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Report 8317-D
1. SUMMARY

This is a special design report submitted in partial fulfillment of
Contract NAS 9-8317, the Bipropellant Valve Improvement Program. The objact
of the report is to compile the results of the program studies emphasizing

the application of these results to valves in general.

It has been found at Aerojet that the specific application requirements
as well as basic design characteristics of various valve types control the
design of valves. For this reason it would be impossible to compile in any
one document a step-by-step guide which would satisfy any and all design
requirements. Consequently, the approach taken herein has been to discuss
design goals and requirements from a general viewpoint with the objective of
familiarizing the reader with a method of approach and common practices.
Included are: (1) generalized propellant valve design criteria along with
recommended practices, (2) discussion of commonly encountered practical
development problems, effects on design and recommendations for solutions,
(3) a review of experience in propellant valve design, manufacturing and
test, and (4) a discussion of tradeoff analysis along with the tradeoff
analysis conducted as a part of the bipropellant valve improvement program.
The general discussion is supported by a complete list of references and a
bibliography.

Since the Apollo SPS bipropellant valve is used with earth storable
propellants, primary emphasis has been placed on valves for this use. How-
ever, consideration of other propellants has been made where it was felt it

would be beneficial, primarily in the generalized valve design criteria.

The primary objective of Contract NAS 9-8317 was the development of an
improved SPS bipropellant valve. The techniques used to achieve this objec-
tive fall within the category of normal good design practice and no key design

factors were developed which would have universal application. The successful
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I, Summary (cont.)

demonstration of the modular design and the cam lifted seal did afford insight
into several grey areas: This insight forms the basis for the following
observations. The modular design did not result in a weight or envelope
penalty, the cam lifted seal had significantiy better life cycle character-
istics than the rubbing seal, the cam lifted seal was still susceptible to
particulate contaminations therefore,cleanliness during fabrication should be
maintained, and if bellows type seals are used it is probably better to accept
an envelope penalty to assure sufficient active convolutions and seal seating
freedom rather than maintaining envelope and thereby restricting motion due

to a stiff bellows.
The information presented herein was obtained primarily from within

the Aerojet Sacramento Facility; however, information obtained in discussions

with personnel of TRW Inc. and Bell Aerosystems Inc. has been included.
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II. GENERALIZED PROPELLANT VALVE DESIGN CRITERIA

A. VALVE ASSEMBLY TYPE SELECTION

Valve assemblies are utilized in all liquid rocket engine systems
requiring a variable flow control device. The valve assembly is defined as
any device which stops, starts, or otherwise regulates the flow of a fluid by
means of a movable valving element that either opens or obstructs a flow

passage.

In this discussion all of the valve assemblies used in liquid
rocket propellant systems are included. Individual valve components will be
considered only to the extent necessary to support information regarding the
entire valve assembly. Valve types include ball, butterfly, poppet, gate,
blade, diaphragm, slide, and plug valves. An appropriate evaluation of
actuators is included to show the interaction between the valves and the

actuators.

The preferred type of valve assembly for various applications are
identified along with the criteria that experience has shown is needed to
assure the proper selection of valve components for an optimum design.
Emphasis is placed upon the need for a comprehensive review of all design
criteria if a design is to be truly optimum for a specific application. The
need for considering trade-offs is stressed. For example, if zero seat leakage
is of prime importance in a system where all other criteria indicate the use
of a ball valve, the final selection most probably would be a poppet valve
becavse of its higher poppet-to-seal loading; a slightly higher valve pres-
sure drop could be a justified trade-off to obtain zero seat leakage. A pre-
liminary trade-off study can be accomplished using Figures 1 and 2. Those
figures represent a very basic comparison of the features of the commonly
used valve types and actuator types and are included as a guide for the
engineer inexperienced in valve technology. An example of a more thorough

trade-off study is presented and discussed in Section V herein.
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II, Generalized Propellant Valve Design Criteria (cont.)

B. VALVE CRITERIA
E The selection of a valve assembly for a particular application
results from a detailed analysis of the specific application requirements as
well as the basic design characteristics of potential valive types. In the
classic sense, this analysis is a systematic form of compromise wherein
advantages and disadvantages of the different valve types are weighed against
the specific requirements to permit an optional selection. This common
approach to valve selection is basic to almost every design situation. Thus,
it is readily apparent that the process is only as effective as the basic
design criteria utilized to provide for consideration of all significant
design factors. Any oversight in a basic design criterion can easily result
in selecting a non-optimum valve type with subsequent development problems.
Some of the more significant criteria for selecting a valve type are dis-

cussed in the ensuing sectiuns.
1. Flow Media

The flow media is a basic design criterion and is a major
factor in selecting the type of valve to be used. However, since flow media
is only one of the factors which must be considered in the selection of a
valve design it is not possible tc consider any one valve type as superior
for a particular flow media without knowing the effects of the other design
environments and completing a trade-off study. Knowledge of the flow media
(liquid, gas, or two-phase fiuid) is essential because valve types vary in
sealing capability with the fluid state. For example, a poppet valve gener-
ally will seal a light gas (i.e., helium) better than a butterfly valve.
Additionally, the velocity of the media also must be examined because the
flow of gases can erode seals. In selecting a valve type for an epplication

where ercsion can occur, consideration must be given to how well the main seat
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I1, B, Valve Criteria (cont.)

or sealing surfaces are protected from this erosion. This is particularly
true for hot gases or highly-reactive gases (i.e., fluorine). In considering
the flow media, material compatibility is of basic concern because material
restrictions resulting from use of a particular fluid could preclude con-
sideration of a particular valve type. Flow media also can limit the valve
types that can be considered as a result of contamination or the abrasive
qualities of the medium. For example, a valve design with inherently low
sealing forces and significant rubbing actlion would not be a desirable design
selection for a slurry medium. Flow media also must be considered in terms
of freezing point and whether entrapped fluid could subsequently freeze,
resulting in high expansion pressures or damage caused by icing effects.

