
 

width is 3 mi-llimeters or greater, that the effect of conductivity is rela­

tively small.
 

There are many combinations of strip widths and spacings which give 

the same reflection and transmission coefficients. Several values of &o-and 

d for 6.35-micron-thick stainless steel conductors resulting in IRI = 0.93 

at 150 MHz (0.6-dB reflection loss) are given in Table 4. Also tabulated is 

the mass of stainless steel required for a 100-meter-diameter reflector grid. 

The mass reduction obtainable by using narrow strip widths can be
 

seen to be appreciable.
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Table 4 
GRID PARAMETERS FOR 0.93 REFLECTION COEFFICIENT 

(STAINLESS STEEL, 6.35 microns THICK) 

STRIP SPACING STRIP WIDTH MASS* 

d (cm) w (cm) (kg) 

6.9 1.0 11.6 

10.8 3.0 22.2 

17.0 10.0 46.8 

*FOR 100- meter-diameter REFLECTOR 
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Strip spacing and reflector mass, which provide a given transmission 

coefficient at 150 MHz, are given in Table 5. Stainless steel strips 6.35 

microns thick and 3 millimeters wide are assumed. Also tabulated is the 

resulting reflection loss in dB for each grid configuration. -. 

A small transmission coefficient minimizes leakage of the fbed fields
 

through the grid into the shadow region of the reflector. It is desirable to
 

reduce this leakage to a level lower than the shadow region fields due to
 

edge diffraction. It will be shown in Section 5 and Figure 35 that the
 

reflector transmission coefficient at 150 MHz must be -10 dB to reduce the
 

leakage field to the level of the backlobe (1800 away from mainlobe), and
 

-25 dB to reduce the leakage field to the level of the edge diffracted fields
 

in the shadow region exclusive of the backlobe. The transmission loss/
 

reflector weight tradeoff (Table 5) thus provides the grid spacing and 

weight required to achieve the desired leakage level. The assumed strip 

thickness and width are probably the minimum which can be constructed. Thus 

the weight is also the minimum achievable with a stainless-steel grid, An 

aluminum grid with the same conductor thickness, width, and spacing would be 

3 times lighter and would have nearly the same transmission and reflection 

loss as the stainless-steel grid considered. The reduction in LOFT antenna 

gain caused by the imperfectly reflecting grid is approximately equal to the 

reflection loss (Table 5). 
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Table 5
 
TRANSMISSION COEFFICIENT VS GRID SPACING
 

(STAINLESS STEEL, 3 mm WIDE, 6.35 microns THICK)
 

TRANSMISSION STRIP REFLECTOR REFLECTION 
COEFFICIENT SPACING WEIGHT* LOSS 

(dB) (cm) (kg) (dB) 

-10 10.9 22.0 0.62 

-15 6.8 35.3 0.28 

-20 4.4 54.6 0.14 

-25 3.0 80.0 0.04 

-30 2.0 120.0 0.02 

*FOR 100- meter-diameter REFLECTOR 

38
 



Section 4
 

RADIATION NEAR MAINLOBE
 

The far-field electrical characteristics for the LOFT antenna,,
 

including gain, mainlobe, first few sidelobes and cross-polarization cal­

culated by CAL during the program, are discussed in this section. Patterns
 

were computed by integration of reflector surface currents induced by the
 

incident feed field. When the reflector surface was axisymmetric, the
 

circumferential 0' integration was evaluated analytically, and the radial G'
 

integration was evaluated numerically using an available computer program
 

modified by CAL for the LOFT antenna application (Figure 11). For cases in
 

which the reflector surface is not axisymmetric, both 0' and e'integrations
 
were evaluated numerically using a CAL-developed computer program. The
 

computer programs are described in Appendix B. The cost for obtaining patterns
 

using the IBM 360/65 computer at CAL with the axisymmetric computer program
 

is about one-fourth the cost of running the more general asymmetric reflector
 

computer program.
 

The tradeoff study included effects on LOFT antenna performance due
 

to:
 

* 	 Trapezoidal tooth versus log-periodic dipole feed antennas.
 

* 	 Reflector F/D ratio (0.3 to 0.5).
 

* 	 Effect of conic reflector surfaces.
 

* 	 Reflector surface distortions caused by temperature and
 

torque effects.
 

* 	 Feed blockage and scattering.
 

" 	 Reflector grid.
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The order of presentation is as follows. A description is first
 

given of the feed patterns and approximation of the center region of the
 

reflector by conics. Next, the effects of feed type, F/D ratio-and conics
 

are discussed and compared for both feed types; This comparison shows the
 

advantage of using the trapezoidal tooth feed, so only this feed is used to'
 

analyze the effect of surface distortions caused by temperature and torque.
 

Then, feed blockage and scattering are analyzed as a change in the reflector
 

illumination function. Investigation of feed aperture blockage using dipole
 

scattering is also included. Finally, the effect of an imperfectly reflecting
 

grid surface is discussed.
 

4.1 FEEDS
 

Based on the feed investigation, Section 2, a log-periodic trapezoidal
 

tooth array and a log-periodic dipole array were chosen for analysis of the
 

LOFT antenna performance. The feed was placed near the focal point of the
 

reflector as illustrated in Figure 11. The feed array is arranged along the
 

reflector Z-axis, with elements in the X-direction. The reflector focal point
 

is at the origin, and (p', e', 0') are spherical coordinates of a point on the
 

reflector surface. Point p is the phase center of the feed antenna. The 

distance, P, of the phase center away from the feed vertex is approximately
 

proportional to wavelength. Therefore, the phase center cannot coincide with
 

the origin (focal point) over the entire frequency range, unless the feed is
 

moved for each change in operating frequency. Optimum performance over a
 

wide frequency range with a fixed position feed is achieved, when the feed
 

vertex is slightly closer to the reflector than the focal pointj[6].
 

Patterns and phase center displacements were found for the trapezoidal
 

tooth [6,10] aid log-periodic dipole [5] arrays and the optimum feed design for
 

each was determined. A tradeoff had to be-made between minimum phase center
 

displacement and proper H-plane beamwidth. A small displacement could be
 

obtained by using a short (along Z-axis) array, but then the H-plane beamwidth
 

became too wide. The optimum feed patterns were accurately represented by the
 

mathematical functions given in Appendix B. E- and H-plane patterns of the two
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4.2 

feeds are shown in Figure 12, along with the position of the reflector edge
 

for F/D ratios of 0.3, 0.4, and 0.5. Feed phase center displacement .Srelative
 

to the origin (Figure 11) in the E- and H-planes of the trapezoidal tooth feed
 

were S.= (0.5 A -0.8) meter and S = (0.3 A -0.8) meter, respectively. The
 

0.5-A and 0.3-A displacements can be easily met with many trapezoidal tooth
 

designs [6], and the vertex displacement So = 0.8 meter minimizes phase error
 

at 150 MHz ( A = 2 meters). The E- and H-plane phase center displacements of
 

the log-periodic dipole feed are nearly equal and the minimum obtainable for
 

the optimum feed design was 0.72 wavelength [5]. Therefore, S, = _5V=
 

(0.72 A -2) meters was chosen to optimize performance of the log-periodic
 

dipole feed over a 15- to 150-MHz band.
 

In the results which follow, ccoss coupling between orthogonal feed
 

pairs is neglected. The feed polarization is assumed to be the same as a
 

single dipole.
 

REFLECTOR SURFACE
 

For the LOFT application, all parts of the reflector should experience
 

only tension caused by centrifugal force of the spinning structure. However,
 

a parabolic surface cannot be maintained in tension in the central region of
 

some parts of the reflector [27]. Therefore, the parabolic surface is
 

approximated by conics over the inner portion of the reflector [28] as
 

illustrated in Figure 13 for an F/D ratio of 0.S. A true parabolic surface 

is maintained for 0.5 ±R K- 1.0. The conic surface for 0.4 zr/1z 0.5 is 

tangent to the back stays and the parabolic surface at r/P= 0.5. Another 

conic surface for 0 ! r/PR 0.4 minimizes surface error relative to a true
 

paraboloid. The error in meters shown in Figure 13 apply to a 100-meter­

diameter reflector. Equations for the conic and parabolic surfaces in terms
 
l
of o , 0', and F/D ratio were incorporated into the surface integral computer
 

programs described in Appendix B.
 

42
 



1.0 E-AND H-PLANES 

REFLECTOR EDGE 

U­

.4<0.5 
Luq 

| 

0 
180 170 160 150 

(A) 

140 130 
O'(degrees) 

TRAPEZOIDAL 

120 

TOOTH 

110 100 90 

H-PLANE REFLECTOR EDGE 

0 

wLi­

> 

LU 

rE-PXLANE 

0.5 

<0 

d 
II 

. 

i 

0 

180 170 160 

- I I, 

150 140 130 120 

9'(degrees) 

(B) LOG-PERIODIC DIPOLE 

Figure 12 FEED PATTERNS 

110 100 

I 

90 

43 



FOCAL LENGTH/DIAMETER (F/D) RATIO = 0.5 

.6-

r I0 04 

.N 0.042 

CC= o'° 

-REFLECTOR 

0.191 m f 

SURFACE 
127m 

TRUEPARABOLA 

0.05 

Figure 13 

0.15 0.2 0.25 0.3 0.35 0.4 

NORMALIZED RADIUS (r/R) 

CONIC APPROXIMATION OF PARABOLIC 

0.45 0.5 

SURFACE 



4.3 EFFECT OF FEED, F/D RATIO, AND CONIC SURFACES
 

Far-field antenna patterns were computed for the following cases.
 

First, a perfect paraboloid illuminated by a feed with no phase displacement
 

error was analyzed. These patterns are representative of the best obtainable
 

when there are no conic surfaces and the feed is moved to keep its phase center
 

at the focal point. Then, the conic surfaces were introduced so the patterns
 

are now applicable to the LOFT reflector and a movable feed. Finally, conic
 

surfaces and feed phase displacement errors were introduced so the patterns
 

are applicable to the LOFT reflector and fixed position feed. Patterns were
 

computed for trapezoidal tooth and log-periodic dipole feeds, and reflector
 

F/D ratios of 0.3, 0.4, and 0.5. The frequencies covered were 15, 30, 72 and
 

15 MHz, corresponding to reflector diameters of 5, 10, 24, and 50 wavelengths,
 

respectively. The reflector was considered perfectly reflecting for these
 

analyses.
 

The effects of conic surfaces and feed phase error as a function of
 

frequency are illustrated in -Figures 14 through 17. In each case, a trapezoidal
 

tooth feed and F/D ratio of 0.5 were used. Only E-plane patterns are shown,
 

because patterns in the 450 and H-planes were nearly the same. At 15 MHz,
 

most pattern degradation is due to the large feed displacement (SH = 0.46 A 

SH = 0.26 A)., because the conic surface error relative to a paraboloid was
 

small (± 0.006 A , Figure 13). At 150 MHz, most pattern degradation is due 

to surface error (± 0.06X ), because feed displacement was small (SE = 0.1k, 

= -0.lX ). 

The effect of reflector F/D ratio with a trapezoidal tooth feed is
 

shown in Figures 18 (E-plane) and 19 (H-plane). The frequency was 30 MHz and
 

both conic surfaces and feed phase were included. The same patterns with a
 

log-periodic dipole feed are shown in Figures 20 and 21. The lowest sidelobe
 

level far from mainlobe and the widest beamwidth occur at F/D = 0.3. Maximum 

gain occurs at F/D = 0.5 with the trapezoidal tooth feed. With the log-periodic 

dipole feed, gain is nearly the same and maximum at F/D = 0.4 and 0.5, but 

lower sidelobe level far from mainlobe occurs at F/D = 0.4. E- and H-plane 
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patterns are nearly the same, when a trapezoidal tooth feed is used; only null
 

depths between sidelobes are different. Using the log-periodic dipole feed,
 

H-plane patterns have high sidelobe level and narrow beamwidth, because
 

there is little illumination taper in this plane (Figure 12B).
 

Typical patterns in the 45' plane are shown in Figure 22. Cross­

polarization is maximum in this plane, having a null on-axis and a maximum
 

at about one 3-dB beamwidth off-axis. There is no cross-polarization in the
 

E- and H-planes, because of the assumed symmetry of reflector and feed.
 

A summary of all cases investigated is given in Tables 6, 7, 8 and 9
 

for frequencies of 15, 30, 72 and 150 MHz, respectively. Gain and beamwidth
 

at the 3-dB and 20-dB points, sidelobe level relative to the mainlobe, and
 

cross-polarization level relative to the mainlobe are given as functions of
 

F/D ratio. Results for the trapezoidal tooth and log-periodic dipole feeds
 

are also tabulated. Cross-polarization level relative to the mainlobe is
 

tabulated only for the 45' plane pattern. The meaning of the notation in
 

the first column on the left is:
 

"Paraboloid": Entire reflector is a perfect parabola. Also,
 

there is no feed phase center displacement error.
 

"Conics": Inner portion of the reflector has conic surfaces
 

as illustrated in Figure 13. No feed phase error is included.
 

"Conics, Phase": Conic reflector surfaces and feed phase
 

center displacement error are both included.
 

The phase center displacements S. and S, in wavelenghs of both feeds
 

at each frequency are given in the heading of each table.
 

The following trends and conclusions are apparent from the tabulated
 

data:
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ANTENNA 
Table 6 

PERFORMANCE SUMMARY: 15 MHz 

TRAPEZOIDAL TOOTH (TT) FEED SE = 0 46. SH = 0.26)A 

LOG-PERIODIC DIPOLE (LPD) FEED SE = SH = 0 62?X 

F/D = 0.3 PATTERN 

GAIN (da) 

TT LPD 

SEAMWIDTH (degrees) 

(3 dB) (20 dB) 

TT LPD TT LPD 

SIDELORE 
LEVEL dS) 

TT LPD 

CROSS 
POLARIZATION* (dB) 

TT LPD 

PARABOLOID 
E 

45 
H 

20.48 -
16.8 
16.9 
17.0 

-

-

-

42.0 
415 
42.4 

-

-

-

49.0 
420 
41.0 

-
-
-

23 

CONICS 
E 

45 
H 

20.40 21.67 
16.9 
17 0 
170 

163 
14 3 
12.8 

420 
41 5 
42.4 

40.0 
33.4 
28.8 

.435 
40 5 
39.5 

455 
33 0 
230 

23 20.5 

CONICS, PHASE 
E 

45 
H 

19.70 18.92 
175 
174 
168 

168 
159 
15.3 

54.3 
52.3 
50.0 

56.4 
62.0 
750 

46.0 
35.0 
355 

390 
220 
165 

23 185 

F/D = 0 4 

PARABOLOID 
E 

45 
H 

. 

. 

. 

.. 

.. 

.. 

. 

... 

. 

CONICS 
E 

45 
H 

22.10 21.92 
141 
14.2 
14.2 

143 
13 2 
123 

328 
326 
32.8 

33.4 
29.6 
26 7 

31.5 
290 
30.0 

34.0 
25.0 
21.0 

24 5 23 5 

CONICS, PHASE 
E 

45 
H 

21.62 20.65 
14.5 
14.3 
142 

14.3 
13.5 
12.7 

46.0 
44.0 
390 

47.0 
486 
50.2 

32.9 
318 
320 

32.0 
250 
205 

24.2 22.5 

F/D = 0.5 

PARABOLOID 
E 

45 
H 

22.62 -
13.1 
13.2 
133 

-
-
-

29.5 
29.5 
296 

-
-
-

26.0 
25.0 
250 

-
-
-

27 0 -

CONICS 
E 

45 
H 

2250 21.56 
130 
131 
131 

13.4 
127 
12.1 

292 
292 
292 

30.4 
28.0 
260 

255 
24.5 
24.5 

270 
225 
190 

270 265 

CONICS, PHASE 
E 

45 
H 

2222 20.91 
13.2 
131 
13.1 

133 

127 
12.2 

41.0 

34.0 
30.0 

410 

460 
47.0 

20.3 
20.3 
21.4 

200 

16.0 
14.0 

26.7 250 

'ASSUMING NO FEED CROSS-POLARIZATION 
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Table 7
 
ANTENNA PERFORMANCE SUMMARY: 30 MHz
 

TRAPEZOIDAL TOOTH (TT) FEED SE = 0.42 X SH = 0.22 A 

LOG-PERIODIC DIPOLE (LPD) FEED SE = = 0 52 XSH 

BEAMWIDTH (degrees) SIDELOBE CROSS 

(3 dB) (20 dB) LEVEL (dB) POLARIZATION' (dB)GAIN (dB) 

F/D = 0.3 PATTERN TT LPD TT LPD TT LPD TT LPD TT LPD 

E 

PARABOLOID 45 
H 

E 8.5 8 18 20.6 19.6 360 39.5 
CONICS 45 26.48 27 67 8.5 7.14 204 165 360 33.0 23 20 5 

H 8.5 640 206 142 36.0 230 

E 9.1 850 27.0 272 370 390 
CONICS, PHASE 45 2582 25.39 88 7.80 24.8 268 37.5 325 23 18.5 

H 8.5 7.27 22.4 32 0 37.0 27.0 

F/D = 0.4 

E 7.12 - 16.6 - 32.0 -

PARABOLOID 45 28.14 - 7.12 - 16.6 - 30.5 - 24.5 -

H 7.12 - 16.6 - 32.0 -

E 7.10 7.19 16.3 166 31.0 34 
CONICS 45 28.13 27.93 7.10 6.60 16.2 147 30.0 25 245 235 

H 710 6.14 163 13.2 310 20 

E 7.17 725 240 24.0 320 32 
CONICS, PHASE 45 27.70 2686 7.10 6.74 20.0 232 325 27 24.5 230 

H 7.06 632 17.0 23.5 32.5 23 

= 
F/D 0.5 

E 6.60 - 146 - 25.5 -
PARABOLOID 45 2864 - 662 - 14.6 - 265 - 270 -

H 662 - 147 - 255 -

E 656 6.72 148 15.0 245 265 
CONICS 45 2850 2756 6.55 633 14.8 13.8 24.0 225 27.0 26.5 

H 6.55 603 14.8 13.0 24.5 19 0 

E 6.64 672 20.0 200 20.0 200 
CONICS, PHASE 45 28.27 27.02 6.59 6.38 15.4 22.0 21.3 170 27.1 260 

H 6.54 6.02 14.8 22 6 22.7 150 

'ASSUMING NO FEED CROSS-POLARIZATION 
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Table 8 

ANTENNA PERFORMANCE SUMMARY: 72 MHz 

TRAPEZOIDAL TOOTH ITT) FEED SE 0.308 X = 0.108 X 

LOG-PERIODIC DIPOLE (LPD) FEED SE = = 0.24X 

SH 

H 

BEAMWIDTH (degrees) SIDELOBE CROSS 

GAIN (dB) (3 dB) (20 dB) LEVEL (dB) POLARIZATION* (dB) 

F/D = 03 PATTERN TT LPD TT LPD TT LPD TT LPD TT LPD 

E 
PARABOLOID 45 

H 

E 352 339 8.4 8.1 290 325 
CONICS 45 33.98 35.16 3.51 2.96 8.3 67 290 32.0 23.0 20.0 

H 3.51 2.68 8.4 5 8 29 0 22.0 

E 370 3.42 103 90 285 32.0 
CONICS, PHASE 45 3363 34.65 3.60 3.00 9.2 89 28.5 31.0 23.0 20.0 

H 350 2.70 84 9.3 28.5 270 

F/D = 04 

E 295 - 6.8 - 33.5 -

PARABOLOID 45 35.84 - - - - - - - - -

E 2.95 2.98 6 7 6.78 29.0 30.5 
CONICS 45 35.64 3542 295 272 67 6.03 28.0 240 245 235 

H 295 254 67 5.45 290 190 

E 3.02 2.99 8.4 7.20 28 3 25 0 
CONICS, PHASE 45 -35.42 35.17 297 2.74 7.1 680 28.6 200 24.7 23.0 

H 2.92 2.55 6.6 9.20 28.0 17.0 

F/D = 0.5 

E 2.75 - 6.15 - 25.5 -
PARABOLOID 45 36.24 - 275 - 615 - 25.0 - 27.5 -

H 2.75 - 6.15 - 25.5 -

E 2.70 278 60 6.15 23.0 25.0 
CONICS 45 3602 35.05 2.70 2.62 6.0 566 230 21 5 27.5 265 

H 2.70 2.50 6.0 530 23.0 18.0 

E 2.75 - 6.8 - 20.4 -

CONICS, PHASE 45 3590 - 2.73 - 6 1 - 22.0 - 27.2 -

H 2.71 - 62 - 22.7 -

*ASSUMING NO FEED CROSS-POLARIZATION 
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Table 9 
ANTENNA PERFORMANCE SUMMARY: 150 MHz 

TRAPEZOIDAL TOOTH (TT) FEED SE = 01 X SH = -0.1 X 

LOG-PERIODIC DIPOLE (LPD) FEED SE = 
5 H = -028 X 

F/D = 03 PATTERN 

GAIN (dB) 

TT LPD 

BEAMWIDTH 

(3 dB) 

TT LPD 

(degrees) 

(20 dB) 

TT LPD 

SIDELOBE 
LEVEL dB) 

TT LPD 

CROSS 
POLARIZATION* (dB) 

TT LPD 

PARABOLOID 
E 

45 
H 

4059 -
1.73 
1.71 
1.71 

-

-

-

4.20 
4.15 
4.17 

-
-
-

46.0 
51.0 
45.0 

-
-
-

23.5 -

CONICS 
E 

45 
H 

39.91 41.20 
1.65 
1.65 
1.64 

160 
1 39 
1.25 

380 
3.75 
380 

3.72 
3 12 
266 

24.5 
24.5 
24.5 

280 
25.5 
190 

23.0 20 

CONICS, PHASE 
E 

45 

H 

39.81 4057 
167 
1.66 
1.66 

162 
1.43 

1 28 

4.10 
380 
385 

410 
415 

468 

245 
245 
245 

27.5 
270 
235 

230 20 

F/D = 0.4 

PARABOLOID 
E 

45 
H 

-

-

-

-

- -

CONICS 
E 

45 
H 

41 62 41.45 
1.38 
1 38 
1.38 

1.40 
1.29 
1.19 

310 
3.10 
310 

3.13 
2.79 
2.52 

23.0 
22.5 
23.0 

25.0 
20.5 
17.0 

24.5 23 

CONICS, PHASE 
E 

45 
H 

41.56 41.18 
1.39 
1.38 
1.39 

1.41 
1.30 
1 21 

3 23 
3.07 
3 10 

3.32 
3.10 
3.00 

21.5 
228 
23.0 

24.5 
20.0 
16.0 

244 23 

F/D = 0.5 

PARABOLOID 
E 

45 
H 

42.62 -
1.32 
1.32 
1.32 

-
-
-

290 
290 
290 

-
-
-

25.5 
25.5 
25.5 

-
-
-

27.5 -

CONICS 
E 

45 
H 

42.02 41 06 
1.27 
1.27 
127 

131 
1 24 
117 

2.76 
2.76 
2.76 

285 
2.60 
245 

200 
205 
200 

210 
185 
160 

27.0 26 

CONICS, PHASE 
E 

45 

H 

41.98 -

1 29 
1.28 
1 28 

-
-

-

2.87 
2.77 
282 

-

-

-

191 

19.7 
19.7 

-

-

-

269 -

'ASSUMING NO FEED CROSS-POLARIZATION 
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(1) 	The conic surfaces degrade performance more at high
 

frequencies than at low frequencies.
 

