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TWO SETS OF LINEARIZED AIRCRAFT EQUATIONS OF MOTION
FOR CONTROL SYSTEM ANALYSIS

By Paul S. Rempfer and Lloyd Stevenson
Guidance and Control Research Directorate
Electronics Research Center
INTRODUCTION
In developing a mathematical model for a tandem rotor helicopter
to use in the analysis of an automatic approach and landing system for
that helicopter, linearized equations not normally used in aircraft
s.ability analysis were derived. These equations are derived herein
along with those normally used (refs. 1,2).
DERIVATION OF THE NON-LINEAR EQUATIONS OF MOTION
Before developing the linearized equations of motior for analysis
purposes, the non-linear equations are developed.

Rotary Motion

Consider the motion of an aircraft as shown in this figure.

Motion of An Airplane
Referred to Inertial Axes <:%z>
R
2

Assume that the x-z plane is cne of symmetry and define the inertia
matrix as
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where

ny A -.fxy dm = 0
A due to x-z symmetry
Jzy=-fzydm=0
~ A _
Sz - fxzdm

Note in Figure 1 that
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where P, Q, R is the angular velocity resolved along the body axes
x, y, and z, respectively. Similarly, let the applied torque be
denoted as

=)
e
2 =2

With the assumption that the angular momentum of any rotating machinery
on-board, such as engines and, in helicopters, the rotor, is negligible,
the equations in inertial space are written simply

T=5 1w . " (1)

Oon the assumption that the Earth is inertial, then Eq. (1) is written
in the body axis system as

_ -— d'v . - .=
T=1 3T + wxIw (2)

where the prime denotes "as secn by an observer fixed in the body
axes," and therefore

e
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where the dot denotes total time derivative. Substituting the appro-
priate definitions into Eq. (2) results in the equation set

- [~ . o r -
L I.xF + TR JezPQ + I,,0R - I OR
= ; 2,2, _
Mi=11,0 +|{ I RP +J (R°-P%) - I PR (3)
LN- LszP + IzzRJ LIy’yPQ - I_PQ-J RQ

These equations define the rotary motion of the aircraft.

Translatory Motion

~ Assume that the mass of the aircraft is constant and denoted m.
Let the force vector be denoted

>

X
F Y
z

where X, Y, and Z, lie along the body axes. Note from Figure 1 that
the total velocity

= A
VT =

£ < Cc

is resolved along the body axes. The equation in inertial space may
then be written :

=_ 4 ,=
F =g (mvg) (4)
On the assumption that the Earth is inertial, then Eg. (4) is written

in the bcdy axis system as

d'V&

+ wxmV . (5)
T



Making appropriate substitutions into Eq. (5) gives the equation set

X mU mOW - mRV
Yl=|mv|+|mrRU - mPW (6)
z2] |Lmw mPV - mQU

These equations define the translatory motion of the aircraft.

Euler Angle Transformations

Consider the aircraft of Figure 1. We wish to describe the
attitude of the aircraft with respect to a set of axes fixed in the
P’arth To do this we define an Euler angle set denoted ¥, 0, ¢.

» hese three angles are the azimuth change, elevation change, and roll
requlred to arrive at the aircraft attitude from the inertial axes.
They must be taken in the given order. If a vector is denoted in the
inertial coordinates as Cl and viewed from a coordinate system which
has been slewed through Y, we get

Cl = Tz(‘l’)Ci (7)
where
A cos ¥ sin V¥ 0
Tz(W) = |-sin ¥ cos ¥ ol °.
0 0 1

If the observer is then elevated through 0, he sees

C2 = Ty(e)cl.= Ty(e)Tz(\P)Ci (8)
'vhere
A cos © 0 -sin 6
Ty(e) = 0 1 0
sin © 0 cos O

Finally, if the observer is rolled through ¢, he sees from aircraft
body axes



Cy = wa)é'z = wa)'ry(e)'rzmai . (9)
where

A 1l 0 0
' T, (?) = |0 «cos ¢ sin ¢
0 -sin ¢ cos ¢

Gravity Forces

With Eq. (9) the gravity force may be written in body axes as

0 -8in ©
W% = Tx(¢)Ty(0)Tz(W) 0}=mg| sin ¢ cos © (10)

mg cos ¢ cos ©

Euler Angle Rates Equations

The body axis rates may be written as functions of the Euler
angle rates:

