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ABSTRACT

•	 .-	 --.-	 .	 . 

A comprehensive literature review covering the period 

•	 from 1964 through midyear 1970 on •heat pipe technology i-s 

presented.	 A brief, citation of early heat pipe work is 	 . 

followed by a presentation of heat pipe phenomenology in 

which the mechanism of operation, external boundary condi-

tions, operational, limits, the influence of noncondensable .-

gases, and startup behavior, are discussed. 	 Experimental 

investigations directed at determining the suitability of
J 

•1 

.1 
-1 
1

various substances	 for use as working fluids and wicks are 

described.	 In addition, numerous experimental studies 	 . . • 

dealing with operational characteristics of heat pipes are 

evaluated.	 Several possible areas of heat pipe application 

including heat transfer, temperature control, heat flux 

conversion and control of thermal conductance are examined 

A discussion of basic heat pipe theory together with numer-

ous modifications and simplifications concludes the review 

An experimental program is described which consisted of 

three phases	 The first phase involved the design and con-,. 

struction of an apparatus for the measu'-mc.nt of wicking 

properties such as the maximum wicking height and the 

;.	 .	 ,•	 -.-.	 H:	 :. • -
•'!
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xvi 

' transient velocity characteristics in a porous'-sample.  The 

second phase of the experimental program involved the design, 

•	 construction, and testing of a conventional cylindrical lcat 

pipe	 Wall temperatures , were measured along the pipe as a 

function of both heat Input and pic orientitton 	 It t.as


found that the temperatures t the evaporator end ere 

extremely sensitive to orientation 

The third and final phase of the investiation con-

ssted of experimentation with a coplanar heat pipe	 The


objective of this part of the study was to determine to 

hat degree the components in a to component leat pp 

separate. 89th single component and water-methanäl mixtures 

were used for the working fluid. The temperature distribu-

tion was measured under the wicks and in the vapor space 

for various combinations of power input, orientation, and 

methanol mass fraction. It was found that stratification 

had an influence on the temperature field within the vapor. 	
it 

The temperature profiles mea:;urcd with water-methanol Mix-
-J 

turcs exhibited a consistent trend when compared to the	 H 

profiles obtained with pure water- The behavior of the 

profiles suggests that a partial separation of components 

occurred	 The phnorncnon of complete component separation 

was not observed	
[ _ 

t.

4

-• 
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CUAPTER I	 INTRODUCTION 

•
In recent years it has become increasingly important 

to develop methods for the efficient transport of thermal 

•	 S energy from one location to another.	 The advent of the. -. 

space age has moreover stimulated research fcr heat transfer - 

devices which are lightweight and have relatively long life 

expectanci e s.	 Such a device, although not for space appli- 

cation, was first proposed by Gaugler (1) of the General. 

Motors Corporation in 1944	 Unfortunately for Gaugler, the 

thermal transport problems of that time could be solved 	 . 

using more conventional heat transfer methods and devices, 

thus effectively concealing the true potential -of his iriven- • 

• tion for some 20 y:ars. 	 In 1962 Trefethen {2) submitted a 

•	 report to the General Electric Company in which he suggested I 

the possible use of a pssivc thermal device fo 	 spacecraft 

applications.	 This device was to consist of a hollow tube 
S 

with a porous liner cove-ring the inside surface.	 Energy . 

would he transferred from one end to the other by means of	 :. 

2 capillary induced, continuous -mass cycling	 o experi : 
- mental verification of this concept was attempted, however,,,- •	 •

- 

and the suggostLen was quietly buried in company files 

In 1964 Grover, e'	 al	 (3] of the Los Alamos Scientific 

Laboratory .1icieendcntly rediscovered a device similar .to

•--:-; 

•5555	
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Gaugler and Trefethen's and coined the name "heat pipe" to 

describe it.-	 Grover and his co-workers wcreworking in the 	 -- . 

area of spacecraft power generation at the time but they -. 

immediately recognized the potential of the heat pipe 'in-. 

other areas.	 A heat pipc.is defined as a closed structure

containing some working fluid which transfers thermal energy 1' 

from one part of the structuxe to another part by means of 1--. 

vaporization of a liquid, transport and condensation of the 1' 

•	 vapor, and the subsequent return of the condensate from the 

condenser by capillary action to the evaporator. 	 Because
.S 

energy is transferred by the flow of a pure saturated vapor, . 

a heat pipe is usually very nearly isothermal. 	 however,
 

heat pipes often operate non isothermally if the saturated 

vapor is "contaminated" with a second gas.	 The second gas
I 

may either be	 introduced into the pipe intentionally for the 

purpose of control, or may be accidentally admitted through 

leaks or improper filling procedures	 If the secord gas 

•	 (vapor)	 partici p ates	 in	 the evaporation processes,	 then the. . 

pipe is called a "two component" heat pipe. 	 If the second •--	 .	
• 

gas is unable to liquify and participate in the heat trans-

fer,	 it	 is u';ually	 referred	 to as a noncondensable gas.' - -- • - 

Many investigators have had cxp-ricnce ' with noncondensable • . -	 . 

gases	 in neat pipes	 (usually un i ntentionally)	 but	 little 

-	 has been done to.invcstigatc the operation of two or multi- 	 • --
•	 -.	 -	 .:	 •--	 .....•.	

.	 -	
--•	 -	

-	 .•;. -. 

conionent heat pipes.	 This	 lack of- activity, has - provided S 

-	

• 

.-	 -	

--	

•:	
...	 - - 

the motivation for the present research prograoi

H-m -4, 
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Problem Formulation - - 

The first paper which mentioned two and multomponcnt 	
V 

heat pipes was published by Cotter in 1965 [2).	 lie per-

formed an elementary one dimensional analysis and conclude4. 

that for a heat pipe operating at steady statt, the various 

components would separate and form a series of segments each 

containing a pure component 	 hach houl	 operate as	 fl 

"independent" heat pipe within the multi-component heat 

pipe.	 The temperature of each segment would adjust itself 

so that the pressure within the vapor is nearly coa 

throughout the entire pipe, thus	 forming a series of tern-. 

peraturc plateaus.	 The most volatile component, of course, 

would be located at the condenser end of te heat pipe. 

S.	 Kat:off	 [5]	 analyzed the wall	 temperature distribution 

for a copper heat pipe containing a mixture of ethanol and 	
V 

methanol.	 He assumed that the energy needed for the leg,:
V 

with the more volatile (mcthanol).component is transferred'- 

past the ethano1methanol interface primarily by conduction 

ng the wall and wick structure	 If this heat flow is alo-

sufficient to maintain cxrculaticn in the methanol segment, 

then the situation	 JescrlbLd by ('otter would exist,	 i. e., 

the two legs would operate independently	 and the temperature 
V	 V	

V 

distribution in the pipe would comprise two plateaus 	 In 

the transition iegion het%seen the two leg	 the composition - 

of both the liquid and vapor would 	 ar> continuously, but 

di

- 
..

LVaV 
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at each location the relati'e compositions would have to be 

such that the liquid and vapor are in equilibrium." Katzoff
	 r 

speculated that if on the other hand the conduction past the
	

I.. 
interface is not enough to maintain the methanol leg, then 

-I 

•1

L

it may oc possinie tor an. eLminuJ-ulvLrLanoi mix-ture 	 LU exist . 

along the entire pipe in both the liquid and the vapor.... * e 

This would be possible if the composition varied both 

radially and axially instead of just axially. 	 - 

Tien 1921 measured the ax i al temperature distribution 

along the outside of .i water-ethanol heat pipe	 He de1er-

mined the pressure inside of the pipe and compared this" with 

the pressure which had to ,prevail if pure ethanol occupied 

the concnscr one," pure water occupied the evaporator.:	 He  

concluded that separation into pure components in a heat L-
pipe	 is extremely. difficult, 	 if not impossible,	 to achieve.  

Instead he found that if the initial composition was rich in 

ethanol, the data attested to the existence of a water-'  

ethanol -mixture in the evaporator while nearly pure ethanol  

(i.e..,	 the azeotropic. mixture) 	 occupied	 the condenser sec-' 1 

tion	 All of Tic.,'s data, 	 however, were obtained 'ih the 

pipe operating vertically with the evaporator-below the 	 . ..	 .: 

condenser.	 If the pipe contains excess liquid such an 

arrangement	 is usually	 referred to as a reflux condenser 

because gravity	 forces,	 instead of capillary forces ) can 

.always return the condensate to the evaporator 	 In ..uch 

cases results would have to be viewed with some caution	 :- - 
.. ... . 

...-.	 . .- .	 .- .	 .	 ...
'I 
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because the wick structure may or may not significantly 

alter, the liquid vapor equilibrium conditions.,. 

It is clear that present knowledge about even the funda-

mentals of multi-componcn. heat pipe operation is rather 

limited	 It was the objective of this study to extend this *

knowledge for the case of two component heat pipes	 The 

aims of the research reported in this study i:erc:  

1)	 to. perform a. survey and evaluation of the heat 	 .	 . 

pipe literature - - 

2)	 to experimentally study and describe the basic	 . 

physical behavior of a t.o component seat pipe, 

-	 and  

31;	 to anal:;ticaily predict the qualitative 	 tempera-

ture and concentration profiles	 in the vapor core 

of a two component heat pipe.	 • 

Because an understanding of a single component heat 

pipe and some- of the problems associated with it 	 is a pre-

17 eq u i s i	 e	 for the	 investigation.of	 a two.componcnt, heat	 . --	 •- .	 .:. 

pipe,	 chapter IJ	 contains a discussion of the general 

phenomenology of heat pipes 	 In ciripter . III a review of 

all literature pertaining to heat pipes is presented 	 the 4 

articles to be discussed include those published L1
	 top i- + 

approximately March 1970	 In addition to these, 	 about 

twelve articles to be presented at the 1970 AS'L Space 

Technology and and Hcit Transfer Conference, Los Angeles, 

California, June	 21 ;-24 . will be	 referenced . in an appendix to 

- - 2
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this study.	 Duo to the large number of references cit.ed,, 

chapter ill is somewhat lengthy.	 Readers priLarily interested  

in the experimental	 investigation may find it expedient to 

proceed directly to chapter IV. 	 The analytical formulation 

for a two component heat pipe is discussed in chapter Tv.. 	 . 

In chapter V the various apparatus used during the course of 	 - 

the current research are described in detail.	 Experimental 

results are presented, in chapter VI together with the pre-'	 •• .	 .	 . 

• 	 dictions, from chapter IV. 	 A number. of appendices in which 

supporting information is contained concludes the study. •• 

If, 

* 
Chapters II and III together with a modified intro-

ductory chapter are being published, as a monograph entitled, 	 .. .•.. 	 . 
"The Heat Pipe," in volume seven	 (7) of the "Advances 	 in	 -	 • 
}{eat and Mass Transfer," New York, 	 Academic	 Press,	 1971.	 '	 •	 . ,	 . •	 .

- 

•	 -	 ....-	 .	 •	 .	 - • 

-, ., '	 -• -	 -	
• ;:-	 •.. •,	 •-,

,•	
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•	 . ChAPTER 11:	 HEAT PIPE PHENOMENOLOGY • 

0	 • 

Description and Types o	 He-it Pipes 

•	 As evident from the definition given in the introduc- J :.; 

tio, all heat pipes have a number oLF common features.	 : 1 
•	 .• 

Fir-;t, all heat pipes incorporate what is usually referred 

to as an evaporator.	 This is the part of the heat pipc 1 
through which thermal energy from some external source is 

introduced into its walls and from there subsequently 	 tLans-

ferred to thc, working fluid.	 Second, all heat pipes include •	 -	 H. 

a condenser ;cction.	 The working fluid condenses here and'- 

ultimately transfers its heat of coadcnsation to an external
- 

sink	 Many	 heat pipes contain also an adiabntic section

	

located between evaporator and condenser.. The adia; atic 	 L 

section, besides prcviding a passage for the fluid, serves 	 - H

no functional purpose other than separating the heat source 

and heat sink to make the heat pipe compatible with any 

given cxternal geometric requlrcment 

in addition to the longitudinal ,ectxons, i e , 

evaporator, condenser, and adiaba t ic section, a heat pipe
•	 '-. -.-	 '4


ny also be subdivided for'the purpose of discussion into 

three radial components 	 The outermost shell is usually 
•

	

	 •	 •	 •	 ••	 .

refelrLd to sim p ly ' as the "c"ntainer " The container's 

sole-mechanical purpose is to enclose the functioning parts 

.............................................................. 

•	 •...	 ••••.•	 ••,.	 -.••	 •..	 •

r 
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of the heat pioc and to lend it structural rigidity.,Since 

the internal pressure is often different from the environ-

mental pressure, the container must be capable of with-

standing pressure differences without bulging-or bursting. 

This constriint, along with cost and manufacturing constdera- 

tions has led to the wide use of cylindrical "pips" as con- 

taming- structures.	 In addition to fluid and "pressure" - -' 

containment, the container also acts as an important part of 

the heat Flow path from the source to the sink (see Figure 

2.1).	 Hence the container walls should be thin to minimize 

their thcrma4	 resistance.	 This feature	 is	 in direct opposi-

.	 .. . 
ti on to the thick wall requirement for prcssure containment 

and hence an opportunity, for an optimization presents 	 itself. 

The next radial	 clement	 is usually referred to as the wick. 

=

	

For ease of the present discussion, 	 this may be regarded 

simply as a porous material	 filled with small random inter-

connected capillary channels. 	 Various	 types of wicks and 	 .	 .	 . 

their properties are discussed in grc.tcr detail later in 

this study.	 The wick returns the liquid fbm the . condenser	 -	 - I-

to the cvdpoator utilizing the surface tension forces of 

the liquidAlthough it is not a requirement,	 the wick is 

usually firml y attached to or pressed against the inside 

ill of the container.	 Since Vie hick	 is	 in gererel 

saturated with a low conductivit y working fluid (except in 

the case of liquid metals) the wick - fiuid matrix reprcsents. 

usually the major resistancO along thc. heat flnh path.	 It.
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CONTAINER	 .	 . 

I	 I	 - 
CONDENSER	 i. ADIABATIC	 EVAPORATOR	 . 

.	 (HEAT SINK)	 SECTION	 (HEAT SOURCE).	 . 

Figure 2.1	 Heat Pipe Components 

is therefore nccessry to.considerthermal properties as.. 	 .	 .,. 

well as liquid transport properties when selecting a suita-	 . . 

ble wick. The interior space of the heat pipe is usually 

referred to as the vapor core which provides a passage for	 . 

the vapor as it flows from the evaporator to the condenser. 

It should now be evident that the heat pipe definition 

entails no geometric constraints in regard to its structure, 

and in fact a large number of heat pipes of many different 

shapes have been built and tested	 Several conventional and 

unconventional heat pipes are depicted in Figures 2.2	 - 

through 2.4. A.heat pipe, as originally conceived by 	 . 

•	 -I	 . 	 . 	 . 	 . 	 . 	 .-

Grover, èt al. is illustrated in Figure 2.2-A [3]. This 


•	 . -	 particular geometry exhibits two features which early.:- - -.	 -


investigators felt were important for efficient heat pipe

131 
1	 --	 -	 .••	 -.	
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operation, i.e.  , a relatively large length to diameter ratio, 

and 'a porous wick material which covers the inside surface 

• of the structure.	 Figures	 2.2-Band 2.2-C illustrate two 

typical heat pipe configurations which also have a large .: 

length to diameter ratio, but which provide for capillary 

transport of the liquid in grooves and crevices forming an 

integral part of the containing structure, contrary to the 

porous wicking material sketched in Figure 2.2-A, which is 

only held against the inside wall.	 The heat pipe thown •• 

Figure 2.2-D has a very small length to diameter ratio. 	 .
•	 . 

. 

Heat pipes having such proportions are often called "vapor  

chambers" or "vapor chamber Tins. ".	 The acvice s1iown40 

Figure 2.2-E also fits our definition of a heat pipe although H 

the	 liquid and vapor flow paths are separated mechanically 	 . .	 . •• 

whereas	 in the mor	 ';onventional heat pipe only the liquid-

vapor interface separates the flow paths. 	 Finally,	 thi-

device depicted in Figure 2.2-F has recently been intr'duced 

[6]	 as a "rotating heat pipe."	 Here the liquid return is

. 

caused by centrifugal forces of the rotatingcontrivanc.	 . 

Although the rotating device appears promising fOrinany 

thermal	 transport problems, 	 it does not	 fit our definition -	 -•	 .- .-

of	 i heat pipe and hence will not be discussed an detail 

Evidently the variations an heat pipe shapes are 

unlimited,	 both Katzoff [53 aid Conway and. Kelley	 [7] 1'avc 

consic'rcd a doughnut shaped heat pipe 	 Sceral anvesti-

gators	 [5,	 8, 91 have proposed and designed flexible heat
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pipes.	 RCA has built and operated heat pipes with a variety 

of geometries	 Among these	 re the two illustrated-in 

Figures 2.3-A and 2.3-8 1101..	 The configuration displayed -	 --

in 2.3-A will effectively transport heat around a 90 0 bend. 

The five-pronged device in Figure 2.3-B allows the use of 

any combination of prongs as evaporators and of the remain -

ing prongs as condensers 	 For case of manufacturing, both 

types, have cylindrical cross sections although this is not 

a rcouicmcnt	 In addition to the above geonctr1s, 

several	 investigators	 [10,	 11)	 have built and	 testcd a so-

I

called radial hcat.pipc.	 As illustrated in Figure 2.4, the 

radial heat pipe provides for thermal cncigv transport from 

a heat source to a concentric heat sink. ' The wick lining 

the	 inner walls of the annulus	 in this case is complimented• 

by spokes consisting of additional wick materials. 	 Here, 

as with most other heat pipe geometries, 	 the relative posi-

tions of the condenser and evaporator may be interchanged 

in order to accommodate any particular thermal transport 

problem.	 The varicty of geometries depicted above arc by 

no vicins	 tnc1usi	 of all possible configurations	 and are 

presented only to illustrate the extreme versatility of the 

heat pipe for heat transfer problems
•	 '	

':'. 
I'unctionin, of the heat Pipe 

At first glance,	 the operation o fl. a heat pipeappcars 

exceedingl y simple	 Thermal energy is transferred from the 

evaporitor to the condenser b>	 continuous rviss cycling and

- 

z-
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Figure 2.3 Various heat Pipe Geometries	 [10) 

CONDENSER

EVAPORATOR •
:.

4 

Figure 2.4	 Radial Heat Pipe	 (11) 
• ••	 •	 •. • '•
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phase change of a suitable working fluid..'-The mechanism of 

phase change with the accompanying absorption or release of 	 - -	 ••	 - 

the latent heat of transformation has long been recognized 

as an efficient heat transfer process. 	 Plany gadgets, e.g., 

the coffee percolator and the reflux condenser, combine heat 

transfer by phase change with a gravity induced mass cycling. 

Boilers in many cases utilize a mechanical pump to continu-; 

ously circulate and replenish the working fluid. 	 In a hat 

pipe, however, the working fluid is continuouslycycled 'by 

the surface tension forces of the fluid itself. 	 It is this 

unique method of mass transfer which has both stimu1ate-a	 •-

growing interest in the heat pipe, and has also proved tóbe 

-.	 - one of the major ir'.pedimcnts	 for a successful heat pipe 

operation.	 To better understand the functioning and the 

limitations of heat pipes	 let us consider in more detail 

the physical effects occurring in a heat pipe.. 	 • 

The steady state operation of . a heat pipe may be repre-

sented schematically as shown in Figure 2.5.	 The inside 

wall of the container is lined with a porous capillary 

structure which is szturatcd with some working fluid 	 A 

sufficient amount of fluid must be supplied in the container, 

i n order to fill 	 (saturate) all the pores of the capillary 

structure	 The penalty for having a slight excess or fluid 

is snail compared to the possibility of heat pipe failure 

which might arise from a dcricicncyof fluid 	 The vapor 

the core of the pipe is esscitially 	 t  the saturation-
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•1 .	 .	 .	 Figure 2.5
	 Heat Pipe Schematic  

H .	 .	 .• 

pressure 
corresponding to the liquid surface temperature.  

In actuality the saturation pressure of a. vapor in equi-	 . 

librium with a liquid surface depends also on the radius of 1. 

curvature of the surface	 The vapor pressure is greater 

than that acting on a plane surface if the liquid surface 

is convex, and less if the meniscus .is concave	 The effect 

is usually too small to warrant consideration and is not
J 

significant until the meniscus radius 	 is of the order of •	 . 

one micron	 [121.	 Since the typical capillary pores 	 in most	 • . . 
• . 

heat pipes are larger than one micron, no noticeable error 

is introduced by neglecting this effect

I 
S	 S	 •S. :'	 S	 - 	 • 	 ••••,	 ........	 .--:
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The heat transfer from the source to the sink is 

affected mainly by six s,inultancous and interdependent 

processes:	 1) heat transfer fron the source through the	 - .-

container wall and wick-liquid matrix to the liquid-vapor 

interface; 2) evaporation of the liquid at the liquid-vapor 

interface in the evaporator; 3)	 transport of the vapor in 

the core from the evaporator to the condenser; 4) condensa-

tion of the 'vapor on the liquid-vapor interface in the 

condenser; 5) heat transfer'from the liquid-vapor interface 

through the wick-liquid matrix and container wall to the 4 

sink; and 6) return flow of the condensate from the Con-' •" 

denser to the evaporator caused by capillary action' in the 

wick'.	 Let us now consider each of these processes separately 	 - 

and in more detail.  

Heat transfe: from the source to the liquid-vapor inter-  

face in the evaporator is essentially a conduction process. 

For low conductivity fluids, e.g., water or alcohols, 	 the  

thermal energy is conducted through the wick-liquid matrix 

almost entirely by	 the porous wick material since	 the wick''	 '• '	 "	 - 

has	 i higher thermal conductivity titan the fluid 	 For- high 

conductivity liquid metals, however, 	 the heat is conducted  

both through the wick st ructure and b y the liquid in the 

pores.'	 Heat transfer by convection is very small because  

the pores are too small for-any. significant convec..ton cur-

rents to develop	 The temperature drop associated 	 ith con- '1 

duction across the wick-liquid matrix depends on the working-  

7. 

- 
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fluid, wick materials, wick thickness and the net radial 

heat flux This temperature drop may range from a few 

tenths to several hundred degrees Fahrenheit and is one of 

the major temperature gradients along the heat path. 

Once the thermal energy has been transferred to the 

vicinity of the liquid-vapor interface, evaporation of-the 

liquid can take place. :
	

the liquid evaporates, the net : 

mass flow away from the surface causes-the liquid-vqpor. 

Interface to recede into the wicking structure	 The result-

ing concave shape of thi meniscus, shown in Figure 2.S, is 

responsible for the functioning of the heat pipe. A simple 

force balance ona single pore shows that for a spherical 

interface the pressure of the vapor exceeds the liquid 

pressure by an amount equal to twice the surface tension 

divided by the meniscus radius. This pressure difference 

is the basic driving force for both the liquid and vapor 

flows. It is opposed mainly by the gravitational and viscous  

.forces acting on the liquid during circulation. The assumed 	 - - -	 - - 

form of the liquid-vapor interface sketched in Figure 2.5 is - 	 - - 

probably quite realistic for relatively low heat fluxes 	 As 

the heat flux increases, however, the meniscus recedes even 

further into thewick- and assumes a more complex shape [131 

which may eventuall y interfere-with the liquid flow in the 

capillaries	 Once the liquid has absorbed the latent heat


of vaporization- and is evaporated, - the apor begins to n'ove 

through the core of the pire towards the condenser. The 

•	 -	 -	 :-	 -	 -	 -	 -	 •	 • •.- -	 - -	 - --. - 	 •-	 -..	 -. -:' -•- - - 
- - * 
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flow is caused by a sm11 pressure difference prevailing in 

the vapor core	 This pressure difference is caused by the 

slightly higherhigher temperature (saturation pressure) in the 

• cvapo?ator as compared to the temperature (and hence"lower 	 - -• 

saturation pressure)	 in the condenser.	 This temperature 

drop is often used as i criterion for successful heat pipe 

opo	 n,	 md if the difference is less than I or 2°F, the 

heat pipe is often said to be operating in the "heat pipe 

regime" i e , isothermally (3, 14, 151 	 s the vapoi flow' 

t."ard the condenser, additional mass is added from the down-

stream portions of the evaporator and consequently 	 be mass 

flow rate and velocity in the axial direction continuc..to.
F 

increase throughout the cvaperatox	 Inverse conditions pre-

Vail	 in	 the condenser section of the heat pipe.	 .	 .	 . [. 