Also thermal expansion of the fluid due to engine soak-back can result in

high preséures.
2. Pressure

Pressure is a basic design criterion in selecting a valve
type. Operating pressure not only establishes the basic structural require-
ments for the valve design, Lut eliminates some valve types from considera-
tion. For example, use of a gate-valve in a particular system may not be
feasible because of its unbalanced pressure characteristics and the large
actuation forces resulting from the desired operating pressures (Reference 1).
Simjlarly, the use of a ball valve or butterfly valve in a large line size
(greater than 3 inches in diameter) may result in prohibitive bearing loads,
seal loads, and actuation forces. The operating pressure also must be
examined from the transient aspect as well as the static condition. If a
valve design is susceptible to pressure damage in the intermediate cpen posi-
tions, the opening or closing transient pressure could cause seal failure.
Should the operating pressure be compatible with the valve type in terms of

structural strength for static as well as transient conditions, the number of
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II, B, Valve Criteria (cont.)

times that the pressure will be applied also must be considered. Repeated
cycling of pressure upon a valve assembly can result in fatigue failures.

In general, the valve types more suitable for higher pressures are the poppet,
ball and butterfly, with the gate, blade and diaphragm designs more suitable

for low pressure applications.

3 Flow Rate and Pressure Drop

Flow rate and pressure drop must always be considered in
valve selection. The required flow rate and the maximum allowable pressure
drop will establish the required size for each of the valve types. Once the
size requirement for each type valve is established, several valve types
generally can be eliminated from consideration. For example, the use of a
butterfly valve in a l-in. line size or smaller system is impractical because
of its high pressure drop characteristics which result when it is reduced to
this size. Conversely, the use of a ball valve in large line sizes may be
impractical becsuse of the resultant valve weight (Ref. 1). Valve type
selection also is affected by whether or not the flow rate is a steady-state
requirement (i.e., in a shutoff valve) or a variable requirement, (i.e., in a
throttling valve) because some valve types have limited suitability as regards
application. Generally, this is true of ball valves, gate valves, and blade
valves (Ref. 1). The transient flow characteristics of a shutoff valve during
the opening and closing cycles could impose further limitations upon its use
in a specific application. It is not practical to list the range of pressure
drops and flow rates associated with each valve type since those can be varied
considerably by design details. It is more significant to be aware of pres-
sure drop and flow rate as a design criteria and to conduct a detailed analy-

sis of those factors during the preliminary design phase.
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11, B, Valve Criteria (cont.)

4. Leakage

Leakage must be considered in terms of both internal leakage
and external leakage. The more stringent the leakage requirements, the more
difficult and costly it will be to achieve success. For example, an unreal-
istic, low leakage limit could eliminate consideration of the optimum type of
valve. Leakage limits should be established as the most realistic values that
will prevent depletion of the fluid, excessive loss of pressure, damage to the
rocket system or equipment, danger to personnel, or failure of a mission
objective. Once it is assured that reasonable leakage limits have been estab-
lished, the various types of valves can be evaluated based upon their inherent
sealing capabilities. An important consideration in this evaluation is the
great variance in leakage rates resulting from design deteils and cyzle life
(Ref. 2). The relative sealing capability of the various types of valves
require thorough examination in relationship to the cycle life of the intended

application.

D% Life

Each valve type requires evaluation in terms of the cycle
life and storage life needed for the intended application. The cycle life is
defined as the maximum number of operations (open and closed or through the
throttling range) required that can be accomplished without exceeding any of
the basic sealing or functional requirements for the valve assembly. To ade-
quately evaluate the valve types in terms of cycle life capability requires
a thorough knowledge of the state-of-the-art because cycle life for a parti-
cular valve type varies radically as size or test parameters (i.e., tempera-
ture, pressure, actuation rate, and fluid media) are altered. In add’tion,
cycle life varies greatly within a valve tyvpe as a result of design details

(i.e., seal loads, seal materials, seal shapes, and seal retention). 1In
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11, B, Valve Criteria (cont.)

addition to the criteria related to the total number of required cycles and
the total storage life, the valve duty cycle requires examination. This con-
sists of establishing when cycling is required during the life of a valve as
well as whether or not the valve is dry or exposed to the flow media during
any idle periods. Proper design also calls for an evaluation of what effect
the duty cycle has upon the cycle iife for each of the valve types under

consideration.

6. Other Design Criteria

The preceding five design criteria are the most obvious fac-
tors to be considered when selecti.g a valve assenbly design. A number of
other factors also require consideration. The valve response and environmental
requirements are typical of these. If a fast acting valve is required, a valve
type in which the moving member has a large inertia high force requirements,
or long travel may not be suitable (i.e., gate and blade valve designs).

The operating temperature range restricts the use of various seal materials
and results in further limiting the potential valve typee. For example, seal-
ing of hot gases cannot be accomplished using plastics or elastomers and seal-
ing of cryogenic fluids must consider the materjal properties at low tempera-
tures. Although those factors may be primarily limitations upon seal material
select.on, both of these factors may limit the potzntial valve types for a
pe-ticular application. Temperature also can influence design selection from
a transient aspect because the use of some valve types is not desirable where
thermal shock is involved or where sealing is required while the valve evperi-
ences a change in temperature. The valve environment also must be considered
with respect to vibration, acceleration, and shock levels. This is particu-

larly important in selecting the valve and actuator combination.
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11, B, Valve Criteria (cont.)

