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ABSTRACT

In Part A, systematic numerical solutlons of two dimensional
and axisymmetrical laminar jet of an incompressible fluld with and
without free stream have been obtalned. The exact numerical solutlons
have been checked with experimental results and similarity solutions
for the case without free stream. At far downstream, the numerical
solutions approach the values of similarity solution. The numerical
solutions give better agreement with experimental data than the simila-
rity solutions. In general, it shows that the boundary layer equation
is a good approximation of laminar jet problem provided that the Reynolds
number at nozzle exit is not too low. With free stream, the numerical
solutions agree with linearized analytic solution 1f the jet excess
velocity is small in comparison with the free stream velocity. The
non-linear effects are to decrease the rate of decrease of central
velocity of the jet and to brcaden the spread of the jet,

In Part B, an approximate numerical so;ution for three dimen-
sional laminar jet is proposed. The accuracy of the method has been
determined from the exact solutions of the two limiting cases of three
dimensional jets, i.e., two dimensional and axisymmetric case of Part A,
It was found that this approximate method may give good results for the

axial velocity distribution and the spread of three dimensional jet.
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SYMBOLS

Radius of circular exit
Half-width of jet with and without cross flow respectively

Momentum coefficlent for two-dimensional and axisymmetric jet
respectively

Correction factor for central excess velocity
Half-width of the shorter side of rectangular jet exit
Spacing in x direction

Bessel function of zeroth and flrst order of the first kind
respectively

Spacing in 2z direction
Aspect ratio of rectangular jet exit

Total momentum of two dimenslonal and axisymmetric jet respec-

tively

in y direction
U

C:L.

B
D ‘
Reynolds number defined ~%—- and —32- respectively

* % *
Excess velocity components along x , y and z direction respec-

tively

* %
Non-dimensional excess velocity components defined by u /Uj ,

%, % X, ok
R,V /Uj and R W /Uj respectively
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Subscript:

0

o]

L

Superscript:

SYMBOLS

Non~-dimensional maximum excess veloclty over a station with
and without cross flow respectively

Non-dimensional excess velocity distribution at jet exit

Uniform velocity of moving stream

* %
Non-dimensional uniform velocity of moving stream (Uo/Uj)
Excess velocity at the center of jet exit

Mean excess velocity at jet exit
Axis of Cartesian coordinate

* *
Non-di{mensional distance defined by x /ReD , ¥y /D and
*
z /D respectively

Non-dimensional parameter defined by Eq. (10)
A constant
Kinematic viscosity of fluid

Density of fluid

Axisymmetrical jet
Two-dimensional jet

Three dimensional jet with aspect ratio L

Without cross flow



I. INTRODUCTION

In most of the theoretical investigations of laminar jet
mixing, only the similar solut:f.onsl’2 or the solutions of linearized
equationsl’3 have been discussed. Very little general solutions of
laminar jet mixing have been obtained., In the.first part of this
report, we study numerical solutions of two diﬁensional as well as
axisymmetric laminar jet mixing of an incompressible fluid with and
without free stream systemmatically. We are especilally interested in
the non-similar solutions of these¢ problems. The influence of initial
velocity profiles and the effect of non-linearity will be analyzed.

The results of our numerical solutions will be compared with the well
known similar solution (without free stream) and linearized solution (with
free streama).

In the second part of this report, numerical solutions of a
three dimensional laminar jet mixing have been studied. In our preliminary
attempt of solving the complete non-linear equation of a three dimensional
jet mixing by computer, the numerical calculation was very unstable and so
far no satisfactory results were obtained. Since we have satisfactory so-
lutions for two dimensional and axisymmetrical laminar jet mixing in Part I,
we try to find some approximation in numerical solution in the three dimen-
sional case from the results of our two dimensional and axisymmetrical cases.
We find that the two dimensional (aspect ratio is infinite) and the axi-
symmetfical case (aspecﬁ ratio is unity) represent two limiting cases of

three dimensional laminar jet mixing from a rectangular nozzle. Hence in

Wi
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general, the results of three dimensional jet mixing lie between those
of two dimensional and axisymmetric cases. From the results of two
dimensional and axisymmetric jets, we found that the axial velocity
distributions may be obtained with sufficlent accuracy by neglecting

the cross-velocity effects. Hence we use similar approximation by
neglecting the crogs-veloclty in solving the axilal velocity distribution
of three dimensional jet mixing, which is the most important quantity in
practical application of jet mixing problems. We also discuss the accu-
racy of this approximate method and the dimprovement pf the results from
our experience of the exact results of two dimensional and axisymmetric
cases., Numerical solutions of axial component of three dimensional jet
without free stream from rectangular nozzle of aspect ratios 1, 2 and 4

have been obtained.