(2) 	Feed phase center displacement degrades performance more
 

at low frequencies than at high frequencies. This occurs
 

because phase displacement was deliberately minimized at
 

high frequency.
 

(3) At 15 and 30 MHz, some of the tabulated sidelobe levels are
 

not much higher when feed phase error is included. This
 

occurs because the first one or two sidelobes blend into
 

the mainlobe. The deleterious effect of feed phase error
 

will then show up as a much wider mainlobe beamwidth at
 

the 20-dB points.
 

(4) 	Feed phase center displacement relative to the reflector
 

focal point should be less than 0.4 wavelength. This can be
 

accomplished with a fixed position, trapezoidal tooth
 

antenna [6] but not with a fixed position, log-periodic
 

dipole antenna [5].
 

(5) The optimum reflector F/D ratio using a trapezoidal tooth
 

feed is 0.5, if maximum gain is desired. The worst case
 

sidelobe level is 19 dB, when conic surfaces and feed phase
 

center error are included. If F/D = 0.4 is used, gain is
 

lower by 0.4 to 0.6 dB and the worst-case sidelobe level is
 

20 dB.
 

(6) 	The optimum reflector F/D ratio using a log-periodic dipole
 

is 0.4. The worst-case sidelobe level is 17 dB and the gain
 

is 0.7 to 1.6 dB lower than the gain obtainable with a
 

trapezoidal tooth feed.
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4.4 

(7) Patterns using a trapezoidal tooth feed are essentially
 

axisymmetric. E-plane patterns using a log-periodic dipole
 

feed have 10 to 15 percent wider beamwidth than the H-plane
 

patterns. Some radio astronomy applications require an
 

axisymmetric mainlobe.
 

(8) 	Cross-polarization in the 45' plane is 1 to 2 dB worse using
 

a log-periodic dipole feed as compared to using a trapezoidal
 

tooth feed. It is emphasized that cross coupling in the feed
 

has been neglected. A small F/D ratio also degrades the
 

cross polarization.
 

It is concluded that the trapezoidal tooth feed antenna will provide
 

better LOFT performance than a log-periodic dipole feed. The same conclusion
 

obtains when each feed is moved to minimize phase center displacement error
 

at a 	given operating frequency. The remainder of this report will concern
 

itself only with the trapezoidal tooth feed. Feed measurements, however, are
 

required to determine the cross-coupling obtainable with a trapezoidal tooth
 

feed.
 

TEMPERATURE AND TORQUE EFFECTS
 

Surface distortions occur due to thermal and antenna steering (torque)
 

forces. A temperature rise will lengthen all reflector members and tension
 

stays, thereby deforming the surface from its shape at the design temperature.
 

A steering torque normal to the reflector axis will exert unequal tension on
 

the stays and deform the reflector from the axisymmetric shape it would other­

wise have. The effect of these surface distortions on antenna performance
 

will now be discussed. A perfectly reflecting surface is assumed.
 

Typical shapes of surface errors [29] due to temperature (solar
 

radiation) and antenna steering torque are shown in Figure 23 as a function of
 

normalized reflector radius for and F/D ratio of 0.443. Also shown is the
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deviation of the conic surfaces for a 100-meter-diameter reflector relative
 

to a parabola (this deviation is identically zero for normalized radius
 

greater than 0.47, because conic surfaces are used only for smaller radii).
 

Surface error due to temperature is mostly axisymmetric. The "minimum" and
 

"maximum" curves indicate the total error, including circumferential variations
 

(O'direction). The exact 9'dependence given in Reference 29 was included
 

in the far-field pattern computations. Surface error due to torque has sine/'
 

dependence: the curve in Figure 23 shows the error at 0' = 900.
 

The surface errors due to temperature and torque shown in Figure 23
 

were computed for a 50-meter-diameter reflector [29] rather than the 100-meter­

diameter reflector considered in the CAL study. The surface error curves for
 

a 100-meter reflector would be similar in shape but with a different maximum
 

error [30]. The thermal surface error curve is for a worst case, where
 

incident sunlight is parallel to one of the front tension stays. The torque
 

surface error curve is for an applied torque of 3.71 newton-meters. During
 

the CAL study, the surface errors due to thermal and torque effects (Figure 23)
 

were scaled up by factors of 2 and 4 to parametrically investigate the effect
 

of these errors on the reflector antenna patterns. The surface error due to
 

torque would be present during reorientation of the antenna attitude. Far-field
 

antenna patterns were computed using the asymmetric reflector computer program.
 

(See Appendix B for a description of this computer program.)
 

All far-field patterns were computed using a trapezoidal tooth feed
 

with the usual phase center displacement, conic surfaces, and for a reflector
 

F/D ratio of 0.443. The calculations were performed for a frequency of
 

150 MHz, which provides the worst case reflector-surface-error-to-wavelength
 

ratio. The cases covered follow.
 

Figure 24 H-plane, thermal surface error times 0, 1, 2, and 4
 

Indicates respectively: (0)no surface error (conic surfaces always present
 
however), (1) surface error shown in Figure 23, (2) double the surface error
 
shown in Figure 23, and (4) four times the surface error shown in Figure 23.
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4.5 

Figure 25 H-plane, torque surface error times 0, 1, 2 and 4 

Figure 26 H-plane, both thermal and torque surface errors times 

0, 1, and 2. 

The mainlobe squints off-axis in the H-plane when torque is included
 

due to the assumed sine 0' dependence of the surface error (Figure-23). This
 

squint should remain in the plane of the applied torque and not follow the
 

rotation of the LOFT antenna about its axis. Thus, if the torque plane is
 

fixed in space, the squint will also be fixed in space.
 

E-plane patterns are not included, because they are not appreciably
 

different from the H-plane patterns when torque is absent, and they do not
 

pass through the mainlobe peak when torque is present. Cross-polarization is
 

shown for the surface errors of Figure 23 doubled; it is zero when both thermal
 

and torque surface distortions are zero, and increases as these distortions
 

increase.
 

Gain, beam squint angle, beamwidth, sidelobe level, and cross­

polarization level at 150 MHz as functions of surface distortions are given
 

in Table 10. Gain applies to the mainlobe peak in the H-plane, which is
 

greater than the gain on-axis when beam squint is present. E- and H-plane
 

sidelobe and cross-polarization levels are relative to mainlobe peak level.
 

E-plane beamwidths are not given when squint is present, because the E-plane
 

pattern does not pass through the mainlobe peak.
 

FEED BLOCKAGE AND SCATTERING
 

The far-field computations presented so far have not included feed
 

blockage and scattering. The feed produces a reflector surface current which
 

radiates a field back toward the feed. This field incident on the feed is
 

scattered by the feed and appears in the far field along with the field
 

radiated by the reflector surface current. This scattered field will now be
 

considered for a perfectly reflecting axisymmetric surface.
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Table 10 
EFFECT OF SURFACE DISTORTIONS CAUSED BY TEMPERATURE AND TORQUE 

CONIC AND PARABOLIC SURFACES 
F/D = 0.443 
TRAPEZOIDAL TOOTH FEED WITH PHASE CENTER DISPLACEMENTS SE = 0.1X ,SH = -0.1 X 
150 MHz 

CROSS-
SQUINT 3-dB BEAMWIDTH SIDELOBE POLARIZATION** 

GAIN ANGLE (degrees) LEVEL (dB) (dB) 
CASE (dB) (degrees) E H E H E H 

NO THERMAL OR TORQUE SURFACE ERROR 41.9 0 1.33 1.33 21.4 20.4 

THERMAL SURFACE ERROR* 41.1 0 1.39 1.39 22.0 19.3 45.4 49.4 

THERMAL SURFACE ERROR DOUBLED 39.9 0 1.48 1.48 21.0 17.3 35.2 39.5 

THERMAL SURFACE ERROR QUADRUPLED 26.3 0 BEAM SPLIT 0.0 -0.8 15.4 17.8 

TORQUE SURFACE ERROR* . 41.6 0.5 - 1.42 20.7 22.5 29.7 43.4 

TORQUE SURFACE ERROR DOUBLED 40.9 1.0 - 1.53 18.3 17.5 25.2 38.4 

TORQUE SURFACE ERROR QUADRUPLED 38.6 2.1 - 2.02 14.3 12.1 26.7 32.6 

THERMAL AND TORQUE SURFACE ERRORS 40.9 0.5 - 1.44 22.3 23.8 28.5 46.3 

BOTH THERMAL AND TORQUE SURFACE 38.9 1.0 - 1.46 15.1 19.0 24.2 41.5 
ERRORS DOUBLED 

* SURFACE ERRORS DUE TO TEMPERATURE AND TORQUE GIVEN IN FIGURE 23 
**ASSUMING NO FEED-CROSS-POLARIZATION 



Feed scattering can be treated as an aperture blockage effect
 

(Figure 27). The spherical wave radiated by the feed is columnated (approxi­

mately) into a plane wave by the reflector. The part of the plane wave
 

intercepted by the feed is scattered in all directions, so as far as the
 

far-field mainlobe and first few sidelobes are concerned, the reflector
 

aperture illumination is zero (approximately) in the intercepted region.
 

The equivalent blockage diameter of a log-periodic feed is approximately
 

equal to its longest element length [6] or 10 meters for the LOFT antenna
 

(one-half wavelengths at 15 MHz). Thus, the limits of integration in the
 

axisymmetric reflector computer program were set to correspond to 10- and
 

100-meter diameters rather than 0 and 100 meters.
 

Far-field pattern computations with and without feed blockage are
 

summarized in Table 11. A trapezoidal tooth feed with the usual phase center
 

displacement, conic surfaces, and an F/D ratio of either 0.4 or 0.5 were
 

assumed. Pattern shapes did not change appreciably when feed blockage was
 

included; sidelobe peaks and null depths in most cases changed less than 2 dB.
 

Beamwidths were only 0.5 to 1.0 percent wider with feed blockage, thus they
 

are essentially the same as the beamwidths given in Tables 2 through 5. From
 

Table 11, it is seen that feed blockage reduces gain 0.1 dB or less and
 

increases sidelobes only slightly in most cases. Feed blockage caused more
 

degradation with an F/D ratio of 0.4 as compared to 0.5. The reason that feed
 

blockage caused so little far-field pattern degradation is that the patterns
 

have already deteriorated owing to conic surface and feed phase errors. In
 

fact, performance improved slightly at 150 MHz, because the feed blocks the
 

reflector where conic surface error is large (Figure 23, 0 r/R0.1). If a
 

perfect paraboloid with an F/D ratio of 0.4 and a trapezoidal tooth feed with
 

no phase error were used, sidelobe level would increase from 34 dB without
 

feed blockage to 26 dB with feed blockage [31].
 

An analysis of aperture blockage, approximating the feed as a dipole
 

scatterer, is given in Appendix C. It is shown that direct radiation from the
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EFFECT 
Table 11 

OF FEED BLOCKAGE 

CONIC AND PARABOLIC SURFACES 
F/D = 0.4 OR 0.5 

TRAPEZOIDAL TOOTH FEED WITH PHASE CENTER 
SE = 0.5X -0.8ANDSH =0.3X -0.BMETERS 

15, 30, 72, AND 150 MHz 

DISPLACEMENTS 

CROSS-POLARIZATION' 

FREQUENCY 
(MHz) PATTERN 

GAIN (d) 
NO WITH 

BLOCKAGE BLOCKAGE 

SIDELOBE 
NO 

BLOCKAGE 

LEVEL (dB) 
WITH 

BLOCKAGE 

IN 450 PLANE (dB) 
NO WITH 

BLOCKAGE BLOCKAGE 

15 
E 

45 
H 

21.62 21.53 
32.9 
31.8 
320 

27.7 
27.4 
28.2 

24.2 23 1 

F/D = 0.4 30 
E 

45 
H 

27.70 2761 
32.0 
32.5 
32.5 

31.8 
31.4 
31.3 

24.5 24.5 

72 
E 

45 
H 

35.42 35.32 
28.3 
28.6 
28.0 

30.3 
31.1 
24.3 

24.7 24.6 

150 
E 

45 
H 

41 56 41.63 
21.5 
22.8 
230 

20.8 
22.8 
23.8 

24.4 24.5 

15 
E 

45 
H 

2222 22.18 
20.3 
20.3 
21.4 

19.0 
19.8 
20.6 

26.7 26.6 

F/D = 0.5 30 
E 

45 
H 

28.27 28.22 
20.0 
21.3 
22.7 

187 
20.2 
21.3 

27.1 27.0 

72 
E 

45 
H 

35.90 35.85 
20.4 
22.0 
22.7 

191 
20.5 
214 

27.2 27.1 

150 
E 

45 
H 

41.98 42.06 
19.1 
19.7 
19.7 

192 
202 
20.5 

269 27.0 

'ASSUMING NO FEED-CROSS-POLARIZATION 
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4.6 

feed antenna is expected to be larger than the field scattered from the feed.
 

Thus, calculated radiation patterns for the LOFT antenna, which include direct
 

feed radiation, are essentially accurate, even though the exact scattering
 

pattern of the feed is not included.
 

REFLECTOR GRID
 

The effect of the reflector grid was analyzed by multiplying the
 

surface current distribution of a perfect reflector by the grid reflection
 

coefficient, equations (1) and (3), Section 3. These equations apply for a
 

rectangular mesh reflector consisting of radial and circumferential strip
 

conductors connected together at the junctions and an arbitrary feed
 

polarization. The resultant current distribution was incorporated into the
 

axisymmetric reflector computer program. The results of Section 3indicate
 

that the following guidelines should be used in the selection of a grid.
 

" It is not important that the orthogonal conductors are
 

connected at the junctions, because the angle of incidence
 

of the feed field onto the reflector is relatively small
 

(less 	than 400 for any reflector whose F/D ratio is 0.3
 

or greater).
 

* 	 A square mesh should be used rather than a rectangular
 

mesh to keep the polarization of the reflected field
 

nearly the same as that of the incident field.
 

* 	 Conductor thickness and conductivity need only be large
 

enough so that the term involving strip impedance, Z,
 

is small relative to other terms. As shown in
 

Section 3, stainless-steel conductors only 6.35
 

microns thick will suffice and aluminum conductors
 

could be even thinner.
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* 	 A uniform-size mesh should be used throughout the reflector
 

surface to minimize phase error due to the grid.
 

" 	 The grid must have continuity in orthogonal directions. A
 

weave with poor contact between adjacent conductors is
 

unsuitable.
 

* 	 The grid has most effect on radiation patterns at the
 

highest operating frequency.
 

Far field patterns and gain were computed at 150 MHz for a uniform­

square mesh grid and the following parameters.
 

Reflector diameter 	 100 meters
 

F/D ratio 	 0.4
 

Conic and parabolic surfaces
 

Trapezoidal tooth feed with
 

usual phase center displacement
 

(SE = 0.1A, Sq =-0.1A at
 

150 MHz)
 

Frequency 	 150 MHz (worst case for grid)
 

Material conductivity 	 1.43 x 106 mho/meter (stain­

less steel)
 

Conductor thickness 	 12.7 microns
 

Conductor width 	 0.254 cm
 

Conductor spacings 	 2.54, 12.7 and 22.9 cm
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Although an F/D ratio of 0.5 would probably be used in practice
 

to achieve maximum gain, a ratio of 0.4 was chosen for this example, because
 

the sidelobe level was lower and any change in sidelobe level due to the
 

reflector grid would be more apparent.
 

The gain of the antenna for the grids investigated is given in
 

Table 12. Also, the loss of gain due to grid leakage and dissipation is
 

compared with the normal incidence reflection loss.
 

The loss of gain estimated from normal incidence reflection loss
 

is slightly pessimistic, because the grid's reflection coefficient increases
 

at non-normal incidence angles.
 

The pattern shapes for each grid were almost identical to the pattern
 

computed for a perfect reflector. The mainlobe shape was unchanged; sidelobe
 

peak level relative to the mainlobe changed less than 0.3 dB; and null depths
 

changed only a few dB. The reason for so little change in pattern shape,
 

even for the 9-inch spaced grid, is that the additional reflector phase error
 

due to the grid was less than 100.
 

A grid with nonuniform grid spacing causes more phase error than a 

uniformally spaced grid. Antenna patterns were computed for the variable 

grid spacing shown in Figure 21. Conductor thickness and width were held 

constant at 12.7 microns and 0.254 cm, respectively. Spacing between 

circumferential conductors was held constant at 22.9 cm. Spacing between 

radial conductors was varied as shown in Figure 28. The performance of 

this reflector grid relative to a perfectly reflecting grid is shown in 

Table 13. 