Exposure to vacuum and the requirement for sterilization
constitute additional design ciiteria. Vacuum exposure limits sealing tech-
niques by restricting the use of materials. It also affects design selection
by restricting the use of lubricants because many lubricants will boil-off at
hard-vacuum levels. If the application requires sterilization of the valve,
the ease of sterilization must be considered along with the compatibility of
the design with the materials used for sterilization (i.e., Zephiran, Ceeprin,
or ethylene oxide). The necessity for removing the flow media t~ allcwv for
safe handling or storage also must be examined. If a valve is to be utilized
in toxic fluids, the basic design must provide for adequate fluid removal to
allow safe handling during rework or use (Ref. 3). A need for the complete
fluid removal could exist as a result of using corrosive or higlly-reactive

fluids having limited times that the valve elements can be exposed to them.

C. ACTUATOR CRITERIA

The design of the actuator must be considered concurrent with the
basic valve design. Selecting th2 .roper actuator type during the initial
valve design phase can result in reduced envelope size and over-all weight

as well as optimum integration of the valve and actuator.

The most common actuators used in chemical rocket propulsion
systems are the pneumatic, hydraulic, and electrical types. Generally, pneu-
matic and hydraulic actuators are of the piston type, directly connected to
the valving element or interconnected by means of a mechanical transmission
(i.e., gears, screwjacks, rocker arms, and torque tubes). Electrical actuators
usually are directly-connected solenoids or electric motors that are connected
by a method of transmission similar to that for the pneumatic and hydraulic

actuators.
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II, C, Actuator Critefia (cont.)

Designing an actuator and integrating it into a voalve assembly
becomes complex because of the many mechanical, operational, and environmental
conditions to be considered. Generally, the final actuator design evolves
from a series of design trade-offs which proceeds until all conditions are
satisfied. The factors and conditions involved in the selection and design

of a valve actuator are discussed in the following sections.

1. Energy Sources

The most convenient actuator energy source would be the power
available from an existing engine system; i.e., propellant, hydraulic, hot gas,
or cold gas pressures, or engine electrical power (Ref. 4). However, avail-
able systems often will not provide the performance required at the critical
time; propellant pressure could be insufficient or pressure drop could occur
as the valve opens, hot gas pressure is unavailable until after the valve
opens, and electrical power could be limited, to mention but a few. The use
of hot gases presents problems in component tolerances and fits as well as in
material selection. Icing, poor actuator control resulting from ''gassing-off',
and critical tolerancec as well as fits could be problems when cryogenic
fluids are used. Even storable propellants, used at normal temperatures, can
freeze during venting requiring heaters on the actuator and vent line. A prob-
lem of this type was experienced with the Transtage engine bipropellant valve

assembly and electric heaters were incorporated to eliminate it (Ref. 5).

When the use of available power proves unsatisfactory, an
additional source of power must be supplied. A pneumatic actuation system
(including a pressurized gaseous nitrogen tank, shut-off valve, regulator,
relief valve, and pilot valves) was incorporated into the Apollo SPS engine
bipropellant valve and engine design. In other situations, a complete
hydraulic system might have to be added to the engine system while for

"one-shot" service, an explosive squib could be satisfactory.
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II, C, Actuator Criteria (cont.)

2 Force and Travel

A valve actuator must generate sufficient force to overcome
all resisting loads (i.e., friction, pressure forces, component inertias, and
return spring forces) and must have sufficient reserve force tc cope with
extraneous loads caused by icing, possible tight fits resulting from extreme
temperatures, and other conditions. In low pressure or low voltage applica-
tions, the size of the actuator could become larger than the specified valve
envelope size. In this situation, a smaller actuator with a longer travel
could be connected to the valving element through a mechanical device to
obtain a mechanical advantage as well as the desired result. In hydraulic
and pneumatic systems, the final design frequently is a trade-off between a
large diameter, short stroke design and a small diameter, long stroke design.
The generally available power in chemical rocket propulsion systems is 28 vdc
which limits the design of electrical actuators to within this voltage
availability.

Consideration must be given to the effect of variable actua-
tion force throughout the actuator travel range. A high break-away load
caused by the seal set is encountered during the initial actuator movement.
As the valving element approaches its operating range or full-open position,
fluid forces can act upon the element tending to open the valve even further
or restraining the opening travel. Actuators designed for throttle valves and
other valves operating in the mid-range »f actuator travel require good hold-
ing capability. These actuators should be free from drift and capable of
holding a programmed position; the best type of actuator for this function
would utilize a screwjack for power transmission or an incompressible fluid
as the actuation medium. Actuators must have sufficient power to overcome
all of the forces discussed in this section plus sufficient margin to ensure

repeatable operation.
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11, C, Actuator Criteria (cont.)

i Response Time

Response or travel time is that time required for the actuator
and valving element to move through the opening or closing excursion. Signal
time is the delay time experienced from the initiation of the o2xcursion signal
to the start of actuator movement. Total (excursion) time is defined as signal

time plus travel time.

The response time of electrical actuators is governed by the
solenoid or motor design and usualliy is fast as well as highly repeatable.
Pneumatic and hydraulic actuators generally are over-powered to ensure rapid
operation and the response time is controlled by orificing the fluid medium.
The travel time of valves used in propulsion systems is critical and must be
repeatable within specified limits. The signal time span might not be criti-

cal as long as it is repeatable from one actuation to another.

4. Life

Actuators installed in propulsion system valve assemblies
must be designed for operation in earth and space environments over a signi-
ficant time span. The design must withstand all operational and environmental
conditions over this time span while operating satisfactorily throughout the
operational period. An adequate power source (i.e., gaseous nitrogen and
electrical current) must be available to ensure proper valve operation
throughout the specified period. Auxiliary power sources could be required
to supplement the normal supply during extended missions. Consideration must
be given to the size of the actuator, the type and size of seals, the kinds
of lubricants, and other design criteria in selecting an actuator for a
specific application. The cycle life of each type of actuator varies as it
is influenced by the specific operating environment and its details of design

and construction.
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II, C, Actuator Criteria (cont.)

