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ABSTRACT 

The objective of this program was to develop a practical
 

technLque for making custom patterns of interconnections on integrated 

The use of a computer-controlled
circuLts without the use of masks. 


electron beam was proposed for fabricating these interconnections, and
 

this approach was followed throughout. The program has resulted in a 

for automatically laying out an interconnectionfast and accurate method 

pattern to connect specified subcircuits so as to perform the desired 

function, and in the means for creating this pattern in metal at the 

required scale by electron beam lithography without the use of masks
 

or of any photographic processing.
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1.0 INTRODUCTION
 

In the manufacture of integrated circuits, the ability to
 

change the pattern of the final metal interconnections easily and
 

economically permits use of custom circuits-for breadboards and small
 

production runs, using the master slice principle. As it pertains to
 

device and system reliability,-a programmed interconnection capability
 

permits the interconnection of a large number of tested subcircuits to
 

form a monolithic subsystem having greatly increased circuit function
 

per extertial connection or bonding pad. Such a subsystem may be
 

expected to have a significantly lower failure rate than one made of
 

many separate circuit chips because of the relatively large failure
 

rate associated with the greater number of interconnecting leads and
 

wire bonds. Other advantages also accrue from compressing large amounts
 

of circuit function onto a single wafer or chip, such as the short
 

length of circuit interconnections, with reduced capacitance and atten

dant reduced power per logic function for a given circuit speed.
 

The ait of the program described in this report was to
 

develop such an interconnection method, using computer-controlled elec

tron beam exposure of electron sensitive resist (electroresist) to de

lineate conductive paths, thereby eliminating the need for drafting and
 

photographic processes. Previous work at Westinghouse Research on
 

applications of scanning electron microscopes to integrated circuits,
 

and a program already underway under joint Air Force and Westinghouse
 

sponsorship, "Maximum Density Integrated Circuits by Electron Beams",
 

Contract F33615-67-C-1335, provided a sound basis for the present program.
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The effort to be described was directed principally at refining the com

puter-controlled electron beam exposure apparatus and related software,
 

developing software to provide custom interconnection geometries, develop

ing a two-stage single level metallization process, and developing an
 

adequate registration method for successive electron beam-produced
 

patterns.
 

The test vehicle adopted for the program was a 1-bit adder, made 

from a redundant array of gates. Viable gates, as determined by probe 

test, were to be interconnected to form the adder. Originally, only 

the final, custom, metal interconnection was to be defined by electron 

beam writing on electroresist, and the other device patterns by conven

tional photolithographic procedures. During the program, however, it
 

became evident that a distortion of about 0.5% existing in the electron
 

beam pattern would make registration impossible to achieve between
 

optical and electron beam patterns. 

To overcome this difficulty, all patterns required both for
 

device fabrication and for final metallization were made by the electron
 

beam method.
 

1-2
 



2.0 1-BIT ADDER TEST VEHICLE 

The choice of vehicle to demonstrate the flexible, selected
 

interconnection technique had to be a compromise between subsystems so
 

small that the relatively unsophisticated interconnection program would
 

fail to have sufficient generality, and subsystems so large that the
 

extended computer programming required would make little further con

tribution to the demonstration.
 

A one-bit adder, requiring about 10 to 15 NAND gates, was
 

chosen as representing a suitable compromise between these extremes.
 

This vehicle serves to illustrate all the essential factors involved
 

in maskless discretionary interconnection of viable gates, and repre

sents a useful subsystem of wide application to present-day systems.
 

2.1 	 LOGIC SELECTION
 

The 1-bit adder logic function is described by the following
 

table: 

Input Output 

Previous 

Carry 
C 

Summand 
A 

Summand 
B 

Sum 
S 

Carry 
C 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

1-Bit Adder Logic Function
 

Table 2.1 
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This function may be realized by many different but logically
 

equivalent circuit configurations that have relative advantages and dis

advantages with regard to speed, complexity, and power dissipation.
 

These may be divided into two classes, namely (1) those using serial
 

addition of the three inputs, two at a time, and (2) those using parallel
 

addition of the three inputs. A review of the various possibilities
 

narrowed the selection to the two adders shown in Figs. 2.1 and 2.2.
 

The l-gate adder in Fig. 2.1, which is of the parallel
 

variety, fias a logic function which may be represented by
 

Sn .n Bn . n-1 + (A + Bn + Cn-l') . (An . Bn + An . C-n 1 + Bn Cn-l 

andan n =A.n Bn +A. n Cn-l +B' n Cn-l' 

where . means AND, + means OR, and means NOT. 

Fig. 2.2'shows a 10-gate adder of the serial variety with a 

logic function given by 

Sn (A . Bn + A. Bn Cn_ 1 + (A . Bn + A . Bn Cnl 

=A.B .C +A .B .C + A B C +A B' C and 
n n n-l n n n-1 n n n-i n n n-l' 

+ BnCn An Bn (An + An" Bn Cn-1 

An B Cn-i + An Bn.n - +n Ann Bn n-

An Bn + An n-Cn I + Bn Cn_ . 

Both inputs and outputs for this version must be in complementary form;
 

or, what is equivalent, must use negative logic.
 

A comparison of the gate requirements and power/speed charac

teristics of these two configurations is shown in Table M2.. Although 

the adder of Fig. 2.1 has a faster carry, it requires a larger range of 
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Bn 
 Sn
 

C n-rn 

0C a 

Fig. 2.1 1-bit adder, parallel logic
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Dwg. 859A328
 

C 
n 

An n
 

Cn-' 

Fig. 2.2 1-bit adder, serial logic
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fan-in and fan-out for its constituent gates than that of Fi1g. 2.2. 

The sum delay is the same for both circuits. Table 2.2 also shows that 

the 10-gate version requires 20% fewer gate inputs. In view of this 

study and comparison, the 10-gate adder, using a 2-in, 4-out gate and 

working with negative IN/OUT logic levels was selected as best suited 

for the program vehicle. 

Total Total Gates
 
Gate Comptenent Gates, Gate On, Sum Carry
 

No. Fan-In Fan-Out* Type Inputs Max/Min Delay** Delay**
 

Fig. 2.1 
Parallel 
Logic 

4 1 1 11: 
3 Tn, 
6 Out 

20 7/3 4T 3T 

2 2 2 

2 3 1 

3 2 6 

Fig. 2.2 2 1 1 10: 16 6/3 4T 4T
 
Serial 2 In,
 
Logic 4 Out
 

2 1 2
 

4 2 3
 

2 2 4
 

Collector Load Counted as 2 Loads
 

T = Average Delay Per Gate
 

Comparison of 1-Bit Adder Characteristics
 

Table -2.2 
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I 

In order to confirm the results of this study a breadboard
 

model of the 10-gate adder was constructed from DTL gates, using 2-1/2
 

Westinghouse WC-266D packages-of quad 2-input NAND gates. The operation
 

of the breadboard version satisfied the adder truth table, and the
 

measured operating speeds substantiated the estimates for maximum sum
 

and carry delays of 4T, where T is the propagation time per gate.
 

Table 2.3 shows the observed delay times for various input transitions.
 

Initial Final Output Delay, S Notes 
AI B1 C 0A1 BI Co S1 C1 

0 0 0 1 1 1 .04 .04 Input Step .01 1S 
Rise & Fall Time 

1 1 1 0 0 0 .05 .05 OperatingTime 

O 0 0 0 0 1 .04 Per Gate, T, 2:.02 pS 

0 0 1 0 0 0 .05 -

0 0 0 1 0 0 .08 -- Same result for 

1 0 0 0 0 0 .08 -- 1 only 

0 0 0 1 1 0 -- .04 

1 1 0 0 0 0 -- .05 

0 0 0 1 0 1 -- .08 
} 

Same result for 

1 0 1 0 0 0 -- .05 B 1 
& Co 

Operating Delays for 10-Gate Adder Made From (W) WC-266D DTL
 
Integrated Circuits
 

Table 2.3
 

2-6
 



2.2 GATE DESIGN
 

The logic gate for use in the 1-bit adder was chosen from con

siderations of low complexity, relatively fast speed, conventional logic
 

levels, conventional processing (up to the final metal), and moderate
 

power requirements. The choice was a basic transistor-transistor logic,
 

T2L, without output drive transistors, the circuit of which is shown in
 

Fig. 2.3. Several additional leads spanning the supply buses and out

put connections by means of diffused undercrossings are included to per

mit final logic interconnection at one level without external crossovers.
 