PART A. TWO DIMENSIONAL AND AXISYMMETRICAL JET

TL. FUNDAMENTAL EQUATIONS

The fundamental equations for a steady two dimensional or an

axigymmetrical laminar jet mixing of an incompressible fluid ape’??

* * %

L L TX (1)
X oy y
* ® *
X x L ' | L1
U +u)-?—9-,-‘-+v-§-9-;‘-m--\-)-—~§-—-( ".@.‘}...) (2)
o} *5 oy *
o dy y oy

where u* and 'v* are respectively the excess axial (x* ~ wise; velocity
over the free stream Uo and the transverse or radial (y* - wise) wvelocity
component; & = 0 for two dimensional case and § = 1 for axisymmetrical
case; Uz is a constant velocity of free stream and v i1s the coefficient

d of kinematical viscosity of the fluid which is assumed to be constant in this
g report. The pressure in the flow fleld 45 assumed to be constant iIn this

| report. When the surrouﬁding stream is 2t rest, Uz is zero.

% The initial and boundary conditions of both two dimensional and

J axisymmetrical laminar jet are:
* * * *
X = O ; u = ui(oiy )

* *
x >0 ; v =0 at 'y =0 (3

*

* *




We solve Eqs, (1) and (2) with the initial and boundary
*
conditions (3) where ui(O,y ) 18 a given function of y* . In the
nunerical calculation, Lt is convenlent to introduce the following non-

dimensional quantities.

u ‘ v U: uI
U U U U,
] ] ] 3
t]
* * U.D
7D R, T Al R

* *
where Uj 18 the value of u at the center line of the exit of the nozzle,
D i1s the half width or the radius of the jet exit and Re 1s the Reynolds
number of the present problem. In terms of the non-dimensional quantities

of Eq. (4), the fundamental equations (1) and (2) are independent of the

Reynolds mwber Re and are as follows:

du , 9v v ;
” + 3 + § y 0 (5) !
du_ 3y _1 3 08 3u
190 _ 3%y
It should be noted that at the axis of the axisymmetrical case ; -é—}-; ==
. ay




We are going to solve Eqs, (5) and (6) for the following three
differant initial veloclty profiles:

(a) Rectangular Profile: u =1 y §1
{7)

u, = 0 y > 1

(b) Parabolic Profile: u = (yh oy el
. (8)

u, = y >0

(¢) Triangular Profile: u, = Ly y £ 1
9

u, = 0 y>0

IIL. SIMILARITY SOLUTIONS OF TWO-DIMENSIONAL AND AXISYMMETRICAL JET

Similarlity solutions occur for the case without free stream
X ‘
(Uo = 0) only. For two dimensional jet, Bickley gave the closed form simi-

larity solutions as follows:l

2

M
- 0.4543(— % )1/3

P

tanh £

2“ 1/3
px

v = 0.5503(—2=) /3 [26(1-tanh%E) - tenh £] (10)

£ = 0.2752(—2 2)1/3 773
X

PV

where Mz is the total momentum across a seciion of the two dimensional

jet,



For axisymmetrical jet, Schlichting gave the clogsed foxm

similarity solutionl as!

X M

u R S - 1
8n

ove® (L + 1/4£%)7

1/2
= M 13
3 x E~L/4E"
T (11)

el
v =7

1/2
{-; "= /_3 Mr Xf.
VYiér \)pl/?" <

where Mr 1s the momentum across a section of the axisymmetrical jet.

Let 7

M2 = Cszj D (L2)

then C2 = 2, %%- and 2/3 respectively for rectangular, parabolic and

triangular initial velocity distributions. Similarly, let

~ 2 . %2
M, = ComD° U, (13)

then Cr = 1 and 1/3 respectively for rectangular and parabolic initial

velocity distribution.

Hence Eqs. (10) and (11) may be written, in terms of non-

dimensional forms, as follows:




For two dimensional jet

c2

u = 0.4543 (-2 )1/3

(1 -~ tanh &)

v = 0.5503(—2 2)1/3[2g(,1—canh25) - tanh ] (14)

1/3 2/3

E = 0,2752 c y/x .

For axi~symmetrical jet

(15)

LV. LINEARIZED SOLUTIONS WITH UNIFORM FREE STREAM VELOCITY Uo.

*
When U0 >> U the fundamental equations of laminar jet

&
j ’
mixing may be linearized. Pai1 gave the following linearized solutions;

For two dimensional jet

u= -—[erf(—-"-z ) + erf( 2] | (16)
2/:? 2/5:'



and for axisymmetzical jet
(=]
-\ X,
w=fe T 0m 5w an
0

where X, = x/Uo . Egs. (16) and (l7) are for the rectangular initial

velocity profiles only.