D Environment

Environmental conditions of launch and flight operations
must be considered for their effects upon the functional reliability of the
actuation system. These environmental conditions include temperatures, pres-
sures, vibration, radiation, acceleration loads, vacuum (storage in space),
sunshine, and others. For example, extreme temperatures will affect the
selection of materials, fits and tolerances, trapped fluid pressures, lubri-
cant viscosities, solenoid and electric motor coil resistances, and other
design factors. Considerations must be given to these problems as well as
to all other environmental-caused problems in the design criteria as well as

the type of actuator selected.

D. VALVE-ACTUATOR INTEGRATION

Consideration must be given to the integration of the different
types of actuators into the complete valve assembly. Some of the methods of
mechanical transmission are direct-connected pistons and solenoids, rocker
arms, gears, push-pull rods, cams, cam and gear, toggle link, worm gear, and
ball screw. Interactions between the actuator and valve (i.e., side loads
and dynamic response) must be considered. The problems o. creating a balanced
valve for reduced actuator loads must be considered in relation to the reduc-

tion in power requirements obtained.

Some of the typical applications to be considered are those con-
cerned with converting linear motion of an actuator to rotary motion of the
valve as well as provisions for an actuator to hold a position when subjected
to a variable load. The methods for achieving these applications require
numerous considerations and trade-offs. For example, when converting linear

motion to rotary motion, a rack and pinion or mechanical linkage method can be
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II, D, Valve-Actuator Integration (cont.)

used. Areas for consideration should include the use of rack and pinion for
long stroke and the mechanical link for short strcke as well as the use of an
idler back-up for the rack to ensure proper gear engagement and reduce side
loads in the actuator shaft. When the mechanical linkage methods are utilized,
consideration must be given to lirk length and bearing size to prevent binding.
When locking actuators are required, the methods to be considered include
screw output actuators, hydraulic actuators, and pin and ball locks which are

spring or piston actuated.

E. OTHER DESIGN FACTORS

There are many design considerations that have applicability
regardless of valve type, actuator type, or method of integration. Typical
of these are the envelope, weight, cost, ease of fabrication, maintainability,
and decontamination. Although these are not operational criteria, they are
highly significant, sometimes overriding functional criteria in trade-offs.
Areas affected by these factors must be identified so that they can be treated

during preliminary design. Some illustrative examples follow:

- A valve used with a toxic propellant might require
subsequent flushing with neutralizing fluids. The
design must provide passages and access ports for
the flushing media even though this makes the

envelope larger and the valve more complex.

- A minimum weight wvalve usually is required for
propulsion system applications. For this reason,
dissimilar metals, even though they have the
potential for galvanic action, are sometimes

used in a valve assembly. For example, an
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II, E, Other Design Factors (cont.)

aluminum valve body might be used with adjacent,
internal, stainless steel parts rather than also
making the body of the relatively heavy stainless

steel.

- A valve can be designed for welded inlet and
outlet ports providing a compact, leakage-free
package. If maintenance requirements necessi-
tate removal without special tools, the valve
will have to be larger to incorporate flanges

and seals.

Recognition of some highly weighted criteria during preliminary
design can aid in subsequent trade-off decisions. Considering the last two
examples above, the designer could use a stainless steel body primarily to
permit welding to the mating lines. Recognizing that a separable joint will
be used could assist in making a decision to use an aluminum body and save

weight.
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I11I. PRACTICAL DEVELOPMENT PROBLEMS AND SOLUTIONS

The following paragraphs discuss the problem areas normal to a develop-
ment program. The solutions to all of these problems are considered to be
standard, good design practices; however, experience has shown numerous
instances in which the interesting or unusual design aspects receive primary

emphasis at the expense of the routine.

This section has been compiled in a checklist format to assist the
designer or participant in a design review in making a methodical evaluation

of a new design.

The criteria shown underscored in this section provide explicit state-
ments of particular conditions, requirements, or standards for valve assemblies
used in liquid rocket propellant systems and should be followed unless excep-
tions are dictated by the requirements of a specific application. The recom-
mended practices shown in the lower case letters following each criterion are
offered as those practices that will satisfy the criterion and assure a more

expeditious as well as optimal preliminary design.

A. OPERATING CONDITIONS AND ENVIRONMENT

1. The Operating Conditions and Environment for the
Valve shall be Derived from the Intended Engine
Usage and shall become the Basis for the Valve

Design

Conditions that should be specified and included in the valve

design and analysis are:

a. Rated working, maximum working, maximum design,
proof, burst, and leakage pressures

b. Pressure drop and flow rate
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III, A, Operating Conditions and Environment (cont.)

C. Flow media (including expected contamination levels)
d. Allowable leakage (internal and external)
e. Operating temperatures

f. Duty cycle requirements (maximum and minimum number
of cycles, storage life)

8. Environment

2 The Environments (Loads, Stresses, Thermal Profiles,
Radiation, Vacuum) Imposed by both the Valve and Next
Assemblies shall be Specifically Considered in the
Mechanical Design

A continuous upgrading of environment predictions should be
made as the valve and engine designs progress. This informaticn also should

be used to update the analysis and evaluate the adequacy of the configuration.