•	 The vapor flow in the evaporator and condenser uf  

heat pipe	 is dynamicall y	 identical	 to pipe flo	 ith	 iniec-

tionor siction..respectively through a porous wal1..	 The 	 --, 

flow n'ay be either laminar or turbulent depending on the -. 

operating conditions of the heat pipe. 	 As the vapor flows 	 • 

through the evapoi 1t	 (and the adiabatic section) 	 the prs-

sure continues to decrease due to both viscous* an3 accecra- 4 

ton effects.,Once the condenser section	 is reached and the 

vapor begins to cond'nse on the liquid-wick surface, a par-

tial dynamic recovery in the decelerating flow tends to in-
P.- 

crease the prescur a in the direction of fluid mcticn 	 It 

-	
juld betuentioned that the d iving pre sure in the vapor 

••-	 :-	 ••	 -	 -	 •-••-	 -•---•-:--•;-

I 
-	 - 
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core is somewhat smaller than the vapor pressure difference 

of the fluid in the evaporator and condenser 	 This is so,	 - 

because the vapor pressure of the liquid in-the evaporator 	 . .... 

must exceed the pressure in the adjacent, vapor in order to
 

maintain a continued evaporation process. 	 Likewise, the"	 .	 . 

pressure of the condensing vapor must exceed the vapor r	 --

pressure of the adjacent liquid in order to maintain con-	 -. 

tinued condcns-it'on 

As the vapor condenses the liquid saturates the pores
 

in the-condenser..	 The meniscus has a very large radius of  

curvature, and in fact it may be considered essentially  

• infinite.	 Any excess working flui4:i.n the ppc collects bit	 .-.-

'thus the condenser surface	 virtuall y, insuring a plane inter- 

J facc	 The heat of condensation is conducted through the  

wick-liquid matrix and container wall	 to the heat sink. 

If excess	 liquid	 is present,	 the temperature drop front the 

interface	 to	 the	 outside	 of the container will be	 larger.	 '	 '.	 •. 

than -the corresponding temperature drop in the evaporator. . . 

In fact,	 some	 investigators	 [14,	 161	 feel	 that the thermal  

rcistancc in the condenser is one of the major parccte1s 

to he considered in heat pipe design 

Finall y , 	 th.	 condensate-is"pumped" through the wick to 

the evaporator b y capillary action	 The liquid flow is gen-
. 5 -

crall)	 regarded to be laminar and assumed to be dominated by	 - 

viscous forces	 The pressure--along the liquid flow path 
decreases due to both the viscous losses and the increase in 

5'

-.
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elevation if the Iict pipe is operated in agraity field ' 

Operation of the heat pipe in presence of	 with the-.,  '.gravity 

condenser above"the ' evaporator actually' defeits the purpose• 

of the wick since gravity can be used to return the conden-

sate along the inside of the container hall with less - 

Viscous loss than liquid flow in the wick would cause 	 in 

this mode of operation the heat pipe is said to have degen- -. 

crated into a reflux condenser or thernosphon 	 Therefore, 

in this monograph, the pressure loss due to gravity will - 

always be considered great'- than zero (evaporator above - 

condenser ) or equal to zero (horizontal orientation	 heat of 

pipe simulating a gravity free environment).

- Because the vapor temperature, or operating temperature 

•	 as	 it is sometimes called, 	 of the heat pipe iessentiall 

dcterrn.i by the coupling of the heat, pipe to the heat . I 

source and the heat sink-,	 a brief discussion of possible 	 . "• . 

source-sink combinations and their effect on the heat pipe 

operation is warranted.	 The vapor temperature adjusts - .'.'	 ,	 V	

'V	 ,,•'•• 
itself in such a w ay that the temperature drop across the

'I 

wick-liquid matrix and the container hall in evaporator and 

condenser is adequate to transfer the given heat, flow from .	 •.2: 

heat source to heat sink	 In other words,	 the absolute
A 

vapor temperature is established in response to the tempera-

tures imposed on both the evaporator and cond...i ser by the 

source and sink	 ThL tenperatures at the outside wall of 

the heat pipe may , be either ' fixed" or "floating" depending 

-S 4
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imposed by source or sink
	 t 

on the t>pO of constraints
is usually the , 

the capOrat0r, a "floating" temperature 

'forcing some sort of hcatf1uX boundary condit10 
rcult0f

This is easily	
ccomplish	 b) 

upon the heat source.
induCttofl	 R	 coils or - 

employing resistance heaters,
the condenser, 

radiativc heating for the heat source
	 At 

comflO	
effected by radiative 

a	
-floating" temper iture is

at either 

cooling	
A fixed tcmnCratu	 can be 

ra:nta1fl

by 
constant tonPCT3tU 	

baths or 
end of the heat pire with

of  or cn 'Cflsatbon 
the heat of evaporati on	 cc 

fluid for heat addition or removal 
secondar	 orking 

at cOflStflt temperatures 
respCCttVClY$

05 5ib1e qualitative tcnpCratu1 
Let us now cons3dCr

2 1)	 for - 
t he heat flow path (Sec Figure 

profiles along
FigUrC 2 b A depiCtS the 

combinations*.
 -- several sourCCS1

be obtained if both the 
temperature profile which wodd

"  fixed" temperature	 •  H- 
and the sink were of the constant 

source	 fo only one axial heat	
rate 

1:0	
a situation, 

type.
the temperaturein the heat pipc.15 

is	 0ssib1e.	
The vapor

sink tempera- 
quite close to the average of the source and

the source 
tends to he somCat closer to 

tureS and probably in the iiquidCk 

SIUCC 
the thermal resistance 

temperature
than in the evaporator. 

natri	 is larger	
n the con denser 

2.6-B  illustrates the teperatur0 profile which 
Figure fCked and the source 
results if the sink tenperature 	

s
combitiOfl 
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of source and sink is commonly found in laboratory testing — 

of low temperature heat pipes 	 (resistance heating and water I 

jacket cooling)	 As shown by profiles a and c, the snircc
i 

temperature and the vapor temperature increase with ircreas- — 

ing heat flux.	 Conversely, if the heat flux is maintained 

constant and the sink temperature is increased as in pro-
a7 

files a a'id b,	 the vapor temperature and the source tempera-

ture again increase, but now the temperature gradients in 

the evaporator and condenser remain the same 	 Figure 2.'6-C 

describes the profiles which are obtained if the source 

temperature is fixed and the sink temperature is allowed to 

float	 Here we see from profiles a and b that the vapor 

temperature must drop in order to accopunodate ..a larger heat 

flux for a fixed source temperature and conversely it must 

rise for a given heat flux if the source-temperature-is 

increased	 A significant omission from Figure 2.6 is the 

case where both the source and the sink temperature are 

allowed to float, a situation often encountered during the 

laboratory testing of high temperature liquid metal heat - 

pipes	 induction or RF coil heating and radiative cooling) 

For this case the operating temperature of the heat pipe 

adjusts .itself to a value at which the total neat input 

equals the total heat rejection. 	 Since this self-adjustment 

depends on the exact type of source and sink used, and*(1 
I	 —	 I-	 114 

possibly on certain properties of the container wall 3tself, — 

e.g.,  electrical resistivit)	 or emissivity, an exact

tJ 

1-f 
-	 p	 - 

I	 -
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statement about the operating temperature , cannot be made	 - 

In general, increased 'icat fluxes cause an increase in the 

cperating temperature of the heat pipe 

The proper fu,ictioning of heat pipes depends also upon 

a continuous circulation of the worlig fluid; consequently, 

it is not surprising that virtually all of the limitations 

(limits)	 f 	 successful heat pipe operation are associated 

in one	 av or another with 'the interruption of this mass 

circulation	 The limit discussed and anal)zed most often 

in the literature	 is	 the so-called "wicking limit. ".	 This 

:.	 condition is reached when a given heat flux causes the 

liquid in the liquid-wick matrix to evaporate faster than 

it can be supplied by capillary pumping in the wick 	 (tcking 

action).	 Once this condition occurs,	 theliquid-vapor 

meniscus continues to recede into the wick until all of the 

liquid has been depleted 	 The wick in thLi evaporator

becomes dry and the container temperature increases wutnou 

bound until a "burnout" condition is reached which usually	 S 

results in destruction of the pipe. Of course, the burnout 

condition can only be reached if the source 4s of the float-

ing temperature type. For a fixed temperature source, the 

heat pipe would simply. cease functioning once.the capillary 

limit is achieved, and no mechanical damage would occur. 

Two additional limits of heat pipe operation are common-
2. 

1> associated with heat pipe 'startup" and low ,. bpcr associated t1ng

 temperature conditions	 One of these is called "sonic limit", -4 

54 
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a condition found in heat pipes in which the source tempera-

ture is kept constant while the sink temperature is lowered 

The vapor density decreases and the vapor velocity, increases 

correspondingly until the velocity becomes sonic. 	 The vapor  

flow "chokes' at the etperator exit, juct as	 it does when - 

the sonic condition is reached at the throat of a convergent 

nozzle [17]	 Once choking occurs, a further decrease of the 

sink temperature, in analogy to a reduction of the exit 

pressure in i noz
z le, does not result any longer in an 

increase of the total heat flow. 

A so-called "en t rainment limit" is reached when the	 . 

'p)r velocit y is high enough and the vapor stream slicars 

off droplets from the liquid interface entraining and carry- ..	 •; 

ing them to the condenser.	 Quite frequently the droplets 

can he heard as they impinge upon the end cap of the heat 

pipe	 [18].	 The premature depletion of	 the working	 fluid	 .,.	 .. 

from th	 wick means	 that less	 liquid can reach the evaporator 

where it is needed	 for successful heat pipe operation.	 The'. 

entrainment	 depends to a large extent on the surface ,limit 

pore size of the	 sick material and also on the surface ten- size

sion of the working fluid	 The iie of smail pore sizes and 

fluids having large surface tensions is perhaps the most -, 

effective way of avoiding liquid entrainment 

The relative position of the operating units	 in	 i heat 

flow Q.	 versus	 temperature I plot,	 is	 illustrated in Figure 
•	 .	 .	 ......-	 .	 - 

2.7.here Q represents the total axial heat transfer rate
.•	 .	 .
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and I is the average vapor temperature in the heat pipe 

Successful heat pipe operation is possible only under con-. 

ditions existing below the curve ARCDE. 	 The shape of the	 V	 - 

area under the curve may vary drastically depending on the 

wick material and working fluid used 	 however, the basic	 •.. 

shape of each limit curve should remain as shown. 	 Numerical 

examples for these various 	 limits will be presented later in
	 V 

the text of this thesis
V	

-. 

"he presence of a noncondensabi-c gas in a heat pipe may 

have a detrimental effect on heat pipe performance.	 The non-

condensable gas can be added intentionally for the purpose 

of control, or it can be the result of improper tilling pro-

cedures, container leaks, or chemical reactions between the 

working fluid and the container or wick material 	 Neglect-

. ng the control aspect for the present, the most common 

-	 V	

- 	 V	
V	 ' 	 -.	 •V	
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-
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noncondensables are air (from leaks)-and hydrogen (from 	 . 

chemical reactions) 	 During heat pipe operation the non-

condensable gas is swept to the condenser and forms a stag-

nant gas layer.	 The temperature in this zone adjusts itself 

in such a was' that the total pressure in the vapor core :	 -:-•. - 

remains	 pprox matclv constant throughout	 Heat is trans-

ferred through this zone to the liquid-wick surface primar-

ily by conduction.	 Because this mode of heat transfer is I	 - 
extremely slow compared to that taking place in a normal: 

condensation process, the zone containing the stagnant gas 	 -. 

is effectively eliminated as a functioning part of the heat 

pipe.	 The result is an effective shortening of the pipe, 

thus reducing its total axial heat transfer capability.	 The 

length of the noncondensabic gas zone depends on the operat-

ing temperature and pressure in the system.	 For increased.	 •. 

axial heat fluxes and the corresponding increased pressures, 	 .: •	 .•. 

the zone will contract and allow more of the cc'-'denser to 

become operative again.	 Conversely;	 for decreased operating • 

pressures, the gas zone expands and reduces the area avail-

able for condensation. 	 If the quantity of noncondersable 

gas "r the operating pressures 'are such that the entire con-

denser Section comes to lie within the stagnant gas 	 zone, 

heat pipe operation ceases.	 The possibility of using a 

nonconclensable gas for the sariation of the effective con-

denser area as a control technique will be expanded upon 

later.

-•f-

-•	 .	 ..
•
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The preceding discussion has dealt exclusively with 

steady stite heat pipe behavior..Of equal importance for 

the practical use of these deices is an understanding of 

the transient operating conditions through which a heat pipe 

passes during startup.	 Cotter [19] conceived three basic 

--	 modes of startup which may be recognized by the shape of the 

developing temperature profiles 	 The three -nodes are experi-

enced when the evaporator is heated uniforrilv over its 

entire length at constant heat flux which irav, however, be 

varied with time.	 The condenser is cooled uniformly either 	 - 

bj	 radiation or heat conduction to a sum 1-ept at uniform - 

temperature	 The various nodes of startup are illustrated 

in Figure 2.8,	 the abscissa of which represents the distance -	 --.T- 

along  the heat pipe axis and the ordinate the vapor tempera-

ture.	 The uniform startup in Figure 	 2.8- p. takes place when 

the vapor density is hih.at the ambient temperature so that  

t1e wurking	 fluid begins to reflux throughout the pipe immedi-

ately	 in response to	 ui ircreasc in the heat f lux. 	 This t)pC 

of startup procedure may be accomplished very rapidly without 

detrimental effects	 to the pipe	 The frontal startup in 

Figure	 8-13 is encountered when the vapor density is very 

low at ambient temperature, a case often observed when start-

ing liquid metal heat pipes from room temperature 	 In this 

case the vapor density ..s so low that the molecule mean free 

path exceeds the vapor- core di-meter.	 As the heat flux is
I 

increased,	 the vapor density in the evapGrator section rises
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and the molecule mean free path becomes small compared to 

the vapor core diameter.	 The vapor in the evaporator sec-  

tion enters the continuum flow regime while the vapor-in the 

condenser remains in the free molecule (low regime with, of I 
course, a transition region located in between. 	 This mode 

of startup is further complicated by compressible flow  

effects since transonic va.or velocities are achieved. 

Finally, the vapor may condense into liquid droplets in the I	 -' 
vapor core since the vapor is nearly saturated in the 

evaporator but subcoolcd in its expanding flow ,toward the 

condenser.	 The frontal startup in Figuie 2.8-C illustrates -

a Situation which can be expected if a significant arnount of: 

•	 noncondensable gas	 is present,	 a case in which the evaporator 
- - - 

•	 heats up relatively uniformly.	 As the vapor temperature and 

hence pressure increase the noncondensible gas. is moved - 

toward the condenser where it collects in a fairl y well 

defined zone	 The temperature in this	 zone adjusts	 ltsLlf 

so that tne total pressure in the vapor core is approximately 

constant	 As the heat	 flux is	 increased and the vapor pres-

sure and temperature increase, 	 the noncondersable zone is 

further compressed thus causing the temperature proriles 

displayed in Figure	 S-C	 This mode of s tartup may also be  
V	

: 	 . accomplished very rapidl y .	 The startup modes nescrihcd 
•	 .	

V 	 V 	 •V'• 

V 

V

•	 abOve are somewhat idealized and various	 ntermediate modes.	 •-. i 
V 	

V	
V 	

V 	

. 	 V 

V_t

V

V 

may be observed depending on the vapor denVtty at initial 

temperature and the amount of noncrdensable gas present
Vt 
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Figure 2.S-D illustrates a common failur encountered during
N 

startup. A hot spot is formed in the evaportor and the 

temperature increases increases without bound until failure results.  

1.

	

	 Thefailurc is usually a consequence of either the attain-

ment of the wicking or boiling limit during the startup 

sequence of heat pipes having a floating temperature source. -
	 --

H
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CHAPTER III	 LITERATURE SURVEY 

General Literature 

A very extensive research effort has been devoted to - 

heat pipes since 1964 when Grover and his .co-workers [3] 

at the Los Alamos Scientific Laboratory , Los Alamos, \ew 

Mexico,	 first reported the successful operation of a heat 

pipe.	 A 347 stainless steel container lined with five : :----

lay ers of 100-mesh 304 stainless steel screen saturated - 

with 40 gm of sodium became the protot ype of all subsequent - 

heat pipes	 Five chromLi-alumel thermocouples were welded 

along the 9-cm- long p no	 The temperature distribution was
I 

measured for various input power levels ranging from 50 to -.	 .	 .. 

600 watts.	 Of particular interest among the experimental 

results reproduced in Figure 3.1 are the constant tempera-  

turc plateaus extending from the heated end of the pipe .. 

revealing the zones which were rcfluxing 	 The temperature 

drops occurring at the. unheated end were attributed to  

stagnant hydrogen gas formed by the impure sodium at elevated 

temperatures.	 The measured temperature gradient in the 

relluxing region amounted to less than	 05°K/cm	 If the 

heat pipe were cons i dered a sofld rod, it would have an . 

effective themal conductivity in excess of 24,300 Btu/hr 

ft°F	 It is not surprising that a device capable . of such

,-.., 
VS

y_S4 

-V 
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- 	 . 	
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perfoinirn..c stimulated considerable interest among large 

numbers of researchers.	 Subsequently,	 research and dcvcloji-

ment	 programs were	 initiated simultaneousl y	 in many ulliver-

sity and	 industrial	 laboratories	 leading to considcriblc 

duplication of the research cCforts. 	 Much of this effort 

was,	 focussed on	 the determination of basic material proper-

ties,	 especially wicking properties. 	 Bcctuse of the	 large 

number of papers pub' islied	 i ii a	 rclutivclv.hor.	 period	 of 

time,	 it	 is	 ver y difficult	 to ' present	 a chronolcgica1	 dis-

cuss-ion of	 the	 rclerc'iccs	 Instead,	 the	 litcraturo will be 

dealt	 with	 by	 subject	 in	 thic	 following	 ozJr	 interil 

properties,
	 operating characteristics of heit pipes,- heat 

pipc applications,	
heat	 pipe control	 and heat . pipe	 thcor 

It	 'hou'd not 	 be overlooked 	 that - sc-craI	 very usctul	 review

I
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• - articles [20, 	 21,	 221 have appeared in , the literature, and 

while they dLd not add new experimental or theoretical - 

• information, they probably encouraged further research and ea 

hence contributed to the growing field of heat pipe tech- 

nology

Material Tests	 .	 ' I 

Working Fluids	 .	 .	 .	 . 

The choice of a working fluid for a teat pipe app] ica- •. I	 . 
tion is dictated to a large degree by several physical pro-

-1 perties of the fluid and by the chemical compatibility cf
I	 : 

the fluid with the container and the wick 	 Deverall and 

Kenune [23) were the first investigators to formulate the 	 '• . 

requirements for suitable heat pipe fluids:	 1) high latent	 •. 

heat ,	 2)	 high of vaporization,	 thermal conductivity, 	 3).low 

viscosity,	 4) high surface tension,	 5) high wetting ability, 

and 6) suitable boiling point. 	 Parker and. Hanson [24) have ,. 

pointed out that the vapor pressure curve dictates the tern-  

perature range of ap p licability for a given fluid 	 in gen-

eral	 a fluid should be used in a steeply sloped region of - 

its vapor pressu re-temperature curve so that the toirperature 

change associated with the given pressure drop is mLnlnllzed 

In addition, the vapor pressure should he reasonably high, 

since a low vapor pressure would result iitlow vapor densities 

and high pressure drops in the vapor flow. •	
•.	 •.;	 •	 -	 •.	 •	 •:'	 -	 -•	 -	 -.
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as a function of temperature 	 [	 8,	 2,	 27,	 23,	 29,3..J	 In 

V	 addition,.Frank et al.	 (30] have published extensive property
VS • 

group plots for water, sodium, and cesium while references 

•	 [31,	 321	 yield values of liquid metals	 for possible heat •pipe 

application'Langston and Kunz	 t131 have presented a table 

comparing the value of N for several low temperature fluids 

including the freons, alcohols,	 and glycols..	 Basiulis and 

Dixon [33] have assembled some property data on potential •	 !.	 - 

w rking fluids which are electricall y. insulating 

The choice of aparticular fluid, of course, depc,ds on .. 

the specific appliLatlon, howeer,	 i fets general con.lusions 

can be drawn.	 For high temperature,	 high heat flux -heat
 

pipes,	 the	 liquid metals	 are definitely superior to non- 	 . V 

metallic	 liquids due	 :o their vapor pressure characteristics,
V 

high surfac'	 tension,	 and high	 latent heat.	 The, outs tandi,
V 

S 	 V.. '

V 

flu i d for low temperature work appears , to be water due to	 V
V 

primarily	 its high	 surface	 tension	 and	 latent heat.	 No	 . V 

valid statements can he made at this 	 time regarding the .	 . 

suitabilit y of cryogenic	 fluids	 for lots	 temperature heat 

pipe	 applications.	
V 	 V 	 V 	

•V	

: . 

Wicks 

.	 Prior to the	 recent interest	 in heat pipes,	 the	 ajcr-
 

it	 of work on flow through porous materials came from such ::.	
V 

diversified fields	 as soil mechanics, petroleum engineering, 

water purification and ceramic (.VngLneerimg 	 The particular 

type of flow in porous bod es	 mider study t-	 usually either 
V

•

iV 
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a gravity induced flow or aforcd or pressurized flow. 

Many publications	 in these fields as well as the fundamental 

theories on flow through porous media are presented and dis-

cussed in a book by Schcideggcr [34]. 	 Instead of gravity or ... 

mechanical work,	 the heat pipe on the other hand, 	 utilizes

capillary induced fluid flow for its operation.	 This par-

ticular feature, along with several other prerequisites to 

be discussed subsequently, has	 led to considerable research I 

efforts aimed at developing or finding existing wick materi-

als suitable for employment in heat pipes. 

-As mentioned earlier,	 the primary requisite for a heat
 

pipe wick	 is that it acts as an effective capillary pump. . 

That is,	 the surface tension forces developed between the 	 . 

fluid and the wick structure must be sufficient to ovcrcomc 	 . 

all	 viscous	 and other pressure drops	 in the pipe and still.  

maintain the required	 fluid circulation.	 Because	 the heat
. 

pipe may often be required to operate in a gravity field .,	 .	 .. 

with the evaporator located above thc condenser,	 the wick . 

hou1.d be capable of	 lifting	 the working	 fluid	 to heights .	 . ..	 ..	 - 

equal to or greater than the maximum difference in elevation 	 - . ...... 

between the evaporator and condenser. 	 The requirements are  

of opposing nature since on one hind large pore sizs are  

called	 for	 to minimize	 the viscous	 loss	 in	 the wick and on 

the other n and small pore sizes are needed to provide for 

curf i c i cnt capillary pumping and maximum lift height 	 As 

1 result,	 some sort f'f pore size ontlmization procedure 

... .....	 ..	 .	 V
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appears warranted and in - fact numerous authors have addressed 

themselves to this problem and their work will be treated 

later.

The property data on potential wicking naterials, which 

have been accumulated to date, originate primarily from wick- -: 

ing height measurements and the measurement of the permca-

•	 hility, which is defined as a proportionalty constant  

between the -flow rate and the pressure drop in a porous body. 

The tdchiiqucs used and the values obtained for these proper-

ties will be discussed later. 	 In addition to the operating .' 

-characteristics, several mechanical features must be con- • 

•sidcrcd when examining potential heat pipe wicks.	 Of specnl 

importance is	 the reproducibility of a wick structure so 

future heat pipe investigators may rely on data generated •-	 : 

during earlier investigations.	 The wick should be mcchani-

cally stable and shoUld be rigid enough so that its flow ( 

properties do not change in response to wick sagging or-

stretching.	 The ease of wick fabrication	 :.nd the cost are 

also important and it is conceivable that 	 thesc.considera-. 

• tions	 could someday be the major criteria for wick selection,. 

if heat pipes are ever mass-produced 

A wide variety of wicks have been successfully employed 

•	 in heat pipes.	 As mentioned earlier, 	 the	 first wick,	 ai:d 

also prooabl%	 the most widely used to date, consists of 

several	 in> crs	 of fine mesh	 screen.	 Variousmethods	 have'-,....., - 

been used tc guarante. mechanical contact 	 ;etccn the screen
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 and the container	 Neal (28) rolled the screen on a mandril 

and upon insertion into the pipe removed the mandril, The 

•	 screen was held against the heat pipe wall by its own resil-' 

iencc, but Neal found that the resilience varied from screen 	 -. 

to screen and hence the performance of the pipe was no 

reproducible	 Dcvcrall and kemme [23] forced a steel ball 

through 't hear pipe, after the screen layers had been 

inserted, and'apparently achieved .,good contact between the 

wick, and the wall. Ilowcvcr,-no attempt was made to check 

the reprolucibility of the .wick structures	 kenme 1171 has 

constructed rigid screen wicks using the foloiin procedure 

Several layers of stainless steel screen were wrapped around 

.a copper tube. The structure was placed into another copper 

-	 .__,
	 d rawn 	 -	 -	 - .uu•c and urawn .tnrougi a ue	 o ccmpress tnc screen layers; 

the copper wa	 removed chemicall y . , The screen	 tube was	 then -	 - 

heated to 1000°C in a vacuum oven 	 to bond the structure. 

Finall y	 the baked,	 rigid screen tube	 as	 inserted	 into a 

heat pipe where the screen and the crescent annulus between 

screen and wall	 formed an effective wick structure' with 

reproducible qualities.	 umerous	 other techniques	 for	 - 

screen wick preparation have either been used or suggested. 

McKinney 	 [35]	 has	 employed a coiled spring	 to hold a screen 

ick	 against	 t -e heat Pi pe wall	 Kat:off [5:	 con 

'.tiuctcd wicks	 in hiiiLh	 a	 single	 1i	 er of	 screen	 metal-

lically bon&d tu the WZL11.	 One construction	 technique 
V	 • 	 V i_V	 V.;VV 

consisted of electroplating a	 thin coating of indium or tin 

V	 V	 •.• ' 
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onto both. the screen and the wall, pressing the two firmly 

together and baking them in an oven (200°C for indium and 

275°C for tin). Excellent results were also obtained by 

diffusion bending stainless teal screens to stainless steel 	 .--•. 