V. NUMERICAL SOLUTIONS OF TWO DIMENSIONAL AND AXISYMMETRICAL
JETS WITH AND WITHOUT UNIFORM FREE STREAM VELOCITY.

The numerical calculation has been carried out on the TUnivac 1108
computer of the Computer Science Center of the University of Maryland. An
dmplicit finite difference method as described in Reference 4 was used for

the present calculation. We write

) forward difference

3y T Q1) central difference
EEQ'—-l-( - 2Q +Q ') central difference
ay2 =7 m m—-1 ’

where n refers to station in x-direction and m , that in y~direction; Q

denotes any quantity under operation, h = Ax and p = Ay denote respectively



the spacing in x and y directions. Substituting the finite difference

representations in Eqs. (5) and (6), we have

2
-8 __p - up”.
{l + [V (m_l)plz} un,m"l (2 + h ) un’m +
s uu p2
_ _ .9 P - - n-1,m
- v - ToplE Y h (18)
and
1 ? ) 8 '
V= - j C%E) y dy (19)
Y0

where u and v appear in the coefficient are considered to be the
known values at station (n,m). The trapazoidal rule was used for the
integration of v . In practical calculation, the previous known values

and v were first used in the coefficients for u and

of u n-1,m

n-1,m

v to obtain u and v_ . Then iteration was carried out by re-
n,m n,m

placing the new U and Voom in the coefficient until a satisfactory
’ ?

result for u o and vn n was obtained. Therefore, the u and v thus
? 1

obtained in a station (n,m) satisfy the fundamental equaticns and boundary

conditions exactly. The method of solving the simultaneous equations for

un,m is given in Appendix I.

In principle, the boundary of the free jet is infinite. However,
in the actual computation, it was found that the boundazy could be set at

20D where D i1s the Half width of the nozzle opening for good results in
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the range presented in this report. In the initlial stations, the value
of h was set at 0,001 and as the computation proceeds downstream,
the value of h dis increased. The values of h used in this report
are between 0.001 to 0.1 for two~dimenslonal jet and between 0.001
to 0.05 for axisymmetrical jet. Lateral spacing p was always kept
at a value of 0,005 . A test for p = 0.1 does not change the results

significantly.

VI, RESULTS AND DISCUSSION

In jet mixing problems, we are interested in the decrease of
maximum axial velocity downstream, the velocity profiles of both axial u
and transverse v velocity component and the half jet width which shows
the spread of the jet. The numerical results for these quantities are

given below:

(a) Variation of maximum axial velocity. The non-dimensional

maximum axial velocities, = u:/U: which occurs on the jet axis,

are plotted as a function of non-dimensional axial distance x with
rectangular initial velocity profile with various free stream velocity u
for two dimensional jet in Fig. 1; while the correspondong curves for
axisymmetrical jet in Fig. 2. It should be noted that the non-dimensional
distances for cases with (xo) and without (x) moving stream are different.
For the cases with free stream, (U, = 0) three cases for u, = 1/2, 1 and

10 were calculated. It is interesting to see that the numerical solution

approaches the linearized solution (16) or (17) as Uo increases. This
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justifies both the correctness of the linearlzed theory and the numerical
solution,

When u, = 0 , the numerical solution should be compared with
the similarity solution (14) or (15). These comparisons are shown in
Figures 3 and 4. In Figure 3, two dimensional jets with three different
initial velocity profiles (rectangular, parabolic and triangular) are
compared with corresponding similarity solutions (Cr = 2, 16/15 and 2/3).
In Figure 4, axisymmetric jets with two different initial velocity profiles
(rectangular and parabolic) are compared with corresponding similarity
solution (C. =1 and 1/3). From both Figures 3 and 4, it is seen that
in each case the similarity solution approaches the corresponding numerical
solution at far downstream as expected since it is well known that simila-
rity solution 1s only good at far downstream.

There are a few experimental results available for laminar two
dimensiona15’6 and axisymmetrical jet§7 These experimental data are also
plotted in Figures 3 and 4.

For two dimensional laminar jet, Reference 5 gilves experimental
data for four different Reynolds numbers. The initial velocity profiles
correspond to the parabolic distribution because it is supposed to be
fully developed velocity profile from a two dimensional channel flow. We
found that the agreement of experimental data with curve of parabolic
init;al velocity distribution is fairly well for i; = QDU;/Bv = 68 and
31 while for ﬁg = 240, the data approaches the values with rectangular

initial velocity profile and for i; = 15, the data points are too low.
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Since no initial profiles were given, we suspected that for ig = 240,
the initial profile in the experiment might not reach the fully developed
stage but still close to entrance rectangular profile. For ié = 15, the
velocity of the jet is so low that boundary layer approximations might
not be valid. From the data i; = 31 and 68 as well as the data of
reference 6, f; = 31.5, the correlation between experimental and nu~-
merical results are excellent. Since in the experimental data momentum
lost across the sectlon were shown, we have to make the proper correction

in comparison of the experimental data to numerical solution as follows:

*
U M
-+ = F# (20)

where subscript 0 denotes the original value at exit and M2 is the
measured momentum at downstream and U: is the corrected value at exit
to be used for downstream station.