The use of this gate with small area requirements but with reduced drive
 

capability is especially suitable for LSI applications where most out

puts terminate on the wafer, and where buffer amplifiers or drivers may 

be used where necessary to communicate with the rest of the system 

external to the wafer. The resistor values chosen for this gate, as 

shown in Fig. 2.3, give a dissipation per gate, at V = 6 volts, of 

12 mW ON, 3 mW OFF. In a 10-gate adder array, this design would dis

sipate a total of 84 mW maximum, 57 mW minimum, apart from dissipation 

of the unused, redundant gates. The latter can be permanently connected 

in the OFF condition, restricting their dissipation to 3 mW each. The 

initial layout for this gate is shown in Fig. 2.4. It measured 300 P x 

350 p overall, and was designed for use in a 4 x 6 gate array. Antici

pated speed for this gate was 10 to 15 nS. The capacitance of intercon

necting logic leads, which are 5 p wide, is about 1.5 x 10 Fd per 

micron length. A typical logic lead on the adder has a length of about 

1 3 
1000 p, giving an average lead capacitance of 1.5 x 10- Fd. The
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Fig. 2.3 T2L NAND gate for 1-bit adder
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Fig. 2.4 T1 L NAN~D gate layout, first version
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2 
I 

*~-17 

capacitance of each diffused undererossing is Cu -Y6.4 x 1 Fd/p x
 

30 p x 270 p = 5.2 x 1013 Fd, and an average logic lead includes about
 

2 undercrossings. Therefore, the total capacitance associated with a
 

typical logic lead is (1.5 + 2 x 5.2) x 10-13 Fd = 1.2 pF. The time
 

constant given by this in parallel with the 14 KQ load resistor of the
 

gate is 5 nS, giving a total gate speed for an average gate in the test
 

vehicle of about 20 nS. The second version of this layout, shown in
 

Fig. 2.5, was made to permit use of the bottom underdiffused lead 

independettly of the lower gate input. This layout measured 234 p x 

312 p, including probe test pads. It was designed for 240 p x 320 p 

spacings in a rectangular 4 x 6 array of similar cells. Some of the 

target specifications for the vertical profile and alignment tolerances 

for this gate are given in Table 4. 

Substrate: P-type, 10 Q cm, 100 orientation, .010" thick 

Subcollector: N, As dopant, 4 p drive, 20 62/1 

Epitaxial Layer: N-type, 4.5 p thick, 5 12 cm 

Bases and Resistors: P-type, .5 p junction depth, 250 n/0 

Emitters: N , P dopant, 2.0 p deep (0.5 p base width) 

Alignment Tolerances, + 2 microns 
Successive Patterns: 

Gate Fabrication Specifications, Second Version
 

Table '2.4 

A final modification of this layout was made in order to relax
 

alignment tolerances, which were felt to be too stringent in view of the
 

relatively large device geometry. This layout, which is shown in
 

Fig. 2.6, measures 346 p x 332 V overall, and the test pads which
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+ 

VCC 

+ 

GND. 

+ 

OUT 

++ 

CO,4 

CONI.I 

F+ 

COND.I_ 

+E -

CON.2 -- CON. 

IN- I ICNDI 

+ + + + 

VcC DISABLE GND. COND.4 

I , ,, I ,, i I 
0 50. lOOp 

Fig. 2M5 T2L NAND-gate layout, second version
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Fig. 2.6 T2L NAND gate layout, final version
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partly overly the circuitry clear the areas reserved for final inter

connection. The larger size required a reduction of the array size to
 

4 x 4 to fit into the 2046 V x 2048 p raster available in the electron
 

beam pattern generator. The vertical profile specifications for the
 

final version are the same as for the second version (Table 2.4), but
 

the alignment tolerance was relaxed to t 5 vi. 

'2.3 1-BIT ADDER LAYOUT
 

A 3 x 4 array of NAND gates of which 10 gates are connected
 

to make the one-bit adder are shown in Fig. 2.7. The logic signal
 

interconnection paths shown here serve as the model for the discretion

ary wiring designs for an arbitrary subset of 10 gates from a larger
 

array. In making the patterns for these gate arrays by the computer
 

controlled scanning electron microscope, the number of gates that can
 

be included in one exposure are limited by the number of points avail

able in the X and Y directions of the scan, which originally was only
 

1,024. It was hoped at first that an array of 16 or 24 gates might be
 

made by electronically moving the array of 4 gates into 4 or 6 different
 

locations with sufficient accuracy that they might then be fabricated by
 

proceeding in this fashion. Fig. 2.8 shows a 4 x 6 array of gates which
 

was intended to be used in this way. The gates considered here were of
 

the earlier type designed for spacing on 410 micron horizontal centers
 

and 400 micron vertical centers, and the overall device size, as shown
 

in Fig. 2.8, was 1875 microns high x 2750 microns wide. The patterns
 

shown in Fig. 2.9 are the first metallization pattern for the array of
 

4 NAND gates which has been relocated at six different locations by
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Figure 2.7 Model 10-gate layout for I-bit adder
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n+ -8?0,-4w0 +0, -400 +-820, 400 

i Gnd 

2750 
All Dimensions in Microns 

Fig. 2.8 Redundant-layout of .a24-gate array for a 1-bit adder 



Fig. 2.9 24-gate first metal pattern
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electronic repositioning. This was taken from a display on the face of
 

a 5-inch cathode ray tube. Although the spacings seemed to be fairly 

well defined there was some undesired overlapping of metal at various
 

places, and the matching of this to the final metal interconnect pattern, 

which was also designed for a raster using only a 1,024 address points 

in each axis, is shown in Fig. 2.10, wherein it will be noted that the 

logic interconnections frequently miss the intended connection pads at 

the device locations by an appreciable margin. This is primarily due 

to the fact that the two patterns, although produced by the same cathode 

ray tube, were produced on different scales. The contact pads shown 

were made using 1 micron as the -basicpoint-to-point distance in the 

1024 x 1024 raster, while the interconnections were made at a 4 times 

larger scale, that is, with the basic measure of length being 4 microns 

The distortion seen in Figure -2.10 originates in the cathode ray tube 

deflection system; distortion obtained in the scanning electron micro

scope is very much smaller than this, although of a similar type. In 

view of the difficulty in obtaining adequate registration between the 

overall final metal interconnection pattern produced at one scale and 

the device and initial metallization patterns produced at another scale, 

it was apparent that a larger address raster would be necessary, namely, 

a 4024 x 4024 point array, requiring a 12-bit X-address and a 12-bit 

Y-address. The final patterns included for production by the computer

controlled scanning electron microscope, now called the Electron Micro

pattern Generator, were made using such a 4096-square array of points.
 

Use of these patterns with the 12-bit address system eliminated the
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Fig. 2.10 10-gate adder interconnection (final metal)
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loss of registration due to changes of scale, which are no longer re

quired.
 

The 4 x 4 gate array of final design is laid out as indicated
 

in Fig. 2.11. The initial carry input is made available at several
 

points along the bottom edge of the device by means of diffused under

crossings to get across the ground bus. Also, the leads from the supply 

bus bonding pads are brought in to the gate array, and those from the 

signal bonding pads are terminated near the gate array so that the ex

posure for the discretionary, second metal pattern may'be kept to a
 

minimum. The overall device patterns are shown in Figs. 12.12 and 2.13
 

as written on a Tektronix 611 storage display unit by the digital inter

face of the Electron Micropattern Generator.
 

The complete device requires successive mask patterns to be
 

exposed, developed, and processed, according to the following schedule: 

Pattern No. Description
 

I Alignment marks for EMG and first optical
 
alignment mark (large square) 

2 Subcollector 

3 F-Wall (Isolation Diffusion) 

4 Base and Resistor Diffusion 

5 Emitter, Contact Reinforcement, and Under
crossing N+ Diffusion
 

6 
 Contact Openings
 

7 
 First Metal Interconnections
 

8 
 Final, Discretionary, Metal Interconnections
 

The last mask is not shown here, but is described and illustrated in the
 

next section.
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Fig. 2.11 16-gate array layout
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No. 1 - Alignment Marks No. 2 - Subeollector 

No. 3 - P-Wall No. 4 -B and R
 

16-Gate Array Masks
 

Fig. "2.12 

Rm-48421 



No. 5 - Emitter No. 6 - Openings 

No. 7 - First Metal, Gates Only No. 7 -

16-Gate Array Masks (Continued) 

Fig. 2.13 

First Metal, With 

Pads and Title 

RM-48423 



Fig. 2.14 and 2.15 show several microphotographs of the same 

patterns as holes etched in silicon dioxide, after exposure and develop

ment of the positive electroresist, plus overlaying subsequent patterns 

(No. 7 - 1st metal) in resist or aluminum which are in accurate regis

tration with them.
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3.0 DISCRETIONARY -INTERCONNECTIONS 

The present study has had as its goal the demonstration of a
 

practical method of making, without the use of photomasks, final inter

connections on an integrated circuit which are of custom design for -that
 

circuit only.
 

Two important uses of such custom metallization are:
 

1) fabrication of a variety of custom circuits starting with a standard
 

array of circuit components, as in the "masterslice" approach, and
 

2) the accommodation of defects on a given-integrated circuit by wafer
 

testing (at the subcircuit level) followed by interconnection of good
 

elements according to a computer-derived metallization geometry matched
 

to the array of good elements.
 

• The latter application is an important procedure in defect
 

accommodation techniques required for the realization of large, high

reliability systems on a silicon monolithic substrate, and in view of
 

NASA's interest in reliability aspects of advanced electronic systems,
 

it was chosen for a demonstration of the custom interconnection method
 

to be develope-d. Two simplifying ground rules were adopted in the
 

present study: 1) testing of interconnected cells on the wafer was to
 

be done by mechanical probes, as compared with electron beam probing
 

methods required for maximum density circuits, and 2) only a single
 

level of metal was to be used, as compared with the multilevel approach
 

needed for systems applications. Pre-placed diffused undercrossings
 

were adopted as the means for accomplishing lead crossings in the final
 

interconnection paths.
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The work performed in this area can be divided roughly into
 

two parts: 1) developing techniques for putting second, final metal

lization over and in contact with the first, intracell, metallization
 

in the desired pattern, and 2) developing suitable computer programs for
 

laying out the required interconnections of good cells. These parts are 

discussed in the following two sections.
 