3. The Conditions Imposed upon the Valve by Both Ground
and Flight Testing shall be Spec.'fically Considerad
in the Mechanical Design

Valve and engine test plans should be reviewed periodically
to permit the analysis and configuration adequacy assessments to be updated.
For example, prior to the obtaining of flight data the engine compartment
temperatures for the Apollo SPS valve was considered to be a range of 30° to
140°F and testing requirements were established accordingly. The 140°F limit
presented a possible design problem; however, actual flight data reduced

this range to 30° to 110°F and the problem was eliminated.
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III, A, Operating Conditions and Environment (cont.)

4. The Mechanical Design of the Valve shall be
Integrated into the Engine and the Vehicle

Integration with higher assemblies should include definition
of interface configuration, support and mwuunting, «~velope requirements, as
well as line loads and orientation. These should be controlled by an instal-
lation drawing defining interfaces as well as assembly and installation

procedures.

5. The Design shall Include Consideration of the
Effects of Possible Operaticn of the Valve
Under Malfunction Conditions

The conditions considered should be based upon malfuncticn
analysis of engine and valve testing, considering credible accidents, pos-
sible malfunctions, substitute fluids, kill parameters, and facility effects.
The most widely known example of this consideration is the series-parallel
design feature of the Apollo SPS bipropellari valve and other valves utilized
on the Apollo Program. This design approach assures engine start in the
event that one valve element fails to open and also assures engine shutdown

if a valve element fails to close.

6. The Effect of Cavitation and Cavitation Damage
upon the Valve shall be Included in the Design
and Structural Analysis

Stress analyeis and material selection should include the
effects of loading as well as damage to the valve caused by cavitation if
such methods are available. If they are not, an additional factor of safety

should h¢ considered.
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III, Practical Development Problems and Solutions (cont.)

B. GENERAL REQUIREMENTS

) I Chilldown Proucedures or Requirements shall be
Considered when Selecting the Material and the
Configuration as well as when Conducting
Structural Analysis

The mechanical arrangement should be selected so that stresses
and distortions are minimized, fits and pilots are retained, and attachment
stresses kept within acceptable limits.

’ Critical Clearances and ‘mall Passages shall
Include Consideration of the Effect of
Contamination Eatering the Valve from the
System as well as during Installation or

Assembly

The design should be selected so that it is compatible with

the expected contamination level.

3 Valve Installation Procedures shall be Considered
during Interface Design

Adequate clearance shall be provided for bolts and nuts as

well as protection for critical sealing surfaces.

4. Protection shall be Provided against Damage,
Contamination, and Excess Moisture

Covers should be provided for damage, contamination, and
moisture protection. Inert gas positive pressurization should be considered
to protect valves from the effects of condensed and frozen moisture. Specific
procedures should be defined on the assembly and installation drawings as well
as on the handling and test documents. Inspection procedures should be

defined for verification of this protection.
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II1, B, General Requirements (cont.)

e Positive Means of Configuration Identification
shall be Provided

Unique part numbers should b: spplied to all parts and non-
interchangeable configurations of the same part. Serialization is recommended

for all performance-sensitive or structurally-critical components.

6. Backwards Installation of the Valve shall be
Prevented

Interface flanges of different configurations are recommended

to prevent backwards installation.

7. Valve Maintenance shall be Considered during
Initial Design

Seats and packings should be accessible. Maintenance of the
valve should be possible with a minimum of parts removal and retest require-
ments. The use of lubrication and adjustments should be minimized and the
use of special tocling should be avoided. Parts to be replaced during valve

maintenance operation should be completely interchangeable.

8. Valve Deterioration from Operation shall be
Considered

Seats and seals should be designed to minimize the effects of
valve operation on sealing surfaces. The use of devices to avaid rubbing
action on seals should be considered. For example, the use of cams ta lift

off a ball seal during the greater pertion of ball rotation.
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III, Practical Development Problems and Solutions (cont.)

C. STRUCTURAL INTEGRITY

1. Structural Integrity of all Components shall
be Assured

To ensure structural integrity, it is recommended that the

structural analysis include the following elements:

a. Limit load factors, pressure loads, inertia
loads, side loads, and temperature, vibra-

tion, acoustic power input effects.

b. Identification and source of material design
properties at operating temperature and other

environmental conditions.

c. Weight breakdown, shear diagram, moment

diagrams.

d. Component load breakdown indicating the
combined critical loading conditions
(axial, moment, shear) for each major

component.

e. Handling, transportation, and assembly

loads.
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III, Practical Development Problems and Solutions (cont.)

D. ACTUATION SYSTEMS

Operating Conditions and Environment for the Actuator Shall
be Derived from the Intended Usage and Becomes the Basis
for the Actuator Design

The conditions that should be specified and included in the

actuation system design and analysis are:

a. Basic method (hydraulic, pneumatic, electric)
b. Force requirements

C. Response requirements

d. Power requirements

e, Stroke

f. Locking requirements

g. Size and weight limitations

h. Repeatability requirements

i. Environment

E. HOUSING

) 8 Housings shall be Designed to Pcrmit Repeated Assembly
Without Damage or Loss of Piloting or Sealing Capability

Provision should be made for repair by thread inserts,
remachining of critical surfaces, replacement of studs, and oversizing of
ports. Tapers and chamfe-s should be used and tighter-than-necessary fits
should be avoided.
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III, E, Housing (cont.)

p A The Housing Configuration shall be Adequate to Accommodate
Required Instrumentation Access

Wall thickness and space for bosses, probes, line routing
terminals and brackets should be provided along with a capability for replacing
them during testing.

3 Hydrostatic Proof Pressure shall be Based Upon the Operating
Temperature Effect on Material Strength

Proof test pressure should be selected to produce stress
levels similar to those expected during operation. Ambient test pressure of
cold parts should be lower than operating proof pressure. Ambient test pres-
sure of hot parts should be higher by the difference in permissible strength

caused by temperature.