In Figure 4, the experimental data of Reference 7 indicate a
shift of origin of the axisymmetrical jet of X, = x:/ReD»= 0.225 for
rectangular initial velocity distribution (a maximum valuz from experimental
data) aad X, = x:/ReD = 0.1 for parabolic initial velocity distribution

—%
" U e
(an average value of experimental data. Note in Reference 7, x_ = 0.15(#350

¥
u,a ok "
= O.l(*%—); u$ = %'uj) . With the shift of origin, it is seen that the
experimental data agrees extremely well with numerical solution for parabolic
initial velocity distribution while it is fairly well for rectangular initial

distribution. According to numerical result, X for the later should be

0.3 to give best agreement.
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From the comparison with experimental data, it shows the
validity of the boundary layer approximation for laminar two dimensional
and axisymmetrical jet when the Reynolds number is not too low. Numerical
solution provides the overall information of the whole flow field includ-
ing those near the exit of the nozzle while similarity solution is good
only far downstream.

(b) Axial velocity profile u . The axlal velocities u vs.
the transverse coordinate y at various value of moving stream velocity
Uo are plotted in Figure 5 for two dimensional jet and in Figure 6 for
axisymmetrical jet. For all the cases, the initial velocity profiles
are rectangular. These velocity distributions approach to the form of
linearized solution when UO 1s much larger than unity.

When U, = 0 , we compare the numerical solution with similar
solutions of Eq. (1l4) or (15). To compare the axial velocity profile,
we plot u/u.m at constant £ but different x in Figure 7. For
similar solution, u/um is a constant at constant ¢ but for nunerical
solution, u/um depends on both £ and x . However as x i1ncreases,
we find in Figure 7 that the numerical solution approaches to the similar
solution. In Figures 8 and 9, the numerical solutions with two different
initial velocity profiles are compared with the corresponding similar
solutions for two dimensional and axisymmetridal jet respectively. In
general, the similar solution agrees better with parabqlic initial velocity
distribution than with rectangular one. In ail cases, the numerical solu-
tion gives broader profile near the axis of the jet than the similar

golution. This fact gives better agreement of numerical solution with
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experimental data than the similar solution,

(¢) Transverse veloclty profile v . When U, # 0 , typical
v - component veloclty profiles at x = 0.1 and 1 = 1/2, 1, and 10
for two dimensional jet and axisymmetrical jet are shown in Figure 1Q,
When U, >> l, the v - velocity component is indeed very small and can
be neglected.,

When u, = 0, Figures 11 and 12 show respectively the v = compo-
nent at varlous x - station and for different initlal veloclty profiles
for two dimensional and axisymmetrical jet. The coxrresponding similar
solution 1s also plotted in the same figure, For rectangular initial
profiles, the agreement between numexical and similar seolutions becomes
better as X, increases. For parabolic initial veloclty distribution,
the agreement 1s almost perfect for = > 0.2 .

(d) Half width of jet., TFigure 13 shows the spread of half
width b = b*/D where u/mm = 1/2 as a function of axial distance x
or x_ for two dimensional and axisymmetrical jet., Experimental data
of reference 7 with proper correction as discussed above and also data of
references 5 and 6 are also given in Figure 13. The experimental data
show a broader jet than the theoretical prediction by about 10% for two
dimengional jet and 2.5% for axisymmetrical jet. The experimental line
for rectangular initial profile of axisymmetrical jet should not be com-
pared directly with the numerical solution because there 18 a difference
in the maximum jet velocity in these two cases because of the momentum

loss in the experimental data. Should X, = 0.3 be used as recommended
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in section (a), then the experimental data is again broader than
theoretilcal prediction as described in Reference 7. The spread of

half width of linearized solution is also shown in Figure 13.

PART B. THREE DIMENSIONAL JET

VII. FUNDAMENTAL EQUATIONS
The non-dimensional fundamental equations for a steady three

dimensional laminar jet mixing of an incompressible fluid3 are as

*
follows :
2 2 W
du du ou  3u, 9 u
U +uyr=t vt w—m— ot —
0 ox oy 9z ayz Bz2
: 2 2
bw o v o dw 3w 3w ¢
(Uo+u)ax+"ay"‘waz”82+ 5 (21)
y- oz
du , v . dw
ox + oy * 0z 0 J

The non~dimensional quantities are the same as those of part A with

*

: *
w = R and z =2 /D .

v
e %
U
3

The intial and boundary conditions for Eq. (21) are:

*From a discussion of Professor Isaac Greber, the z-momentum equation
should be replaced by a vorticity equation. Since this change will not
affect the results of the present report, we shall look into this problem

in our future research progran.
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x=0: wu =1 for ygl and z sl
u, = 0 for y>1, z>L
x>0t vmifa0 along z=0 " (22)
w -.%% = 0 along y =0
9 d
u aw = 3%‘“ 0 at y=»+w, z=+o, y

where L 18 the aspect ratio of rectangular exit. In this report, we

ghall consider the case u, = 0 only.