: plates. The bonding was effected by pressing the screen 

against the plate with a pressure of 15 psi while baking 

them at 1100°C for 2 hours in a vacuum oven. 

In additiOn to using screens as wicks, several investi-

gators have employed screens only as a retaining structure. 

Heat pipes constructed at North Carolina State University 

[36,37, 38, 39, 40,. 413' have utilized wicks consisting of 

various types of beads packed in an annulus between a retain-

ing screen and the heat pipe wall. Wicks of this type have 

• been successfully constructed using beads of monel, glass, 

and stainless steel of various diameters. 

Several different textile fabrics have also been em-

ployed as wicks. hlaskin [25] used a rayon cloth as wick 

-	 --	 --	 •.	 I'L	 ...1.-..t	 ..... 
• for a nitrogen n'aL pipe. 	 ue	 iUJ& W	 L&iU	 i1UL1	 a.LLi 

the heat pipe wall by sliding together two halves of a 

slotted, diagonally cut retaining tube. Shiosinger [42, 431 	 •.• 

and Shiosinger, et al. [44] selectett 	 quartz fiber cloth as 	 •• 

a wick for their experiments with flexible heat pipes, in 

which the cloth was pressed against the wall with springs.	 .. 

Attempts to bond the cloth to the heat pipe wall met only 

with limited success.	 It was found that . ordinary rubber 


cement produced acceptable bonds for opertirg

I
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temperatures up to 50°C if the rubber was al1o%ed to cure 

and become "tacks" before the wick tas pressed against the 

hail	 Experiments with hig her temperature silicon rubber 

failed because 1. owrnolc. 	 1ar weight silicon compounds were 

released in the curing process and effectively waterproofed 

the wick	 Good bonding was achieved by applying heat seal-

able film iatcrials, 	 such as thermosetting and thermoplastic 

sheets of the polyester resin and polyethylene-type. 

Other investigators experimented with commercially 

available 'porous metals	 is potential heat pipe wicks. 	 Neal 

[281 constructed a háatpijc using a siit&<d copner fiber -	 - 

wick.	 unfortunatel y	 the wick was not bondcd to the heat 

pipe wall	 and poor results were obtained. 	 Porous metal 

wicks	 are extremel y difficult to machine anj nornal	 cutting 

techniques	 such	 a	 hand-sawing,	 shearing and	 grinding tend 

to close the surface tc	 pores along t'ic Lut	 ftc use of a 

filler material	 which could be	 removed after cutting	 is not 

gcn	 ril l	 r Lonrcnd d,	 since	 it	 is difficult 	 to comp letely I 

remove	 the t'c	 filler, which changes 	 the iqctting characteristics 

of	 the porous m-iteri-tl 	 Langston and	 Kunz	 [13]	 have	 ncro-

scopicIlly examiiicd porous metals, which were 	 cut bv . clectro- j 

discharge machining . (I I))	 and c lecti cJ&cmical	 (IC'!)	 machin-

ing	 nioucs	 11ie	 found	 that	 I D\' tended	 to erode	 the 

surface Wile ei' ECM cut the porous material very cleanly. 

with a minimum of pore distruction 	 A technique to avoid 

the machining of porous metals completely was 	 recently

;
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developed [45]	 The technique entails the application of a- 

mixturc of particular matter, binder, and solvent to a 	 - 

surface.	 As the solvent evaporates the surface tension of
S 

the fluid draws	 the particles together, compacting them, 

•	 yet leaving open pores.	 Of special significance is the fact 

that with this technique wicking structures can lie applied . 

togeometrically complex -surfaces.	 Wick structures have 

been successfully	 fabricated from powders äf Al 20 3 ., SiC  

aluminum, copper and nickel. 

With the exept ion of screen wicks, 	 the wicking struc-  

turcs which 'have received the most attdnti-on arèMic -s--

called low resistance and composite wicks.	 Bohdansky et al. . 

[66]	 first	 suggested	 the	 possibility of using channels, 	 cut 

into the	 interior surface,	 running axially	 the	 length of the 

tube.	 Busse	 and his co-workers 	 [47J	 constructed	 several heat 

pipes emp loy ing such an integrated type of wick and - found
 

that the structure was very stable and the pore size was 	 . 

easily controlled. 	 }emme	 [171	 has advocated the use of •.	 .	 ..	 . 

tcompositc	 wicks with a- fine pure siLc at . the	 liquid-vapor 

interface to prov3.d	 good capillary- 'pumping and a larger 

pore size underneath	 for the rctirn	 flow of the	 liquid.,	 He .	 •: 

fabricated such a composite wick from several layers of • 

screen of diffe rent mesh sizes with the 	 f i ner screens 

installed on	 the inside t3 provic cau.11ir	 pumping forces 

and the coar e screen located in the annuh s be-%,c 
I 

cn the 

tine screen and the wall	 to serve as flow p1sagt	 noher

-	 4 

tb	
-
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type of composite wicks made of axially cut grooves or	 --

channels covered with a fine mesh screen has been success-

fully tested by Kemme (17) and Hampol and Koopman (32) .Kat-

zoff [5) constructed a low resistance wick by forming a single 

cylindrical passagoor artery out of the same sheet of screen 

material which covered the interior of the pipe.	 A variety 

of other schemes have been devised for the construction of 

13W resistance wicks.	 Ranken and Kenme (48] have employed 

a slottd corrugated stainless steel sheet which was formed 

into a cylinder and inserted into a-heat pipe.	 The tr.i - 

-.	 angular passages formed between successive corrugation.s 	

. f... served as low resistance fluid return paths. 	 Cauimbas and 

!fulett	 [49) modified the basic screen wick by placing nickel	 . 

ribbon spacrs between the layers of screen to create a 

series of concentric annuli.	 McSweeney (SO) made a wick by 

• usin g a series of 1/16" diameter rods wrapped with 10 mu 

wire to space them apart. The rods were held against the 

pipe wallby acoarse screen. 	 Turiior and Harbaugh	 [51] and	 •--

 Turner	 [52) attempted to construct a noncircular heat pipe 	 . .-

such that the corners of the tube would supply the capillary
:-	 -• 

pumping force.	 IIis-"configuration pumped heat pipes" were 	 . •!--	 - 

not very successul duo to structural deficiencies causin.g 	 - 

the pipes to bulge and distort under even minor pressure 

differences between the interior and the surroundings 

A tick property of major importance is the maximum 

height to which a wick lifts a given worxing fluid	 Two

-j 

-	 4 
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reasons must be cited to underline its importance for heat 

pipe operation.	 First,	 the maximum lift height places 'a 

constraint on the dimensions of a heat pipe if it	 is to be 

operated in a gravity field with the evaporator located 

above the condenser.	 Second,	 the measurement of the maximL'n 

lift height represents an efficient method for the evaluation 

of the capillary pumping capability of a potential wick 	 The 

capillary pumping pressure must be greater than the sum o. 

all viscous pressure	 losses and gravity, losses	 if the pipe 

is to function at all.	 Once the maximum lift height has 

been determined,	 in'in effective radius of the capil-

lary structure can be calculated with equation	 (3) 

:- h 20 Cosa(3.2) max	 p	 g 'min 

Equation	 (3-2)	 is obtained from a simple static force 

' a balance performed on	 meniscus located a distance, h, above Y 

a	 free surface in a cylindrical tube. 	 After mm	 has been 

determined,	 the capillary . -pumping pressure	 is obtained from 

equation	 (3-3)

APC=	 2o/r 1	 (3-3) 

which is derived from a simple force, balance. 	 The	 idea of	 .-. 

designating a pore radius or diameter is of course an ideal- r 

i:ed approach becuse in general capillary pores consist of 

irregular non-circular chnncls	 This	 irregularity _in 

channel	 size has prompted investigators at North Carolina
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State University	 [36,	 37,	 38,	 39,	 40,	 41J	 to define both a 

"rising" and a "falling" capillary equilibrium height.	 I 

general the height to which a liquid will rise in a wick 

(rising height)	 is	 less than the height to which the liquid 

will fall in the same wick after it has first been completely 

soaked	 (Calling height).	 Katzoff I S ) has indicated that the 

difference between the two levels is typically of the order 

of 25 per cent and attributes	 this to wetting difficulties .	 ... 1 

assoiatd with the	 rising fluid 

Several	 investigators have experimentally measured 	 . ..
t.	 '. 

capillary equilibrium levels	 in various wicks..	 Ferrell and 

his co-workers	 [40)	 measured the	 failing equilibrium height. 

of water	 in naccd beds	 consisting of stainless 	 steel parti-

des	 (40 to	 100 mesh)	 and glass beads	 (80 to 100 mesh). 

Further work	 [41]	 ind i cated	 that	 the equilibrium .hcight as 

a	 function of particle diameter could be closely predicted	 . .	 .	 . 

by assuming that the heads were arranged in a cubic array.-. ,. 

Phillips and Ilinderman 	 [531	 measured the maximum capillary•. 

pressure for a 200 mesh screen of stainless steel, 'bronze 

and nickel using water, methanol and hcn:enc respectively.  

In addition,	 several metal "foams" and "felts" were tested v 

with these	 fluids.	 (The porositics of the samples 	 ranged	 .. . .	 . 

from 89% to 961.).	 Capillary pressures were determined by 

the standard tcchniaue of measuring the equilibrium height 

zna the pressure necessary to force an aiz bubble through a 

saturated wick.	 Both methods gave comparable results and
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the. latter approach proved to he easier and less time con- 

H
suming,.

S . . 
For the screens, capillary pressures ranged

5. 

from 

.12 psi to .36 psi and for the porous metals from .02 psi  

to	 .13 psi.	 Kat:off []	 measured the lift capability of six ..	 ..i 

screens and found the values of the minimum effective menis-

cus radius ranging between .75 and 	 0 times the spacing of 

the wires in the screen. Ernst-(S41 studied Kat:off's data 

and concluded that the effective meniscus radius can be 

expressed by (d + d i ), whore d isthe mesh opening half . . 

width and d 1 is thc radius of thcwirc in the mesh.. La.igston. 	 I.. . 

and Kun: [13, 5 5 1 measured the cq0i1ibriumheiht &f water 

•	 and Freon 113in 23 wick samples. The samples consisted of 

____5 I
	 three classes of porous materials: sintered metal screens,' 

sinrcred metal powders, and sintered metal fibers (the . 

porosity of the samples varied from 47.7 to 91.80). Equi-

librium heights greater than 16" were found for several of	 .	 S 

the sintcred.nickcl fiber samples with water as test fluid. 

In a study not directiy concerned with heat. pipes Ginwal  

et al. t56) examined 178 potential wicking materials %'iiC1 

included cellular types, textile 2nd synthetic fibers, fil-

ter papers, inorganic fibers, porous, ceramic and refractory  

I'

S..

products, porous and	 fibrous metal,	 etc. Equilibrium •-: 

heights were measured for the fifteen most 'promising mate- . 

rials	 Maximum
S	 S	 '•,	 S 

rise heights were obtained
S 

with the Silica
S	 ..

: 

Vitreous fibers and filter papers whi1e acccptahlehcights 
5,.	 - 	 S

•• .' . _5 '--

were observed in Viscous Rayon 

S .	 •	 .	
.':..

•'	 '•	 '
'.	 ': 

5-	 - 
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Figure 3.2
	 Measurement of Permeability	 I 

•	 A property of great: importance when selecting a wick 

•	 is its permeability. Permeability () has the dimensions 

g	
of length squared and is defined by Darcy's law given by 

the following relationship: 

KAo r 
•	 -	 x sinaI	 (3-4) 

- The permeability is dependent upon the dimensions and the 

geometry of the passages in the wicking material and can be 

determined experimentally by passing a liquid through a 

wicking material and measuring the pressure drop in the 

direction of the flow (see Figure 3.Z). The pressure drop 

•	 and the measured liquid mass flow rate along with the area	 .
': 

normal to the flow and the fluid properttcs are then Used 

in equation (3-4) to evaluate the permeability. The flow	 -	 •	 - 

through the porous body may be either forced or gravity	 -. • •- - 
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•	 .	 -	 •	 •	 .	 ,.	 -	 - • •-	 •--
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induced	 static pressure variations duo to gravity are .since 

accounted for in the second term in brackets.	 Unfortunately, 

no correlations between permeability and more easily measured 

wick properties have been-found which apply to general wick :• 

configurations.	 Attempts to correlate permeability with 

porosity have been unsuccessful (34] since porosity in no 

way accounts for the coupling Of one pore to another. 	 Por 

wick materials materials whose geometry Is easily identified, as for 	 -	 --

example 
spheres in a cubic array, correlations can readily be 

found as shown by Carnesale	 et al.	 (36] and Ferrell and  

Alleavitch (41] who measured the permeability of several beds 

of packed spheres of different diameter. 	 For comparable pack-

• ing. the porosity of all beds was 40% and a correlation •, 

between permeability and particle diameter was obtained. 

Numerous investigators have measured the permeability -' 

of more ccmplex wicks for which no correlations exist. ;	 .. 

Ginwala,	 et al.	 (56) measured the flow rate of distilled' 	 " .. 

water flowing through various types of felts, 	 fibrous mate-
 

rials,	 and cellular materials for three different pressure • 

heads.	 Their experiments	 indicated that the flow rate -' 

under constant pressure head decreased with incraxng time 

for all wicking materials	 This behavior	 as thought to be j 

caused by an accumulation of gases and microscopic particles	 - 

in the wick initially dislved and suspended in the liquid. 	 '	 ' • 
J

-	 -	 -	 '	 -' ..A	 . 	 5
• 

, 

Langston 3rld Kunz £13,. 55) experimentally determined the.  

perneablities for i number of sintered metallic materials
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fabricated from felted fibers, powders, and screens Special 

care was taken to degas tle fluids before their use. The 

permeability was found to be independent of the nature of the 

fluid, tine, flow rate and fluid temperature. A special 'est 

it which water was intentionally aórate1 before being passed 

through the sample was performed to evaluate the effect of 

	

•	 dissolved gases in the fluid. The results showed that, ith -	 H


a high degree of air Naturation. the permeability of the wicks 

decreased by about 181 in about SOhoursof operation. Using 	 •	 '.


both equilibrium height and orrnebil1y datq,. values for a, 

	

HI	 capillary pumping parameter defined as the product of suaximum 

lift height and permeability were then evaluated for all sarn 

pies. The	 gnitt'de of this pumping parameter is a direct 

measure of the efficiency with which a material might func-

tion as a pipe wick. The data attested that sintered metallic 

fibers as a group make the best heat pipe wicks while sin-

tored powders were the next best and screens were the worst. 

Phillips [29) and Phillips, et al. [53) measured the permea-

bility of sintered metal screens, fibers, and foanis using 

forced flow, gravity flow, and condenser flow in an operating 

heat pipe. For the force flow test the permeability was found 

to decrease for incroastng flow rates 	 This is contrary. to 

Langston and kunz's results which demonstrate that permea-

bility	 independent of the fluid flow rate 	 The disparity
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samples Phillips et at. used a much wider range ' of flow 

rates than 'Langston and Kun:did (by a factor of almost 

four).	 T;cir	 data showed for a 96%porosity nickel 

foam wick a variation in permeability of approximately 

over the entire range of flow rates. 	 Gravity induced flows 

were ucd to measure the permeability of very thin wicks 

(such as one or two layers of screen or sintcred metal 	 V 

V

samples less than .OSO Inches thick) as a function of menis-

cus radius and flow rate.	 The meniscus radius' was main- 

tamed constant along a sample by adjusting the flow rate  

•	 or angle of inclination in such a way that the viscous pros-- 

sure drop was exactly countered by the increase in static 

head.	 This procedure assured pressure constancy throughout 

the liquid., The meniscus	 radius was varied by changing the
V 	

V 

gas pressure on the vapor side of the vapor-liquid interface.
•	 V 

• 	 For thin wicks	 the data revealed the permeability as a 	
,	 •• 

strong function of meniscus radius and for some samples V 	

V 

(especially single layers of scrten) also as 	 strong V 	 , 

function of the liquid flo p 	 rate	 Pcrneabtiitv valuc 

measured by forced and gravity induced flow techniquec	 eic 

in general not	 in agreement. ' The gravity	 induced flow  

techni que yielded permeability values up to 2	 1/' times 

those rnc-iurcd by the	 (arced flow method.	 The disagreement 

as attributed to the mian'r in which the samples were 

mounted.."For the	 forced flow	 tcss,	 the SiChs tore corn-

plet.cly enclosed and 	 the measured permeab.ilitywas based: 1	 "'. V 	 • 

V 	 ' 	 ' V 	
' 	 ' ' V 	

V 	

' 	 V 	

V 	

V 	

'V t

VV V 

I
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-	 on flow solely in the porous structure. 	 In case of the 

gravity flow tests a fluid (that forned along the edge of 

the wick which ' allowed some of the liquid to bypass the 

-.	 I wIcks	 leading to an erronc-aus 	 and high value for the perme-

ability.	 Several attenpts were also nade to measure perme-

•	 ability of a wick in an operating heat pipe. 	 The pressure 

distribution in the wick was measured at 	 five locations	 in 

the condenser and the fluid flow rate was dctcrnind from'- 

tue product of the measured heat transfer rate and the 

I
known latent heat of vaporization of the 	 liquid.	 Unfortun.-. 

ately the results were erratic and consequently their repro -

ducibility	 for identical	 experiments was very poor. 

Farran and Starncr	 1S71 measured the capillary pressure 

jand the perneahility of a compressible wick of braided Si02 

fibers.	 They noticed	 that	 the cipillary pressure 	 (referring 

to	 Figure	 3.2)	 is	 defined	 as,	 :.	 •• 

AfI r a	 -	 •(35)

could be evaluated from (11 1 -11 2 ) if the lower enI of the wick 

was submerged and the meniscus had an infinite radius of 

curvature thus equalizing the prcsurc in both phases, 

P 2	 P	 (it is assumed that P	 P ).	 Equation (3-4)	 .•. 

transforms to	 •	 • ••	 • 
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or inserting the relation for the mass flow rate in terms of 

the fluid velocity leads to 

KAP	 0gKsln 
dx g	 Z	 (37) 

Two techniques were selected to evaluate the pressure differ 

once,	 P, and the pereabili.ty. 	 The first technique (dis- 

played schematically in Figure 3.3-A) consisted of the 

measurement of the steady state mass flow in the wick. 	 The 

fluid was removed from the top of the wick b y evaporation.. 

The second technique involved the measurement of thetran-s-

lent rise of a liquid in a previously unsaturated wick (dis- 

played schoatic3l1y 	 in Figure 3.3-B).	 Inspection of equa- 

tions	 (3-6) and	 (3-7)	 then reveals that if	 (: dx/dt) were 

plotted as a function of l/x	 the resulting plot	 (Figure 

3.3-C)	 should be a straight line and	 the permeability and the 

capillary pressuro could be found from the intercept and the 

slope, respectively.	 Data obtained by both methods failed 

to yield the expectei linear relationship. 	 For near hori- 

zontal wicks (sine	 0)	 the capillary pumping pressure- and 

the permeability turned out tu be constant and the two 

methods yielded values which differed by about 10%.	 For 

sina $ 0 both methods indicated that aPc was proportional 

to	 (x sina) and the reciprocal of the permeability was - 

approximately.proportlonal to 	 (x sina) 2 .	 This behavior is 

perhaps best e.platned in terms of the existence of an 

optimum capillary radius corresponding to an optimum capil-

lary flow area through which a maximum mass flow rate is 

...•.-.	 ', -:	 .:-•y•	 :---•
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permeability values for a variety of wicks £..cluding the 

sintered metals and some compressible materials. 

Compatibility of Components and Life Tests 

The choice of suitable materials	 for heat pipe coiu:;truc- 

tion	 is	 dictated b y	 a	 :wipatahilitv	 criterion	 c'f	 the differ-

ent niaterils	 Many of	 the problem	 associated with long 

term heat pipe operation a 	 a direct consequence of mate -

rial	 incompatibiJit	 which	 usually, manifests	 itclf	 in chcm-

ical reactions.	 In general,	 improper selection of cmponcnts 

results	 in a gradual	 appearance of nonconder.sahle gases. 	 For 

high	 temperature	 liquid metal heat pipes,	 improper material 

selection furthermore accelerates corrosion and dissolution 

of the wick structure.	 Grover and his associates	 [3] were 

the first to encounter and dcscrib 	 the generation	 f non- p 

condensable	 ass .	 In	 their	 experiment, which-
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earlior, the temperature profile along the heat pipe dropped 

suddenly at the condesor (see Figure 3.1). 'This was attri-

buted to a pocket of hydrogen gas produced from impure sodium 

in the reaction, Nail -. Na + 111 .' Andeen, ct al. (16) tested 
22 

a water-brass heat pipe and experienced severe problems with 	 - Ii 
noncGndensable gas. No attempt however, ws made to deter-

mine tLe source of the gas. -Schwartz (58) noticed the occur-

rence of a noncondensablé gas in several water-stainless - 

hear pipes. Samples of the gas were withdrawn from one of 

the pipes and their composition analyzed with a mass spectro-

meter. The results of the chemical analysis indicated that 

the noncondensable gas was composed of over 971 hydrogen. 

Schwartz hypothesized that the hydrogen was formed as a result 

of a chemical reaction between the iron in the stainless 

steel and water. He suggested that the problem of noncon-

densablo gas generation could be avoided, either by. choosing 

a heat pipe whose metal components range below hydrogen in 

the electromotive series' or if the metals have an electro-

chemical potential above hydrogen, by; using a nonreacting 

working fluid other than water. To test this concept, an 

ammonia-stainless steel heat pipe was built and operated con-

tinuously for 3 months with .no measurable sign of-nonconden- - 

sable gas formation. Conway and Kelley [7] were Also  

troubled by noncondensable-gasesin a.water-stainless"  

steel 'heat pipe. Although no tests were made to determine- • ':'	 :, 

the origin of the gas, it was certainly most likely

7	 -'
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that hydrogen was produced in the cane chemical reaction
- 

-	 . 

which plagued Schwartz.	 Grover [591 has suggested a possible 

1 solution to the problems caused by hydrogen formation in low 

and moderate temperature heat pipes. 	 lie recommended to 

fabricate the condenser end cap out of palladium allowing 

hydrogen to diffuse to the outside while retaining the 	 ork- 

ing fluids.	 The prohibitive cost of palladium, however, 

limits its use to only themost amply funded cxperimcntal 

programs and as yet, the concept has not been tested. 

IDeverall and Keinme	 (60)	 have reported the successful opera- -1 

- j	 tion of a water-stainless steel heat pipe for over 3000 hours
without accur.ulation of noncondensabl-c gas. The stainless 

steel tube and screca were. first degreased in acetone and 

then bright-dipped to guarantee cleari surfaces which were 

subsequently degassed at (,000°C in a high vacuuir oven. 

Since the other investigators who encountered hydrogen 

formation in water-stainless steel heat pipes reported no 

extensive cleaning proredures, it may be spcuiated that 

for the particular case of water-stainless steel, hydrogen 

formation is more a function of the- techniques used in 

processing the , materials than of the materials themselves. 

Jeffries and ZerkIe [27] have commented on work done. by 

Ions i..Iio tested several fluids in capsules of aluminum 

alloy 6061 at temperatures from lS5°F to . 32°F for durations - 

in excess of 500 hours. Strong evidcnce:of corrosion was-

found with methanol and ethanol, n-11 utane (lS°) and

1i• 

I--.
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Monsanto Cp-34	 (321°F)-showed moderate corrosion; whereas  

no corrosion was evident with n-Pentane 	 (310°F), Benzene 

(310°!),	 Ileptane	 (320°F),	 Toluene	 (322°F),	 Ammonia	 (159°F), 

Freon-11	 (156 0 F), 	 and Freon-113	 (155°F).	 In addition,	 a 

capsule of 31 stainless steel was tested with water at 

320°F.	 Definite signs cf gas evolution were evident during 

the test, which proved in a qualitative mass spectrometric 

analysis	 to hc	 h1rogen.. ,	 . 

The most severe compatibility problems are encountered' 

• when heat pipes are operated at elevated temerati5;	 A	 •.-

• considerable effort was expended by workers at Los. 	 iiunos 

[15,	 23,	 48,	 59,	 611	 to study	 this	 problem.	 A heat -pipe was 

•	 constructed selecting tantalum as	 container and wick mate-

rial,	 and silver as	 the working	 fluid.	 The pipe was 

operated at	 1900°C for 100 hours.	 Examination of the sec-

tioned pipe revealed that the wick in the condenser had 

almost disappeared- while the wick in the evaporator was 

clogged with tantalum.	 This behavior was attributed to the 	 --

dissolution of. the wick	 in the working	 fluid.	 In this case, .' 

mall amounts of structural material were dissolved by the 	 •	 - •.. 

working	 fluid in the condenser section,	 transported to the	 • 

evaporator section and deposited there as	 the working fluid	 •: 

evaporated.	 The -tmotnt of tantalum deposited indicated a

L solubility of tartalum in silver of approximately 10 ppm 

Dissolution and transport of the wick riiterial also occurred 

in an indium tungsten heat Pipe which wasoper ted at	 1900°C

r4
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for 75 hours. Recent tests have attested to the potential 

of a silver-tungsten heat pipe for high temperature opera-

tion. Such a pipe has been operated for 1000 hours with no 

noticeable deterioration in performance. Buse and his 

co-workers [47,2,.63J have conducted an extensive experi-

mental program to determine material compatibility at the 

temperatures employed in thermionic converters, i.e., 1000°C 

for the collector and 1600C - 1800°C for the emitter. 

