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ABSTRACT
 

Theoretical and experimental studies have demonstrated the potential
 

for aircraft capable of operating at hypersonic speeds within the atmos­

phere with an air breathing engine employing supersonic combustion.
 

Duplication of true flight conditions in ground testing these propulsive
 

systems requires a significant extension of existing facility capabili­

ties and operating ranges. However, the nature of the flow at these
 

extreme conditions does not completely simulate the actual flight
 

conditions experienced by the Supersonic Combustion Ramjet (SCRANJET)
 

engine because the flowing gas stream is not in complete thermal and
 

chemical equilibrium.
 

This research program is a theoretical and experimental investigation 

of the effect of nonenullibriium rnnritlnrc iinn 1-1,o fnn4nr 

coibustors employing supersonic flows. Calculations and experiments are 

made regarding the effects on the ignition of hydrogen of the nonequili­

brium species (free radicals, atoms, water vapor, etc.) obtained using 

vitiated air. 

In the experimental effort, a gas generator burning nitrogen
 

tetroxide and hydrazine, plus a nitrogen diluent is employed to produce
 

the vitiated air which has approximately 19 percent by weight of water,
 

replacing an equal volume of nitrogen in real air, 26 percent oxygen and
 

55 percent nitrogen. Test section conditions simulate a free flight Mach
 

number of 6.5 and an altitude of 80,000 ft. The gas generator products
 

expand through a converging-diverging nozzle to a supersonic velocity
 

where heated hydrogen is injected and supersonic burning occurs.
 

Hydrogen is introduced into the combustion process through an annulus at
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a velocity corresponding to sonic conditions. Injection is parallel to
 

the mainstream gases to minimize shock interactions, thereby simplifying
 

the analysis of both the theoretical and experimental results.
 

Analysis of the inlet conditions and subsequent combustion process
 

necessitates the use of finite-rate chemistry calculations to determine
 

(1) the composition of the entering streams and (2) the composition
 

variation with time during ignition, Ignition delays are then calculated
 

using a one-dimensional, reacting gas program which assumes constant
 

temperature during the delay period. Results of this program were
 

verified against existing data for ignition delays in real air and
 

hydrogen. Subsequent analysis for vitiated air at specific experimental
 

conditions investigated showed that hydrogen would ignite approximately
 

1.5 in. downstream of the injection station. It also showed that if both
 

streams (hydrogen and vitiated air) were in chemical equilibrium prior
 

to mixing, the ignition would take place approximately 12 in. from the
 

point of injection. Thus, the nonequilibrium free-radical content of the
 

incoming streams tends to accelerate the ignition process to a significant
 

degree.
 

In the- experimental effort, the ignition delay length was determined
 

visually from high speed (550 frames per second) motion pictures of the
 

exhaust flow. The results showed the ignition delay distance to be a
 

direct function of the hydrogen injection temperature. The observed
 

distances varied from 8 to 19 in. 'and compared favorably with the analyti­

cal values when the assumption of limited rather than complete mixing of
 

the two streams prior to ignition was employed.
 

Results of this investigation show that the nonequilibrium free­

radical content from a vitiated air source will cause early supersonic
 



ignition of the hydrogen. An analysis of heated air expanded from a
 

high temperature source to test section conditions also indicates that
 

there is sufficient free-radical content in the incoming flow to cause
 

early ignition. Therefore, neither vitiated air nor heated air will
 

simulate the equilibrium supersonic ignition phenomenon in the regime
 

where the reaction times are rate controlling. Water vapor was also 

found to reduce the ignition delay period.
 



iv 

TABLE OF CONTENTS
 

Page
 

LIST OF TABLES . ......... .............. vi.
 

LIST OF FIGURES ....... ........... ......... vii
 

NOMENCLATURE .................... .......... xi
 

ABSTRACT ....... ........ ......... ........ xiv
 

INTRODUCTION ....................... ....... 1
 

Scope of Present Investigation. . .............. 4
 
Review of Pertinent Literature. . .............. 6
 

Ferri .. ........... . . . . ... .. . . . . .. 6
 
Nicholls, Adamson, and Morrison . ............. 8
 

.
 
Momtchiloff, Taback, and Buswell ..i..........11
 
Brokaw ................. .............. 10
 

Rhodes .... .............. ........... 13
 
Snyder, Robertson, Zanders and Skinner ......... 16
 

ANALYTICAL PROGRAM ....................... 20
 

Description of Computer Programs. ...... .......... ... 23
 
Ideal Supersonic Combustion Program.. .... ....... ... 23
 
Finite Rate Reacting Gas Program ..... ...... ... ... 26
 
Simplified Ignition Lag Program . ............ 31
 

Verification of the Simplified Ignition Lag Program . .. . .. 41
 
Analysis for Vitiated Air ......... ........... ... ... 56
 

EXPERIMENTAL PROGRAM ....... ............. ..... .. 63
 

Description of Experimental Apparatus ...... ....... ... 66
 

Gas Generator Experiments.... .i...............
 
Supersonic Combustion Experiments . .... . . . . .....
 

Gas Generator .......... ............... 66
 
Hydrogen Heater ....... .............................. 72
 
Supersonic Test Section ....... ............. 76
 

Description of Instrumentation ............... 79
 
Experimental Results ........... . ......... . 101
 

DISCUSSION OF ANALYTICAL AND EXPERIMENTAL RESULTS ... ...... .. 144
 



V 

Page
 

CONCLUSIONS ............. ................. ... 176
 

RECOMMENDATIONS ................ ............ .... 179
 

APPENDIX B: HEAT TRANSFER ANALYSIS FOR COPPER
 

APPENDIX D: CHECKLIST FOR TYPICAL SUPERSONIC COMBUSTION
 

APPENDIX E: GAS SAMPLING APPARATUS DESCRIPTION AND
 

APPENDIX F: COMBUSTION EFFICIENCY ANALYSIS FOR GAS
 

APPENDIX G: PROPOSED METHOD FOR DETERMINING COMBUSTION
 

BIBLIOGRAPHY ............. .............. ... .. 181
 

APPENDIX A: FACILITY DESCRIPTION ....... ....... ...... 184
 

ENGINE DESIGN ....... ............. ... 190
 

APPENDIX C: HYDRAZINE FUEL TRANSFER CHECKLIST .. ...... .. 198
 

IGNITION DELAY EXPERIMENTAL RUN ... ....... . -...201
 

OPERATIONAL PROCEDURE ..... ........... ... 205
 

GENERATOR - SAMPLE CALCULATION ......... .... . 209
 

EFFICIENCY OF SUPERSONIC TEST SECTION. . . .... 213
 

VITA . ............................. 221
 



vi 

LIST OF TABLES
 

Table 
 Page
 

1. 	 Reaction Rates for FRRG Program ..... ............ ... 27
 

2. 	 Reaction Rates for SIL Program .... ...... ..... 34
 

3. 	 Approximate Lag Theories .......... .......... 43
 

4. 	 Instrumentation Summary . ..... ............ ..... 81
 

5. 	 Gas Generator and Supersonic Combustion
 
Experiments .......... .................. ... 102
 

6. 	 Comparison of Relative Specie Abundance Measured
 
Versus (FRGG) Calculated ....... ......... . . . 132
 

Appendix Table
 

B-1. Nozzle WHeat Tran~fer-Design-Parameter"alues .... 194
 



vii 

LIST OF FIGURES
 

Figure 	 Page
 

1. 	 Nomtchiloff's Analysis Compared with Experimental
 
Results .............. ............. .. 14
 

2. 	 Effect of Contaminants on Induction Time ....... ...
.. 18
 

3. 	 Gas Generator Operating Conditions .'........... 25
 

4. 	 Equilibrium and Finite-Rate Composition for
 
G.G. Products ......... ............... .... 30
 

5. 	 Schematic of the Ignition Model .............. .32
 

6. 	 Definitions of the Induction Period . ............ 36
 

7. 	 Third Body Effects on Delay Time .... ........ .... 38
 

9. 	 Effect of Reactions and Rate Data on Delay Times . . . 45
 

10. Effect of Temperature on Induction Times ...... .... 46
 

11. Effect of Equivalence Ratio on Delay Times ..... .... 48
 

12. Effect of Pressure on Induction Times .. ...... ... 49
 

13. Effect of Water Vapor on Induction Times ....... 51
.... 


14. Delay Times for Different Correlations .... ...... 53
 

15. Comparison of Analytical and Experimental Results . . 55
 

16. Ignition Delay for Vitiated-Air/Hydrogen . . ...... 59
 

17. Ignition Delay for Heated-Air/Hydrogen ........... .. 60
 

18. Schematic of Experimental Set-Up .. ............. 65
 

19. Supersonic Combustion System Assembly Drawing .67
 

20. Gas Generator Injector Assembly .. .... 71
... ..... 




viii
 

Figure 	 Page
 

21. 	 Characteristic Network for Parallel Flow Nozzle . . 73
 

22. 	 Gas Generator Assembly....... ........ ....... 74
 

23. 	 Hydrogen Heater Installation ..... .............. 75
 

24. 	 Hydrogen Manifold - Gas Generator Assembly .... ..... 78
 

25. 	 Supersonic Test Section Assembly .... ............ 80
 

26. 	 Schematic of Cooled Instrumentation Rake Assembly . 84
 

27. 	 Installation of Instrumentation Rake ... .... ...... 85
 

28. 	 Impact Pressure and Gas Sampling Probe Assembly . . 86
 

29. 	 Schematic of Impact Pressure and Gas Sampling Probe 
..... 


-30. Cone Static Pressure Probe Assembly ... ...... ... 91
 

Assembly .......... ............... .. 88 

31. 	 Schematic of Cone Static Probe Assembly .. . .... 93
 

32. 	 High Temperature Thermocouple Probe . ..... ... 97
 

33. 	 4 omper-ature .nermocoiiue trone ..... 

34. 	 Schematic of Thermocouple Assembly ... ..... .... 99
 

35. 	 History of Ignition Phenomenon of Vitiated Air
 
and Hydrogen ............ ....... ... ...... 116
 

36. 	 Supersonic Combustor Firing ... ..... ........ 124
 

37. 	 Ignition Delay Measuring Apparatus......... ... 136
 

38. 	 Ignition Delay - Run 41 .... ..... .. ........ 137
 

39. 	 Ignition Delay - Run 43 ..... ...... ....... 139
 

40. 	 Ignition Delay - Run 45 ............. ..... 140
 

41. 	 Graph Ignition Delay Versus H2 Temperature ....... 142
 

42. 	 Graph Ignition Delay Versus Equivalence Ratio... ... 143
 

43. 	 Ignition Delay 100% Mixing - Run 39 ........ .... 148
 

44. 	 Ignition Delay 100% Mixing - Run 40 ... ........ 149
 



ix
 

Figure 	 Page
 

45. 	 Ignition Delay 100% Mixing - Run 41 ........... 150
 

46. 	 Ignition Delay 100% Mixing - Run 42 ."......... .151
 

47. 	 Ignition Delay 100% Mixing - Run 43 .......... 152
 

48. 	 Ignition Delay 100% Mixing - Run 44 .......... 153
 

49. 	 Ignition Delay 100% Mixing - Run 45 .......... 154
 

50. 	 Ignition Delay Minimal Mixing - Run 40 .... ...... 156
 

51. 	 Ignition Delay Minimal Mixing - Run 41 .. 157
 

52. 	 Ignition Delay Minimal Mixing - Run 42 ......... 158
 

53. 	 Schematic Supersonic Duct and Specie Concentration
 
Profile 0.0 FT - Run 39 ...... ....... ....... 161
 

54. 	 Specie Concentration Profiles 0.51 FT and
 

1.97 FT - Run 39 ........ ................... 162
 

55. 	 Specie Concentration Profile 1.65 FT - Run 39 ..... 163
 

56. 	 Ignition Delay 40% mixing - Run 39 ........... 166
 

57. 	 Ignition Delay 40% Mixing - Run 40 . . . .... ... . .167
 

58. 	 Ignition Delay 40% Mixing - Run 41........... 168
 

59. 	 Ignition Delay 40% Mixing - Run 42 . .......... 169
 

60. 	 Ignition Delay 40% Mixing - Run 43........ ..... 170
 

61. 	 Ignition Delay 40% Mixing - Run 44 ........... 171
 

62. 	 Ignition Delay 40% Mixing - Run 45 ........... 172
 

63. 	 Graphical Comparison of Analytical and Experimental
 
Ignition Delay Results as Function of H2
 
Temperature ........... ........... ... .... 173
 

64. 	 Graphical Comparison of Analytical and Experimental
 
Ignition Delay Results as Function of Equivalence
 
Ratio ............ ............. ... .... 174
 



Appendix Page
 
Figure
 

A-1. Main Control Panel ........ ............... .... 185
 

A-2. Hydrogen Control Panel ........ ............ .. 187
 

A-3. Facility Flow Schematic ........ .......... .. 189
 

B-I. Schematic of Analogy Between Thermal and 
Electrical Circuits ........... .......... .. 192 

B-2. Schematic of Analog Unit ........ ....... ... .. 196 

C-1. Schematic Drawing of Hydrazine Transfer Apparatus . 200 

E-1. Photograph Gas Sampling System ..... .......... .. 206 

E-2. Schematic Gas Sampling System .......... .... 207
 



xi 

L 

NOMENCLATURE
 

Symbol
 

A area
 

C* , effective exhaust velocity
 

Ce electrical capacitance (see Appendix B)
 

C p pressure coefficient (see Appendix G)
 

Cth thermal capacitance (see Appendix B)
 

Cp specific heat
 

E activation energy
 

G mass velocity (see Appendix G)
 

h absolute enthalpy, film heat transfer coefficient
 

hs sensible enthalpy (see Appendix G)
 

K equilibrium constant
 

k readtion rate constant, thermal conductivity
 

length of simulated section, length
 

M effective third body concentration, Mach number
 

N number of nodes (see Appendix B)
 

PC chamber pressure
 

Pt total pressure
 

' impact pressure
 

PS static pressure
 

ps cone-static pressure
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Symbol
 

Q heat transfer flow rate
 

Qchm heat of reaction (see Appendix G)
 

q dynamic pressure (see Appendix G)
 

Ru universal gas constant
 

Re electrical resistance (see Appendix B)
 

Rth total thermal resistance (see Appendix B)
 

Pthn thermal convective resistance (see Appendix B)
 

Rthnl thermal resistance encountered by traversing Arnl
 
(see Appendix B)
 

Rthn2 thermal resistance encountered by traversing Arn2
 
(see Appendix B)
 

ri inner radius of section (see Appendix B)
 

ro outer radius of section (see Appendix B)
 

rmn mean radius of nth division (see Appendix B)
 

rn radius of nth node (see AppenfdixB)
 

T temperature, time scaling factor
 

Taw adiabatic wall temperature (see Appendix B)
 

Tc chamber temperature
 

Ts static temperature
 

Tt total temperature
 

te electrical time (see Appendix B)'
 

tth thermal time (see Appendix B)
 

V velocity, volume of element
 

4weight flow tate
 

X third body mole fraction
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Greek Symbol
 

Y specific heat ratio
 

AHR heat of reaction
 

Arnl radii difference between nth node and inner boundary
 
(see Appendix B)
 

Amn2 radii difference between nth node and outer boundary
 
(see Appendix B)
 

6 cone-static probe half angle (see Appendix G)
 

TI species mole fraction
 

TIC combustion efficiency 

T time 

TID ignition delay time 

TR reaction time 

equivalence ratio 

cp combustor products 

e combustor exit 

EXP experimental
 

f fuel
 

ID ignition delay, induction period
 

ox oxidizer
 

R reaction
 

SIL simplified ignition lag
 

w combustor wall conditions
 

1 combustor inlet 

2 fuel exit 

3 combustor exit 



INTRODUCTION
 

Propulsion systems utilizing supersonic combustion have recently
 

been recognized as having strong potential for vehicles operating in
 

the hypersonic flight regime. 
The emergence of these new classes of
 

engines capable of operating at very high speeds within the atmosphere
 

introduces new problems in experimental aerodynamics. In particular,
 

the duplication of true flight conditions in testing these hypersonic
 

air breathing engines requires the significant extension of existing
 

facilities, capabilities and operating ranges. 
As flight velocities
 

are increased above Mach number 6, the stagnation temperatures and 

4= - ----- ---- --------- Uuixuu becomes 

increasingly difficult to achieve, particularly where large test
 

sections and long experimental run times are required. 
A typical
 

supersonic combustion ramjet engine (SCRAMJET) cruising at a Mach
 

number of 6 at an altitude of 80,000 feet would encounter stagnation
 

temperatures and pressures in the realm of 25000 K and 1500 psia with
 

air mass flows of 150 pounds per second. Dr. Antonio Ferri pointed
 

out in his Lanchester Memorial'Lecture Ei]* on application of super­

sonic combustion that the most urgent problem to be solved before a
 

supersonic combustion engine could be perfected was the development
 

of ground facilities for testing these engines. 
Within the present
 

*Number in brackets indicate references in the Bibliography.
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state-of-the-art of ground test facilities, it is just about impossible
 

to test a complete engine under conditions duplicating all the param­

eters corresponding to high Mach number flight, particularly for a time
 

duration sufficient to investigate the time-dependent facets of the
 

combustion process. In the supersonic combustion problem as 
applied
 

to the SCRAMJET, the chemical composition of the flowing medium, the 

mixing of the streams of fuel and air, the chemical reactions taking
 

place, and the reaction rates involved are the important factors to be
 

considered (2]. Therefore, the primary parameters requiring actual
 

duplication in the test cell are the static temperature, static
 

pressure, composition of the gases, residence time in the combustor,
 

and the velocity relationship between the mixing streams. 
Duplication
 

of the severe environments associated with low altitude high Mach
 

number flight regimes using state-of-the-art ground test facilities,
 

ns possible at Mach -approximately6,numbers -p-to 7 but"it would be 

prohibitively expensive due to the size and operational cost of a clean 

air heater capable of delivering the necessary high temperature,
 

pressure and quantity air mass flows. 
An alternate approach to this
 

problem is to generate a fluid medium which possesses the primary
 

influencial properties of true air, along with the inherent charac­

teristics of high stagnation temperature and pressure. This chemically
 

generated fluid medium is labelled "vitiated air" and is implied to
 

mean a synthetic mixture of gases having the same percentage oxygen
 

content and molecular weight as true air. 
The most significant
 

difference between vitiated air and true air is the contaminating
 

constituents such as water vapor and carbon dioxide emanatinp from the
 



chemical reaction of generation. These contaminating constituents are
 

responsible for uncertainties in the results, as compared to true air,
 

when employing vitiated air for high temperature combustion research.
 

On the other hand, facilities employing vitiated air possesses the
 

favorable characteristics of ability to operate at temperatures up to
 

approximately 4500OF and pressures up to 2-3000 psi together with high
 

flow rate capabilities.
 

Therefore, since vitiated air possesses all of the required
 

primary properties of a high temperature fluid medium with the
 

exception of known combustion characteristics, meaningful supersonic 

combustion development with state-of-the-art fuels could be conducted
 

inexpensively if the effects of the contaminating constituents could be
 

reliably predicted and correlated with results of air as experienced
 

in free flight.
 

This research program is a theoretical and experimental investi­

gation of the effects of nonequilibrium conditions--thermal and
 

chemical--upon the performance of combustors employing supersonic
 

flows. Specifically, the effects of free radicals, atoms and
 

third-body species such as water vapor (a contaminating constituent
 

in vitiated air), upon the combustion process are determined.
 

Calculations and experiments are made regarding the effects on the
 

combustion of heated hydrogen of the nonequilibrium species obtained
 

using vitiated air.
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Scope of Present Investigation
 

This research program is a continuation of the work initiated
 

and performed by Dr. Charles A. Bryce which was submitted to Purdue
 

University as a partial fulfillment of the requirements for the Degree
 

of Doctor of Philosophy [31. Dr. Bryce completed most of the
 

analytical work on the ignition delay portion of this investigation
 

and laid the foundation for the continuing experimental program.
 

Therefore, much of Dr. Bryce's findings and conclusions are included
 

in this thesis for the purpose of clarity, continuity and completeness.
 

In the supersonic burning of gaseous hydrogen there is a finite
 

distance required for mixing and subsequent ignition and combustion of
 

the two gas streams. If a combustor is operated at a high static
 

temperature (T > 12000K) the reaction times for autoignition and
 

combustion are sufficiently fast that mixing becomes the rate 

Cuizo±i±ng racror in oelennining the ,com'rsnor.lengthl[]. -At,static 

temperatures corresponding to low flight Mach numbers (T < 1200OK) 

reaction times for autoignition are slow and the reaction rate 

determines the combustor length. The present investigation is in the 

latter regime where reaction times are significantly longer than
 

mixing times. Therefore, the primary emphasis is on defining the
 

effects of vitiated air on the ignition characteristics with super­

sonic combustion. In a further attempt to identify the effects of
 

vitiation on the supersonic combustion of gaseous hydrogen, an
 

experimental investigation is described which could determine
 

empirically these effects on the combustion efficiency.
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In the experimental ignition delay and proposed combustion
 

efficiency phases of the research investigation, a gas generator
 

burning nitrogen tetroxide (N2 04) and hydrazine (N2 H) plus a
 

gaseous nitrogen (N2 ) diluent was employed to produce the vitiated
 

air. This synthetic air has approximately 19 percent water, replacing
 

a corresponding volume of nitrogen in real air, 26 percent oxygen and
 

55 percent nitrogen, by weight. The stagnation temperature (22000 K)
 

and stagnation pressure (1000 psia) are characteristic experimental
 

conditions in the gas generator, which, when expanded to a Mach number
 

of 3 simulates a supersonic combustor's entrance conditions corre-

I 

sponding to a flight Mach number of M. = 6.5 at an altitude of
 

approximately 80,000 feet. The simulation was achieved by expanding
 

the gas generator products (vitiated air) through a converging­

where heated gaseous hydrogen is introduced with subsequent ignition 

and burning. The hydrogen was injected into the combustor through an
 

annular type manifold surrounding the vitiated air stream, at a
 

velocity corresponding to sonic conditions. Injection was parallel
 

to the mainstream gases to minimize shock interactions, thereby
 

simplifying the analysis of both the theoretical and experimental
 

results. During the ignition delay experiments the supersonic
 

combustor section was removed and the gas generator stagnation pressure
 

and mass flows were reduced. These actions reduced the gas generator
 

nozzle exit pressure to ambient pressure and permitted visible
 

observation of the ignition phenomenon.
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The purpose of the program was to investigate, both analytically
 

and experimentally, theoeffects of vitiated air upon the performance
 

of a combustor employing supersonic flows. Analysis of the inlet
 

conditions and subsequent combustion process necessitates the use of
 

finite-rate chemistry calculations to determine (1) the composition
 

of the entering streams and (2) the composition variation with time
 

during the ignition and combustion process. A comparison of the
 

analysis and experiments with vitiated air against analytical results
 

for real air is used to illustrate the degree of simulation that can
 

be achieved.
 

Review of Pertinent Literature
 

The majority of the literature published concerning supersonic
 

combustion has been classified for security purposes. 
The classified
 

Aia-nn+1 n.. ... 1,e -.. 
_.L'J_ 

be considered herein. Of the unclassified information available, the
 

author was unable to find any reports which dealt specifically with
 

the effect of vitiation on supersonic combustion. However, there are
 

several articles concerning ignition delay in supersonic flows for
 

hydrogen and real air. The unclassified articles considered most
 

significant for comparison with the results of present prograis are
 

discussed in the following paragraphs.
 

Feri [Ref. 1]
 

This is a review paper which summarizes primarily the work
 

conducted by the General Applied Science Laboratories (GASL) on super­

sonic burning prior to 1964. In examining ignition delay, GASL
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developed a computer program to solve the conservation equations for a
 

reacting flow system. Species considered in this program were H, H2 ,
 

0, 02, OH, H20 and M, where M represents a third body. The assumption
 

is made that the forward and backward rate constants are related by the
 

equilibrium constant. Eight reactions, four bimolecular and four
 

recombination (third body), were considered pertinent to hydrogen-air
 

combustion. Starting conditions required for the analysis included
 

the initial chemical composition of the mixture and the static
 

temperature, pressure and velocity of the mixture. 
To simplify the
 

analysis the static pressure was assumed constant throughout the
 

combustion process, although the program was capable of handling a
 

prescribed variation in static pressure.
 

Results of the analysis showed the bimolecular reactions dominate
 

the ignition delay region and that these reactions take place at 

essentially constant temperature. In the ignition delay region free 

radicals increase to their peak concentrations. Ferri defines the 

ignition delay period as the time required to reach peak concentration 

for the hydrogen radical. During the latter portion of the induction 

period the free'radicals begin to disappear. The heat release 

associated with the disappearance of the free radicals produces a 

.rapid temperature rise to the final combustion temperature. The 

latter period is designated the reaction time. 

From the analysis and a correlation of data from References 4 

and 5, Ferri suggests the following simplified expression for 

calculating the ignition delay time.' 

*The symbols are defined in the Nomenclature. 



-3
8x10

TID - p exp[9600/T]
 

Based on the results of the numerical analysis, the following empirical
 

expression was formed to define the reaction time.
 

= e[-l.12T/1000]
 
pi.7
 

One may observe from the above equation that the total reaction
 

time is inversely proportional to temperature and pressure with
 

temperature having the more significant effect. 
Thus, with high,
 

initial static temperatures (T > 12000 K), reaction times are almost
 

negligible and mixing becomes the rate controlling mechanism in
 

supersonic combustion. But in the low temperature regime (T < 11000K)
 

the overall reaction time -is rate controlling and-the fmiixing times can 

be neglected.
 