[ ]
P ¢ 0 0
®
= Tx(@) 0]+ Ty(e) o] + Tz(W) 0
®
0 0 b4
L o
1 0 -sin © &
=]0 cos O sin %cos © e (11)
¥

0 -sin © cos %cos ©

Inertial Velocity Equations

If the velocity in inertial coordinates is denoted

A '
V., =]V '
Ti )4
v
z




then we may write the body axis velocities as functions of the inertial
velocities

U Vx
Vis= Tx(¢)Ty(9)Tz(W) Vy
W \'

z

c + . - .
chos Ocos Y Vycos Osin Y V251n ©]

Vx(sin ¢sin Ocos ¥ - cos $sin V¥)

Vx(cos dsin Ocos ¥ + sin ¢sin V¥)

0
+ Vy(sin $sin Osin ¥ + cos %cos V) + stih dcos O (12)

Vy(cos $dsin Osin ¥ - sin dcos ¥) + Vzcos Ocos ¢

LINEARIZING OF EQUATIONS USING DELTA PERTURBATIONS

The purpose of this linear model is to analyze an automatic
approach and landing system. As such, the system is tied to the
Approach Navigation Frame. This is an Earth-fixed coordinate system
with the origin at the desired touchdown point, the X axis along the
runway, and the 2 axis down along the local vertical. The system is
considered inertial. The variables to be commanded will be in the
ANF such as Vxk, Vy, and Vz and ¥, 0, ¢. The.control system will
therefore be feeding back these quantities from an inertial platform.
The linearized equations are then desired in terms of these variables.
The derivation of these equations follows.

Body Translatory Equations

Rewrite equation set (6) with the forces being divided into
.aerodynamlc forces and the gravity forces of Eq. (10)

. Xa

U=RV-QW+ —-g sin O

. Yo

V=PW-RU+_—+g sin %cos 0 (13)
. ZA

W= QU - PV + - + g cos ¢cos 0



Assume the following perturbations

U= U, + 4U P = AP 0 = 90 + AO
V = AV Q = AQ ® = AD (14)
W= W, + oW R = AR ¥ = AY

Note that the perturbations are simply added to the Euler angles.

If steady flight is assumed, the steady flight equations are obtained
from Eq. (13):

_ _A0 _ .
0= “m ~ 9 sin 00
Y
AQ
0= - (15)
z
_ A0
0= - + 9 cos 00 .
Next note that
sin (6, + AO) =

0

sin 60 + (cos 00) AB
(16)

cos (eo + AR) cos eo -. {sin 00) AO.

Substituting the definitions of Eq. (14)»into Egqs. (13), using Eq. (16)

and subtracting off steady flight, Eq. (15), yields the following pertur-
bation equations

. AX

AU = -WyAQ - (g cos eo)Ao'+ _A

m

AY

. ’ N A

AV = WOAP - UOAR + (g cos GO)A¢ +-1E— (17)
. - Az,

AW = UOAQ - (g sin OO)AG + —m—



Body Rate Equations

Substituting the perturbation definitions of Eq. (14) into
Eq. (3) and dropping second-order terms gives

J
AP = - XZ AR + %ui
XX XX
a0 = £ (18)
0 4
J
AR = - XZ pp 4 AN
22 22

Euler Angle Equations

The relation between Euler angle perturbed rates and body per-
turbed rates is desired. This is obtained by inverting equation set
(11) and applying the perturbation definitions to give

A0 = AQ

Ad = AP + (tan 0g) 4R (19)
: AR

AY = cos eo

Equation Set with Aerodynamic Partial Derivatives

The motion of the aircraft is described by Egs. (17), (18), and
(19). The force and moment perturbations are, in general, functions
of the motion and can be written to first order as a linear function
of the motion variables. Motions in the longitudinal plane are
Passumed to separate from the lateral-directional to give the total
»equation set which follows.