VIII. NUMERILCAL METHOD

The alternating direction implicit finite difference method described
in reference 8 seemg most sultable for the present problem. The basic
principle 1s the same as that described in section V. However, the
progress in x - direction is completed in two steps. First we treat
one direction (e.g., 2z - direction) as unchanged and then we treat the
other direction (e.g., y - direction) as unchanged. Therefore, in each
step, the problem is essentially the same as two dimepsional one. This
method was proved to be unconditionally stable for Jlinear three dimen-
slonal equation.

Applying forward difference in x ~ direction and central diffe-
rence in .y and z directions as described in section V, the x-momentum

equation in Eq. (21) can be written in finite different form as follows;
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. 2
- (YR L1 U -
(2 + 1) uf-"}ﬁ,m, n”‘l + ( h + 2) u'e"';i,m’n + (2 1) u'e"lﬁ,m,n'*'l

p 2
N YU '/ - -ku vk

kzu kv

kv
- <2 + l)QE,m-lgn * Q‘H~'f 2)9£,m,n + QE- B 1)9£,m+l,n =

2 2
S - (2 - B
sz(l 2 )uﬂ—a,m,n+l 2 h )uﬁnk,m,n Qo %RDuz-g,m,n+1] (23b)

where h 1s the half spacing in the x -~ direction, and p, k are
respectively the y- and z-spacing. The subscripts £, m, and n
represent the position of grid point in x, y and z direction respectively.
The finite difference forms for the z-momentum equation in Eq. (21)
are the same as Eqs. (23a) and (23b). They will not be written down. Be-
cause we find that the numerical solutions for these complete non-linear
three dimensional equations (23), ete. are highly unstable. We have to use
some approximation described in the next section to obtain some useful
results of the present problem in which the 2z - momentum equation may be

neglected.

IX. APPROXIMATE NUMERICAL SOLUTION
Attempts were first made to solve'Eq. (23) numerically with all
U, v and w . Since the initial values of v and w are unknown and they

are assumed to be zero at the nozzle exit, we must calculate the values of
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v and w at the first station by satisfying the 2z - momentum
equation and equation of continuity, No stable numerical solutions
of v and w have been obtained in this way and numerical integra-
tion can not proceed downstream. We are still trying to improve our
numerical method in order to find stable numerical solution including
the cross flow term., However from our successful numerical solutions
of two dimensional and axisymmetrical jet reporteé in Part A, we find
out that the influence of cross flow terms is not too strong on the

distirbution of axial wvelocity distribution. If our main interest is

the axial velocity distribution the following equation

— 29— -
— Ju 9"u , 97u
U C 2T 32 (24)
oy 0z

together with the propetr initial and boundary condigion (22) would give
reasonable good results. We use bar to denote without cross flow. Hence
we solve equation (24) numerically for axial velocity distribution with
the initial and boundary condition (22). In order to check the accuracy
of the approximation (24), we calculate also equation (24) for the two
limiting cases; (i) two dimensional case L =« and (i1) axisymmetrical
case. Since we have the exact numerical solution for these two limiting
cases in Part A, we may easily find out the accuracy of this approxima-
tion (24) by comparing the numerical results of Eq, (24) of these two

limiting cases and the exact solutions with cross flow. We find the
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accuracy is reasonable good., Since we expect that the general three
dimensional results should lie between these two limiting cases, we
may find a method of correction to improve the numerical results of

three dimensional jet of Eq. (24) which will be discussed later,

X. RESULTS AND DISCUSSION

(a) Numerical computation. In Part A, Ay = 0.05 and
y/D = 20 were used in the computation and satisfactory results were
obtained. In the computation of three dimensional .jet., due to the
storage capacity of UNIVAC 1108, total grid point over a station can
only have 70 x 70 . When Ax = Ay = 0.1 are used, we have z/D = y/D = 7,
This means that the boundary 1s set at 7D away in the y- and z-direction.
A check of using such a boundary and spacing in two dimensional and axi-
symmetrical jets indicates poor result for x > 1 . The central (maximum)
velocity falls too rapidly for x > 1 . However, for x < 1 , the agree-
ment with previous solution is good. To improve this result, we increase
Ay and Az to 0.2 and then the boundaries are at y/D = z/D = 14 ,
Thus, we get better boundary conditions but sacrifice the accuracy in
finite difference method. A check for two dimensional and axi-symmetric
results shows that the center velocity is slightly lower by 0.01 to
0.02 1in magnitude and the velocity profile is lower by the same amount
near the central portion but agrees well in the tail. . Most important is

that the whole flow field is in better agreement with the exact solution.
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Therefore, in our three dimensional jet caleculation, both values