Nicholls, Adamson, and Morrison [Ref. 6]
 

Previous experiments by the first author showed a distinct
 

separation between the flame and shock front for standing detonation
 

waves with hydrogen-air mixtures. 
The distance between the flame
 

front and shock front is said to represent the ignition lag length.
 

In the referenced article the authors developed a simplified relation
 

for the time delay based on solving the differential equations for the
 

kinetics (assuming the hydrodynamic variables constant).
 

Nine reactions, five bimolecular and four third body, are
 

considered pertinent to the delay zone and these only proceed in the
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forward direction. Species considered were H, H2 , 0, 02, OH, H20,
 

and M. 
The rate equations were written and terms were eliminated which
 

were considered sufficiently small. This resulted in three linear
 

equations written in terms of 0, OH, and H and these equations could
 

be solved explicitly after the introduction of a linear transformation.
 

The solutions were expressions which described the free-radical
 

concentrations as a function of time. Selecting as their criteria for
 

ignition delay the inflection point in the atomic hydrogen versus time
 

curve, the following expression was obtained for the induction period.
 

-j 	 2 knoRIt 

ID 2 T02 exp [E6/RTJ [n 2 k2 + k5]
 
TRT ex 

where k6 = PA6/RT exp[-E 6/RT] is the forward reaction rate equations 
kiz 

or ne rate controlling reaction (02 + + OH 0). The authors' 

conclusions regarding the ignition delay time for this system are: 

1. 	T decreases with increasing pressure and increasing
 

temperature because of the exponential term.
 

2. 	T is primarily dependent on reaction 6, a chain branching
 

reaction usually consider controlling in the H2 - 02
 

system.
 

3. 	T decreases slightly with initial oxygen content, the log 

term being small. 

4. 	T is weakly dependent on the initial H2 concentration. 



i0
 

Brokaw [Ref. 7]
 

In this article, the differential equations governing the rate 

of change of free-radical concentration during the induction period
 

were solved explicitly assuming constant temperature and negligible
 

depletion of reactants. The reactions considered were as follows:
 

kl
 

OH + H2 + H20 + H
 

k2
 

H + 02 * OH + 0 

k3 
0 + H2 + OH + H 

.k6 
H + 02 + M H02 + M 

kll 

H02 + H2 +H 2 02 + H 

The first three are the standard bimolecular reactions considered with
 

the H2 ­ 02 system while the latter two were felt to be significant at
 

low temperatures. Employing only the forward reaction rates and
 

eliminating the initiation rates, Brokaw solved, simultaneously, the
 

equations for the growth of free radicals with time.
 

Three types of solutions were obtained and these tended to
 

correspond qualitatively to the three explosion limits of the H2 
- 02
 

system. The region of short ignition delays is of interest for
 

application to supersonic combustion. Here Brokaw obtained an
 

approximate analytical solution for the ignition delay in hydrogen-air
 

flow systems. This solution assumes the induction period ends when
 

the concentration of the OH radical reaches 10-6 moles/liter
 



[suggested in Reference 8]. The results of this method are shown to
 

compare favorably with the more sophisticated numerical methods of
 

Momtchiloff, et al. [4] and Belles and Lauver [9].
 

Brokaw indicated the importance of considering the HO2 species
 

for finding ignition delays at low temperatures. The three bimolecular
 

reactions produce free radicals while the third-body reactions inhibit
 

the build up of atomic hydrogen. This effect results in an increase
 

in ignition delay period over that predicted by neglecting the latter
 

two reactions. Of particular significance to applications with
 

vitiated air and hydrogen combustion is the fact that water vapor is
 

an effective third body. This is illustrated by the reaction rate
 

expression given for k6 .
 

k;= 3.27x101 5 (Xu + 0.35 Xr + 042 X_ + -9 Y.. 

S2 9 (liters) 2 
14,.SXH + /,oT-2
 

120 +(mole) 2 
sec
 

where X represents the mole fraction of the various third bodies.
 

Since water vapor is an effective third body and tends to promote
 

reaction 6, the overall effect should be to increase the ignition
 

delay for hydrogen burning in vitiated air as compared to hydrogen
 

burning in real air.
 

Momtchiloff, Taback, and Buswell [Ref. 4] 

This article describes the development of a computer program for
 

calculating ignition delays in hypersonic ramjets. The program
 

combines the reaction rate equations with the one-dimensional gas
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dynamics equations to form a series of simultaneous non-linear
 

differential equations. Numerical methods were employed to obtain
 

solutions for hydrogen-air flowing in an adiabatic, frictionless duct.
 

Starting conditions for the analysis were: 
 (1) each stream is
 

defined by its equilibrium composition at the local static temperature
 

and pressure, and (2) instantaneous mixing is assumed to occur at the
 

duct entrance. 
The assumption of instantaneous mixing is justified by
 

their results which show that equivalence ratio has a very small effect 
-

on 	ignition delay in the range, 0.25 < 
 > 2.5. A total of ten
 

reactions are included in their program, six bimolecular and four
 

third body. Species considered are 0, 02, H, H21 OH, H20, N, N2 
and
 

NO. 
This was the first attempt to include the effect of nitrogen
 

reactions on the combustion process. 
However, their conclusion was
 

that the nitrogen reactions are relatively unimportant at reactant
 

temperature below 4000 0R.
 

Several ignition criteria were examined by Momchiloff, et al., 

to show their effect on the theoretical delay time. The criteria 

considered were: 

1. 	Time for OH radical to reach 10- 6 moles/liter,
 

2. 	Time at the intersection of the slopes for the initial and
 

maximum temperature rise,
 

3. Time for the temperature to reach 5% above the initial
 

- temperature, and
 

4. 	When the slope of the temperature versus time curve reaches
 

106 degrees R/second.
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Results of this comparison showed the relative magnitudes of the delay
 

times for different ignition criteria were within a factor of two over
 

a wide range of initial temperatures. The first criterion for
 

hydroxyl concentration was somewhat arbitrarily selected for defining
 

the ignition period.
 

In order to substantiate their analytical technique, a comparison
 

was made with experimental delay time data. This comparison is shown 

as Figure 1. The authors rationalize that the large difference shown
 

for Das Gupta's [10] data is partly due to mixing time being included
 

in the delay period and they also question the experimental accuracy
 

of Nicholls' [6] data. 
In general, the comparison tends to
 

substantiate the validity of the analytical procedure. 
As a final
 

comment, the authors note that by a simple adjustment to the initial
 

concentrations, one could Dredict the 
 ffPert hF ct,1,t1+nA 

ignition delay.
 

Rhodes [Ref. 13]
 

This is the first author to suggest that nonequilibrium, free­

radical concentration may have a significant effect on ignition delay
 

with supersonic combustion. 
Examining the four bimolecular reactions
 

which govern the rate of growth of free radicals, the author shows the
 

ignition delay was primarily controlled by the reaction rate for:
 

02 +H->OH+0
 

After several simplifications, an expression was derived for the
 

initial rate of reaction in terms of the rate controlling reaction and
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the free-radical concentration. Rhodes then correlates the delay time
 

(from the complete kinetics program of GASL) against the initial rate
 

of reaction expression and found it conveniently plotted as a straight
 

line on log-log coordinates. From this plot, the following expression
 

was obtained for.the ignition delay in terms of the initial free­

radical concentration:
 

1/3
 
3


IDT l.27xl0- [020T'XFR] exp[3020'T) 

where
 

-[XFR]O =[Hl [X0 1]O t 2[X0], 

From the above expression it may be noted that an order of
 

magnitude increase in free-rad~cal coptpnt --.t1-c­

will reduce the delay time by a factor of two. There are two condi­

tions in this equation which are somewhat inconsistent with other
 

ignition lag correlations: one is the pressure dependence tO the
 

four-thirds power and the other is the rather significant effect of
 

initial oxygen content. Since the author claims that this method will
 

only predict times within a factor of two, these anomalies are not
 

sufficient to invalidate the overall correlation.
 

The most significant conclusion that can be drawn from this
 

article is that nonequilibrium, free-radical species can affect
 

induction time in supersonic combustion. In ground test facilities
 

heated air is expanded from a high-temperature to a supersonic test
 

section where hydrogen or some other fuel is injected and combustion
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occurs. 
During the expansion process some recombination freezing will
 

occur and the excess free radicals in the incoming air will cause
 

ignition to occur earlier -than would occur in the engine in flight.
 

The same effect will be seen in ground testing with vitiated or
 

synthetic air as the primary fluid. 
However, a free-flight system
 

may incur an increased ignition delay because the free-radical
 

concentration produced by the inlet compression may be less than the
 

corresponding equilibrium values.
 

Snyder, Robertson, Zanders, and Skinner [Ref. 14
 

This report contains the results of an extensive experimental
 

investigation of ignition delay for hydrogen-air mixtures. 
The work
 

was conducted using shock tube techniques. Induction times were found
 

by taking the difference between the time to peak pressure for the
 

_--- --- --- -£ 2.Ltr~iii urcx'avioiLet emission at 

a specific axial location. Experimental conditions were varied over
 

the following ranges: equivalence ratio (0.5 S 4 5 1.0), test section 

pressure (1.5 S P < 130 psia), and temperature (800 < T < 1100 0 K). 

The effect of several contaminants on the induction characteristic of
 

hydrogen-air was also studied 
 Additives investigated experimentally
 

included water vapor, nitric oxide, nitrogen dioxide and ammonia.
 

Experimental results for the undiluted mixtures were utilized as
 

an input to a nonlinear regression program and the following equation
 

is presented as a best fit to the data.
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7.92x]10 5
 

TID (p)0 exp[l5.950/T]
.x 


Limits for application of this expression are fuel concentrations less
 

than stoichiometric and initial static temperatures between 800 and
 

11000 K.
 

Some interesting results were obtained from the experiments
 

investigating the effect of contaminants on the ignition reaction.
 

Water vapor, nitric oxide, and nitrogen dioxide were found to reduce
 

the ignition delay, while ammonia had essentially no effect. Water
 

vapor was added in concentrations of 10, 15, and 20 mole percent in
 

experiments at equivalence ratios of 0.5 and 1.0. At the lower
 

equivalence ratio, the induction time was reduced by almost an order
 

of magnitude. A plot of the experimental data illustrating the
 

reduction in delay time with IS mole percent water vapor is shown in 

Figure 2, which presents delay time as a function of temperature. A 

similar effect was shown at higher temperature (% 1000°K) for the 

equivalence ratio of 1.0 experiments but a slight inhibiting effect
 

was found in the low temperature region.
 

Results from the nitric oxide experiments (also shown in Figure 2)
 

were much more dramatic. The addition of only 0.5 mole percent NO
 

resulted in a reduction in induction time of approximately two orders
 

of magnitude. Nitrogen dioxide exhibited essentially the same
 

magnitude reduction. Several different concentrations were examined
 

in the nitric oxide experiments ranging from 0.i to 8.0 mole percent.
 

Significant reductions (at least one order of magnitude) were found
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in each case with the peak reduction occurring in the neighborhood of
 

0.5 mole percent. This indicates that nitric oxide catalyzes the
 

hydrogen-air reaction. Ground test facilities using heated air or
 

synthetic air can have an appreciable quantity of NO entering the
 

supersonic test section. Therefore, induction times for ground
 

testing may be considerably shorter than that experienced under the
 

corresponding free-flight conditions.
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ANALYTICAL PROGRAM
 

Most of the theoretical and experimental work concerning the
 

combustion of hydrogen and air is based on the assumption that complete
 

thermal and chemical equilibrium exists at the combustor inlet. 
In
 

the shock tube work ofSchott and Kinsey [15] and the standing
 

detonation wave work of Nicholls [5), 
the combined streams are assumed
 

in equilibrium immediately downstream of the shock front. 
With this
 

type of experiment, the assumption of equilibrium starting conditions
 

may be-justified on the basis that the agreement between analysis and
 

experiments is reasonably good.
 

POm0 c'cytA 4 n nco ,,t. - - ­.... .I - - s 
-------------~L.L'4 w1fS L.LJ r 

shown the possible existence of deviations from thermal equilibrium.
 

In these cases, the different modes of energy storage are not in
 

equilibrium, resulting in a translational temperature overshoot. 
By
 

accounting for the overshoot in the reaction rate expression, they
 

are still able to predict ignition delays for shock-induced combustion
 

of hydrogen-air using the assumption of chemical equilibrium as a
 

starting condition for finite-rate calculation. Therefore, most
 

ignition delay data for hydrogen-air can be described theoretically by
 

assuming (i) that the premixed gases are in chemical equilibrium just­

prior to ignition or (2) that each stream exists as its corresponding
 

equilibrium state prior to mixing. 
The latter assumption applies to
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combustion without shocks where the two gases are initially mixed at
 

the combustor entrance.
 

An Ideal Supersonic Combustion (ISSC) program was employed by 

the author to determine the operating conditions of the gas generator 

and to size the gas generator, test section, and combustor exit. This 

program combines the one-dimensional gas dynamic equations with the 

equilibrium thermochemical relations to: 

1. 	Determine the products of combustion in the gas generator,
 

2. 	Isentropically expand the products (shifting equilibrium) to
 

the test section entrance,
 

3. 	Calculate the properties of hydrogen at the injection
 

station, and
 

4. 	Calculate the results of mixing and burning the two streams
 

at constant pressure.
 

A Finite Rate Reacting Gas (FRRG) program was used by the author 

to determine the nonequilibrium free-radical concentrations in the 

vitiated air as it enters the combustor. This program integrates the 

one-dimensional gas dynamic relations for a chemically reacting flow
 

system throughout the expansion process. Reaction rates used with the
 

FRRG program were identical to those used in the ignition lag program
 

(discussed below) for situations where the same reactions were found
 

to be applicable.
 

Induction times were determined by a Simplified Ignition Lag (SIL) 

program. This program solves the species reaction rate relations, 

assuming constant pressure and temperature, using a matrix technique. 

The validity of this program is established by a comparison of the 
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program results against existing experimental induction data for
 

heated air. This comparison requires that the SIL program be run with
 

initial species concentration data from the ISSC program because of
 

the nature of the experimental results.
 

There is an abundance of reaction rate data for the hydrogen­

oxygen system. A fairly up-to-date 
source of reaction rate information
 

is provided in a study conducted by TRW [Ref. 17]. 
 This study attempts
 

to identify the significant reactions which affect the kinetic
 

performance of typical liquid propellant systems. 
After identification
 

of important reactions, a summary was made of existing rate data and
 

the degree of uncertainty was established. 
In general, the bimolecular
 

reaction rates seemed reasonable, however, the third-body reaction
 

rates do not include an activation energy term. This omission would
 

not sj 1rjy-l ~F~4 __.t2dpZICJL~iased on 

kinetics calculations; however, it could make some difference in the
 

species concentration determinations when attempting to establish the
 

free-radical content. 
After initially beginning the analysis 

utilizing the TRW reaction rates, it was decided to change to a more 

consistent set of rate expressions. The rates selected for the final 

analysis were supplied by E. A. Lezberg of NASA Lewis Research Center. 

The general agreement of these rates with those employed by other 

authors [Refs. 1, 4, and 17] is considered acceptable, since
 

uncertainties of at least one order of magnitude are quite common
 

in reaction rate data.
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Description of Computer Programs
 

The computer programs used in the analytical effort are discussed
 

in the following paragraphs. The discussion includes:
 

1. 	Basic assumptions,
 

2. 	Program description,
 

3. 	Input requirements,
 

4. 	Output results, and
 

5. 	Limitations.
 

Ideal Supersonic Combustion (ISSC) Program
 

Ideal performance calculations are useful, in many instances, for
 

determining the maximum theoretical performance that can be derived
 

for different propellant combinations. This program performs the
 

basic thermochemical calculations necessary to design the gas generator
 

assembly as wnl. =s thb cn .ut.
 

making thermochemical calculations assuming shifting equilibrium
 

conditions the following assumptions are made:
 

1. 	Chemical equilibrium is maintained both in the combustor and
 

during the expansion process.
 

2. 	The combustion products behave as an ideal gas mixture.
 

S. 	The expansion processes are adiabatic and reversible
 

(isentropic).
 

4. 
The reactants burn to completion at a specified pressure.
 

5. 	Supersonic combustion takes place adiabatically and at
 

constant pressure.
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The program combines the one-dimensional conservation equations 

for an ideal gas with the equilibrium thermochemical relations to 

compute the combustion and expansion processes. Specifically, the 

program first computes conditions in the primary combustor and then 

expands these gases (shifting equilibrium) to various area ratios which 

may be chosen as inputs to the program. The secondary stream is heated 

hydrogen with a temperature which corresponds to the input enthalpy of 

the reactants. Equilibrium dissociation is maintained as this stream 

is expanded to a pressure corresponding to that at which mixing takes 

place. It is assumed the streams are mixed instantaneously and burned 

at constant pressure. The latter step represents the supersonic 

combustion process. Provision is made for additional isentropic 

expansions and for calculation of the equilibrium stagnation pressure 

Mach number and temperature of the combined stream. 

In the calculations for the production of vitiated air for these
 

experiments, the required flow rates of nitrogen tetroxide, hydrazine,
 

and nitrogen are a function of the desired chamber temperature. The
 

flows are proportioned such that the vitiated air has the same weight
 

percent oxygen as real air. Calculations of the flow rate requirements
 

for setting the operational conditions of experimental hardware were
 

made utilizing the equilibrium thermochemical program. Typical results 

are shown in Figure 3 which presents gas generator operating conditions
 

as a function of chamber temperature. The final selection of a design
 

operating condition is discussed in the section titled "Experimental
 

Program."
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The ISSC program can also be operated with the 'characteristicsof
 

heated air serving as input to the program as the primary gas stream.
 

It is then possible to-compare the ideal supersonic combustion
 

performance of vitiated air and heated air. 
The equilibrium species
 

concentrations for the test section entrance as determined by this
 

program are used as 
input to the ignition lag program. It is thus
 

possible to determine ignition lag for equilibrium inlet conditions
 

for comparison with the nonequilibrium conditions generated by the 

following computer program. 
Data input procedures and operating
 

instructions are expanded in Reference 18.
 

Finite Rate Reacting Gas (FRRG) Program
 

This computer program was developed by TRW Systems for NASA (MSC)
 

under Contract NAS-4358. 
Inputs to the program included reaction rate
 

information, nozzle geometzy, propellant data (i.e.,-moles of fuel and
 

oxidizer plus their heats of formation). The program solves the
 

equations for inviscid, one-dimensional flow of a reacting gas mixture.
 

The following assumptions are made when deriving the conservation
 

equations:
 

1. The expansion process is adiabatic.
 

2. All species behave as ideal gases.
 

S. Viscous effects are neglected.
 

4. All internal modes of energy storage are in equilibrium.
 

The reaction rate parameters employed in the FPRG program are
 

listed in Table 1. 
Only the constants for the forward rate expression
 

are used as input to the program. The reverse reaction rates are
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REACTION 

TABLE 1 

RATES FOR FRRG PROGRAM 

J 

1 

2 

3 

4 

5 

6 

7 

8 

9 

.0 

11 

12 

13 

14 

is 

Reaction 

H20 + M. OH + H + M 

H2 + M RH + H + M 

N2 + M -N + N + 1 

NO + M -- N + 0 + M 

OH + M--O + H + M 

02 + M = 0 + 0 + M 

H20 + H -=H2+ OH 

H20 + 0 --OH + OH 

H2 + 0 -OH + H 

"H2 t V2 0OH + OH 

N2 + 0 NO + N 

N2 + 02 NO + NO 

NO + H OH + N 

NO + 0 02 + N 

02 + H -OH + 0 

A(J)
(gr. cm.) 

1.9xi01 8 

3.2xi01 6  

1.0x10 1 8  

6.0x10 16 

2.0x10 1 8 

3.59x10 17 

1.43xi0 14 

2.9xi014 

4.0x101 3 

1 

1.5x101 

1.0Mx0 13  

5.3xi0 I 

1,8x10 8 

1.0xl01 4 

'9 

B(J)
(kcal/mole) 

119.9 

102.9 

--

--

118.0 

20.94 

18.7 

10.2 

38i0 

....­

79.5 

5.62 

6.0 

16.0 

N(J) 

-1.278 

-1.5 

-1.0 

-0.5 

-1.0 

-2.5 

-­

-2.5 

0.5 

1.5 

-­

where 

and 

kf(J) = A(J) TN(J) exp[-B(J)/RT] 

kb(J) = kf(J)/kc(J) 
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computed internally from the forwzard rate and equilibrium constant
 

(based on molar concentrations) by the following relation:
 

kb(j) = kf(j)/ke(j) 

There is some question as to the applications of this relation to
 

three-body reactions, but it is known to be a good assumption for
 

bimolecular reactions near equilibrium.
 

Numerical integration of the governing equations is accomplished
 

using an implicit integration scheme. The advantage of this method is
 

that it permits stable integration for step sizes of the same order of
 

magnitude as the physical dimensions (nozzle throat size) for any flow
 

condition (either near equilibrium or frozen). A similar program was
 

developed earlier by Zupink, et al. [19) of United Aircraft. However,
 

this program employs explicit integration methods which are unstable
 

UuLJeS the step size .s or craer QnFthe harter=stic -relaxation 

distance. For near equilibrium flows the relaxation distance becomes
 

very small and explicit integration methods require excessive computer
 

time. In addition a first guess as to the initial step size to be
 

utilized in the combustion chamber is required as input to the United
 

Aircraft program. Because of these limitations it was decided to
 

conduct all further analysis of nonequilibrium flows using the TRW
 

program.
 

The FRRG program calculates the nonequilibrium species concen­

trations at specified area ratios in the nozzle, Since the one­

dimensional flow equations are used in this program, the concentrations 

are assumed uniform at each axial location. A check was made as to 
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the validity of the one-dimensional flow assumptions for the nozzle
 

configuration employed in -the experimental program. 
Results from a
 

two-dimensional, axisymmetric flow program (also developed by TRW
 

Systems), which employs the method of characteristics for chemically
 

reacting gases, were used for this comparison. The species concen­

trations at the nozzle exit were essentially identical for the two
 

programs. Since the one-dimensional program uses about one-third less
 

computer time than the two-dimensional program, the additional
 

sophistication of the latter program was not deemed necessary.
 

Results from the FRRG program are shown in Figure 4 which presents
 

species concentrations as a function of temperature. 
As can be seen
 

from the figure there is a significant difference in free-radical
 

concentrations at the nozzle exit when finite rate chemistry is
 

considered. For eouiibriym flcowc +h. f.. 4,,-T .'-c~ntr-,'--:-­

the nozzle exit are quite small. However, the FRRG program predicts 

these concentrations are from two to ten orders of magnitude greater 

than their corresponding equilibrium values. These differences can be 

explained as follows. Free-radical recombination requires a third 

body to absorb the heat released by the reaction. The probability for 

three body collisions is quite small, so that termolecular reaction 

times become greater than the gas residence times. This effect is 

termed "recombination freezing," a subject which has received
 

considerable attention in the past several years [Ref. 20]. 
 In
 

general, the concentration changes within regions of rapid acceleration
 

of the gas stream are governed by the bimolecular reaction rates which
 

are 
several orders of magnitude faster than the tenmolecular rates.
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Simplified Ignition Lag (SIL) Program
 

The complete combustion process is assumed to occur in two steps
 

as illustrated in Figure 5, which describes schematically the ignition
 

model. 
During the induction period free radicals are exponentially
 

produced by: (1) the initial chain initiating steps and (2) the chain­

branching mechanisms of the bimolecular reactions. Throughout this
 

period the temperature remains essentially constant because certain
 

reactions are slightly exothermic and others endothermic. Towards the
 

end of the induction period the free radicals begin to recombine
 

exothermically and the temperature starts to rise exponentially. The
 

period of rapid temperature increase is termed the reaction time. 
In
 

the temperature regime of interest in this investigation, the reaction
 

times are much shorter than the induction period. Therefore, the
 

analytical effort is directed toward evaluating the effect of
 

vitiation on the induction period.
 

The ignition model employed assumes the temperature is constant
 

throughout the induction period. This simplification along with the
 

assumption of constant pressure makes it possible to neglect the
 

hydrodynamic equations and to solve the differential equations
 

describing the reaction kinetics. The approach is to write the
 

equations governing the rate of growth of free radicals and to solve
 

these for species concentrations as a function of time using standard
 

matrix techniques. The computer program is a simplification of a more
 

general program developed by GASL. A source deck for the SIL program
 

was supplied by E. A. Lezberg of NASA Lewis Research Center. The
 

Lewis modifications to the program included the constant temperature
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simplification and the inclusion of several additional hydrogen and
 

oxygen reactions which may be important Co the ignition kinetics at
 

temperatures below 10000K. A list of reaction rate expressions and
 

rate constants employed in the program is presented in Table 2.
 

A total of nine species are considered by the program. These are
 

H, 0, H20, H2 , 02, OH, N2, H02, and H202 . The latter two species
 

enter into a chain-breaking step which tends to lengthen the induction
 

period. Inclusion of these species in the induction analysis should
 

result in a more favorable comparison of experimental and theoretical
 

ignition delays at low temperatures.
 