As seen from the tabulated sidelobe levels, pattern shapes are no
 

longer the same; in particular, the first E-plane sidelobe is 3.4 dB higher
 

when the nonuniformally spaced grid is used. If a nonuniform grid is used,
 

the spacing should not exceed 10 cm, in which case, phase error due to the
 

grid will be small. Nonuniform grids with larger than 10-cm spacing should
 

be evaluated with the surface integral computer program.
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Table 12
 

EFFECT OF CONDUCTING GRID ON GAIN
 

NORMAL INCIDENCE 
GRID SPACING d GAIN GAIN LOSS REFLECTION LdSS 

(cm) (dB) (dB) (dB) 

PERFECT REFLECTOR 41.56 0 0 

d = 2.54 41.55 0.01 0.035 

d = 12.7 40.76 0.80 0.87 

d = 22.9 38.90 2.66 3.25 

75
 



---- 22.4 m- \ 

Figure 28 REFLECTOR GRID WITH NONUNIFORM SPACING 
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Table 13
 
EFFECT OF VARIABLE GRID SPACING
 

PERFECT 

PARAMETER REFLECTOR 

(dB) 

GAIN 41.6 

E-PLANE 1st LOBE 21.5 
SIDELOBE 2nd LOBE 25.8 
LEVEL 
RELATIVE 450 PLANE 1st LOBE 22.8 
TO 2nd LOBE 25.8 
MAINLOBE 

H-PLANE Ist LOBE 23.0 
2nd LOBE 25.5 

CROSS-POLARIZATION IN 450 PLANE 24.4 


REFLECTOR SHOWN 
IN FIGURE 21 

(dBY 

39.5 

18.1 
26.3 

22.7 
26.2 

23.3 
25.0 

26.2 
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Section 5
 

RADIATION FAR FROM MAINLOBE
 

Far from the mainlobe, field computation using a surface integral
 

theory is unreliable, because the surface current distribution, due mainly to
 

reflector edge effects, is not known with sufficient accuracy. Therefore,
 

geometric diffraction theory (GDT) was used to calculate far-out sidelobe
 

level. GDT considers fields only at the rim of the reflector and no
 

integration is involved. A derivation of the GDT equations is given in
 

Appendix D.
 

The surface integrals considered only well-defined surface distortions
 

such as thermal and torque perturbations and the conics. There is, in addition,
 

a billowing of the surface between reflector support members. Billowing is
 

treated as a random surface error and the sidelobe level was computed using
 

Equation 8, Reference 32.
 

Radiation in the shadow region was computed with GDT and from direct
 

feed radiation which leaks through the grid. Direct feed radiation in the
 

illuminated region is also considered. GDT does not accurately provide the
 

backlobe level (1800 away from mainlobe), because this direction is a geometric
 

caustic. Instead, the backlobe was computed by integration of the feed field
 

over a complete spherical surface except the area occupied by the reflector [33].
 

This theory considered only uniform reflector illumination and thus was
 

modified by CAL to include the pattern of a trapezoidal tooth feed.
 

Radiation far from the mainlobe arising from edge diffraction, random
 

surface errors, direct feed radiation, and reflector grid leakage are discussed
 

in this section. No attempt is made to combine the radiation from all these
 

mechanisms and to compute a resultant far-field pattern because the phase of
 

the various contributions is not known with sufficient accuracy. Instead, the
 

sidelobe level computed for each mechanism is separately described. This
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5.1 

method indicates clearly which is the dominant mechanism and the design changes
 

necessary to improve performance. For example, if direct feed radiation
 

dominates over all other causes of far-out sidelobe level, there is no point
 

in trying to reduce far-out sidelobe level by improving reflector surface
 

tolerance, or decreasing reflector F/D ratio. The average sidelobe power level
 

of the composite pattern is the sum of the sidelobe power levels from all
 

causes.
 

The subject of radiation far from the mainlobe is presented in the
 

following manner. First, the parameters of the antenna analyzed are given.
 

Then, GDT is compared with surface integral theory. Finally, patterns
 

covering a 3600 sector, showing separately the contributions of the various
 

radiation mechanisms, are presented.
 

ANTENNA PARAMETERS
 

Calculations were performed for a reflector with conic surfaces' and
 

an F/D ratio of 0.4 or 0.5. A trapezoidal tooth feed with the previously used
 

phase center displacements (OE = 0.5X- 0.8, SH, = 0.3X-0.8) was 

assumed. The conic surfaces and feed phase do not effect any of the results
 

except those determined from the surface integral computer program. The feed
 

patterns used are shown in Figure 29 and are representative of typical
 

measured patterns of a trapezoidal tooth feed [6] having a worst-case front/
 

back ratio of 10 dB. The computed gain of the feed based on these patterns
 

is 9.6 dB. Thus, the backlobe gain of the feed (in the direction of the
 

LOFT antenna mainlobe) is 0.4 dB.
 

Random surface errors representing reflector panel billowing of
 

0.03- and 0.1-meter RMS were assumed. These 14S errors correspond to peak-to­

peak errors about three times larger. The correlation interval of the random
 

surface error was set equal to an assumed reflector panel size of 1 meter.
 

A uniform, square mesh, reflector grid hving 8.6-dB transmission
 

loss at 150 MHz was assumed. The grid had 3-millimeter-wide conductors spaced
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5.2 

12 centimeters apart. This grid had transmission losses of 14.5, 22.0 and
 

28.0 dB at 72, 30 and 15 MHz, respectively. Its normal incidence reflection
 

loss varied from 0.02 dB at 15 MHz to 0.60 dB at 150 MHz.
 

COMPARISON OF SURFACE INTEGRAL AND GDT
 

GDT relies heavily on geometric optic concepts. It was considered
 

useful to compare the results obtained using GDT with those obtained using
 

surface integral theory. The two theories gave results which agreed to
 

within 3 dB on sidelobe level for an F/D ratio of 0.4 and within 1-1/2 dB
 

for an F/D ratio of 0.5 when the reflector was a perfect paraboloid and feed
 

phase error was zero. Equally good agreement occurred with a log-periodic
 

dipole feed which gave a very nonuniform edge illumination. Therefore,
 

confidence was established that GDT gave the proper sidelobe level, provided
 

reflector surface error and feed phase error are small.
 

GDT and surface integral theory at 72 MHz are compared in Figure 30.
 

The solid curves are for an F/D ratio of 0.4, and the dashed curves are for
 

an F/D ratio of 0.5. Only H-plane patterns are shown, because GDT predicts
 

the highest sidelobe level in this plane (3 dB higher than E-plane sidelobes).
 

Conic surfaces and feed phase are included in the surface integral calculation.
 

Direct feed radiation is also shown in Figure 30. The sidelobe patterns
 

determined from GDT actually have many peaks and nulls; the curves shown are
 

envelopes of sidelobe peaks. GDT predicts a 4- to 6-dB higher sidelobe level
 

for an F/D ratio of 0.5 than for an F/D of 0.4, the reason being stronger
 

reflector edge illumination.
 

The overall sidelobe level based on surface integral theory is the
 

same for both F/D ratios and higher than GDT sidelobe level for either F/D
 

ratio, especially near the mainlobe. The discrepancy results from feed phase
 

and surface errors which increase sidelobe level as computed by surface
 

integral theory, whereas GDT cannot account for either error. Direct feed
 

radiation is stronger than sidelobe radiation computed from either surface
 

integral or GDT at angles far from the mainlobe.
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5.3 

Similar patterns at 150 MHz are shown in Figure 31. The trends are
 

the same as at 72 MHz (Figure 30). The increased discrepancy in computed
 

sidelobe level between surface integral and edge diffraction theories at
 

150 MHz as compared to 72 MHz is caused by the larger surface error in
 

wavelengths at the higher frequency.
 

RADIATION PATTERNS
 

Computed H-plane patterns at 15, 30, 72 and 150 MHz are shown in
 

Figures 32, 33, 34, and 35 for an F/D ratio of 0.5. Only half the pattern is
 

shown, because it is symmetric about the antenna axis. The GDT solution is
 

invalid at the shadow boundary and over an angular sector each side of this
 

boundary. The actual edge diffraction radiation would follow approximately
 

a straight-line approximation between the minima of the GDT envelope on each
 

side of the shadow boundary, as indicated by the "actual edge diffraction"
 

dashed curve in the figures. The abrupt drop in feed radiatidn at the shadow
 

boundary equals the reflector grid transmission loss at each frequency.
 

At 15 MHz, the agreement between surface integral theory and GDT is
 

excellent, but agreement becomes progressively worse as frequency increases,
 

because the conic surfaces increase sidelobe level as computed by surface
 

integral theory.
 

Random surface error contributes significantly to sidelobe level only
 

at the higher frequencies. Reflector panel billowing should be kept below
 

0.03-meter RMS (0.1-meter peak-to-peak) to keep sidelobe level for frequencies
 

up to 150 MHz below the sidelobe level due to other causes.
 

The reflector grid used in this example gave feed leakage radiation in
 

the shadow region 40 dB below the mainlobe independent of frequency. At
 

frequencies above 72 MHz, feed leakage is larger than edge diffraction in the
 

shadow region and at 15 MHz, and edge diffraction forms the larger.contribution.
 

The behavior of other grid designs can be easily determined from the feed
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leakage curves shown. If a grid has a transmission loss of T dB at 150 MHz,
 
then the feed leakage curves are lowered at each frequency by (T-8.6 dB).
 

Grid parameters for a given transmission loss at 150 MHz can be found in
 

Section 3.
 

The backlobe gain relative to isotropic is -1.0 dB independent of
 

frequency. This gain is constant, because it is a function of feed fields
 

only, which are essentially independent of frequency.
 

The effect of F/D ratio on 72 MHz, H-plane patterns is shown in
 

Figure 36. The straight-line extrapolation of GDT, previously discussed, is
 

shown. Surface integral results were already presented in Figure 30 and are,
 

therefore, not repeated. Feed radiation and sidelobe level due to random
 

surface errors are the same for both F/D ratios.
 

GDT predicts a lower sidelobe level in both illuminated and shadow
 

regions, if an F/D ratio of 0.4 is used in place of 0.5. The backlobe is also
 

lower when F/D = 0.4, because the edge illumination is lower. However,
 

Figures 30 and 31 illustrate that near sidelobe levels based on surface
 

integral theory are the same for both F/D ratios. In any event, direct feed
 

radiation dominates in the illuminated region. Therefore, using an F/D ratio
 

of 0.4, rather than 0.5, reduces sidelobe level only in the shadow region, but
 

feed leakage through the reflector grid must be reduced to the edge diffraction
 

level for the reduced sidelobe level to be realized.
 

E- and H-plane patterns at 72 MHz are compared in Figure 37 for an
 

F/D ratio of 0.5. Again, surface integral results are omitted and straight-line
 

extrapolations of the GDT results are shown. Sidelobe level due to random
 

This simple rule is accurate for transmission losses greater than 10 dB.
 
Equation (4), Section 3 gives the exact transmission loss.
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surface errors is the same in both planes. H-plane edge diffraction is
 

higher than E-plane diffraction in the illuminated region and lower in the
 

shadow region, but feed radiation is still dominant.
 

At other frequencies, the edge diffraction pattern shapes are
 

identical to the 72-MHz pattern shapes, except that the backlobe level relative
 
to isotropic remains fixed. The relative level between patterns for different
 

F/D ratios, and the relative level between E- and H-plane patterns remain the 
same as shown at 72 MHz. The absolute level (gain relative to isotropic) of 

the edge diffraction patterns changes with frequency as shown in Figures 32 

through 35. 
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6.1 

Section 6
 

CONCLUSIONS AND RECOMMENDATIONS
 

Conclusions of the CAL study of RF parameters for the 15- to
 

150-MHz, 100-meter-diameter LOFT antenna are given in this section in the
 

following order:
 

* Feed investigation
 

* Reflector grids
 

* Radiation at and near mainlobe
 

* Radiation far from mainlobe
 

Areas where further studies are recommended are also discussed. The parameters
 

and expected performance of an optimum-design LOFT antbnna are described.
 

FEED INVESTIGATION
 

A trapezoidal tooth or triangular tooth log-periodic antenna is the
 

recommended feed. This antenna provides an axisymmetric pattern with proper
 

beamwidth to illuminate a parabolic reflector whose F/D ratio is between 0.4
 

and 0.5. Phase error due to the feed is small enough that the feed need-not
 

be moved when operating frequency is changed. Orthogonal linear polarization
 

can be provided by arrangement of four tooth structures in pyramid fashion.
 

An experimental program establishing the optimum feed design is needed and
 

recommended.
 

A log-periodic dipole array is not recommended at present, because
 

of its unequal E- and H-plane beamwidths and large phase error. However, if
 

the pyramid-arranged tooth structures exhibit excess cross-polarization, as
 

determined during a recommended measurements program, the log-periodic dipole
 

array should be reconsidered.
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6.2 

A conical spiral feed is not recommended, because dual-sense
 

circular-polarized versions have not been successful to date.
 

A multiturn cyclindrical helix is not recommended, because its
 

bandwidth is too narrow and it would be difficult to deploy in the LOFT
 

application (16 arms and 450 incremental phasing are required).
 

The conical transmission line feed results in a far-field pattern
 

having low gain, high sidelobes, and large cross-polarization. Therefore,
 

this feed is not recommended, even though it is much easier to deploy than the
 

other feeds surveyed, However, eight of the front tension stays could be
 

conductors without causing significant far-field pattern deterioration when
 

any of the log-periodic feeds are used. The conducting stays could then be
 

used as a backup conical transmission line feed.
 

REFLECTOR GRIDS
 

Grids consisting of orthogonal strip conductors have been analyzed.
 

Grids with conductor spacing up to 50 times larger than conductor width
 

have sufficiently high reflectivity and low transmissivity. For proper
 

operation at frequencies up to 150 MHz, conductor spacing should be less
 

than 15 centimeters. The effect of finite conductivity is small, if the
 

conductor width exceeds 3 millimeters and the conductor thickness exceeds
 

6 microns, even when the material is stainless steel. A square mesh should
 

be used to keep reflected and incident polarizations nearly the same. A
 

uniform-size mesh should be used throughout the reflector surface to minimize
 

phase error due to the grid., However, a nonuniform mesh whose maximum
 

conductor spacing is less than 10 centimeters has sufficiently small phase
 

error.
 

A weaved grid should not be used-unless good-electrical contact at
 

the junctions of adjacent conductors can be guaranteed. The reflectivity of
 

weave designs, which rely only on mechanical contact at the junctions, should
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6.3 

be measured. Grids which have continuous conductors in orthogonal directions,
 

or rectangular weaves which are welded or soldered at the junctions can be
 

analyzed theoretically, thereby eliminating the necessity of measurements.
 

Measurements, however, should be performed to check the result of such analyses.
 

The material for a 100-meter-diameter stainless steel grid will
 

weigh at least 20 kilograms. If leakage radiation at all frequencies up to
 

150 MHz must be reduced to the level of the edge diffracted fields everywhere
 

in the shadow region, the required stainless steel grid will weigh approximately
 

100 kilograms. An aluminum grid weighs about three times less than a stainless­

steel grid.
 

RADIATION AT AND NEAR MAINLOBE
 

Computations of far-field patterns at and near the mainlobe established
 

the superiority of the trapezpidal tooth feed (0.7- to 1.6-dB higher gain,
 

2-dB lower sidelobe level) over the log-periodic dipole feed. The optimum
 

F/D ratio is between 0.4 and 0.5; a 2-dB lower sidelobe level and a 0.5-dB
 

lower gain occur with an F/D ratio of 0.4 as compared to 0.5.
 

Feed phase center displacement has maximum effect on far-field
 

patterns at low frequencies. At 15 MHz, feed phase center error reduced
 

gain by 0.3 dB and increased sidelobe level by 4 dB relative to the far-field
 

patterns obtained with no phase center error (trapezoidal tooth feed and
 

F/D = 0.5). Feed phase center displacement relative to the reflector focal
 

point must be less than 0.4 wavelength to maintain far-field pattern
 

deterioration within these limits.
 

Conic-reflector surface error has maximum effect on far-field
 

patterns at high frequencies. At 150 MHz, conic surfaces reduced gain by
 

0.6 dB and increased sidelobe level by 6 dB as compared to far-field patterns
 

obtained with a perfect paraboloid (trapezoidal tooth feed and F/D = 0.5).
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6.4 

Conic approximations to a perfect paraboloid other than the ones used in this
 

report should be investigated. The CAL surface integral computer programs
 

can handle reflector surfaces with arbitrary shape.
 

The effect on far-field patterns of reflector surface distortions
 

caused by temperature and torque has been investigated. Assuming surface
 

errors twice as large as those computed for a 50-meter-diameter LOFT and a
 

frequency of 150 MHz, thermal surface error reduced gain by 2 dB and increased
 

sidelobes by 3 dB, torque surface error reduced gain by 1 dB and increased
 

sidelobes by 3 dB and a combination of both thermal and torque surface errors
 

reduced gain by 3 dB and increased sidelobes by 6 dB. A 1' mainlobe squint
 

occurred when torque was present. Thus, the LOFT antenna is still usable for
 

the doubled surface errors. At lower frequencies, gain reduction and sidelobe
 

increase would be less severe. Temperature and torque errors of the same
 

magnitude as computed for a 50-meter-diameter LOFT cause small far-field
 

pattern deterioration. Surface distortions caused by temperature and torque
 

should be computed for a 100-meter-diameter LOFT reflector and the resultant
 

far-field patterns determined with the CAL computer programs.
 

Feed blockage and scattering has only a minor effect on sidelobe
 

level, because the sidelobe level is already high due to reflector surface
 

distortions, feed phase center displacement, and direct feed radiation. The
 

computed gain reduction caused by feed blockage .is only 0.1 dB.
 

RADIATION FAR FROM MAINLOBE
 

Radiation far from the mainlobe is caused by random surface errors,
 

edge diffraction, direct feed radiation, and leakage of feed fields through
 

the reflector grid. In the illuminated region, direct feed radiation dominates
 

over the other radiation mechanisms, provided random reflector surface error
 

is less than 0.03-meter RMS (0.4-meter peak-to-peak). Edge diffraction
 

becomes more significant at lower frequencies, but it is still less than
 

direct feed radiation even at 15 MHz.
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6.5 

In the shadow region, feed leakage through the reflector grid is
 

stronger than edge diffraction (the only other shadow region radiation
 

mechanism) at the higher frequencies, unless reflector grid spacing is
 

made very small (approximately 3 centimeters). A spacing of 12 centimeters
 

will attenuate leakage radiation to a level 40 dB below mainlobe level and
 

reduce mainlobe gain by 0.02 dB (at 15 MHz) to 0.6 dB (at 150 MHz). Shadow
 

region edge diffraction is 25 dB (at 15 MHz) to 65 dB (at 150 MHz)zbelow
 

mainlobe level, except at the backlobe (1800 away from mainlobe). The
 

backlobe level is about -1 dB relative to isotropic level.
 

As a rough rule of thumb, sidelobe level far from the mainlobe is
 

-5 dB relative to isotropi&, provided surface errors are not extremely large.
 

OPTIMUM LOFT ANTENNA
 

Based on the CAL electrical performance tradeoff study, a LOFT
 

antenna with the following parameters is recommended.
 

Feed Type Trapezoidal tooth (must have
 

*polarization diversity capability)
 

Feed Position 	 Fixed; apex 0.8 meter closer to
 

reflector than the focal point
 

Reflector Diameter 	 100 meters
 

Reflector F/D Ratio 	 0.5
 

Conic Surfaces 	 See Figure 13
 

Reflector Surface Random Error 	 0.03-meter RMS maximum
 

Reflector Grid 	 Uniform square mesh
 

Grid Conductor Material 	 Stainless steel is satisfactory
 

Grid Conductor Thickness 	 At least 6 microns
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Grid Conductor Width 3 millimeters
 

Grid Conductor Spacing 12 centimeters
 

Reflector Grid Weight 20 kilograms (stainless steel)
 

The expected performance of this optimum antenna is summarized
 

below: 

Gain (including feed phase and 
conic surface errors and 
reflector grid) relative to 
isotropic 

22.2 to 41.4 dB (15 to 150 MHz) 

Gain loss due to feed phase 
error 

0.3 dB maximum 

Gain loss due to conic surfaces 0.6 dB maximum 

Gain loss due to reflector grid 0.6 dB maximum 

3-dB Beamwidth 13.20 to 1.290 (15 to 150 MHz) 

Sidelobe level (including 
feed phase-and conic surface 
errors) 

19-dB worst case 

Sidelobe level if there were 
no feed phase error and no 
conic surfaces 

25-dB worst case 

Sidelobe level far from 
mainlobe 

-5 dB relative to isotropic 

Cross-polarization level 
(with practical trapezoidal 
tooth feed) 

10 to 15 dB 
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It should be noted that gain losses should not be added to compute
 

gain obtainable with a LOFT antenna consisting of a perfect paraboloid,
 

perfectly reflecting grid, and zero feed phase, because the maximum losses
 

shown do not occur at the same frequency. A "perfect" LOFT antenna would
 

have 22.6-dB gain at 15 MHz and 42.6-dB at 150 MHz and a 25-dB sidelobe level.
 

The recommended reflector grid has negligible effect (0.3 dB) on sidelobe
 

level.
 

The sidelobe level far from the mainlobe applies to both illuminated
 

and shadow regions. The sidelobe level in the shadow region can be reduced
 

to -13 dB relative to isotropic by using an F/D ratio of 0.4 and a finer mesh
 

grid (3-cm conductor spacing).
 