3;1 METALLIZATION METHOD
 

Two basic approaches to providing the final metallization steps
 

were investigated, namely the use of a positive resist as a rejection
 

mask, and the use of a negative resist in the conventional manner as an
 

etch resist. Both methods preserve the initial, intracell metallization
 

intact, except for the probe test pads, through use of an intermediate
 

protective resist step. A third method which involved stripping the
 

initial metallization completely and then reproducing it plus the custom
 

interconnections, was discarded because of the lack of confidence which 

could be placed on the new and untested intracell connections.
 

The positive resist method considered involved 6 steps (see
 

Fig. 3.1). After probe test of the unit cells, intraconnected and pro

vided with probe test pads, a negative resist is applied, exposed over
 

the unit cell areas and developed and etched, thereby removing the test
 

pads (steps 1 and 2). (Alternatively, a positive resist, exposed in the
 

areas of the test pads and developed, could be used.) This resist
 

is then removed and a positive resist applied. The latter is
 

exposed along the custom interconnection routes and developed, thereby 

creating a rejection mask (step 4). An aluminum layer is then deposited
 

(step 5), making contact to -the first metallization or attaching to the
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Al(1) 

Si0 2 First metal only 

Si ___ 

PBR -

Step 1 - Protective resist 

Al (1) - - - - - - - - -  - - -

AI(1)___ _ Step 2 - Etch off pads 

PER 

Step 3 - Strip and recoat 

with positive resist 

A1(2)()PBR I; 

Steps 4 & 5 - Expose and develop 
Al(1) resist, coat with 

Al 

Al(2) 

PBR 

SiC2 Step 6 - Remove underlying resist 

Si 

Fig. 3.1 Positive resist, rejection mask, 2nd metal method 
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oxide, only at the exposed and developed areas. Subsequent stripping
 

of the remaining, underlying resist or rejection mask (step 6) then
 

serves to remove the undesired metal, leaving the desired final metal

lization pattern. Steps 3 through 6 of this process were carried out
 

on aluminum conductors on Si02 ; the resulting conductive paths showed
 

good adhesion, fair edge definition, but poor electrical contact to
 

underlying metal. The second metal showed breaks along the edges of
 

the first metal pattern, and the conduction path was interrupted at
 

those areas (see Fig. 3.4-a).
 

The negative resist method consists of six principal steps
 

also (see Fig. 3.2). After the probe test, a negative resist is de

posited, exposed over the unit cell areas, and developed, thereby pro

viding a protective coat over the intraconnected, tested cells, but
 

exposing the test pads (step 1). The final aluminum layer is next de

posited, and then negative resist (steps 2 and 3). The resist is ex

posed along the desired interconnection routes, including a small over

lap into the protected areas, and at the wire bond areas (step 4). Sub

sequent development, etching of the aluminum, and removal of the resist
 

results in the desired circuit (steps 5 and 6). This procedure was also
 

tried, and yielded very good results. The final metal pattern had good
 

edge resolution, good adhesion, showed no breaks over oxide or metal 

steps, and showed good conduction to the first metal pattern (see Fig. 

3.4-b). It has, however, the distinct disadvantage of leaving a bit of 

aluminum projecting upward where the final metal overlayed the original 

metal, which might give low resistance to abrasion. 
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A1 (1) 

Si First metal only. 

NEBR 

Step 1 - Protective resist 

Al1(2) 

Al (1) 

Step 2 - Coat with aluminum 

Steps 3 & 4 - Coat, expose and 
develop negative 
E.B. resist 

Al(2)__ 

Al(l) 
SO Steps 5 & 6 - Etch Al, remove 

resist 

Si 

Fig. 3.2 Negative resist, second metal method 
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Al(1)
 

Si aFirst metal only
 

PER
 

j Step 1- Positive resist 

Step 2- Expose and develop resist
 

A1(2) 

Step 3 - Evaporate aluminum
 

sio
2
 

2 Step 4 - Strip resist
 

Si 

Fig. 3.3 Positive resist, rejection method, without protective resist
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A 

a) Using Positive Resist for Rejection
 

• , -71 

b) Using Negative Resist for Etching
 

Fig. 3.4 Metallization Technique
 

RM- 484413 



A variation of the positive resist method was permitted by the
 

patterns finally used which did not require removal of the large test
 

pad areas since they did not project into the final metal areas, but
 

were designed into the gate area. This method, shown in Fig. 3.3, does
 

not require a protective resist step, and only involved coating with
 

positive electroresist, exposing the interconnection pattern, develop

ing, evaporating the aluminum conductor, and stripping the resist.
 

Because of the slight overhang provided by positive electroresist after
 

development, high quality line resolution and edge smoothness is pro

vided by this method, as long as the resist thickness is appreciably
 

greater than the metal thickness. When this is the case, a clean break
 

in the conductor edge is possible during the removal of the resist and
 

unwanted metal.
 

Other benefits of this technique include the latitude of
 

time permitted for the rejection process since no desired material is
 

being attached, the absence of undercutting effects, and the flatness
 

of the final conductors, with no protruding edges. In this process,
 

good continuity of connections over the edges of the initial conductors,
 

where the final metal laps them, requires that the final metal be
 

appreciably thicker than the initial metal.
 

It should be noted that adhesion is a principle problem in
 

this method, and it ,hasnot been resolved satisfactorily in the present
 

program. Fig. 3.5 shows the first metal pattern in aluminum aligned
 

with earlier patterns in SiO2, and with the final metal pattern exposed
 

in registration with those and developed. The discretionary
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a) 	 First Metal Pattern in Al, Final Metal Pattern in 
Positive Electroresist
 

(Scale: 1 cm 200 V) 

W4483
 

b) 	 First Metal Pattern in Al, Final Metal Pattern in
 

Positive Electroresist
 
(Scale: 1 cm = 70p 

Fig. 3.5 Metallization Technique, EMG-Exposed Patterns
 



interconnection pattern of this figure corresponds with the solution 

of test case 401 illustrated in Fig. 3.19 of the following section. 

An example of the final metallization provided by this is shown in 

Fig. 3.6 (corresponding to test case 201, Fig. 3.17), wherein it may 

be seen that not all of the desired leads remained in place through the 

rejection process. Solution of this problem will require an improved 

surface preparation immediately prior to the metal deposition, possibly 

through the use of R.F. sputter etching. 
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a) Scale: Ilcm =200p 
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b,) Scale: 1 cm =70 v 

Fig. 3.6 Metallization Technique-

Microphotographs of First
 

and Second Metal
 

RM-48440
 



3.2. SOFTWARE
 

Two computer programs were developed to provide the custom
 

interconnection patterns required in this program to connect viable
 

gates into the configuration of a 1-bit adder. The first has broad
 

generality, and selects an optimum and connectible set of the required
 

number of units from a given set of operable units. The name of this
 

program is SELECT/SET. The second program determines lead routings
 

for the selected set of units according to the model diagram. The
 

basic algorithm for this second program, which is called CIRCUIT/
 

SIGNALS, also has general application, but requires a bit of adaptation
 

to the crossover possibilities provided for in the redundant array.
 

The output of the second program is translated into the proper format
 

and scale for the SEMTAPE/COMPILE software which generates the digital
 

control tape for the Electron Micropattern Generator. The two programs,
 

SELECT/SET and CIRCUIT/SIGNALS, are described below.
 

3.2.1. SELECT/SET
 

A program, SELECT/SET, has been written to select a wireable
 

set of elements out of the given good elements on a chip. It is the first
 

one of the series of programs developed to write magnetic tapes for
 

discretionary interconnections. The Electron Micropattern Generator
 

(EMG) uses these tapes to draw integrated circuits. The elements on
 

the chip are arranged in the form of an m x n array. The circuit is
 

described with respect to an ideal p x q array of good elements. m x n
 

is taken adequately larger than p x q to assure availability of the
 

required number of good elements. The program'selects a set of good
 

elements on the chip, topologically similar to the ideal array.
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ALGORITHM
 

The process of selecting a useable set of good elements
 

consist of four steps. The first step examines the chip for the number
 

of good elements required by the circuit. The second step finds Cs,
 

a p x q subarray of C with the maximum number of good elements. Step
 

three assigns one good element from outside C to each bad element in
S 

Cs to complete a set of p x q good elements. The last step orders the
 

elements of the set to produce a topological isomorphism between the
 

set of good elements and the ideal array.
 

In the first step each element is examined and the number of
 

good elements is counted. Chips having less than p x q good elements
 

are rejected.
 

In the second step, a p x q subarray C is obtained from C
s 

by deleting certain rows and certain columns in s = (m-p) + (n-q) 

stages (see Figs. 3.7 and 3.8). 