Fifteen reactions are included in the SIL program. One of the 

advantages of this program is that a large number of reactions can be 

considered without significantly increasing the computing time. One 

limitation of this program is that it fails to include any NO or NO­

reactions. The analysis of Momthiloff indicated these reactions 

were comparatively unimportant below 40000R. However, the experimental 

results of Skinner indicated that both NO and NO2 have a catalytic 

effect on the induction process. This effect tends to reduce delay 

time by an order of magnitude. Since the mechanism which accelerates 

the reaction is not understood at this time, it is not possible to
 

include any NO or NO2 reactions in a manner that would be meaningful.
 

Results from the SIL program are the species concentrations as a
 

function of time. Ignition lag is determined from the semilog plot of
 

the hydroxyl radical concentration against time. The induction period
 

is characterized by the region of essentially constant exponential
 

growth of free-radical concentrations. The end of the induction
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TABLE 2
 

REACTION RATES FOR SIL PROGRAM
 

Reaction A(J)
(gr. cm.) 

B(J)
(kcal/mole) 

N(J) 

1
-1 H + 02 OH + 0 

1.0xl01 l
4.16xi01 2  

16.0 -­
0.41 

2 4.0xi03 3 10.2 -­

-2 0 + H2 - H + OH 1.85x10 13  8.39 -­

3 
H2 + OH # 11+ H20 

2.3x101 3 

1.43x101 4 5.2 
20.94 

-­
-­

4 
4 0 + H20 OH + OH 

2.9xO 1 I 
2.03x101 3 

18.7 
1.13 

-­
0.26 

5 3.16x10 16 102.9 -1.5 
H2 t M 2H + M 9.18x10 15  -0.97 -1.5 

6 1.86xi0 18  119.9 -1.278 
-6 H2 0tM 0H +H 7.5x1O1 6 - -1.0 

7 
7 02 + H 20 + 

3.59xl0 17 
8.9x101 5 

118.0 
-1.57 

-2.5 
-2.074 

•4.3-10 5 -­1.28 --
H +H + 02+ M - H02 + M 8.9x!0'5 46.12 -0.28 

g 
- H2 + HO2 r H202 + H 

2.OxiO1 3 
1.0.×oi 1 4  

23.72 
9.82 -­

30 2.5xlo1 2 38.95 --

H 2 + 02 ; OH + OH 4.77x0 I0 19.87 -­

11 1.17x10 1 7 45.57 -­

11H202 + M 20H + M 8.4x0 14  -5.31 -­

12 7.oxi01 3 --. 

-12 H + HO2 OH + OH 4.37xi01 2 39.2 -­

13 1.8xi0 12 --. 

-13 H0 2 + H0 2 H202 + 02 8.1x102 2 42.19 -­

14 3.18x0 1 4 9.0 -­

-14 H + H202 -H 20 + OH 5.6xi01 3 78.0 --

I l.OxlO 13 0,897 -
1I OH + H202 H20 + H02 2.8xi13 32.76 -­

where k(J) = A(J) TN(J) exp[-B(J)/RT] 
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period is considered to be the time when the hydroxyl concentration
 

deviates from constant exponent growth. This definition for the end
 

of induction is recommended by Hersch £21]. Other methods for defining
 

the end of the induction period were considered in this study. The
 

following comparison illustrates the variation in ignition delay
 

periods for different methods of defining the end 'of induction.
 

Definition of End of Induction Reference Delay Time
 

1. 	End of exponential growth of (OH) 21 39 p see
 

s
2. OH concentration of 10-9 gram-moles/cm 15 30 p sec 

3. Hydrogen concentration 1/2.(H 2 )0 13 47 V sec 

4. End of exponential growth of (H) 	 6 40 V sec
 

This comparison for heated air and hydrogen at 12000K and one
 

atmosphere pressure is shown in Figure 6, which presents the OH and H
 

radical concentrations plus the hydrogen weight fraction as a function
 

of time. Starting conditions assume each stream is in chemical
 

equilibrium prior to mixing and an equivalence ratio of one for the
 

combined streams. The comparative times indicate the method of
 

defining the end of induction has some effect on the calculated delay
 

time. However, Hersch [21] is able to show that method 2 is only a
 

reasonable approximation of the delay period for temperatures greater
 

than 15000K. At the same time, method 3 is simply,an approximation
 

suggested by Rhodes [13]. Methods 1 and 4 yield essentially identical
 

delay time so that both methods appear applicable. Hersch was able to
 

compare method 1 with a detailed analytical model which included the
 

temperature variations during the postinduction period. Conclusions
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from this comparison were that method 1 was a reasonably good approxi­

mation to the induction limit over a wide range of initial temperatures
 

(1200 5 Ti 5 25000K). Therefore, this method was finally selected as
 

most appropriate for application to the SIL program results.
 

When examining the results from the Lewis version of the SIL
 

program,, one modification was incorporated into the program. This
 

modification is a revision of the method of defining the effective
 

concentration of third-body species that enter into the three-body
 

reaction rates. 
Brokaw [7] suggests that the third-body expression
 

in reaction 8 in Table 2 is'a strong function of water vapor content
 

of the reacting species. He showed the relative third-body
 

efficiencies are given by the following expression:
 

M = XH2 + 0.35 X02 + 0.43 XN2 + 0.2 XAr + 14.3 XH20
 

where X is the mole fraction of each third body. In the Lewis version
 

of the SIL program, the relative efficiency of water vapor was reduced 

from 14.3 to 6.0. When the Lewis version of the SIL program was 

utilized to calculate the effect of 10 percent water vapor content in 

the air on ignition delays at 10000 K an anomalous result was obtained: 

the ignition delay for bydrogen and air plus 10 percent water was six
 

times longer than the corresponding dry air case. The magnitude of
 

this difference is shown in Figure 7 which again presents OH
 

concentration as a function of time. 
Also shown in this figure is
 

the effect of further reducing the third-body contribution of water
 

vapor. The third-body expression used in this comparison is 
as
 

follows:
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M = XH2 + 0.35 XO2 + 0.43 XN2 + XAr + XH2 0 

When this expression for the third-body terms was employed in the SIL
 

program the difference in delay times of hydrogen-air and hydrogen-air
 

plus 10 percent water vapor is reduced to 15 micro-seconds.
 

The results in .Figure 7 show that the third-body term may have a

A 

significant effect on delay times. This effect is quite pronounced
 

under the following circumstances:
 

1. 	When relatively large concentrations of water vapor are
 

-present in the initial reactants;
 

2. 	When the initial temperature of reactants is low (T <
 

11000 K).
 

Further examination of the effect of the third-body term revealed that
 

it 	 had absolutely no effect whe-n Rnnlea tn anrr nir - +mont­

range of 950 to 12000K. One reason why this term has no effect for 

dry air is that the third-body term acts to reduce the build up of 

free radicals during the early part of the induction period. Water 

vapor does not appear in significant concentrations until the latter 

part of the induction period where the bimolecular reactions predomi­

nate the induction process. Thus the overall influence of the
 

contribution of the effective water vapor concentration in the third­

body expression is insignificant when applied to an initial mixture of
 

hydrogen and uncontaminated air.
 

When this same type of comparison was made at 12000 K, the 

following results were obtained: 
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Initial Composition Third Body Delay Time
 

1. Hydrogen/Heated Air 
 M1 or M2 39 V sec
 

2. Hydrogen/Air + 10% H20 MI 36 p sec
 

3. Hydrogen/Air + 10% H20 
 M2 34 V sec
 

where 

M1 = XH2 + 0.35 X0 2 + 0.43 XN2 + 6 XH20 

M2 = XH2 + 0.35 X02 + 0.43 XN2 + XH20 

These results indicate the effective water vapor concentration in the.
 

third-body term yields an almost negligible difference in delay times
 

at temperatures of 12000 K or higher.
 

Experimental data of Snyder, et al. [14] showed that water vapor
 

in the initial air resulted in a slight reduction in delay times over
 

th-- _ -;tLyul', jgs dLii utiLAU IIiWJndaeu air. wnen Tne 

SIL program was modified to employ M2 as the third-body term, the
 

agreement with Snyder's experimental results, while not entirely
 

satisfactory, is considerably better than that shown by the Lewis
 

version of the program. Obviously better agreement between theoretical
 

and experimental induction times could be obtained by further reducing
 

the effective concentration of water vapor in the third-body term.
 

However, there is no theoretical and very little experimental
 

justification for making the effective concentration less than unity.
 

Consequently the third-body term defined by M2 was employed for all
 

subsequent SIL programs.
 

Typical results from the SIL program are shown in Figures 8
 

through 13 which present OH radical concentration as a function of
 



time. The results presented in these figures are discussed in the
 

next section which is an extensive verification of the simplified
 

induction model employed in the computer analysis.
 

Verification of the Simplified Ignition Lag Program
 

Before applying the SIL program to the analysis of ignition lag
 

with vitiated air, it is first necessary to establish the validity of
 

the program results. Since most of the theoretical and analytical
 

work on ignition lag is concerned with real air and hydrogen, the
 

verification is made for these gases. 
 Initially, a base case was
 

selected for making this comparison. Temperature for the base case
 

is 12000 K, pressure is one atmosphere, and equivalence ratio is one.
 

As a starting condition, both streams are 
assumed to be in chemical
 

equilibrium at the assigned temperature and pressure prior to mixing.
 

4
The conhbtnnr ton, 

Results from the SIL program for the base case species are shown
 

in Figure 8, which presents the OH radical concentration as a function
 

of time. The induction period is defined by the end of the constant
 

exponential growth for the OH radical. 
An induction time of 39 micro­

seconds is obtained for the base case conditions. Several approximate
 

relations for determining ignition delays are discussed in the review
 

of literature. A summary of the equations presented by the different
 

authors is given in Table 3 along with the range of temperatures over
 

which they apply. These approximate relations are used to calculate
 

the ignition lag for the base case conditions and the delay times are
 

also shown in Figure 8. (Note that the empirical expression of
 

Skinner does not apply above 11000K.) 
 The relation of Ferri predicts
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TABLE 3
 

APPROXIMATE LAG THEORIES
 

(1) Ferri:
 

8Xi0-3
 
TID - p exp[9600/T]
 

(2) Nicholls: 	 (11000 T _< 20000K)
 

-
TIn -34.1xlo
7 T exp[8.05/T] m F2 6 

In2 P nH2 k2 t T1J 2 

(3) 	Skinner: (8000 < T < lO00K)
 

- 3

7.92x10
 

tID = exp[15.950/T] 

(4) Rhodes: 	 (8000 < T < 18000 K)
/3
 F T l1


ID - 1.27Xi0-3 |T exp[3020/T] 

I + [ 202XFR]0 

•[RR]0 =[XH]0+[XoH]0 +2[Xo]a
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much shorter delay times than the SIL program, while Rhodes predicts
 

a considerably longer induction period. There is a relatively close
 

agreement between Nicholls' result and that of the SIL program.
 

The effect of peripheral reactions and different reaction rate 

data are illustrated in Figure 9, which presents OH concentration as 

a function of time. Here the same starting conditions are applied 

to each case, but only the first nine reactions shown in Table 1 are 

considered. The latter six reactions in this table were expected to 

show minor effect on the induction time for the base case conditions. 

The difference between nine and fifteen reactions (using identical 

rate data for corresponding reactions) only amounts to eight micro­

seconds variation in delay time. However, this represents a 20 percent 

variation in induction period so that the latter six reactions are 

more important than originally anticipated. When the reaatinn r + 

of Ferri were used in the nine reaction system, a considerable decrease 

in delay time is evidenced (47 V sec - 28 p see). In general, the 

forward reaction rates employed by Ferri are faster than those shown 

in Table 2, so that a reduction in delay time is not surprising. 

However, the magnitude of the difference shown here is hardly 

significant in terms of induction lengths for supersonic combustion. 

Even with gas velocities of 10,000 feet per second, the difference 

in induction distances is still less than 3 inches.
 

The effect of temperature on induction times is shown in
 

Figure 10, in which hydroyxl radical concentrations as a function
 

of time are shown at three separate temperature levels. Starting
 

conditions for each case assume the heated air and hydrogen streams
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are in chemical equilibrium prior to mixing at constant temperature
 

and pressure. The results show that a hundred degrees reduction in
 

temperature over the base case, just about doubles the induction time.
 

However, a further reduction of the same magnitude, results in a
 

factor of six difference in induction time over the base case. The
 

effect of initial temperature is best illustrated by plotting the
 

induction times against the reciprocal of temperature on semi-log
 

coordinates. This type of information is presented and discussed
 

later in this section.
 

Figure 11 illustrates the effect of equivalence ratio on induction
 

times for the base case species concentration. Three values for
 

equivalence ratio are presented in this figure. The results show that
 

equivalence ratio has a very small effect on induction times in the
 

range (0.2 : 5 1.0). Momtchiloff obtained similar results in a
 

theoretical and-experimental -comparison of'the effect of equivalence
 

ratio on delay times. The analytical model of the induction process
 

assumes instantaneous mixing for the two streams. This assumption is
 

justified on the basis that local mixture ratio variations during the
 

actual mixing process have essentially no effect on induction time.
 

The effect of pressure on ignition delay is illustrated in
 

Figure 12, which again presents OH concentrations as a function of
 

time. Higher pressure in the combustor tends to decrease ignition
 

delays; the delay time being inversely proportional to the pressure.
 

in this constant temperature comparison, two combustor pressures
 

are examined with the starting condition for each case being the
 

equilibrium species concentrations prior to mixing. At two atmospheres
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pressure the delay time is 21 microseconds compared with 39 micro­

seconds at one atmosphere pressure. Relating the delay time to the
 

inverse of pressure yields an exponent of 0.9 on pressure. The
 

theoretical work of Momtchiloff reports this exponent is 1.09 at the
 

same temperature conditions. Experimental data from Schott and Kinsey
 

indicate this exponent is 1.0, while Das Gupta reports an average
 

value of 0.9. The agreement of the SIL program results with the
 

experimental findings is relatively good for this case and possibly
 

even better than for the more detailed theoretical model of
 

Momtchiloff. Any variations between the two theoretical approaches
 

can probably be traced to the different reactions and reaction rate
 

data used in the SIL program.
 

Production of vitiated air usually implies the presence of water
 

vapor as a contaminant in-the gas stream. The effect of water vapor
 

on induction time is illustrated in Figure 13, which presents OH
 

concentrations with time for the base case species and for 10 percent
 

water vapor additive. In the case investigated, 10 percent water
 

vapor replaces an equal volume of air. Temperature, pressure and
 

equivalence ratio are fixed in this comparison. Water vapor is known
 

to reduce the induction time by a small amount. The experimental
 

results of Snyder also showed water vapor slightly reduced the
 

ignition time. The effect may be related to the additional free
 

radicals present at the start of the induction period due to
 

reaction 3 in Table 2.
 

Several authors have derived either analytical or empirical
 

relations for predicting the ignition delay times for the hydrogen-air
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system. A comparison of their results with those obtained from the
 

SIL program are shown in Figure 14, which presents the delay time as
 

a function of the reciprocal of temperature with the following
 

parameters held constant:
 

1. The pressure is one atmosphere,
 

2. The equivalence ratio is one, and
 

3. Both streams are in chemical equilibrium prior to mixing.
 

The correlations shown here are terminated at their respective
 

temperature range of application. Note that most of the correlation
 

presented are plotted as a straight line in this figure. Even the
 

sophisticated analytical model employed by Momtchiloff [4] yields a
 

straight line in these coordinates. However, the SIL program results
 

deviate considerably from straight line behavior, especially at low
 

temperatures. The reason is that the SIL program includes the effect
 

of the H02 species on the ignition times. This species has often been
 

observed in hydrogen-oxygen flames as an intermediate product that
 

disappears rapidly as the reaction progresses. Brokaw [7] is the
 

only other author to include this species and the point shown in
 

Figure 14 includes his postulated mechanism by which the HO2 species
 

influences the delay time.
 

In the high temperature range (T 1000'K) the SIL program
 

results agree reasonably well with the approximate lag calculations
 

of Nicholls [6] and Ferri [l]. It agrees even better with the more
 

detailed theoretical analysis of Momtchiloff [4]. At 9500K the 

simplified model agrees with the empirical relations of Snyder [14] 

and Rhodes [13]. Momtchiloff's analysis does not include the effect 
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of H02 on induction times. This may explain the large differences
 

between Momtchiloff's results and those of the SIL program in the low
 

temperature range.
 

A comparison of the SIL program results with experimental data 

for ignition delay at low temperatures is made in Figure 15. Above 

10000K the SIL program predicts delays close to those of Momtchiloff 

[4], who was able to justify his theoretical model with experimental 

results as shown previously in Figure 1. The low temperature
 

experimental results of Snyder [14] show very poor agreement with
 

Momtchiloff's analysis. However, the SIL program results follow the
 

basic trend of Snyder's shock tube data even though the agreement is
 

not entirely satisfactory. The fact is that the SIL program
 

consistently predicts longer delays than were found experimentally
 

for the test conditions indicated in Figure 15. (Snyder's empirical
 

relation used on the previous figure represents a correlation of all
 

his data by a nonlinear regression program.) However, the general
 

agreement of the SIL program with experimental data tends to support
 

the argument that ignition delays increase significantly at low
 

temperatures due to the self-inhibition of the reactions by H02
 

formation.
 

In summary, examination of the ignition model employed in the
 

SIL program has shown that most of the relevant parameters influencing
 

induction times are predicted with a reasonable degree of accuracy.
 

The assumption of starting conditions where both streams are in
 

chemical equilibrium is an essential part of this analysis because
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i. 	The experimental data used for .comparison with the program
 

results were obtained under conditions where equilibrium
 

species concentrations at the combustor inlet is a
 

reasonable approximation.
 

2. 	Most of the 'theoretical approaches for calculating ignition
 

delays employ the assumption of chemical equilibrium as a
 

starting condition.
 

In the next section, the effect of nonequilibrium starting
 

conditions is examined using the SIL program, and an analysis is made
 

to show the effect of vitiated air on ignition delays in supersonic
 

combustion.
 

Analysis for Vitiated Air
 

The vitiated air composition is made up of the products of
 

lai aI generator. A combination~ofL nitrogen tetroxide, 

hydrazine and nitrogen serve as reactants for the gas generator. In
 

the ignition lag experiments described in the Experimental Program
 

Section, the design mixture ratio of reactants is such that the
 

theoretical flame temperature is 22000K at a chamber pressure of
 

600 psia. The products of combustion are expanded to atmospheric
 

pressure (14.7 psia) where hydrogen is injected parallel to the
 

mainstream gases. Injection velocity for the hydrogen corresponds
 

to sonic condition and mixing and combustion takes place at constant
 

pressure. A complete analytical description of this system has not
 

been made in the present program. A model has been made which
 

incorporated the following simplifying assumptions into the analysis
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in 	order to obtain a qualitative answer to the effect of vitiation on
 

ignition lags:
 

1. 	All viscous effects are neglected.
 

2. 	Instantaneous mixing of the mainstream gases and hydrogen
 

occur at the point of injection.
 

3. 	Constant temperature and pressure are assumed to exit
 

throughout the induction period.
 

Of these three assumptions only the second is believed to be of
 

significance.
 

The nonequilibriu composition of the vitiated air at the
 

entrance to the supersonic test section is calculated utilizing the
 

Finite Rate Reacting Gas (FRRG) program. Computed composition changes
 

during the expansion were shown previously in Figure 4. The hydrogen
 

stream at the test section entrance is assumed to have a free-radical
 

composition corresponding to stagnation conditions in the hydrogen
 

manifold. The recombination of atomic hydrogen is a relatively slow
 

three-body reaction and the assumption of frozen flow is quite
 

reasonable for the temperatures and pressures employed in the experi­

mental program. The vitiated air and hydrogen streams are mixed at
 

constant pressure and the resulting species concentrations are input
 

as 	initial conditions into the Simplified Ignition Lag (SIL) program.
 

The SIL program results for vitiated air and hydrogen are shown
 

in Figure 16, which presents the OH radical concentration as a function
 

of time. These results indicate the induction period for vitiated
 

air and hydrogen may be as short as 20 microseconds. Under the
 

experimental conditions of this program, ignition should occur less
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than 1.5 inches downstream of the test section entrance. 
However,
 

mixing times are neglected in this analysis, so that the actual
 

distance to the ignition front may be located somewhat further
 

downstream than predicted by the SIL program.
 

Figure 16 also includes the delay time calculated assuming
 

chemical equilibrium for both the vitiated air and hydrogen stream
 

prior to mixing. 
Notice the test section temperature is 10300K for
 

that case compared to 10001K for the previous calculation assuming
 

finite rate chemistry. 
Both the finite rate and equilibrium calcu­

lations are started at the same timperature and pressure in the gas
 

generator. 
The heat release associated with additional recombination
 

of free radicals when assuming chemical equilibrium results in higher
 

temperatures throughout the expansion process. 
An induction time of
 

158 microseconds was determined for vitiated air and hydrogen
 

utilizing the assumption of equilibrium initial conditions. This
 

delay corresponds to a distance of approximately 11.5 inches downstream
 

of the test section entrance for the ignition front.
 

A comparison was also made to show the effect of employing heated
 

air to perform the same type experiments. Conditions at the inlet to
 

the supersonic test section (i.e., temperature, pressure and
 

equivalence ratio) are identical to those employed in the vitiated
 

air analysis.
 

The SIL program results for heated air and hydrogen are shown in
 

Figure 17, which again presents OH radical concentration as a function
 

of time. An induction time of 30 microseconds was obtained for non­

equilibrium inlet conditions to the supersonic test section. 
This
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delay time corresponds to a flame front location of 2.2 inches down­

stream of the test section inlet. When equilibrium initial conditions
 

were assumed for the heated air and hydrogen the delay time increased
 

to 150 microseconds. This induction time corresponds to a lag length
 

of 10.8 inches.
 

A comparison of the vitiated air and heated air analytical results
 

indicates that vitiated air does, to some extent, simulate heated air
 

from the standpoint that the ignition lag lengths are 
almost equal.
 

For nonequilibrium inlet conditions, the free-radical content of the
 

vitiated air and hydrogen is present in sufficient quantity to cause
 

the ignition to be almost spontaneous. Heated air contains no
 

hydroxyl radical at the test section inlet, but the nonequilibrium
 

concentrations of atmoic hydrogen and oxygen are sufficient to cause
 

rapid build-up of hydroxyl radical through the bimolecular reactions.
 

Again the ignition.is almost spontaneous. Another factor which has
 

not been included in this analysis is the effect of NO and/or NO2
 

content on the ignition delay. These species have been shown to have
 

a catalytic effect on the ignition process. 
Nonequilibrium inlet
 

conditions for both the vitiated air and heated air have enough NO
 

present to catalyze the induction process. This further tends to
 

substantiate the argument that the use of heated air or vitiated air
 

for ground testing of supersonic combustion with hydrogen will yield
 

extremely short ignition delays under the conditions investigated.
 

This may mean that mixing will be rate-controlling such that the
 

distance between the test section entrance and the flame front may
 

represent for the most part the mixing length.
 

http:ignition.is
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Supersonic combustion under free-flight conditions may correspond
 

more closely to equilibrium initial conditions. 
 In that event neither
 

heated air nor vitiated air can be used to simulate supersonic
 

combustion performance under free-flight conditions in .the regime
 

where reaction times are rate-controlling.
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EXPERIMENTAL PROGRAM
 

The experimental program discussed in this report was concerned
 

primarily with the effects of-vitiated air on ignition delay. A
 

proposed follow-on effort, as described in Appendix G, would have
 

investigated the effects of vitiated air on the overall combustion
 

efficiency. The method of procedure, design and fabrication of the
 

hardware and associated instrumentation of the follow-on program is
 

reported herein. Exhaustion of the project's allotted time and
 

funding precluded the completion of this specific experimental task.
 

Since the ignition delay and combustion efficiency programs
 

cuzip.ezenreu one anoTner, all hardware was .designed and fabricated 

simultaneously in an effort to conserve time and money. Therefore,
 

some of the hardware described herein was not actually utilized for
 

the purpose of obtaining ignition delay data, but would have been
 

employed-in the overall combustion efficiency experimental effort.
 

Sizing of the experimental apparatus was based on the criteria
 

That the supersonic test section should be large enough to minimize
 

scale effects but small enough to reduce run costs. 
 It was also
 

desirable that the design conditions simulate a flight regime in which
 

the SCRAMJET vehicle might be expected to operate. This regime was
 

chosen so that ignition delay times would be relatively long so that
 

they could be measured.
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Design conditions selected for the gas generator were: 
 chamber
 

pressure = 1000 psia, chamber temperature = 22000 K and flow rate = 

15 lb/sec. The design operating conditions for the gas generator and
 

supersonic combustor are shown schematically in Figure 18. These
 

conditions approximately simulate a flight Mach number of 6.5 at an
 

altitude of 80,000 ft., 
a regime that should be of interest for
 

SCRAMJET application. The equipment size and propellant flow rates
 

were well within the limits of the existing research facilities at
 

the Zucrow Engineering Research Center, Purdue University.
 

In the ignition delay experiments, the gas generator pressure and
 

hydrogen pressure were selected so that they expanded to atmospheric
 

pressure. The combined streams were permitted to mix and burn in an
 

unconfined manner as a free jet. 
The absence of a confining wall made
 

it possible to visually observe the flame front and determine the
 

ignition delay distance. A solid wall near the reaction zone often
 

catalyzes the combustion process by either surface reactions or through
 

a temperature increase due to viscous dissipation. In addition, the
 

flow pattern (recirculation) becomes more complex. By examining
 

ignition in a free jet, the ignition delay effects should be
 

theoretically predicable providing the reaction mechanism is selected
 

properly.
 