Special care was taken to select materials for which no 

known intermetallic compounds exist. For many material	 1.


combinations, they found that the dissolution of the con-

tamer or wick led to eventual heat pipe failure due to 

clog g ing of the wick in the evaporator. Other material 

combinations produccd ultimate heat pipe failure due to a 

weakening of the wall caused by intcrgranular corrosion and 

wall penetration. It was also noticed for a particular 

thermionic converter-heat pipe system that the lithium work-

ing fluid diffused through the wall at rates sufficient to 

significantly lower the power output of the converter.,- 

Three systems, howeVer, proved to be promising for operations 

longer than. 1000 hours at 1600°C: W/Li, W/Pb, and SGS-Ta/Tl. 	 --I


In the 1000°C temperature range, Na and Cs have operated for 

1000 hours in a Nb-1r container with no significant corro-

sion	 Workers at RCA 110, 64, 65, 66, 67, 681 have also 

investigated material compatibility at thermionic tempera- 	 •••.	 ; 

tures. Examination o.a lithium - TZ1 alloy heat pipe

5 
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continuous undegraded operation. Another Li-TZM heat pipe 

has - been operated successfully for 1,400 hours white a K-Ni 

heat pipe his supposedly been working continuously for 

26,000 hours. At lower temperatures, a water-copper heat 

pipe has accumulated 8500 hours of operating time with no 

degradation in performance. Ernst et al. [69, 70, 711 have' 

reported the successful operation of a Li-T 	 boat pipe for 

up to 5000 hours. some deposits were noted in the evaporator 

and it was speculated that it was probably titanium oxide; 

however, no attempt was made to determine the composition of 

the substance. Johnson 172 11 investigated the compatibility 

at thet-mionic tcnnratures of the worLing fluids Ag, Ba, Ca, 

In, Li, Ph. and TI with containers made of Cb-1r, Ta-l0I, 

and TZ1. The fluids (metals) were placed into reflux Cap-

sules which were heated	 for times up to 1000 hours.	 The 

capsules were then	 cctioned and examined by x-ray diffrac-

tion analysis.	 Results	 indicated that	 indium is. not 'suit-

able for long tern heat PIPC operation.	 Onl y r,or inter 

granular attack was observed when calcium was used -as work-

ing	 fluid,	 hi lc other naterJ Li combinations	 showed varying 

degrees of attack and corrosion 

In summary ,	 for low temperature heat pipes,' 	 care must L 

be taken wlicn selecting components to aoid an	 combination 

for which a possible chemical 	 reaction exists which could

- - I__Il 
I3
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lead to the formation of noncàndensablc gases. 	 Cleanliness-, 
S 	

.y . . 

and material	 treatment techniques also seem to govern toa 

large extent the ultimate compatibility of heat pipe mate-

rials.	 For high tenperature heat pipes, due consideration 

must be given to the 	 formati,on.of possible 	 intcrrnetailic 

compounds, solubility of one metal in another, and diffusion 

effects.	 Obviously . a great deal of systematic research is 

called for inhigh temperature application 	 since very little 

is known about the crucialproperties of metals at these 

t'rperJture-s.. 

-	 Operating Characteristics of Heat Pipes :5 

General	 . 

• In addition	 to the experiments	 concerned with basic 

investigations of potential 	 heat pi'c materials, many 	 inves-

tigators performed experiments to determine the operating 

• cnaracteristis of heat pipes.	 In early	 investigations often 

little -more than the successful operation of a heat pipe was 

rportcd.	 Shortly alter the work performed at Los Alamos 

had been published, Bainton [73) reported the successful.. •• 

operation of two sodium-stainless steci heat pies. . 	 Tempera-

ture uniformity over most of the	 length of the pipe was vri-

fied by infra-red photography. Workers atRCA 	 661 related 

•	 .	 j the successful operation of a lithium heat: pipe	 over. 

90	 hours claiming tb,t, 	 as a thcrrnal energy transfer 

device,	 this heat pipe operated 1000 to 10,000 times more 

- 

- 

.........
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efficiently than the thermal conduction process in an equiv-

alent rod of metals such as copper or silver. hall [74) 

tested a lithium-TV-1 heat pipe and verified that fluxes 

sufficient in magnitude to operate a thermionic convcrtc 

could be obtained. Fluxes on the order of 40 watts per 

square centimeter were achieved for both a lithium and a 

sodium heat pipe. Bowman and Cram [75) operated a water-

copper heat pipe at near ambient temperatures. The tempera-

ture profile along the axis of the pipe was measured to con-, 

firn heat pipe operation. :th electrically insulating fluid 

was employed by Rasiulis and Dixon 1111 in a radial heat 

pipe which could successfull y dissipate 900 watts regardless 

of its orientation with respect to gravit y . Although no 

mention was made concernin tg the uni foriity of the flux 

across the condenser surface (sec Figure 2.4), it is most 

probable that the flux around the circumference of the con-

denser was a function of its orientation in regard to gravity. 

	

Investigations of heat Transfer Limits 	 . 

Several investigators have experimentally determined 

the wicking limit of heat pipes as a function of vapor 	 - 

temperature and/or geometric parameters. Bohdanskv et al. 

[761 measured the maxinum.possiblc heat flow in a;sodium-

niobium heat pipe in the temperature interval from 500°C to 

800°C	 The pi 1 e was 50 cm long and had -i 2 cm inner d Lam c- 

ter. The carlfl-m system consisted of Sc grooves of 

r e c t. a r q ular cross section iti a mlth of 4 mm and i depth 
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of	 46 mm.',The pipe was heated with an RF coil and cooled 

through a variable rcsist3nO helium thermal bridge with 

cooling water on the other end.	 In subsequent experiments 

the Inclination of the pipe wa	 varied in order to change 

the lift height, h, between evaporator and condenser. 	 Upon 

each variation in orientation the power input was increased 

until a hot spot appeared at the far end of the evaporator 

indicating that the wick was no longer capable of supplying 

sufficteist	 fluid t'	 this part of the eviporator.	 The 

temperature variation was measured with thermocouples which 

were mounted at the outside hall of the ppc	 Rohdansky 

I et al.	 plotted the heat flow rate versus operating 

temperature shown in Figure 3.4, where 	 the	 ctrimcntal 

effect of lilt height on the maximum het transfer can be 

recognized.	 Occurrence of maximum heat 	 flows for each 

experiment performed at .a constant	 lift height	 is attributed 

by Bohdansky et al.	 to the decrease of rho surface .'.cnsion 

with increasing temperature.	 They even further illustrated.. 

the effect caused by elevation	 (lift) by freplotting the  

maximum heat transfer values as a function of height as 

shown	 in }igurc 3.5.	 Neal	 [28)	 in	 t qualitatively similar 

representation	 for a	 .atci-stiinlcss steel	 heat pipe fitted 

with four layers of 105 mesh screen as 'i w ick structure 

co4fLrmCd the results of Bohansk	 et al	 It should be 

noticed that the shape of the curves in figure 	 4 corre-

spoor's to the form of the qualitative wcking limit cure

t
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diplaycd in Figure 2.7.	 The curves can he compared quali-

tatively because the wall temperature and vapor temperature 

arc closely related for heat pipes operating under steady 

state conditions. 

Cosgrove ct al.	 13 7 I 	 investigated two water-brass heat 

pipes	 in which the wick structures consisted of pcked none] 

beads which were held in an annulus between a rctining 

'.creen	 ncI	 the 'ill	 For a particular wick structure and 

pipe orientation, the maximum heat transfer was considered 

reached when a hot spot began to form in tic.cvaporator 

which was concurrently detected with thermocouples	 installed 

in the paczed hcads. .	 The vapor temperature remeined rela-

tively	 con:t:iit	 in all	 cxperimnts	 in which	 the	 primary 

variables were the pipe orientation and the diameter of the 

mcnel	 beads.	 Figure	 3.6	 illustrates	 the effect	 of particle 

diameter, and consequently pore size, on the maximum heat 

transfer as	 a	 function of	 inclination.	 For :i given particle 

diameter,	 the mnximum maximum	 heat	 transfer decreases with	 incrcas-. 

ing elevation once more reaffirming the results of B3hd#nsky 

and co-worleri s depicted	 in I igure 3.S.	 otico,	 that	 for 

selected pipeinclinatiort the maximum heat	 transfer	 increases 

with dccreis.ing particle d'-uit.tcr.	 This effect	 is	 caused b 

the	 increased cpiltit'	 pressure resulting	 from the smaller 

pore sizes	 Cosgrove could not explain	 shv	 the curve with 

the smallest particle di,rctev	 intersected	 'th	 the other 

curves.	 If	 the norc sizes were decreased 	 tndefinitc.>

I 
,u 

Ii
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Figure 3.6	 Maximum Heat Flow as a Function of Inclination



and Particle Diameter, Co,-grove, -et al. [37) 

however-, entuallY zinoptimum pore size would he obtained 

at which the viscous drag in the capillaries would become. 

dominant and the maximum heat (low should decrease again. 

The results obtained by Bohdansky and Cosgrove and 

their coworkers uggest- that the capiUary limiting curve 

depicted in Figure 2._i i. ii r.ality a family of curves, 

each depending or. the pipe orientation in the gravitational •	 - 

feld	 Moreover, -the entirc fntl> of curves depend. on 

the geometry of the hcatpipe, and in particular on the	 • 

charactcristi.cr of the wick structure.	 •-
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Figure 3.7	 Heat Pipe Dryout, McSweeney 1501 

While Bohdansky et al. and Cosgrove et al. installed 

thermocouples	 in the wall and wick to signal the formation	 . 

of a hot spot, McSweeney	 [SO) has found that the vapor 

temperature is a much more sensitive indicator of wick	 - 

dryout.	 lie experimented with a Na-Stainless	 Steel heat.  

pipe. and monitored both the vapor and the wall temperature 

as a function Of increased power input. 	 From his data  

shown	 in Figure 3.7 it is evident that the vapor temperature 

at dr)out changes more rapidly in response to power increase 

than the wall temperature. 	 The vapor temperature decrease ., 

under dryout condition is somewhat puzzling to say the,	 .	 . . •-	 . 
icat	 Unfortunately the location of the thermocouple probe 

in the vapor space was not mentioned 	 however,	 it appears.. '7 

• most probable that the probe was located in the proximity • -

of the condenser.	 Possibly the termination of the heat flow •

-1 •	 •	 -.	 •,-.-•	 --••	 •	 -	 -..-	 -..	 --	 •.-----	 - 
................
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caused by the dryout of the wick resulted in considerable 

temperature variations within the now stagnant vapor core• 

with rising temperatures in the evaporator and decreasing 

temperatures	 in the condenser which was still	 cooled.	 It is 

cntirlypossilc that this type of behavior occurs only in 

heat pipes with a fixed- temperature boundary condition 	 . 

imposed on the condenser.	 If a floating temperature sink 

were-employed the entire vapor temperature would most likely 

increase once the dryout condition is reached.

In related studies, Shiosinger [43)	 found that	 for corn- 

presiblc hicks specifically , the manner in hhlch the hick 

is	 retained ..gainst the heat pipe wall may significantly 

affect	 its wicking characteristics.. 	 For	 instance,	 if a 

helical	 spring	 is used	 to retain the wick, 	 the	 fluid may 

have to travel by capillary action over a much,longer spiral 

path from the condenser to the evaporator than otherwise 
• . 

would-be necessary with a different type of retaining struc- 

ture.	 This effect, of course, would not be present for 'sore '.	 . 

rigid wicking materials or for the .
 commonly usedaxial slots. 

For instance,	 Busse et al.	 [63]	 found that heat pipes with	 . 

•	 axial grooves serving as a wick often formed a hot spot on 

the top side of the evaporator wlien the pipe 'c operated 

in the horizontal positions	 They attributed	 this behavior	 .	 . . 

to the missing interconnections between the parallel grooves, 

thus	 preventing. any	 cross.flow between grooves	 in -the .........- - 

•	 evaporator.	 In the condenser," however	 the excess	 liquid , 	 . .•	 -	 : -
.... .......... .	 ...	 .-•---.-.

-'	 - 
I	 -. 
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Their explanation was verified experimentally by shielding 

I.

1

the lower side of the condenser of a W/Pb heat pipe. The 

shield forccd the vapor to condense on the upper side of 

the pipe and subsequently no hot spot was formed. In a heat 

pipe in which the grooves are interconnected by circumferen-

tial grooves for instance, local overheating should not 

occur in the horizontal mode of operation. A few investi-

gators have studied the problem of heat transfer and boiling 

in wicks. in a research.project not directly relate  to 

heat pipes, Allingham and McEntire [77] measured boiling 

film heat transfer coefficients on a horizontal copper tube 

which was surrounded b y a ceramic wick and immersed in a 

pool of water. For lower heat fluxes they easurcd values 

for the boiling film heat transfer coefficient in excess of 

those stabIished under similar conditions in conventional 

pool boiling. The higher values were attributed to an 

increase in effective-heat transfer surface area and also 

to an increase inactive nucleation sites 

At higher heat fluxes, however, the trend reversed 

itself and the values of boiling film heat transfer coeffi-

cients decreased for wick boiling below the corresponding 

values of normal pool boiling	 The reason for the dccreise 

appears to be to fold	 First the very presence of the 

wick prevents agiiatlon of the liquid otherwise so conmon 

-
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in pool boiling.	 Second-the vapor escaping through the --.pores :. 

impedes the liquid counterflow directed towards the heating 

surface.	 The data were reduced and an implicit function of 

the boiling heat transfer coefficient as a function of the 

radial Renolds number, based on four times the hydraulic L 
radius of the capillary pores is p 1 ottcd in Figure 3.8. 

Likc.Ise, finand [78) and &nand et al	 [79) tested a 

hater-stainless steel heat pipe which had a 100-mesh stain-

less steel screen wick	 The hall and vapor temperatures 

were recorded for different axial heat flows and the wick 

boiling 'heat transfer coefficient, h, 	 as calculated 

Anand clams that the data can be correlated h) 

St	 =	 .0051	 Pr	 Np 2	 Re- I . 4 3	 (3-8) 

However,	 the data were plotted using 

St	 00051 Pi	 6 Np	 2 Re'	 (3-9) 

Moreover,	 the ordinate on their graph was in error by 	 : - 

factor of ten	 Allingham and McEntire corrected	 \nand's 

graph and presented it in Figure 3.9 along with their own -. 

correlation	 Both correlations sho	 the same trend and are 

in relatively good agreement considering that one represents 

wick boiling on the outside of a tube, and the other one 

wick boiling in the interior of a heat pipe	 The validity 

of Anand's results, however, may be somewhat questionable 

in view or the mistake made in their graphical presentation
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Marto and ?tostellcr (801 studied the problem of wick 

boi l ing using a so-callt.d evertod heat ripe 	 A sectional 

view of their heat pipe is given in Figure 3.10.	 The unique 

feature of this pipe is a vapor . space, enclosed in an annulus 

between an interior tube and a confining envelope.	 The wick 

consisted of four layers of 100 mesh stainless steel screen 

attached to the outside of the inner pipe. 	 heat addition 

and removal were accomplished using a resistance heater and 

a tap water cooling system both installed within the inner .	 . 

tube.	 The outer envelope was made of glass to facilitate 

visual observation of wick boiling.	 The results obtained 

•	 with water as working fluid are demonstrated in Figure 3.11, 

from which	 it becomes apparent that lower superheats were 

required under boiling conditions	 in zi wick thin in conven-

tional pool boiling.	 As	 the radial heat	 flux was	 increased, 

dryout of the wick occurred at the same flux value whether 

or not boi1iig was observed. 	 The authors concluded that 

hick boiling could exist	 in a heat pipe with no detrimental 

effect on its operation.	 The system pressure was also 

varied for both water and ethyl alcohol and it was 	 found 

that for a given heat flux, 	 the superheat decreased as. the 

absolute pressure	 increased.	 In addition,	 for a given	 :• --

superheat the heat	 flux in the case of water was almost one 

order of magnitude larger thv'L that obtained with ethyl J 
alcohol	 This disparit y in heat fluxes	 is expected in '.ie

j 

of the higher surface tension and latent heat of water. 

-.-.,. S. -..-,	 .-•.	 .•	 -. --• •	 .-	 ......---.. 
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compared to the same properties of the alcohols 	 In a study 

involving mud' larger superheats, Langston and Kunz , [131 

- measured the heat flux through several wick samples as a	 -. 

function of the superheat	 They found that for superheats 

of the order of 15°F and larger the flux through the sample I 
wicks became much smaller than for boiling on a flat plate, 

tnus confirming the results reported by \llingham and 

McEntire.	 The samples used by Langston-and Kunz inc1udod-. y.L	 - -j	 - 
sintered nickel powders and sintered nickel screens 

In mother scrics of ex)eri5icnts on boiling 	 in heat 

pipes, Noss and kelleytl) Zmployed a neutron radiograpixc 

technique to measure the	 liquid content	 (i.e.,	 liquid thick-

ness)	 in the wick of the evaporator ir. a co-planar heat pipe. 

The wick was made of sintered stainless ,steel screen 	 (1/4" 

thick) and the working fluid was water.	 Measurements proved 

that	 only	 wider conditions	 of	 zero heat	 transfer did.the - 	 ----:	 - -. -

wick	 in the evaporator remain completely	 saturated.	 As soon -. -	 --	 - 

as heat w is supplied to the cdporator the liquid 	 interface 

-j -	
receded into the wick	 reducing the extent of saturation	 in:-	 •- - 

the wick	 In addition, the data demonstrated that under 

normal operating conditions the degree . of saturation of the 

wick in the evaporator was inversely proportional 	 to the 

heat	 flux	 The muthois concluded that a	 tpoi	 blanket 

'of formed at the base of the wick and that the cxlstencc 

this blanket manifested itself in the 	 educcd saturation of 

;.• •-..  the wick. wiLk	 Two analytical moucis here	 fornulatd in an

As
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Figure 3.12 Vapor Blanket Thickness vs. Heat Transfer Rate, 


Moss and Kelley (31)


attempt to describe the heat transfer characteristics of the 

partially saturated wick. In a conventional model it was 

assumed that vaporization takes place at the liquid vapor 

interface. In the other model, however, the formation of a 

vapor blanket thickness as a function of the heat transfer 

rate and contact angle is shown in Figure 3.12. For heat 

fluxes smaller than 15,000 Btu/hr ft 2 the second model more 

closely predicts the measured values than the more conven-

tional first model	 The results led to some allegations 

tn hr nine nnration since -. •-
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it is generally believed that vaporization should tike place 

at the	 liquid vapor interface during sucessful ' hcat ripe	 -. 

operation.	 The authors co*ntcred these allegations by insist-

ing that their measurcments indicated beyond any doubt that 

the previously accepted ida of heat transfer through wicks. 	 .";. 

- - is In error.	 At the preseit tine	 however, - there are more 

data available supporting the model of conduction through  

the wick, with vaporization taking place at the liquid vapor'  

interface,	 than results sustaining the observations made by. H 

Mos s, and Kelly.	 For example, Ferrell and Alleavitch[41j 

measured the heat flux through packed heads saturated with 

bjter	 Their data for	 0 40 neh monel neads arc displayed 

in Figure	 3.13.	 It	 is	 seen that	 the data	 fall	 very close	 to 
•

•	 the	 line predicted by assuming pure cond':ction 	 through	 the 

-j
saturated bed.	 The curve obtained from the conduction model 

as calculated under the assumption that heat 	 flows b>	 con- 

duct ion through a thin I iqu id-bead layer in contact with 

the heating surface.	 The	 thickness	 of	 the	 liquid	 layer was.'.	 :'
'•" 

Idetermined by the location of the minimum pore diameter in 

tile bead configuration.	 It	 is	 somewhat	 s urprising that such 

good agrecnerit was 	 found between their thcc;y and experi- 	
-. 

ments since in the experiments	 the bed of beads was corn-

pletcIy	 flooded to a lcel hell	 above the upper surface of

4 the bed,	 hcr cc,	 no such	 thin 1uid-bc-id	 Iav.r existed	 in 

actuality.	 Recent work by the sine autho'	 has	 inc4'dcd 

heat	 transfer masurcncnts in a similar apparatus, except  

- 

.5
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Figure 3.13 Experimental Results for Surface Covered with 

30-40 Mesh Mon1 Beads,.Ferrell and A.11cavitch(411

I 
r'anner to an operating heat pipe. The more recent data 

showed excellent agreement with the conduction mechanism 

diSCLsSd above...	 . . 

Similarly, Phillips [29) and Phillips and Ilindeimann-

[53) gflcacLred the heat flux through a composite wick of 

nickel foam and stainless steel screen using water as a	 . . 

working fluid. The fluid was supplied through an artery. . 

and moved by capillary forces..A typical sanp±e of their 

data is illustrated in Figure 3.14. It is again 3b —14R 

that conduction was the mode of heat transfer for low values 	 :. 

of AT. The hick exhibited a hysteresis effect afte'-

_t•• 

11 
., 

-I' -	 -. ..	 _	 ;•-	 .,--. '- -s--	 ----••-	 -• .	 --•- ---.--	 -' 

that row the bed was not flooded and the liquid was drawn to 

the evaporator section by capillary action idcntical in 
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nucleate boiling was first observed. 	 In addition, the maxi-

mum heat flux decreased with decreasing chmbcr pressure. 

The reduction was attributed to the significantly increased. 

size of the vapor bubbles formed during nucicto boiling at 

decreased pressure; hence causing a. premature burnout due 

to vapor blockage in the wick. The blockage occurred 

because the vapor was forced to vent through the tPP of the
	

iY 

wick by purposely sealing its sides. The same effect was
	 $•. I 

observed in experiments periTorrncd by CostelLo nd Redeker 

(52). They concluded that proper venting of the vapor was 

necessary if the full capabilities of the capillary supply
II 
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system were to be utilized. 	 It is interesting to note that 

at the present time, no consideration is given to proper 

vapor venting of the wick in heat pipe design.
-1 

In addition to the capillary-and boiling 	 limits which 

•	 restrict the heat transfer capability of all heat pipes, 

those transporting heat of the order of kilowatts instead 

of watts, are often limited by the sonic and/or entrainmcnt 

limits	 These limits are often encountered during startup 

•
j prot.:edures from near ambient conditions whrc the initial 

vapor pressure is very low and the resuiing velocities in 

the vapor core are consequently very high. 	 Kemme [17) 

investigted the ' sonic	 limit using several different 	 liquid 
metals as working fluids. 	 The heat pipes were heated by an 

induction coil and cooled through a gas gap with a water 

calorimeter.	 The use of different mixtures of argon and 

helium in the gap allowed heat pipe temperature variations 

at a constant heat input,	 or heat	 input variations at a 

constant'hcat pipe temperature. 	 Figure	 3.15 illustrates 

data obtained during the startup of 	 i sodium heat pipe	 ihe 

dashed	 line	 indicates	 the sonic limiting curve, based on the 

vapor temperature existing in the evaporator exit. •. The heat 

• flow was	 increased -in discrete stops and the pipe was allowed, '--

to reach steady state before the heat	 flow and wall tempera-

ture-measurements were made.	 Theevaporator exit temperature' •	 ': 

followed the sonic curve until it reached 560°C. 	 • For tern- •	 '• I 

•	 '•• peratures lower than	 °C,	 the flow in the condenser sectio, 560 
• •	 =	 .•	 .-	 ',,. - 

•-	 •,

- 

I - ,• -	 - I -•-
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- consisted of continuum flow at the entrance and free mole- - •'	 -, 

cule flow at the far end of the condenser. Hence, only that 

part of the condenser in which continuum -flow existed con-

-- ••- 1

tributed significantly to the heat removal from the pipe. 	 - 

As the heat flux increased, eventually the entire condenser 

• region was in the continuum flow regime and once this-	 - -' 

occurrcd,'the )r'at removal area of the system remained .'.• 	 - -. - 

fixed, so that a further increase in heat input now resulted 	 -


in a larger temperature rise at the evaporator exit than was 

previously possible. The subsequent vapor density increase	 - I 
a I I ow e ki the' velocity at the evaporator exit to become sub-

sonic. Further experiments indicated the occurrence of'  

supersonic velocities at the condenser entrance. Figure 3.16 	 I - 

shows results obtained from steady state measurements at a 

constant heat input of 6.5 kw. The condenser temperature 

was adjusted by varying the concentration of the gas mixture 

confined in the gap described earlier. Curve A desc:ibes a 

condition in which the vapor , velocity-remained subsonic	 - 

throughout the heat pipe. As the pressire in the condenser - :-

was decreased, the velocity became sonic at the evaporator'	 - - 

exit (curve )	 The existence of subsonic flow between 

curves A and B is evidenced by the changes in the condenser..:'.' 
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remained constant	 The vapor velocity did not decrease - 

immediately upon entering the condenser but continued to - 

expand and became finally	 supersonic followed by a more 

abrupt pressure recovery than was evidenced for subson 

flow.	 Figure 3.17, demonstrates the effect of different 

fluids on the sonic limit 	 Good agreement between experi-

mental results and theoretical predictions was achieved. 