At stage A an mA x n X array CX is obtaied from CX 

(X = 1, 2, x ... S. C = C) as follows:
0 

Let GRi be the number of good elements in the ith row and
 

.th 
GC be the number of good elements: in j column of C And let 

=G Min {G. i=1,2,....m -_I
, 


and 

GCL = Min GCj, j = 1, 2, ... n XI 

ERK GCL 
Now if ml > p and - < - or n =q

X3-1n3i
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Let m = 6 n = 5 And p = q =4 

and let C = 11011 
01110 

10101 

10010 

01100 

10001 

Number of good elements = 16 ( 4 x 4 = 16) 

End of St 1 

STEP 2
 

S = (6 - 4) + (5 - 4) = 3 

and C C 11011
 
0 

01110
 

10101
 

10010
 

01100
 

10001
 

n G = 2 and GCL =
 

-4CI=11011
 

01110
 

10101
 

10010
 

01100
 
1 0 0 01 

SELECT/SET - Stes 1 and 2 

Fig. e.i 
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here G =2 and GCL =2 

C2= 11011 

10101 

10010 

11o001 

here G= 2 and GCL 3 

CS C = 1101 
s 3 01110 

10101 

10010 

1l001 

End of Step2 

SELECT/SET - Completion of Step 2 

Fig. 3.8 
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then delete the Kth row else delete the Lth column from the array
 

CX I Define Cx as the remaining part of CX1 and reindex the rows and
 . 

columns of C 

In CS) the selected p x q portion of C, the rows and columns
 

may not be consecutive. No complete row of C is in Cs unless q=n and
 

no complete column of C is in Cs unless p-m.
 

The third step in the alorithm consists of assigning one good
 

element from outside Cs to each bad element in Cs , if any. The indices
 

of good elements in C and those of the assigned elements are stored in
 
S 

a p x q array C at respective places (see Figs.-3.9 and 3.10). The
 

assignment is done iteratively, as follows:
 

At a given stage, let BRi be the number of bad elements in 

the ith row and let BCj be the number of bad elements in the jth column 

of C within the selected set, Cs 

Let 

BRK = Min {BRiBRi # 0, i-l,2,...m} 

and 

BCL = Min {BCj IB¢ 0, j=l,2,....n}. 

If B RK < BCL then pick the leftmost bad element in 
the Kth
 

row else pick the uppermost bad element in the Lth column of C in C .
 s 

Let the element be cij. If available, a good element from outside of 
.th .th 

Cs but in the ith row or the j column is assigned to cij. Any such 

good element is assigned to only one bad element. If no such good
 

element is available, an imaginary element I.. is assigned to c...
13 13
 

This process is repeated until an assignment has been made to every
 

bad element in C
 

S 
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C 1 1 0 1 1 and C =1,1 1,2 1,4 
s 2,2 2,3 2,4 

0 1 1 1 0 3,1 3,3 

1 0 1 0 1 4,1 4,4 

1 0 0 1 0 

0 1 1 0 0 

1 0 0 C i 

C = 
0 
1 1 
1 

0s2,21 
1 
1 

1 
0 

and C = 1,1
3,1 

1,2 
3,3 

1,4
2,4 

1 0 1 0 1 4,1 4,4 

1 0 0 1 0 

o 1 1 0 0 

1 0 0 0 1 

C = 1
0 

1
1 

0
1 

1
1 

I
0 

andO =C 1,2
2,2 

1,5
2,3 

1,4
2,4 

3,3 
1 0 1 0 1 4,1 4,4 

1 0 0 10 

0 1 1 0 
10 0 0 1 

Cs = 1 
0 

1 
1 

0 
1 

1 ( 
1 

and C =1,1 
6,1 

1,2 
2,2 

1,5 
2,3 

1,4 
2,4 

1 0 3,1 

1 0 1 0 1 4,1 4,4 

1 0 0 10 

0 1 1 0 0 

0 0 0 1 

SELECT/SET - Step 3 

Fig. 3.9 
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C = 	1 1 0 1 0 and C =1,1 1,2 1,5 1,4
 

0 1 1 1 0 6,1 2 2,3 2,4

) 3,3
A @3,1 

1 0 1 0 1 4,1 5,3 4,4 

1 0 0 1 0 

0 1 (D 0 0 
10 0 0 1 

C = 	 1 1 0 1 1 andC = 1,1 1,2 1,5 1,4 
0 1 1 1 0 6,1 2,2 2,3 2,4

,3,1 3 5,3,3
 

1 0 1 0 	 4
 
1 0 10
 

0 	 0 00
 

C = 	 1 1 0 1 Q and C =1,1 1,2 1,5 1,40 1 1 1 0 	 6,1 2,2 2,3 2,4
 

3,1 3,5 3,3 6,5
 
1 0 1 0 D 4,1 5,2 5,3 4,4
 

1 0 0 10 

SELECT/SET - Completion of Step 3 

End of Step 3.
 

Fig. 3.10
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To complete the third step the following part of the algorithm
 

consists of replacing each imaginary element, if there are any at the 

end of the above process, with a good element. 

Let the imaginary element be I... We first search for an 
th 

unassigned good element in the part of the (i-l) row of C which is not 

in subarray CS . If no such element is available in the (i-1)th row a 
• (i~l)th 

similar search is made in the (+l) row. If one is not found we 

search for such an element in the (j-1) t h and the (j+l) t 4 column of C, 

respectiVely. The search is continued through the (i-k)
t h , (i+k) t h 

row and the (j-k)th columns, for all the possible k until such an element 

is found. 

The union of good elements in C and the assigned elements is 

called the selected set. 

The fourth step in the algorithm imposes an order on the
 

selected elements such that the mapping T, which is defined in the next
 

sentence,is a topological isomorphism with its domain as the ideal array
 

and its range as the elements of selected set.
 

aij 

c ..
 

where 

a.. = an arbitrary element of ideal array.12
 
*
 

C * = a selected element of C whose indices are given by c
 

* 
The elements of eachrow r of C are arranged from left to
 

right in ascending order of the column index, j (see Fig. 3.11). The
 

elements in each column k of C are arranged from top to bottom in
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C= 1,1 1,2 1,5 1,4 -- 1,1 1,2 (9 Q 

6,1 2,2 2,3 2,4 6,1 2,2 2,3 2,4 

3,1 3,5 3,3 6,5 3,1 3,5 3,3 6,5 

4,1 5,2 5,3 4,4 4,1 5,2 5,3 4,4 

1,1 1,2 1,4 1,5 - 1,1 1,2 1,4 1,5 

6,1 2,2 2,3 2,4 6,1 2,2 2,3 2,4 

3,1 3,3 4 6,5 3,1 5 6,5 

4,1 5,2 5,3 4,1 5,2 5,3 4,4 

1,1 1,2 1,4 1,5 3P 1,1 1,2 1,4 1,5 = C 

2 2 2,3 2,4 3,1 2,2 2,3 2,4 

3,3 4,4 6,5 4,1 3,3 4,4 

T: a.. 5,2 5,3 

T: a.. C *C 

SELECT/SET - Step 4
 

Fig. 3.11
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ascending order of row index, i. NOte that the individual elements 

and not just two indices are exchanged. 

The following procedure is used in the case of equality 

between column indices of any two elements, say c rk and c r,k+l' of 
* (k~l)th 

any row r in C . The (k+l) column is searched for an element in 

exchange with c rk' which eliminates the equality. If no such element 

is available in column k+l, the k th column is searched for a possible
 

replacement for c r,k+l" Similarly in the case of equality in row
 
* * r~th th 

indices of two elements, c r,k and c r+l,k' the and r row 

are searched for a possible replacement for c r,k or c r+l,k"
 

This fourth step completes the selection and ordering of the 

useable set of elements. 

INPUT TO THE PROGRAM 

The program requires the data to be in free-form format and in 

the following order :
 

1. The first card must contain four integers: m, n, p and q, 

where: 

m = number of rows of elements on the chip, 

n = number of columns of elements on the chip, 

p = number of rows of elements on ideal chip,
 

q = number of columns of elements on ideal chip.
 

2. The following m cards must contain c.. 's in the following
 

order:
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CII' C12, -, Cln, 

C2 1 ' C2 2, - , C2n' 

Cml' Cm2'------- Cmn' 

( If the corresponding element on the chip is good.
 
where If corresponding element on the chip is bad.
 

ij 0 If thecorsodnelmnonteciisb.
 

OUTPUT OF THE PROGRAM
 

The program prints out a copy of the input chip representing
 

each element by an integer, 1 if the element is good or 0 if the element
 

is bad.
 

The indices of the arranged selected elements are printed In
 

the form of an ideal array. A sample output is given in Fig. 3.12, while
 

Fig. 3.13 has added to this solid lines connecting the row elements and
 

dotted lines connecting the column elements so as to highlight the
 

selected matrix. In this test case m=6, n=5, p=q=4.
 

CIRCUIT 2/ SIGNALS
 

This program determines the form of signal paths of a circuit.
 

The circuit forms a 1-bit adder from a set of ten good NAN-gates. The
 

NAND-gates connected by this program are those selected and suitably
 

labeled by SELECT/SET. The circuit is described as various wire con

nections between different terminals of NAND-gates. 

Hereafter the wire connections are called signals. The out

put consists of an array containing the end points and the path for
 

each signal.
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SAMPLE OUTPUT 

1 1 0 1 1 

0 1 1 1 0 

1 0 1 0 1 

1 0 0 1 0 

0 1 1 0 0 

1 0 0 0 1 

1, 1 1, 2 1, 4 1, 5
 

3, 1 2, 2 2, 3 2, 4
 

4, 1 3, 3 4, 4 3, 5
 

6, 1 5, 2 5, 3 6, 5
 

SELECT/SET Output - The Selected Array
 

Fig. 3.12
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SAMPLE RESULTS 

I 

I 
I 

I 

1 

!I 

//" 

/ 
/• 

", 

-

. 