Design pressure for the supersonic combustor section is 25 psia.
 

Since the ignition delay study was conducted with the test section at
 

14.7 psia, the gas generator was operated at 600 psia for the ignition
 

delay experiments, while the basic hardware remained unchanged, except 
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for the removal of the supersonic combustor and constant area mixing
 

sections.
 

Description of Experimental Apparatus
 

In this section, the main elements of the experimental apparatus
 

are discussed briefly under separate headings.
 

Gas Generator
 

The components of the gas generator include an injector, two
 

chambers, a turbulence ring and a converging-diverging contoured
 

(parallel flow) nozzle. An assembly drawing of the gas generator
 

components with the supersonic combustion test section is presented
 

as Figure 19.
 

In the initial phase of this program the gas generator and the
 

supersonic combustion test section were fabricated of type 347 

stainless steel. 
The hot surfaces of this uncooled apparatus were
 

coated with a high temperature ceramic material (zirconium oxide) to
 

form a thermal barrier between the stainless steel wall and the hot
 

(T = 22001K) chamber gases. 
This material has relatively good heat
 

resisting qualities and is compatible with both nitrogen tetroxide
 

and hydrazine. Unfortunately, after a short series of experimental
 

runs, it became evident that due to spalling and cracking of the
 

zirconium oxide coating, the life duration of the gas generator nozzle
 

throat was limited. This precluded operation of the hardware for run
 

times in excess of 1 sec. of steady state operation. At this time
 

research was initiated into the possibility of employing an all copper
 

system. The remaining portion of the life span of the stainless steel
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system was devoted to determining optimum propellant flow rates for
 

design operational conditions and confirming system design integrity
 

for supersonic combustion. The experimental data generated during
 

this portion of the investigation are not reported because this series
 

of runs had to be repeated in the follow-on phase employing the 

newly fabricated experimental apparatus. Nevertheless, during this
 

unreported series of test, system integrity was confirmed and
 

meaningfur propellant flow rate data were developed prior to the
 

expected nozzle failure. Details concerning this series of runs are
 

reported in Reference 3.
 

The possibility of employing an all copper system was discussed
 

in a meeting between members of NASA Lewis and the Zucrow Engineering
 

Research Center. The primary reason for not using an all copper
 

system initially was due to the known erosive nature nf rfilt-aon 

tetroxide and its by-products when in contact with copper. It 
was
 

pointed out that this erosive phenomenon is most prevalent when the
 

reacting agents are in their condensed phase and if these agents could
 

be neutralized before this phase is reached, their effect would be
 

minimal. The relative high thermal conductivity of copper makes it
 

extremely attractive for uncooled high temperature apparatuses. A
 

preliminary heat transfer analysis (see Appendix B) indicated that an
 

uncooled copper gas generator system subjected to the experimental
 

chamber conditions mentioned previously could theoretically operate
 

for run times up to 14 sec. before failure. A maximum of 4 sec. of
 

steady state operation, which entails approximately 6 sec. of total
 

gas generator run time, is necessary for any of the prescribed
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investigations. 
 A saturated solution of sodium bicarbonate was
 

suggested as 
an economical and effective neutralizer of the erosive
 

reactants.
 

The decision to employ an all copper system was finalized after
 

careful review of all the pertinent facts. The new hardware's design
 

was basically the same as that of the stainless steel apparatus except
 

that the material is now oxygen free, electrolytic tough pitch copper
 

with a minimum wall thickness of 2.1 in. An assembly drawing of the
 

new system is shown in Figure 19. 
 Since copper is difficult to weld,
 

the flanges and its associated section were machined out of a single
 

solid 10 in. round of copper stock. During the machining process of
 

the flange, only enough material was removed from the outside diameter
 

of the copper round to allow clearance for the connecting bolts and
 

their associated washers. 
This permitted maximum residii 
 mM-n41 

for "heat sink" purposes. The combustion chambers and nozzle sections
 

are flanged on both ends with "0" ring grooves on the sealing surfaces.
 

Material for the "0" rings is type 316 stainless steel with a 0.003 in.
 

thick tungsten coating. During the investigation the seals held up
 

satisfactorily with minimum leakage. 
When signs of leakage was
 

detected, that particular section was disassembled and the "0" ring
 

seal replaced. Prior to the initial assembly, each sealing surface
 

was relieved approximately 0.010 of an inch for better sealing
 

characteristics.
 

The two combustion chamber sections are separated by a turbulence
 

ring as shown in Figure 19. The purpose of the turbulence ring is to
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promote mixing in the hot gases in order to insure a relatively
 

uniform exhaust stream.
 

The gas generator injector has three separate elements: the
 

oxidizer inlet housing, fuel injection pintle and a porous metal
 

surface in the area exposed to the combustion gases. The diluent
 

nitrogen is introduced into the combustion chambers through this porous
 

metal surface and thus serves to cool the entire injector face. The
 

fuel injection pintle serves to introduce the hydrazine into the
 

combustion chamber and together with the nitrogen inlet housing forms
 

an annulus for injecting the nitrogen tetroxide oxidizer. A close-up
 

photograph of the injector face and fuel pintle is presented in
 

Figure 20. 
 The pintle contains 10 hydrazine injection ports of
 

0.0625 in. diameter for high flow rate runs 
 = 15 lb/sec) and 10 

injection ports of 0.0156 in. diameter for low flow rate runs 

= lb/sec).
 

The width of the annular passage for the oxidizer can be varied
 

by turning the pintle assembly. 
This feature permits some adjustments
 

of the injector pressure drop to help avoid low frequency combustion
 

instability problems.
 

The gas generator nozzle was designed for uniform, parallel flow
 

across the exit plane. 
Design of the exit contour was accomplished
 

by utilizing a computer program which solves the two-dimensional,
 

axisymmetric flow relations by the method of characteristics. This
 

program requires as input
 

1. The gas properties,
 

2. The upstream converging and downstream diverging blend radii,
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3. The throat radius, and
 

4. The design Mach number. 

A start line is calculated in the nozzle throat region using Sauer's
 

method. A solution to the flow in the kernal is continued to the
 

point where the Mach number on the axis corresponds to the design 

value. Then the exit characteristic is generated assuming the flow 

angle is zero. The exit characteristic is terminated when the mass 

flow equals that computed for the start line. A complete wall contour 

is calculated by solving the characteristic relations in the previously 

undefined region. A plot showing the complete characteristic network 

for the parallel flow nozzle is presented in Figure 21. This is a 

cross-sectional view of the nozzle exit section divided at the 

centerline. The computer program assumes constant values for the 

ratio of specific heats and for the molerun1r walht c mtt.+, 

This assumption, while esthetically displeasing, yields a good 

approximation to the contour coordinates calculated for real gas
 

conditions. The parallel flow nozzle has a throat diameter of
 

1.596 in. and an overall area ratio of 5.38. A photograph of the
 

assembled gas generator apparatus is shown in Figure 22.
 

Hydrogen Heater
 

The hydrogen heater was designed and fabricated by Thermal
 

Transfer Corporation of Monroeville, Pennsylvania. This unit consists
 

of a large stainless steel coil which is heated by convection and
 

radiation from the combustion products of three propane burners. A
 

photograph of the installation of the hydrogen heater is presented in
 

Figure 23. 
The heater is located outside the test cell perimeter as
 



PPRALLEL FLOW NOZZ.E FAF 
SUFE,-3Z '2C C.,M.BU5,TiO, F 5uS'.,-., 

rrU, 

.C 1.02 3.00 4.00 5.00 6.00 


LEHGTH 

FIGURE 21 CHARACTERISTIC NE'WORK FOR PARALLEL FLOW NOZZLE 

7.00 



C-G PAAL GENORZE 

FIGURE 22 GAS GENERATOR ASSEMBLY
 



75 

LINE FGR2T 

OULET LINE 

HYDROGEN 
METERING ORIFICE 

PROPANE 
BURNERS 

FIGURE 23 HYDROGEN HEATER INSTALLATION
 



76 

a safety precaution. Design specifications on the hydrogen heater
 

are presented in the following tabulation: 

Hydrogen Heater Specifications
 

Total Heat Input BTU/HR 20.Oxl06 

Design Operating Pressure PSIG 325 

Excess Combustion Air 50 

Waste Gas Volume S.C.F.M. 3,190
 

W.G. Temp.-entry 2,700 

W.G. Temp.-exit OF 1,400 

Thermal Efficiency % 30 

Hydrogen Flow lb/sec 0.5 

Hydrogen Temp.-entry OF 70 

Hydrogen Temp.-exit OF 1,040 

The combustion system for the beater consists of a main shut-off 

valve, which can be operated either manually or automatically, and a 

multiple National Airoil burner arrangement equipped with spark 

ignited pilots. A flame safety system shuts off fuel to the burners 

in the event of excessive temperatures measured on the tube wall or 

in the exhaust stack gases. The heater is relatively simple to 

operate and performed well. 

Supersonic Test Section
 

Three separate components make up the supersonic test section.
 

These are the hydrogen manifold, the constant area mixing section and
 

the divergent supersonic combustor. The latter two components were 

not employed in the ignition delay experiments but would have been
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utilized if the effect of vitiated air on the overall combustion
 

efficiency investigation had been completed.
 

The hydrogen manifold was machined from a single billet of type 

347 stainless steel. After careful alignment, the manifold was bolted 

to the exit section of the parallel flow nozzle. The mating of the 

hydrogen manifold and nozzle exit section is such that an annulus is 

formed between them. The hydrogen gas is expanded to sonic conditions 

as it passes through this annulus. The pressure in the hydrogen 

system manifold is maintained at a sufficient level to keep the flow
 

through the annulus choked. A photograph showing the hydrogen 

manifold mounted on the gas generator is presented as Figure 24. The
 

exit lip of the parallel flow nozzle and the internal exit diameter
 

of the hydrogen manifold form the above-mentioned annular injector.
 

The lip is 0.050 in. thick and was purnoselv made as RmAll nncc h 

to minimize flow recirculation problems in this area, but large 

enough to maintain some structural strength.
 

The constant area mixing section has an inside diameter of
 

4.25 in. and is 5.0 in. long. The supersonic combustor section has a 

conical shaped wall which diverges at a 5 degree half angle. This 

divergent area combustor design was selected to permit essentially 

constant pressure combustion and to minimize the undesired condition 

of thermal choking caused by excessive heat addition. Overall length 

of the combustor is 12.75 in. with a 6.37 in. exit diameter. Both 

the constant area mixing section and the divergent supersonic 

combustor are fabricated out of oxygen free electrolytic tough pitch 
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copper. An aft view of the entire supersonic test section assembly
 

is shown in Figure 25.
 

Description of Instrumentation
 

The basic instrumentation employed in the experimental program
 

is summarized Table This tabulation includesin 4. the pressure 

transducers, flow meters and thermocouples utilized in the ignition
 

delay investigation. A photocon transducer was employed in a few of
 

the earlier gas generator performance evaluations to determine whether
 

the system exhibited any high frequency pressure oscillations. During 

these experiments the photocon output data indicated that there were 

no instability problems within the system.
 

In the proposed overall combustion efficiency investigation, in
 

order to more completely describe combustor performance from experi­

,non~nl-i- ' ''2t~u or 

pressure (total and static), temperature and specie concentration of
 

the combustor exit plane is required. From these properties the 

overall combustion efficiency can be defined by comparison with the
 

parameters that would result from an ideal process. This technique 

involves measuring as many properties as possible and determining the 

others through iteration of the integral equations of flow (see
 

Appendix G).
 

Flow in the supersonic combustor is assumed to be axisymmetric. 

Therefore, measurement of flow properties at several radial locations
 

would have provided data throughout the measurement plane. A water­

cooled cruciform instrumentation rake, with each arm of the rake
 

assembly designed to measure either gas composition, temperature,
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Parameter to 

be Measured 

1. 	 G.G. Chamber Pressure 

2. N2 Line Pressure 


3. 	NZ Orifice Differential 

Pressure 

4. 	 Fuel Tank Pressure 

5. 	Oxidizer Tank Pressure 


6. HZ Manifold Pressure 


7. H2 Line Pressure 


8. 	Hz Orifice Differential 

Pressure 


9. 	Fuel Flow Rate 


TAI LE 4 

INSTRUMENT1 TION SUMMARY 

InstrumentE tion 

Manufacturer & Model No. 


Tabor, 20E-DB 


Tabor, 206-DB 


Tabor, 2102 


Tabor, 230L 

Tabor, 250 


Tabor, 254 


Tabor, 206 


Tabor, 210 


Pottermeter, 3/4 irch-5550 


Operating 

Range 

0-1500 psig 


0-2000 psig 


120 psid 


0-2000 psig 

0-5000 psig 


0-50 psig 


0-350 psig 


t200 psid 


0-30 gpm 


Recording
 
Instrument 

Strip Chart, Oscillo­
graph & Digital Tape 

Strip Chart & Digital
 
Tape
 

Strip Chart, Oscillo­
graph & Digital Tape 

Strip Chart, Digital 
Tape
 

Strip Chart, Digital
 
Tape
 

Oscillograph & Digital 
Tape 

Strip Chart & Digital
 
Tape
 

Strip Chart, Oscillo­
graph & Digital Tape
 

Strip Chart, Oscillo­
graph & Digital Tape
 m 



TABLE 4 (continued)
 

Parameter to Instrumen ation Operating Recording
be Measured Manufacturer Model No. Range Instrument 

10. 	 Oxidizer Flow Rate Pottermeter, 2 1,2 inch-5971 0-400 gpm Strip Chart, Oscillo­
graph & Digital Tape
 

11. H2 Manifold Temperature Iron-Constantan Thermocouples 0-833 OK 	 Strip Chart, Oscillo­
graph & Digital Tape 

°12. G.G. Chamber Temperature 40% Iridim-60% Thodium vs 0-2100 OK Strip Chart S Digital 
Iridium Thermocot ples Tane 

13. 	N2 Line Temperature Iron-Constantan Thermocouples 0-833 OK Strip Chart, Oscillo­

graph & Digital Tape 

14. G.G. Chamber Wall Chromel-Alumel Tltrmocouples 0-762 OK 	 Strip Chart, Digital 
Temperature 
 Tape
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impact pressure, or static pressure at equal distances from the
 

centerline, was to be employed. These measurements would have provided
 

the required properties in a plane across the entire flow field.
 

Figure 26 shows a schematic of the water-cooled instrumentation rake
 

assembly. A photograph of the rake installed on the supersonic
 

combustor's exit is presented in Figure 27.
 

The integral components which comprise the cruciform instru­

mentation rake assembly are shown in Figures 28 through 34. 
 These
 

components will be briefly discussed in the following paragraphs.
 

The impact pressure and gas sampling probe, as shown in Figure 28,
 

is a modified version of a probe assembly successfully utilized at the
 

Applied Physics Laboratory of the John Hopkins University. Five impact
 

pressure probes and five gas sampling probes are made from concentric
 

pairs of type 316 stainless steel tubes, in which water in the annulus
 

is discharged approximately 0.09 in. downstream of the probe tip, as 

indicated in Figure 29. The indicated pressure from the impact 

pressure probes would have been measured by Teledyne Model No. 206 

gauge pressure transducers with a range of 0 to 1500 psig. A detached 

normal .shock wave forms in front of the impact probe and the exit 

stagnation pressure Pte must be calculated from the indicated impact 

pressure Pt. If the assumption is made that the gas composition does
 

not shift through the shock, or in the short distance from the shock
 

to the probe, the frozen normal shock relation can be used:
 



____ 

wan =. -.- TicnocotPtt 

"4 

- -0 

II 

I 
C 

ii 
nc,.aa *-. 

_ 

=cnoM*-~ 

- - ~ *.~C L**U~ShS 

EXOURE 26 SCHEMATIC OF COOLED INSTRUMENTATION RAKE ASSEMBLY 



85 

FIGURE 27 INSTALLATION OF INSTRUMENTATION RAKE
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FIGURE 29 SCHEMATIC OF IMPACT PRESSURE AND 
GAS SAMPLING PROBE ASSEMBLY
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Pt' (tl
Pte = 
[(y+l)2] ) Cly-l) 

1 + [(y-l)2/ Me 

The calculation requires iteration, due to the exit Mach number Me
 

being a function of the static pressure, psel and the ratio of
 

specific heats Ye. This discussion is presented in Appendix G.
 

The external shock experienced by the gas sampling probe tip is 

swallowed by evacuating the manifold connected to the five probe 

lines. The gas sample is quenched by rapid expansion through the 

probe with an internal area ratio of 12:1. The low probe internal 

pressure increases the molecular mean free path to slow down reaction 

rates. Quenching is further aided by the water cooling system. The 

gas samples was to be collected in stainless steel 10 ml storage 

bottles and later analyzed using a Bendix Time-of-Flight Mass 

Spectrometer. The gas sample analysis would have permitted the 

determination of the mass fraction xj of each representative specie 

in the combustion product mixture, subject to errors resulting from
 

finite rate quenching, probe wall catalysis, and other factors
 

resulting in changes in chemical composition from actual exit
 

conditions. These errors are not felt to be critical since an
 

approximate value of the specific heat ratio of the combustion product
 

mixture is sufficient to permit calculation of the combustion
 

efficiency. Specific heat at constant pressure cp is determined from 
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JANAF Thermochemical Data for the constituent species at the exit
 

static temperature by the equation
 

0Pe = xj 

The specific heat ratio at the exit plane Ye is calculated from
 

0Pe 
Ye = cPe - RU 

Again, the calculation is iterative and is presented in detail in
 

Appendix G.
 

The static pressure probes of the cruciform instrumentation rake
 

assembly consists of five 150 semi-vertex angle conical probes as
 

shown in Figure 30. Four static pressure taps on each Drobe are
 

aligned parallel and perpendicular to the probe arm. Figures 30 and
 

31 are respectively a photograph and assembly drawing of the probes.
 

The tantalum-10 tungsten probe tips are cooled by water impingement on
 

the inside of each tip, with subsequent discharge overboard through
 

the coolant overflow ports. The indicated pressure was to be measured
 

by Teledyne Model No. 206 gauge pressure transducers with a range of
 

0 to 300 psig. The shock wave system around the cone static probes is
 

expected to present a complex pattern. In the plane parallel to the
 

rake arm, it is anticipated that the interaction of the conical shock
 

waves attached to the probes, together with the normal shock standing
 

in front of the rake arm would generate an unpredictable shock pattern.
 

Analysis indicated that for a 150 semi-vertex angle cone, shock
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FIGURE 31 SCHEMATIC OF CONE STATIC PRESSURE
 
PROBE ASSEMBLY
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attachment will be maintained down to a Mach number of 1.12. (The
 

supersonic combustor was designed for an exit Mach number of 2.0.)
 

The taps aligned perpendicular to the arm should, however, see
 

basically a conical shock pattern. Individual measurements from each
 

of the four taps in each probe during calibration should help to
 

resolve this problem and perhaps indicate that only these two tap
 

positions should be used during operation. The relation between the
 

cone static pressure ps and the exit static pressure pse is discussed
 

in Appendix G.
 

Radial temperature measurement presented a particularly difficult
 

problem under the anticipated experiment conditions. Two methods were
 

to be employed. The first provides static, temperature measurements
 

using an optical system developed by Hofmann [22] at the Zucrow
 

Engineering Research Center, Purdue University in 1968. The apparatus
 

for making these measurements was developed in the initial phase of
 

this program. Several preliminary experiments were run to evaluate
 

the basic concept and to prove that the system would perform in the
 

test environment. In these experiments, the optical system was
 

operated in conjunction with the gas generator and employed to measure
 

the static temperature of the vitiated air exhausting from the parallel
 

flow nozzle.
 

The optical system consisted of a modified sodium line reversal
 

pyrometer mounted on a base which moved vertically to permit the
 

pyrometer to scan the hot gases across the plane of the combustor
 

exit. Calibrated light from a tungsten strip lamp was focused on the
 

center of the exhaust stream. This light beam is mechanically chopped
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at a rate of 120 times per minute by a four bladed element driven by
 

a synchronous motor. The resultant light is focused by a second
 

condensing lens on the entrance slit of a monochromator where the
 

ihtensity of the Sodium D-line is measured by a photomultiplier tube.
 

Two intensity levels were observed, one with the flame plus strip
 

lamp and the other with the flame alone. Since the tungsten strip
 

lamp had been calibrated so that its temperature, as a function of
 

voltage supplied (at the wavelength of the Sodium D-line) is known,
 

the difference in intensity levels permitted a calculation of the
 

"line of sight" average temperature of the flame. The line of sight
 

intensity measurements were converted mathematically to a radial
 

intensityto-temperature profile using the Abel integral transform
 

technique. The above-mentioned experiments met with limited success
 

.. .vV L ie ozzLe exit was Too 

low to produce a usable signal with the instrumentation available.
 

Under these conditions the dissociation of sodium hydroxide is very
 

small, but there still should have been a measurable adsorption and
 

emission in this range. During the majority of the experiments, the
 

emission detected was obscured by the noise level of the recording
 

instruments. The signal-to-noise radio was continually improved as
 

the experiments progressed and sufficient data were recorded to give
 

a temperature measurement within 1800 K of the calculated equilibrium
 

temperature. It was felt that with the higher static temperatures
 

generated in the combustion of vitiated air and gaseous hydrogen and
 

additional refinements on the instrumentation, that the pyrometer
 

could operate in the test environment and produce meaningful results.
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Additional details concerning the mathematical and operational
 

procedures used to determine the temperature profile can be found in
 

Reference 22, along with a comprehensive description of the optical
 

system.
 

The second method of temperature measurement employs a film cooled 

thermocouple probe to measure impact temperature. This probe consists 

of a film cooled arm with positions for five 40 percent iridium / 

60 percent rhodium versus iridium thermocouples in inconel sheaths 

insulated with magnesium oxide. The thermocouple material was selected 

to provide normal operating temperature measurements up to 23670 K with 

the possibility of short duration operation up to the melting point of 

26440 K in an oxidizing atmosphere. 

Film cooling is provided by passing water through 34 cooling ports
 

0-09 in- in a4.miao,~ 4 , +ba1,, 0 4 A... ~ ~ "­

illustrated in the photographs and assembly drawing of the probe as
 

presented in Figures 32, 33, and 34. The thermocouple hot junctions
 

are positioned in an aspirated copper tubing for the purposes of
 

structural protection and to provide radiation shielding. This method
 

of temperature measurement in a flowing stream has been successfully
 

employed at NASA Lewis in their supersonic combustion program.
 

Blackburn and Caldwell [23] published reference tables for
 

conversion of the 40 percent iridium / 60 percent rhodium versus
 

iridium emf output in millivolts to temperature from 2731K to 2373'K.
 

Uncertainties in the range of 16440K to 23670K are believed to vary
 

from 1560K to 1580 K. The calibration uncertainties, however, are
 

expected to be minor compared to other anticipated measurement errors.
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FIGURE 32 HIGH TEMPERATURE THERMOCOUPLE PROBE 



FIGURE 33 INTERIOR OF HIGH TEMPERATURE THERMOCOUPLE PROBE
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The recovery factor for this type of probe would normally be expected
 

to be about 98 percent, introducing a 40K - 60K error in the 22220 K 
-


28000 K range. However, significant errors which may result in recovery
 

factors greater than unity may result from radiation in the high-water­

content combustion products and from possible dissociated hydrogen
 

recombination on the thermocouple junctions. 
Additional errors are
 

introduced by the necessity of cooling the thermocouple sheaths. The
 

magnitude of these errors are not predictable or measurable.
 

It would have been necessary to calculate the exit static 

temperature, Tse , from the impact temperature, Tte, which is equal to 

the total temperature (Tt) across an assumed adiabatic normal shock
 

formed in front of the probes. The appropriate equation which can be
 

employed is
 

T.-


Tse = [i + (Ye-l)/2 Mfl 

Since the specific heat ratio, Ye, and exit Mach number, Me, 
are also
 

unknown, this calculation will be iterative. 
This discussion is
 

presented in Appendix G.
 

It was anticipated that the sodium-line/reversal technique for
 

static-emperature measurement would provide a reasonable check on
 

the thermocouple method.
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Experimental Results
 

The experimental program was conducted essentially in two phases.
 