Ay = Az = 0,1 (for x £ 1 only) and Ay = Az = 0.2 were used. When

we compare the numerical results for these two spacing values, it was
found that the difference in center velocity is insignificant and the
velocity profile shows a wider tail in =z ~ direction when Ay = Az = 0.2,
were used with x 2 0.3 and L > 1 but insignificant difference in the
y - direction, Thus we feel that the spacing Ay = Az = 0.2 used in the
numerical integration is sufficlient. The same program was applied to the
three dimensional linearized equation and the numerical results agree

satisfactorily with the analytic solution of reference 3.

(b) Central velocity (maximum velocity at each x - station).
In Figure 14, numerical solution of the central veloclty (without cross
velocity) as a function of x - distance from nozzle exit are plotted for
two dimensional, axisymmetrical and three dimensional jet with aspect ratio
L=1,2 and 4 without free stream. It is interesting to note that
the character of these curves are similar to those obtained from linearized
equationl. For L =1 (also axlsymmetrical jet) and L = 2 , no significent
diffefence between the numerical solution and linearized solution was found.
For large L , numerical solution gives higher center velocity. In Figure 14,
exact numerical solutions with cross velocity for two dimensional and axi-
symmetrical jet are also shown.

We may figure out the correction factor due to neglecting the cross
flow for two dimensional and axisymmetric jets by comparing the corresponding
approximate and exact numerical solutions. Furthermore, since the two dimen-

sional and axisymmetrical jets are two limiting cases of the three dimensional
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jet, we may consider the correction factors of two dimensional and
axisymmetrical jet as lower and upper bounds respectively for the
correction factor of the three dimensional jet. The following correc-
tion factor for three dimensional jet is suggested.

Let Uo and U be the center velocity with cross flow

for axisymmetrlical (subject o) and two dimensional (subscript «) jet

respectively. Then u ’ u and G&L as well as ¢ , ¢ be

c
mo e uwo’ Tux’ Tyl

the central veloclty without cross flow and correction factors for axi-
symmetrical, two dimensional and three dimensional (subscript L) jet

with aspect ratlo L respectively. We define

Yno ~ Ymo Wi = Yo
= ——, ¢ = (25)
uo ue u
mo meo
and
Acuo = Cu T Cux ? €0 ~ Cuw (26)
Aumo S W T Yo 0 Au'mL = Upeo T Ypp (27)
Then
AumL
cr = o he  + € (28)
mo v
_ = 2
u umL(l + cuL) | (29)

Figure 15 shows the correction factor c,, 3 2 function of distance
from nozzle exit. The corrected central velocity for L =1, 2 and 4 are

shown in Figure 14.
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(e) Axial velocity profiles. The axial velocity profiles for
three dimensional jet without cross flow are shown in Figure 16 for
L=1, 2 and 4 . In Figure 17, the errors introduced by neglecting
the cross flow for two dimensional and axisymmetrical jets are shown by
plotting (u/uv) / (um/;ﬁ) where u and u denote axial velocity with and
without cross flow respectively and subscript m denotes the value on the
axls of the jet, il.e., U is the central velocity. It should be noted
that even though the error at the tail is large but the effect is small
because the magniltude of veloclity at the tail is always very small.

Similarly, we may find the correction factor for the general ve-
locity profile from the two dimensional and axisymmetrical jet results in

the same manner as that for center velocity. The difference in error due

to cross flow for two dimensional and axisymmetrical jets

uo um uoo l.lmOo .
A= [ ] ED] - [/ ED] (30)

u 0 u u

o mo o moee

is always small in the central portion but it may become large toward the
tail where the magnitude of velocity is always small. Hence a correction
curve based either on two dimensional or axisymmetrical jet should be suffi-
ciently accurate for the three dimensional jet.

The shape of three dimensional jet varies with X and their contours
of constant velocity over a station are different for different velocity. For

the purpose of correction, the local shape of the three dimensional jet plays
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an important role. For simplicity, the contour of half-width (u=u /2)
is chosen as the representative shape of jet for all velocitles over a
glven x-station. The contours of half-width for three dimensional jet
without cross flow are shown in Figure 18, The following rules are
suggested for the correction of tﬁree dimensional jet due to cross flow
effects:

(1) For plane perpendicular to y~z plane with largest half-
width Eim, behaves like an axisymmetrical jet.