The sonic limiting curve (see Figure 2.7) 	 is highly depend-

ent on the working fluid and is also dependent on the pres-

sure and temperature at which the heat pipe is operating. 

In a similar stud) , Dzakoic, et al 	 [83) eonfirffied 

the results obtancd by Kcrrne 	 A sodn2m-stain1ess steel 

hcatpipe with five	 layers of 60 mesh screen serving as wick 

was employed to study the vapor_.ve1oci..ty limit in heat pip 

operation. Figure 3.18 is a plot of the axial temperature 

profiles obtained for two different heat inputs. It is 

interesting to see that with increasing heat flow the tran 

sition from supersonic to subsonic flow at. the condenser 

entrance took place at nearly the same hct flow rate and 

temperature as measured by Kemme (see Figure 3.15): This 

emphasizes again the dependency of the sonic limit on the 

selection of the working fluid and operating conditions of 

the pipe and dc-emphasizes its dependence on a particular 

pipe geometry.. Various startup tests were also conducted. 

The data are presented in Figure. 3.19 along with the .:alcu-.

lated capillary	 (or	 P)	 and sonic limits. 'imits	 'dote the data of 
*4_ -.-- .	
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Figure 3.9 Heat Transfer Rate vs. Temperature at the


Adiabatic Section Dzakowic, et al. [83] 

Dzakowic, et al. fill to the left of the sonic limit curve 

while Kcmmc's data (Figure 3.17) fall consistently to the 

right of the curve. An explanation for this discrepancy 

may be derived from the fact that Kcmnc plotted his data as 

a function of t'n maxiniumcvaporator temperature, while 

Dzakowic et al. usedh.e teiiperaturc measured at the mid-

point of the adiabatic section. It appears that. perhaps. 

the use of the evaporator exit tcmprature would move both 

sets of data closer to the predicted curve. Dzakowic et. al.

LI
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attributed their observed temperature discrepancy to possi-

ble supersaturation of the vapor and to a 'lesser degree. 	 .....
-. 

the uncertainty in values of sonic velocity and specific 

heat of the vapor. L : 

The sonic limit is not the only factor which contributes 

to startup problems of heat pipes.	 Ohri,usIy the starting - 

technique is also of major 	 importance.	 Busse, et al..[47) 

found it	 impossible	 to start a magnesium heat piDC unless	 •. •	 . 

the entire pipe was 	 first preheated	 Ernst, et al	 (69) 

experienced that the method of orienting the heat pipo
3	 •• 

during startup had a significant affect on its final operat-

ing condition.	 Figure 3.20 depicts	 the evaporator tempera-

ture drop as :i function of difference in elevation between - 

the evaporator and the condenser	 For -height differences
I H 

of less than 4.4 inches, no effect depending on pipe orien-

tation was evident. Once the pumping limit was reached, 

however, the temperature drop was greatly influenced by the

method used to attain the elevation difference. 	 The upper 

curve represents the situation where the pipe was first	 -• 

placed into the desired position and subsequently heated,  

while the lower curve represents the case where the pipe	 • 

is first heated horizontally and then subjected to the 

dcs'red orientation	 No satisfactory cv1anation was given 

for the uifereiice	 in heat pipe behavior,	 '1cScene>	 [50) 
.'::	 •._	 .-. 

measured the temperature in the vapor space of 	 i sodium h i at 

pipe which durin g the startup transient period unexpectedlyI 

I
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Operating at 3S() watts, Ernst, et a]. [691 

oscillated with an amplitude of nearly 50°C and a period of 

approximately 10 seconds. Oscillations were also observed 

for steady state operation of the pipe when the heat removal 

was highly concentrated by localized calorimeter cooling.. 

As long as cooling was effected by free Convection and radi-

ation, no such osillations were observed and the vapor 

temeraturc remained nearly uniform throughout the vapor 

space. The oscillatory behavior was attributed to either 

non-linear wick characteristics or the presence of non- . . 

condensable gases.

I	 i 
F 

-
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Neal (28) and Shlosinger [431 studied the startup 

behavior of-low temperature hat pipes with the working 

fluid initially frozen. The transient temperature profile 

along a water heat pipe in response to 50 watts of heat 

input is illustrated in Figure 3.21. . Even such a moderate 

heat input of only SO watts caused wick dryouc and subse-

quent overheating in the evaporator section before the 

entire pipe thawed out an .d could begin to operate in its. 

normal mode. With a heat input of 15 watts, however, the

.4. --
I.. 

1
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working fluid with a lower melting point was bonded to the 

primary heat pipe	 The use of the auxiliary pipe greatly 

- .	 enhanced the thawing of the primary heat pipe without local 

overheating and the transient period of time' was reduced by 

a factor one half.	 Initially the pipe was frozen only 	 in 

the condenser Section and liquid was present in the rest of.. 

the pipe.	 Dcverall et al.	 [84)	 investigated the startup 

behavior of a watcrhcat pipe which was initiall y fr,zcn.. 

over	 ts entire length.	 Ten watts of power were supplied 

• .
	 and the transient temperature profile, 	 shown in Figure 3.22,. 

has ruasurcd	 From the shape of the develop ing temperature 

profiles ., 1cvcrall deduced the following sequence of events: .	 .	 . 

Firs t heat was	 transferred	 in association with vapor flow	 •. 

along the f:Il	 length of the pipe.	 The vapor was formed .. 

by sublimation in the eviporator.	 Since the wick was still 

frozen no liquid returned to the evaporator to replace the 	 '. •	 . 

sublimated fluid.	 The lack of return fluid	 resulted in a 

rapid rise	 in evaporator temperature until	 it	 (see stations 

•	 .	 1,	 2,	 and 3)	 rose above the melting point. 	 Waterwas	 then 

wicked into the heater area, and the tcnperiture rise was 

temporarily arrested. .. Since most of the 	 fluid was	 still. •• 

frozen, not enough liquid was supplied to the heater 	 Dry-

out occurred and the tenp.rature of the evaporator increased 

rapidly to above 100°C.- Whcn the .' entire working fluid was 

finally melted,	 sufficient	 liquid was wicked into-the .	 - 

4	 5	 -

-	 •-	 -.	 'V	 -	 . i	 12 
-••	 -	 -	 .	 .-	 •_f•'_	

'	 •.-.;:	 .'
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Figure 3.22 Transient Temperature Profile Along Completely


Frozen Heat Pipe, Deverall, et al. [84] 

evaporator and the temperature fell suddenly to 44uC. 

Normal operation began and the pipe became isothermal. 

Startup data were also obtained for a (nonf.rozcn) water.. 

heat pipe placed in earth orbit. Telemetry data indicated 

a frontal startup of the type illustrated earlier in Figure. 

2.8-B. The startup procedure and steady state operation of 

the heat pipe in orbit were similar to thoc experienced.. in 

laboratory tests. 

Phenomena associated with the startup behavior of high 



sodium heat pipes with wicks consisting of axial channels
0 

(grooves) running the length of the pipe.	 The difficulty
 

was attributed to the attainment of the entrainment 	 limit. 

•	
As mentioned earlier, 	 this	 limit is	 reached when a high 

velocity vapor stream .shears 1iqud out of the wick and 

•	 impedes a continuous supply tif fluid to the evaporator. 	 The 

entrainment limit is dependent primarily on the characteris-

tics of the wick" su l-fact, .	 Figure 323 shows	 test data 

obtained for three wick surface	 ofigurations.	 The maximum 

heat transfer was signi ticantly improved by covering the 
.	 .

.	 .. 
0 

. •

channels with a layer of.scecns.	 The experimental curve .. 

labeled 4	 is	 a good example of the cntrinme't	 limit and its 

shape confirm	 the curve	 initially depicted	 in Figure 2.7. 

In another cperiment,	 the effect of "screen fit" was 

studied and is shown in Figure 3.24.	 The mechnical	 fit of 

the screen was very	 important	 in c-stahlishing the heat	 . 

traasfer limit of th'	 heat pipe.	 Thc higher	 limit with the 

loose fitting screen was probably caused by the. extra fluid 

paths available in the annulus between the screen and the 

out^r wall.	 The curve calculaced for the contacting screen 

in Figure	 3,24	 as based on	 the capillary	 limit and not the .	 . 

cntrai time nt	 limit.	 The	 capillary	 and entrainment	 limits	 are, 

both dcpend?nt om the wick structure and	 it	 is	 impossible to 

theoretiLall"	 or cxperincn tally Change one without also 

iterirg

 

the othci	 This dependency associated with the H 
fact	 that the entrd'rent	 limitgenerally attained only

1
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•	 in a relatively narrow temperature range (between B and C in 

Figure-2.7) has somewhat curtailed the investigation of this 

particular limit-of heat transfer in heat pipes.	 • 

Basic Studies 

The investigations discussed in the preceding section 

have dealt primarily with the limits to heat pipe operation' 

and startup characteristics.	 A number of additional studies'
4. 

•' 

have y ielded information contributing to the rapidly growing 

heat pipe technology.	 Dover-ill,	 t al	 [60,	 84,	 87,	 88] 

operated a	 iter-'tailess steel heat pipe in an earth 

orbit and its performance was monitored by telemetry at 

several tracking stations during fourteen revolutions.. 

.• kesults indicated that there was no degradation . of the heat 

pipe performance in a	 zero gravity held	 in further tests 

[26,	 891	 a similar heat pipe was subjected to various sinu-

soidal and random vibrations to determine the influence of 	 . 

vibratory environment on heat ripe performance..The 

e\perlmenrs proved that vibration was not detrimental to 

heat pipe operation.	 On the contrary , vibration enhanced 

the wetting of the hick,	 forcing llqLld into al] parts of 

the wick structure, and thus actually improved he-it pipe 

performance	 Ci1imbas and Hulett	 [49J	 confirmed these 

results in a series of vibrational tests performed with a	 - 

water-stainless steel heat pipe.4 
Itaskin	 [25) measured the total radi-ii 	 tenperiturc drop 

in the evaporator and condenser in a lOss tenperture nitrogen 

4 -.	
.	 ...i .•
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heat pipe.	 He found that for. jOW heat	 loads	 (less than 36 

watts) the temperature drop	 the condenser was larger than 

in the evaporator. 	 The-difference was assumed to be caused. 

by the extra liquid which accumulated in the condenser during  

•	 operation.	 For larger heat loads, the temperature gradient
-. 

•	 in the evaporator beame greater. 	 This was attributed to . 

partial drying of the wick and to the formation of a super- 

•

	

heated vapor film on the inner metal tube surface. 	 Similar .1:.. 

-	I 
measurements were nrtdc b y Schwartz	 (58)	 ith	 t water-stain- . 

less steel heat pipe..	 For the same range of heat loads, but 

much hihcr temperatures obtained with different - fluids he 

•	 - .	
found that the temperature drop across the wall and wick in  

the evaporator was consistently higher than 	 in the condenser. 

Hence,	 a higher condenser temperature drop 	 is not	 the rule,	 ...... '... 

but	 instead, the relation between condenser and evaporator 

temperature drops is dependent on the given geometry and the 

nature of working fluids 

In yet another study,	 Ranken and Kemme	 [481 measured ,-•.	 .	 - 

the temperature	 wriition along the length'of-- a lithium heat 

pipe operating	 t about 8S0°C as shown	 in	 igure 3.25.-	 The 

measured points hac been fitted with a smooth curve 	 hich 

as corrected for the temperature drops arising £ro'n radial 

heat floss	 Vdnor pressure values associated with measured 

.	 •	 -•	 --••••-••-	
....- 

temperatures and with the temperature. minimum are also dis-
-•. ... 

played	 in	 Figure	 325.	 -The	 temperature	 reaches	 a miniumj......... . •-

between the cvaporator and condenser	 In add] tion a pressure I 
:4
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recovery of	 S has occurred which ' compares favorably with

'.4 

•	

.	 theoretical predictions.to be. discussed	 in aatcr section.	 •' 

Ranken and Kemme compared data, obtained by cohdansky and Schins 

[90] using a lead-tantalum heat pipe, with predicted values t 
•	

for both laminar and turbulent flow, Figure 3.26. 	 Blasius' . 

turbulent flow equation gave considerably better results 

than the laminar flow equation, which was expected, because 

the axial flcw Reynolds' nubcrs were well over 1000 for 

this experint.	 McKinncy	 [35, 911 conducted extensive 

tests on a series of water heat pipes in a noderate tempera-

ture range (temperatures up to 406F)	 Among other cop- 

clusiçns, which have already been amply discussed, he found 

•	 that thcagnitudc of the radial Reynolds number had	 iittle 

or no effect on heat pipe operation. 

Tien [921 measured.the axial temperature distribution 

•.	
along the outside of, a water-ethanol heat pipe. 	 He deter- •. .	 - 

mined the pressure inside of the pipe and compared this with 

•	 the pressure which had to prevail	 if pure ethanol occupied 

the condenser and pure water occupied the evaporator.	 He 

concluded that separation into pure components	 in a heat 

pipe is extremely diffiu1t,if not impossible,	 to achieve. 

Instead he found that if the initial composition was rich 

in ethanol,	 the data attested to the existence of a water-

ethanol mixture-in the evaporator while nearly pure ethanol	 . . 

(i.e.,	 the azcotropic mixture) occupied the condenser sec- t-
tion	 All of Tin's data, however,werc obtained with 

-	 -



pipe operating vertically with the evaporator below the con-  

denser. If the pipe contains excess liquid such an arrange-

ment is usually referred to as ' a reflux condenser because 

gravity furces, instead of capillary forces, can always 

return the condensate to the evaporatbr. In such cases  

results would have to be, viewed with some caution because 

the wick structure may or may not significantly alter the 

liquid vapor equilibrium conditions. 

IIet Pipe Applications 

Theoretically the heat pipe may he appl-ied to a1tnost, 

limitless number of thermal transport problems, which in	 - 

general, can be subdivided into four broad topical categories 

[8, 9, 10, 201 depending on the particular feature of a heat 

•	
pipe which is to bc exploited. These areas of possible	 • 

application arc: fl Temperature Flattening, 2) Sourcc-Sink.. 
Separation 3) heat Flux Transformation, and,4)'Constant Flax  

Production.	 , '	 '	 :. 	 •; 

The temperature equalizing feature of the heat pipe. has 

prompted numerous suggestions and actual uses for the main-' 

•	 tenance of a desired constant temperature environment. .Much  
S	 ' 	 ' 	 ' 	 ..-• 

of the emphasis has been, and is still, focused nn . the- prob-
:. 

lems of thermal 'control of spacecraft. It is well known that 	 '' 

large temperature variations may occur ont.hO. stir fac of a.. 	 .	 • 

sp?cecr'lft resulting from nonuniform .heating of the craft 	
l 

These temperaturevariations can, cause a host of problems 	 '	 ' -' 

including undesirable thermal stresses	 Katz-off [5] together

n 

-.	 -	 •••	 -	 •'.	 ' .•	 .	 .-	 :-	 '-	 '-	 •	 ..•;
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with several other invetigators [7, 93, 94, 95) recommended 

the use of long heat pipes, wrapped around the circumference 

of á ' spacecraft,' to accomplish the necessary equalization of 

the temperature distribution. Naturally the evaporator sec-

tions ef the - cir.cular pipes would have to face the sun while 

the radiation cooled condensers have to remain in the shadow 

of the craft. According to Katzof.f such an arrangement of 

heat pipes would reduce 'the temperature variations around a - 

spacecra.Lt with a circumference of ten meters from 275 0 k to 

44°K Anand et al (96, 971 reported the successful employment 

of two Freon-11 heat pipes which reduced the temperature differ.- 

ences. between transponders located in different parts of a 

Geos Il spacecraft. Deverall utilized the isothermal walls 

of a heat pipe to meajure the total hemispherical emissivity 

of variously prepared. surfaces 123, 981. Several heat pipe 

containers -were plated or sprayed with different materials, and 
- •• -5_____	 .	 .	 - 

the resulting emissivities were ctermined over a wide
.
 range of 

temperature with an estimated. accuracy of ±2%. Schrètzmann 1. 

[99) employed an iscthermal surface of a heat pipe as a metal-: 

	

• source in astudyof the effect of electromagnetic fieids ' c	 ' 

T	 the evaporation of metals	 Bohdansky and Schins [100] used 

a heat pipe for the determination of pressure-temperature re-. 

lations of metal vapors at high temperatures and pressures.'. 

Feldman and Whiting [9]have suggested the-construction of an iso-

thennal flat niate for the installation of electronic components 

They conceived a sandwich type plate, the interior filled with
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many interconnecting honeycombed heat pipes, which would 

rapidly distribute any localized heat flow and maintain the 

plate at a u'niorm temperature. 	 0 - "• 

Another USC of the heat pipe would allow separation of 

•	 the heat source from the heat sink. 	 Again, possible space-	 •' 

craft applications, of I. ear pipes have receive 1 considerable 

attention Since the heat source, 	 for instance electronic	 •.	 • :	 1 

components.,	 is often located in the interior o	 the craft	 - 

I. and -the i4asie heat must often be transferred over some dis-

tance for ultimate rclect3on to outer space	 'Moreover, any 

sizeable temoerature drop between the source and the radi-

ator may	 induce' a significant weight penalty because a 

larger radiator area will be required at 	 lower temperatures . 

to dissipate the same amount of energy. 	 Since the .heat pipe • 

is both, light weight and nearly 	 isothermal	 it appears	 to	 ' 1' 

provide	 ideal solutions	 to many thermal dissipation problems 

encountered	 in spacecraft.	 Many	 investigators	 [46,	 101,	 13, 

102,	

103,	 104,	 611	 have considered	 its	 application	 to such	 - 

energy dissipation systems and have cited numerous advantages'-

including greater heat transfer per unit weight, 	 and some 

degree of meteor protection when used in parallel arrangement.. 

Werner and Carlsoi;	 [104J	 have reported that heat pipes. can  

operate sixty times more effectively as radiitors than solid 
•	 '	 .	 '	 ' 	 . '_$ 

rods based on heat transfer rites per unit 	 '.eight	 Dcvra11 

and KemncE231 support this claim by reporting that 't silver 

heat pipe is S20 times more effective than an equivalent.  
• 

C 

- - -	 - --
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solid tantalum rod	 team of investigators of RC . 	 [20, 511 

has designed, constructed and sucLcssfully tested a space 

• radiator composed of one hundred individual heat pipes. 	 The 

system which weighs less than twJvc pounds is capable of 	 . 

rejecting 50,000 watts of thermal energy at a temperature 	 . H 

of 1420°F.	 McKinney	 (35) recomtcnded the instaflation of	 . A.

cryogenic heat pipes around cryogenic storage tanks.	 11	 ..	 ' 

the heat pipes contained a 	 orking fluid having a lower 

•	 boiling point than the stored fluid it should he feasible to 

transfer the heat,	 leaked froir the immediate surroundings 

into the storage vessel,	 to a rcmote sink for dissipation. 

Researchers

	

t Los Alamos Scientific Laboratory explored a •. 

unique scheme	 ir which the ccnstrition of it heat pipe plasna 

oven was proposed.	 The disposal of taste heat •givn up by 

electronic components at remote 	 locations has already been 

mentioned several	 times	 [11,	 49J 

Another feature of the heat pipe, which- has generated 

much enthusiasm 1	 is	 its ability for thermal	 flux traisiora-  

tion	 icit	 addition	 to and h'tt r.bio . il	 from -	 heat pipe 

are fesih1c	 crocs heat flow areas of different size	 This 

potential	 for heat flux transformation ha 	 stimulated therm 

....................................	 low . heat, onic specialists	 to consider the conversion of low heat,  
S	 , 

fluxes generated by radioactive	 isotopes,	 for	 instance,	 into-	 . 

a sufficiently high beat flux which is required fnr the 

operition of a Vernionic conertcr.	 Lccfcr	 [64]	 achicd a 
-	 -	 -	 -	 '	 S.	 '• 

f lux	 transformation w it,h	 i flux co cent ation rat.to of
--

P.

I
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approximately ten to one equivalent to an output flux density 
V. 

of 250 watt/cm 2 which is more than adequate to meet the 

requirements of a 'thermionic converter. 	 Other investigators 

also reportecl measured flux conversions of a ratio of ten to 

•	 .. one (107) ana even twelve to one. [74, 683. 	 A.number of 

papers have appeared in the literature (23,	 64,	 65, 67, 71, 

108 to 117) extolling the virtues of heat pipes iihen used in 

conjunction with therrnion'ic converters.	 Numerous heat pipe-

thermionic converter assemblies have been built and tested. 

The results have generated much optimism and it is believed 

that the heaz pipe  applied to. thermion iccOrtvcrters will 

reach technical maturity in the near future. 

.1 . Heat pipes may also be used to "flatten" flux variations 

supplied by an unsteady heat source. 	 Researchers at RCA [107] 

have developed a "classified" radioisotope powered heat pipe 

V. which supposedly maintains a constant thermal output flux inde-

pendent of variations in thermal input flux for at least 

three half 1ives	 qualified thermodynami .cist might want	 - 

to study these more exotic schemes in view of their corn-'  

patibility with the requirements of the Second Law of Thermo-  

dynamics.	
V 	

VVV	 ' 

L Two particular potential heat pipe applications have been 

proposed by investigators at 'the Lawrence.Radiation Laboratoty. 

Hampel and Koopman [32) suggested	 theutilizatlon of the
 

heat pipe concept for thecontrol of small 	 fast-.pectrum,	 V 

V

high. temperature reactors.	 Their scheme	 is based on the	 . V 

- 	 <Ii
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*	
capability of the heat pipe to respond to a sudden increase 

in heat fIUx.with an increase in evaporation rate.	 If the 

evaporator ends of a sufficient number of heat pipes, filled 

with special working fluids having a negative void ceffici-

e.nt, were installed in 
tile reactor core, an increase in core 

-	 heat flux would result in a decrease of the total mass con-

tamed in the core	 (evaporators).	 Such a h ypothetical mass -

transfer device may eventually be used to provide some sort 

of reactor safety control.	 Werner [118] proposed to employ 

lithium heat ti pes as tritium producers	 in	 the blanket --

structureof a reactor.	 The scheme calls for the trasport 

of the	 tritium within the heat pipe to an accessible- proces- 

H sing point outside cI the blanket where it could he removed 

-by diffusion or equivalent means and then he used to 

replenish the tritium consumed in the core. 

S. 	 Ica tPipeControl 

Inasmuch as the heat pipe transfers energy hetwcrn two 

•	 points utilizing a continuous mass circulation,	 it 	 is appar-

ent that some degree of heat pipe control may be exerted by 

•	 . controlling the mass	 flow.	 Katzoff ES)	 suggested several	 :. 

concepts	 to accomplish thermal control witn the heat pipe	 . 

serving as a variable thecmal conductor. 	 One technique 

involves	 the	 intentional	 introduction of a nor.condensab.le 	 . 

gas	 into the vapor space. - As discussed calier,	 the gas'-  

tends	 to collect in the condenser where it 	 forms a relatively . 

stagnant gas zone which cfectively eliminates 	 any working
:	 -



fluid condensation. The length of the gas.zone, of course, 

depends on the working pressure in the pipe; the zone length 

decreasing with increasing pressures. The gas layer can be 

exploited in several has	 For e'ample, suppose it is 

desired to always furnish sour ener gy to an instrument 

Inside of a spacecraft regardless of the craft's orientation 

with respect to the sun. The task could be accomplished by' 

mounting the instrument in the center section of ..a heat çp 

containing some noncondensable gas. If the amount of gas 

was such that it filled slightly less than half of the ipc, 

then the instrument would always rccoie energy from the 

sun. The end of the heat pipe on the shaded side of the	 - 

spacecraft should remain inoperative due to the blocking 

effect, of inert gas and thus minimi:ing heat losses. The 

H

opposite problem could be solved by using a partially dry 

heat pipe. Now the dry part of th? heat pipe, and hcacc the 

inoperative part, could always face the sun, and the instru-

ment which might generate heat could reject this heat by 

radiation from the shaded side of the spacecraft to outer 

space. Besid's Kat:off, Wyatt [119] and Anand et al. 791 have 

suggested the use of thermostatically controlled valves and! - 

or bellows tc supply or withdraw Vic noncondcnsahe gas.-
 

Such an arrangement would allow the effect ire condenser area 	 - 

to be varied independently of 'e operating pressr prevail- 	 . 

ing in the pipe. Katzoff has al-;o :cornmcndcr a control  

technique which involves the interruption of the liquid flow, •	 - 

-	 .	 .... 
•	 -	 .	 -•,-	 .	 -	 .• 

•	 ••	 -:--
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-	 BELLOWS OPERATED VAPOR  
CONTROL VALVE  

CONDENSING CHAMBER - 
CONTROL SIGNAL •	

PNEUMATIC ••	 - 

REFLECTIVE	
RADIATION TO SPACE	 THERMAL CONTROL C) VACUUM	 SHELL

0 

INSULATION
INCLUDING TWO 
CHAMBER CONTRCLL-	 - 
ABLE HEAT	 PIPE 1 

EVAPORATING 
CHAMBER	 - 

<C>	 <2>	 <> SPACE SUIT PRESSURE 
WICK	 METABOUC HEAT	 SHELL INCLUDING -	 - 

HEAT PIPE	 IN ALL 
CAVITIES -	 - 

Figure 3 27	 Schematic Cross Section of Variable Conductance 

Space Suit Shell 	 Shiosinger [42, 43, 44] 

i. n the wick	 This control technique would be practical only 

in wicking structures in which the bulk of the flow takes 

place in an artery. 	 A thermostatically controlled valve 

could he used to impede,	 or stop the	 flow in the artery,	 in - 

response to the control requirements.	 Anand et al.	 (79) and 

Shlosinger et	 al.	 (44)	 have also considered a similar • 

arrangement for the control of the vapor flow. 	 Shloinger	 •- •	 -i. 