In the first phase, the gas generator was developed to a level where
 

it could be operated with a high degree of reliability. It was also
 

necessary to demonstrate that the gas generator would operate
 

repeatedly at high combustion efficiencies (n, 2 93%) in order that
 

the gas composition and state properties could be reasonably estimated
 

by theoretical techniques. 
To attempt to achieve high combustion 

efficiency, the gas generator had a large characteristic length 

(L* % 120 in.) and a turbulence ring to promote mixing and complete 

combustion of the exhaust products. Subsequent to the achievement of 

satisfactory operation of the gas generator, the supersonic combustion 

ignition delay experiments were undertaken. This constituted the
 

second phase of the experimental program. Results from each nhRce of 

this program are discussed separately in the following sections. 
 A
 

limited number of supersonic combustion experiments which were intended
 

as 
a prelude to the overall combustion efficiency investigation are
 

also briefly discussed. A summary of the performance results from the
 

overall experimental effort, except for the investigation accomplished
 

with the initial system fabricated from stainless steel, is presented
 

in Table 5. The tabulation presents stabilized propellant tank
 

pressures, flow rates, chamber pressure and temperature when measured,
 

hydrogen conditions, ignition delay data, a characteristic velocity
 

(C*) determined from measured values, and a C* efficiency. The
 

theoretical characteristic velocity employed to determine the C*
 

efficiency was 
calculated from an equilibrium thermochemistry computer
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TABLE 5
 

GAS GENERATOR AND SUPERSONIC COMBUSTION EXPERIMENTS
 

Propellants: N 2H4/N204/N2 


Oxidizer System
 
Tank Pressure (psig) 

Flow Rate (Cb/see) 


Fuel System
 
Tank Pressure (psig) 

Flow Rate (lb/see) 


Diluent N2 System
 
Line Pressure (psig) 

Flow Rate (Tb/sec) 


Hydrogen System
 
Line Pressure (psig) 


Flow Rate (b/see) 


G.G. Chamber Conditions
 
Zhi (psia)UJ±-zr.bure 

Measured Chamber Temp (OK) 

Total Flow Rate (Tb/sec) 

Steady State Run Time (sec) 

C* (Measured) (ft/sec) 

C" (Theoretical) (ft/sec) 

C. Efficiency 


Measured Ignition Delay (in) 

Theoretical Ignition Delay (in) 

H2 Measured Manifold Temp (OK) 

Equivalence Ratio 


Purpose of Run 


Remarks 


£ NZH4/N204/N2 + H2
 

Run No: 

Date: 


1 2 3 4 5
 
3/27/69 3/27/69 4/1/69 4/1/69 4/1/69
 

800 775 730 700 650
 

9.65 6.95 6.76 6.15 5.08
 

780 1420 1290 1290 1290
 
1.09 1.74 1.58 1.58 1.59
 

890 840 900 940 950
 

2.86 2.08 1.75 1.92 1.98
 

-----

--


4Z 5?7 b.b5 565 555
 
§ § § § §
 

13.6 10.77 9.09 9.65 8.65
 
1.1 1.1 1.1 1.1 1.1
 
2013 3434 4000 3770 4099
 
3199 4072 4530 4070 4160
 
0.63 0.84 ,0.88 0.93 0.99
 

---
-

---
-

--


--

Balance System
 

-- Loose N2 Line-­

§Not Measured
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TABLE 5 (continued)
 

Propellants: N 2H4/N204/N 2 & N2H4/N204/NZ + H2 

Run No: 6 7 8 9 10
 

Date: 4/1/69 4/4/69 4/5/69 4/5/69 5/13/69
 

Oxidizer System 
Tank Pressure (psig) 
Flow Rate (lb/sec) 

700 
5.70 

700 
5.80 

575 
5.62 

700 
5.76 

1000 

Fuel System
 
Tank Pressure (psig) 1290 1290 1290 1280 1290
 

Flow Rate (lb/see) 1.59 1.58 1.58 1.58
 

Diluent N2 System
 
Line Pressure (psig) 980 990 950 950 960
 

Flow Rate (fb/sec) 1.94 2.11 1.88 1.95
 

Hydrogen System 
Line Pressure (psig) 171 150 150 

Flow Rate (lb/see) - 0.29 0.24 0.23 

G.G. Chamber Conditions 
Chamber Pressure (psia) 555 563 555 559 

Measured Chamber Temp (.K) § § §9 

Total hiow Rate (Ib/sec) 9.23 9.48 9-4tOB .9.29 

Steady State Run Time (see) 383 3.4 3.4 3.2 1.1 
3832 3820 3950 3880 	 -
C* (Measured) (ft/see) 


4145 4145 -
C* (Theoretical) (ft/see) 	 4118 4120 

-
C* Efficiency 	 0.93 0.93 0.95 0.95 


-	 § § -Measured Ignition Delay (in) 

-
-Theoretical Ignition Delay (in) 


- § 533 582 -
H2 Measured Manifold Temp (OK) 
- 1.05 0.9 0.86 -Equivalence Ratio 


Purpose of Run 	 Balance Balance System Rebalance 
System with H2 System 

with
 
Larger AP
 
Across
 
Oxidizer
 
Injector
 

Line
 
Failure
 

Remarks 


SNot Measured
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TABLE 5 (continued)
 

Propellants: N2H4/N204/N2 & N2H4/N204 /N2 + H2
 

Run No: 11 12 13 14 15
 
Date: 5/29/69 5/29/69 5/29/69 6/4/69 6/4/69
 

Oxidizer System
 
Tank Pressure (psig) 1000 950 1000 1100 1050
 
Flow Rate (lb/sec) 8.62 4.85 5.08 5.93 5.08
 

Fuel System
 
Tank Pressure (psig) 1310 1310 1310 1280 1310
 
Flow Rate (lb/sec) 
 1.59 1.62 1.62 1.58 1.62
 

Diluent N2 System
 
Line Pressure (psig) 960 960 930 1010 940
 
Flow Rate (lb/sec) 1.94 1.96 1.91 2.1 1.92
 

Hydrogen System 
Line Pressure (psig) - - - 171 171 
Flow Rate (b/sec) - - - 0.28 0.28 

G.G. Chamber Conditions
 
Chamber Pressure (psia) 570 549 550 570 565
 
Measured Chamber Temp (OK) § § § §

l'Ja± 43i lc±L \±f(lf3eC) IZ.lb U..42 8.531 9.51 .2 

Steady State Run Time (sec) 
 1.1 1.1 3.2 3.4 3.4
 
C* (Measured) (ft/sec) 3006 4179 4091 3800 4200
 
C* (Theoretical) (ft/sec) 3832 4220 4214 4043 4219
 
C* Efficiency 0.78 0.99 0.97 0.94 1.0
 

Measured Ignition Delay (in) - - - -

Theoretical Ignition Delay (in) ­ - -
H2 Measured Manifold Temp (OK) - - - 506 521 
Equivalence Ratio - - 0.96 1.1
 

Purpose of Run Rebalance System - Ambient 
Air 
Entrain­
ment 
Effect 

Remarks Not 
 NO H2 NO H2
 
Desired Ignition Ignition-

Mixture H2 Temp
 
Ratio Too Low
 

§Not Measured
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TABLE 5 (continued)
 

Propellants: N 2H 4/N 20 4 /N2 G N 2H 4/N 20 4 /N2 t H 2
 

16 17 18 19 20.
 
6/4/69 7/23/69 7/23/69 7/23/69 7/23/69
 

Oxidizer System
 
Tank Pressure (psig) 1050 1075 910 810 810
 
Flow Rate (lb/sec) 6.78 7.78 6.3 5.24 5.30
 

Fuel System
 
Tank Pressure (psig) 1300 1284 1280 1244 1260
 
Flow Rate (fb/see) 1.60 1.54 1.54 1.54 1.54
 

Diluent N2 System
 
Line Pressure (psig) 1010 970 960 960 960
 
Flow Rate (lb/sec) 2.1 2.0 1.95 1.95 1.95
 

Hydrogen System 
Line Pressure (psig) 172 - - --

Flow Rate (lb/sec) 0.28 - - - -

G.G. Chamber Conditions 
Chamber Pressure (psia) 585 540 540 533 533 
Measured Chamber Temp (OK) § 6 9 § 9 

JAJ.O.. L~.L .1$ 8.79 
Steady State Rn Time (sec) 3.4 1.1 1.1 1.1 3.4 
C* (Measured) (ft/sec) 3576 3057 3534 3912 3886 
C* (Theoretical) (ft/sec) 3972 3862 4019 4127 4132 
C* Efficiency 0.90 0.79 0.88 0.95 0.94 

Measured Ignition Delay (in) § - - -

Theoretical Ignition Delay (in) - -

H2 Measured Manifold Temp (OK) 357 - -

Equivalence Ratio 0.89 - - -

Purpose of Run 	 Ambient Rebalance System
 
Air
 
Entrain­
ment
 
Effect
 

Remarks 	 NO H2 New Fuel
 
Ignition Pintle
 
H2 Temp Installed
 
Too Low
 

and Fuel
 
Pintle
 

Burned
 

SNot Measured
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TABLE 5 (continued)
 

Propellants: N2H4/N 204/N2 & N2H4/N 204/N2 + H2
 

Run No: 21 22 23 24 25
 
Date: 7/25/69 7/25/69 7/25/69 7/25/69 8/3/69
 

Oxidizer System
 
Tank Pressure (psig) 
 840 840 810 830 850
 
Flow Rate (lb/sec) 5.08 5.08 4.93 5.08 5.39
 

Fuel System
 
Tank Pressure (psig) 
 1260 1280 1250 1260 1260
 
Flow Rate (fb/sea) 1.58 1.62 1.6 
 1.58 1.50
 

Diluent N2 System
 
Line Pressure (psig) 
 975 950 960 960 920
 
-Flow Rate (-b/sea) 2.0 1.94 1.96 1.95 1.80
 

Hydrogen System
 
Line Pressure (psig) 172 -172 175 177 98
 
Flow Rate (lb/sec) 
 0.27 0.27 0.27 0.28 0.15
 

G.G. Chamber Conditions
 
-Chamber Pressure (psia) 
 553 545 543 540 533
 
Measured Chamber Temp (OK) § § § § §
 

-,ss.a. aW i aLe _Xi/beC) 8. t2b 8_~64 - 49 -8,61 8.69
Steady State Run Time (sea) 
 3.3 3.3 3.3 3.3 3.3
 
C" (Measured) (ft/sec) 4018 4042 
 4093 4019 3891
 
Ce (Theoretical) (ft/sea) 4157 4204 4204 4173 4129
 
C* 
Efficiency 0.97 
 0.96 0.97 0.96 0.94
 

Measured Ignition Delay (in) 14 14 14 10 10
 
Theoretical Ignition Delay (in) 
 -
 - - - -
H2 Measured Manifold Temp (OK) 680 683 654 731 757
 
Equivalence Ratio 1.06 
 1.03 1.06 1.01 0.59
 

Purpose of Run 
 Ambient Air Entrainment Effect -

Remarks 
 3 inch 3 inch 6 inch 
Plexi- Plexi- Plexi­
glas glas glas
 
Collar Collar Collar
 

SNot Measured
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TABLE 5 (continued)
 

Propellants: N2H4/ 2 O4/N2 £ N2H4/U 2O4/N2 + H2
 

Run No: 26 27 28 29 30
 

Date: 8/3/69 8/4/69 8/4/69 8/4/69 8/8/69
 

Oxidizer System 

Tank Pressure (psig) 850 1550 1500 1450 1450 

Flow Rate (lb/see) 5.92 9.39 9.86 8.93 9.29 

Fuel System 
Tank Pressure (psig) 1270 1440 1350 1300 1230 

Flow Rate (lb/sec) 1.50 3.08 2.77 2.69 2.54 

Diluent N2 System 
Line Pressure (psig) 960 1500 1550 1580 1630 

Flow Rate (lb/sec) 1.90 2.72 3.04 2.98 3.20 

Hydrogen System 

Line Pressure (psig) 69 - - - -

Flow Rate (lb/see) 0.11 - - - -

G.G. Chamber Conditions 
Chamber Pressure (psia) 537 990 975- 915 909 

Measured Chamber Temp (0K) § 5 § § 

Th-- --. ":t (Tht) .bo I3.IH lb.6"7 14.6 15.03 

Steady State Run Time (see) 3.3 1.1 1.1 1.1 1.1 

C* (Measured) (ft/sec) 3645 - - 3976 3838 

C* (Theoretical) (ft/sec) 4038 - - 4228 4080 

C* Efficiency 0.90 - - 0.94 0.94 

Measured Ignition Delay (in) 10 - - - -

Theoretical Ignition Delay (in) 

H2 Measured Manifold Temp (
0K) 

-
745 

-
-

-
-

Equivalence Ratio 0.39 - -

Purpose of Run Ambient Balance Balance 

Air System System 

Entrain-1 for,High for.Super­
ment - Chamber -­ sonic -

Effect Pressure Coibustor 
and High Experiments 
Flow Rate 

Remarks 

5Not Measured 
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TABLE 5 (continued)
 

Propellants: N2H4/N204/N2 & N2H4 /N204/N 2 + H2
 

Run No: 31 32 33 34 35
 
Date: 8/8/69 8/8/69 9/15/69 12/5/69 k2/19 /69
 

Oxidizer System

Tank Pressure (psig) 
 * 1450 1450 1400 1400 1400 
Flow Rate (fb/sec) 9.29 9.47 9.09 § §
 

Fuel System
 
Tank Pressure (psig) 1230 1260
1220 1260 1260

Flow Rate (Tb/sec) 2.54 2.54 2.55 § §
 

Diluent N2 System
 
Line Pressure (psig) 
 1640 1620 '1590
 
Flow Rate (fb/sec) 3.22 3.18 3.22
 

Hydrogen System
 
Line Pressure (psig) 300 300 310 -

Flow Rate (ib/see) 0.43 0.43 0.43 - -


G.G. Chamber Conditions
 
Chamber Pressure (psia) 918 900 938 ­ -
Measured Chamber Temp (0K) § 
 S AS 
Total Flow-Rate (fb/seel) 15.05 15.19 -14.86 -
Steady State Run Time (see) 
 3.3 3.3 3.3
 
C* (Measured) (ft/sec) 3870 3759 4005

C* (Theoretical) (ft/see) 4086 
 4086 4102
 
C* Efficiency 0.95 0.98
0.92 


Measured Ignition Delay (in) 
 -
 -

Theoretical Ignition Delay (in) 
 - -
H2 Measured Manifold Temp (OK) 788 804 745
 
Equivalence Ratio 
 0.98 0.97 1.0
 

Purpose of Run 
 Supersonic Extend Overall
 
Combustion H2 Burn Supersonic

Experiment Time -to Combustion
 

with 2.0 see Efficiency
 
Combustor Steady Experiments
 

State
 

Remarks 
 Aborted
 
Both Runs'
 

§Not Measured
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TABLE 5 (continued)
 

Propellants: N2H4/N204/N2 & N2H4/N204/N2 + H2
 

Run No: 36 37 38 39 40
 
Date: 1/10/70 1/12/70 1/13/70 1/14/70 1/15/70
 

Oxidizer System 

Tank Pressure (psig) 1400 850 850 850 850 
Flow Rate (fb/sec) 8.9 - 5.62 5.54 

Fuel System 
Tank Pressure (psig) 1260 1260 1260 1260 1260 
Flow Rate (fb/sea) 2.63 - - 1.58 1.55 

Diluent N2 System 
Line Pressure (psig) 1620 980 980 970 970 
Flow Rate (fb/sec) 3.3 - - 1.98 2.0 

Hydrogen System 
Line Pressure (psig) - - - 175 186 
Flow Rate (lb/sec) - - - 0.28 0.29-

G.G. Chamber Conditions 
Chamber Pressure (psia) 927 - - 555 558 
Measured Chamber Temp (OK) - - 1680 1569 

Total Run Time (sec) 3.3 - - 3.3 3.3 
C* (Measured) (ft/sec) 3965 - - 3835 3893 
C* (Theoretical) (ft/sec) 4136 - - 4108 4086 
C* Efficiency 0.96 -- 0.93 0.95 

Measured Ignition Delay (in) - - - 8 15 
Theoretical Ignition Delay (in) - - 7.6 8.0 
H2 Measured Manifold Temp (OK) - - 750 645 
Equivalence Ratio - - 1.03 1.09 

Purpose of Run Gas Balance Ignition 

Sample System for Delay 
G.G. Ighition Experiments 
Products Delay 

Experiments 

Remarks Aborted Both 
Runs, Fuel 
Valve Failure 

5Not Measured 
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TABLE 5 (continued)
 

Propellants: N2H4 /NZ04/N2 & N2H4/N204/N2 + H2
 

Run No: 41 42 43 44 45
 
Date: 1/15/70 1/15/70 1/16/70 1/16/70 1/16/70
 

Oxidizer System
 
Tank Pressure (psig) 850 850 830 830 830
 
Flow Rate (lb/see) 5.7 5.7 5.5 5.7 5.5
 

Fuel System
 
Tank Pressure (psig) 1260 1260 1260 1260 1260
 
Flow Rate (lb/sec) 1.54 1.54 1.53 1.5 1.5
 

Diluent N2 System
 
Line Pressure (psig) 944 996 940 940 970
 
Flow Rate (lb/sec) 1.92 2.04 1.94 1.92 2.0
 

Hydrogen System
 
Line Pressure (psig) 184 137 186 93 70
 
Flow Rate (lb/see) 0.29 0.21 0.29 0.13 0.08
 

G.G. Chamber Conditions 
Chamber Pressure (psia) 555 . 558 540 540 543 
Measured Chamber Temp COX) 1551 1534 1588 1476 1476 

....w NaLZ b -8.;90 9.12 '9;04. .. 9,29

Total Run Time (see) 3.3 3.3 3.3 3.3 3.3 
C* (Measured) (ft/sec) 3834 3809 3835 3757 3886 
Ce' (Theoretical) (ft/sec) 4106 4067 4095 4060 4052 
C* Efficiency 0.93 0.94 0.94 0.93 0.96 -

Measured Ignition Delay (in) 10 16 19 11 14
 
Theoretical Ignition Delay (in) 7.9 7.97 8.7 7.53 7.19
 
H2 Measured Manifold Temp (OK) 710 691 590 681 705
 
Equivalence Ratio 
 1.07 0.75 1.12 0.48 0.31
 

Purpose of Run - Ignition Delay Experiments -

Remarks
 

§Not Measured
 



program. A typical data reduction analysis is presented and discussed
 

in Appendix F.
 

Gas Generator Experiments
 

The objective of the first six runs was to balance the propellant
 

flow rates and confi-m the integrity of the system as a reliable
 

apparatus. Line and injector resistances generated in the early
 

series of experiments utilizing the stainless steel system [Ref. 3]
 

were used to set the propellant tank pressure for the desired
 

propellant flow rates. 
1.25 moles of liquid nitrogen tetroxide,
 

1.0 moles of liquid anhydrous byd Iazine and 1.4 moles of gaseous
 

diatomic nitrogen comprised the propellant combination utilized to
 

generate 9 lb/sec and 15 lb/sec of vitiated air at 600 psia and
 

1000 psia respectively in the gas generator.
 

J 
 Odn be seen in Table 5, after the first, three -runs the system 

operated quite stably. 
The apparatus fabricated from copper gave no
 

indications of overheating as the gas generator run times were
 

increased. The nozzle's throat was measured before and after each run
 

and no erosion or growth was found. 
Color photographs were taken of
 

each gas generator run. 
The gas generator burns with a transparent
 

(to visible wavelengths) exhaust.
 

Supersonic Combustion Experiments
 

The supersonic combustion experiments were primarily directed
 

towards determining the effect of vitiated air on the ignition delay
 

times when burning hydrogen. Mixing and subsequent combustion of the
 

heated hydrogen took place in the gases flowing as a free jet without
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any confining walls. Both streams were operated with a static pressure
 

of 14.7 psia at the injection station in an attempt to minimize shock
 

interactions in the exhaust gases due to the surrounding stmospheric
 

conditions. By permitting the gases to mix and burn in an unconfined
 

exhaust stream, the flame front could be visually observed and photo­

graphically recorded. 
A solid wall in the vicinity of the flame front
 

can often have a catalytic effect on the ignition process. The
 

absence of a confining duct should permit the experimentally determined
 

flame front to be a functi6n of the chemical kinetics of the reacting
 

system of gases. There is a possibility of induction of ambient air
 

into the mixing region of the hydrogen and vitiated air which could
 

reduce the effective temperature of the mixture (longer delay times).
 

This effect was investigated in a short series of experiments and is
 

discussed later in this section.
 

The vitiated air enters the supersonic test section at Mach 2.9
 

with an average static temperature of 10000 K and a static pressure of
 

14.7 psia. The contoured nozzle of the gas generator was designed to
 

produce these conditions with a chamber pressure of 600 psia. 
The
 

hydrogen stream can be heated to a maximum temperature of 8670 K in a
 

stored energy heater which burns propane to heat a large stainless
 

steel coil. Injection conditions for the hydrogen are Mach 1.0 with
 

a static temperature of 500 0K to 800 0K (depending on objectives of the
 

run) and a static pressure of 14.7 psia. The relative velocity ratio
 

for the two streams at injection conditions is 1.08 (hydrogen/
 

vitiated-air). These experiments had relatively large differences in
 

static temperatures for the hydrogen (5001K 
- 8001K) and vitiated air
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system (10000K) at test section conditions. The relative temperature
 

difference for these two streams makes it difficult to establish an
 

"effective" mean temperature of the gases prior to ignition. 
An
 

analytical attempt to establish such a temperature was made in order
 

to correlate analytical and experimental data. The results of this
 

attempt are discussed in the section entitled "Discussion of Analytical
 

and Experimental Results." 
 Injection of both streams at essentially
 

the same temperature would eliminate this problem. 
 If the hydrogen
 

system was designed for a static temperature at injection equivalent
 

to the vitiated air temperature, the heater would have to be designed
 

to operate at 12000K. 
The 867 0K limit on the total temperature for
 

the hydrogen was selected as a compromise to allow the use of
 

relatively inexpensive materials in the construction of the hydrogen
 

heater and downstream hardware.
 

Operation of the full supersonic combustion experiments was
 

considerably more complex than operation of only the gas generator.
 

Safety is a primary concern when handling hydrogen. Precautions were
 

taken to assure that the gas generator products did not enter the
 

hydrogen manifold at any time. A nitrogen purge system was employed
 

to keep the hydrogen lines, heater, and manifold full of inert gas
 

when The main hydrogen valve was shut off. 
This was accomplished by
 

operating the main fuel valve for the hydrogen and the nitrogen purge
 

valve off of the same pilot valve. Then, when the main hydrogen valve
 

is in the off-position, the nitrogen purge valve is open and when the
 

hydrogen valve opens, the nitrogen purge valve closes. 
A separate
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valve located further upstream in the nitrogen purge line provides
 

shut-off capability when the purge is not required.
 

Proper valve timing is essential for the supersonic combustion
 

experiments. The main control valve for the hydrogen system is a
 

Jamesbury ball valve which is pneumatically actuated. This valve opens
 

relatively slowly, and is the last valve to open in the start-up
 

sequence. The "signal" for the hydrogen valve to open is from a
 

pressure switch which indicates that the gas generator has reached the
 

desired operating pressure level. Opening time for the main hydrogen
 

valve is approximately 1 sec. The time required to fill the heater,
 

lines and manifold is also approximately 1 see., so that 2 sec.' of 

steady state gas generator operation are necessary before the hydrogen
 

reaches the supersonic test section. 
Thus, for 2 sec. of steady state
 

operation of supersonic hydrogen combustion, the gas generator must be
 

operated for at least 4 sec. 
 This has been done successfully with the
 

all copper apparatus which has a theoretical capabiiity of operation
 

for 14 sec. prior to failure.
 

The objective of runs 7, 8, and 9 was to reconfirm system
 

integrity and the ability to demonstrate the phenomenon of hydrogen
 

ignition in a supersonic (M = 2.9) vitiated air stream. This
 

phenomenon was photographically recorded on black and white motion
 

pictures taken at 550 frames per second with a Fastex camera. 
Upon
 

reviewing the motion pictures, the film velocity (frames per second)
 

was sufficient to slow down the ignition process so that an approximate
 

ignition delay length could be measured. This measurement is based on
 

the position where the flame front (first emitted light) first appears.
 



115 

A photographic history of the ignition phenomenon is shown in
 

Figure 35. These six consecutive frames show the instant just prior
 

and subsequent to ignition. 
Frame 1 (upper left) depicts the
 

transparent nature-of the gas generator products (vitiated air). 
 Flow
 

is from left to right. 
 In the next frame (lower left) hydrogen
 

ignition is assumed to have occurred because of the presence of the
 

visible luminous flame front. 
At this state in the investigation no
 

deliberate effort was made to accurately measure the actual ignition
 

delay length, although it was possible to estimate this distance by
 

comparison with known component dimensions in the photograph. A rough
 

comparison of the annular hydrogen injector dimensions (i0 in. in
 

diameter) with the distance from it to the hydrogen flame front,
 

measures an ignition delay length of approximately 10 in. in the three
 

runs made during this short exploratory series (riin 7 tht,ah Q) .I, 

hydrogen injection, this same approximate distance was realized. As
 

shown in frames 3, 4, 5, and 6, the hydrogen flame front propagates
 

towards the point of injection and stabilizes approximately 2 in.
 

downstream. This phenomenon occurred in all of the ignition delay
 

investigations, but at slightly longer distances.
 

An attempt in run 10 to improve the C* efficiency of the gas
 

generator by increasing the pressure drop across the oxidizer injector
 

(150 psi) to match that across the fuel injector (640 psi) resulted in
 

a fuel line failure whidh severed one of the oxidizer inlet lines
 

thereby causing a flash fire. Fortunately, the sequenced run time
 

duration was at its minimum setting (1 see; steady state) and negligible
 

damage, except for a few singed transducer wires, was realized. Prior
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FIGURE 35 HISTORY OF IGNITION PHENOMENON OF VITIATED AIR AND HYDROGEN
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to this stage in the investigation, the propellant feed system was
 

plagued with occasional line failures either in the line itself or in
 

the associated check valves. 
After a careful re-examination of the
 

propellant feed system's design, the cause was identified and
 

corrected. A discussion of these incidents is presented in the
 

following paragraph.
 