(44) For other planes perpendicular to y-z plane half-width

—

b1 approaches to two dimensional jet linearly proportional to Ei/gim ,

we have

(u /) (u/u) ®
—~u—1‘—;L—— = — +__:L A (31)
(umL/umL) (umw/umm) blm

where A 1is given by Eq. (30). Since (umL/GﬁL) is given in Eq. (29) and
Ei as well as all terms on the right-hand side of Eq. (3l) are known, we
may calculate the value w o We feel that this correction 1s sufficient
accurate even though the correction scheme is somewhat arbitrary.

(d) Half-width of the three dimensional jet. The contours of
half-width of three dimensional jet with L =1, 2 and 4 without cross
flow are shown in Figure 18. The correction factors due to cross flow are
shown in Figure 15 which were obtained in a similar manner as other correc-
tion factors from the exact solutions of two dimensional and axisymmetrical

jet. The difference of these correction factors for the two limiting cases

is small.
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XIL. CONCLUSIONS AND GENERAL REMARKS

From our numerical solutions, the following conclusions may
be drawn:

(1) Numerical solutions for two dimensional and axisymmetrical
free jets give better description of the flow fleld than similarity so-
lutions as compared with the existing experimental data. The boundary
layer equation i1s a good approximation for the free jet problem provided
that the Reynolds number at nozzle exit is not too low.

(2) For two dimensional and axisymmetricalljets, parabolic
initial velocity distribution gives better agreement between numerical
and similarity solutions. The approach of numerical solution at large
x to similarity solution is demonstrated clearly in both central velocity
and velocity profile.

(3) When the jet velocity deviates slightly from the uniform
free stream velocity, the numerical solutions agree with the results of
linearized theory. For instance, when the jet velocity is 1/10 greater
than the free stream value, the difference between numerical and linearized
solutions is of the order of 0.001 to 0.002 of the free stream velocity.
With free stream, the magnitude of the cross flow 1s reduced significantly.

(4) The axial velocity distributions of the three dimensional jet
issuing from a rectangular nozzle of various aspect ratio without free
stream have been calculatedvnumerically by neglecting Ehe cross velocilty
(v =w = 0). The correction factors due to cross flow have been obtained
from the exact solutions with cross flow of two dimensional and axisymmetrical

jet.
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(5) The central velocity given by non-linear equations is
higher than the corresponding linearized equation and the spread of
non-linear jet is much greater than the linearized case.

(6) The effects of neglecting the cross flow are to lower the
center vélocity and to increase the velocity in the tail.

(7) Although no experimental data available for the three
dimensional jet:, from the results of the two dimensional and the
axlsymmetrical jet, we feel that our three dimensional jet numerical
solutions are sufficiently accurate,. |

(8) Further development of numerical scheme to include the cross
flow for three dimensional jet 1s still needed, because in our approximate
numerical splution, no information about cross veloclty components for

three dimensional jet is given,
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AFPPENDIX I

In the impliclit finite difference method described in Part A for
two dimensional and round jet and Part B for three dimensilonal jet, u~-
component in the new station must be obtained by solving a set of N~1

simultaneous algebralc equations as follow:

B.a, + c.u, = D

171 172 1 r= 1

Arur—l e Brur + c Uy ™ Dr . 1l <1 < N~-2

An-1N-2 * By-gUy-1 ™ Dy-1 r = N-1

where N 1s the total number of grid points in one direction, A, B, C
and D are coefficients. Treat A, B, C and D as vectors of N~1 component

and let a, B and y be the new vectors of N-1 component and

o = 8.

% = Br - ArBr—l 2 <rsg N-1
-1

B = q c 1l £r s N-1

r r r

-1

V1% D

Y. = ot (o - Y_ 4A) 2 sr g N-1
r ‘T r r-1""r N N
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Lt can be shown that

U1 ™ Ty-1

U Y " Bl 1 g1 g N2

Thus o, B, ¥y are calculated in orxder of increasing r and u

is obtained in order of decreasing r . For proof, see Reference 4.
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A computer program for two dimensional jet with rectangular

initial velocity distribution i1s given below:

C Iwo Dimensional Jet, Numerical Calculation (Implicit Method)
Dimensilon U(800), UR(800), B(800), V(800), AM(800), AN(800),
AU(800), ID(800), AHI(10), LI(10), A(800), €(B800)

C STEP INITIAL VEL. DISTRIBUTION AT THE EXIT

9900 READ(5,1100) NY, NYE, LL, KY, KYL, KY2, K¥3, LY, P, UO, XST
WRLTE (6,1100) NY, NYE, LL, KY, KYL, KY2, KY3, LY, P, U0, XST