X X B
X X
e - - _u w g 6
AU WOAQ (g cos QO)AG + mAU + mAw + D280 + Tn'd
Y Y Y - Y
7 = - s P _x 6
Av woAP UOAR + (g cos OO)AQ + AV + mAP + T-OR + 7?6




. Z '/

z P
- - : _u v g S
AW = U,AQ - (g sin 0,)40 + =AU + —AW + —2AQ + —=8
. J,. . L L L L
AP=-T’53AR+ilAV+I—P-AP+IrAR+IGS
XX XX XX XX XX
.M M M M
80 = £2a0 + aw + +2ag + S
4 Yy Yy Yy
) J,. . N N N N > (20)
AR=-I—x—zAP+I—VAV+-i——EAP+IrAR+165
z22 22 zZ 22 z2Z
A® = AQ
A = AP + (tan 94) AR
: AR
oY = cos @0

Equation Set with Body Rates Eliminated

The equation set (20) may be reduced in variables by eliminating
the body rates with the last three equations. The result is

%o o M X2V - s
AU = T\'AU + —m—AW - (Wo - m)AO - (g cos GO)AO + —m-ﬁ

. _ Yy 32 H [si ER
AV = FAV + (wo + m)M’ + (g cos GO)A¢ - (s:.n OO(WO + m)
Yr ; YG
+ cos GO(UO - —m—)) AY + T{S
. Z, ‘2, 3‘1 . . Zs
AW = KAU + E’AW + (UO + m)Ae - (g sin G!G)AO + ?6

e L



AY =

L L

o . L
Ad = =LV + A% - (-Eicos 0, - sir 0 )Aﬁ - (-Jlsin 0
Ix Iex Iex 0 0 Iy 0
Lr : LG
- f——ccs GO)AW + f"6
XX XX
. M M_ M
Ae=f-9-AU+IWAW+Iqu+16:S
YY YY YY YY
I__cos © } J__sin © (N av - szA$ + N_Ad
zz 0 Xz o 'V P
Vﬁf?pSln eo - Nrcos eo)A? + NGG)

in

Reduced Equation Set in Vector-Matrix Notation

Longitudinal Equations

(ANF co-ordinate system)

" X X, X M1 %]
-4 - -g S
S o ! (Wo - )S + g cos 60 40 =
Z Z 2 : Z
- -V - e i =15
— S o ' U0+rn)s + g sin 60 AW‘ = 8
M M M M
. (-S-T_q_)s A0 3 &
| Yy Yy Yy JL J Lyyl

=10~

> (21)

Putting the equation set (21) in vector-matrix notation results

(22)



Lateral-Directional Equations

(ANF co-ordinate system)

-S-YTV . -("ognz)s - g cos 9, ((W +—2 sin 8, + (00—1-5 o8 eo)s ] -AV- -Y?‘ ]

-.I.x:i . (s-;:)s ((\;—’:-:co o-sin eo)s + (;-'P—sm eo-;icoa 90))5 sl = :lu 5§ (23)

T T Y O S flof L2
zgziztgr% I 2SS 60 - szsin 60 and S 4 é% the Laplace differential

Inertial Velocity Equations

If the equation set (12) is linearized, the result is given

-_— - 14 3 - \
AU = Achos Go_ A\251n eo WOAG
AV = AV, + WyA® - (Ugcos 6, + Wysin 6,)AY - > (24)
AW = AV_sin 6, + AV_cos 6, + U, A0 J

With these equations, the body axes velocities can be eliminated from
the equation set (21) and the result is given

. X, X, . X, X, '
AVx = (;r + irtan GO)Avx + {tan GO)AVz - (;rtan 60 - ir)AV
24 X X X
1 i V- ( Uy Wy ) )
t cos eo( 20 mh0 ~ mlp * 9 cos 8 AQ R
Y Y Y
v = - —Pag v Mo o .
&, = v+ Pad 4 ('Kwo + g cos 0, |Ad (—mﬂsm 9
Yr . Yv Ys
- i—cos GO)A‘Y - F(Uocos 90 + Wosln GO)A\P + F—«S