In the design of the sequencing system which automatically
 

schedules the experimental run, the prefire purge is allowed to
 

terminate prior to activation of the fire initiation switch. This
 

operation is necessary in order that the pneumatic propellant valve
 

activation, which is also supplied by the purge line pressure, would
 

have a positive response. The valve operation schedule has the
 

oxidizer valve opening 0.05 sec. prior to the fuel valve. 
 Since the
 

niiron vs. nfE At. +-,,, U~.- i __' 

upstream in the fuel line toward the check valve. 
 Consequently, the 

fuel first contacts the oxidizer in this line and ignition takes 

place. This point of contact-is a function of the oxidizer tank 

pressure. Prior to run 10 in which the failure occurred, there was
 

evidence of this type of over pressure. A slight bulge was discovered
 

in the line connecting the fuel pintle injector and the check valve.
 

It was believed at that time that this over pressure may have occurred
 

during the very first gas generator runs which were slightly off
 

.mixture ratio. Nevertheless, the line was replaced prior to run 10 and
 

closer observations were taken on subsequent firings.
 

The "fix" consisted of installing an auxiliary nitrogen fuel
 

purge line which parallels the main fuel purge valve. This auxiliary
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line which operates off of a manually operated switch on the control
 

console permits the fuel line purge flow to continue after the main
 

fuel purge valve has closed. 
A check valve was also installed in this 

auxiliary nitrogen purge line so that once the fuel flow pressure 

increased above that of the nitrogen purge, the nitrogen flow would be
 

terminated until the fuel pressure diminished. Even though the fuel
 

line continues to be purged during valve operation, the purge pressure
 

is regulated at a low level so that valve operation is not compromised.
 

Runs 11 through 13 were used to verify the aforementioned cure
 

and to rebalance the propellant flow system. 
The result of increasing
 

the differential pressure across the oxidizer injector did not
 

substantially improve the C* efficiency but it did afford better
 

control over the oxidizer flow rate, which is inherent with large
 

injector pressure differentials.
 

During the course of the research for possible methods for the
 

detection of the ignition delay length in a free jet, it became
 

obvious that the physical characteristics of the hydrogen injection
 

and combustion apparatus might generate false ignition data. 
 It was
 

suspected That the ambient air may have had a quenching effect on the
 

synthetic-air/hydrogen mixture. 
The problem stems from the entrainment
 

effebt that the hydrogen injection stream's velocity has on the
 

quiescent ambient air. The hydrogen stream flowing at sonic velocity
 

entrains the cool ambient air and mixes it with the hydrogen. This
 

mixture may be, in turn, mixed with the synthetic air. The overall
 

result could be reduction in the rate of free radical production due
 

to the lower temperature environment and a shortening of the ignition
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delay length. Another possibility is that the oxygen supplied by the
 

ambient air even though at a low temperature, may be an additional
 

reacting source for OH radicals which would tend to lengthen the
 

ignition delay. It was felt that since the hydrogen/ambient-air
 

mixture is below the theoretical ignition temperature, that of the two
 

aforementioned effects, the quenching effect would be dominant. 
The
 

fact that the ambient air does have an effect on a test apparatus of
 

this nature has been indicated experimentally in Reference 24.
 

The three experimental test runs (14, 15 and 16) made during this
 

series were directed towards the determination of the ambient air
 

entrainment effect. These particular runs were made with plexiglas
 

collars of various fixed lengths (3 and 6 in.) fastened to the
 

hydrogen injection manifold to isolate the hydrogen/vitiated-air
 

mixture from the ambient air until ignition occurs, In all three runs
 

problems were encountered. The results indicated the absence of
 

sustained hydrogen ignition because of abnormally low hydrogen gas
 

injection temperatures.
 

This conclusion was confirmed analytically and is discussed in
 

the section of the thesis entitled "Discussion of Analytical and
 

Experimental Results." 
 The reason for the low hydrogen gas injection
 

temperatures was attributed to the lack of "Process Gas Temperature
 

Drop versus Time" data for the hydrogen gas heater. The temperature
 

of the prepurge nitrogen process gas which flows through the hydrogen
 

heater is monitored at the exit of the heater and at the hydrogen
 

injector manifold--a distance of about 55 ft. of exposed tubing.
 

Depending on the ambient conditions, the temperature drop between these
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two points was as much as 1670 K. 
The method employed on previous
 

heated hydrogen runs was to flow nitrogen through the beater until the
 

desired process gas temperature was obtained at the hydrogen injector
 

manifold and then immediately firing the gas generator and flowing the
 

hydrogen before the tubing had a chance to appreciably cool. This
 

same technique could not be applied during this specific experiment
 

because the hot nitrogen process gas would melt the plexiglas. This
 

was demonstrated on the second heated hydrogen run of this series when
 

the 6 in. plexiglas collar melted and distorted prior to the gas
 

generator ignition. The method subsequently employed was to bring the
 

process gas temperature up to the desired level, place the plexiglas
 

collar on the hydrogen manifold, bring the fuel and oxidizer pressures
 

up and then fire. Unfortunately, during the interim the tubing cooled
 

excessively thus lowering the hydrogen inlet temperature below an
 

ignition temperature. To alleviate this problem all exposed tubing was
 

insulated and weather-proofed. 
In addition, a series of experiments
 

were performed on the hydrogen gas heater in order to get reliable
 

information on process gas temperature drop versus time. 
These experi­

ments indicated that once the insulation was heated, the temperature
 

drop, for a period of approximately 1 min. was as low as 
320 K. In
 

subsequent system experiments which employed the hydrogen heater (to
 

be reported later in this section) measured hydrogen gas exit
 

temperatures as high as 
8030 K were obtained. All experiments which
 

required heated hydrogen were initiated when the nitrogen gas, which
 

is the process gas, had a 
measured heater exit temperature of at
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least 8400K. The maximum process gas temperature of the hydrogen gas
 

heater is 8670K.
 

Once these heater checks were completed, a repeat of the ambient
 

air entrainment effect investigation was accomplished. This experi­

mental effort consisted of four runs (21, 22, 23 and 24). Two of the
 

four runs were made with the 3 in. collar, one with the 6 in. collar
 

and the remaining run without any collar for comparison. All four
 

experimental runs were held to similar operating conditions within the
 

limitations of the system, as noted in Table 5. 
It is felt that the
 

operating conditions maintained in all four runs were within the
 

constraints which would make a comparison of ignition delay with and
 

without the plexiglas collar meaningful. High speed Fastex 16 mm
 

motion pictures taken at a rate of 550 frames per second, using 4X 
-


reversal black and white film, was the instrumentation used to deter­

mine the effect of the ambient air entrainment on the ignition delay.
 

Although the Fastex camera is capable of taking pictures at a rate of
 

15,000 frames per second, the system is limited to 550 frames per
 

second because of the available light or luminosity of the hydrogen/
 

vitiated-air mixture upon reaction.
 

The ignition delay lengths were determined by comparing the posi­

tion where the flame front first appears on the film with a graduated
 

scale also photographed. 
The flame front was quite pronounced as
 

demonstrated in previous experimental runs in which high speed
 

photographs were taken of the ignition process. 
This pronounced flame
 

front lent itself to easy measurement. 
The result is that relatively
 

speaking, the effect of ambient air entrainment, even though evident
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(14 in. versus 10 in.), is minimal. Another observation in this
 

series of experiments is that it was possible to observe the stabi­

lization of the supersonic hydrogen/vitiated-air combustion's flame
 

front relative (n 2 in.) to the hydrogen injection point well within
 

the plexiglas collar. This observation confirmed the fact that mixing
 

of the hydrogen and vitiated air streams is rapid enough to react well
 

within the constant area mixing duct of the complete engine. Once
 

combustion stabilized, the plexiglas collar melted and was blown away.
 

In the next sequence, two preliminary runs (25 and 26) were made
 

to determine the effect on the ignition delay of varying the
 

equivalence ratio. One run was made at an equivalence ratio of 0.586
 

and the other at 0.39. Again an ignition length of approximately
 

10 in. was measured with operating conditions similar to those
 

tabulated Previouslv. The observation of the innipendenne nf h 

ignition delay on equivalence ratio is supported by theory, as
 

discussed in the analytical section of this thesis.
 

The next experimental series consisted of nine runs (27 through
 

35) in which the first four were used to balance the propellant
 

system, for 15 ib/sec of vitiated air at a chamber pressure of
 

1000 psia. The last five runs (31 through 35) were made employing the
 

whole copper engine (gas generator plus constant area mixing section
 

and the diverging area supersonic combustor). Prior to this series
 

The complete gas generator was disassembled, inspected and reassembled.
 

The mating flanges between combustion chambers, injector face and
 

nozzle were refinished to insure better sealing qualities at the
 

elevated chamber pressures. After 30 firings the only change in the
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gas generator, except for discolorations, was that the nozzle throat
 

diameter had decreased from 1.596 in. to 1.583 in. or approximately
 

0.814 percent. This throat area reduction has been taken into account
 

in the determination of the C* efficiency; it is negligible.
 

Runs 31 and 32 were the first runs made with the supersonic
 

combustor and constant area mixing duct assembled to the gas generator.
 

Hydrogen and vitiated air combustion was detected by static pressure
 

measurement along the divergent supersonic combustor section and by
 

color photography. 
As indicated by the pressure measurements and
 

35 mm color slides, sustained stable hydrogen and vitiated air super­

sonic combustion was achieved in both runs. 
 A photograph showing this
 

phenomenon is presented as Figure 36. 

The results of these two runs indicated that the engine design is
 

capable of performance which would have given meaningful results in
 

the overall combustion efficiency investigation. Both runs were
 

slightly oxidizer rich, with the design flow rate of 9.17 lb/sec. 
The
 

off mixture ratio accounted for the relatively low chamber pressure.
 

Experience indicates that this engine design is quite sensitive to the
 

design mixture ratio. If the mixture ratio is varied from the design 

by approximately 14 percent, the C* efficiency decreases significantly. 

in the calculation of the C* efficiency the most important parameter 

is the gas generator chamber pressure. As indicated in Table 4, the
 

chamber pressure during an experimental run is recorded simultaneously
 

on a strip chart, an oscillograph and a digital tape. 
The output of
 

these instrunents when compared, indicated reliable measurements of
 

the chamber pressure within ±30 psi of the tabulated values. This
 



FIGURE 36 SUPERSONIC COMBUSTOR FIRING
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accuracy is considered acceptable for the range of pressures measured
 

C
(Pc b 930 psia).
 

Even though 1.4 sec. of hydrogen burn time was obtained, only
 

0.5 sec- was at steady state. Therefore, in order to get more accurate
 

results from the instrumentation, the hydrogen steady state burn time
 

should be extended to at least 2 sec. 
In run 33 the hydrogen burn
 

time was 
increased to 3.5 sec. with approximately 2.0 sec. of steady
 

state operation. 
In this run the propellant flow conditions were
 

close to design with the results being an increase in chamber pressure
 

and C* combustion efficiency. The increase in hydrogen burn time was
 
made without increasing the gas generator burn time by increasing the
 

timing relay setting on the hydrogen injector supply valve. 
An 

external energy source (oxy-acetylene torch) was positioned downstream 

of the system as an ignition device in case there qhn,1IA ber srA..l
 

hydrogen gas flow during gas generator shut-down. Since safety is 
a
 

requirement, when the engine's propellant flow sequencing schedule was
 

first developed prior to running with the hydrogen system, approximately
 

3 sec. of gas generator operation was included after the initiation of
 

the closing of the hydrogen fuel valve. 
This insured that in case of
 

a hydrogen fuel valve interruption, there would be vitiated air
 

present for reaction. 
Experience has proven the reliability of the
 

hydrogen valve, and the valve was scheduled to remain open for an
 

additional 2.0 sec., giving the desired increased hydrogen burn time.
 

The pressure measurements taken on the constant area mixing
 

section and divergent supersonic combustor indicated stable hydrogen
 

combustion for approximately 2.0 sec. 
A slightly greenish color flame
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appeared for the first time in the color slides which were taken of
 

the longer hydrogen burn time run. Upon a post inspection of the
 

engine, a small peripheral area just downstream of the hydrogen
 

annular injection station showed signs of some sort of reaction which
 

might account for this slightly greenish flame. The surface appeared
 

dark and felt slightly rough to the touch. All other parts of the
 

combustor were smooth and showed no signs of the previous described
 

conditions. This greenish color flame was not observed during the
 

prehydrogen ignition gas generator operation phase of the run.
 

The results of run 33 indicated that the system was operating as
 

close to design as could be expected. Preparations were initiated for
 

the preliminary overall supersonic combustion efficiency experiments.
 

The required instrumentation, as described previously, was installed
 

and checked out for operational reliability. During the interim
 

(3 weeks) between runs 33 and 14 the project was beset by sub-zero
 

ambient conditions which inherently generated formidable problems.
 

Hydrazine which freezes at 2750 K (340F) was the cause of primary
 

concern. With the aid of auxiliary test cell heaters to prevent
 

hydrazine fuel and instrumentation coolant line freeze ups, runs 34
 

and 35 were attempted. Both ended in aborts due to hydrazine fuel
 

valve activation failures. Since the project's allotted time and
 

funding were rapidly approaching the point of exhaustion, the decision
 

was made to concentrate the remaining portion of the project on the
 

investigation of the effects of vitiated air on ignition delay. 
No
 

additional experimental runs to obtain data on the overall supersonic
 

combustion efficiency were made.
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In order to completely describe the vitiated air effects on
 

ignition delay, as many properties of the gas generator and its
 

products of combustion (vitiated air) as possible must be measured.
 

Since the high temperature iridium 60 percent rhodium/iridium thermo­

couples and gas sampling probes which were to be used in the overall
 

combustion efficiency phase of the project were already fabricated,
 

minimum time and effort were spent preparing these items for use in
 

the measurement of the gas generator chamber temperature and the
 

sampling of the vitiated air stream.
 

The primary objective of run 36 was to capture a vitiated air gas
 

sample for analysis. The hydrogen system was not employed during this
 

specific task. Successful operation of the gas sampling system
 

resulted in the capturing of a representative sample of the vitiated
 

air stream. A comprehensive description of this system is expanded in
 

Appendix E. The captured sample was analyzed by the Chemistry
 

Department, Purdue University on a Bendix Time-of-Flight Mass
 

Spectiometer. Interpretation of the resultant spectra was done at
 

the Air Force Aerospace Research Laboratory, Wright-Patterson Air Force
 

Base under the guidance of Dr. Thomas 0. Tiernan.
 

The fundamental objective of gas sampling is to obtain a sample
 

which is representative of the composition of the fluid at the
 

sampling point. One of the most prominent sources of errors in this
 

type of measurement is that the sample can change during its passage
 

through the sampling system due to condensation of vapor phases. In
 

this particular system, water vapor theoretically accounts for
 

19 percent of the total weight in the vitiated air stream. If this
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vapor should condense, it would most likely do so in the sample 

collection bottle. The effect of this would be to form aqueous
 

solutions of various components such as nitric acid, etc., thereby
 

destroying the original sample composition. Since accurate water
 

estimates are not required for the analysis, water vapor is effectively
 

removed by passing the captured sample through a Type 3A, Linde
 

Molecular Sieve adsorbent. 1/16 in. pellets were the size employed.
 

Type SA Molecular Sieve adsorbs all molecules with an effective
 

diameter of less than 3 angstroms, including water, ammonia and
 

methanol [25]. Unfortunately, diatomic oxygen has an effective
 

diameter of 2.8 angstroms and is slightly adsorbed also, but not as
 

actively as the water vapor. This slight disadvantage in the use of
 

this particular type of adsorbent should not seriously effect the
 

results of the gas composition analysis.
 

The purpose of obtaining a vitiated air gas analysis was to
 

attempt to determine the amount of nitric oxide (NO) and nitrogen
 

dioxide (NO2 ) in the vitiated air, and to compare the actual gas
 

composition with that which was theoretically calculated by the Finite
 

Rate Reacting Gas (FRRG) program. This specific computer program is
 

discussed in the analytical section of this thesis. Theory and
 

experiments indicate that nitric oxide and nitrogen dioxide have a
 

catalyzing effect on the ignition process [12]. If this is so, then
 

knowing the mass fractibn or existence of these two constituents in
 

the vitiated air stream should help justify experimental results.
 

Also, the presence of nitrogen dioxide in the gas is a measure of the
 

incompleteness of the gas generator combustion process. Nitrogen
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dioxide is not one of The products of the complete reaction of
 

nitrogen tetroxide and hydrazine.
 

The analysis of the vitiated air gas sample indicated that no
 

nitrogen dioxide was present in the air stream. 
This means that the
 

combustion process in the gas generator must have gone to completion
 

and that the inefficiency as manifested in the less than 100 percent
 

C* efficiency was due to heat transfer and boundary layer effects. 
 A
 

heat transfer analysis across the chamber walls was done and is
 

discussed later in this section.
 

In analyzing the gas sample spectra, the relative abundance of
 

species by weight was shown to be 02 
= 17 percent, NO = 5.7 percent
 

and N2 = 76.0 percent. The remaining 1.3 percent of the sample was
 

not determined. The analysis was accomplished by performing a mass
 

spectrometer sensitivity check for known amounts of diatomic nitrogen,
 

diatomic oxygen, water vapor, nitric oxide and nitrogen dioxide.
 

These results were then applied to the gas sample's mass spectra
 

output and the relative abundance calculated. The water vapor peak' 

(m/e =18) as compared to the background level was too small to be 

considered even though water vapor theoretically comprises 19 percent 

of the vitiated air composition. This insignificant presence of water
 

vapor in the captured gas sample confirms the effective use of the
 

Molecular Sieve adsorbent. It must be emphasized that the relative
 

abundance of species previously reported are the relative amounts
 

captured subsequent to passage through the Molecular Sieve adsorbent.
 

Therefore, in order to ascertain the relative abundance of species in
 

the vitiated air stream, the water vapor and any oxygen adsorbed by
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the Molecular Sieve must be determined. The adsorbent bottle was
 

weighed before and after the run in anticipation of being able to
 

calculate the amount of water captured. However, after analyzing the
 

gas sample, it became evident that some unknown amount of the oxygen
 

must have been adsorbed also, thereby making any attempt to account
 

for the water vapor adsorbed, fruitless. Nevertheless, meaningful
 

information was obtained in the fact that there was a substantial
 

amount of nitric oxide present in the sample. At first it was
 

believed that the majority of the nitric oxide measured was due to
 

the possible decomposition of nitrogen dioxide in the sample bottle
 

by the reaction
 

N02 4 NO + 0 , AHR = 62 Kcal 

This reaction was found to be nonexistent at the level of temperature
 

and pressure in the gas sample bottle. Approximately 62 Kilocalories
 

of energy is required for the above endothermic reaction to proceed.
 

To reconfirm the absence of nitrogen dioxide in the vitiated air
 

stream, the fragmentation patterns for nitrogen dioxide and nitric
 

oxide at 70 ev as found in Reference 26, were reviewed. The
 

fragmentation pattern spectra for nitrogen dioxide showed that if
 

nitrogen dioxide was present initially in the gas sample that there
 

would be a representative nitrogen dioxide peak (m/e = 46). Since no
 

significant nitrogen dioxide peak was found, it was concluded that
 

nitrogen dioxide was never present in the gas sample.
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If the assumption is made that the excess diatomic nitrogen which
 

serves as the diluent in the overall gas generator combustion process
 

does not significantly contribute to the reaction, then the known
 

relative input amount of diatomic nitrogen should serve as a basis
 

for comparison of the relative specie abundance measured, with that
 

calculated by the FRRG program. Therefore, the relative abundance by
 

weight of diatomic nitrogen measured 76 percent should be equivalent
 

to the known relative amount input 55 percent. Utilizing this basis
 

of comparison, the relative abundance by weight of the oxygen is
 

changed from 17.0 percent to 12.3 percent and the nitric oxide from
 

5.7 percent to 4.0 percent. The remaining 28.7 percent is assumed
 

to consist of the water vapor and diatomic oxygen adsorbed by the 

Molecular Sieve. Table 6 shows the relative abundance of species 

measured compared to that calculated bv the FRRG nrogram. The rela­

tively good agreement between the data measured and that calculated 

by the FRRG program justifies using the results from the ERRG program 

for the analytical portion of the investigation. 

Runs 37 and 38 whose purpose was to rebalance the system for
 

lower chamber pressure (600 psia) and flow rate (9 ib/sec) in
 

preparation for additional ignition delay runs were aborted due to
 

hydrazine fuel valve failures. The fuel valve was dismantled and
 

inspected. A loose cam set screw which allowed the cam shaft to
 

rotate without rotating the cam was responsible for the malfunctions.
 

This particular cam when rotated along with fuel valve actuation,
 

activates a sequencing microswitch which allows the gas generator
 

firing sequence to progress. Without this positive microswitch
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TABLE 6
 

COMPARISON OF RELATIVE SPECIE ABUNDANCE BY WEIGHT
 

MEASURED VERSUS (FRRG) CALCULATED
 

Species Measured Calculated
 

02 12.3%* 23.80%
 

N2 55.0% 55.00%
 

NO 4.0% 0.36%
 

H20 * 19.00% 

71.3% 1 9a .16% 

•Part of specie 02 and practically all of specie k20
 

which accounts for 26.86% is assuned captured by 
the Molecular Sieve adsorbent.
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activation, the sequencing mechanism senses that the fuel valve did
 

not operate and automatically terminates the run. The problem was
 

corrected and the investigation proceeded.
 

The remaining runs of the investigation were directed towards the
 

collection of ignition delay data as 
a function of hydrogen temperature
 

and equivalence ratio. Gas generator chamber wall heat transfer rates
 

and chamber temperatures were also obtained. The-average heat
 

transferred through the chamber walls during the experimental runs is
 

shown to account for at least a 2 percent decrease in Ce efficiency.
 

The heat transfer rate through the gas generator chamber walls
 

was measured simultaneously with the chamber temperature and ignition
 

delay lengths on all of the remaining runs (39 through 45). This was
 

accomplished by mounting in the chamber wall two chromel alumel
 

thermocouples at a depth of 0.813 and 1.563 in. respectively. The
 

distance from the deeper thermocouple (1.563 in.) to the hot side of
 

the chamber wall is 0.54 in. After each run the slope of the
 

temperature increase for each thermocouple was compared for a quasi­

steady temperature difference. The averaged difference was 860 K.
 

Knowing the thermal conductivity of oxygen free electrolytic copper
 

and the distance between the thermocouples, it was a relatively simple
 

matter of applying Fourier's one-dimensional law of heat conduction
 

for a hollow cylinder to get an approximate heat transfer flux rate
 

of 1.54 BTU/in 2-sec. This efflux of heat was analytically accounted
 

for in the measured C' combustion efficiency of the gas generator.
 

To measure the gas generator chamber temperature two iridium 

60 percent rhodium/iridium thermocouples mounted inside the chamber
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cavity at depths of 0.37 and 1.125 in. respectively from the hot
 

wall, were employed. The components of the thermocouple consist of a
 

.0.062 in. inconel sheath with a magnesium oxide layer which insulates
 

the two 0.010 in. diameter iridium 60 percent rhodium/iridium wires.
 

A bead joining the two exposed thermocouple wires at a distance of
 

0.25 in. from the sheath material, formed the hot junction of the
 

instrument. The thermocouples held up satisfactorily during the
 

course of this investigation. Measurements were taken on all seven
 

runs and were relatively consistent as indicated in Table 5.
 

Temperature differences between the two thermocouples during the runs
 

when averaged were approximately 760K. The values of chamber
 

temperature as listed in Table 5 are the uncorrected readings from
 

the thermocouple positioned closest to the hot gas core (1.125 in.).
 

A radiation and conduction thermocouple heat transfer error analysis
 

was carried out according to the method outlined in Reference 27.'
 

Results of the analysis indicated an average heat transfer error
 

of approximately 5OK and 800 K for radiation and conduction
 

respectively. The primary objective for measuring the chamber 

temperature was to verify the accuracy of the temperatures computed
 

by the Finite Reaction Rate Gas (FRRG) program. Temperatures
 

(a. 17001K) measured and corrected for thermocouple losses did not 

compare favorably with corrected theoretical temperatures (--21000 K) 

calculated by the FRRG program. Reasons for the discrepency were not 

resolved since time was at a premium and the resulting effects of this
 

discrepency on the investigation were felt to be minimal. However,
 

due to the many unknowns associated with high temperature thermocouple
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measurements, the temperatures computed by the FRRG program were
 

considered to be the more accurate of the two. Therefore, the
 

corrected theoretical temperatures were subsequently employed to
 

generate an input temperature which is used in the Simplified Ignition
 

Lag (SIL) program to calculate the theoretical ignition delay distance.
 

The theoretical ignition length is compared with that experimentally
 

measured for correlation. This correlation is discussed in the
 

section "Discussion of Analytical and Experimental Results."
 

The actual ignition delay length data were photographically
 

recorded on Kodak 4X-Reversal black and white film using a Fastex
 

16 mm camera at a film velocity rate of 550 frames per second. A
 

photograph of the apparatus for observing and measuring the ignition
 

phenomenon is presented as Figure 37. The apparatus is basically the
 

same as when used as a simulated supersonic combustor except that the
 

constant area mixn-g section and divergent,.combustor are removed and 

a graduated measuring scale is mounted on the side of the test stand 

for determining the ignition delay length. Since the vitiated-air/ 

hydrogen mixture burns with a diffuse consistency, the dark background 

horizontal slot in the measuring scale emphasized the ignition distance 

and subsequent reaction phenomena. Each white stripe is an inch apart.
 