4, Proof Test Fixtures and Procedures shall be Designed to
Carefully Simulate Loading so as to Prevent Excessive
Stress of Unrepresentative Proof of Integrity

The fixture configuration and test procedures should be con-

sidered and analyzed as part of the housing design.

I Leakage Testing of Housings shall Include Consideration of
Propellant Effect as Compared with the Test Media (Weeping,
Effect Upon Porosity)

For most propellants, dry air or dry nitrogen gas should be
used as leakage test media for valver. Helium gas, with leakage detection by

a halogen sniffer, should probably be used for hydrogen valves.
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III, E, Housing (cont.)

6. Adequate Bearing Support Stiffness shall be Provided if the
Valve Housing Serves as a Bearing or Bearing Carrier Mount

Housing stiffness should be evaluated as part of the housing

analysis.

7 Non-Standard Instrumentation Bosses shall be Justified

It is recommended that instrumentation bosses be standardized

to a 1/4 in. tube size, AN type configuration.

F. FITS AND CLEARANCES

1. Clearances and Fits shall be Analyzed under the Worst
Combination of Temperatures Considering Assembly, Ambient
Temperature or Space Soak, Chilldown Prior to or During
Start, Thermal Equilibrium, and Shutdown as well as
Soak-Back

A thermal analysis should be conducted based upon predicted
duty cycles and test conditions. These thermal conditions then should be
superimposed upon a stress analysis. Thus, the adequacy of fits and attach-
ments can be assessed based upon the combined effects. Special configuration,

or revised duty cycle, or test procedures can be required.

G. FASTENERS AND ATTACHMENTS

1. Locking Devices shall be Analyzed for Assembly-Induced Stress
(i.e., Friction-Induced Shear in Lock Washer Tabs)

A very conservative analysis should be conducted to preclude
shearing the tab retaining the washer to the stationary part. The face of the

bolt or nut should be relieved to prevent axial contact and false torque, or
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III, G, Fasteners and Attachments (cont.)

damage of the bolt or nut face by the sharp-edged washer tabs. Ductile

material should be used.

24 Thread Lubricants shall be Verified for Propellant
Compatibility

It is recommended that compatibility be confirmed by chemical

tests.

3. Torque Values for all Bolt or Bolt/Nut Applications shall
be Specified

The assembly drawing and build-up sheet should specify torque

values. Also, critical torque values should be recorded as well as verified.

4, Adequate Wrench Clearance shall be Provided for all
Attachments

Wrench clearances should provide space to accurately determine
torque values; therefore, accessibility and non-awkward positioning for stand-

ard wrenches should be provided.

5. Use of Snmap Rings shall be Justified

If snap-rings are mandatory, careful evaluation should be

mad> of groove detail, installation procedure, material selection, and loading.

6. Preload shall be Precisely Controlled in Critical Attachments

A direct determination of preload is recommended. This should
be done by measurirg the increase in depth of a longitudinal hole in the bolt

and comparing it to the desired preload expressed as strain.
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ITI, Generalized Propellant Valve Design Criteria and Recommended
Practices (cont.)

H. JOINTS AND STATIC SEALS

i 138 Flange Designs shall be Based upon Deflection as well as
Stress Level

Flange analysis and bolting design should include the effect
of pressure, mechanical and thermal loads, as well as preload tolerance

caused by torquing, upon flange position and seal compression.

2 Bolt Joints shall be Analyzed for Bolt and Flange Thread
Stresses Considering the Different Strengths of Bolt and
Flange Material as well as the Variation of Preload as a
Function of Torque

Through-holes and nuts or oversize high strength inserts are
recommended if stresses in the flange are excessive. The bearing stresses

should be verified as being acceptable.

3. Flange Joints shall be Designed and Analyzed as a Unit
Consisting of the Flanges, Seals, and Bolts

The elastic deformation of che joint elements should be

included in the analysis.

4. Damage to Flange Seal Surfaces shall be Avoided

Female flange pilots should be located on the valve inter-

faces to prevent damage during assembly and testing.
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III, H, Joints and Static Seals (cont.)

5 Static Seal Selection and Design shall be Based upon an
Accurate Assessment of the Actual Requirement and

Capability

Manufacturer claims of performance should be carefully eval-

uated against the specific application. Tests in the correct environment

are recommended prior to design commitment.

6. External Joints shall be Minimized for Maximum Reliability

Each joint should be evaluated for effect upon assembly
sequence and reliability (measurements, visual access), manufacturing ease and

cost, material availability, and inspectability.

7. Potential Leakage of a ''Zero Leakage' Joint Requirement
shall be Specially Considered

Welded joints and dual seals with inert buffer fluid pressuri-

zation or leakage bleed-off should be considered.

I. MATERIAL SELECTION

1. Materiais shall be Chemically and Thermally Compatible with
the Propellant and Other System Fluids

Material selection should be based upon the specific applica-
tion, including all fluids (propel’ant, purge and cooldown, propellant simu-
lant, nondestructive test), temperature (assembly, ambient or space soak,

chill-down, equilibrium, soak-back), and other environments (radiation, stor-

age, vacuum).
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III, I, Material Selection (cont.)

2. Material Properties shall Satisfy the Pertinent Structural
Requirements Considering Ambient and Operating Temperature,
Environments, and Life

The appropriate strength parameter (e.g., yield, stress rup-
ture, or fatigue allowables) should be determined and used as the basis of

structural adequacy assessment.

3. Compliance of Mechanical Properties with Values Upon Which
Integrity is Evaluated shall be Ensured

It is recommended that material for test bars be added to
each forging. If not feasible to add this material in a high stress area,
correlation of data from accessible positions should be combined with forging

control and remote bars from each part to guarantee integrity.