'-

" 

I 

I 

I 

I 

I 

1 

SELECT/SET Output - Rows and Columns of Selected Array 

Fig. 3.13
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RESULTS
 

The program solved satisfactorily all the test cases. Some 

of the test cases are given below. In each case the nano-gates were 

taken to be in the form of an array on the chip. Size of the array 

varied from 4 x 4 to 4 x 6. Entries 1 or 0 represent a good or a bad 

nano gate respectively. The program connects the circled elements. 

Test Case (1) (4 x 6 Array)
 

0 0 0 1 0 0 

oo©00o 
0 (D (D (D (D o 
(D (D 0 o '©D 1 

Test 

0 

0 

0 

1 

Test 

1 

Case (2) (4 x 6 Array') 

(D 1 

1 1 

(D (D 

1 1 

D o o 

0 0 0 

1 0 
1 0 0 

Case (3) (4 x 5 Array) 

(D 0 0 "0 
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Test Case (4) (4 x 5 Array)
 

0 (D o Q (D 

1 Q 0 0 0 

Test Case (5) (4 x 4 Array) 

(D Q o o 

0 (D o (D 

Test Case (6) (4 x 4 Array)
 

1 Q (D 0
 

The results of this program have been successfully used
 

by the program TRANSLATE/SIrgNALS. An example of results is shown in
 

Fig. 3.14. 
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PbHUPP *******************E*L*** 

LELF EFLE * EEEE ELE * 
PEELEP PEEFFP* **FEEL*k PEELFP *
 
IEEEFP IEELP* **EEFE** IELEEFP *
 
ILELEO IEEELU* *EEEEU IELLEU *
 
PLELEP PEFEEP* *EEEE******ELEE***
 
B**P B**P * BCB* B**P **
 

* * 	 *** 

PdHUPP PBBOPP* PBBO*P PB8t*P *
 
ELEE EEEE * EEEE ELEE *
 

PEEEEP PEEEEP* PEEEEP PELLEP *
 
IEELEP*****EEEEP* IEEEE******EELEP *
 

****LELE******EEEE** IFEEEU*****EEEE***
 
* 	 PEEEEP **EEEE** PEEEEP* PEELEP* 

BCbP * BCBP * B*** * HCb* * 
* * 	 * ** * * 

* 	 * * ** * * * 

* * 	 * **** 	 * * 

• 	PbbUPP *P8BB*P PBB*PP* PBBO*P* 
S LEEE * EEEE EEEE * EELE * 

* PEEEEP *PEEEEP PEEEEP* PE-EEEP*. 
• IEEEP **EEEEP IEEEEP* IEELEP*
 
* 	 IEEEEO*****EEEE******EEEEO* IEEEEU* 
SPLEEEP* PEEEEP* PEEEEP* PEELEP* 
• EB**P * BCB* * BCBP * B*** * 
* * * * * * * 
• 
 * * * * * * 

* *** * * *** * * 

* PUB*P PBBO*P* PBBO*P PBBU*P* 
• EEEE EFEE * EEEE EEEE * 
****EEEE*****PEEEEP*****EEEE*****PEELEP* 
* IEEEEP **EEEEP* IEEEEP **ELEEP* 
" *EEEE**** *EEEE** *EEEE**** *EEEE**
 
****EEEE* ***EEEE* **EEEE* ***EEIE*
 
* CH** BCB** * BCB** 6cB** 

Fig. 3.14 Circuit 2/signals - typical output
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GENERAL DISCUSSION
 

The circuit as described for an ideal array (see Fig. 3.15)
 

consists of a subcircuit (inside the dotted line) repeated two times.
 

The second time the relative position of the originating point of input
 

signals and the termination point of output signals is different.
 

The complete circuit is described by individual signals. Each
 

signal is described by a combination of alternate moves in the horizontal
 

and vertical directions. The description of a signal s is stored in the
 
th
 

s row of a two dimensional array. The entries in a row of the array
 

are selected as follows. The first entry indicates whether the direction 

of a move is horizontal or vertical. The following two entries are x
 

and y coordinate of the originating point of the signal. Since each
 

move is normal to the preceding one, it is sufficient to give only one
 

coordinate for each corner. Therefore the entries following the 

coordinates of the originating point are the x or y coordinate of each
 

corner in sequence. 

ALGORITHM 

The first step in describing a circuit on a chip is to repre

sent the chip by a two dimensional array R which is called the represen

tation array. The array R represents each element on the chip with its 

terminals, the available space for the wires and the input output ter

minals. For example, in the test cases there was a space for four wires
 

between any two gates and each gate had three horizontal and a vertical 

pass, two input terminals, two output terminals, two bus lines and a 

disable terminal, to be connected to the ground bus in case the element 

was not used in the circuit. Each gate was represented by 
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CN term SN term
 

C S 
I Sub-circuit 

I ii
 

Ij --------


II_ 
_ 

I rn -
A C 

CN1 

A term B term
 

Fig. 3.15 Circuit for ideal 10-gate array
 



B B 0 P 

P E E E E P 

P E E E E P 

I E E E E P 

I E E E E 0 

P E E E E P 

B C B P 

where O's are the output terminals, I's are the input terminals, B's are 

the powet bus terminals, P's are the pass (undercrossing) terminals and 

the C is the disable terminal of the gate. This corresponds to the gate 

layout represented schematically in Fig. 3.16. 

The complete circuit is described by first connecting the input 

terminals AT and BT to the points A and B respectively (see Fig. 3.15)
 

and the output terminals CT and ST to the points C and S respectively. 

Then the subcircuit is described on the first set of five gates using 

the paints A and B as the originating points for the input signals. After 

having described the subcircuit on the first set, the position of the in

puts for the second set are determined (marked as A' and B' in Fig. 3.15) 

and the desired paths are drawn to bring them to suitable points for the 

next set. Now the subcircuit is described on the second set of five 

gates using these points as the originating points for the input signals. 

Finally the outputs of the second set are connected to the points S and 

o and all the unused gates are disabled. 

The signals are described with respect to the coordinate
 

system with its origin,at R[0,0]. Y axis is considered positive downward,
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V cc

El 
GndI 

E-l 
01 

E1 
TP4 

.F 

123 ---- - - - - - - - - --- RP1 

Ii E RP4 

12 E 02 

LP3-- RP3 

0J Er Uj 
V C Gnd, BP4 

cc 

Fig. 3.16 Gate schematic
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The X axis is positive to the right. When a description of a signal
 

is completed, its path in R, the representation array, is shown by
 

*Is (see Fig. 3.14).
 

DESCRIPTION OF SUBCIRCUIT
 

Let Gi, 2) G3, G4, and G5 be a set of gates. Let the input 

A be the line connecting (XO, YO, and (XO, YM), (note that YO can be the 

same as YM) and the input B be at the point XB, YB. Let LP1, LP2 and 

LP3 be the left end and RPI, RP2, RP3 be the right end of the upper, 

middle and lower passes of each gate (see 3.16). Let I and 12 be the 

two input terminals and 01 and 02 be the output terminals. Finally 

let BP4, RP4 and TP4 be respectively the bottom, the right and the top 

end of the vertical pass in the gate. 

The description of the sub-circuit is started at the upper 

left corner, taking one signal at a time, and the description continues
 

towards the lower right corner. Wherever possible, the description of 

a signal is started at its left end point.
 

The subcircuit is described in three mian procedures. In the 

first procedure the following signals are drawn. 

Input A is connected to 12 of GI . 01 of G is connected to Il
 

of G3 and to II of G4 in two parts. The first part describes signal(s) 

to connect 01 of GI to Il of G3 and the second part describes another 

signal(s) to connect this signal with Ii of G4. 

Next in the series we draw a signal(s) to connect an output
 

(01 or 02) of G3 with LPI of the last gate in the first row on the chip.
 

Last signal(s) in this procedure connects TP4 of G4 to 12 of G3
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The second procedure describes the signals connecting the 

gate G2 with the input terminals and the gates ,G4 and G5.
 

The input A and B are connected respectively to the LP2 and
 

LP3 of G2. Then LP3 and J2 of G2 are connected to each other. We 

connect the RP3 and BP4 of G2 to each other and then the TP4 is connected
 

to 1 2 of G4* 

Next in series we connect RP2 and 02 of G2 respectively to 

Ti and LP3 of G5. The last signal in this procedure connects 12 and 

LP3 of G5 . 

The third procedure describes the signals between G4 and G5 ' 

First the TP4 of G5 is connected to the BP4 of G and then 

02 of G4 is connected to 02 of G5; Lastly the RP3 and the BP4 of G5 

are connected to each other.
 

In a precisely parallel manner, the second subcircuit is
 

intraconnected to complete the one-bit adder configuration. The com

puter program TRANSLATE/SIGNALS was developed to interpret the wire
 

routing results of CIRCUIT/SIGNALS into an input format appropriate to
 

the SEMTAPE/COMPILE program described in Section 4.2 below which con

verts geometry specifications into a control magnetic tape for the EMG.
 

TRANSLATE/SIGNALS converts the signal path description and coordinates 

from the abbreviated path description and reduced coordinate system 

used in CIRCUIT/SIGNALS into the five-number rectangle description re

quired by SENTAPE/CONPILE and the coordinates corresponding to points
 

on the actual circuit chip.
 