The left side of the horizontal slot is in the exit plane of the
 

hydrogen annular injector and thereby forms the datum point from which
 

the exact ignition delay length is measured. The distance measured
 

from this datum to the point of first light apparition is defined to
 

be the ignition delay length. Figures 38, 39 and 40 are typical
 

photographic data results of the experimental runs. Each figure
 



FIGURE 37 IGNITION DELAY MEASURING APPARATUS
 

CA) 
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LID(EXP) = 10 INCHES TH2 = 710
0 K 

IN= 1,607 

FIGURE 38 IGNITION DELAY -RUN 41 



depicts 14 consecutive frames showing the instant before and after 

the onset of ignition. As can be seen in the photograph, the vitiated­

air/hydrogen flame front lends itself to easy observation and 

measurement. In Figure 38, the fourth frame down shows the point of 

ignition. Counting the stripes from left to right indicates a distance
 

of 10 in. The inked-in line highlights the line of demarcation between
 

the dark background of the horizontal slot in the measuring scale and
 

the vitiated-air/hydrogen combustion flame front. The white elongated 

marks on the extreme outer edge of the film strip are the film velocity 

timing marks which are generated at a frequency of 100 per sec. From 

this measurement the film velocity is calculated and verified. The
 

film velocity as shown is approximately 550 frames per second.
 

Careful review of the succeeding frames subsequent to the point of
 

ignition, reveals that the flame front propagates towards the plane of
 

hydrogen injection to about 3 in. and then oscillates between 3 and
 

7 in. This effect is believed to be a recirculation phenomenon and a
 

function of the nozzle/injector-lip geometry.
 

In run 43 (Figure 39), the temperature of the heated hydrogen 

(TH2 = 590
0K) was just slightly above the autoignition temperature. 

It was demonstrated in runs 14 and 15 that hydrogen injected at a 

temperature of 5060 K and 5210 K would not ignite in this apparatus. 

Nevertheless, in run 39, ignition was realized but with a relatively 

long ignition delay length. Concentrating on the third and fourth 

frames down and in the immediate area to the extreme right side of 

the measuring scale, the onset of ignition is indicated by the 

illumination of this section. However, the flame front does not 
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LID(EXP) = 19 INCHES TH2 = 590°K 

= 1.12 

FIGURE 39 IGNITION DELAY - RUN 43 
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LID(EXP) 14 INCHES TH.2 7050 K 

S0.31 

FIGURE 40 IGNITION DELAY -RUN 45 
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sharply appear until frame number 6. This indicates that the point of
 

ignition is somewhere near the extremity of the measuring scale. By
 

considering the flame front propagation speed (approximately 2 in. per
 

frame) and assuming it constant, the point of ignition is calculated
 

to be approximately 19 in. In this particular run the flame front
 

stabilized at a distance of 8 in., which indicates hydrogen temperature
 

as well as geometry may have a profound influence on the point of
 

stabilization. No attempt was made to resolve this uncertainty.
 

Photographic data results of the other four runs are similar in
 

nature to these presented. However, due to the lack of detail
 

photographic sharpness in reproduction, they were purposely omitted.
 

A compilation of the ignition delay data as a function of hydrogen
 

manifold temperature and equivalence ratio-is presented graphically
 

as Figures 41 and 42. A comparison of these results with the
 

analytical findings is diicussed in-the-folowing section.
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DISCUSSION OF ANALYTICAL AND EXPERIMENTAL RESULTS
 

The ignition delay for a reacting gas mixture is determined
 

primarily by the number of free radicals initially present. At no
 

time during the ignition and subsequent combustion process does the
 

mass fraction of free radicals become a large portion of the total gas
 

mixture. Under conditions of relatively long ignition delays (low
 

static temperatures), the ignition process can be accelerated signifi­

cantly by small amounts of free radicals. An extensive analysis was
 

undertaken to determine the effect of vitiation on the ignition delay
 

characteristics of hydrogen.. The analysis showed that the nonequi­

the supersonic combustion chanter would result in relatively short
 

ignition delay times. The effect is not entirely a function of the
 

vitiated air composition but was shown to be related to.the non­

equilibrium expansion process by which the gas is accelerated to test
 

section conditions (recombination freezing). *In that sense real air
 

exhibits the similar effect on the ignition delay characteristics with
 

hydrogen when the air is expanded to the supersonic test section-Mach
 

number from a high temperature source.
 

The nonequilibrium analysis for a test case typical of the experi­

mental conditions resulted in a calculated ignition delay length of 

1.5 in. for the vitiated air. This calculation assumes the hydrogen 

and vitiated air to be instantaneously mixed at a constant mixture 
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temperature of 1000OK and an equivalence ratio of unity. It also
 

assumes nonequilibrium gas compositions for both streams prior to
 

mixing. When equilibrium compositions were employed in these calcu­

lations, the ignition delay length was computed to be 11.5 in. 
 This
 

is approximately a factor of eight increase in distance over the
 

nonequilibrium case. 
Therefore, should the experimentally observed
 

ignition delay distance be significantly less than 11.5 in. for
 

mixture temperatures of 1O00K or less, the effects of the nonequi­

librium inlet conditions will have been demonstrated.
 

In the experimental program, the hydrogen gas was heated to
 

manifold temperatures which varied from 5000K to 750 0K prior to
 

injection and mixing with the vitiated air. 
Vitiated air conditions
 

at the test section inlet were a static temperature of approximately
 

10000K and a 2.9 Mach number. The two streams were introduced parallel
 

to each other at a constant static pressure of one atmosphere and
 

permitted to mix as an unconfined flow system. The ignition delay
 

distance was determined visually from high speed (550 frames per
 

second) 16 mm Fastex motion pictures of the exhaust flow. These
 

pictures showed that hydrogen ignition (which was primarily a function
 

of hydrogen injection temperature) occurred at distances varying from
 

8 to 19 in. downstream from the plane of injection. The fact That
 

ignition occurred in some cases at distances less than 11.5 in., 
does 

indicate the presence of nonequilibrium free radicals which have 

reduced the ignition delay phenomenon. 

An additional theoretical analysis was undertaken to attempt to 

achieve better correlation between experimental and analytical program 
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results. In the experimental program, the hydrogen and vitiated air
 

enters the test section area at different static temperatures. This
 

fact complicates the analysis of the delay time since a mean mixing
 

temperature for the reacting gases must be defined before computing
 

the ignition delay distance. The operational procedure for this
 

specific analysis was executed as follows:
 

1. In an experimental ignition delay run note the hydrogen
 

manifold temperature and flow rate, gas generator chamber pressure,
 

propellant flow rates, and observed ignition delay distance.
 

2. Input the required gas generator properties and parameters
 

into the Finite Rate Reacting Gas (FRRG) computer program and calculate
 

velocity, specie concentration, static temperature and pressure at the
 

gas generator nozzle exit plane, which also serves as the entrance to
 

the supersonic test section area.
 

3. Input into the Simplified Ignition Lag (SIL) computer program 

the specie concentrations computed above, together with the additional 

hydrogen injected, the mixture mean temperature, pressure and
 

equivalence ratio.
 

4. Determine from the computer plotted output graph (OH radical
 

concentration versus time) the point where the slope of constant OH
 

radical growth starts to deviate from straight line behavior (end of
 

ignition period).
 

5. Multiply the time indicated at this point of deviation by the
 

velocity computed by the FRRG to determine the comparable ignition
 

delay length.
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In the initial attempt to compare the experimental and analytical
 

results as outlined above, the mean temperature of the mixed stream
 

(hydrogen and vitiated air) was determined by employing the gross
 

over-simplification that the mean temperature can be obtained from the
 

weighted heat content of the combined streams. Since the flow rate of
 

the vitiated air stream was measured to be 9.0 lb/sec in contrast to
 

the flow rate of 0.08 Tb/sec to 0.29 lb/sec of the hydrogen stream,
 

the mean temperature of the mixture, assuming instantaneous mixing,
 

was for all practical purposes equal to that of the vitiated air stream 

(' 9800K). The results of this preliminary effort are presented as 

Figures 43 through 49. A comparison of these analytical results with 

the experimentally-measured ignition lengths is not satisfactory. 

Experimentally there is a factor of three difference in the measured 

ignition delay distances for the different hydrogen inlet conditions. 

The discrepancy between the analytical and experimental. results is 

believed to be entirely an effect of the over-simplified assumption
 

of instantaneous mixing of the two dissimilar streams.
 

A combined mixing and reaction kinetics analysis is beyond the
 

scope of the present program. However, a simple rule of thumb used in
 

free jet mixing studies states that mixing is usually complete in a
 

distance of approximately 10 jet diameters from the injection plane.
 

This distance would be about 45 in. in the existing system. The
 

maximum ignition delay distance observed was 19 in.; therefore, it can
 

be safely concluded that the onset of ignition occurs before the
 

hydrogen gas has a chance to diffuse completely into the vitiated air
 

core. Hence, the reaction zone of the mixture forms a conical sheath
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about the vitiated air stream. The thickness of this zone was 

calculated to be approximately 0.4 in. Calculations were performed 

using the "Finite Rate Supersonic Combustion Mixing Analysis" computer
 

program written by Siegelman and Fortune of the General Applied
 

Science Laboratories [28J. The extensive use of this program for a
 

more inclusive type of investigation is reported later in this section.
 

A short analytical investigation of the effects of vitiated-air/
 

hydrogen mixture temperature on ignition delay as calculated by the
 

Simplified Ignition Lag (SIL) computer program was accomplished in an
 

attempt to improve the correlation of the experimental and analytical
 

data. It was shown that the hydrogen does not completely penetrate
 

the vitiated air core before ignition, therefore, it is only logical
 

to conclude that the mean mixture temperature should be a direct
 

function of penetration depth. The initial phase of this specific
 

investigation used the simplified assumption that due to the limited
 

penetration of the hydrogen into the air core, that ignition occurred
 

at a mean mixture temperature equal to the injection-temperature of
 

the hydrogen. The static temperature of the hydrogen subsequent to
 

passage through the sonic annular injector is the value used in all of
 

the analytical ignition delay efforts. Hydrogen temperatures as
 

listed in the tables and graphs are manifold or total temperatures.
 

Results of this investigation are shown in the computer printed graphs
 

indicated'as Figures 50, 51 and 52. In all three cases considered,
 

the OH radical concentration never increased. On the basis of this
 

data it can be concluded that ignition never occurred. This fact
 

analytically verifies the experimental results concerning the ambient
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air entrainment effect on the ignition delay distance. 
 It had been
 

suspected that the oxygen in the ambient air entrained by the hydrogen
 

stream provided a-free-radical source for ignition. Due to the experi­

mental fact that ignition was not realized, the requirement for a
 

thermal ignition source greater than that supplied by the heated
 

hydrogen alone is substantiated. In other words, the results of this
 

analytical investigation supports the theory that the mixture
 

resulting from ambient air entrainment does not possess the required
 

energy for autoignition. The conclusion that the ignition delay length
 

is primarily a function of the energy content of the vitiated-air/
 

hydrogen mixture is therefore reconfirmed.
 

The experimental observation that ignition and sustained
 

combustion did occur in runs 40, 41, and 42, invalidates the assumption
 

of mixture temperatures equal to hydrogen injection temperatures. In
 

order to more closely approximate the depth of hydrogen penetration
 

into the hot vitiated air core and, in turn, to be able to generate a
 

realistic mean mixture temperature for analytical needs, the GASLts
 

"Finite Rate Supersonic Combustion Mixing Analysis" computer program
 

was employed. This program describes the turbulent mixing of
 

axisymmetric hydrogen-air jets inside a duct. It utilizes a finite­

difference technique to trace the mixing process with either frozen or
 

finite rate chemistry. Outputs from the program consists of the
 

following parameters as'a function of geometric grid point position
 

in the reacting or nonreacting mixture: Mach number, velocity, static
 

and total pressure, static and total temperature, specific heat,
 

density, molecular weight, static and total enthalpy, ratio of specific
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heats, acoustic velocity, specie concentration and the equivalence
 

ratio of hydrogen to oxygen. 
Even though the program was written for
 

ducted flow, the initial portion of the output is applicable to the
 

mixing and ignition processes. This is only true when the processes
 

are confined to a region located a considerable distance upstream from
 

the point where the reaction zone would theoretically contact the duct
 

wall. Figures 53, 54 and 55 are schematic drawings of the specie
 

concentration profiles computed by the mixing program for a typical
 

experimental ignition delay run. 
The abeissa is the species mass
 

fraction. The ordinate (') is the grid points which specifies
 

discrete positions in the duct cross section. 
These points are
 

related to the radial distances in the duct through a von Mises
 

trasformation.
 

As a starting point in the mixing analysis, it is necessary in
 

the finite-difference mode of computation to input the initial number
 

of grid points (') and the distance between any two grid points (At).
 

Hence, thirteen grid p6ints (i) are initially used, ten for the
 

hydrogen stream and three for the vitiated air stream. 
The distance
 

between each grid point (A*) is 0.0276 in. 
Additional grid points
 

are generated as required by the program to account for the ever
 

widening mixing zone.
 

The approximation of a mean mixture temperature was obtained by 

using the calculated penetration depth at which the equivalence ratio 

output of unity occurred. This value was located at grid point number 

4 at an axial distance of 0.10 fr. from the plane of hydrogen 

injection. The specie concentration profile for this particular 
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station is not shown in the associated figures. Nevertheless, grid 

point number 4 at this station is positioned at a depth of 0.414 in. 

into the periphery of the vitiated air core. It was therefore 

concluded that in the distance from the hydrogen injection plane out 

to this station (0.10 ft.) the hydrogen gas diffuses into the vitiated 

air core to a depth of 0.414 in. The volume percentage of the 

vitiated air core penetrated by the hydrogen gas in this distance 

amounts to approximately 40 percent. Therefore, the mean temperature 

of the mixture was arrived at by using only 40 percent of the total 

vitiated air flow in a vitiated-air/hydrogen weighted mean temperature 

calculation. This effort reduced the mean mixture temperature to a 

more realistic value and resulted in a better correlation between
 

analytical and experimental data. The static temperature of the 

vitiated air core at the hydrogen injection plane was calculated to 

be 8501K. This value was arrived at by subtracting the temperature 

drop (AT az 1331K) due to heat transfer effects in the combustion 

chamber and along the nozzle walls, from the theoretical static
 

temperature (9830 K) calculated by the FRRG program. In the heat
 

transfer analysis it was found that the chamber temperature decreased
 

by 671K for a quasi-static heat transfer rate through the walls of
 

1.54 BTU/in 2 -sec. It was -therefore assumed that the additional
 

temperature decrease through the nozzle section should be at least 

equal to that lost in the combustion chamber. With a modified 

vitiated air static temperature of 8500 K versus the original theo­

retical static temperature of 983 0 K, it is felt that the species 

concentrations as calculated by the FRRG program at the original 

Id)
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temperature (9830K) would not vary excessively due to this temperature
 

difference. Hence, the species concentration as calculated originally
 

at 9830 K was input into the SIL program along with the mean temperature
 

generated by using the modified temperature (8500K). The results of
 

this analysis as shown in Figures 56 through 62 are manifested in the

C 

longer ignition delay times. It can also be observed that the
 

analytical and experimental ignition delay lengths agree much better
 

than in the previous comparison where it was assumed that the hydrogen
 

and vitiated air streams mixed instantaneously and completely prior
 

to ignition. This comparison would seem to indicate that the effect
 

of different static temperatures for the hydrogen and vitiated air
 

streams in addition-to mixing rates, have a profound effect on any
 

analytical ignition delay model.
 

Figures 63 and 64 are graphical plots comparing the experimental
 

and analytical data as a function of hydrogen manifold temperature and
 

equivalence ratio. As can be observed in Figure 63, the differences
 

in delay length diverges as the hydrogen temperatures decrease. This
 

effect may be caused by the effect of temperature on the mixing or
 

diffusion rate in the two streams. It is shown in Reference 29
 

that the mass diffusivity in gaseous mixtures does increase with
 

-temperature. Another noteworthy observation is the trend of decreasing
 

ignition length with increasing hydrogen temperature as manifested in
 

both the analytical and .experimental data results. This fact tends
 

to reconfirm the validity of the analytical model in that ignition
 

delay length decreases with increasing temperatures. In Figure 64,
 

the experimental data deviate from the analytical theory of relative
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independence of ignition delay distances on equivalence ratio. The ­

observed fact that the experimental data points do straddle a straight 

line when drawn equidistant from each point, provides some 

encouragement. An explanation as to-why there is such scatter cannot
 

be given at this time. Analytically, the data points do indicate a
 

relatively constant ignition delay distance irregardless of
 

equivalence ratio variance.
 



176 

CONCLUSIONS
 

Detailed analytical and experimental measurements have been made
 

in a mixing and reacting vitiated-air/hydrogen supersonic stream for
 

the purpose of determining the effects of vitiation products (free
 

radicals, tfifrd bodies, etc.) on the ignition delay phenomenon. On 

the basis of the experimental-data and their subsequent application to 

the verification of the analytical model, it is concluded that: 

1. The presence of water vapor in a combustor entrance flow can
 

either increase or decrease the ignition delay time. This depends
 

upon the initial temperature, pressure and concentration level which
 

can either result in a significant generation of free radicals and
 

increase the ignition length or cause an increase in heat sink effects
 

and/or source for third body reactions thereby reducing ignition
 

delay times. The present experimental system favors the latter effect
 

because of The relatively low temperature test section environment.
 

2. No analytical ignition delay model, regardless of the
 

temperature regime, can be completely independent of the mixing
 

phenomenon. In general, the rate of a diffusion process is expected
 

to be a quadratic function of depth and temperature. Therefore, in
 

practical situations of interest, combustion and mixing are coupled
 

and should be considered simultaneously.
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3. Nonequilibrium free-radical content of the incoming stream
 

accelerates the reaction process. This causes ignition to occur much
 

sooner than would be expected if the incoming stream were near
 

equilibrium as far as free-radical concentrations are concerned. While
 

the vitiated air employed in this program was produced synthetically in
 

a liquid rocket engine, similar effects would occur with any type of
 

vitiated air system. 
In fact, air which is heated and subsequently
 

expanded to the inlet condition of a supersonic combustor would result
 

in earlier ignition than would occur in the situation where atmospheric
 

air would be diffused to the supersonic combustor inlet conditions.
 

4. The results predicted by the ignition delay model are
 

favorably substantiated by experimental data when the assumption of
 

complete mixing is abandoned. This indicates that the use of vitiated
 

air to simulate the ignition phenomenon for a SCRAMJET system will
 

lead to erroneous data if the air entering the SCRAMJET combustor is
 

near equilibrium conditions. It must be emphasized that these
 

conclusions only apply in the low temperature supersonic regime.
 

Therefore, direct ground simulation of supersonic ignition in the
 

regime where reaction times are rate controlling is difficult and,
 

without a knowledge of the equilibrium conditions leaving the diffuser,
 

may be impossible to achieve experimentally.
 

5. In the temperature regime investigated (% 850 0K) the experi­

mentally measured content (4 percent) of nitric oxide (NO) in the
 

vitiated air was observed to have little effect on the ignition delay
 

length. The catalytic accelerating effect as indicated in the
 

literature was found to be nonexistent. Therefore, it is concluded
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that while it is theoretically possible for NO to profoundly decrease
 

the ignition delay time at temperatures greater than 10000 K, at the
 

lower temperatures, its presence seems to be ineffectual in the
 

existing experimental effort.
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RECOMMENDATIONS
 

On the basis of the present investigation into the effect of
 

nonequilibrium conditions on the combustion of hydrogen in supersonic
 

streams, many precursory results were generated. To better define
 

these findings and to reconfirm the conclusions specified, the
 

following recommendations are offered:
 

1. To virtually eliminate the minor influence of the entrained
 

ambient air and to closely as possible simulate the instantaneous and
 

complete mixing of the two dissimilar streams, the experimental
 

apparatus should be modified for centerline hydrogen injection. This
 

IL uu 

boundary conditions on a similar basis as far as the assumption of the 

ignition delay process being rate rather than mixing controlling in 

the low temperature regime. 

±2 trzpL~..ztL~tsuytza- p.%-on ikeexpeimien-rawL 

2. Due to the fact that the point of deviation from straight
 

line OH radical concentration growth was arbitrarily chosen from many
 

equally valid ignition delay length criteria as the best method for
 

analytically measuring this phenomenon, the reacting vitiated-air/
 

hydrogen mixture should be axially probed for OH radical growth. This
 

can be logically accomplished with a translating absorption-emission
 

spectrometer. Then, the results can be simultaneously compared with
 

the experimentally observed ignition delay length.
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3. Since it has been shown that mixing cannot be completely
 

ignored in any type of binary stream combustion process, a detail
 

mixing investigation should be initiated to effectively determine how
 

influential this effect is in a relative low temperature regime. Also,
 

the presence of nonequilibrium species and excessive water content in
 

the flowing medium (vitiated air) may have an applicable effect on
 

the mixing process.
 

4. The ultimate objective for any vitiated air investigation is
 

to obtain enough data to be able to predict the outcome of an experi­

mental run made with clean air when compared to the same run made with
 

synthetic air. Therefore, an effort should be made to rerun all of
 

the ignition delay experiments employing a clean air source.. This
 

would generate experimentally the data necessary for comparison with
 

the results of the analytical portion of the investigation concerning
 

real air.
 

5. The investigation of the ignition process as an approach to
 

determine the effect of vitiation on the combustion of hydrogen in a
 

supersonic flowing stream is sufficient but only so far as an initial
 

step in the overall understanding of the complete combustion process
 

when practically applied to the ground testing of SCRAMJET propulsive
 

systems. The primary goal envisioned is the understanding of the
 

effect of vitiation on-the complete supersonic combustion process. In
 

this sense, work should.be continued on the determination of these
 

effects on.the overall combustion efficiency (nc). It is felt that
 

-the method as presented in Appendix G is apropos.
 

http:should.be
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APPENDIX A
 

FACILITY DESCRIPTION
 

The experimental research program discussed herein was conducted
 

in the Combustion Research Laboratory at the Zucrow Engineering
 

Research Center of Purdue University. This facility was constructed
 

with flexibility to conduct combustion experiments as a prime design
 

feature, however, one of the other criteria was to be able to
 

investigate problems related to the combustion of storable liquid
 

rocket systems. The storable propellant capability made this facility
 

readily adaptable to the requirements of the present program.
 

The Combustion Research Laboratory also has an extensive control
 

room for remote operation of combustion experiments. The control room
 

contains instruments for data recording (i.e., strip charts, oscillo­

graph, and a 60 channel magnetic tape unit) and a flow system control
 

panel with an automatic sequencer for the main propellant valves. A
 

photograph of the main control panel is presented in Figure A-1. Any
 

pneumatically operated valve in the facility can be operated off the
 

main control panel. The sequencing unit is set-up to automatically
 

open each valve at the proper time and to check for operating
 

malfunctions. Since the control room services two test cells and
 

four separate experiments, the instrumentation had to be scheduled.
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FIGURE A-I MAIN CONTROL PANEL
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Each researcher was provided with a prewired instrumentation patch
 

panel to provide rapid changeover between different experiments. 

The hydrogen heater was an addition made to the Combustion
 

Research Facility specifically for this program. A separate control
 

panel was also added for operating the hydrogen heater. A photograph
 

showing the hydrogen control panel is presented as Figure A-2. The 

hydrogen heater is operated separately from the main flow control
 

system. The heater is initially brought up to operating temperature 

prior to starting preparations for firing the gas generator. Flow of
 

propane to the burners is controlled manually at the control panel. 

Two temperature controllers are provided for operating the hydrogen 

heater. One monitors tube wall temperature and the other the exhaust
 

gas stack temperature. If either of these controls reaches a preset 

limit, the hydrogen heater is automatically shut down.
 

The propellant system in use at the Combustion Research 

Laboratory at the time of these experiments were nitrogen tetroxide 

and a 50/50 blend of hydrazine and unsymmetrical dimethylhydrazine. 

Since nitrogen tetroxide was employed in the present program, the 

existing oxidizer system was directly connected to the gas generator. 

A separate propellant supply system was added to handle the anhydrous 

hydrazine fuel to avoid interference with other programs. High
 

pressure nitrogen was available at the test cell. Piping, valves 

and a regulator were added to provide the nitrogen diluent supply
 

system. The hydrogen system was a new addition to this facility so
 

that a complete system had to be installed for these experiments. A 

flow schematic of the propellant supply system for the supersonic 
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combustion experiments is presented as Figure A-3. The dotted lines
 

on this figure represent the facility fuel supply system which was not
 
j


employed in this program
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APPENDIX B
 

HEAT TRANSFER ANALYSIS FOR COPPER ENGINE DESIGN
 

The objective of the following analytical effort was to determine
 

the theoretical run duration failure limit of a gas generator
 

fabricated from oxygen free electrolyte tough pitch copper. By using
 

a resistor capacitor analog unit and a temperature input simulator,
 

it is possible to obtain the temperature versus time curves for any
 

radial section of the nozzle. Since the throat of the converging­

diverging nozzle section is the location of the most severe heat
 

transfer rates, the analysis was specifically directed towards
 

dete±-..ining the temperature versus time curves for the throat of
 

the nozzle area.
 

The basic design values utilized in the analysis were
 

PC = 1000 psia, To = 4500°R and h = 1.04xlO- 3 BTU/in 2-sec-OR. The 

film heat transfer coefficient (h) was calculated using Bartz's 

equation [31]. Values of parameters used in this equation were 

- generated by the Finite Rate Reacting Gas program. 