4, Material shall be Compatible with the Appropriate Manufactur-
ing Techniques

Manufacturing parameters (i.e., forgeability, machinability,
weldability, and heat treat requirements), as well as cost should uve

evaluated.

5 Material Selection shall Include Consideration of Stress
Corrosion Sensitivity and Environment

The environment and the conditions leading to stress corro-

sion, should be analyzed and susceptible materials avoided.
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III, I, Material Selection (cont.)

6. The Use of Exotic Materials that are Difficult to Fabricate
and/or Expensive shall be Carefully Evaluated for Actual
Benefits to be Derived in a Specific Application

Alternative configurations, strength levels, and fabrication

processes should be evaluated in terms of loss of performance or increase in
weight.

J. FABRICATION METHODS AND INFLUENCES

a Casting shall be Evaluated as an Economic Means for
Accomplishing Required Complex Shapes

Strength and dimensional/finish ability of a casting should

be evaluated against a machined configuration.

2. Large, Heavy Castings shall be Provided with a Means for
Handling

Lifting and clamping pads or bosses that can remain in place

throughout the fabrication sequence are recommended.

3. Castings shall Incorporate Clear, Measurable Set-Up Surfaces
to Properly Locate Machined Surfaces to Hydraulic Passages

Dimensioning should be based upon identifiable, accessible

datum planes and diameters.

4, A Means for Ensuring Structural Integrity shall be Provided
for Cast Configurations

It is recommended that all housings be hydrostatically proof
tested.
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III, J, Fabrication Methods and Influences (cont.)

S Configurations shall be Critically Examined to Ensure that
the Manufacturing Process, Precision, and Cost are Justified

More liberal tolerances, finishes, and alternative configura-
tions should be evaluated in terms of the loss of performance or increase of

weight.,

K.  ASSEMBLY REQUIREMENTS

1, Provision for Checking Against Gross Assembly Errors (Parts
not Bottomed, Installed Backwards, Left Out) shall be
Provided

A build-up sheet is recommended to ensure recording of appro-
priate dimensions, torques, runouts, and serial numbers. Gross checks,
including visual inspection, simple measurements, leak checks, and breakaway

torque checks should be specified.

2, Blind, Hidden, or Inaccessible Traps that Cannot be Reliably
Cleaned and Inspected shall be Eliminated

Thread inserts, intersecting holes. plugs, assembled bclts
and fittings, as well as inaccessible cavities should be eliminated. If such
items are mandatory, a reliable cleaning and inspection procedures should be
devised.

3. Critical Clearances shall be Capable of Confirmation at
Assembly

Direct measurement (rather than deduced dimension) and visual
check are recommended. A build-up sheet with required dimensions and the
method of measurement clearly specified should be used for recording and veri-

fication of clearance.
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III, K, Assembly Requirements (cont.)

4, Leaks shall be Locatable During Assenbly

Provision should be made for leakage checks at selected
stages during the assembly cycle. Intermediate leakage checks (at low pres-
sure if necessary for safety) prevent excessive reassembly effort and ease

the isolation as well as location in the event of leakage.

5. Propellant Valves shall be Subject to Special Assembly
Precautions

Propellant valves should be assembled in contamination-free
Clean Rooms using 'white glove' procedures. It is recommended that parts be
especially protected following cleaning, especially prior to assembly rather
than before storage as individual parts. Special handling procedures should

be specified to guarantee freedom from contamination.

6. Contamination-Free Assembly Procedures shall be Utilized

Special Clean Room procedures are recommended for assembly

to preclude contamination of critical parts of the valve.
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IV. PROPELLANT VALVE EXPERIENCF REVIEW

As part of the Apollo SPS Valve Improvement Program a review of the
bipropellant valve experience cof the Aerojet--General, TRW Inc. and Bell
Aerosystems Inc. organizations was conducted. All three of these companies
are involved in the design, manufacturing and testing of bipropellant valves
for the Apollo system. Problems which have been experienced in these pro-
grams are listed and discussed as to effects of design, manufacturing and

test techniques.

A. SEAL LEAKAGE

Seal leakage is the most common rroblem in the design, manufacture
and testing of bipropellant valves. It can be caused by a large number of

factors. The most important of these are discussed below and related to most

common causes.

) IS Wear

Wear of a seal occurs when the seal is rubbed by a mating
part. It can be the result of design, test conditions and actual use. It is
primarily a function of the materials used and their surface finish, the unit
loading on the seal-to-ball interface, the relative velocity of the seal and
the ball, the effects of propellant on the seal material's properties, and the
properties of any lubricants utilized. All three Apollo bipropellant valve
Manufacturers experienced wear on the teflon ball seals in the form of flaking.
These flakes would build up on the ball and subsequently scratch the seal or
just hold it up off the ball and cause leakage. TRW combatted the problem by
impregnating the seals with a lubricant, and reducing the velocity of rubbing
during dry operation of the valve. AGC incorporated glass filled teflon seals
to eliminate the wear. Bell eliminated their flaking due to wear by limiting

the number of dry cycles that could be run on a valve at one time without
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IV, A, Seal Leakage (cont.)

intervening wet cycles. Each of these approaches was adequate, however, each
was also a compromise. The TRW approach resulted in the case of a lubricant
not completely compatible with the propellants and a reduction of confidence
in functional data. The AGC approach reduced the ultimate cycle life of the
design, although this still remained within that required for the present
application. The Bell approach placed additional limitations and costs on the

program.

2 Seal Deformation

Seal deformation can result from the design of the seal not
taking into account all loads imposed on the seal during operation, especially
transient flow forces. It can also be the result of improper test conditions

imparting higher than design loads on the seal.