Test cases were prepared for exercising these programs to de

velop the final circuit configuration for the one-bit adder, using 10 
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gates from a 4 x 4 gate array, and assuming 2, 3, 4, 5, and 6 bad gates
 

per array. The test case inputs and outputs for these five classes of
 

problem are shown .inFigs. 3.17 through 3.21. CRT presentations of
 

several of the,resulting EMG patterns are shown in Figs. 3.22 and 5.23.
 

Photographs of the actual metal patterns on a chip are presented in
 

Section 5.1 below.
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THE INPUT MATRIX IS
THE INPUT MATRIX IS 


n0 1II 1 1 1 

1 I 10 1 1 t 

1 I 1 1

1 0 1 

1 1 1
1 1 1 I 

SELECTED SET Or rLEMENTS IS
 
SELECTED SET OF ELEMENTS IS 


0,0 , O, 0 14 
0, 0 1,2 0, 0 1, 

?, 1 P 2' 3 9, A
1, 1 2,? 1,3 2. 4 
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Fig. 3.17 Test Cases with 2 Bad Gates
 

3-35 



TI-E 1IJT M&TRTV TS Tm-E INpUT MATRIX IS 

n 1 1 1 

l ~ 0 1 1 1 t I 

SrlFClEO SET t1 rLFMENTS IS SrLrCTED SET flr PLEmENTS IS
 

f), 0 1, 0, 0 1,4 0. 0 l, P 0, 0 1.4 

2. 1 ?. p 2' 3 2, 1, 1 2, 2 j, 1 2, 4 

'4, 1 4.9p 4, 3 4. 4 .3, 1 3, 2 3, 3 3, 4 

P9RROPP PRRnPP***4*RROP******BSOP4** PRnrPP pRROP*4r*680P*4***ABOP*** 
rFIrr rrrr * EEEE EEEE ** FF EEE * EEEE EEEE * 

prrv'rP PrrrEP. PEEEEP PEEEEP** PFFFWP PERFEEP* PEEEEP PEEEEP** 

****EFEEP* IE!EEP*.***4EEEEP** IEFFrP*****EEEEP* IEEEEP*****EEEEP4* 

IEFrFO *EEEE** IEEEEO* 4EEEE*** ****EErr4..***EREE******EEEE*4'****EEEE**4 
PEF-rrP. *EPIE** PEEEEP, *EEEE4**r * PErFE.P- **EFEE*** PEEEEP **EEEE*** 
R**P * RCRP B **P * BCBP ** * RCRP *ROAP 

-TEFFrP4 


* SBP * BCBP * 

*PRRO*P** PRRQPP .P6BO*P*
PflqgjPF' PR34g+P PRBOP?. PBeaBP* * PRRnPP 
Frrr 4 EEEE EEEE * EEEE * * ErrE * EEEE * EEEE * EEEE * 

PEEEEP PErEEP. PEEP * + OrrrFP .PEEEEP* PEEEEP *PEEEEP* 

TFrr P, **f*EFEEP IEEEEP***t-EEEEP * 
'PVrrrP4 


* EEFPEP **EEEEP* TEEEEP **EEEEP+ 
* EErOr*****r.EEr+4 IEEEEO*****EEEE*******rrrr*,**&rrFEE******EEEV******EEEr4*** 


PVFF, PEEP EEE**PE*P PrrrrP* PFEEP* PEEEEP. PEEEEP* 

* ReAP SR* * BCBp * CB* . * B*P * 1CR* * B.*P + BOB.* 

* F~ -. *F * -EE * *EE* Fr* EF * + EE EE ** 

* ** V** *E-E**EE*** EE** F:FP PEEE* * EE* EE* 

* rrrr TEFEEP* IEE * TECEEP* * rrrrE *ErE * TEEEEP *EEEEP* 

* PrrrP - PEEEEP* TEEEEP* PEEEEP* * *EEFEr***P*EEEE** *EEEE**** *EEEEP4 

S EFrrrP,- TEPEEP* IEEEEP* IEEEEP* ** TEFFP **EEEEP* I*EEEEP ***EEEEP* 

* IE 0- IEEEA* TEEEEO IEEEEO * *EEF** *FEEF4 * EEEF4* *EEEE* 
***F,'F v*PF*EEP** PEEEEP** PEEEEP* ****VF ***EFEP *EEEEP **EEEEP
 

" TE Vr **EE* * EEE ** E* *EFF **EE *TEEP TE 

"..*Err* **PErEEP...**EEEE****.PEEEEP4 **TEFErO PEEEEP .PEEEEP PEEEEP
 

PEEEEP *PEEEEP PEEEEP
4***rFrr* ***EFEE* ,*EEEE* *c*EEEE. * PEEFE? 
808** BCR+* 16.*P B.4P * 8** 6** 

**RCA** BCB** * 

Case 301 Case 302
 

Fig. 3.18 Test Cases withr 3 Bad Gates 
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Fig. 3.19 Test Cases with 4 Bad Gates 
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Fig. 3.20 Test Cases with 5 Bad Gates 
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Fig. 3.21 Test Cases with 6 Bad Gates 
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Fig. 3.23 - Test Cases - Wiring Patterns (Continued) 
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4.0 ELECTRON BEAM SYSTEMS DEVELOPMENT 

Electron beam systems and their application to the fabrication 

of soLid-state devices have been under study at Westinghouse Research for 

about 10 years, and as a result, two apparatuses have been developed for 

use ii defining device geometries, namely, the computer controlled scan

ning alectron microscope, now referred to as the Electron Micropattern 

Generator, and the Electron Image Projection System, which uses a high
 

inten3ity image tube. In the present program, only the Electron Micro

pattern Generator was used as a fabrication tool, and much of the effort
 

was dwvoted to developing and perfecting this system and the computer
 

programs which control it. At the start of the program, the digital
 

control for the scanning electron microscope had been planned and partly
 

assemled, but it was not until several months after the start of the
 

program until the first patterns were produced under computer control. 

The following paragraphs describe some of the aspects of this develop

ment including hardware design and improvement, software development,
 

alignment techniques, and system capabilities. 

4.1 ELECTRON MICROPATTERN GENERATOR (EMG) 

The Electron Micropattern Generator (EMG) used in this program
 

is built around a scanning electron microscope designed and constructed 

at Westinghouse Research in 1962 by 0. C. Wells. As shown in Fig. 4.1, 

the cpparatus includes the electron beam column with its gun, condensing 

and cbjective lenses, scanning coils, sample chamber, and vacuum system. 

Both an analog control for using this in the conventional manner as a
 

micrcscope, shown at center, and a digital control employing magnetic
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Figure 4.1 -- Electron Micropattern 
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tape ;s an information transfer medium, shown at the right, are used
 

with i:he column. 

It was decided very early in the design period to use the 

Burro ighs-5500 digital computer to perform as much of the over-all task 

as po:sible, and to use magnetic tape as a transfer medium for data in

putting into the digital control hardware. Objectives of high accuracy 

and fast operating speeds served as a guide to the system design. A
 

36 in. per second Ampex Type TM-71DH tape transport was selected for
 

the data input terminal, and further design considerations were depen

dent, in part, on the specifications and characteristics of this drive.
 

Selection of the operating field-of-view of the microscope was influenced
 

by factors such as effective beam width, column and deflection system
 

stability, pattern complexity, and desirable beam addressing rates. A
 

4092-address X and 4096-address Y field with a 1/2 micron basic incre

ment of distance was chosen as a suitable compromise of these criteria,
 

givirng an operating field 2045.5 x 2047.5 microns in size, or approxi

mately 80 by 80 mils. A further objective of the design was to provide 

for Lumerous machine functions so as to lead ultimately to a completely 

autonated unit. The presently used machine functions, as well as those 

prowded for future use, are listed in Table 4.1.
 

This system permits the exposure of arbitrary desired patterns
 

on e..ectroresist covered targets and eliminates the need for any prepara

tion of scale drawings, art work, photographic masters, or any of the
 

phot)lithographic steps commonly employed in today's integrated circuit 

tech ology. 
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Present:
 

1. Beam Position
 

2. Beam On/Off
 

"3. Program Serial Number
 

4. Word Rate
 

5. End of Program
 

6. Set MSB and NMSB 

Future:
 

-1. Subscan Specification
 

2. Digital Stage Position
 

3. Electronic Alignment Instructions
 

4. Electron Beam Testing Instructions
 

EMG Machine Functions
 

Table 4.1
 

DESICN AND OPERATION
 

The digital control rack, shown at the right of Fig. 4.1
 

houses at the top the Ampex tape deck, next the main chassis of the EMG
 

digital control, and beneath that the magnetic core memory unit which
 

serves as a buffer between the tape deck and the word register in the 

digital control. The overall flow of data in this system is shown in 

Fig. 4.2. Inputs to the Burroughs-5500 computer consist of the appro

priaue software programs such as the SEMTAPE/COMPILE program stored on 

disc:, and geometry specifications in digital form inputted in punched
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Fig. 4.2 EMG data flow
 



card :ormat. Using these inputs, the Burroughs computer outputs a 2400
 

ft. re:el of 7-track magnetic tape which has the machine control informa

tion on it. The digital control interface then manipulates and inter

prets the incoming data from the tape and executes machine functions as
 

they occur. Most of the data are beam addresses and serve to control
 

the scan amplifiers which drive the deflection coils.
 