1100 FORMAT (815, 3F10.5)
WRITE(6,3100) (LI(N), N=1, LL)

3100 FORMAT (1015)
READ(5,3200) (AHI(N), N=1, LL)
WRITE(6,3200) (AHI(N), N=1, LL)

3200 FORMAT (3F10.6, 7F6.5)
NYL = NY + 1
NYR = Ny -~ 1
KD = KY -~ 1
DO 51 I = 1, NYL
IF(I-NYE) 501, 501, 503

501 UP(L) = 1
GO TO 51

503 UP(I) = 0. )

51 CONTINUE
WRITE(6, 1009)

1009 FORMAT (30H INITIAL VELOCLTY DISTRIBUTION,/)
WRITE(6,1006)
WRLITE(6,1000) (UP(IL), I = 1, NYl, LY)
WRITE(6,1001)
X =0
UP (NYE) = .5
P2 = P#%2
KYP = 10
DO 9800 KL = 1, LL
L = LI(KL)
AH = AHI(KL)
DO 9000 KKK = 1,L
X =X+ AH
LF(UO0) 81, 82, 81




82

81
83

201

202
203

17

305

14
9100

- 63
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XPM = 0
GO To 83

XPM = X/U0

DO 9200 K = 1, KYP

DO 9100 KA = 1, KY1

DO 17 M = 1, NY1

IF(KA - 1) 201, 201, 202

UCO=UP (M) + UO
GO TO 203

Uco=U(M) + UO

B (M) =P 2*UCO /AH+2,

D (M) =UCORP2*UP (M) /AH 'L
AM(1)=B (1)
AN(1)=~2./AM(1)
AU(L)=D(1) /AM(1)

AAzm~( 5%PRY(M) + 1) 43
CA=(, 5*P*V(M) -~ 1)
AM(M)=B (M) ~ AA%AN(M~1)
AN (M) =CA/AM(M)

AU(M)=(D(M) - AU(M-1)*AA) /AM(M)
IF{KA - KY1) 305, 306, 306

DO 61 M = 1, NYL
B(M) = U(M)

UNY) = AU(NY)
DO 14 M = 1, NYR
MM = NY - M

U(MM) =AU (MM) ~AN (MM) *U (MM+1)

CONTINUE
DO 63 M =1, NY

UM) = L5*(BQM) + UQM)
(i) = 0. —_—
SUM = (U(1) - UP(L))/AH
PO 29 M = 2, NY1 I
DDT=(U(M) - UP(M))/AH

SUM=SUM + 2.%DDT #6

V(M) = —-(SUM - DDT)%.5%P
KY1l = KY2
IF(KYP - 1) 9200, 9200, 309

30
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309
308

67

9200

68

1016

601
65

402

9000

401

9800

9500

1000
1001
1006

1007
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IF(K-KD) 9200, 308, 9200

DO 67 M=1l, NY1
C(M) = v(M)

AQM) = U(M)

CONTINUE

DO 68 M = 1, NYL

V(M) = 5%(C(M) + V(M)

UuM) = .5%(U(M) + AQM))
WRITE(6,1016) X, XPM

FORMAT (/,30H AVERAGE VALUE FOR U, V AT X=,F9.5,5X,4H X'=,¥9.5,/)
WRLTE (6,1006)

WRLITE(6,1000) (U(L),I=1,NY1,LY)

WRITE(6,1007)

WRITE(6,1000) (V(I),I=1,N¥1,LY)

DO 65 M=1l, NY1

UR (M) = U(M)
IF(X-XST) 9000, 402, 402

KYP = KY

CONTINUE
IF(KL-1) 9800, 401, 401

KY1=KY3
KY2=KY3

CONTINUE
WRITE (6,9500)

FORMAT (1H1)
GO TO 9900

FORMAT (10F12.5)

FORMAT (//)

FORMAT (12H U COMPONENT, /)
FORMAT (/,12H V COMPONENT, /)

END




where
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NY = total number of grid point in y direction minus 1.

NYE = grid point at edge of exit

LL = number of sets of equal spacing stations to be calculated
KY = number of iteration for v at downstream X* > XST

KY1l, KY2, KY3 = number of iteration for u at first section, first

set of stations and following stations respectively
LY = grid point in interval for printing
p = spacing in y direction
U = free stream velocity (Uo/Uj)

XST = distance from exit, for X* < XST ifération in v is 10;
for X* < XST diteration in v is given by KY.

LI(LL) = number of statlons to be calculated in each set

AHI (LL) = spacing between stations in each set

Transform from two dimensional case to axisymmetrical case can easily be

done by changing the statements with # sign as follow:

#1 By adding a statement immediately next to it
B(1) = B(1) + 2

#2  AA = ~(.5%P*(V(M) - 1/((M-1)*P)) + 1)

#3  CA = 2edy(M) - 1/((M=1)*P)) - 1
#4  MULTIPLYING BY 0.5 ON THE R.H.S.
#5 MULTIPLYING BY (M-1) ON THE R.H.S.

{6 DIVIDING BY (M-1) ON THE R.H.S.
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FIG. 18. CONTOUR OF HALF-WIDTH OF THREE DIMEN-
SIONAL JET WITHOUT CROSS FLOW.
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