3 Improper Contact Area and Load

Results from design and manufacturing. Once the proper con-
tact area and load have been determined through analysis and test it is necessary
to adhere to strict assembly and inspection procedures to achieve repeatable

areas and loads.

4, Improper Seal-to-Ball Fit

Results from manufacturing tolerances. Aerojet controls by
furnishing seals to the proper fit prior to installing the seal in the valve.
Other manufacturers have cycle valves a number of times to "wear in'" the seals

and obtain proper fits.
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IV, A, Seal Leakage (cont.)

Se Material Finishes

a. Ball Finish

Seal leakage has been caused by sharp edges on the ball
and by 'orange peel" finish on the ball. All three suppliers have determined
that a number 4 finish is desirable. Aerojet also found that a finish of

number 2 or better will result in excessive wear on the seal.

b. Seal Finish

Machining of the teflon seal must be carefully controlled
to prevent teflon fibers "hanging on" which can get between the seal and the
ball. These microscopic fibers can hold the seal off far enough to cause
excessive leakage. Polishing has been an effective means of eliminating this
problem when coupled with thorough flushing of the seal to remove loose

material.

6 Handling Damage

Great care must be taken in all cleaning, transporting and

assembly of the valve parts to protect sealing surfaces.

7 Shaft Deflection

Seals must be designed to follow shaft deflection under all
design conditions including temperature and pressure transients. Excessive
shaft deflection must be prevented by designing for deflection as well as

stress in sealing members such as shafts, pistorns, and flanges.
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IV, A, Seal Leakage (cont.)

8. Propellant Salting

Once a valve has been exposed to propellants it must be ade-
quately protected from air and moisture in order to prevent the generation of
salts which can cause seal leakage. The valve should be designed to allow
thorough draining, purging, and aspirating of the propellant and once propel-
lants have been removed a positive pressure should be maintained in the pro-
pellant passages using dry gaseous nitrogen. This approach has been very

effective on the Apollo SPS bipropellant valve.

B. ACTUATOR FAILURES

Actuator failures of different types was another problem area
which was common to the three companies involved in the Apollo bipropellant
valves., All of the problem types listed below were experienced by one or more

of the three companies but not necessarily all three.

1. Actuator Piston Leakage

This type of leakage can be caused by a number of things.

as In one case it was caused by rubbing of springs during
actuation which generated contamination which subsequently got into the seal-
ing area causing leakage. This type of failure can be prevented by providing
clearances to prevent rubbing or providing a liner between the rubbing parts

which will not allow generation of contaminants by rubbing.
b. In another case the leakage was caused by a combination

of tolerances aad the improper matching of thermal coefficient of expansion

between the piston and the cylinder materials. This was the result of using
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IV, B, Actuator Failures (cont.)

a Delrin piston head in an aluminum cylinder. The coefficients of thermal
expansion were such that in order to assure clearance between the piston and
cylinder at the maximum operation temperature the piston diameter was too
small at the minimum operating temperature. This problem was corrected by
incorporating an aluminum piston head with a thin Delrin guide ring to prevent
galling between the two aluminum surfaces. In design worst case analysis must

be made to determine interaction effects such as these.
(0 Piston leakage can also be caused by galling of the
piston in the cylinder. Design should ensure that no rubbing of similar

materials occurs.

o Actuator Force Margin

In designing valve actuators it is necessary to take into
account all forces opevating on the actuator and the system characteristics
as well. For example, the early Aerojet valve was designed for actuation by
fuel pressure. However, it was later found that the system fuel pressure fell
so low during valve opening that the valve would not open smoothly or repeat-
ably. Bell had trouble with cocking of the actuator piston and later had
high friction from rolling and twisting of the piston O-ring. Both of these

conditions contributed to a low actuator force margin.

C. VALVE PRESSURE DROP VARIATION

It is important for bipropellant valves to have repeatable pressure
drop characteristics from valve to valve. This is extremely critical when the
valve is phased to provide the proper fuel and oxidizer lead/lag relationship
for the rocket engine. Variability in this parameter can result from tolerance
stackups and from assembly errors in measuring installation and shimming

dimensions.
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V. BIPROPELLANT VALVE TRADE-OFF STUDIES

Once the engine system design parameters have been established it is
possible to conduct a trade-off analysis to determine the type of valve and
valve features which will best satisfy all of the requirements. As stated
earlier this analysis is a systematic form of compromise wherein advantages
and disadvantages of the different valve types are weighed against the specific

requirements to permit an optional selection.

In order to conduct this trade-off it is also necessary to do prelimi-
nary design work with each of the valve types to be considered. Layouts on
sketches of each design should be made along with design calculations to
determine sizes, major stresses, weights, etc. Without this type of design
work the trade-off must be done on generalities rather than hard facts for

each of the particulai designs.

Figure 3 presents the trade-off analysis conducted as part of the Apollo
Bipropellant Valve Improvement Program. In this analysis the method of actua-
tion was selected first. In this case the system judged to be most desirable
from the technical viewpoint was rejected because of other system and program
restraints. On the bzasis of all the requirements the pneumatic system was

selected.

Next the basic type of valve was selected. Design layouts were pre-
pared for all of the types listed. Again the selection was based to a large
extent on system requirements rather than operating characteristics of the
design themselves. In this case one of the most heavily weighted factors was
the necessity to keep the flow characteristics as much like the present valve

as possible.

The third major trade-off was the decision as to how the valve modules

would be arranged. Here again design layouts were required to determine
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V, Bipropellant Valve Trade-off Studies (cont.)
specific advantages and disadvantages of each concept. Finally the seal con-

figuration was chosen again with the aid of design layouts and calculations to

determine the travel vs lift curvee for each.

No hard and fast rules or weighting factors can be given for trade-off
analysis. Each case must be determined in the light of all possible require-

ments and constraints.
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