Employing the analogy between thermal and electrical resistance/ 

capacitance circuits in transient flows, temperature versus time 

curves were generated. The simulation was performed on the throat 

by assuming~a step temperature input and using the most severe design
 

conditions of heat transfer as previously specified. The output
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response was traced by an Offner Dynograph. Numerical results were
 

subsequently obtained by applying time and temperature scales factors
 

to the graphical output trace.
 

The basic calculations were made by dividing the nozzle throat
 

radial into equal volume elements. A schematic of this operation is
 

presented in Figure B-1. Each volume element corresponds to equal
 

thermal and electrical capacitance. The computation of their 

appropriate thermal resistances and capacitance was accomplished 

accordingly by 	the following relationships:
 

(1) 1 

N r 0) (r.+1 - rh) 

(2) Cth =PV c=P (r21 -rg2) cp1/ 

n(3) rmn = r 2 

(4) Arnl 	= rmn - rn 

(5) 	 Arn2 = rn+l - rmn 

AX 

(6) Rth =k-


Amnl
 
Rth2 =Am 2
(7) 


k; (rmn + rn+l) 	 L 

(8) RthArn 2
 
(8) Rth2 = k 	 (rmn + rn+l) L 
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These computed values are converted to electrical values by
 

arbritrarily setting the smallest thermal resistance equal to a
 

variable value (to be discussed later) and normalizing the other
 

resistances with this value. The thermai capacitance is then equated
 

to a chosen electrical capacitance.
 

These chosen values of electrical resistance and capacitance must
 

be carefully selected according to the following relationship:
 

Rth Cth tth
 

R-e e te
 

If T is large, the electrical response will be too fast and will be
 

inaccurately recorded.
 

Table B-1 contains the values used in this analysis. The thermal
 

resistance was computed using equations (7) and (8)
 

instead of the following equation
 

tn (rn+l/rn) 
(10) Rth 2 r k L 

because for small Arn, (rn+l/rn) approaches unity and Rth approaches
 

zero. The given relationships (equations (7) and (8)) are accurate
 

when Arn is small.
 

The convection resistance Rthh is found from the following
 

equation
 

(11)1 = 1Rthh hA h 2n ri L 

Rthh must also be normalized with the same value used previously;
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TABLE B-i 

NOZZLE HEAT TRANSFER DESIGN PARAMETER VALUES 

Radius (inches) Ar (inches) Mean Radius (inches) 

0.5030 

0.1365 0.5753 

0.6395 

0.1121 0.6978 

0. 7516 

0.0974 0.8018 

0.8490 

0.0873 0.8938 

0.9364 

etc. until r0 = 1.61 inches 

Rth Rth (normalized) Re (used in circuit) M
 

0.00256 8.78
 

0.00202 6.91 126
 

0.00166 5.71
 

0.00141 4.86 90.9
 

0.00123 4.23
 

0.00109 3.74 71.0
 

0.00098 3.36
 

0.00089 3.04 58.3
 

etc. for the remaining divisions 

smallest Rth = 0.000291 

Total Rth = 0.0222 

Total Capacitance = 0.108 p farads 

Ce = 1.0 p farads per volume element 

T = 0.761 
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The electrical circuit is set up using decade resistors, decade
 

capacitors, and a step input voltage source. The set up is shown 

schematically in Figure B-2. Both the input step voltage and output 

response are simultaneously recorded, thereby permitting the initial 

t = 0 point to be indicated on the graphical record along with the 

temperature versus time curve. 

The procedure for recording the profiles is as follows:
 

1. Calibrate the output channel by connecting it to the step
 

input. This output level corresponds to the step temperature of the
 

chamber (T = 45000R) or Taw of the gas stream.
o 


2. Short the capacitors to insure no initial voltage.
 

3. Connbct the input channel to the desired node. These nodes
 

correspond to certain known depths in the wall. Again, observe the
 

recorder to insure that the zero level is maintained. This level is
 

the ambient temperature value prior to Ignition.
 

4. Apply the step input and record the response. Assure that
 

the paper recording speed is fast enough to give reasonable accuracy
 

and yet slow enough to yield an accurate response. If the paper
 

speed must be increased to the point where the response is question­

able, then the electrical resistance and capacitance values must also
 

be increased such that the time constant of the circuit is raised.
 

The output trace from the recorder is in the form of a graph 

whose coordinates are temperature versus time. Knowing the failure 

temperature limit of copper(% 20000R) it is a simple matter of 

proceeding along the output curve until this failure temperature line 

is intersected. At this point, the run duration time is noted. Based 
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on the previously specified initial and boundary conditions, it was
 

analytically shown that the nozzle throat area would withstand a run
 

duration up to approximately 14 sec. before failure. The design and
 

employment of the all copper system was predicted on the outcome from
 

this analysis. As mentioned earlier in this report, the total copper
 

system performed successfully during all runs without any visible
 

signs of deterioration.
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APPENDIX C
 

HYDRAZINE FUEL TRANSFER CHECKLIST
 

Supersonic Combustion Program
 

Procedure for Transfer of Hydrazine into Fuel Storage Tank
 

i. 	Vent fuel (storage/run) tank by depressing D-27 on
 
control console.
 

2. 	Remove Hydrazine drum from storage and deliver to
 
loading area and set on weighing scales.
 

3. 	Install capped-off bung in Hydrazine fuel drum.
 

4. 	Install regulator, gauge, check valve and flex line
 
on 150 psig N2 line (see schematic drawing Figure C-1).
 

S T.nnnl-p w~ter bnt o .r, tl- n'i n cn wz=-er 

6. 	Purge line and with small bleed flow connect N2 line
 
to small bung on Hydrazine fuel drum.
 

7. 	Install flex line to N2H4 inlet at wall from outlet
 
of Hydrazine fuel drum.
 

8. 	Weigh fuel drum (Total Weight _ bf).
 

9. 	USE CAUTION Bleed flex line full of N2H4 by cracking
 
nut at wall inlet.
 

10. 	 Set gauge pressure at 10 psig with regulator (continue
 
to set to this pressure).
 

11. 	 Crack fitting on 150 psig N2 line located on top of
 
Hydrazine storage/run tank.
 

12. 	 Open N2H4 fuel inlet valve at wall and Hydrazine fuel
 
drum outlet valve for 5 seconds.
 

13. 	 Feel transfer line for hot spots. Secure transfer
 
operations and leave area immediately if any hot
 
areas are observed.
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14. 	Proceed to transfer Hydrazine if no indication of
 
hot spots.
 

15. 	 On completion of the transfer of the desired amount of
 
Hydrazine turn off Hydrazine valve at drum outlet.
 

16. 	 Record weight of fuel drum (Total Weight __ 2-hf).
 

17. 	Retighten fitting on 150 psig N2 line located on top
 
of Hydrazine storage/run tank.
 

18. 	Turn off N2H4 fuel inlet valve at wall and disconnect
 
fuel flex line at wall under blanket of water.
 
USE CAUTION
 

19. 	 Vent N2 pressure from the N2 pressure line to the
 
Hydrazine fuel drum.
 

20. 	 Remove depressurized N2 pressure line from Hydrazine
 

fuel drum and cap off bung.
 

21. 	 Shut off N2 valve at wall and disconnect line.
 

22. 	 Disconnect and clean fuel flex lines with de-ionized
 
water flush and wrap with polyethylene sheet.
 

23. 	Remove Hydrazine fuel drum and lines to storage area.
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APPENDIX D
 

CHECKLIST FOR TYPICAL SUPERSONIC COMBUSTION
 

IGNITION DELAY EXPERIMENTAL RUN
 

Supersonic Combustion Program
 

Operational Procedures
 

I. 	Prefire Operation
 

A. 	Hand Valve Adjustments
 
1. 	Open N-23
 
2. 	Open water valves to sumps in run tank room
 

B. 	Test Preparation
 
1. 	Secure both cells
 
2. 	Close J-Boxes and turn on N2 bleed
 
3. 	Close gates
 
LL-. 	 T,rrn nr. rn.n....* 

C. 	Pressurize N2 supply
 
1. 	Adjust N-85 to 1500 PSI
 
2. 	Adjust PT-80 and PT-81 to 150 PSI
 
3. 	Set purge pressure using N-87 to PSI
 

D. 	Start Up H2 Heater
 
1. 	Open hand valve at propane tank
 
2. 	Turn power on for panel by throwing #12
 

in LP 2 box
 
3. 	Shut main fuel valve off
 
4. 	Push green reset button on flame safety relays
 
5. 	Check to see red lights are off on tube wall
 

and exhaust temperature limit controls
 
6. 	Put control on manual and drive closed
 
7. 	Push start button and hold till all three blue
 

lights come on
 
8. 	 Turn on main fuel valve switch but do not 

open manual control 
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E. 	Load Oxidizer Run Tank and Fill Lines
 
1. 	Follow standard facility procedure to load
 

oxidizer tank
 
2. 	Turn on Floor wash both sides
 
3. 	Open 0-i (hand valve)
 
4. 	Open 0-10 and 0-13
 
5. 	Open B-10 and pressurize tank to 150 PSI
 
6. 	Open catch tank isolation valve
 
7. 	Open hand valve D-31 for 15 seconds
 
8. 	Close D-31
 
9. 	Close catch tank isolation valve
 

F. 	Fill Fuel Lines
 
1. 	Set system deluge
 
2. 	Open D-24 and F-13
 
3. 	Open C-17 and pressurize fuel tank to
 

150 PSI, then close
 
4. 	Open hand valve D-28 for 5 seconds
 
5. 	Close D-28
 
6. 	Check potters with magnet
 

G. 	Fill H2 Lines
 
1. 	Open hand valves to each bottle
 
2. 	Open H-27 (hand valve)
 

H. 	Final System Pressurization
 
1. 	Turn on high rate ventilators
 

3. 	 Open N-10 
4. 	Open N-15
 
5. 	Regulate N-81 to PSI (Strip Chart)
 
6. 	Open N-26
 
7. 	Set oxidizer tank pressure using N-84
 

to PSI (Strip Chart)
 
8. 	Open N-42b
 
9. 	Open P-35
 

10. 	 Set fuel tank pressure using N-80
 
at PSI (Strip Chart)
 

I. 	Final Heater Preparation
 
1. 	Open C-23 and allow process gas temperature
 

to reach OF
 
2. 	Regulate hydrogen pressure to PSI
 

using N-83
 

J. 	Sequencer
 
1. 	Set malt. #1 timer at seconds
 
2. 	Set malt. #2 timer at --seconds
 
3. 	Set malt. #3 timer at seconds
 
4. 	Set prefire purge at seconds
 
5. 	Set postfire purge at seconds
 
6. 	Set overall malf. timer at seconds
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7. Set test duration timer at seconds
 
8. Set oscillograph to read oxidizer flow, 
-

fuel flow, and 60 Hz time line
 
9. Start countdown after initial purge
 

10. 	 Operate manual valve to heater at the count
 
of 

11. 	Operate fuel purge at count of
 
12. 	Start camera at count of
 
13. 	 Hold oxidizer and fuel purge manually-just
 

before fire switch is thrown and release
 
just after motor starts
 

14. 	Purge manually (before post-fire purge

terminates) until gas generator stream
 
is clean)
 

15. 	 Shut down heater on post-fire purge, push
 
stop button, close main fuel valve (manual)
 

II. 	Post Fire Operations
 

A. 	Depressurize Fuelt'and Oxidizer Tanks
 
1. 	Close N-10
 
2. 	Close N-42b, N-15 and N-26
 
3. 	Decrease N-80 to fully closed position
 
4. 	Decrease N-84 to fully closed position

5. 	Vent fuel tank to 0 PSI using D-27 and vent
 

oxidizer tank to 150 PSI using N-38
 

B. 	Depressurize N2 System
 
1. 	Open N-40
 
2. 	Open N-26
 
3. 	 Open N-42b 
4. 	 Open 0-15 - N2 vents thru chamber 
5. 	 Open N-15 

C. 	Drain Oxidizer Lines
 
1. 	 Open B-10 
2. 	Open D-1O and drain run tank
 
3. Close 0-10 and B-10
 
4t. Purge line using P-21
 
5. 	Close 0-13
 
6. 	Close D-10
 

D. 	Drain Fuel Lines
 
1. 	Close D-24
 
2. 	Open hand valve D-23 (1/4 turn)

3. 	 Purge with P-15 (watch fuel flow recorder) 
4. 	Close D-23
 
5. 	Close F-13
 
6. 	Drain fuel line at test stand
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E. Shutdown H2 System
 
1. Close C-23 after heater cools down
 
2. Decrease N-83 to fully closed position
 
3. Close hand valves on H2 bottles
 
4. Open CC-21
 
5. Increase N-83 to partially open position
 
6. Open hand purge H-28 and vent H2 line
 
7. Close H-28
 
8. Decrease N-83 to fully closed position
 
9. Close H-27
 

10. Turn off propane valve at tank
 
11. Close CC-21
 

F. Final Shutdown
 
1. Return all valves to normal position
 
2. Shutdown 150 PSI supply

3. Shutdown 1500 PSI supply
 
4. Turn off warning lights
 
5. Turn off floor washes and water to sumps
 
6. Turn off N2 to J-boxes
 
7. Close 0-11 and N-23 (hand valves)
 
8. Secure test cell
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APPENDIX E
 

GAS SAMPLE APPARATUS DESCRIPTION AND
 

OPERATIONAL PROCEDURE
 

The fundamental objective of gas sampling is to obtain a sample
 

which is representative of the composition of the fluid at the
 

sampling point. Probes employed in this program to capture a
 

representative vitiated air sample were previously described in the
 

section on instrumentation. This appendix is primarily concerned with
 

the description of the associated gas sample apparatus and its overall
 

operations.
 

Obtaining a vitiated air sample from the existing experimental
 

apparatus presents a unique problem. During startup of the gas
 

generator, there is a probability of obtaining erroneous specie
 

concentration data due to contamination. Because an oxidizer lead is
 

employed, nitrogen tetroxide could collect on the inside of the gas
 

sample lines and invalidate any sample subsequently collected. To
 

overcome this obstacle, a system was designed and tested (Run 36)
 

which provides a high pressure nitrogen gas sample line purge
 

(150 psig) until steady state gas generator operation is obtained.
 

A photograph and schematic drawing of the gas sampling apparatus are
 

respectively presented as Figures E-1 and E-2.
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In a typical vitiated air gas sampling experimental run the
 

sequence of operations is as follows:
 

1. Prior to gas generator ignition, all manual valves are
 

opened and the lines downstream of the two way solenoid valves, the
 

dessicant and gas sample bottles are evacuated down to 0.15 psia.
 

2. The manual valves immediately upstream of the vacuum pump­

are closed and all others remain open. 

3. The three way solenoid valves are opened and all other
 

solenoid valves remain closed.
 

4. The 150 psig N2 purge is activated and the gas sampling
 

lines upstream are purged.
 

5. The gas generator is started and once steady operation is
 

obtained the three way solenoid valves are closed and the upper two
 

way solenoid valves opened; the lower two way solenoid valve remains
 

closed. The N2 purge is closed off and the combustion gases are
 

allowed to blow through the lines down to the lower two way solenoid
 

valves, up through the-upper two way solenoid valves and overboard.
 

S. When the gas sample is to be taken, the upper valve closes
 

and the lower valves opens allowing the evacuated bottles to capture
 

the sample. 
Once the sample is taken, lower valves are closed and the
 

three way valves opens which begins to purge the line during shutdown.
 

7. After shutdown all manual valves are closed and the bottles
 

are taken for analysis.
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APPENDIX F
 

COMBUSTION EFFICIENCY ANALYSIS FOR GAS
 

GENERATOR - SAMPLE CALCULATION
 

The primary objective of any gas generator is to provide a given
 

flow rate of a mixture of gases of known composition. Assuming that
 

the chemical reactions of the injected propellants are known, together
 

with other pertinent parameters, one can theoretically predict the
 

flow rate and composition of an idealized system. Deviations from
 

these idealized results, when the system is experimentally operated,
 

are measures of the efficiency of the apparatus. For most "boiler­

plate" rocket motors which are.used as gas generators, the efficiency
 

of combustion is measured by the deviation of the effective exhaust
 

velocity (C*) measured from the theoretically computed value. This
 

parameter (C*) is employed because of its relative ease of measure­

ment in experimental systems. The values of chamber pressure, nozzle
 

throat area and total propellant flow rate are the items required.
 

The combustion efficiency based on C* (n0*) is defined as-the ratio
 

of the actual C* measured to that theoretically computed by thermo­

chemical computer programs. A high nc* would indicate that the
 

theoretically computed species composition would be reasonably
 

accurate.
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The following is a sample calculation of the gas generator nc*
 

for the present system (Run 45):
 

±. Measured parameters
 

Wf = 1.5 ib/sec
 

qox = 5.5 fb/sec
 

wN2 =.2.0 fb/sec
 

WTOTAL = 9.0 fb/sec
 

PC = 528 psia
 

TN2 = 510OR
 

At =.1.9 7 in2
 

2. Calculate fuel fraction in order to determine from the
 

thermochemistry computer output the C"Theor (f/ox) for the anhydrous­

hydrazine/nitrogen-tetroxide reaction.
 

Wf 
zuei fraction = = 0.2129 

Wf + *ox 

Reading from the thermochemistry output
 

C*Theor,(f/ox) = 4798.75 ft/sec 

3. Gaseous diatomic nitrogen (N2 ) is employed as a diluent.
 

Therefore, its effect on the overall theoretical C* must be
 

determined. By definition,
 

C' = g 
*TOTAL 

WTOTAL = pt At Vt 

(choked and constant flow rate assumed), for a perfect gas, 
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Pt
 
Pt =RTt 

substituting for pt and WTOTAL in the equation for C
 

* = gPc R Tt
 

C g t Vt
 

The nozzle throat is choked, therefore, for N2, (y 1.3) at M 1.
 

Tt/TN2 = 0.869
 

= 0.545 

Vt = y RTt 

substituting for Tt/TN2, Pc/Pt and Vt in the equation for C" and
 

rearranging yields
 

N2=O. 5451 1 0.869 TN2 Ri g c 

substitution measured values
 

C N2 = 1420 ft/sec 

4. To get the overall CeTheor,Mean, the C*Theor,(f/ox) and CN2
 

must be weighted.
 

C*TheorMean = +"*OX C*Theor,(f/ox) + WN2 C*N2 
-WTOTAL
 

Substituting values specified
 

C Theor,Mean = 4051 ft/sec
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5. The actual 	C* is calculated by the equation
 

C* 	 PC At gc
 
actual WTOTAL
 

Substituting measured values 

C.ac-tual = 3885 ft/sec 

6. 	The nc is calculated as
 

C actual 
 =3886 
 0.96
 
C*TheorMean 	 4052
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APPENDIX G
 

PROPOSED METHOD FOR DETERMINING COMBUSTION EFFICIENCY
 

OF THE SUPERSONIC TEST SECTION
 

The method for evaluation of overall combustion efficiency
 

involves a comparison of the actual non-adiabatic, finite-rate thermo­

chemistry combustion process in which certain quantities are measured
 

experimentally to the adiabatic, equilibrium thermochemistry case
 

determined analytically. The combustor analytical model consists of
 

an open system with fuel (H2 ) and oxidizer (vitiated air) being added
 

with instantaneous mixing and without shocks. The assumption of no
 

heat zransrer through tne wals or the combustor and. equilibrium 

thermochemistry allows one to write the energy equation (first law of
 

thermodynamics) for the system. 

Wf Hf + Wox Hox = Wcp Hcp 

This equation may be manipulated through the use of the concept of
 

total enthalpy and a definition of a quantity called the "sensible
 

enthalpy" to give a constant, Qchm, called the heat of reaction, as
 

follows:
 

V2
 

H =h +­
2 
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Also
 

h = AH ± pd 

T
 

Thus
 
T V
 

H = AHK + Cp dT +
 

Tl
 

Defining sinsible enthalpy as
 

hs cpdr +--V
 

JTI
 

Hence
 

H = AHf + 

Substituting into the energy equation 

Jf (0f + h + *ox AOx + )=cp (AHcp h 5 ) 

Rearranging
 

cp hse - *f hsf *ox hso. -cp AHp + Wf AHf + w AH 
Cox . f o fx
*cp 


Defining the heat of reaction, Qchm' as the right side of the above
 

equation
 

Qchm -Wcp AHp + wf AHff + Wox AHo 

By conservation of mass 

Wep = wf + Wox 
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The heat of reaction may be determined analytically by knowing the
 

weight flow rates and heats of formation of the fuel, oxidizer and
 

combustion products. This task may be accomplished by using the ID
 

equilibrium SS Combuszion program [18] in conjunction with the JANAF
 

Tables. This computed heat of reaction, Qchm, based on the idealized
 

model, will be used later in the determination of overall combustion
 

efficiency.
 

The actual supersonic combustion of hydrogen and vitiated air
 

occurs non-adiabatically, with heat transfer through the walls of the
 

combustor and with finite-rate thermochemistry that deviates from
 

equilibrium. Thus, the energy equation cannot be written for the
 

actual open system unless some modification is made. A modified
 

energy equation may be written with the inclusion of a term QL, which
 

comprises the heat transfer through the walls of the combustor and
 

losses due to nonequilibrium thermochemistry, as'follows:
 

Wf Hf + qox Box = Wcp H0p + QL 

Manipulation of this modified energy equation gives Q' = Qchm - QL'
 

where Q' may be expressed in terms of weight flow rates and sensible
 

enthalpies of fuel, oxidizer, and combustion products as follows:
 

wf + hsf)+ *ox H = H +h 

Rearranging
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Wop hsCP - wf hsf - Wox hsox 

= Wcp + wf AHFf + Wox AH0oxWH~f 	 QL
 

= 	- Qchm QL 

Q
t 

Thus
 

Q CP hscp - Wf hsf - WOX hSOX, 

where
 
ITscp V2 

hs =c dT + 2.
 
cp JT1 cp 2
 

hsf = [Tf -Cp dT + 

fTs x
 

hsox = j cPO dT +
 

Determination of the fuel and oxidizer flow rates and sensible
 

enthalpies presents no particular difficulty since inlet conditions
 

to the supersonic combustor are known. Thus, the determination of
 

Qf reduces to the problem of calculating the sensible enthalpy of
 

the combustor products. The determination of hsCP , as desdribed 

below, for determining combustion efficiency, may be carried out by 

measuring wall static pressure at the combustor exit and cone-static 

pressure, pitot pressure, species composition, and static temperature 
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at radial locations at the combustor exit.* Assuming the flow is
 

axisymmetric, a knowledge of these quantities provides information
 

needed to determine sensible enthalpies at radial locations of the
 

combustor exit. An integrated sensible enthalpy at the exit plane
 

then provides a knowledge of Q'. Finally, combustion efficiency is
 

determined by forming the ratio
 

Q' (Qchm - QL)
 
c =chm Qchm
 

The following described analysis will provide information needed to
 

determine hso p at one radial location at the combustor exit. As seen
 

above, this is all that is needed to arrive at a combustion efficiency.
 

Due to the presence of supersonic flow, the measured values of static
 

and total pressure are not the true values and therefore means must
 

free-stream Mach number at the exit, Me, the measured combustor exit
 

wall static pressure, Psw, and the indicated local impact pressure,
 

t, are used with the Rayleigh pitot formula
 

-(y ) ]}(-) 

Ratp y/(y-l)
L2ye 

The specific heat ratio, y, may be determined from an analysis of
 

species. The Me obtained from the above relation is then used to
 

*Instrumentation needed for these measurements were described in
 
the section entitled "Description of Instrumentation."
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convert the indicated cone-static pressure to a more nearly correct
 

local value by a useful approximation technique in Reference 30.
 

S (P pso-Ps ) (P /psop- 1) 

p qcp 1/2 y M2
 

C . - f1 sin 
2 6 - {(f2 - fl sin 2 6)2( 

1 / 22 
6]2
[(f3 - fl) sin

where
 

(y+7) ((yl)\ s (M sin 

)
f 1/2 (y+7) / - 21> (, 

(y+l) 

_ (y+l) T )e - 71 

The newly calculated value of ps is used together with P to repeat
 

the above process and determine a new Me. This process is continued
 

until satisfactory convergence is obtained.
 

Total pressure is determined using the following formula
 

y/(y,,-l) 

ptcp = isop .+[ml]ri e 

The total temperature is arrived at using the following weight
 

flow function
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1/ 2t Me (y/R) { Pi-) f(yMe ) 

Ptcp 2(y-1) 

Manipulation of this equation gives 

T-cp= [f(Y,Me) Ptep G]2 

-cp
 

The static temperature is determined by the following equation
 

+ Tt m 

The velocity is determined by using the Mach number relation
 

Acp

Me = AC
 

Vep
Me = 
(yRTscp)1/2
 

Vcp = Me (yRTscp)1/2 

The sensible enthalpy at a specific radial location may be determined
 

knowing, cp,-fcp , and Vcp as follows:
 

hscp = Ts dT +2C
 

Thus, the combustion efficiency may be determined using the equations
 

previously described.
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In addition to analytically determining the radial static
 

temperature, the static temperature profile across the supersonic
 

combustor exit may be measured optically utilizing the intensity
 

comparison scheme as previously described in the section entitled
 

"Description of Instrumentation."
 

Due to the presence of non-uniform concentration and velocity
 

gradients across the exit plane of the combustor, some type of mixing
 

analysis and local determination of the mass velocity is required.
 

This information may be obtained by employment of the GASL "Supersonic
 

Mixing and Combustion of Hydrogen in Air Streams" computer program as
 

in Reference 28.
 