(42,43) used this concept into the design of a variable 

conductance space suit 	 IIi v design is	 illustrated in 

Figu'-e 3.27.	 The design concept provides	 for both	 insula-

tion when the valve is clo s ed and for neat rejection when 

the valve is open duiing periods of high metabolic heat 4 

generation of the space suit wearer	 Experimental results



*	 -r'---
•	 i.	 ....	 :--	 •'	 ,•.• 

;.lO	
; 

were interpreted to consider such a technique as feasible, 

but calling for much more research 	 Anand et al (79) roco 

rncndcd a control technique involving th& use of. two fluids 

hosc pressure-temperature curve intersect at the desired 

operating temperature	 In anticipation of the difficulty 

-' of finding such fluids, this iethod of control has received 

only minor attention. 	 Workers at Honeywell 	 1271 have studied :.- -	 --

the concept of bellow controlled feeder wicks which are 

either in contact with the heated surface thus providing a	 * 

pith for th	 condcnate return, or the contact is	 inter 

rupted, thus preventing fluid tctjn and hereby shutting 

off the heat pine action. 	 Heat pipes acting as "thermal 

SiitCisCs" were built prinarLly	 in an effort to dei. elop	 ari-

able conductance walls. 	 Conductivity ratios of 150 have 

been reported deper.ding on the position of the . fccder i•;ick. 

•	 Obviously a great many, 	 possibilities	 for heat pipe	 con-

trol exist;	 hcwcvcr,	 most	 of these concepts	 remain still	 in 

the dreaming stage, 	 and fete controllable heat pipes have 

actually been built to date.	 Much more research will 	 have	 • 

to he devoted	 to	 this	 particular area of heat	 pipe	 -inplica-

tion so that eventually some thermal problems can be solved 

with controllable heat pipes 

• .	 •-	 .	 *	 ...	 . -.*. 
Heat P1pe Theory ...... .......................... 

The heat pipe theory developed up to date is due, 	 in 

urge part,	 to 1 stimulus provided in a thcorctica. study 

performed by Cotter [1] 	 lie formulated the	 overn1ng 

-	 -	 -
'.4 .	

-	 .	 :	 -: •..	 ;.. H	 *	 - 
-	

- 
..:	 :-'	

••	 •'.••-	
:-	 :;i.-*	 .	
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equations describing the processes taking place an the heat 

pipe and also developed a modcl to predict the capillary 	 - 

limit of heat pipe operation. His results have been used by 

other investigators who have often simplified or modified 

his equations to suit their particular assumptions and/or 

geometries. Because this has been done so extensively,  

Cotter's analysis will be presented an necessary detail 

The description of the analysis 'will be followed by a number 

of modified theories and' by several other analytical.,  

approaches, all of which are concerned with the capillary 

lami	 Derivations for the predictions of the other limits


of heat pipe operation are given subsequently and finally, 

?vcral analyses which deal with specific problems conclude. 

the analysis section.  

Cotter studied a heat pipe as shown in 1iguic 3.28. 

The capillary structure is assumed to have a pore radius, 

r , and to be completely saturated with a working fluid.
 

The radius of curvature of the meniscus surface is thought -
	 S


to be dependent on the distance, :, and the pressure differ- 

enLe across a surface is i funLtlon of position is given by 

	

- (Z) 11 (z)	 2/r(z)	 ZacosO/r	 (10) 
V.

where r(z) 3S the local meniscus radius of curvature 	 -In -

e q uation (3-10), of course, it is assumed that the meniscus 	 '-

is represented h one radius of curvature onl y	 ri, 

fact, a complex meniscus shape were , formed, the term

4 

-	
S	 __•	

-'S	 •,•	 - 'S	 •	 S_S 

5,	

'1 
S	

'-	 • , 	
' 	 ' : 	 ••	 '''	

' ' 

I 
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Figure 3.28 Cylindrical Heat Pipe Structure, Cotter [4) 

(Z/r(z)) in equation (3-10) should be replaced by + _i) 

where r 1 and r 2 are the two radii of curvature necessary to 

describe a three dimensional surface. If a heat pipe is to 

be operated in a gravity field, then the maximum length, 	 - 

::max, of the pipe is restricted by the lifting ability of  

the combined wick and liquid system. The maximum length is.. . - - 

given by the w--Ii known relation I 

2aco..0z	 Coss  (3-11) max	 Pgr	 .•	 - 

Cotter next considered the steady state opratJon of a 

heat pipe and applied the conservation of mass principle to 

arrive at the relation 

m(z) • ir(z)	 0	 (3-12)	 - 

where the two mass [low rates are both positive in the plus	 I : I

z direction

I 
•	 . . 	 •.•-	 • •-•-.	 -.-	 : -

___	

- 

t I 
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The pressure grdicnt in the liquid was determined from 

the.Na'ier Stokes equation for steady, incompressible, con-

stant viscosity flow.	 By neglecting the inertial	 term and 

by modifying the viscous	 term with 'a dirension1ess constant	 - 

to account for different wicks, the pressure gradient in the
•'. 

z direction, was	 found	 to -be	
0	

0 ':	

;:• 

dP 9	 .,.	 bp t	 m(:)
 

—Z Dig Coss- ( 
2 (3-13) 0 

0	 utrwrjoLc r 

where the dimensionless constant, b, 	 is defined as cr/Z
0 

and has a value of approximately 8 for non-connected parallel 

cylindrical pores, 4nd 10-20 for more realistic capillary , ,,.	
'..'	 S	 - 

structures with tortuous and interconnected pores.	 The 0 

radial pressure gradient has been assumed neglig.h1e as will 0 

be tim case	 for long thin pipes;	 that	 is,	 for those pipes
0 

>> r	 2	
0 for which	 r • 1

W	 0

5, 

The pressure gradient in the vapor was found by emplo y -

ing the results of Yuan and Finkelstein	 (120)	 and knight	 and 

McIntccr	 [lZIJ.	 These	 authors assumed	 'incompressible	 laminar
S. 

flow and uniform injection or suction at	 the vapor space
0 

houndar>.	 'rhe applicability of these	 rest its	 is based on 
the value of the radial	 Reynolds number,	 r' Which is  

defined h  
r,	 "r	 -	 ,

 Re	 =	
-	 u	

- =	 -,--	 (3-14) 
-	 -

. 
V	 V 

It	 is positive	 for evaporation and negative for"ondcnsati on. . - 
For IRej	 << 1,	 the vapor flow is dominated by viscous forces 

-'	 -	 I*	 5
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and the velocity profile approximates the usual parabolic-

shape-for Polseuiile flow.	 For this case the vapor prcsue 

gradient is given by 

dP	 Sum
[1 + 7 Rr +	

(3-15) 

For	 I RC rI 	 >>	 I, however,	 the	 flow is qualitatively diufcr 	
- 

ent in evaporator and condenser. 	 For high evaporation rates, 

J
the velocity profile is not parabolic but is proportional to 

iT 
cos 2 r 2 ... 

, which was verified experimentally by hageman - 

and Guevara [121),	 and the pressure decreases in the direc- 

flon of fls	 high condensation rates, on the other 

hand, the velocity profile is nearly constant aross the 

vapor space with the transition to zero*er	 velocity occurring	 . 

in a	 thin.- layer near the wall,	 and	 the pressure increases	 ..	 - 

in the direction of motion due to a partial dynamic recovery 

in the decelerating flew.	 For	 Ile,	 the pressure gradi- rl 

-	 ent	 is	 found	 to	 be	 .	 .	 .	 .	 .	 ..	 .	 . 

dP	 - Sidi	 -	 -	 . - 
UZ	 4p	 r'	 a	 (3-ic) VV.. .'. 

where S	 1 for .. evaporation and S	 4/tr2 for conder	 ation 

Furthermore, Cotter hypothesized that for some Situations-

where the kcr	 0 and the average vapor velocity is sigh, 

as right exist	 in heat pipes with a long adiabatic section, 

fully developed turbulent flow may . occur	 For 
•sucha case,  

Cot 1 r recommended using j 

i

-
-
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0655	 Re" 
-a	 p	 r '	 (3-17) 

V	 V
-' 

in lieu of equation (315) 

The relation between vapor and liquid pressures and the'. 

mass flow rates is next given by a formula supplied by the 

kinetic theory.
( 

d	 ur 
-	 -a	 (3-18) 

IRT/2rM 

where a is a nuicrical factor which includes the probhility 

of condensation of a vapor molecule and the surfare rough-

ness of the rnniscus	 The value of c	 is very nearly unity. 

•	 Cotter next considered the conservation principle of  

cncrgy and by neglecting	 radiative and conductive coatribu-

tions he arrived at

Q(z)	 hçg n ( z )	 (3-19) 

Finally, Cotter coupled the heat pipe to the surround-

ing environment by expressions accounting	 for heat fluxes	 •, 

or imposed temperature conditions respectively 

_	 -	 2w r j) (.. rp )	 u(zTQ)	 (3-20) 

and

T(:,r)	 = T(z1r)	 .4 [! tn	 1?_	 -i	 .0	
•jJ	

(3-21) 
rk 

where equation(3-fl) rolates the ternper'aturc on: the outer  

surface of the heat pipe to the tcmperituro at the liquid 

vapor meniscus. -

- 
I
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Equations	 (3-10)	 through	 (3-21) are generalized heat 

pipe relations as presented by Cottcr 	 These-equations can -_	 - 
-	 -	 -, 

ho solved if the vapor has a nearly uniform temperature, T, - 

throughout	 the vapor si pace.	 If equation	 (3-21)	 is solved 

(or T[r(:,rp)}. then H in equition (3-20) ma y be expressed 

as a functi.on-of'length,	 z,	 temperature distribution in the 

vapor 
TyIT(:,rv)J,

and the heat flow, Q	 Also, if the heat 

flow through the pipe ends is 4?nocd by Fo(T) and F -' 

trten the average vapor temperature, T, and t)e correspond-

-	 - 

ing axial heat flux distribution, Q 0 (z) are determined from - - 

the reaions

dQ e 
-	 -	

d:	 iI(z,TQ 0 )	 -•	 - 

• -	 -	 -	 -	 -.	 -	 -	 (3-22) 

rr Q0(0)	 F0(T0)	 ;	 ç 0 (1)	 -	 1 : 1 ( T O ) -	 - 

With	 this Rpproximation . for the heat flux,	 the mass	 flow 

rat	 may-be determined from equations (3-12) and (3-19) 

The vapor mass flow rate can then he used in the appropri-

ate equation,	 (3-15),	 (3-16),	 or	 (3-17)	 to determine	 the 

pressure distribution in the vapor.	 Also equation	 (3-13) 

may be integrated to yield the axial pressure distribution 

in the li quid.	 Finally, equation	 (3-I8)	 can be solved for 

the vapor pressure of the	 liquid to within an addi'tive' 

constant..Cotter recommends using P(I 0 )	 for t 1uc constant. 

Since the vapor pressure	 a )zrow	 function of liquid 

surface temperature ', T(:) may,be dote rminrd	 The

-

ii
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consistency of this procedure can	 e verified if the axial 

variation of T,iS small compardto T. 	 -.

. 

Cottcr used this procedure for the special case of 	 •.. 

constant heat addition along the evaporator and constant 

heat removal along the condenser. 	 Thus he obtained .	 . 

0	 z	 l 

Q 0 (z)	 h 1 	 1(z)  
g

(1;z)Q/1-I	 . z  

- where Q	 i	 the total heat input to the evaporator. 	 By	 ....•. 

employing equations	 (3-23)	 in	 (3-15)	 and	 (3-16)	 and neglect--- 

ing the term Rer2 in the former, and assuming the vapor  

density,	 OvP	 to be constant	 in both, a straightforward 	 into-  

gration yields. . - 

4i	 1% -	 —j---------	 ;	 Re	 <<	 I 'v	 fg 

P • (1) -	 I'	 (0) .	 (3-24) 
I-

V	 V (1-4/-n2)Q	 -	 .	 . 

- r,'	 hfgZ	 •C	 >>	 1 

Likewise,	 integration of equnton	 (	 1) Yields 

•	 buQ1 
A pt	 P(1)-P(0)	 pglcosB + (3-25) .	 .	 . 

2	 2 

2r [ r	 r	 o - VJ cr	 h W	 L	 C	 çg .	 .. 

The temperature difference in the vapor space can be	 - 

obtained from equation	 (-18)	 leading to 

-	 -/1/2	 - .	 .I_	 • - e 
- 1	 (1-1	 (-26) 

e	 ei	 fg	 v 

.	 .	 ,-	 ...	 .	 .	 -	 ..	 . -•	 .

- 

====r=-



And finally by considering the vapor as an ideal gas, appli-

cation of the Clapeyron - Clausius equation and neglecting 

the volune of the liquid phase results In 

RT 0 2 AP 
Vap AT	

1 h	 P(TJ	 (3-27)
fg 

The preceding equations were applied to a horizontal sodium 

heat pipe and the results of th'sc calculations are listed 

below. The left hand column indicates the pertinent values 

used and the right hand column shows the calcularedparam-. 

ctcrs

500watts-°i,(1)	 .Igm/scc	 V 

To	 920°K	 Pi,ap(To)	 50 mm If 

1	 90 cm	 -.2 mm ig 

IC = 13 Cm . 	 M)	 -.5 nit' 1g 
.c4 cm	 AP 	 2 , mm IIg

V 	
V 

r 4 - 80 cm	 Alv	 - 

rc	 012 Ct" 

An inspection of the computed values explains why the heat 

pipe has generated so much enthusiasm among thermal engi-
 

neers	 A relatively large energy transport is -ccoviplishcd 


with an almost negligible temperature drop 

cotter 'text consid1cred the maximum heat trunspoi t which 

is possible.in 1 heat pipe which is 1imted on1 nv the 

pumping ability of a wick in association 'With	 given work-

ing fluid	 The maximum pressure difference 'ich can be

'1
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supported between the liquid and vapor is achieved when the. 

meniscus radius in the evaporator achieves a ni,:imum value, 

i.e., equal to r. Therefore equation (3-10). hecomes. 

P()	 -	 P(')	 2ocosO	 (3-28) 

whi}% must be satisfied fr all positions, 	 z.	 In particu1ar,. 

for z = 0. equation (3-28)	 may "be rewritten w i th the aid:f 

equations	 (3-24)	 and (3-25)	 to give the capillary limiting 

condition for the total i,iil hvat flux 

4ii,l.Q. 

mo	 Cr f	 b	 1 vrvffgl	 U	 Qel	 20C0S.O +

- r rvJcrcfgJ
(Re>>l 

V	 v.	 Ig

(3-29) 

where	 - 

-	 =	 P . (1) -	 - Pt(i)	 AP 	 (3-30) 

has been used to simplify	 the	 left hand side of	 (3-28)	 prior. 

to the	 substitution of equations	 (3-24)	 and	 (3-25). 

Cotter next dtcrmin"d the optimum 	 pilla y pore 

radius	 r,	 in terms of Q	 by considering equation	 (3-29) 

where the cqualit y sign	 is used and the	 first	 term is simply 

Now since AP	 is directly proportional 	 to	 (or Q), 

the hct transported is	 i maximum if APis a maximum	 Thus 

equation	 (3-29)	 becomes

:..1
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b	 1Q 
ø2lgcos8 +
	 2	

e	
(3-31) 

2,TfrwrJPLEhfr2 

equation	 (3-31),	 the pressure drop,	 a P ,1 , becomes a 

maximum when	 - 

bJtlQ 
C

2JT (rr J Qtch fg 
e	

-  (3-32) 
acosO 

The mixuum heat trans -port is determined by converting cqua-
tion	 (3-28)	 to the firm

-	
l\, -	 Zac 

Now for Re	 << l	 and wi th no hydrostatic contribution to 

equation	 (3-3)	 is	 used in --c* onjunction with equations 

(3-24),	 (3-25),	 and	 (3-3)	 to solve	 for Q
C 1 	 leading	 jo 

acos8 r,  

-	 2	 blz	 i.i 	 lit . 

Thfg	 CP,P  

Obviousl y Q	 h'corncc	 i maximum Whe n the term rfr2r2J 

assumes	 a Irjxlrurn	 ctmpJc CI1LU1Uc	 show'.	 that	 this	 situa-

t.ion	 is	 achtev'd	 t'.hc'i

2   
•r (3-35)	 ... 

w . 

Sub s tituting equation	 (3-35)	 into	 (3-34)	 fj na 1 ly yields

•	 irr h1 ocose 
2ø%•PC 

1/2	 1 
-	 (3-36)	

S -	 -	 -	 Vt)  H ... S 	 •-. ••• . 

- S	 -.	
•..	 S. . 

-	 -	

•- - -	 -	 ••_•_5•	 -	 - - i.-'	 -	 ' _5	 '-5-
ç	

-	 - 
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Inserting equations (3-36)	 and	 (3-35)	 into	 (3-32) yields 

for the optimum pore si:e for ROr <<,I 

• .• .• 

IbL*z	 (Jvl1'2 -j 

r	 • r {-i--zj (-) 

The analogous expressions to equations	 (3-36) and (3-37)	 for 

Re >>	 I a

4r Thr. 	1 P P 4	 ccicos2O/3
• Q	 •	 - ''	

V	 ...	
(3-38) 

-	 C	 a	 ('-4)h lu J 

and
I So b 2 , 2 12	 1v 

r	 I	
V	 (3-39) C L(2-4)p12c2qcosoj 

	

Cotter's node! for Il e	 > 1 predicts that the maximum	
4 

extent of pressure recovery is fixed -at 4/712 corresponding' 

to 40.5 percent of the.-drop that occurs in the evaporator 
*	 **	 --.	

'1 

regardless of the amount of heat transferred. Therefore, 

the profile illustrated in Figure .3 . 29 zopreents the.vapor 

pressure distribution for -my case which is dominated by 

inertial forces	 It shouu be recalled that the profile in 

Figure 3.29. is dependent on all the ascumptions made by 

Cotter it his analysis and in particular, on the assumptior 

that the vapor is incompressible	 Parker and Han' *son (24) iave 

written a computer code in which they consider t'o vapor to 
•	 •	 •	 ••	 •	 -	 • 

be compressible, and consequenti> . , treats the vapor density 

as a variable. A comparison of their	 results with 

Cotter's predictions demonstrates excellent agreement for 

•1	 -	 -

1 

1' - — :	 4•	 ' 
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-' the pressure profile in the cvaporaor section. 	 However, 

H ' a significant departure from Cotter's prediction was found 

to exist in the condenser section 	 here, the extent of 

pressurc recovery was dependent on the heat transported by - 	 - 

the pipe.	 Fizrc '3.30	 illustrates	 the predicted pressure	 - 

•	 recovery as a function of the heat transported for a partic-

ularsodium hc2t pipe.	 The extent of pressure recovery is 	 - •-	 , 

seen to be considerably larger than that predicted by - 

Cotter for large heat transport rates and hence the net	 nd 

to end pressure drop in the beat pipe . will be 'smaller'.	 When 

compressibility effects arc important, Cotter's analysis 

- underprcdicts the maximum heat transfer capability of the - 	 - -.	 - - 

heat pipe,	 'md	 it may he used to provide a conservative 

estimate of the capability of the pipe.	 01 course, an even
--

more conservative estimate could be obtained by neglecting 

pressure recovery a1tgether. 

Ernst	 [541[54]	 has	 disputed	 the val idity -- of the meniscus  

boundary conditions employed by -Cotter for the special 	 case 

- of large radial	 Reynolds numbers,	 zero gravity,	 and incom- 

pressible	 . mpor flow.	 It should be	 recalled that Cotter '. 

assumed a meniscus profile of the type shown in Figure

Using	 this profile,	 he went on to optimize the capillary 

radius and heat	 transfer rate -ird arrived at equations -, 

(3-29),	 (3-8),	 and	 (3-9)Ernst his	 calculated the pros- 

sure profiles based on these equations , for the special case 

of a sodium . heat pipe operated at 700C with r 	 -	 1. cm, I 
• •	 -	 '':.	 '--.	 ''-.: 

• -	 -•	 -.	 --••-,----•	 '	 -	 -••	 .-.'-	 --	 •'---•.--

..- - .	 . -	 *._
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EVAPORATOR CONDENSER 

•	 Figure 3.31 Liquid Profile for Non-Optimized Capillary 

at Maximum Q,	 Ernst	 [54) 
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- 50 cm	 and'- 1a	 50 cm	 His profiles are illustrated 

in Figure 3.32 by the lower set of curves	 Figure 3.32 

• shows thatat the condition of maximum heat transfer pre-r 	 -. • 

dictcd by Cotter, the pressure gradient in the liquid is 

smaller than that in the vapor.	 Consequently,	 the pressure-, 

of the liquid in the condenser as greater than the pressure 

in the '.apor.	 Irnst has concluded that for such a situa-

tion, a meniscus profile of the type illustrated an Figure. 

3.33 must exist.	 However, he regardcd this menascus profile 

as unrealistic and instead proposed the profile illustrated 

in Figure 3.34 for the non-optimized capillary case	 I  

this revised profile	 pressure equality ,between the 1iquid 

and the vapor as assumed to occur at the interface between 

the condenser and the evaporator instead of at the con-

denser end as assumed by Cotter. 	 For the special case of a 

wire screen capillary structure, 	 Ernst has derived the 

following equations for the pressure, balance in the evapora-

tor and condenser, the optimum, mesh opening half-width, and 

the maximum neat transfer capabiity, respectively 

Evaporator
b	 t Q I

2oco8 
SPvrvhhfgZ + 2r(rr)pLcd2hfg arrrr	

340) 

Condenser: - * 

4Q2	
b 

r (3-41) 
fg	 2n[rwrJoR,cd2bfg

•.:	 '	 Al 

I 

•1 

-	 r
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0	 . 

Optimum mesh opening half-width 

I .	 2	 1	 b2p p2
1 2 1 1 / 3	 . . - 

 

d	 [(1+K) !.. + r	 'ccos	
j	

(3-42) 

Maximum heat transfer:  

41ir 2 h	 I	 p p ca 2 Cos 2 O 1/3 
w f 	 v

Qm 
 

3.	 .	 1	 u	 1 

	

+ cJ	 £ C 

whore r	 d(l+t) and K	 d/d has been used in deriving	 .-• 

equaticns (3-40) through (3-43) and r	 (2/3)r has been 

applied'to the derivation of equations (3-42) and (3-43). 

Ernst also applied equations (3-40) through (3-43) to the . 

same 700 CC sodium heat pipe discussed earlier. His pres-

sure profiles are i11ustrat'd by the upper set of curves 

in Figure 3.32. The pressure equality between the liquid 

and vapor in the condenser implies a meniscus profile of 

the type shown in Figure 3.35. A comparison of the revised 

maximum heat transport equation (3-43), with the expression 

derived by Cotter, cquat.ion(3-38), lead Ernst to believe,.' 

that Cotter's exp ression tends to over-predict the maximum 

heat transfer capability of the heat pipe. 	 In particular,. 

for the 700°C sodium heat pipe for which, the pressure pro-.. 

files in Figure 3.32 were calculated; this over-prediction . 	 0 

is approximately 40L The extent 'of over-prcditión, ' of •. :.' 

course, will vary for different heat pipe gcmctries.' 

Ernst also claimed that the maximum heat transfer cnabi1it

0
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EVAPORATOR CONDENSER 

F.gure 3.33	 Interpretation by Ernst of Cotter's Liquid 

Profile for Optimized Capillary at Maximum Q, Ernst [54]

Figure 3.34 Revised Liquid Profile for Maximum Q, 
-- 

j	 Non-Optimized Capillary, Ernst [54) 

EVAPORATOR -	 CONDENSER - 

o-c--o---o 0000-
-	 Figure 5,3S Revised Liquid Profile for Maximum  

Optimized .Capillc.y, Ernst
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oC a heat pipe can be increased if the hick in the evapora-

tor is different fron the wick in the condcer 	 If the 

optimum mesh half-width in the evaporator and condenser are 

re.pective1y

I	 Sb2p	 2	 1 
[ (1+K) n2 P 2c.acosej (44) 

and 4 

lb	 2.	 112 . 

.
.	

(345) 
m 

then the expression for the maximum heat transfer, gvcn 

previously by equation	 (3-43)., becomes :H .	 .... .

4n	 r 2 	 ii r .	 P	 P aCosbO1h/3 
U

[l+-	
,--j

(3-46) 

A comparison of equations	 (3-43)	 and	 (3-46)	 for a typical 

case where c U	 .8 and I C U	 1e accompanied by some calcula-

tions shows that the use of different wicks in the cvapora 

: .	 . tor and condenser may increase the maxiinuri heat transport 

capability of heat pipes by over 	 15%.	 The percentage -, . .	 . .1 

increase varies from pipe to pipe depending on the evapora-.
 

tor and condenser	 lengths,	 and on the porosity of the	 .	 .	 . 

capillary structure.
 