The EMG digital control operates with a four-character word
 

as shown in Fig. 4.3. In each of the four characters, five bits serve
 

as dai.a bits, while the sixth bit serves as a word mark location. As
 

the characters are loaded into the control word register, the first
 

charater carries the first low order digits of the X addiess portion
 

of the word, the second character carries the last five digits of the
 

X add-:ess, and similarly for the third and fourth characters for the Y
 

addre:;s. X6 , X2, and Y6 are word mark digits in the first three
 

12characters and have the value of 0. Y , on the other hand, in the 

fourth character serves a word mark and has the value of 1. As written
 

on tha magnetic tape by the Burroughs computer, the data characters
 

which form the EMG digital control word are listed in records which are
 

2048 oharacters in length. This record length was chosen so as to be
 

compa:ible with the 4096 character capacity of the magnetic core memory
 

which serves as a buffer. The core memory is of sequential interlace
 

design, which permits writing characters in it in numerical sequence
 

and raading characters out of it in a separate numerical sequence.
 

Read and write address registers in the core memory count from 0 to 4095
 

in a 12-bit binary counter, and electrical flags or signals made
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(b) Tape Format 

Fig. 4.3 Format for EMG digital control data
 



available on the eleventh bit of this counter signal when the counter 

has reached one-half of full capacity count. These flags ,or signals
 

are used by the EMG digital control to monitor the load/unload status
 

of the core memory.- They also permit refreshing one-half of the 

capacity of the core memory at a time by reading a new record of 2048 

from :he tape and then writing that record into the newly unloaded core. 

In optration, the EMG control is started by manual controls and the 

charaztters -that are stored in the core memory are read into the inter

face in a continuous stream; meanwhile, the tape reader reads in 2048

character increments until it reaches the end-of-file. The end-of-file 

is marked by a special machine function word, and signifies completion 

of that part of the pattern. To initiate a new or following pattern, 

the BMG digital control must be reactivated by the Start pushbutton.
 

The over-all organization of the EMG is shown in Fig. 4.4. 

The cigital control is exercised primarily by the EMG digital control 

main chassis shown in the-center of this figure, which handles all 

timir g, assembles-the characters into a machine word in a word register, 

detects, interprets and executes machine functions, converts address 

word5 into analog currents which ultimately control the deflection 

.coils of the column, and permits manual control of the over-all oper

atioi. The Function Control panel shown at the lower left of the
 

figui:e serves to switch the .scanning electron microscope from an analog
 

mode to an align mode or to a digital mode operation, permits adjust

ment of the alignment display, which is presented on a Tektronix -Type
 

561 )scilloscope, and permits manual adjustment of the subs-can size. 
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Fig. 4.4 Function diagram of Electron Micropattern Generator
 



The 	 control is an all-solid-state design employing both integrated 

circu'ts and discrete components to perform the various functions. A
 

photograph of this unit is shown in Fig. '4.5 while Fig. 4.6 shows the
 

chass is layout. The 300 active components, roughly equally divided
 

among logic gates, transistors, flip-flops, and operational amplifiers,
 

are mjunted on 22 plug-in type circuit boards. The front control panel
 

preseits displays of the X and Y address register contents, the program
 

serial number obtained from a machine function word, and the word rate,
 

which may be controlled either manually or automatically as directed by
 

a machine function word. Aside from the word selector switch and the
 

display intensity control, all operations are controlled by simple push

buttcns. The operator steps required for reading a fabrication program 

into the EMG are extremely simple and consist of only four operations
 

once the equipment has been turned on and the necessary column align

ment obtained. These four steps are:
 

1. 	Tape deck controls are set to Remote, High Density, and Continuous.
 

2. 	The EMG Reset button is depressed to prepare for initial load.
 

3. 	The Load button is depressed twice to fill the buffer with two
 

data records or blocks before start of exposure.
 

4. 	The Run button is depressed. This starts the feeding of in

formation from the buffer store to the EMG control at the
 

selected rate, and lights the Run indicator. At the end of
 

the program, the information flow stops and the Run lamp
 

goes out. The program serial number is displayed at the
 

beginning of this program run and held until the beginning
 

of the succeeding run.
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In aligning successive patterns with the EMG, the function
 

selector is switched to the align position, and a magnified image of a 

pre-selected alignment mark is displayed on an oscilloscope. At the
 

same time, a digital pattern of a corresponding alignment frame which 

has been stored in the core memory and is recirculated there is super

impos!d on the alignment mark display. Suitable positioning controls 

permi: adjusting the pattern positions so that exact alignment is 

obtained. A typical alignment mark and frame presentation is shown in 

Fig. 4.7 

A continuing program to develop and refine the EMG and its 

operazion has been in effect during this contract, and the more signi

fican: of the many improvements made are listed in Table 4.2. 
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Table 4.2
 

Steps in Development and Improvement of the
 
Electron Micropattern Generator
 

Probl .:m 	 Solution or Modification
 

-Basic 
 Inadequacy of Installation of new D/A converter with separate
 
D/A Crnverter portable'power supply for remote calibration
 

Need 3f 4096-point Change of machine design and software to accom-

X and Y address modate 12-bit X and Y addresses, using machine
 

function to set MSB and NMSB digits
 

Inadequate range and Installation of new high resolution positioning
 
stabiLity of pattern control and stable operational amplifiers;
 
position control increase of feedback ratio of scan amplifier 5X,
 

installation of stable input amplifier and cur
rent sampling resistors.
 

A.F. and R.F. noise 	 Installation of shielding on scan amplifiers,
 
on deflection signals revising of grounding system, change of deflec

tion amplifier from voltage feedback to current
 
feedback configuration with input summing junction.
 
Installation of Paraformer line conditioner to
 
reduce noise from line. Installation of separate
 
power supplies for the control chassis and analog
 
system.
 

SEM column instability 	 Provision of vacuum valves between sample chamber
 
with sample chamber 	 and column. Change of operation routine to eli

minate gas bursts which destroyed filament
 
through heavy discharges. Changeover to com
mercial filament for gun.
 

Excessive Digital Provision of manually selected subscan with 1,
 
Beam Addresses Per 2, 3, 4 and 5 micron square patterns.
 
Pattern
 

InadEquate Alignment 	 Provision of alignment system and control with 
ProcEdure 	 SEM display of restricted, manually positioned
 

scanned raster and oscilloscope display of com
posite registration patterns.
 

Poor Alignment Mark Provision of solid-state surface barrier de-

DispLay tectors and new video amplifier system to dis

play alignment mark topography by back-scattered 
electron detection
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Table 4.2 

(Continued)
 

ProblEM Solution or Modification 

Coarseness, of control Provision of high-resolution, non-backlash 
rotating stage with + 10 travel. Later re
placed by rotationally rigid stage and elec
tronic rotation by X/Y mixing. 

Inadequate Pattern Provision for fine trim potentiometers for X 
Scale Adjustment and: Y scale 

Non-Perpendicularity Compensation by electrical cross-coupling of 
of X =d Y Axes X and Y axes. 

Lack of Adequate Provision of calibrated potentiometers and 
Astigiaatism, stabilized supplies 
Control 

Severe Instability Installation of additional electrostatic 
in Electron Beamu shields, design and fabrication of new 

stigmator with total electrostatic shields 
of insulating parts 

Hysteresis in Precision installation of high linearity air 
Preci3ion,Beam core deflection yokes 
Posit Loning 

Limit2d Stage Travel Modification of stage to give 1.25 x 1.0 inch 
travel 

Word-Rate Dependent Addition of holding register to provide better 
Data Errors, read-write data control of core memory. 

4-16
 



4.2 SOFTWARE FOR ELECTRON 'MICROPATTERN GENERATOR 

A set of programs for writing and checking magnetic tapes con

tainiug EMG control information was developed. They are discussed 

indiv[dually below. 

SEMTA'E/COMPILE 

SEMTAPE/CONPILE is the name of the program employed for the
 

major share of the reduction of artwork to EMG commands on magnetic
 

tape. It also does the final conversion to tape instructions for dis

cretionary metallization or interconnection patterns as specified by
 

the assignment and routing programs discussed above under Section 3.2
 

The output from this program consists of 1) a magnetic tape for input
 

to tFe EMG, and-2) a listing of the input cards followed by a block
 

count (2048 bytes per block), and a reading of processor and input

outptt times, in seconds. There are four types of input card read by
 

the rrogram, namely parameter, rectangle, end-of-loop, and end-of-pro

gram:
 

1) 	Parameter card'-contains program number, beanwidth, overlap,
 

wordratecode, subscan code, x-origin, y-origin, x-step, y-step,
 

x-repeat, y-repeat. These quantities are read with Burroughs 

B-5500 free-form format, but are restricted to a single card. 