The large estimated cross-polarization is due to the expected large
 

cross-coupling between orthogonal trapezoidal tooth feed pairs. Orthogonal
 

log-periodic dipole arrays have about 25-dB cross-coupling, but this feed
 

results in lower LOFT antenna gain, higher sidelobes, and unequal E- and
 

H-plane beamwidths.­
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A.l 

Appendix A
 

CONICAL TRANSMISSION LINE FEED
 

FEED EQUATIONS
 

The field of a multiconductor conical transmission line has been
 

derived [19]. Assuming small strip widths, field equations (19) through (22)
 

in Reference 19 reduce to:
 

NN-I
60 Ve -kR

RZ NO 
e- 2PI/

A/-I ,.___ 

0# RZ T 

where
 
Acos 8+.5srn$5sec2 ­

z) 0= (A+ 

) [B cos - Asin 0] tanA * b 2] 511 9 

A cos0 tan e '5/1!?2 tan A 

5// 01 ean' -! Cos 2"1? t ­
2 I
 

7K>= -r 

R, 0,0 = spherical coordinates of observation point (Figure 5,
 
Section 2.3)
 

6o = half angle of conic surface 

V magnitude of generator voltage (Figure 5, Section 2.3) 

z = impedance presented to each generator. 

Impedance Z for the 6- and 8-conductor lines is given in Reference
 

19, equations (15) and (16).
 

6-conductor Z 606h cc 

tPREEDING PAGE BLANK NOT F-ILME 
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8-conductor Z=60 [, -M- /.25] 

where ce is strip width in radians (Figure 5).
 

The front/back ratio of the transmission line feed can be found by
 

evaluating the above field equations at V = 00 and 0 = 1800.
 

E (00) = cot 2 0o 
E (1800) 2 

Thus, the front/back ratio is independent of (field is circularly
 

polarized), strip width and number of conductors, and is only a function of
 

cone half-angle.
 

Example
 

Figure 38 shows the B e and E fields for a 6-conductor line
 

with e = 58* as a function of e in the 0 = 900 plane. The q = 900 plane 

bisects the n 0 and n = 3 conductors. Figure A-2 shows the Be and E0 

fields in the = 600 plane which cuts midway between the n = 0 and n = 5 

conductors. All fields are normalized by the same constant. Except for the
 

1800 phase reversal-of E at 0 = = 580, the field phase is constant
 

as a function of 6 in these two planes. The components E a and E 5 

are in phase quadrature in these two planes, which is required for circular 

polarization. The magnitude of E e becomes very large as a conductor is 

approached (Figure 38), and zero at the reflector rim midway between conductors 

(Figure 39). The E0 component is nearly uniform over the entire reflector
 

surface.
 

o 


DISCUSSION OF FEED FIELDS
 

The magnitudes of E and E become very different as the
 

reflector rim is approached. Therefore, the aperture radiation (far-field
 

pattern of the parabolic antenna) is not circularly polarized for angles off
 

the peak of the mainlobei
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The transmission line fields are substantial outside the angle sub­

tended by the feed and reflector. In fact, half the power radiated by the
 

feed is within the conic (and illuminating the reflector) and half is outside
 

the conic independent of the conductor widths and the number of conductors
 

[20]. As mentioned previously, antenna patterns deteriorate, if the reflector
 

subtends an angle larger than the conic angle, because of the phase reversal 

of E . Therefore, half the feed power is lost as spillover. Hughes 

Aircraft Company investigated the possibility of using auxiliary reflectors 

to collimate some of this spillover field but abandoned the study as 

impractical for broadband antennas [20,21]. A collimating lens within the 

cone did concentrate slightly more than half the feed power onto the 

reflector. Although the lens is practical for microwave antennas, it is 

not practical for the LOFT antenna because of its large size and weight. Even 

with the lens, the spillover and cross-polarization losses were so large that 

the parabolic antenna gain was 31 percent of the gain of a uniformly illuminated 

aperture of the same size [21]. With a log-periodic feed, a gain of 75 

percent of uniform aperture gain has been reported [6]. 

The large magnitude of E. in the vicinity of a conductor will
 

generate a high sidelobe level in the parabolic reflector antenna pattern.
 

Theoretical solutions predict a 17-dB sidelobe level [34] and this level has
 

almost been obtained in practice [21].
 

2

The front/back ratio for the feed pattern is equal to cot 0 0 /2)
 

and is given in Table 14 as a function of the parabolic reflector F/D ratio.
 

Table 14
 
CONICAL TRANSMISSION LINE FEED FRONT/BACK RATIO
 

FEED F/B RATIO 
F/D RATIO e. IN dB 

0.3 81' 2.7 

0.35 720 5.5 

0.4 650 7.8 
0.45 se 10.6 

0.5 530 12.1 
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A.3 

The feed-back radiation contributes to the sidelobe radiation of
 

the reflector antenna. It is shown in Section 5.3 that feed radiation equals
 

or exceeds reflector edge diffraction (far-out sidelobes) when the feed
 

front/back ratio is lower than 10 dB. Therefore, the conical transmission
 

line feed will give a high sidelobe level far out from the mainlobe as well as
 

close in.
 

APERTURE BLOCKAGE EFFECTS
 

It is assumed in this section that the LOFT antenna has a trapezoidal
 

tooth feed and that eight of the front tension stays are conducting strips
 

which could be used for a transmission line feed as a backup to the primary
 

trapezoidal tooth feed.
 

The field reflected from the parabola will induce currents in the
 

transmission line conductors. These induced currents also produce a field
 

which must be included. This effect is called aperture blockage, because
 

the transmission line conductors shadow the aperture field, to use optical
 

terminology.
 

Since the conductors lie in the direction of propagation of the field
 

produced by the trapezoidal tooth feed, it is assume& that this incident field
 

is undisturbed. After reflection from the parabola, the component of field
 

tangential to each of the eight equispaced (450) conductors was determined.
 

The current induced in the conductors by this tangentially applied field was
 

then derived [35]. Finally, the far-field radiation pattern produced by the
 

eight induced line currents , Econd, was computed using vector potential
 

theory [36]. The resulting field equations were too complicated for
 

convenient hand computation but are available for programming on a computer.
 

In the direction of the reflector main beam, the field due to the currents
 

induced in the transmission line feed is maximum, and its magnitude relative
 

to the field of an isotropic radiator is:
 
E cand 2.06 

EZZo 0. 6355A 2.76 A when e. = 530 (F/D = 0.5) 
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where
 

A = wavelength
 

&,- = conductor width
 

Thus, the maximum field radiated by currents induced in the eight
 

conductors is independent of reflector diameter or conductor length. At
 

first, one might think that the field should increase with increasing conductor
 

length, because the beamwidth of the conductor's radiation pattern decreases.
 

However, this effect is cancelled by the reduced current magnitude per unit
 

length as conductor length and reflector diameter are increased.
 

The field strength on axis due to conductor radiation, Econd, is
 

compared to the field strength of the mainlobe reflector radiation, Bml in
, 


Table 15 for various conductor widths and frequencies. Eis is the field
 

strength of an isotropic radiator. The parabolic antenna gain for a
 

100-meter-diameter reflector is given by 20 £9 [ml 
'so 

It can be seen that the field scattered in the direction of the main­

lobe by the conducting wires is small relative to the mainlobe field of the
 

reflector. It can also be shown, by similar calculations, that the sidelobe
 

level of the reflector would not be significantly affected by scattering
 

from the transmission line field.
 

If the eight conductors were excited as a transmission line feed,
 

the aperture blockage field strength would be slightly different from that
 

calculated with a log-periodic feed, because the reflector illumination is
 

different. Even so, the sidelobe level computed by Hughes, neglecting
 

aperture blockage [20,21], is higher than the aperture blockage mainlobe
 

level in Table 15. Therefore, aperture blockage sidelobe level caused by
 

a transmission line feed is much lower than the sidelobe levels calculated
 

by Hughes and blockage of the transmission line feed is negligibly small.
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Table 15 

CONDUCTOR APERTURE BLOCKAGE FIELD STRENGTH
 
RELATIVE TO ISOTROPIC AND MAINLOBE FIELD STRENGTHS
 

100-METER-DIAMETER REFLECTOR 
EIGHT-CONDUCTOR CONICAL TRANSMISSION LINE 
TRAPEZOIDAL TOOTH ANTENNA FEED 
CONDUCTOR WIDTH IN 	METERS 

CONDUCTOR 
WIDTH FREQUENCY Econd/Eiso Eml/Eiso Emi/Econd 
(m) 	 (MHz) (dB) (dB) (dB) 

ir = 0.01 	 15 -8.5 22.2 30.7
 
30 -7.7 28.3 36.0
 
72 -6.7 35.9 42.6
 

150 -5.8 42.0 47.8 

icr = 0.1 	 15 -5.8 22.2 28.0
 
30 -4.7 28.3 33.0
 
72 -3.3 35.9 39.2
 

150 -1.8 42.0 43.8
 

fir = 1 15 -2.3 22.2 24.5
 
30 -0.2 28.3 28.5
 
72 0.9 35.9 35.0 

150 2.9 42.0 39.1 

THE ENTRIES IN THE TABLE ARE EQUAL TO 20 LOG1 0 X), WHERE X IS THE 
APPROPRIATE FIELD RATIO. 
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B.1 

B.2 

Appendix B
 

DESCRIPTION OF COMPUTER PROGRAMS
 

INTRODUCTION
 

Two computer programs were used for pattern computations during the
 

program. The first centered around a previously written and verified program
 

by W.V.T. Rusch [37-40] and was obtained through personal correspondence [41]
 

with one of the authors [Clark]. This program evaluates a single-surface
 

integral (the integral in the other dimension having been performed analy­

tically) on an axisymmetric surface. Programmer usage is described in
 

Section B.4.3 and input/output (I/O) data in Section B.4.4.
 

The second program, described in Appendix B.5, was developed during
 

this study, and used some of the procedures of the first program, thus keeping
 

the input/output data very similar. The second program evaluates a double­

surface integral and accurately accounts for nonaxisymmetric surface pertur­

bations such as thermal and torsional disturbances in the LOFT antenna. Pro­

grammer usage is described in Section B.S.3. Both programs can accomodate
 

either a perfectly conducting or grid reflector.
 

COORDINATE SYSTEM AND ANGULAR DEFINITIONS
 

Figure 40 illustrates the spherical coordinate system common to
 

both programs and the integration and far-field point angular definitions.
 

For the case of a parabolic surfaceS , the origin is located at the focal
o 


point of the paraboloid, with the z-axis as the axis of symmetry toward the
 

main beam. For an electric field polarized in the x- direction (always true
 

for the feeds studied in this report), the scattered field in the x-z or
 

E-plane will consist entirely of a 0 component; for the y-z or H-plane, the
 

scattered field will be entirely a 0 component. For nonprincipal planes
 

(containing the z-axis but neither x or y), the fields are best expressed as
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YDand X components (Figure 40), which are termed the principal and cross­

polarized components, respectively.
 

B.3 INTEGRATION OF SURFACE CURRENTS
 

In computing a far-zone scattered field by the physical optics
 

technique, one essentially integrates the transverse components of the currents
 

induced on the reflector by the feed radiation; these currents are determined
 

by geometrical optics. In terms of the coordinates of Figure 40, the
 

transverse components of the far-zone scattered field are given by:
 

50 (B-l) 
(e 10 time dependence , / = /_ , is assumed in Appendix B) 

For the single-integral program, the 'dependence of /-S is previously inte­

grated analytically to give series of bessel functions; the program numerically, 

integrates over 0 . For the double-integral program, numerical integration 

is performed over both e' and 0'. 

B.4 SINGLE-INTEGRAL PROGRAM
 

This program is valid only for axisymmetric reflectors but can
 

accomodate any type of feed pattern having no radial field component. Once
 

certain coefficients are computed, they can be reused, as often as desired,
 

to compute the field pattern in any given plane through the axis of symmetry,
 

resulting in a saving of considerable processing time.
 

B.4.1 Mathematical Background
 

This discussion of the analytical development for the axisymmetric case
 
is purposely meant to be brief. For a more detailed explanation, see
 
References 1-4.
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B.4.1.1 Incident and Scattered Field Definition
 

The field radiated by the feed is assumed to be a Fourier
 

series of the form
 

e"'= r[A,') 51n 727Y+8yO') cos Y]2 
(B-2) 

+Z [C,(') snmP'*4W) cos mt elr~l 
Hi (G_) -. V X (6/ (B-3) 

where 8'and 39' indicate evaluation on the reflector surface. The co­

efficients (A,B,C, and D) are, in general, complex, encompassing linear, cir­

cular or elliptical polarization and phase errors of the feed. They can be 

specified in the input data or computed via a subroutine. The total field is 

computed from the direct feed contribution E(0,y) plus the scattered field 
given in the same form of equation (B-2) by 

L ()in s~~1717 m )CcSmr]A a 

(B-4) 

The F,G,H and K coefficients are integrals over the angle 0', whose integrands
 

are sinusoidal and bessel functions in cross produces with the A,B,C and D
 

coefficients of the illuminating source. The bessel functions in the integrand
 

arise from the $i integration performed analytically.
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B.4.1.2 Feed Fourier Coefficients
 

For a point source feed polarized in the x-direction (E-plane), the
 
Fourier coefficients of the feed are constants given by
 

(8)z (CI0 =) constant, 

all others being identically zero. For the more general feeds studied during
 

the program, the coefficients were evaluated by a subroutine which numerically
 

integrated the feed pattern in Y'for a fixed a' 
 The A and C integrals are 

"A (0') _ 6-P7G A(O)cosO'e e C o'T"
 
fJn2 os'f'
 

(B-5)
 

(B-6) 

The B and D terms are orthogonal to the A and B terms, containing cos m.,
 
in place of sinm-' . For the feeds studied, only B and C (for m odd) 
were nonzero, thus reducing the computation time. The coefficients are
 
computed in subroutine FABCD and punched on cards to save on a rerun. 
The
 

several variables in these expressions are explained in the following two
 

sections.
 

B.4.1.3 Feed Amplitude Functions
 

The amplitude of the feed pattern incident on the reflector surface
 

is given by
 
(jq 3P' OO C1-g-PG 9(01y')= A(O) 

p (e' ) (B-7) 
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where
 

Rr = Input power to the feed (W)
 

# = Gain of the feed over isotropic (linear units)
 

Ae') = Weighting factor in the 0' direction (=1 for O= Ir) 

D(O0 5') = Pattern shape 

and is derived from
 

72-07 //-,,0;2(B-8) 

For an isotropic feed in the far field, o-R , C7 1; then = 60P_ IR 

If the total scattered field is desired relative to isotropic (as was always the
 

case), division of E1 by Es o drops the radical. Thus, in the program, PT
 

was set equal to 1/60 to give gain over isotropic. Two types of feeds were
 

studied: the trapezoidal tooth and the log-periodic dipole antenna. Table 16
 

gives their characteristics, which apply to equations (B-S) and (B-6).
 

B,4.1.4 Feed Phase Function
 

The terms S. and S,, in Table 16 specify the feed phase center dis­

placement relative to the focal point as a function of frequency in the E- and 

H-planes (S in Figure 3). They are used to compute 06 and Y1g in equations 

(B-S) and (B-6) given by 

Y,(0') = -L(S- Y, Y,- P,) (B-9) 

Y6e9 (0'LO - ?31, +K (B-10) 

where
 

;6 W2e)+ _2S'2sp Cos)0i
14(-11)
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Table 16 
FEED CHARACTERISTICS 

G6 

POINT SOURCE 

1.0 

TRAPEZOIDAL TOOTH (TT) 

q.; 

LOG-PERIODICDIPOLE (LPD) 

5.28 

A W) 1.0 cos o 
co5(ff sn9' cos o) 

ff- 251 'cos r 

D~ ' G'0'c5s t.0 

0.0 0.5 - 0.8/A 0.72 - 2.0/A 

5vAIs ) 0.0 0.3 - 0.8/A 0. 72 -2.0/ 
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(B-12)
 

(B-iS)
 

lJ -,j(B-14) 

B.4.1.5 Axisymmetric Reflector Surface Definition
 

A function g ( 0' ) is defined as
 

... - g~" (B-is) 

which completely describes the reflecting surface. To reniove the wave­

length dependence of y ( 0' ), a new normalized function is defined as
 

(') = g W') , C (B-16) 

where C is some convenient constant containing the wavelength dependence'; its
 

choice is dependent on the form of p e cases involving
8' ). For the present 

a paraboloid and conics, it was convenient to let C = kD, where D is the total 

reflector diameter in meters. 

Figure 41 !is an axial cut showing the breakup of the reflector
 

surface into two inner cones and an outer parabola. The edges (intersection)
 

of these surfaces are defined by a subscripted 0'.
 

The equations for computing the above angles and the reflector
 

geometry were taken from Reference 39. Table 17 presents these equations
 

for the three surface sectors.
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Figure 41 REFLECTOR CONIC AND PARABOLIC SURFACES 
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Table 17 

REFLECTOR DEFINITION 

RANGE OF 9' ) 

________ CO&in'22F 

-1 

/ 

,D f 

-~ 

2f' 

02= 

TO 

'-m. 815"j (PARABOLA) 

2 

TO 

-3 

co - 5 

ft' 5 
60 

1+12.5 , 3"lr~s~rL~j(CONE) 

51n 0 _s/n 

p+5 

5 

/0 O 

cos 0/ 

TO 

Cos'- (#-- sin--

3q - f6 1 

16O0 

-sin ( Coso' 

.34/- f6, -

1('00 

(CONE) 
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where f = F/D is the reflector F/D ratio, and g' ( 3') implies a derivative 

with respect to 9' . The values of 0, through Eq and g ( e' ), 9' ( e') 
and e'are inputs to the main computer program. They are computed and punched 

on cards by subroutine FIX or may be read in from preexisting cards.
 

B.4.1.6 Grid Reflection Coefficients
 

In equations (B-5) and (B-6), the grid voltage reflection coefficients 

are i%/ (0') for the 6' field component (R, in equation (3), Section 3); 

R , eW) for the Y' field component ( R_ in equation (1), Section 3). These 

coefficients are computed in subroutine FABCD, which calls subroutine GRID to
 

obtain the grid spacings. If a solid, perfectly conducting reflector is desired,
 

both reflection coefficients are set to unity.
 

B.4.2 Functional Flow
 

The functional flow of the single-integral programs is outlined in
 

Figure 42. The figure shows the general processing flow, subroutine sub­

ordination and recycle paths. The acquisition of the reflector profile
 

(gy( 6' ), etc.) and feed definition data (Am ( 0' ), etc.) deserves a more
 

detailed explanation. If data cards containing this information are available,
 

they are simply read in at the beginning of the program; if not, the data
 

are computed by subroutines FIX and perhaps FABCD, and punched on cards for
 

future use. If a recycle involves a change of F/D ratio (focal length to
 

diameter), then new reflector and feed data are required; but if a recycle
 

involves only a frequency change and the feed has a phase error or the reflector
 

is a grid, then only new feed data are read or computed and the reflector data
 

from the first cycle are reused. The computation of new feed data on a recycle
 

requires that the reflector be defined in the same number and size of angular
 

increments in 0' as that desired for the feed. Feed data from the first
 

cycle are reused, if a frequency change is made and no feed phase error or
 

grid is used.
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CROSS-POLARIZED
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Figure ,42 FUNCTIONAL FLOW, SINGLE-INTEGRAL PROGRAM 
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Subroutine FIX, which computes the reflector data, can be modified or
 

replaced to change the reflector construction. One version of FIX is used
 

for a parabolic-conical surface and another for a purely parabolic surface.
 

B.4.3 	 Program Usage
 

With the exception of the reflector and feed data discussed in
 

Section B.4.2 and an initial identification card, all input data cards which
 

provide data and control parameters are read on FORTRAN namelists and grouped
 

according to their commonality. It will be sufficient to briefly describe each
 

namelist variable in order of appearance at the head of the main program. The
 

initial value of the variables, if applicable, is shown in closed brackets.
 