Many investigators have suggested various alternative . 

expressions for the pressure drop in the gas and liquid for 

different heat pipe configuratiors t%hlLh may he USNJ in 
-

:.	 eq uation	 (3-29)	 instead of the pressure drops predicted by .
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Cotter as given by equations	 (3-24) and (3-ZS)	 Bohdansky et al. 

(46),	 for instance,	 rccmrendcd the fGlloing expressions 

for a heat pipe which employs axial channels for the liquid 

return and for which zero g,	 laulin3r,	 incompressible flow 

is assumed in both the liquid and the vapor 

8n	 p1 
AP	 n (3-47) 0	 r' 

and -	 - 

8i t2itl 
AP	 (.3-48) 

where K is a channel shape correction tcrin which is 

matcly1.3 for channels of rectangular cross sect ion and-  

depth equal	 to twice	 the width.	 .Equations	 (3-47)	 and	 (3-48) - 

ere used to dcrve the following relations	 for the maximUm-

heat transfer rate:

rh	 .•	 i	 •----	 -_ IT	 V	 fg-I	 k:  
i	 tXcrjJ	 -	 ç3-.49) max a i	 •F.. 

where	 'a'	 is a channel	 shape factor which has a value ef 

about 2 for the channel discussed above, and 	 't	 is another 

dimensionless number defined by

- 
-	 -	 -	 n	 -	 (3-50).'-T-- '-H? - 

ch
-	 -	 - 

Notice that A is dependent on the number and spacing of the 

axial channels and has	 a jr,airm value of it	 Equation -' ¼ 
(3-49)	 is of limited importance to the design engineer, , 

because of the large number of d.imensionlcs constants 

which must be employed, and the lack o 	 -	 method for th 
-	 •: - --	 .-::	 -	 -•; 

•	 -	 -	 --------.--	 ,-'- - --
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3 

• determination of these constants. 	 Busse ctz1	 [47) moJjfjod - 

equation. (349)	 so that all	 the diiensionless- parameters are 	 • 

incorporated into one constant. 	 His equation for the maximum 

heat flux is

136 rah	 cosO fg q	 v	 -	 I	
(3-Si) •	 f max	

teff 1/)
£	 •r -• 

where 8 is this dimensionless constant. 	 Yf the channel 

depth is 1,	 the channel width is	 1 2 , and the dimension 

between channels	 is ],then 6	 is approximately	 .9 for 

21 3 and	 is approximately	 S tor , 1 1 	 12
.4 

J 

The tern I	 is defined by Busse as eff r

- 
1 eff	 •	 c	 I	 q(z)dz	 (.--E2) 

trnax 

and is	 the	 o-cal led effective length of the, heat. Pipe 

whcre(z)	 is	 the average axial heat	 flux atany position, 

Z,	 averaged over the piic cross section.	 The inclusin of 

equation	 (3-52)	 into equation	 (3-51) would,	 however,	 cause	 •. 

the term of interest,' i.e.,	 q	 to cancel. ,	 A more  

straightforward a pp roach	 is	 to simpl y rep lace, 1eff in 	 (3-51) 

by	 1, the total heat pipe length
-	 ..' 

Boidans}y and SLhlns Cool recommended the folloiing
,J 

expressions for the vapor and liquid pressure drop for 

turbulent flow

=	 p/i
-

7 - 

- 

- - 

,	 -- -
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and

.065	 cff AP	 1	
)

(-54) 
fg	 PL(KrChJ 

Iquation	 (3-5)	 is obtiflCJ by i straightforward integra-

tion of equation	 (-17)	 The express on for A P	 i s obtained 

in a similar manc.r but has been modified to account for 

channel shape by the dimensionless K term.	 As suggested 

above,	 l- should perhaps be replaced by the total heat 

pipe	 lcngth..	 Equation	 (3-54)	 is very likely of limited 

value because the liquid flow will generally he laminar even 

for very high heat transfer rates. 

Busse	 [123)	 considered	 larinar	 vapor	 flow	 in a	 cylin-

drical	 heat pipe which had an adi ahati c section separating 

the evaporator from the condenser.	 ior the case of constant 

heat addition and removal	 the vapor flow was described by 

the :avier- Stokcs equation which was solved by approximating 

the axial vcicity profile by a fourth power polynomial of 

the ri 'jUs	 The inalvsis	 furnished i veloci ty profile which 

was	 relatively constant along the evaporator; . that	 is,	 it 

approached	 the Poiciu11e profile, in 	 the adiabatic section, 

and deviated considcrabi ' .- fror	 the Poi sciulic. profile	 in the 

cosdenscz-	 The precsurc drop in the evaporator is given by 

•41Jvmlc	 7	 8 
- P ( 0 )	 [i	 RerI;Y_	

A	
(355) 

7 

where V ,	 is	 the axial	 %c10c1t> 	 averaged over the cross ccc-

tion	 in	 the	 evaporator,	 and A	 is	 given by	 -	 .'.-	 '	 : • 

•	 ,-:'	 .	 --•	 --'	 '.-:	 :-:.	 :	
.-.-	 -	 -:-	 -.. • 

-	 I 

-

L
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- I

.	 44	 /2
'	 --- 

•	 :r 
- [[s +

- -] }
(3-56) 

--Equation	 (3-55) may be ap.aroximatcd with an error of less 

than It by

-	 -4u V	 I	 .61!o r 2 
P(z) -	 \(0)	

C	 [1+ 6IRC+ 3.6+Rerj r-r (357) 

The pressure drop in the adiabatic section is given by 

-81 V	 z	 (	 rRc if in	
P(z)	 P(o)	 z	 [4	 (k-a) 	 (A2a2)jJ(3.58) •	 - 

here Pc is the axial Reynolds number defined by 

Re	 2rvVm/I1	 and 	 'a'	 is a correction	 tc the Poisciulle 

velocity profile defined by 

i cxp(	 22i/75)	 = A exp(-22A/75)ccp( l4:/SrRe) (3-59) 

Typical	 vilues of	 tt	 are illustrated in Figure	 3.36 for -	 - 

it several	 radial	 Reynolds	 numbers.	 LquJtiQn	 (3-58)	 c	 n be 

approximated wth in crior of ihout 	 1% by 

_8IJvVmZ

- 

lOoRe	 1-exp(-.Oz/r, [let i 

P(:)	 P(0)	 r1 L1 + 18+5C	 -	 :/rie
j60) 

-The prssurc distribution in the condenser section is given .- 

by

• 

•	 4	 vI	 -	 •	 - 
P(z)	 "	 ) '	

VC	
- Rcf . -	

4osJ] 1'	 r-I
2	

- - 
-•	 •.•- •.:--1 

K
(3-61) 

-'
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Figure 3 36	 Velocity Profile Correction vs	 Position 

in Heat Pipe, Busse (123) 

5

where now	 'a'	 is found by. the. solution of S 

7s/(2z-A)	 7S/(22-B) - 

LaO. 
Aj

[]
r'rj (362) 

and

B {s	 + [fs + Ve7) (33) 

Here a0 is the velocity profile correction at the beginning 

of the condenser section 	 From Figure 3 36 it 1 s seer	 that 

o Ia0	 65c	 Busse plotted the dimensionless pressure 

d istribution i. n the condenser secti.or as a function of 
-- -. 

dimensionless	 length as illustrated in Fiur
S 

g	 e	 3..37.	 Figure
5---

'-

- 

_-t-_	 -
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Figure 3.37 Pressure Profiles in Condenser, Busse (123] 

3.37 represents the special case where the adiabatic section 	 -' 

is so long that the flow at the beginning of the condenser 

has assumed a Poiseuille velocity profile, i.e., a 0 = 0.	 .	 ( 

It also shows that up to a certain radial Reynolds number a 

pressure minimum occurs at the and of the condenser and that 

increasing condensation rates tend to move this minimum  
.... .................... 

toward the beginning of the condenser 	 The dislocation of	 — 

this minimum indicates a partial pressure recovery	 The 

pressure drop of the vapor which should he employed in an 

overall pressure balance equation; such as equation (3-29),	 - 

depends on the net heat transfer of the heat pipe 	 Susse 

has mentioned that for strong heating and cooling rates, a .. ..........	 ...	 .. 
pressure equalityexists in the vapor and the Uquid phase.Y. 

-	 .	 .,	 ...	 ... 

I
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in the proximity of the beginning of the cndenscr	 The 
-	 -	 -••	 - -:-:7 

observation was substantiated by Bohdansky et al.(761;..recai]. - 

that Ernst also had noted this equality in pressures	 For - 

such asituation, only the vapor pressure drop in the 

evaporator and adiabatic section has to be taken into 

account for the calculation of the maximum heat- flow.	 .'Thus  

a combination of equations	 (3-55)	 and	 (3-58) yields the
-_..-.! 

total pressure drop in the vapor expressed by 	 Russo as

I 

4UvVm{[
+ 7	 (3-64)

 
where

::: -	
-+	 405	 (3- 6S) 

The factor r can he approximated with an error of less than -

- 

1	 7flc	 '	 11 
F	 -	 36+ lORe	 CX Re	 f (3-66) 

r	 (	 r.e •-	 -,--	 --. 

and has valucs	 ringing from	 61 to	 81	 On the other hand, 

for	 low he-itin,	 and cooling	 r ates,	 i.e., 	 small 	 Rethe r' 
pressure equality between the vapor and liquid will geierally' 

exist at the far end of the condenser	 For this case knowl-

edge of the pressure drop in the entire vapor spice is 

required and Busse combined equations 	 (3-55),	 (3-58), and 

(3-61)	 to arrive at the simple result 

4ji	 17 

r2	 f c	 + 21a	
1 d 	 (3-67)
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The relation was prcious1v ohttzned by Cotter, cquat1on 

(3-24),	 for a heit pipe w ith no adiabatic section,	 i e 

'a	 O 	 where t'e bracketed lengths	 in equation (3-67) were 

replaced by thc.,tota1.heat pipe length.,	 it is	 interesting 

to note that ,--the length 01. the adiabatic section has more 

influence on thero'surc drop than the contributions caused 

by the lengths 'f the evatorator or condenser. 

Ilaskin	 1251 has dealt with a, heat pipe containing an  

adiabatic section.	 lIe transformed equation	 3-23)	 int.o
,i 

2Q/1 ,	 0 £ z 

h j•g rn	 (:)	
= . z	 I	 (3-68) . 

(l-z)Q/I	 ,	 l ^S z	 . 1 c - 

The pressure drop in the evaporator and condenser was 

obtained by substi tut i'g equation	 (3 - 68)	 into equation  

(3-15)	 and	 its	 subsequent	 integration.	 The pressure drcp 

in the adiabatic section was	 found by assuming the existence 

of Poiscuille flow.	 The net end to end pressure drop for  

Re	 <<	 I	 is given by the sum of the	 individual contributions 

+ I 
v et

(39) 
7Pvr11fg

- 

This expression	 is	 ident i c a l to equation	 (3-67) which was 

derived by It.issc 	 For the ca s e of 'e	 >>	 I ,	 Has kin used I 
equations	 ( 7 ­ 68)	 and	 (3-16)	 for the condenser	 nd e v aporator 

md	 ipn1cd equation	 (3-17)	 to the adiabatic section and 

Obt a ined'
4 

I
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2	 .0655 l.	
•-	 .	 -	 .. 

SPv rv	 -	 0v r 3 	 (nbc rJ	 (3-70) 

Notice  that both equations (3-69) and (3-70) reduce to 

Cotter's results, equation ( 3-24), for 'the special case of 

= 0	 The equation for the pressure drop in the liquid 

as found to be identical to thit obtained by Cotter, equa

tion 13-25), with the exception that the length, 1, An the 

viscous tern is replaced b y (1 + i ) 

	

a •.	 ,	 . .-	 -.	 .-.	 ...	
.-. ,	 . 

Schwartz [58] has used Cotter's anal ysis and-its exten-

sion by ilaskin to display the liquid and vapor velocity and 

the vapor mass flow rate as a function of the heat load for 

a water-stainless steel heat pipe. The wick consisted of 

two layers of 100 mch screen and the pertinent dimensions 	 . 

	

' 1 the pipe were; 'c
	 1c	 a	 8.5 in., and 

r = .189 in. The results are presented in Figure 3.38, and 

arc typical for a low temperature heat . pipe. The vapor	 •', 

velocity decreases with Increasing heat load due to the	 -'.'. . 
• 

large vapor density variation in the temperature range of 	
. 

interest 

Werner [118] has employed Cotter's pressure. balance, • 	 . . .	
•


equation (3-29), for Re r > 1, and obtained in a computer 

caLculation the axial heat flux and Mach number as a . •. 	 ... .:; -


function of length for i 1500°}¼ lithium heat pipe hith 

r = 5 cm and r = 4 .m	 The result', of these comput-i-

tions are shoisn in . Figurc 3.39 illustrating the high

I

I
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Figure 3.38 Calculated Heat Piper-Parameters vs. Reat I 
Transport Rate, Schwartz [58] 	 . 
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Figure 3.39 Calculated Axial Heat Flux and Mach Number vs 
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Length for Lithium Heat Pipe at l500°K, Werner [118) I
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velocities and fluxes which may be obtained in a high tern-

• perature heat pipe.	 . Figure 3.39,of course,	 is based on	 - 

the equations for a capillary limited heat pipe and thus 

the flux razes may well exceed other heat pipe limits such 

as	 the entrainment or boiling 	 limit.	 Werner and Carlson 1 . IOSJ -. 

iniIificd equation	 (3-29)	 for the special case of a heat pipe 

with a capillary structure consisting of axial grooves 	 .' 

covered by a single layer of screen material. 	 If the  

intervening wall between grooves is negligibly thin df the 

•	 inner radius,	 then the pressure drop in the liquid may be L 
- written	 as	 -	 •	 S	 - 	 - • 

3uQl 4 

AP	 PglcoS8 + dir -'	 iili	 j	 -	 (371) r	 .r V)	 fgt	 yr.., • 

where	 [r-r.)	 is	 the groove depth and ris	 the capillary .. 

radius	 (groove half width).	 Following a procedure	 identical  

to Cotter's, and assuming no gravity effect, 	 Werner inserted - 

• equation	 (3-71)	 into equation	 (3-29)	 and arrived at	 the •'•	 . •	 0 

• fo1lowin	 cxprcssions	 for the optimum capillary radius	 and. 
the	

maximum heat	 transfer	 rate:	 .:	 •	 :	 •: -	 ' 

'B2 I 
r0	 =	 -c	 (3-72)

1 and

B•	 .-.	 ... 
max	 Air.	 :	 •	 .	 .	 ' •-, 

I. C,OPtj	 --	 ..	 . •.	 •	 .,.	 .1 ......where
I	 ¶ 

I	
0_ 

(1	 4/112)	 1 
'	 C =	 Zcn.ose 

- 

•	 -.•.	
':-•	 . -:-'	 •••---'-	 •-	 -	 ,.	 -•	 - '••'•	 •• 0• - 

-_:	 -	 .....	 -	 . -,•	 .	 -
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In addition, he found that the maximum axial heat flux is 

obtained when r/r S f 6 a value approximi..el>	 2 3% higher 

than the one found by Cotter ( /27).	 Notice that Werner 

assumed the same size for the capillary radius and the 

groove half-width. 	 Consequentl y the screen mesh size and 

the groove width can not be selected ind:pcndentiy lia.1- 

rel and Xooan	 (321	 rectified this limitation by decoupi-

ing the channel dimension from the pressure sun oorting mesh 

dimension.	 The liquid flow in the channels was treated •1 

simply as flow, through an annulus and corrected adequately ..	 ' 

to account for the actual area available t3 the flow.	 In 

addition,	 a scaling factor 'a' was	 introduced to account 

for the additional pressure drop induced by the channel 

configuration:	 For the case of RC r >>	 1 and zero gravity 

cirect,	 tlanipel derived an equation similar	 to	 int 

(3-29) 

0-4/Tr 2)o2	 . 2aQi	
20cosC 

8	 r	 ii v v	 eiT h fg rv frw rv)r+ r-
r-r

(3-74) 

where	 'U'	 is	 the screen mesh opening half-width and- l e ,	 i s  

the ratio of the active channel area to the total circum-

ferential area of r	 By differentiating equation 	 (3-74) 

with respect to r ,	 the resulting ratio,	 r/r ,	 as found 

to no longer be a constant, i.e.  , 	 or 5/6, but to depend 

on the hcat flux, 	 the operating temperature, a nJ the
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Figure 3.40 Optimized Relationship Between Vapor Radius and


Wall Radius for Lithium heat Pipe, Ucmpel and Koopmart [323 

thermodynamic properties of the working fluid. Typical 	 --• 

	

- ' values for this ratio, rw/r	 are illustiated in Figure 3.40 

for a high temperature lithium heat pipe. 

Anand et al. [14) and Ar.and [96) employed advantageously, 

equation (3-36). The total length, 1, was replaced by  

+ iJ arid the condenser length, I, was replaced by Q/C 

• where C is. a condenser para meter defined by	 .	 .•	 • r 

•	 k	 (i-i)  
C - 2n r [fr	 (3-75) 

• This procedure led to a quadratic term in Q with the solution 

•	 .	 •••	 ..	 ••	 .	 -...	 . 

-	 -	 •:	 2-	 .	 / 2	 C 2 1 21 1 /2	 Cl	 - - - - 

CV r h fg ocosO	
+	 4e 

opt

- 

-	

'V
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Equation (3 - 76)	 illustrates how a restraint on the lixial heat 

transport capability 	 is	 imposed by the radial heat flow fn - 

the condenser section.	 The condenser parameter, C, may be 

-	 varied by wick	 flooding,	 introduction of noncondensable 

gases, or by manually chang:i .g the surface area.	 Equation -. 

(3-76)	 reveals	 the possible applicability of 	 these tech-	 - 

niques	 for heat pipe control 

Brosons	 11101	 started with equation 	 (3-19)	 and con- ... 

sidercd both the	 liquid and the vapor	 flows	 as	 laminar,	 -
- 

steady and	 incompressible,	 i	 c	 •	 Poi	 euil1	 flow.	 The wick - 

structure was	 thought	 to consist of	 'n'	 cylindrical	 cap li
 

Ia ry	 tubes	 and pressur y cqnal i ty was	 assumed at	 the	 far end	 - -	 - 

of the	 condetc r.	 ror	 the case of	 zero gravity and perfect  

wet t ing	 of	 the wick •	 the expression 	 (or	 the	 maximum 1UU I	 -	 .. 

transfer was	 found to be  

(3-77) 
M.11 

The	 '.iint	 1- C so It	 WI	 i utiLpentit. at I>	 it	 i	 t.l	 it	 by	 lit i utt	 r	 stiti 

' 'pin r	 I .	 1 I	 lIt ost. ii	 pt t nil	 d	 ipi it	 n

	

(3-- 77) 	 w,	 It 

to	 tho	 Ldpl 11 try	 ra dius	 tad	 obt-iiiivil 
3 v ..	 •. ;.:-	 - 

r c,opt •	 r v	 - 

from which	 re'ultcd 

muX,Opt	 lu	 I	 vvVrc7 

_____________	 ..	 .. •..-.", -. -.	 -.	 .,.



The vibes predicted by equations	 (3-77)- and	 (3-79)	 tend to 

he much larger than those measured experimentally.	 The - 

deviations are caused by tho many simplifying assumptions 

made during the derivation of these cqwitions 

Frank et al	 [30]	 ..scd Poiscuille flow	 for the liquid and 

a moditcd Poiseuille flow for the vapor.	 tic gave the f—	 - 

apo	 csure drop is 

I

	

8U	 lffl 
AP	 0	 V.
	 (3-80 

ihcrc l	 is the effective flow length and extends from the 

mid-point of the evaporator to the mid-point of the con-

denser,	 and the function, 	 0,	 is gi'n b) 

(1.

	

N', e 	 .	 2200

(3-81) 

[ 00494	 ,	 flc >	 2200 

Notice	 that •	 is a discontinuous 	 function at- !c =	 2200 -(by 

approximately	 50), so some reservations as to	 its	 app1ica-- ... 

bilitv.in this range are .indced 3ust1fd	 Frank made use 

of equation	 (Z-80)	 to dcrie an cxnression for the maximum 

heat tr-insfcr cipahtlitv of a hori:ontil beat pipe 

a	 F 2 

max	 "w
L1 

32 v-J	 (3-) 
where

•	 -	 .. 	 . -.	 Cs'. 

a =	 fi +	 LJ cosO	 (3-83) 

and
r	 .. V C" -1 -	 a:	 •	 • --	 -: 

F1	

= +

_V :iT-4 j
	 (3- 84  

t	 '	
-	 V 

•	 ........
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$
in the preceding expression is the nydraulic thuneter of 

the capillary	 orosFrank [26] next discussed the applica- 

tion of equation (3-82) for a grooved heat pipe and by 
.	 . . .*.-.. -- 

assuming perfect betting,	 r	 , a = 1, and by replacing
............... . 

by AL/A, obtained for inacimum heat flow 

F	 D2 	 N 

-	 0	 =.• -.	 max	 .2l-	 r	 -.	 .	 .	 .	 .-,	 -	 ._i ...	 •..	 .-•	 . I	 - 

Referring to Figure 3.41, a number of auiliar	 variables 

are defined	 The mean radius of the grooves is 

6	 6	 - 
rm	 rb	 -	 •	 r	 +	 (.-86) 

While the dimensionless pitch of the grooves is given by 
•	 :--	 ••-	

•

z	 + w'	 - 
B	 --	 (.-87) 

and the number o f grooves is

2irr 
= m 	 (388) 

B w 

The	 ispect	 ratio of the g roove'- 	 is defined h) 

6 (389)
- 

and f inal Iv a de p th	 rmtio is gicn as 

6J' =	 (3-90) 
-	 •	 ...-	

.	 r.	 -• 

ry	 inserting equations	 (3 86)	 through	 (3-90)	 into	 (3-8)	 the 

following expression is obtained
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Figure 3 41	 Sketch Illustrating Design Variables 

in Grooved Heat Pipe, Frank 	 et al [30] 

. .	 I	 -•--	 . •,	 r	 .4 
. - 

umxSca

.......

a	 • (3-91) - 
r	 i-;-•••	 (1+2a) 2	 (1*) •--.	 -.	 .	 - .. 

where

C =	 N/81 (3-92) : 

and	 .	 .	 • .	 . . . 

S	 -	 --	 -.	 1	 .. (3-93). •	 . 
•	 -• -.z 

quation	 (3-91) was next extremized to yield the optimum 

value of Qmaxh13 
viJ if a hdr is used tz denote the opti- 

mum value, then the	 sult is

104) -	 1	 -4) (394) C
.	 1	 74)  w	 •(]+4))

•.	 : . 'I-	 - 

where	 is given imp1ictl 	 by 

(l-)	 (2-)(17i16 v. 1 (395) L 
Vt V

: i.... 

-I I

-. 
-	 (
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and ii. is given by

(3+)(l+)
2	 (3-96) 

2(lOj-	 l-) 

In addition, since the 	 heat f low generally occurs ' optimum 

when the vapor f low is turbulcnt, 4 	 nay he written as 

Ofl494Re" =	 OO44
I 

[hçu

I:x)[

)]3/¼

(3-q7) 

The solutions of equations 	 (3-94),	 (-95),	 (3-96), and 

(3 . 97) were obtained by Frank and are reproduced in Figures 

- 3.42-,	 3.43,	 3.44 and 3 45,	 respcctivel	 The procedure for 

opti1zing the ritlo	 is an itrtic one	 Ftrt, 

the effective flow ]cngth,.l f ,	 the operating terperature, 

the working	 fluid,	 and	 the pitch,	 8,	 are selected.	 The	 --

pitch hrs
	 iminimuni valuenf unity and it	 is	 advisable to 

make it	 is small as possible.	 In general,	 the minimum 

value of the pitch will be 	 imposed by machining and strength 

01 requirements.	 Once these values have been selected, an .

initial value of	 =	 1 is assumed and i may be found frcm H • -: 
Figur'c

.
3.44.	 Using this value of	 ,	 the optimum value of

i 
Qmax rw 3 can he taken from Figure 3 42 and	 from Figure 

3.4S.	 If	 1 1,	 the vapor flow is	 laminar and no further 

iterations are required	 If,	 on the other hand,	 ' 

then the prevailing vapor flow regime -..is turbulent and the 

procedure should be reDeated using the ne 	 value or	 to 

enter Figure 3.44.	 The optimum value of	 can he found 

•
0	 • 	

- 	 :-..	 -.	 --	 a.-;	
•:-	 :--

•• .
- 

-	 -.	 -	 •••	 :.-.	 :.	 -	 .	
.• 

• 0	 . 