The significance of these quantities is as follows (unless 

otherwise stated, quantities are zero if not set):
 

a) 	program number--the last three digits (rounded integer)
 

are emitted on the tape in BCD following a "set number
 

register" command.
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b) 	beamwidth--this expresses the effective exposure beam 

width in the grid scale unit of the problem. If beam

width - I or beamwidth >- 1023 an error message is 

printed and the program terminates. If not set, 

beamwidth = 2. 

c) 	overlap--fraction of beamwith to be overlapped when
 

stepping the beam address in order to assure reliable
 

exposure. Must be between (not equal to) zero and
 

one, or the program prints error message and ter

minates. If not set, overlap = .5.
 

d) 	 wordratecode-emitted mod 16 as the argument of a "set 

word rate"command. 

e) 	 subscan code--emitted as the argument of a "set 

subscan" command (currently not implemented in 

'this for). 

f) x-origin, y-origin--provides the basis for trans

lating the origin from the grid point 0,0.
 

g) x-step, y-step--for the step-repeat construct,
 

specifies the step size in each direction of-the
 

dynamic origin.
 

h) 	x-repeat, y-repeat--for the step-repeat construct,
 

specifies -thenumber of replicates in each direction
 

beyond the original version of the pattern. The
 

program expects a parameter card (or alternatively a
 

B-5500 control card which causes "normal" termination 

4-18
 



of SEMTAPE/CONPILE) as the first data card, and as
 

first card following card types 3 or 4 (end of loop,
 

end of program). The present inadequate error check

ing may permit (invalid) continued processing of the
 

data, but the results are, in general, useless.
 

2) 	Rectangle card--this is the device used to describe patterns
 

for exposure. The data contained on it represent the initial x,
 

initial y, width, final x, final y of a "line". Each of these
 

K 

quantities is accepted as an integer, right justified in a five
 

column field, starting at columns 9, 14, 19, 24, and 29, re

spectively. The rest of the card is available for comments
 

and identification. Addresses are interpreted relative to the
 

dynamic origin of the step-repeat construct; if operating. The
 

initial x must be non-negative (see card types 3 and 4). The
 

program can only draw horizontal or vertical "lines", so in
 

principle either the x or y coordinate remains unchanged from
 

initial to final value. If this is not true of the values
 

read, the average (initial and final) of that coordinate which
 

changes less is used. If the dynamic absolute grid address
 

leaves the range 0 to 4091 for x, or 0 to 4095 for y, a warning
 

message will be printed and the nearest "in-bounds" address will
 

be used. The ranges are unsymmetric at present since the
 

x-address code for 1023 is a command flag. Zone changes, i.e.,
 

setting of new most-significant-bit (MSB) and next-most-signifi

cant-bit (NMSB) in the x- or y-address, are monitored and
 

executed automatically.
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M)
End of loop card--this card delimits the end of a step-repeat
 

pattern. Its format is identical to that of card type 2
 

(rectangle). It is distinguished by a negative initial x
 

field and a non-negative initial y field; the remainder of
 

the card is ignored. The program expects a parameter card
 

following .this card; alternatively, a B-5500 control card
 

will terminate the program normally.
 

4) End of program card--this card marks the end of EMG programs 

(multiple-programs may be written on a single tape in on 

rwun). It is essentially identical to card type 3, the only
 

difference being the requirement for a negative initial y field
 

as well as a negative initial x field. It can serve also to
 

delimit a step-repeat loop, but when the loop is exhausted, a
 

filled-out tape block will be forced, with an "end-of-program"'
 

command emitted as the last item.. A temporary disk file is
 

used to allow the step-repeat construcz to retrieve pattern
 

information (rectangles) which are repeated.
 

TEST/PATTERN 

TEST/PATTERN is essentially an octal input translator for the
 

EMG Jigital control. It has proved useful for generating tapes that
 

,exercise particular hardware features by supplying a repetitive octal
 

pattern. Tapes maintain the standard blocking of 2048 bytes. Also 

outjputted on the printer, -is a listing of the input cards, followed by 

the -size of -the output tape in characters (bytes), feet written, and 

readtng time at a tape unit speed of -36 inches per second; then the
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B-5500 processor and I-0 times are printed. There are two input entries.
 

The s:mpler is just the number of copies of the original pattern to be
 

written on the tape. This is entered with the B-5500 control card
 

cons t-:uct, 

?COMMON = n. 

The other item is the card file describing the octal pattern. Columns 

1-64 of the card are used; the remainder may be used for identification.
 

The data columns are assumed to contain octal digits (0,1,...,7); if 

any other character is encountered the low order 3 bits of its internal 

code (BC) will be used as an octal digit. The program detects the last 

card, which is treated slightly differently: from column 65 (or the
 

first blank column, or any character whose internal code (BCL) has a 

first bit of one) on, the data is ignored. Patterns extending up to
 

1500 cards (96,000 octal digits) can be accommodated.
 

SEMTAPE/LISTER
 

SEMTAPE/LISTER is a program used to check the contents of a 

magnetic tape made for the EMG. It lists the block number and relative 

record (4 bytes) within a block, the octal contents of the record, the
 

inteipretation of the contents as a command or beam address instruction,
 

and simulation of the contents of the EMG digital control registers and
 

state of the EKG. Presently, the>interpretation and simulation portions
 

correspond to the original version of the EMG which used only a 1024 x
 

1024 position address raster. Adaptation to the present version has
 

been deferred since the program is still usable in this form for machine
 

trouble-shooting purposes. 
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SIMSEN/CALC0NP 

SIMSEM/CALC0MP is another checking program which translates-an
 

EMG tape into a Calcomp tape. The various EMG programs on the tape are
 

plotted as 10-inch frames with the program number at the side and the
 

time and date of generation of the Calcomp tape at the end of the plot.
 

Printer output consists of a list of the block-addresses on the EMG tape
 

at whLch "end-of-program" commands occur, and the B-5500 processor and
 

I-0 times; This program has not been adapted to the larger 4092 x 4096
 

position address grid because the resolution available on the Calcomp is
 

only 1/1500 of the 10-inch full scale. Furthermore, the conversion and
 

plotting process have proven to be rather slow.
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5.0 D.SCUSSION
 

The work performed under this program has resulted not only
 

in the tools and methods for interconnecting in a meaningful way a
 

random arrangement of tested viable circuit elements or modules, but 

has al-;o given support to the further development of the high-quality
 

digitaLly-controlled electron beam pattern generator, the Electron
 

Micropattern Generator, which can presently expose pattern geometries
 

in an alectron sensitive resist with elements as small as one micron
 

and which can yield + 1/2 micron or better alignment accuracies of a
 

pattera exposure with pre-existing fiducial marks on the substrate.
 

The failure'of the program to yield operating circuits was due only to
 

the exhaustion of the support available; the most recent improvements
 

on the tools and methods, made in the last few months, have brought
 

these procedures to a level of high utility. The question of adhesion
 

of thE final metallization is a minor problem which almost certainly
 

can bE solved by the use of sputter etching immediately prior to metal
 

deposition. The trial device patterns, for the 4 x 4 gate array, were
 

perfected, and the custom interconnection software was completely
 

debugt.ed so as to yield solutions which properly matched the gate array
 

geometry. Nothing, therefore, would prevent the realization of working
 

circuits of the present or similar design, using these techniques,
 

given the required small additional effort.
 

5.1 	"UTURE DIRECTIONS
 

The manufacture of integrated circuits with the help of elec

tron ")eam lithography for defining device and circuit patterns opens
 

the door to fabrication of entire electronic systems on a single blck
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or chip of silicon, by virtue of the high density of components and
 

circuits which this technique allows. For instance, memory cell
 

0-6 2 0-6 2
 
areas as small as 1.2 x 10 cm and gate areas down to 4 x 10 cm 

which are achievable with electron beam lithography, will permit 

fabriciation of an entire electron system such as a 20,000-gate 

256,000-bit memory computer on a 1 cm chip. The problems requiring 

solution in order to achieve this goal of ultra-large-scale-inte

gratioa (ULSI): range beyond electron-beam lithography aspects and -also 

include, as shown in Figure 5.1, high density processing, defect 

accommodation, device design, system design and layout, testing, and 

packaging. Particularly important are defect accommodation techniques, 

because planar technology at present and for the near.future offers no 

hope of obtaining a defect-free complex device or system on a chip as 

2 
large as 1 cm
 

The overall concept of defect accommodation technique is
 

shown in Figure 5.2. Using present electron beam fabrication methods,
 

a group of high-density integrated circuit modules are fabricated on a
 

large chip and internally connected so as to be operational. Defect
 

accomrtodation technique consists of testing for good or bad modules and
 

then wiring around the bad modules by a computer-derived lead routing
 

patte:n applied to the final metallization. Because the electron beam
 

can be used for the electrical testing of the modules at very high speed, 

as well as for drawing the final metal patterns, also at very high speed, 

the defect accommodation may be accomplished in an on-line economic 

manner.
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The smallest area of metal that can be contacted satisfactorily
 

with a mechanical fine wire probe system is about 75 x 75 microns (which
 

is larger than individual logic gates in high density circuits), while an
 

electrjn beam can be accurately addressed to an area as small a 1 x 1 mi

cron. The electron beam can be used both as input probe and output
 

probe. The chief difficulty qith its use is that it can only be used as
 

a single beam, and some means is required for holding input signals
 

at desirable levels as set by the beam while the beam=.goes to other
 

addresses or locations to set other input conditions or to probe the
 

circuit output conditions. Therefore it is important to develop effec

tive techniques 1) for permitting a single electron beam to set up
 

test conditions for a circuit, 2) for accurately measuring circuit par

ameters such as output voltages by a single electron beam probe, and
 

3) for performing the testing and executing the appropriate discretionary
 

wiring pattern in a single, on-line process. When these techniques are
 

masteted, the defect accommodation technique will be effective, making
 

possitle the realization of very complex circuitry on a silicon monolith.
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