B.4.5.1 	 Namelist NAM 1
 

XKC 	 that number such that s, ( 8' ) = g ( 9')- XKC (equation 
B-IS, Section B.4.1.3) 

Y1 	 initial value of the observation angle e (Figure 41)
 

DY increment in 0 

Xl ...X4 e, ... 0, as defined in Figure 41, Section B.4.1.4 

P1 initial value of the observation angle 0 (Figure 41) 

DP increment in 0
 

FOD F/D ratio (focal length/diameter)
 

DOL d/A ratio (diameter/wavelength)
 

B.4.3.2 	Namelist NAM 2
 

Ml,M2 	 lower and upper summation limits in equation (B-2),
 
Section B.4.1
 

Nl,N2,N3 	the number of integration intervals between X1 to X2, X2
 
to X3, and X3 to X4 (each must be even)
 

NY 	 number of 6 observation angles less 1
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NP 


IFN 


IAR 


ISPOT 


IFREQ 


B.4.3.3 Namelist 


GMAX 


GMIN 


XMAX 


B.4.3.4 Namelist 


TH 


SIG 


FRFQ 


SE 


SH 


IFEED 


NPHI 


ISC 


number of $ observation angles less I 

number of g,( 0' )'s 
computed by FIX 

, etc. on cards; if zero, they are 

number of A. (09's , 
computed by FABCD 

etc. on cards; if zero, they are 

print code, = 1: print intermediate calculation results,
 
= 0: no print
 

number of program cycles due to frequency change.
 

NAM 3
 

maximum dB level of plotting abscissa 

minimum dB level of plotting abscissa 

maximum e value of plotting ordinate. 

NAM 4
 

reflector grid thickness in meters [0.]
 

reflector grid conductivity in mho/meter [0.]
 

frequency in the case of a grid (mHz) [0.1
 

E-plane feed phase error (Section B.4.1.4) [0.]
 

H-plane feed phase error (Section B.4.1.4) [0.]
 

feed code 

= 1: Trapezoidal Tooth, = 3: 1/2 wave dipole 
= 2: Log Periodic Dipole (LPD), = 4: point source 

number of 9'integration points in equations (B-5) and 
(B-6), Section B.4.1.2 

surface code, = 1: perturbation, = 0: no perturbation 
in surface as function of Y' (an approximate result is 
obtained) 
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B.4.3.5 Namelist NAM 5 (fox subroutine FIX) 

Nl,N2,N3 the number of intervals for which the reflector and feed
 
data are to be computed between XI to X2, X2 to X3,
 
X3 to X4
 

B.4.3.6 Namelist NAM 6 (for subroutine GRID)
 

DP grid 9'dimension (meters)
 

DT grid 9'dimension (meters) 

WP grid WOspacing (meters)
 

IfT grid 0' spacing (meters) 

B.4.4 Sample Output
 

Figure 43 shows the computer printout for a typical run having no
 

feed phase error, a solid paraboloid reflector (no grid), no surface pertur­

bation and already available feed and reflection data read from cards. The 

namelists are printed first, followed by reflector and feed data. The feed 

data are printed as a function of e'for each Fourier coefficient MI to M2. 
Finally, the resulting 9 , Y , - and Y/ field components are printed as 

gain over isotropic in dB units and a function of each observation angle 0 

for the plane specified by the observation angle. The S,T and U,V columns 

are the real and imaginary parts of the e and 9 total field components in 
volts [Reference 39] and indicate the electrical phase of these two components. 

Typical output plots are produced at CAL on the Xerox-LDX plotter (8-1/2" x 

11"). For identification purposes, the contents of a comment card appearing in 

the input data before each namelisE group are written on the plot page and on 

the printed output.
 

B.5 DOUBLE-INTEGRAL PROGRAM 

This program was used as a check on the results of the single-integral
 

program and also to calculate the effects of reflector surface perturbations
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THE PUSCH [I FSIRALS 

FNAM 1 
XKC= 62.831848 ,YI= 0.0 ,DY= 0.50000000 ,X= 2.0243931 ,X2= 2.5964861 

3.1415930 ,P= 0.0 .)P= 45.000000 ,F00= 0.3q999998 DOL= 10.000000 
CEND 
CNAM2 
Ml 1,M2= 5,Nl= 20,N2 = 4,N3= 18,NY= 60,NP= 

43,ISPOT= O,irRFQ= I 
&END 
&NAM3 
GMAX= 45.000000 ,GMIN= -30.000000 ,XMAX= 30.000000 
&END 
CNAM4 
TH= 0.0 ,SIG= 0.0 ,FPEQ= 0.0 ,SE= 0.0 ,SH = 0.0 

31,1SC= 0 
&END 
PARABULOII, TRAP. TOOTH FEED, D/L=1O., P/D=O.4 

,X3= 2.7028809 

OFN= 

,IFEED= 

,X4= 

439 IAR= 

1,NPHI-

THF FIX) FUNCTION FOLLOWS 

i-
It) 
.p. 

-0.1797750E 01 
-0.2010286E 01 
-0.2192443C 01 
-0.2335698E 01 
-0.2427933E 01 

-0.2481852F 01 
-0.2500000E 01 

-0.1829662[ 01 
-0.2038353F 01 
-0.?215543F 01 
-0.2351790C 01 
-0.2437778F 01 
-0.2486656F 01 

-0.1861100E O 
-0.2065775F 01 
-0.22378526 01 
-0.2367102F 01 
-0.2446916E 01 
-0.2490723E 01 

-0.1892037E 01 
-0.2092529E 01 
-0.2259355F 01 
-0.2381623E 01 
-0.2455344E 01 
-0.2494063E 01 

-0.1922448E 01 
-0.2118594E 01 
-0.2280031C 01 
-0.2394228E 01 
-0.2463056E 01 
-0.2496659E 01 

-0.1952311E 01 
-0.2143948E 01 
-0.2299864E 01 
-0.2406151E 01 
-0.2470046E 01 
-0.249B514F 01 

-0.1981598E 01 
-0.2168571E OL 
-0.2318840E 01 
-0.24173896 01 
-0.2476313E 01 
-0.2499628E 01 

THE GIX) FUNCTICN F0LLOOS 

-0.11235966 01 
-0.9922008E 00 
-0.8211578E 00 
-0.6194816E 00 
-0.4182969E 00 
-0.2122295E 00 
-0.8192341E-06 

-0.1107470E 01 
-0.9700503E 00 
-0.7938673k 00 
-0.59038751 00 
-0.3894656E 00 
-0.1821466E 00 

-0.1090438E 01 
-0.9471061C 00 
-0.7659274F 00 
-0.5608756E 00 
-0.3604042F 00 
-0.1519544E 00 

-0.1072515E 01 
-0.9233868E 00 
-0.7373610E 00 
-0.5309670E 00 
-0.3311275E 00 
-0.1216719E 00 

-0.1053713E 01 
-0.8989122E 00 
-0.70819tE 00 
-0.5032319E 00 
-0.301641E 00 
-0.9131706E-01 

-0.1034049E 01 
-0.8737021E 00 
-0.6784418E 00 
-0.4751969E 00 
-0.2720016E 00 
-0.60908LE-01 

-0.1013540E 01 
-0.8477773E 00 
-0.6481365E 00 
-0.4468796E 00T 
-0.2421875E 00 
-0.3046289E-01 

THE INDEPENDENT VARIABLE OF F(X},GIX) 

0.2024393E 01 
0.2224626E 01 
0.2424858E 01 
0.72623084E 01 
0.28003726 01 
0.2970983E 01 
0.3141592E 01 

0.2052998E 01 
0.2253230E 01 
0.2453463E 01 
0.2649683E 01 
0.2824745E 01 
0.2995355F 01 

0.2081602E 01 
0.2281835E 01 
0.2482067E 01 
0.2676282E 01 
0.28491176 01 
0.3019728E 01 

0.211OZ07E 01 
0.2310439E 01 
0.2510672E 01 
0.2702881E 01 
0.2873490E 01 
0.3044101E 01 

0.2138811E 01 
0.2339044E 01 
0.2539276E 01 
0.2727253E 01 
0.2897863E 01 
0.3068474E'01 

0.2167416E 01 
0.2367648E 01 
0.2567881E 01 
0.2751626E 01 
0.2922236E 01 
0.3092847E 01 

0.2196020E 01 
0.2396253E01 -
0.2596486E 01 
0.2175999-T--
0.2946609E 01 
0.31172206E 01 

-

Figure 43 COMPUTER PRINTOUT FOR A TYPICAL RUN (SHEET 1 OF 5) 



THE INPUT FUNCTIONS AR,AI,....DR,DI WITH M= I 

BR FUNCTION 
0.4410523E 00 
0.9622769C 00 
0.1585752E 01 
0.2192820F 01 
0.2638460E 01 
0.2918908E 01 
0.3016625E 01 

0.5054256F 00 
0.1047592F 01 
0.16766b15 01 
0.2267469E 01 
0.2688568E 01 
0.2944626E OL 

0.5735856E 00 
0.1134719E 01 
0.1767005E 01 
0.23397205 01 
0.2735521E 01 
0.2966512E 01 

0.645?952E 00 
0.1223317E 01 
0.1656438E 01 
0.2409339E 01 
0.2779192E 01 
0.29844POF 01 

0.7202985E 00 
0.1313059E 01 
0.1944644E 01 
0.2470623E 01 
0.2819481E 01 
0.2998518E 01 

0.7983228E 00 
0.1403606E 01 
0.2031271E 01 
0.2529346E 01 
0.2856258E 01 
0.3008564E 01 

0.8790793E 00 
0.14946175 01 
0.2116005E 01 
0.2585339E 01 
0.2889431E 01 
0.3014619E 01 

81 FUNCTION 
-0.5285669E-05 
-0.5766070E-05 
-0.9502008E-05 
-0o.13139625-04 

-0.6057133E-05 
-0.6777291E-05 
-0.2009346b-04 
-0.1358693E-04 

-0.3436988F-05 
-0.1359873F-04 
-0.1058809E-04 
-0.1401987F-04 

-0.3866680E-05 
-0.1466051E-04 
-0.2224797E-04 
-0.14437035-04 

-0.4316108E-05 
-0.1573599E-04 
-0.2330504E-04 
-0.2960848E-04 

-0.4783638E-05 
-0.8410570E-05 
-0.1217161E-04 
-0. 1515611E-04 

-0.1053508E-04 
-0.8955916E05 
-0.1267934E-04 
-0.3098328E-04 

U-J -0.1580994E-04 
-0.17490415-04 
0.0 

-0.1611019F-04 
-0.3528903F-04 

-0.1639154E-04 
0.0 

-0.3330644E-04 
-0.1788333E-04 

-0.3378930E-04 
-0.3593491E-04 

-0.3423003E-04 
-0.1802764E-04 

-0.3462758E-0­
0.0 

CR FUNCTION 
0.6718964E 00 
r.1233175E 01 
0.1826870E 01 
0.2352966E 01 
0.2717947E 01 
0.2940291E 01 

0.3016575E 01 

0.7472885E 00 
0.1321103E 01 
0.19082008 01 
0.2415204E 01 
0.2758049F 01 
0.2960427E 01 

0.8248969E 00 
0.1406277E 01 
0.1988055E 01 
0.2474997E 01 
0.2795486E 01 
0.2977532E 01 

0.9044403E 00 
0.14914455 01 
0.2066210E 01 
0.2532212E 01 
0.2830173E 01 
0.2991543E 01 

0.98561925 00 
0.1576336E 01 
0.2142454E 01 
0.2582273E 01 
0.2862046E 01 
0.3002488E 01 

0.L0681585 01 
0.1660697 01 
0.2216599E 01 
0.2629971E 01 
0.28910585 01 
0.3010314E 01 

0.1151771E 01 
0.f0442-8E U1 
0.2288417E 01 
0.2675218E 01 
0.2917164E 01 
0.3014997E 01 

CI FUNCTION 
-0.8052156E-05 
-0. 7407297E-05 
-0.10946815-04 
-0.14099245-04 
-0.1628624E-04 
-0.1761854-C4 
0.0 

-0.8955673E-05 
-0.79161995-05 
-0.2286829F-04 
-0.14472185-04 
-0.1652652E-04 
-0.3547841F-04 

-0.4942875E-05 
-0.1685313E-04 
-0.1191265E-04 
-0.1483046E-04 
-0.1675087E-04 
0.0 

-0.5419507E-05 
-0.1787380E-04 
-0.2476192E-04 
-0.1517330E-04 
-0.3391741E-04 
-0.1792565E-04 

-0.5905940E-05 
-0.1889115E-04 
-0.2567566E-04 
-0.3094654L-04 
-0.34299405-04 
-0.3598249E-04 

-0.6400526E-05 
-0.9951083E-05 
-0.13282115-04 
-0.1575905E-04 
-0.3464708E-04 
-0.1803813E-04 

-0.13803088"0B 
-0.1045196E-04 
-0. 1371245-047­
-0.3206040E-04 
-0.3495994E-04 
0.0 

Figure 43 COMPUTER PRINTOUT FOR A TYPICAL RUN (SHEET 2 OF 5) 



THE INPUT FUNCTIONS AR,AI,....UR,DI WITH M= I 

BR FUNCTION 
0.9493786E-01 0.1014006E 00 0.1071904- 00 0.1122482E 00 0.1165298E 00 0.1200029E 00 0.1226488E 00 
0.1244596F 00 0.1254388C 00 0.1255988E 00 0.1249619E 00 0.1235574E 00 0.1214232E 00 0.1186028W O0 
0.1151446F 00 
0.7848191E-01 

0.1111026E 00 
0.7257277E-01 

0.1065354E 00 
0.6660056E-C)l 

0.1015037E 00 
0.6061957E-01 

O.9607196E-01 
0.5517525E-0l 

0.9030598E-01 
0.4980598E-01 

0.8427262E-01 
0.4455095E-01 

0.3944701F-01 
0.1069074E-01 

0.3452916E-01 
0.7909317C-02 

0.2983195F-01 
0.5524304E-02 

0.2538608E-01 
0.3552605E-02 

0.2122233E-01 
0.2005443E-02 

0.1736872E-01 
0.8934638E-03 

0.1385140E-01 
0.2223417E-03 

-0.1299232E-05 

81 FUNCTION 
-0.1137756E-05 
-0.7457762E-06 

-0.1215208F-05 
-0.7516434E-06 

-0.6427966F-06 
-0.1505203E-05 

-0.6726031E-06 
-0.1497569E-05 

-0.6982598E-06 
-0.1480740E-05 

-0.7190710E-06 
-0.7275816E-06 

-0.1469851E-05 
-0.7106811E-06 

-0.6899591E-06 
-0.4702727C-06 

-0.1331478E-05 
-0.4348643E-06 

-0.6383721f-0b 
-0.3990783E-06 

-0.1216444E-05 
-0.363393r-o6 

-0. 1151348E-05 
-0.6612321E-06 

-0.5411237E-06 
-0.2984427E-06 

-0.50497OE-06 
-0.53390872-06 

-0.2363708E-06 
-0.6406009E-07 

-0.2069024F-06 
-0.9478697F-07 

-0.1787563L-06 
0.0 

-0.3042324F-06 
-0.2128759E-07 

-0.2543333E-06 
-0.24033682-07 

-0.2081605E-66 
-0.5353733E-08 

-0.1659983E-06 
0.0 

0.0 

CR FUNCTION 
0.11794Y8E 00 0.12394941 00 0.1290947F 00 0.1333485E 00 0.1366922E 00 0.1391214E 00 0.1406416E 00 
0.1412685E 00 
0.1236224E 00 

0.1410272E 00 
0.1185511E 00 

0.1399510C 00 
0.1130210h 00 

0.1380787E 00 
0.1070980E 00 

0.1354566E 00 
0.1008498E 00 

0.1321355t 00 
0.9434187E-01 

6.1281713E 00 
0.8764285E-01 

0.8130038E-01 0.7490206E-01 0.6850171E-01 0.6214736E-01 0.5640959E-01 0.5078787E-01 0.4531925-0-­
0.4003718E-01 0.3497249E-01 0.3015787C-01 0.2561828E-01 0.2138252E-01 0.1747430E-01 0.1391693E-01 
0.1072967E-01 0.7929556F-02 0.5533956F-02 0.3556371F-02 0.2005710E-02 0.8923782E-03 0.22159032-03 

-0.2239884E-09 

CI FUNCTION 
-0.1413464E-05 
-0.8464970E-06 
-0.7407593E-06 

-0.1485438[-05 
-0.8450507E-06 
-0.1420743E-05 

-0.7735501E-06 
-0.1677203E-05 
-0.6772344E-06 

-0.7990391E-06 
-0.1654765E-05 
-0.1283486E-05 

-0.8190749E-06 
-0.1623342E-05 
-0.1208607E-05 

-0.8336310E-06 
-0.7917710E-06 
-0.5653074E-06 

-0. i685468OE-5 
-

-0.7680168E-06 
-0.52516582-06 

-0.4871613E-06 -0.4488218F-06 -0.41047012-06 -0.3773939E-06 -0.6760249E-06 -0.3043263E-06 -0.5431160E-06 
-0.2399072E-06 
-0.6429332E-07 

-0. 0955902-06 
-0.9502952E-07 

-0.16070932-06 
0.0 

-0.3070151E-06 
-0.2131015E-07 

-0.2562529E-06 
-0.2403688E-07 

-0.2094159E-06 
-0.5347228E-08 

-0.1667835E-06 
0.0 

0.0 
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THE 	INPUT FUNCTIONS ARA .... OR,DI WITH M= 5
 

BR 	 FUNCTION 
O.2869244F-01 0.2868613r-01 0.2836100E-01 

0.2318467E-01 0.?169579-01 0.20136266-01 

0.1225289E-01 0.10810930-01 O.9449892F-O2 

0.4165314E-02 0.3448687E-02 0.2818300E-02 

0.8809625E-03 U.6634127E-03 0.4873788E-03 

0.603966IL-04 0.3396794F-04 0.1633550F-04 

0.1751644F-05
 

BI 	FUNCTION
 
-0.3438566F-06 -0.34178102-06 -0.1699423E-06 

-0.1389251E-06. -n.1300035E-06 -0.2413173E-06 

-0.7342067E-07 -0.1295605L-C6 -0.5662482E-07 

-0.2495904E-07 -0.2066492r-07 -0.1688757E-07 

-0.5278824E-C8 -0. 1975241r-08 -0.2920428E-08 

-0.3619032C-09 -0.40707TO-O 0.0 


0.0
 

CR 	FUNCTION
 
0.3323221E01 0.3?85405E-0I 0.3215029E-01 

0.2524002E-01 0.2346686F-01 O.2164915E-01 

0.1284809E-01 0.1128920L-01 0.9829920E-02 

0.4264090E-02 0.3522280E-02 0.2870843E-02 

0.8899728F-Oi 0.6691007E-03 0.4905618E-03 

0.5949644E-04 0.3293408F-04 0.1607130E-04 

0.9352295E-06
 

CI 	FUNCTION
 
-0.3982622E-06 -0.3937303E-06 -0.1926481F-06 

-0.151241OE-06 -0.1406160E-06 -0.2594481E-06 

-0.7698719F-07 -0.1352922E-06 -0.5890199E-07 

-0.2555091E-07 -0.2110590E-C7 -0.1720241F-07 

-O. 5332815E-08 -0.4008722E-08 -0.2939501E-08 

-0.3565090E-09 -0.3946894E-09 0.0 

0.0
 

THE 	 INDEP. VARIABLE FOR THE AR .... 01
 
0.2024393E 01 0.2052996C 01 0.2081602E 01 

0.22246262 01 0.2253230E 01 0.2281835E 01 

0.2424858E 01 0.2453463E 01 0.2482067F 01 

0.2623084E 01 0.2649683E 01 0.2676282E 01 

0.2800372E 01 0.2624745F 01 0.?849117F 01 

0.2970983E 01 0.2995355E 01 0;3019728E 01 

0.3141592E 01
 

Figure 43 COMPUTER PRINTOUT 

0.2775051E-01 

0.1853716E-01 

0.8179497E-02 

0.2270289E-02 

0.3479733E-03 

0.7501894E-05 


-0.1662841E-06 

-0.2221533F-06 

-0.9802494E-07 

-0.1360382E-07 

-0.4170190E-08 

-0.4495215E-10 


0.3116345E-01 

0.1981711E-01 

0.8477442E-02 

0.2307259E-02 

0.3498544E-03 

0.7391444E-05 


-0.1867348E-06 

-0.2374926E-06 

-0.10159566-06 

-0.1382536E-07 

-0.4192731E-08 

-0.4429034E-10 


0.2110207E 01 

0.2310439E 01 

0.2510677E 01 

0.2702881E OL 

0.2873490E 01 

0.3044101E 01 


0.2689047E-01 

0.1692596E-01 

0.7007129F-02 

0.1835768E-02 

0.2400257E-03 

0.3682415E-05 


-0.16113072-06 

-0.2028445E-06 

-0.8397501E-07 

-0.2200024E-07 

-0.2876523E-08 

-0.4413088E-10 


0.2993686E-01 

0.1799932E-01 

0.7237304E-02 

0.1862847E-02 

0.2406898E-03 

0.3407607E-05 


-0. 1793850E-06 

-0.21570782-06 

-0.8673345E-07 

-0.2232477E-07 

-0.2884480E-08 

-0.4083753E-LO 


0.2138811E 01 

0.2339044F 01 

0.2539276F 01 

0.2727253E 01 

0.2897863h 01 

0.3068474F 01 


0.2581804E-01 

0.1532753E-0l 

0.5936854C-02 

0.1462579E-02 

0.1592906E-03 

0.2404271E-05 


-0.1547045E-06 

-0.9184430E-07 

-0.3557430E-07 

-0.8763930E-08 

-0.1908974E-08 

-0.1440666E-10 


0.2851341E-01 

0.1621828E-01 

0.6112024E-02 

0.1481469E-02 

0.1594980E-03 

0.1492814E-05 


-0.1708556E-06 

-0.9718173E-07 

-0.3662395E-07 

-0.8877116E-08 

-0.1911460E-08. 