. 2, 2, 2, Z,
4V, = -(tan GO)Avx + (? + —tan (DO)AVx - (-l-n—tan 04" T)sz

'3
Z Z Z 2
1 “qaa ( u, _ Wy : ) 8
+ cos eo(mAe m 0 m 0 + g sin 00 46+ ‘ﬁ'a)
by Mu Mw Mu Mw
40 = (%——cos Oo + i——sin GA)AVx - f-—sin 00-i——cos GO)AVz
YY YY Yy YY
M. M M M
+ 706 - (i'lwo - I—"-uo)Ae + 1—5-5
Yy Yy YY YY
oy Lv L . Lv sz >
A = i——ﬂvy + T—EAQ + f——WOA¢ - (i——cos 60 - sin OO)A?
XX XX X XX :
/L L . L
- (I—P-sin 90 - -I—Lcos- Go) AY - I—v- Uocos GO
XX XX xX \
. Ls
+ W051n GO)AY + f__5
XX
.. _ l _ .. 3 ’ -
AY = B(NvAvy szAQ + NPM + NVWOA<I> - (Nps:.n 60
- Nrcos GO)AY - Nv(Uocos 00 + w051n GO)AW.+ N66)
. A
where again B = Izzcos 60 - szsin eo .
em—

Inertial Velocity Equations in Vector-Matrix Notation

) The equation set (25) may be put into vector-matrix notation
with the result

190

> (25)




-E‘[_

Longitudinal Equatiohs
(ANF coordinate system)

X X X X, " X X X 110 x
[(cos 04)8 - (-'%’coa 8, + mein eo)] [(-lin 0,18 + ('—“‘:-un 0y = wcos eo)] {38 + 2w, - 2U, + g cos 90] v, Tni
2 z z z " 2 z z z 26
[(sin eo)s - (F“cos eo + -;ain 60)] [(cos. eo)s + (—’:T'-lin 90 - -%’cos 00)] L-—“‘Ss + ?“Ho - -m!uo + g sin Oo] sz = 36— 8 ( )
r Hu Mw ] [:I_u‘ ll'w ] [ 2 M Mu l"w ] HG
- A, - =—sin O in 0, - =—cos8 © s - 8 + - 40 -
[Ty %0 T % oy %0 T T, 0% o, i ehg m =L I || l L,
1
Lateral Equations
{ANF coordinate system)
v Y ¥ Y, - r 1 Fy.
r’[s-'-}] [—fs - (q.co- 9 + —-W )] [(-mzqin eo - -'TCOI eo)s + Fv”xo_l Avy' r_n_‘6_
L L L L L 1 L
Y |s? - - v] [(’“019 --1ne)sz+( in 6 o-d) h4 ] A0 ] = 3 27
2 [ - g ritoos 6 - stn g)a? » (rEain 8y - rEcon vy)e + rug | 27
N N N N N N N
2 2 r [
B o] e (e ey - oo og)e + T o| |5

A A A 4
where Veo = quos eo + Wosin eo, B= Izzcos eo - szsin 60 and § = It the Laplace
differential operator. )



LINEARIZATION OF EQUATIONS USING EULER PERTURBATIONS

In the previous section linearization was done to develop a
math model for approach and landing system analysis. As such, it was
desired referenced to the ANF. 1In this section the equations are
developed for use in the analysis of a stability augmentation system.
Such a system will generally feed back only body-referenced rates

P, Q, R and U, V, W. The linearizations then are desired in terms of
these variables.

In the previous section linearization was done by representing
the perturbed angles as the initial angles plus delta perturbations of
the Euler angles so that

0 = 90 + AO
¢ = o, + Ad (28)
Y =¥, + MY

In this section the perturbed angles will be arrived at by taking the
initial angles and adding to them another set of Euler angles refer-
enced to the initial body axes. These perturbation Euler angles will
be denoted ), 6, ¢. The translational velocity and angular velocity
perturbations will be as in Eq. (14).