-OB945105E-11 


0.2167416E 01 

O.2367648E 01 

0.2567881E 01 

0.2751626E 01 

0.2922236E 01 

0.3092847E 01 


0.2457063E-01
 
0.1376392E-01
 
0.4970796E-02
 
0.1146127E-02
 
0.1012958E-03
 
0.9271967E-06
 

-0.2944599E-06
 
-0.8247491E-07
 
-0.297855TE-07
 
-0.1373545E-07
 
-0.121395EE--08
 
0.0
 

0.2693454E-01
 
0.1449596E-0O[1­
0.5102035E-02
 
0.1158893E-02
 
0.1005389E-03
 
0.101333E-05
 

-O.3227896E-06
 
-0.8686141E-07
 
-0.3057198E-07
 
-0.1388844E-07
 
-O.1204880E-0
 
0.0
 

0.2196020E 01
 
0.2396253E 01
 
0.2596486E 01
 
0.2775999E 01
 
0.2946609E 01
 
0.3117226E 01
 

FOR A TYPICAL RUN (SHEET 4 OF 5)
 



THE VALU OF P= 0.0
 
0.0 PARABOLOID, TRAP. TOOTH FEED, D/L=10., f/0=0.4
 

y S T U V THETAC ID8 PHI C (DO) It, GAMMAC (DBl PI C.(OB) 
0.0 0.6545305E-03 -C.2588123E 02 -Oo0000002-19 -S10000002-19 0.28259692 02 -0.3969897 03-0.3969097E 03 0.28259692 02
 
0.5000 -0.1475642E-01 0.2571371E 02 0.100001E-19 0.1000000E-19 0.28203292 02 -0.3969897E 03 -0.14267052 03 0.28203292 02
 
1.0000 -0.59924742-01 0.2521640F 02 0.10000OOE-19 0.000002-19 0.28033682 02 -0.39698972 03 -0.1368199E 03 0.280336E 02
 
1.5000 -0.13132052 00 0.2440446E 02 0.1000000E-19 0.1000000E-19 0.27749502 02 -0.39698972 03 -0.13358272 03. 0.2774950E 02
 
2.0000 -0.22397942 00 0.23302672 02 0.10000002-19 0.10000002-19 0.27348502 02 -0.39698972 03 -0.13149572 0O3 .2734850E 02
 
2.5000 -0.33096202 00 0,21944202 02 0.10000002-19 0.1000000E-19 0.26827382 02 -0.3969897E 03 -0.13006972 03 0.2682738E 02
 
3.0000 -0.44440292 00 0.2036929f 02 0.1000000F-19 0.10000002-19 0.2618158E 0 -0.34698O2"i -0.1291330E 03 0.26161582 02
 
3.5000 -0.5560953L 00 0.1862364 02 0.10000002-19 0.1000000--19 0.2540514E 02 -0.3969897E 03 -0.12857192 03 0.2540514E 02
 
4.0000 -0.65802392 00 0.16756582 02 0.10000002-19 O.1000002-19 0.24490392 02 -0.39698972 03 -0.12832852 03 0.2449039E 02
 
4.5000 -0.74280862 00 0.14819132 02 0.1000000F-19 O.OOOOOOF-19 0.2342735E OZ -0.3969897E 03 -0.1283704E 03 0.2342735E 02
 
5.0000 -0.80455722 00 0.12861992 02 0.1000000E-19 0.1000000E-19 0.2220311E 02 -0.39698972 03 -0.65211231 02-0.2220311E 02
 
5.5000 -0.8388264E 00 0.1093370E 02 O.IO00000E-19 0.1000000F-19 0.2080081E 02 -0.39698972 03 -0.12925832 03 0.2080081E 02
 
6.0000 -0.84354742 00 0.9078845F 01 O.O00000E-19 0.100000E-19 0.1919794E 02 -0.396980Th 0p 0.1301050 03 0.19fl194E 02
 
6.5000 -0.8185100E 00 0.73365966 01 0.100000E-19 0.1000000E-19 0.17363602 02 -0.3969897E 03 -0.1312498E 03 0.1736360E 02
 
7.0000 -0.7659987E 00 0.57394502 01 0.10000OOE-19 0.000OOOE-19 0.1525408E 02 -0.3969897E 03 -Z3 i 3 0.15254082 oz
 
7.5000 -0.68965762 00 0.43124171 01 0.1000000E-19 0.1000000E-9 0.12804082 02 -0.3969897E 03.-0.1345726E 03 0.120408E 02
 
A.0000 -0.59507052 00 0.3072434E 01 0.10000OOE-19 0.10000002-19 0.9909583E 01 -0.39698972 03 -0.13690"E 03 0.990583E 01
 
8.5000 -0.4889164E 00 0.20283232 01 0.100000E-I9 0.1000000E-19 0.63880192 01 -0.39698972 03 -G.1399085E 03 0.631195 0$
 
9.0000 -0.37833202 00 0.11810712 01 0.l0000002-19 0.I000000E-19 0.1869743F 01 '-0.3069897E 03 -0.1439343E 03 0.181971E O
 
9.5000 -0.2705367E 00 0.5243511E 00 0.100000E-19 0.10000002-19 -0.45825332 01 -0.3969897E 03 -0.1499210E 03 -0.4582533E 01
 
10.0000 -0.1722547E 00 0.45503262-01 0.1000002-19 0.000000F-19 -0.14983622 02 -0.39698972 03 -0.159880-03 -0o.498362E 02
 
10.5000 -0.89105192-01 -0.2733158E 00 O.100000E-19 O.IO00000E-19 -0.10828032 02 -0.39698972 03 -0.15530602 03 -0.10828032 02
 
11.0000 -0.25317272-01 -0.4538589E 00 0.100000F-19 0.1000000E-19 -0.68480892E 01 -0.3969897E 03 -0.l50926E 03 -0.6848089E 01
 
11.5000 0.16554452-01 -0.5204010E 00 O.IO00000E-19 0.10000002-19 -0.56688452 01 -0.39698972 03 -0.1493664E 03 -0.5666845E 01
 
12.0000 0.3590424E-01 -0.4982654F 00 0.10000002-19 O.IO00000E-9 -0.60282912 01 -0.o96997C0 -0.1493614E 03 -0.6028291E 04
 
12.5000 0.33786428-01 -0.41258012 00 0.100000E-19 0.1000001E-19 -0.7660810E 01 -0.39698972 03 -0.15064472 03 -0.76608OE 01
 
13.0000 0.1301544E-01 -0.2870121E 00 0.10000002-19 O.00000E-19 -0.1083307E 02 -0.3969897E 03 -0.1S34820E 03 -0.1083307E 02
 
13.5000 -0.2223459E-01 -0.14275332 00 0.100000E-19 0o.000000E-9 -0.16804172 02 -0.39698972 03 -0.1591311E 03 -0.168041TE 02
 
14.0000 -0.6684476F-01 0.22112692-02 0.1000000E-19 O.100000E-19 -0.23493902 02 -0.39698972 03 -OZI55T0E 03 -0.23493908 02
 
14.5000 -0.1151275E 00 0.13363162 00 0.100000E-19 0.100000E-19 -0.15070752 02 -0.3969897E 03 -0.1567894E 03 -0.15070752 02
 
15.0000 -0.16145782 00 0.2412075E 00 0.10000002-19 0.I0000005-19 -0.10744Ml27U -0.39698972 03 -0.8870"652 02 -0.107431E 02
 
15.5000 -0.2005214E 00 0.31866322 00 0.1000000F-19 0.10000002-19 -0.84846122 01 -0.3969892E 03 -0.14963732 03 -O.8484612E 01
 
16.0000 -0,2279782E 00 0.36332251 00 0.100000E-19 O.I00000E-19 -0.73523572 01 -0.39698972 03-O;0 823622 03 -0.7352357E 01
 
L6.5000 -0.24059302 00 0.37584032 00 0.1000000E-19 0.1000000E-19 -0.7008391E 01 -0.3969897E 03 -0.14763222 03 -0.7008391E 01
 
17.0000 -0.23660142 00 0.35946C92 00 0.I0000002-19 0.1000000E-19 -0.73237712 01 -0.39698072 03 -b.i476957E 03 -0.732377TE ol
 
17.5000 -0.2157151E 00 0.31939652 00 O.I00000E-1q O.1000000E-19 -0.8281361E 01 -0.3969897E 03 -0.148409E 03 -0.8213618 01
 
18.0000 -0.17915472 00 0.26207072 00 O.o00000oF-q 0.100000E-19 -0.9966367E"01 9379lE 03 -0.996636Th 0
03 -D.1498574E 

18.5000 -0.1294671F 00 0.1943991E 00 O.00000E-19 0.10000002-19 -0.1263183E 02 -0.39698972 03 -0.1522929E 03 -0.1263183E 02
 
19.0000 -0.7029253E-01 0.12315712 00 0.1000000E-19 0.l000000E-19 -0.16966162 02 -0.3969897E 03 -JbZ164039E 03 -0.169661&E 02
 
19.5000 -0.6013110E-02 0.5438843F-01 0.IOOOOOOE-19 0.1000000E-19 -0.2523709E 02 -0.3969897E 03 -0.1644577E 03 -0.2523709E 02
 
20.0000 0.58636932-01 -0.695528LE-02 0.10000002-19 0.100000E-19 -0.2457588E 02 -0.39698972 03 -0;7635854E 03 -0.24575GE 02
 
20.5000 0.11892962 00 -0.57323622-01 0.100OOOE-19 0.1000000E-19 -0.1758696E 02 -0.3969897E 03 -0.1563911E 03 -0.175849&E 02
 
21.0000 0.1706005E 00 -0.94617782-01 0.10000002-19 0.10000002-19 -0.14195642 02 0:39-6497t, 03 -0.1527997t 03 -0.1641 02
 
21.5000 0.21008352 00 -0.1182554E 00 O.100000E-9 0.1000000F-19 -0.1235678C 02 -0.3969897E 03 -0.1507659E 03 -0.1235616E 02
 
22.0000 0.23487292 00 -0.1289114F 00 0.1000000E-19 0.1000000E-19 -0.11439752 02 -0.3969897E 03 -6.1f 8g 03 -O1143915E 02
 
22.5000 0.24360602 00 -0.1283380F 00 O.00000E-19 O.I00000E-19 -0.1120248E 02 -0.39698972 03 -0.14923632 03 -0.112024 02
 
23.0000 0.2361584E 00 -0.1190131E 00 0.10000OOE-19 0.1000000F-19 -0.1155306E 02 -0.39698972 03 -0.1440C25 03 -0.11553-06e 02
 
23.5000 0.2136132E 00 -0.1038365F 00 0.10000002-19 0.1000000E-19 -0.1248623E 02 -0.39698972 03 -0.1501629E 03 -0.12486232 02
 
24.0000 0.1780913E 00 -0.8577514E-01 0.10000002-19 0.1000000F-19 -0.14081132 02 -0.39698972 03 0.15I58552 03 -0.148 13E 02
 
24.5000 0.1326141F 00 -0.6754994E-01 0.1000000E-19 0.10000002-19 -0.1654636 02 -0.39698972 03 -0.1538824E 03 -0.16546362 02
 
25.0000 0.80700702-01 -0.5136745h-01 O 00000E-1 O.IO00000E-19 -0.2038521E 02 -0.39698972 03 -0.15755692 03 -0.2038521E 02
 
25.5000 0.26161872-01 -0.3878408E-01 0.1000000E-19 0.10000001-19 -0.2659854E 02 -0.3969897E 03 -0.1636095E 03 -0.26598542 02
 
26.0000 -0.27173281-01 -0.306fs8282-01 O.IO00000-19 O.IOO00OOU-19 -0.2774649E 02 -0.39698972 03 -0.164660022 030-27749L 02
 
26.5000 -0.75877672-01 -0.27153(06h-01 0.10000002-19 0.10000OOE-19 -0.21874392 02 -0.3969897E 03 -0.15857452 03 -0.2187439E 02
 
27.0000 -0.11705522 00 -0.2762660E-01 0.10000002-19 0.10000002-19 -0.1839676E 02 -0.3969897F'03 -0.1549465E 03 -a.1839676E 02
 
27.5000 -0.1485432E 00 -0.3103993r-01 O.00000-19 0.1000000E-19 -0.16377332 02 -0.39698972 03 -0.15277992 03 -0.1637733E 02
 
28.0000 -0.1690706E 00 -0.3594691E-01 O.ICO00OOE-19 0.10000002-19 -0.15246622 02 -0.3969897E 03 -0.15150512 03 -.15246622 02
 
28.5000 -0.1782447E 00 -0.40778912-01 0.10000002-19 0.10000002-19 -0.1475810E 02 -0.3969897E 03 -0.1508755E 03 -0.14758102 02
 
29.0000 -0.1764845E 00 -0. 43q'd6?E-01 O.O00000E-19 0.1000000k-19 -0.1480411F 02 -0.3969897E 03 -0.15078332 03 -0.148041E 02
 
29.5000 -0.1650502E 00 -0.4425I312-01 0.10000002-19 0.10000002-19 -0.15346202 02 -0.39698972 03 -0.87719652 0 -0.1534621F 02
 

Figure 43 COMPUTER PRINTOUT FOR A TYPICAL RUN (SHEET 5 OF 5) 



in the 	 ''direction on the antenna pattern.
 

B.5.1 	 Mathematical Background
 

The feed field equation used in the double-integral program was of
 

the form 

The e and _ components of the scattered field are
 

S p 	 0,(B-17) 
0 

- 9~. 271
 
-E __ e 7 0' 
 -(B-18) 

2/7 - . (lhd d36 
0 

where
 

- [[cos O'cos&cos(95'-0) + s5n16'Sn, 	 (B-in) 

+ £4 y 	 cos s 

i 0 '(xF) # (Elle {'s5/6&t' (t1193)
 

- COS O'SI17(-)}CE0 cos(0,'-0)) .(B 
 -2 0) 

?(02 0, e =z 5(& '))o- cos'-Cose'). ,sion5,O'cosok30)) 

where S(olj is the reflector surface perturbation relative to the surface
 

defined in Table 17.
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B.5.2 Functional Flow
 

The functional flow of the double integral program is outlined in
 

Figure 44. The figure shows the general processing flow; subroutine subordination
 

and recycle paths. As in the single-integral program, the data cards containing
 

the reflector profile information are read in at the beginning of the jrogram.
 

If the cards are not available, the reflector profile data are computed in sub >
 

routine AFIX. One version of AFIX is used for a parabolic-conical surface
 

and another for a purely parabolic surface.
 

The subroutines SIMP and FIELD are called every time 6''is incremented
 

in the main program. These routines perform a Simpson's rule integration
 

over and this is the main difference between the siigle- and double-integral
 

programs. In the single-integral program, the O'integration is previously
 

performed analytically to give a series of Bessel functions.
 

Subroutine SURF brings in different surface perturbations according
 

to the namelist parameter ICODE. The possibilities are: torsional pertur­

bations only, thermal only or torsional plus thermal.
 

B.5.3 Program Usage
 

With the exception of the reflection data discussed in Section B.4.2
 

and an initial identification card, all input data and control parameters are
 

read on FORTRAN namelists. The namelist variables in order of appearance
 

will be briefly described.
 

B.5.3.1 Namelist NAM I
 

Yl initial value of the observation angle e (Figure 41)
 

DY increment in 0
 

XI...X4 e ... as defined in Figure 41, Section B.4.1.4 

P1 initial value of the observation angle b (Figure 41)
 

DP increment in 0
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READ RESUBOUTNE CMPUT 

R A AD 

FEDAFToA 

SUBOUTNE 
13RMLOIENTS 

SBOUTIE 

TREFLECTORO T I O P T 

ANEN RELCO 

, ,PO.BUE 

I 
L 

O 

COF IC ES 

UF 
APS 
FAEONTTNVPERTURGATIONOB 

INTGTIONPERFORMOM0 'REYEER 

RFC O MONG T 

PAT 
ERN 

CY L 

SUBROUTINE 

Fg r 44 F N T O FLWORIGPRG A C OSPL RZ D O B -NT G A PR RA 

FOR IMP IELDCOMPNENT 



B.S.3.2 Namelist NAM 2
 

NiN2,N3 the number of integration intervals from Xl to X2, X2 to
 

NY 


NP 


IFN 


ISPOT 


INFREQ 


B.5.3.3 Namelist 


DOL 


FOD 


LI,L2 


B.5.3.4 Namelist 


GMAX 


GMIN 


XMAX 


B.S.3.5 Namelist 


TH 


SIG 


FREQ 


SE 


X3, and X3 to X4 (each must be even because Simpson's
 
rule is used)
 

number of e observation angles minus 1
 

number of 0 observation angles minus 1 

number of y ( 0' )'s etc. on cards; if zero, they 
are computed by AFIX 

print code, if equal to 1: print intermediate results;
 
if equal to zero: no print
 

number of program cycles due to frequency change
 

NAM 3
 

D/A ratio (diameter/wavelength)
 

F/D ratio (focal length/diameter)
 

determine the number of integration intervals in the
 
S loop (must be even because Simpson's rule is used)
 

NAM 4
 

maximum dB level of plotting abscissa
 

minimum dB level of plotting abscissa
 

maximum 9 value of plotting ordinate
 

NAM 5
 

reflector grid thickness in meters
 

reflector grid conductivity in mho/meter
 

frequency if a grid is used (mHz)
 

E-plane feed phase error (Section B.4.1.4)
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SH H-plane feed phase error (Section B.4.1.4) 

ISC surface code, if equal to 1: perturb surface, if equal 
to 0: no perturbation 

B.5.3.6 	Namelist NAM 6 (for subroutine AFIX)
 

Nl,N2,N3 the number of intervals for which the reflector data are
 
to be computed from XI to X2, X2 to X3, X3 to X4
 

B.5.3.7 	Namelist NAM 7 (for subroutine GRID)
 

DPG 	 grid 9' dimension (meters) 

DTG grid 0'dimension (meters)
 

WPH grid tspacing (meters)
 

WTH grid 9' spacing (meters)
 

B.5.3.8 	Namelist NAM 8 (for subroutine SURF)
 

MODE 	 the value of ICODE determines the type of surface
 
perturbation to be used; torsion only, thermal
 
only to torque and thermal
 

B.5.4 	 Sample Output
 

Figure 45 shows a typical computer output having feed phase
 

error, a solid paraboloid reflector (no grid)-, surface perturbation and already
 

available reflector data read from cards. The namelists read in the main
 

program are printed out first, followed by reflector data. The resulting
 

e , 0 , y and Y/ field.components are printed as gain over isotropic 

in dB units as a function of each observation angle 0 . The columns labeled 

FIRST SUM, SECOND SUM and THIRD SUM are the real and imaginary parts of the­

three regions of e' integration XI to X2, X2 to X3 and X3 to X4, respectively. 
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TE DOUBLE INTEGRALS
 

PARA., CONICS. TRAP. TOOTH. D/L=24,F/D=.443,SE=.3ORSH'.109,DINT, PP0
 
ENAMI " 
Vim 0.0 tDY. 0.25000000 ,XI- 2.t40194 .X2= 2.6273793 .X3' 7.7Z3949 ,X4= 3.1415902 8Pl 

qO.O00000 .DP 0.0 
SEND 
ENAM2
 
NI 44,N2= 17N3m 40,NY= 60,NP' OTFN= 97,IS-IT= LIFREQ.
 