Body Translatory Equations

The perturbed equations will differ only in the gravity force
which is described with ¥, 0, ¢. This perturbed force is written

3 PR s .1
sin 90 sin 90
AFgrav = Tx(¢)Ty(e)Tz(¢) 0 - 0 mg (29)
i cos 90 cos 60 ]

" Carrying out the matrix multiplication we get

--ecos 90 ]
Aﬁérav = | ¥sin 9, + ¢cos 6,|mg (30)
--BSln eo |

-14-



The perturbation equations then become

. AxA

AU = -WOAQ - (g cos 00) 6 + =
. _ AYA

AV = WOAP - UOAR + (g cos 00)¢ + (g sin Go)w + (31)
- R »AZA

AW = UOAQ - (g sin eo)e + =

Body Rate Equations
Since angles are not involved, these equations are just those of
set (18). ,
Euler Angle Equations

With the defined transformations, the body rate perturbations
can be written :

AP b 0 0
sof = T @ffol+ T @ flef+ T wfo . (32)
AR 0 0 ¥

e

With small angle assumptions on the perturbations and by dropping
second-order terms the result is

AP ¢
aol =161 . (33)
AR ¥

This means that for this linearization, unlike that of the prior
section (see Eq. (139)), the angular perturbations are simply the
integrals of the body rates. Although, for convenience in the remain-
der of this section, the angles ¢, 6, ¢ will be used, their simple
relations to the body rates should be remembered.

Equation Set with Aerodynamic Partial Derivatives

Using assumptions similar to those of set (20) and Egs. (33) to
eliminate body rates yields the following equations:

-15-



. ] X, X, Xq Xs 7
AU = -woe - (g cos 90)6 + TFAU + ?FAW + mAQ + 1;6

»

Y, Y.

ow + (g sin 0 )np + (g cos © M) +——AV+ -Fr-w

D
<
I

é -
Y
R

Z 2 Z Z
=U.6 - - _u w g S
AW er (g sin eo)e + mAU + mAW + mAQ + me_s

34
- Iz Lo . Le. Ly Ls | ( )
¢_-Iw+IP¢+Iw+IAV+Is
XX XX XX XX
. M_.oM M, M,
0 = 720 + 7—AU + +—AW + 7
Yy - Yy YY YY
L 1] J .. N. N. N N
¢=-Ixz¢+lp¢+1rw+-I—VAv+-I-ie
22 22 44 4 4 22z

Reduced Equation Set in Vector-Matrix Notation
Putting the equation set (34) in vector-matrix notation with

Laplace notation results in a set of longitudinal equations identical
to set (22) for the delta perturbations.

Lohgitudinal Equations

(body axis system)

F X X ToX A 1 =0
S-;% ’ -j? ’ (WO-Tg)S + g cos 9, AU 1%
z 2 z z
-7“1 , S":Tw , -(UO + Tn‘l)s + g sin 0| | awf = -m—é S (35)
M M M M
S R (s_fﬂ.)s 8 il
Yy Yy Yy JLU 4 LYY

-16-



The lateral equations, however, are different.

Lateral-Directional Equations

(body axis system)

F Y Y Y 1r 1 4

v _fwse)s - _x)s - )

S p (w0+xn/S g cos Oo ’ QU n‘)s g sin 00 AV - W
L L J L L

-I—‘—’- , (S-I—E)s , (iﬁs--l—-lf-)s ¢ | = -I——G— § (36)
XX XX XX XX XX
N J N N N

' (.Izz_s-fp_)s , (S-I_r_)s . i

L z2 2z 22 22 22

where S 4 é% , the Laplace differential operator.

CONCLUDING REMARKS

Two sets of linearized equations of motion for an aircraft
initially in steady flight have been derived. The first set is written
in terms of Euler angles and approach navigation frame velocities for
the purpose of analyzing an automatic approach and landing system.

The second set is written in terms of body rates and body-referenced
velocities for the purpose of analyzing simple stability augmentation
systems. The two equation sets are clearly different.. The difference
depends on the aircraft and its steady flight condition. Any assump-
tion that the second more common set may be used in place of the first
is not, therefore, automatically correct for all aircraft and all
steady flight conditions but should be verified in each instance.
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