SEND
 

0OL. 24.000000 FOO 0.4429q0q6 Ll= 6,L2= ID
 
EEND
 
F.NAM4= 
 = 

GMAX 45.000000 *G4IN -30.0000DO XMAX. 15.000000
 
&END
 
ENAM5
 = 

TH 0.0 .SIG 0.0 ,FREO= 50.00000 .SE= OS.999999641.01,54=0.9 9999 6


-OIFI1SE-c.tFED= Isc
9

EEND
 

THE FIX) FUNCTEON FOLLOWS
 

-0.1712083E 01 -0.1723206E 01 
 -O.1734249E 01 -0.745214E 01 -0.17560"5F 01 -2,1766891E 01 -0.17776031E OL

-0.1798231E 01 -0.1798767F 01 -0.1809216E 01 -0.19L9572F 01 -0.182983,F 01 -0.194ono 
n1 -0.1950086E 01
 
-0.18600651 
01 -0. 186qQ48E 01 -0.1879733E 01 -0.1889417F 01 -0.1899995r 01 -O.908478E O -O.1t785E 01
 
-0.1977121E 01 -0. 1936284E 01 -0.1945339E 01 -0.1954287E 01 -0.1953122E 01 -0.1971948E 01 
 -0.1980458E 01
 
-0.1988956E 01 -0.199'340E 01 -0.2005610E 01 -0.2013760E 01 -0.20217q91 01 -0.2029704E 01 -0.2037498E 01
-0.2045169 01 -0. 2052717E 01 -0.20601431 01 -0.206744&E 01 -0.2074621E 01 -0.72381673E 01 -0.2089593E 01 
-3.20953R9E 01 -0.2107055E 01 -0.2108591e 01 -0.2113256E 01 -0.211776F 01 -0.?t2130E 01 -0.2176341E 01
-D.21303q9E 01 -Dh2134301E 01 -0.2139054F 01 -O.Z14653F 01 -0.2145099F 01 -0.2148390E 01 -0.2151526E 01
-0.2154510E 1 -0.?160891E 08 -0.2167032E 01 -0.2172939E 01 -0.2178610E 01 -1.21840421 01 -0.2t8237E 01 
-0.7194192E 01 -0.2198909E 01 -0.2203384F 01 -0.2207622F 01 -0.2211617F 01 -0.7215372E 01 -0.2218884E 01 
-0.2222156E 01 -0.222514E 01 -0.2227971F 01 -0. 223051SF 01 -0.2232818E 01 -O.?23487SE 01 -0.2236689E 01 
-0.2238256E 01 -0. 2239591E 01 -O,2240664E 01 -0.2241502F 01 -0.24ZO95E 01 -0. 224 442E 01 -0.2242 549E 01
-0.2242407E 08 -0.2742023F 01 -. 2241343E 01 -0.22405201 01 -0.2239403F 01 -0.7238O40E 01 -0.2236434E 01 
-0.2234584F 01 -0.22324926 01 -0.7230196F 01 -0.2727974E 01 -0.7274752F 01 -0.2221688E 01 

THE G(X) FUNCTION FOLLOWS
 

-*9661877F 00 -0.95938321 00 -Oq?4503E 30 -0.943900E 00 -0.93820381 00 -o.q308926E 03 -0.9234568 00 
-0.9158977E O0 -0.90821641 D0 -0.9004143E 00 -0.8q249151 00 -0.8944495E 00 -0 .762895E 00 -0.8680125E 00 
-1.856204E 00 -0. 851112E 00 -0.8424916E 00 -0.8337579E O -O.24q137F 00 -0.8159586F O0 -0.8068945E 00 
-0.7977228E 00 -0.7884494F 00 -0.77906?OE 00 -0.76957451 n0 -9.7599844E 00 -0.7502927E 00 -0.74050181 00 
-0.7306111E 00 -0.7206230F 00 -0*710397E 00 -0.7003604E 00 -0.6900877E O0 -0.6797228F 00 -0.6692674E 00 
-0.65-7234F 
02 -0.6480q0'F 00 -0.6373714F 00 -0.6765669F 00 -O 154790F OG -0.6047097F 00 -0.5936587E 00
-0.5825286E 0 -0. 5713207E 00 -0.5600370F 00 -0.5421703F 00 -0.524262'F 00 -0.5063176E 02 -0.4883364E 00
-0.47032?0E 00 -0.4522719E 00 -0*434J041 00 -0.416075q 00 -0.397934 E 00 -0.378762SF 01 -0.3415634E 00 
-0,6221793E 00 -0.5996510 00 -0.5770571E 00 -0.5544004F 00 -0.531683'1 00 -0*50890P2E On -0.4R60780F 00 
-. 4631-43E 00 -0.44026076 00 -0.4172792E 00 -0.39475091 n0 -0.3711803F 00 -0.1480694E 33 -0.3249204E 00 
-0.30t7362E O -0.78519tq9F 00 -3.25527151 00 -0. 2 3196 0 -04086o5F 00 -0.1853719F 00 0.16202841 00 
-0.1386670E 00 -0. 115290E 00 -0.9190194C-01 -Q.69502b0F-O -0.4509640F-01 -0*2l6q493F-0I 0.1728783E-0? 
0.7514371-0I 0.4855304F-01 0.719S84OF-1I 0.9535615E-01 
 O.I87437E 00 0.1421I90e o0 0.1694767F 00 
0.18RA1731 00 0.212137AF 00 0.2354349F IP 0.29 7062F 00 0.2894913F O 0.3058420E 00
 

THE INDEPENDENT VARIABLE OF FIX),G(XI
 

0.2114021E 08 . 0.2125592F 0 0.71371 36F 01 0.2t4gh891 01 0.21S0421 O 0.71717QE 08 0.21A3350F 01
0.210490Z 01, 0.2206456F 01 0.2218010E 1I 0.222q564F 01 0.2741117F 01 0.2792670F 01 0.2264224F 08 
0,2275TTE 01 0.2287330 08 0,229R894F 01 0.2310431E 01 n.2321qq r 01 0.2333s46F 01 0.23450q9E 08 
0.7356652F 08 0.2368209R 01 0.2379760E 08 0.219t314F 01 0.2402866F 01 0.24144C0E 01 0.2425974E 01 
0.2437578F 01 0.24490O0E 0 0.7460634E 01 0.2477188E 01 0.2483747F 0l 0.7495296F 08 0.25068B 01 
0.29184011E 0 0,25299561 O 0.2541510F 08 0.2553062F 01 0.2564616F 01 0.2574t7OF 08 0.2587724F 01 
0.2599277E 01 0.261OR30F 08 3.2622384F 01 0.2630944E 01 Ot263q314F 08 0.2647779F 01 0.26'6242E 01 
0.7664706E 01 0.267317?F 01 0.268137E 01 0.26901026 01 0.26q5651 01 0.2707029E 01 0,2715494E 01

0.27239601 01 , 0.2734401F 08 0.2744842E 01 0.2755281F 01 0.7765722F 01 0.7776163F 01 0.2786606E 01
 
0.27970461 08 - 0.2807487F 08 0.2R879261 01 0.822067E 01 0.78388081 01 0.7849290F 1 0.2859691E 01
0.07311 01 [,'0.28057E 01 02881012F 01 0.2901454E 01 0.2 ll8951 01 0.'922336E 08 0.293775E 01 
0.2943216E 01 0.2953657E 08 0.2q6409F 01 0.2745401 r1 0.2Q849811 01 0.2995420E 08 0.3009861E 01 
7.3016302E 01 0.3026744E 01 0.30371SE 01 0.3047626C 01 0.30q8065E 01 0.3068506E 01 0.3078947E 01 
n.3080389E 01 0.309830E 01 0.311O?71F 01 0.3120710E 01 0.3131151E 01 0.31415q3E 01 

Figure 45 COMPUTER 'PRINTOUT, DOUBLE-INTEGRAL PROGRAM (SHEET 1 OF 3) 



THE VAtU OF P= 0.899994! 02
 
0.8999994E 02 PARA.. CONICS. TRAP. TOOTH, D/L=24F/D=.43,SE=.308SH .108, ONT.PP0
 

THETA FIRST SUM SFCOND SUM THIRD SUM THETA C (00) PHI C.(3) GMAtJBI&.L
 
0.0 -0.105E 01 O.T1SE 00 0.633E-02 0.545E-01 0.411E-01 0.205E-01 -0.100E 01 0.790E 00 0.211E 01 0.211E 01
 
Twr 5OE-I -0.105E 02 0.243E 00 -0.471E 00 -0.210E 01 0.342E 01 -0.192E 01 -0.751! 01 O0"-0'mri-w6.rvir-­
0.25 -0.943E 00 0.644E 00 0.STTF-02 0.582E-01 0.418E-01 0.177E-01 -0.893E 00 O.T20E 00 0.119E 01 0.119E 01
 
0.25 -0.4781-01 -0.116E 02 0.258E 00 -0.361E 00 -0.213r 01 0.328E 01 -0.192E 0! -0.869E 01 0.190E 02 0.0qO 02
 
0.50 -0.79TE 00 0.566E 00 0.116E-01 0.612E-01 0.425F-01 0.146E-01 -0.743E 00 0.642E 00 -0.164E 00 -0.164! 00
 
0.50 -0.219E 00 -0.124E 02 0.274E 03 -0.240E 00 -0.213E 01 0.313E 01 -0.208F 01 -0.451F O o.Iq9E 02 O.196t 62
 
0.75 -0.615! 00 0.484E 00 0.148E-01 0.636E-01 0.429E-01 0.113E-01 -0.557E 00 0.559E 00 -0.206E Ot -0.206E 01
 
0.75 -0.570E 00 -0.128E 02 0.291E 00 -0.112E 00 -0.212E 01 0.298E 04 -0.240F 01 -0.992F 01 0.202! 02 0.262E 62
 
1.00 -0.408E 00 0.399E 00 O.R?E-O1 0.654E-01 0.433E-01 0.780E-02 -0.346! 00 0.473! 00 -0.464E 01 -0.464E 01
 
1.00 -0.108E 0! -0.127E 02 0.316E 00 0.210E-01 -0.210E 01 0.282! 01 -0.206E 01 -0.988E 01 0.202E 02 0.202E 02
 
1.25 -0.1195 00 0.104E 00 -0.263E-01 0.511E-01 0.303E-01 -0.328E-02 -0.115E 00 0.152E O0 -0.144E 02 -0.144E 02
 
1.Z5 -0.617! 00 -O.OTE 02 0.332! 00 0.108E 01 -0.297E 01 0.241! 01 -0.326E 01 -0.725! 01 0.180! 02 0.180E 02
 
1.50 0.493E-01 0.7776-01 -0.274E-01 0.517E-01 0.297E-01 -0.659E-02 0.516E-01 0.123E 00 -0.175E 02 -0o.175 02
 
I;50 -0.157E 01 -0.975E 01 0.315E 00 0.119E 01 -0.205E 01 0.229F 01 -0.470E 01 -0.627F 01 0.179E 02 0.177-2
 
1.75 0.215E 00 0.639E-01 -0.279E-01 0.521E-01 0.290E-01 -0.994E-02 0.216F 00 0.1061 00 -0.124E 02 -0.124E 02
 
1.75 -0.255E 01 -0.839E 01 0.302F 00 0.130E 01 -0.290E 0! 0.217C 01 -0.515! 01 -0.492E 01 0.170! 02 0.170E 02
 
2.00 0.3706 00 0.609E-01 -0.276E-01 0.522E-01 0.282E-01 -0.133E-01 0.370E 00 0.998E-01 -0.832E 01 -0.832E 01
 
2.00 -0.347E 01 -0.671E 01 0.2Q5! 00 0.139F 01 -0.284 01 0.205E 01 -0.60ZE 01 -0.327! 01 0.167! 02 0.1611 02
 
2.25 0.507! 00 0.667E-01 -0.2681-01 0.521E-01 0.2T1E-O -0.166E-01 0.50BE 00 0.102E O -0.572! 01 -0.572E 01
 
2.25 -0.429E 01 -0.482! 01 0.293F a0 0.147E 01 -0.277! 01 0.193E 01 -0.676E 01 -0.142E 01 0.168! 02 0.168! 02
 
2.50 0.621E 00 0.786E-01 -0.253F-01 0.516E-01 0.259E-01 -0.199E-01 0.671 00 0.110E 00 -0.400E 01 -0.400! 01
 
2.50 -0.493E 01 -0.283E 01 0.29E 00 0.153F 01 -0.266! 01 0.181E 01 -0.731E 01 0.510F 00 0.173C 02 0.173! 02
 
2.75 0.705E 00 0.932E-01 -0.233!-01 0.513E-01 0.246E-01 -0.231E-01 0.706! 00 0.121E 00 -0.2qOE O -0.290E 01
 
2.75 -0.535! 01 -0.852E 00 0.308! 00 0.157E 01 -0.257! 01 0.166E 01 -0.761E 01 0.241E 01 0.180! 02 0.180E 02
 
3.00 0.756! 00 0.107!E 00 -0.2oqE-O 0.505E-01 0.230E-Cl -0.263E-01 0.758E 00 0.132E 00 -0.227! 01 -0.227E 01
 
3.00 -0.552E 01 0.994! 00 0.323E 00 0.159E 01 -0.245E 01 0.156E nI -0.765E 01 0.414F ol 0.188E 02 O.I8e 02
 
3.25 0.772E 00 0.1181 00 -0.1806-01 0.495F-01 O.2t3F-OI -0.292E-01 0.776E 00 0.138E 00 -0.207E 01 -0.207E 01
 
3.25 -0.541! 01 0.260E 01 0.341E 00 0.1R9! 01 -0.232E 01 0.143! 01 -0.739E 01 0.562E 01 0.194E 02 0.194E 02
 
3.50 0.754! 00 0.122E 00 -0.1486-01 0.483F-01 0.194E-01 -0.3216-01 0.78F 00 0.138E 00 -0.726F 01 -0.226E 01
 
3.50 -0.503! 01 0.387E 01 0.363E 00 0.155! 01 -0.21!RE 01 0.130E 01 -0.6P5 01 0.673F 0I 0.196E 02 0.196e 02
 
3.75 0.586! 00 0.14'E 00 -0.277!-02 0.316E-01 0.?0IE-01 -0.345F-01 0.604E 00 0.141!F 0 -0.415F n -0.415E 01
 
3.75 -0.559E 01 0.2S3F 01 -0.149E 00 -0.389F 00 -0.199F 01 0.141! 01 -0.771E 01 0.356F 01 0.186E 0? 0.186E 02
 
4.00 0.475F 00 0.12RE D0 -0.415F-02 0.2q16-01 0.1866-01 -0.3741-01 O.4qOE 00 0.1qE 00 -0.5951O -0.595E 01
 
4.00 -0.499E 01 0.273E 01 -O.1R5F 00 -0.551F 00 -0.179F 01 n.128F 01 -0.66F 01 0.346F 01 0.178! 02 0.176F n2
 
4.25 0.342! 00 0.106F 00 -0.550E-02 0.266E-01 0.169E-01 -0.402E-01 0.384r O0 0.920F-01 -n.A74! i1 -0.974! 01
 
4.25 -0.419E 01 0.248F 01 -0.226E 00 -0.729! 00 -0.157E 01 0.114E 01 -0.5qq 01 0.289! 01 0.165F 02 0.165E 02
 
4.50 0.lq4F 00 0.779E-01 -0.682E-02 0.241E-01 0.1516-01 -0.427F-01 0.203! 00 0.592E-01 -3.135E 02 -0.135E 02
 
4.50 -0.325C 01 0.180! 01 -0.277! 00 -0.913E 00 -0.136E 01 0.994! 00 -0.48RE 01 0.1 8F 01 i.144F 02 0.144E 02
 
4.75 0.384E-01 0.448E-01 -0.811E-02 0.216E-01 0.131E-01 -0.450E-01 0.434F-01 0.214F-01 -0.263! '32 -0.263! 02
 
4.75 -0.223E 01 0.739F 00 -0.376E 00 -O.!IOF 01 -0.114E 01 0.8111 00 -0.370E 01 0.474F 00 0.114E 02 0.114E 02
 
5.00 -0.118E 00 0.698!-02 -0.936E-02 0.193E-0! 0.1106-01 -0.471E-01 70.116E 00 -0.208F-01 -0.1866 02 -0.186! 02
 
5.00 -0.120E 01 -0.623F 00 -0.387! 00 -0.129! 01 -0.921F 00 0.6726 00 -0.251E 01 -0.124! 01 0.894! 01 0.894E 01
 
5.25 -0.267! 00 -0.3466-01 -0.106F-01 0.171E-01 0.8746-02 -0.48qE-0! -0.269E 00 -0.666E-01 -O.I!IE 0? -0.1!E 02
 
5.25 -0.220E 00 -0.219!E 01 -0.497! 00 -0.148! 01 -0.704! 00 0.497E 00 -0.138! 01 -0.317! 01 0.108F 02 0.108E 02
 
5.50 -0.403! 00 -0.794E-01 -0.1176-01 0.151E-01 0.640E-02 -0.505E-01 -0.408E 00 -0.11!F 00 -0.746! 01 -0.746! 01
 
5.50 0.649E 00 -0.3R4E 01 -0.536! 00 -0.167F 01 -0.493! 00 0.313! 00 -0.380! 00 -0.520E 01 0.143F 02 0.143! 02
 
5.75 -0.518E 00 -0.126E 00 -0.1286-01 0.132E-01 0.397E-02 -0.518E-01 -0.527E 00 -0.164E 00 -0.516E 01 -0.516! 01
 
5.75 0.136E 01 -0.546E 01 -0.629F 00 -0.184! 01 -0.289! 00 0.121E 00 0.444E 00 -0.718E 01 0.171! 02 0.171! 02
 
6.00 -0.409E 00 -0.344E 00 0.371E-01 0.207F-02 0.1Z6-02 -0.554E-01 -0.371E 00 -0.397! 00 -0.530E 01 -0.530! 01
 
6.00 0.183! 01 -0.491E 01 -0.515!E 00 -0.964E 00 0.164E 00 -O.1OE 01 0.148F 01 -0.692F 01 0.170E 0? 0.170E 02
 
6.25 -0.450E 00 -0.385F 00 0.381E-01 -0.370E-02 -0.164E-02 -0.559E-0! -0.413E 00 -0.444F 00 -0.434E 01 -0.434E 01
 
6.25 0.187F 01 -0.598F 01 -0.63E 00 -0.118E 01 0.296E 00 -0.123! 01 0.1931 01 -0.839E 01 0.186E 02 0.186E 02
 
6.50 -0.463E 00 -0.421!F 00 0.3B4E-O -0.939E-02 -0.453E-02 -0.560F-01 -0.42qE 00 -0.486F 0 -o.3 76E 01 -0.376F'01
 
6.50 0.171E 01 -0.674F 01 -O.TTOE 00 -0.139E 01 0.415E 00 -0.142E 01 0.135E 01 -0.95F 01 0.197E 02 0.197E 02
 
6.75 -0.449F 00 -0.451E 00 0.382!-01 -0.149E-01 -0.737F-02 -0.55oE-01 -0.418! 00 -0.522F 0' -0.350E 01 -0.350! 01
 
6.75 0.138E O -0.716! 01 -0.920E 00 -0.158! 01 0.519! 00 -0.162F 01 0.979F 00 -0.104F 02 0.203! 02 0.203F 02
 
7.00 -0.409F 00 -0.474E 00 0.373E-01 -0.202E-01 -O.1OIE-01 -0.5546-01 -0.382E 00 -0.550E 00 -0.349! 01 -0.3496 01
 
7.00 0.925! 00 -0.720! 01 -0.108! 01 -0.176! 01 0.606! 00 -0o1! 01 0.448F 00 -0.108E 02 0.207E 02 0.20?! 02
 
7.29 -0.349F 00 -0.489! 00 0.358E-01 '-0.253E-01 -0.1 8F-0'-0o.5476-01 -0.326F 00 -0.569E 0 -0.367! 01 -0.367F 01
 
7.25 0.389E 00 -0.689F 01 -0.176F 01 -0.191E 01 0.676! 00 -0.200E 01 -0.191E 00 -0.108F 0? 0.2.07F 02 0.207! 02
 
7.50 -0.272! 00 -0.496F 00 0.33RE-01 -0.299E-01 -0.153E-01 -0.536F-01 -0;293E 00 -O.58OF 00 -0.398! 01 -0.398E 01
 

Figure45 COMPUTER PRINTOUT, DOUBLE-INTEGRAL PROGRAM (SHEET 2 OF 3) 



S7.50 -0;1751r000623E 01 '0Z144E 01 -0.204E 01 0.727E 00 -0.219E 01 -0.887F 00 -0.105E 07 0.204E 02 0.204E 02 
7.75 -0.183 00 -0.4956 00 0.312E-01 -0.341E-01 -0.176E-01 -0.523E-01 -0.170E 00 -0.5822 00 -0.43 F 01 -0.435F 01 
7.75 -0.1182 00 -0.531E 01 -0.163E 01 -0.214E 01 0.759E 00 -0.237F 01 -0.159E 01 -0.982E 01 0.200E 02 0.200E 02 
8.00 -0.898E-01 -0.486E 00 0.281E-01 -0.379E-01 -0.1986-01--0.5086-01 -0.8156-01 -0.5756 00 -0.472E 01 -0.472E 0! 
8.00 -0.120E 01 -0.417E 01 -0.1826 0 -0.221E 01 0.770E 00 -0.258£ 01 -0.225F 01 -0.836 01 0.193E 02 0.193E 02 
8.25 0.310E-02 -0.4706 00 0.2456-01 -0.4116-01 -0.2186-01 -0.491E-01 0.586E-02 -0.560E 00 -0.503E 01 -0.503C 01 
8.Z5 -0.159E 01 -0.292E 01 -0.201E 01 -0.224F 01 0.760F 00 -0.272 01 -U1143P 01 -0.789F 01 0.185E 07 0.I8St O 
8.50 0.392E-01 -0.322E 00 0.119E-01 -0.200E-01 -0.207E-01 -0.437E-01 0.305E-01 -0.386E 00 -0.825E 01 -0.825E 01 
8.50 -0.282E 01 -0.169E 01 -0.150E 01 -O;210E 01 0.414E 00 -b.1966 01 -0.391E 01 -0.575E 01 0.168F 02 -0.168E 02 
8.75 0.134E 00 -0.3106 00 0.111E-01 -0.225E-01 -0.2186-01 -0.417E-01 0.124E 00 -0.374E 00 -0.8086 01 -0.8086 Q1 
R.75 -0.303E 01 -0.568E 00 -0.160E 01 -0.2056 01 0.405E 00 -0.211E 01 -0.422E 01 -0.4736 01 0.160E 02 0.1606 02 
9.0D 0.213E 00 -0.294E 00 0. lORE-0t -0.2496-01 -0.2276-01 -0.3976-01 0.202E 00 -0.359E 00 -0.716 01 -0.771E 01 
9.00 -0,310 01 0.424E 00 -0.169E 01 -0.t17V 01 0.376E 00 -0.276E 01 -0.441F 01 -0.380E 01 0.153E 02 0.153E 02 
9.25 0.273E 00 -0.2756 00 0.998F-02 -0.271E-01 -0.2331-01 -0.376E-01 0.2606 03 -0.340E 00 -0.737E 0! -0.7372 01 
9.25 -0.305F 01 0.123E 01 -0.176E 01 -0.1876 01 0.329E 00 -0.2386 01 -0.448E 01 -0.302E 01 0.1476 02 0.1476 02 
9.50 0.312E 00 -0.2536 00 O.Q4F-02 -0.290E-01 -0.237E-01 -0.355E-01 0.297E 00 -0.317E 00 -0.7242 01 -0.724E 01 
9.50 -0.292E 01 0.180E 01 -0.1816 01 -0.1756 01 0.263F 00 -0.2506 01 -0.4476 01 -0.2446 01 0.1416 02 0.141E 02 
9.75 0.3296 00 -0.227E 00 0.772E-0Z -0.308E-01 -04.39F-01 -0.3346-01 0.313E 00 -0.2916 00 -0.739F 01 -0.7392 01 
9.75 -0.271E 01 0.213F 01 -0.184E 0t -0.160E 01 0.1816 00 -0.260E 01 -0.438E 01 -0.207E 01 0.137E 02 0.137E 02 
10.00 0.25E 00 -0.1986 00 0.634E-02 -0.324F-01 -0.239F-01 -0.3146-01 0.308BE 00 -0.2616 00 -0.7886 01 -0.788F 01 
10.00 -0.248E 0! 0.221E 01 -0.1866 01 -0.1456 01 0.8286-01 -0.268E 0! -0.429E 0! -0.192F"01 0.134F 02 0.134E 0? 
10.25 0.303E 00 -0.166E 00 0.481E-02 -0.3372-01 -0.237E-01 -0.295E-01 0.2846 00 -0.229E 00 -0.8756 01 -0.875E 01 
10.25 -0.223E 01 0.206E 01 -0.184E 01 -0.128E 0l -0.291E-01 -0.2756 01 -0.410E 01 -0.1966 01 0.132F 02 0.1326 02 
10.50 0.266E 00 -0.1336 00 0.3136-02 -0.349E-01 -0.233E-01 -0.277F-01 0.245E 00 -0.196F 00 -0.101E 02 -0.101E 02 
10.50 -0.2001 01 0.173F 01 -0.181F 01 -0.110P 01 -0.153E 00 -0.2795 01 -0.396E 01 -0.2176 01 0.131F n2 0.1316 02 
10.75 0.2176 00 -0.993E-01 0.13?E-02 -0.3586-01 -0.228E-01 -0.2606-01 0.1qSF 00 -0.1616 00 -0.1196 02 -0.1196 02 
10.75 -0.1806 0! 0.125F 01 -0.175E OL -0.919E 00 -0.287E 00 -0.2826 01 -0.383E 01 -0.2496 01 0.132E 02 0.132E 02 
11.00 0.156E 00 -0.1206 00 -0.761E-02 -0.500E-01 -0.2346-01 -0.251E-01 0.125E 00 -0.195F 00 -0.1276 02 -0.1276 02 
11.00 -0.4306 00 0.211E 01 -0.16R6 Ot -0.36F 00 -0.492F 00 -n.332F 01 -0.260E 01 -0.157E 01 0.965E 01 0.9656 01 
11.25 0.1126 00 -0.772E-01 -0.107E-01 -0.493E-01 -0.229E-01 -0.2362-01 0.779E-01 -0.150E 00 -0.154E 02 -0.154E 02 

w 11.25 -0.394E 00 0.130E 01 -0.1526 01 -0.172E 00 -0.674F 00 -0.3296 01 -0.259F 01 -0.217F 01 0.1062 02 0.1066 02 
11.50 0.635F-01 -Z.3686-01 -0.137E-01 -0.483E-01 -0.224E-01 -0.227F-01 0.274E-0! -0.107F 00 -0.1916 02 -0.1916 02 
11.50 -0.403E 00 0.470E 00 -0.134E 01 0.9566-02 -0.8576 00 -0.325F 01 -0.760E 01 -0.277C 01 0.1166 02 0.1166 02 
11.75 0.155E-01 -0.616E-03 -0.166-01 -0.470F-01 -0.219E-01 -0.210E-01 -0.2306-01 -0.687E-01 -0.2286 02 -0.228E 02 
11.75 -0.438E 00 -0.317F 00 -0.115E 01 0.173E 00 -0.104E 01 -0.31B 01 -0.263E 01 -0.3326 01 0.125F 02 0.125E 02 
12.00 -0.296E-01 0.299E-01 -0.194E-01 -0.455F-01 -0.214E-01 -0.200-01 -0.704E-01 -0.355E-01 -0.221E 02 -0.221E 02 
12.00 -0.4786 00 -0.102 01 -0.945E 00 0.314E 00 -0.1226 01 -0.3086 01 -0.264E 01 -0.37SF 01 0.133E 02 0.133E 02 
12.25 -0.696E-01 0.5366-01 -0.220E-O -0.437E-OL -0.2096-01 -0.191E-01 -0.1126 00 -0.913E-02 -0.1906 02 -0.190E 02 
12.25 -0.4996 00 -0.15F 01 -0.735F 00 0.431E 00 -0.139E 01 -0.216E 01 -0.263E 01 -0.412E 01 0.1386 02 0.1386 02 
12.50 -0.103E 00 0.696E-01 -0.246F-01 -0.4166-01 -0.204F-0! -0o1.36-01 -0.148E 00 0.961E-0? -0.166E 02 -0.1666 02 
12.50 -0.4822 00 -0.203F 01 -0.5236 00 0.573E 00 -0.1556 01 -0.2812 01 -0.256E 01 -0.431E 01 0.140E 02 0.140E 02 
12.75 -0.128E 00 0.7716-01 -0.269E-01 -0.394F-01 -0.201E-01 -0.177F-01 -0.175F 00 0.2016.-Ol -3.151E 02 -0.1516 02 
12.75 -0.414E 00 -0.212F 01 -0.31E 00 0.5886 00 -0.170E 01 -0.264F 01 -0.243E 01 -0.437E 01 0.140E 02 0.140E 02 
13.00 -0.145E 00 0.761E-01 -0.2916-01 -0.369E-01 -0.199E-01 -0.1726-01 -0.1946 00 0.2216-01 -0.142F 02 -0.1426 02 
13.00 -0.2896 00 -0.?47E 01 -0.114E 00 0.6286 00 -0.184E 01 -0.2466 01 -0.7246 01 -0.4306 01 0.1376 02 0.1376 02 
13.25 -0.1666 00 0.172F 00 -0.3226-01 -0.3276-01 -0.2286-01 -0.157F-01 -0.221S 00 0.740F-01 -0.1266 02 -0.126E 02 
13.25 -0.509E-01 -0.2276 01 -0.59R 00 0.529F 00 -0.1726 0 -0.202F 01 -0.237E 01 -0.377E 01 0.1306 02 0.13n0 02 
13.90 -0.1486 00 0.970E-01 -0.340E-01 -0.298E-0| -0.730E-01 -0.150F-01 -O.?0F 00 0.477E-01 -0.135 02 -0.1356 02 
13.50 0.197F 00 -0.222E 01 -0.3946 00 0.545E 00 -0.179F 01 -0.1836 01 -0.1986 01 -0.355! 01 0.121F 02 0.121E 02 
13.75 -0.1256 00 0.549E-01 -0.356E-01 -0.266E-01 -0.2326-01 -0.142F-01 -0.184F 00 0.140E-01 -0.1476 02 -0.147E 02 
13.75 0.425E 00 -0.214F 01 -0.203F 00 0.938F 00 -0.M83F 01 -0.163E 01 -0.161E 01 -0.323F 01 0.1126 02 0.1126 02 
14.00 -0O.88E-01 0.133E-01 -0.3696-01 -0.232F-01 -0.2366-01 -0.13 E-01 -0.159F 00 -0.733E-01 -0.l96 02 -0.1596 02 
14.00 0.611F 00 -0.203 01 -0.2722-01 0.5106 00 -0.16E 01 -0.1436 01 -0.1286 01 -0.?qSF 41 0.102E 02 0.1026 02 
14.25 -0.7266-01 -0.3026-01 -0.379E-01 -0.195E-01 -0.2425-01 -0.126E-01 -0.1156 00 -0.623E-01 -0.166E 02 -0.166E 02 
14.25 
14.50 

0.7392 00 -0.191C 01 0.1296 00 0.463F 00 -0.1876 01 -0.123E 01 -0.100E 01 -0.268 G1 O0.q13F 01 0o.136 01 
-0.481E-01 -0.730E-01 -0.35-01 -P.157-01 -0.2498F-01 -0.1166-01 -0.1116 00 -0.1006 00 -0.1656 02 -0.1652 02 

14.50 0.795E 00 -0.178F 01 0.263E 00 0.402E 00 -0.1862 01 -0.1036 01 -0.803E 00 -0.2416 01 0.8086 01 0.808, 01 
14.75 -0.2676-01 -0.113E 00 -0.387F-01 -0.116E-01 -0.755E-01 -0.1042-01 -0.909F-01 -0.135E 00 -0. 152F 02 -0.1582 02 
14.75 0.7736 00 -0.163E 91 0.372F 00 0.331F 00 -0.183F 01 -0.837E 00 -0.687E 00 -0.213 01 0.7006 01 0.700E 01 
15.00 -0.935E-02 -0.147F 00 -0.3B56-01 -0.7466-02 -0.263E-01 -0.9016-02 -0741F-01 -0.163E 00 -0.149E 02 -0.146 02 
15.00 0.6766 00 -0.145F 01 0.4556 00 0.255t 00 -0.1796 01 -0.691F 00 -0.656 00 -0.185E 01 0.584E 01 0.584F 01 

Figure 45. . COMPUTER, pRINTOUT, DOUBLE-INTEGRAL PROGRAM (SHEET 3 OF 3) 



Appendix C
 

APERTURE BLOCKAGE AND FEED SCATTERING
 

The aperture blockage theory used in Section 4.5 is subject to
 

criticism, because it relies heavily on geometric optic concepts, and it
 

considers the power intercepted by the feed as being absorbed rather than
 

scattered. A more complete theory would employ the scattering pattern of the
 

feed. However, the scattering properties of log-periodic antennas are
 

generally unknown at present and would be very difficult to theoretically
 

calculate. As an approximation to scattering by the feed, the scattering of
 

a shorted half-wave dipole will be used. This analysis should provide a
 

reasonable estimate of the scattering from a log-periodic feed, as only a few
 

active half-wave elements are present at a given frequency [10]. At high
 

frequencies, the longer log-periodic antenna elements may be active scatterers
 

in the 1.5-A , 2.5-A , 3.5-A , etc. mode. However, the scattering cross
 

section of wire elements in these modes is only slightly larger than the
 

cross section of a 0.5-A long wire [42]. The half-wave dipole scattering
 

is admittedly less applicable to log-periodic antenna scattering as frequency
 

increases, but it will be shown that half-wave dipole scattering decreases
 

with increasing frequency, so the error involved would have to be very large
 

to make high-frequency scattering as severe as low-frequency scattering.
 

Consider the LOFT as a transmitting antenna. The Poynting vector
 

power density S at the focal point of the parabolic reflector is:
 

where 

PAt = transmitter power 

= log-periodic feed gain 

F = reflector focal distance 
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Therefore, the power P. received by a matched half-wave dipole
 

placed at the focal point is
 

822 G - t; C4 1 2 

where
 

Gd = gain of half-wave dipole ( r = 1.64) 

A = wavelength 

The power density scattered into the far-field Sd by a shorted half­

wave dipole at the focal point is 

21) cos ] 

where
 

I? = range to far-field observation point 

9 = polar angle measured from the reflector axis 

The factor 4 in the numerator arises because the current induced in
 

a shorted half-wave is twice that for a matched half-wave dipole, and scat­

tered power is proportional to the square of the induced dipole current. The
 

term involving S is the power pattern of a half-wave dipole.
 

The far-field power density S1" of an isotropic radiator with 

transmitter power Pt. is 

Pt 

Therefore, the scattered power density relative to isotropic at a = 00
 

IS8 d 
8i Pt F 7/fr 
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Substituting
 

Gr = 9.1, gain of trapezoidal tooth feed
 

Gd = 1.64, gain of half-wave dipole
 

()20.623
S 


st
 

Sd/si in dB as a function of frequency and F/D ratio for a
 

100-meter reflector (D = 100) is tabulated below:
 

Scattered Power Relative to Isotropic (dB)
 

Frequency F/D RATIO
 

(MHz) 0.3 0.4 0.5
 

15 - 5.6 - 8.1 -10.0
 

30 -11.6 -14.1 -16.0
 

72 -19.2 -21.7 -23.6
 

150 -25.6 -28.1 -30.0
 

The trapezoidal tooth feed has a gain of 9.6 dB relative to isotropic.
 

Assuming a front/back ratio of 10 to 15dB for the feed pattern [10], the
 

direct radiation of the feed in the direction of the LOFT antenna mainlobe is
 

-0.4 dB to -5.4 dB relative to isotropic. Therefore, direct feed radiation
 

dominates over feed-scattered radiation computed from the half-wave dipole
 

scattering theory, especially at higher frequencies. Thus, inclusion of an
 

exact feed scattering theory would not be expected to significantly change
 

the LOFT antenna far-field patterns from those presented in this report.
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Appendix D
 

GEOMETRIC DIFFRACTION THEORY
 

Geometric diffraction theory (GDT) can be used to calculate the
 

sidelobe pattern of an antenna which has a sharp-edged reflector. Sidelobe
 

radiation is treated as an edge diffraction problem; only the incident field
 

strength, polarization, angle of arrival at the edge, and the radius of
 

curvature of the edge need be known. The reflector surface current distri­

bution is not used by GDT. The advantages of using GDT over surface integral
 

theory are: (1) GDT computations are much simpler, and (2) surface current
 

distribution is not known with sufficient accuracy to compute sidelobe levels
 

using surface integral theory in angular regions far from the mainlobe,
 

due mainly to edge effects. During the course of the present investigation, it
 

was found that the two theories yielded the same sidelobe level even in the
 

angular region close to the mainlobe when the reflector aperture phase error
 

was small.
 

GDT equations for the sidelobe level for any direction were derived.
 

The resulting equations are complicated [43] and no significant effects were
 

noted that cannot be covered with E- and H-plane patterns. Therefore,
 

simplified GDT equations valid only in the B- and H-planes will be treated
 

here.
 

Figure 46A shows the incident and diffracted rays relative to a
 

perfectly conducting thin plane. The diffracted fields derived by Keller
 

[44] are,
 

B-field parallel to edge
 

[ sec~c&o) +cscC$9t (D-1) 
D N 
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H-field parallel to edge
 

D 1& 2/W~ 

where
 

EO = Diffracted electric field
 

Hp = Diffracted magnetic field
 

4E = Incident electric field tangent to edge
 

Hi = Incident magnetic field tangent to edge
 

4 = 1_7 

- ,A wavelength 

= distance from edge to far-field observation point 

P = angle of diffracted ray (Figure 46A)
 

= angle of incident ray (Figure 46A)
 

and 

/P1 CoSdT 

where
 

cradius of curvature of edge
 

= angle between the plane of the edge and the diffracted ray.
 

The coordinate system for edge diffraction from a parabolic antenna
 

is shown in Figure 46B. The far-field observation point is at range R away 

from the focal point, and in the angular direction e relative to the antenna 
axis. The reflector has a raduis "a" and subtends an angle 2 00 . Edge 

diffraction occurs at two diametrically opposite points on the reflector edge
 

in the plane containing the antenna axis and the far-field observation point.
 

The notation used in Figure 46A is also shown. The following relations are
 

evident from Figure 46B.
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Edge 1 	 Edge 2
 

3P = -L 0, 0?6 =±e -o0 
2 	 20 

2 0 	 =2 

. - 6 -	 -" * 

2 

S=R + d cos(0 0)0)R+dcos( 0 -O) 

= +cd 	cos 00 cose -a snG =-+ dcos 9, cos 0 + a sin 

_ q =Cn 6A08 s,' 

Substituting into Equations (D-l) and (D-2).
 

ED = 711 A 19 e 	 (D-3) 

DH
 

HD = - ! leT 	 (D-4)
where
 

EC (6+O9+osc _- (] e /k-. 51,7 +CC-t0-) csc 

eiOt cscf a] +C i- [ (a-a) a] ee-	 c 

A~2+k Cos ,CosO 

Equations (D-3) and (D-4) give respectively the H- and E-field
 

diffraction patterns. These equations will now be normalized to give field
 

strength relative to the field of an isotropic radiator. Assume a transmitter
 

with power output P6 is driving the LOFT feed. The feed field incident on
 

the reflector edge in the H- and E-planes is
 

A %Q H e = 3d a 	 (H-plane) 
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CJGf G0 e-49d G (6_ -iAoF40r27 
= 2 -

dE-plane) 

where 

= feed gain 

= 12 01/=free-space wave impedance 

= H-plane feed field strength in directions e. divided by 
feed field strength on axis 

fE(o) = E-plane feed field strength in direction 0. divided by 
field strength on axis 

The far-field strength of an isotropic radiator with transmitter
 

power output Pt is,
 

77 uf 2 L1f 2Ilso 12 

Therefore, the diffracted field strength relative to isotropic
 

(omitting phase term) is,
 

H-Plane E, 4 6 6, AP 5/7s'n, (0 )D
E15s ito = 1 ff a HO79 4 I(D-5) 

A'0 1 0 /P,, P1 . ; -, 9, 1 Z 2,4, 2DE-Plane P _- n 
//So 2 O-2 dP 4(D-6) 

For the LOFT reflector, a = 50 meters. The angle 0o , in terms 

of reflector F/D ratio is, 
86C19)sn q = 16(/)2 
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