7.
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Figure 3.42 Optimum Value of Q	 / rw 3 , Frank et al. [30) max

-

Figure 3.43 Optimum Value of a, Frank et al. [30] 
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— Figure 3.44	 Optimum Value of	 , hank et al	 1301 

from Figure 3.43 once the 	 iteration  procedure has. converged	 V . 

to constant values of 4,	 Frank claims	 that	 this	 converg	 '. --	 - • 

' cncc	 is	 rapid	 and may	 general I)' he	 acompl i shl .hy	 •iinxi 

mately	 three	 i tcz itt ons	 Comp IC ti on of	 tit is	 procedure 

in i	 i '	 y ic	 d'.	 the	 opt i mum	 V.1lt1CS	 01 Q	 / i.	 and	 the	 *spt Ct 
MIX

ratio,	 a.	 'liiis	 LInp[1s	 that	 or	 a	 given	 h.it	 pipe	 r idsus 

the ma	 i mum hc it	 flow may be	 found ,	 or conversely,	 or	 i 

given hi it	 flow ,	 the in in i mum pipe 	 rad its m iy luc dk t ermi ned
 

and, moreover,	 for hoth situations,	 thi optimum groove shape 

(as	 givc.t by	 the	 aspect	 rat to)	 Only	 the	 capillary 	 I hut t	 to 

the maximum heat	 flow has been taken	 into account, in the £ 

iteration procedure and other limits, 	 such as	 the entrainment 

•	 •	 •	 •	 ,	 .	 .	 -	 -	 • -.	 •	 -	 - 
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Figure 3.45 Graph for Determining •, Frank et al. 'l [30] 

limit which is especially important for open grooves, may 

wel-1 pose additional restrictions and warrants further 


	

consideration..---	 - . 

	

McKinney [35, 911 discussed a heat pipe having an adia-	 - 

batic section. fie found forCr << 1 the pressure drop in 

the vapor to be identical to that reported by llasin, equa-

tion (3-69)	 The resulting expression for the maximum heat 

transport rate was given as 

max	
[ZacosO - 

t 1c0sB)	 '	 1	 3-98) 

	

C	

fw. 

where.-

-
5-	 ( •	 •-	 --. -.- -.-	 S.	

-	 •	 .-	 S.-.--- 
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t	 .- •6 

4u (1 + 1 )	 ii,[i+i )
YT __ _

=
hfg	 B	 21kP1hçg	 (-99) 

v 

For the case of Rer >>	 1, McKinney employed Cotter's results 

for the evaporator and condenser and assumed Poiscuille flow 

in the adiabatic section finding the heat flow 

•	 .	 . 

•i	 + [i2 - 41) [0 L1 cosS -
	 2acoso)j -.	 . .	 .	 . 

rc 

max	
(3-100) 

where

0(3-101) 
2 

ard

'v	 u fi+i) 
I.	

=	 1TPh çg ry 	 +	 lifg.	 (r-	
(.-lO)	 . 

Notice	 that	 for Re >>	 1;	 IcKinney.workcd with 	 the I'oiscuilie r	 . 

•	 flow assumption	 for the vapor in the adiabatic -pipe section . •	 .	 . ••:• 

Whereas Haskin assumed fully developed turbulent flow for  

the c	 ilu-ttion of the pressure drop 	 For intermediate axial 

Reynolds numbers,	 therefore,	 these two techniques may 	 both 

he employed to enco1pzsc	 the actual pressure . drop and the 

resultant heat transfer lunitMcKinney with the aid of 

equations	 (-98)	 and	 (3-100)	 developed -t computer program 

for the graphical di-s p lay of	 max versus the ratio r,/r? 

for various	 adiabatic	 lengths,	 perrwibilitics,	 ctt1ng 

angles,	 and temperatures	 In all cases, the maximum heat 

transfer tended to 'maximize in the neighborhood of r 	 r =	 3 
V	 W 

-	 •-•-	 - 

-	 •; - 

Pq
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The reason fc'r the large deviation of his value from the 

values 'obtained by Cotter and Werner, i.e., /27! and 5/6 

respectively, cannot be explained without a more detailed 

study of the problem 

In all of the preceding analyses the pressure drop 

in the vapor space in one way or another was considered. 

Since for low temperature heat pipes this pressure drop may 

generally be assumed negligible- , a quick estimate of the 

capillary limited heat. flux can be obtai1:d by regarding 

only the pressure drop in the liquid. Several authors whose 

results are discussed below have used this simplification 

Phillips (29) and Phillips and Hinderinann (53) applied Darcy's 

law to the liquid flow and arrived ar equation (3-25) where 1 is 


	

replaced by [ l ^ 21 a + 
'c! rroin which he obtained for 	 = 0: -- 

umax	

4 ohj 4 - 2 _&j KA g cos (3-103) 
In addition, he recommended the use of the following expres-

sion for heat pipes which employ a bypass or arterial type  

of wick 

diTvt ...
	 [+l+±.] +	 4	 (:	 ) t	 A'
fg

(3-104) 

The first term in equation (3-104) represents the pressure 

drop in the artery while the secon4 term pertains to the 

pressure drop associated with the flow of liquid to and from 

-•	 --	 -	 -	 ----•	 '---•-	
---:..	 :-
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the artery in the ciicumferentiol direction. 'irection	 It is note-

worthy that the effective length utilized in the pressure 

drop calculation- . equation' (3-2S), is essentially - 

e .	 + 1a + 
1/2 and that 1a	 o	 hich reduces it to half - 

of the total heat pipe length	 rc1dmn [8] and Streckert 

and Chato	 (12S,.1261 have used the entire heat pipe length 

in their pressure drop calculations; consequently their 

resultant maximum, heat transfer rate is one half of that 

calculated with equation (3-103) 	 A similar analysis has 

been performed hy.Neal 1 [2-8].	 Langston and Kunz	 [13,	 55]	 -	 -,	 -	 - 

• - considered mass, momentum, and energy balances based øn an 

elcmental- .thickness of wick inthe condenser.	 By assuming -,
	 :	 •- - 

an infinite meniscus radius at the far end of the condenser 

and a minimum value at the condenser-evaporator interface,  

he obtuned the limiting heat	 flux 

Q	 = h	 \J L A - [2^h
Co ax	 max

[	 p
1 g 0	 a s	 g0

j R	 --	 - - 

(3-105) 

where  the mirimum meniscus radius has been evaluated fori 

Zg-a --	 -- 

m m 	 =	 g (3-106) 
itax -W 

The subscript,	 D,	 refers	 to the tcnperature conditions at 

which the maximum wi cking rise is Ileasuted	 licit An 

the derivation of equation- (3-105)	 is	 the assunption that 

fV

44 
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c	 1.	 Cosgrove e  al. E37,33)extended the analysis of	 .. . 

Langston and. Kunz to include the effect caused by an adia-

baflc heat pipe section ana the temperature 	 ariation of 

the fluid properties.	 The maximum heat transfer is then 

given by

a(i)	 hm.2K e Ah hfg

 

-

1-990 
Max

[vL1Tc)lc+ZVL[TdJ1a] 

-	 IL

 

[o l (Tj I	 +	 1aj1a]co] 

(3-107)
I 

where T1 is the temperature of the adLabatic section and is - 

equal to -the saturation temperature of the fluid, and T	 is 

the condenser temperature and is taken as the average of the - 

saturation and sink temperatures.	 Notice that for the 

special case of 1 ,, = 0 equation(3- 107)	 reduces to equation -'.	 -	 -•; 

(3-105).  

The above discussion has dealt solely with the capil- - 
•	 ''' 
-- lary	 limit to heat pipe operation. 	 As mentioned	 'earlier- 

LnIt	 type of	 limit is especially important for low tempera- - 

ture z'pplications where relatively low vapor velocities and  

heat fluxes prevail.	 For high vapor velocities, on the 	 - - 

other hand,	 the sonic and entrainment • limits become import-

ant.	 Lev	 [12] performed a one-dimensional compressible 

vapor flow analysis, on a	 control' volume basis' restricted 	 - -	 - 

-

4
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to the vapor space	 To models here used to relate the
- 

thermodynamic properties 	 in the vapor.	 First by treating 

the vapor as a perfect gas, the sonic limiting heat transfer

- rate was found to he -	
4 

Dv	 t2 V	 hçg 

max	 (3-108) 
/2(k+l) 

This condition is reached when the vapor flow chokes at the 

downstream side of the evaporator. 	 The second model 

described a'sin.ic-component equilibrium two-phase saturated I - 

:vapor and the analysis to which it was applied yielded a 

complex trtncendental equation for the limiting heat trans-

fer rate.	 Equation	 (3-108) therefore may he used to obtain - 

the theoretical	 limiting curves which were illustrated 

earlier in Figure 3.17.	 Levy compared the	 limiting heat 

transfer rates	 ;redicted with both models	 for a particular	 . 

sodium heat pipe.	 These	 limiting rates are	 illustrated in 

Figure 3.46 as a function of temperature.	 Curve 'A was	 .. 

obtained with equation (-108) while curves	 B and C r r re-

sent the two phase model solutionsCurve B was calculated 

tcing the tcmnerature at the upstream end of the evaror'itor 

and curve C was obtained using the temperature at the down- - - 
•	 •1 

stream end	 Also displayed are the wicking limit derived 

from Cotter's	 fundamental equations and eperirrental data 

provided by kcnne	 [SS)	 Relatively good agreement -is dis-

cerrihie between the sonic limiting Cures and the experi-

mental data for temperature less than 600°C 	 Above that
- --I .1.:	 ------:, •-, -•	 / 

J	 -' 

WS	 11	 11

r
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Figure 3.46 Comparison of Perfect Gas Model and Two Phase	 V 

	

Model for Sonic Limit to Experimental Data, Levy (127] 	 V 

teiperature the so,ic . 1imit curvc greatly overpredicts the 

measured maximum he a t transfer rates and, in fact the 
V 	 . 	 V 


measured rates were probably limited by the puping ability 

of the capillary , system.' £t bcccrn.cs also apparent from the - •' 

agreement between curves A and B that the perfect gas model .	 I 

V

	

	

(equation (3-108)) is useful to estimate the heat tranfr	 V V
	

V 

rat' required to achieve choking within the evaporator 

section 

The theory of the entrainment limit has received little 

atention, the reason being the dependency of tb..s 1imit on	
F
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the details of the geometry and the interfacial shear stress 

distribution. '.Cotter	 [19)	 and Kenme	 [86]	 claim that, for 

Weber numbers greater than unit), 	 the possibility of entrain- V 
ment exists.	 The t'lehcr number is	 the ratio of inertial 

force to surface tension force written as  

p\ 2 t' - 

Weber Number	 V	 (3-109) 

where 9.'	 is a characteristic dimension associatcd with the	 - 

wick surface	 An estimate of the entrainment limited heat 	 - 

flux may be established by equating the Weber number to.  

unity.	 This assumption, together with the energ y equation 

(equation	 (-19)),	 yields 

mnx	 a hfg (-110) 

Kemme claimed that for screen wicks,	 the characteristic  

length, 9.', is very nearly equal to the screen wire diameter 

and that it probably depends to some extent on the wire	 - 

: spacing.	 .	 -	 .	 .	 .	 .	 .	 .	 ...	 . 

the he-it transfer unit associated with boiling within 

the wick did not receive much attention cither.. 	 This	 type .	 - 

Of limit	 is	 .lffiLult to predict since	 it requires,	 among 

otherpronerties, a thorough-knowledge of the cavity dime-n- 

sions in	 the wick and of the -effective thermal conductivity 	 . 

or the saturatedwick.-	 The boiling limit was	 illustrated 

in Figure 2 7 and has to be considered 'is ouiuitative in 

-	 I	

I
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nature according to Deverall [18] 	 Notice that the limiting 

heat flux decreases with incicasing temperaturc 	 Neal [28] 

: took the superheat which is necessary for the incipience of 	 - 

nucleation in the wicking into consideration and related the	 r 

superheat to the tcmperature.difference existing across the 

wick in thc evaporator and obtained for the boiling limited 	 - 

heat flux 
0	

: 	 Zr1 k a T sat	 2 ,	 -	 - 

max mr)rov	 c vJ	
(3-111) 

•	 Marcus ' 128J contributed yet another relation for the boil- 	 j 
*	 ing heat- transfer 11im-t 	 F-

0	

-.

 FIT • 	 2 '1	 •. 
cr	 2ncr - 

p g1 cos8jj72 
0	 fr	 t b.	 v	 v	 -I 'mzx	 w  

L •	 -	
1 P	

j 

(-ll2) 

He further recommended to evaluate the effective wic< con- 	 •; 

ductivit> with

=	 + (1-c), 1	 (3-113) 

Obviously the above expressions arc quite different from the 

qualitative limit given by Dccra1l since both Neal and 

Marcus conclude that the limiting heat tiansfer increases 

with increasing vapor teirperature	 Hence the boiling limit 

curve, depicted in ligure 2 7, should hive a poitive slope 

instead of a negative one	 A great deal more experimental 

-	
-	 I	 -
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and theoretical effort must be expended before the boiling - 

limit can be treated with sufficient confiderce 

The foregoing discussions pertained to the numerous -' 

predictions of the maximum heat transport capability of heat. V 

pipes in view of the wicking,	 sonic, entrainment, and bciling 

limit respectivel y	 Only a fe	 analyses have been undertaken 

on other aspects of heatpipe technology. 
•	 V	 - 	 - 	 - 	 - -

- 	
- '< 

L)nrin and Huang i129) 	 studied	 two dimensional 

liquid -flow and heat conduction within the hick near the 

condenser entrance.	 Assuming constant "pressure and a 

constant rite of condensation in the condenser he computed-

the temperature distribution in the wick.	 The results of - -	 -	 -	 V•,---V -	 .-V	 V 

his analysis are displayed in Figures	 47 and 3.48..	 The 

numbers on the isotherms 	 represent the temper ature above 

the coolant	 tenrnrature, T,	 in units of [Q/bk , )	 while	 the  

numbers on the adiabatic curves give 	 the	 friction of the 

heat flow, Q, which passes through the portion of the wick 

to the	 le f t of the Curve	 Figure 3.48 illustrate'	 the 

dimensionless	 temperature distribution in the midplane and 

at the surface of the hick	 For hick matrices of 1 o con- -. 
N 

ducti.itv	 lmr,e temperature gradients	 tre possible	 in the -	 - 

wick at the lunction between the adiabatic section -ird the 

condener.	 Such temperature gradients have bccn 7 observed - 

qualitatively .in several experiments with	 low temperiture 

water .heat pipes	 Unfortunately in general 	 the thermo-

couples were n ot placed sufficiently , close to accuritcl

•• 
V	

• 	 --	

-:	 :-,	 - 	 : 	 •-.	

•--	 - .- - 	 V-

¼

•• l_t- -V 

--

- 	 - 	 - 	 _V'_V*_.-	
_•_•	 V	 - 4'
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ISOTHERMS 
•	 -	 -	 - ADIABATS 

•	 : • :•-. 

•	 Figure 3.47	 Isothermal and Adiabatic Curves in Condenser 

Wick, Lyman and Huang (129) 

•	 .•	 •• •-	 __: 

(Q/bX) - 
to- - 

.6 

•	 .6- • •: 
Th MPERATURE	 AT	 • 

•
•	 SURFACE	 OF WICK	 •	 • • • 

0.371	
-; 

•	 •	 TIMPERATURE. AT • • 
MIDPLANE OF WICK	 2 - 

I	 0  K 

•	 -:	
0	 I	 2	 3 	t 

-*-ADIABATIC	 SECTION -.-L-- CONDENSER SECTION - 

Figure 3.48	 Temrature Distiibutions on Midplane and 

Surface of Wick, Lyman anu tzuang t129)
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verify the steepness of the gradient	 It should he empha- 

sized that' this analytical scdution is app l]cable onl y to 

condensers with a fixed temperature boundary condition, e.g. , 

calorunetc.r cooling	 It is also evident that major coden-

sation and the associated heat flow into the wick occur very 

near the entrance to the condenser section	 ftc effective 

ur ick conduLtivi tv was -alculated bV assuming piraUci heat 

conduction through the liquid and wick material as described 

•	 by equation	 (3-1.13).	 Coning and Churchill	 [130]	 and Nissan 

et at'.	 131 	 have suggested various 	 techniques for the 

measurement and the computation of the effectie thermal 

conductivity of other wick	 iateriais.' 

Bressler and 1'.vatt 	 [132]	 solved the differential equa-

tion	 for the velocity during the transient capillary rise of 

a liquid in grooves of various geometries.*	 The mean velocity. 

is plotted in terms of djmensionless grous shown in Figure 1	 1 

3.49.	 The' constant	 C equals	 [2	 csc(/2) -2	 csc(B/2)], 

[2]	 [8(r - 2)/iT 2	 and	 LS	 [-cc 2 (/2) 1,	 [21,	 [2],	 for	 tri-

angular,	 semicircular,	 and square cross section grooves, 

respectively ..'For	 m given	 rooc geormctr%,	 rluid properties, 

and tcmpermture difference between the wall and	 lniuid sur-

face, T7	 i , j , the mean velocity v n	 m ay be deterined from  

Figure	 3.49.	 The total	 heat	 flux :at	 ste-id) 	 state .an then 

be .calculated from

Q =	 AL h fg	 (3-114)

-
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- TRIANGULAR GROOVES 

SEMICIRCULAR	 GROOVES 

10-2-
SQUARE	 GROOVES . .
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c[ogaccos 0)(T-T))/[P,(P2— p2g2ht0d5} 

Figure 3.49 Calculated Mean Velocity in Grooves, 

Bressler and Wyatt 11321	 •. 

Bressler used the above method to investigate the effect 

which grcove geometry has on the maximum heat transfer. He 

found that a vertex angle of approximately 30° led to he 

highest heat transfer rates among triangular grooves. 

•

	

	
. . Furthermore, it was found that square grooves are charac-




terized by .the highest heat transfer rates per unit groove 

width when all grooves have an optimized depth. The results 

were different, however, when all grooves wcrc compared at 

the same depth. Many more comparisons of groove charac-

teristics may be made depending on the specific requirements 

to be evaluated.	 . 

In another study, Galowin and Barker [133] employed a 

two parameter, fourth order velocity profile in theKarman - 

•	 Pohihausen boundary layer integra i method tn deerrnine

-.'. 

fr 

- . -	 ......
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velocity and pressure fields in a two-dimensional heat pipe 

The vapor was assumed to be. incompressible while the injec-

tion and suction velocities at the wick' surface were con-

sidered as small.	 For the case of l	 = I	 = I and uniform 

injection and suction rates with a velocity V,	 the 'velocity 

and pressure distributions	 cr' found to he 

For 0 < z < L

3V	 f  

311 
v 
V 

1.1
2 

=	 2	 t)	 )	 (3-115) 

P(:)	 -	 P(0)	
[')	 [J	 (3-116)	 1 

ForLz<2L:

II	 I •	 •

	
(3-

•'	 -- \T(z)	
- fI	 117)	

-: 

1) ( .Z - P(0) =
	 p' ( 1 J 2 [ft)2 - 4	

+	
(3-IH) 

Approximate solutions were also obtained for the case where  

the injection velocity obeys a ramp function.  

Miller ntid Holm [1341 considered the possibility of  

using model heat P]PCS to nredict the verformance of differ-" 

cnt prototype heat pipes. .A material preservation scheme  

was emp loyed in which the same working fluid and wick- mate- 	 • 

riil as used in both the model and the prototype 	 This 

imp tics that the thermal conductiities of the w-tll and 

kick, the cmittançe of the condcscr surface; and the  

•	 '	 -	 ---

-

-,. --
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permeability of Ahe hick have to be preserted 	 With a 

starred quantity representing the model to prototype ratio 

of- that quantity,	 the modeling equations are  

-

	

-	 T0 1*	 q/t*	 (3-119) (Tv 

T	 =	 (q*)t//(L*)I/2	 (3-120) 

•	 and	 .	 : -'-	 :	 •-

(3-121 

Experimental verification of the abovc equations showed that 

prototype thermal behavior could be predicted from the model 

• behavior to within 10°F over a temperature range of 140 to 

330°F	 for a pair of water heat pipes.	 i .Iodciing equations 

for another scheme which preserves the heat flux from model 

•	 to prototype were also presented but an experimental von-

- ficatiori was not attempted.	 •	 -: 

•	 •	 .	 -	 -•	 ••	 •	 •	 •- •	 : 
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CHAPTER IV:	 THEORETICAL CONSIDERATIONS • 

OF A TWO COMPONENT FT PIPE 

The processes which take place within a to component 

heat pipe are considerably more complex than those encoun-

tered in a more conventional single component heat pipe.
• 

In addition to variations in velocity, pressure and tempera-

ture, concentration changes may Occur throughout both the 

vapor and liquid phases.	 If it	 is assumed that local equi-

librium conditions are present between the liquid and vapor, 

then the additicn of a second component, 	 in effect, provides 

an extra degree of thermodynamic freedom in the pipe;-thus 

both the pressure and ternprature must be specified to com-

pletely determine the state of the mixture at a given loca- 	 •-

tion.	 Additional modes of mass transport, su':h as diffusion, 

-must also. be taken into consideration.	 -	 • 

The phenomena which occur in the vapor core of a two 

component heat pipe are described by a set of eight coupled,	 •• • 

nonlinear,	 second order,	 partial differential equations.,	 • 

If the vapor behavior may be regarded as two dimensional, 

then these equations include the morentum equations in each 

coordinate direction, the energy equation, two mass flux 

equations,	 an equation of state,	 and two continuity equations.



The latter two equations are required because the total mass 

and the mass of each- component must be conserved which leads 

to three continuity equations, however, only two are indepen-

dent.	 The eight equations mentioned above represent the 

relationship between the eight unknowns: 

u(x, y)	 p1(x, y) 

v(x,	 y)	 p(x,	 y) 

jjx, y)	 T(x, y) 

•	 .	
jyCX,	 y)	 P(x,	 y)	 -	

•.	 -:	
-.

The-solution of these equations requires a complete specifi-

cation of the physical properties as well as a sufficient 

number of boundary conditions to define the problem. A 

consideration of the equations indicates that twenty boundary 

conditions are necessary. The velocity boundary conditions	
-	 I 

are easily specified by applying the no-sli.p condition at	 --	 - 

the end walls and wicks and by assuming some sort of injec--

tion velocity distribution at the wick surface	 This 

injection velocity distribution is of course coupled to 

the external conditions applied on the container wall;. -	 •.- -. 

• e.g. • it depends on whether constant temperature or. flux	 ,. •	 - H 
conditions are utilized for the ultimate source and sink.- - -. - - 

The temperature gradients normal to the end walls may also -: 

be assumed to be zero if the end walls are treated as adja-	 - 

batic surfaces. The commonly applied condition of symmetry	 • -	 -.

I	 -' 
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about the pipe centerline is not applicable due to the 

presence of the body force term which tends to produce an 	 '. 

asymmetric density and temperature distribution depending ...-

on the pipe's orientation with respect to gravity. 	 Moreover, 

the density boundary conditions at the wick surface are not 

uniquely determined.-* In fact, to establish only the ratio  

of component density to mixture density. (or 'mass fraction) 	 .. 

at the wick surface requires a prier knoledge of both the 

local temperature and pressure as well as an experimentally 

determined equilibrium curve 'elating pressure, temperature, 

and mass fraction.	 Cousideri.n.g"t-he above difficulties, ft . . 

is not surprising that the equations have not been solved.
- 

The prediction of complete component separation as '--. 

presented by Cotter [4]	 is based on the assumption that only 

axial-variations  of temperature and concentration occur. 

his prediction is based solely on the criteria oUmass con- . 

servatioti and a consideration of the equilibrium curve for 

the binary two phase mixture.	 The characteristics of binary 	 . V 
equilibiin' curves ar' discussed in great deta 1 by 

I3osnjakovic and Blackshear [135)	 A typical set of such 

curves for the binary system water-methanol	 is illustrated	 . 

in Figure 4.1 using data from references [136, 	 1371..	 Each	 . . 

enc1ost.d curve represents the temperature 	 tnd concentration  

characteristics at a liquid vapor interface for a gnen 

pressure	 For	 ' particular pressure,' anN 	 point 'below the 

closed curve represents , a liquid 'phase only,	 while any p'cint	 - '	 •' 

above the closed curve indicates that only the vapor phase  

-.	 .	 . ..............................-. k-'- '--i 

-



ponent, two phase mixture with an equilibrium diagram of the 

type illustrated, in Figure 4.1 exists, the vapor phase is 

always richer 'in the more volatile ccmponcit than-the-liquid 

phase. Af this is the case, then Cotter argued as follows. 

The same total amount of mass must be moving in opposite 

directions in the vapor core and in the liquid saturated wick 

at any given axial position to satisfy continuity. However, 

if the vapor is richer in one component, then more of that 

component is entering the condenser end of the pipe than is 

leaving. The net transfer cf the more volatile component to 

the condenser end would continue until the two components 

are completely separated. Since the pressure in: the vapor 

core is nearly constant, a complete separation into pure 

components would manifest itsnlf by significant 'temperature 

variations from one end of the pipe to the other	 in fact,


where each pure component exists, the temperature would tend 

toward the saturation.temperature of that component as deter-

mined by the prevailing pressure. The result would be a 

temperature distribution along the p i pe that consists of 

• : two plateaus with some transition region between them. 	 '. 

The one dimensional argument discussed above 'ppears'to' 

be highly idealistic 	 Since the velocity and p:essur fields

tH 

4:



40
I-

104 

30 

20 

fl

86



-.3 

t 

I	 - 

-	 -	 .	 .	 :-•-	 .	 .	 -	 .	 .	 -	 --	 ...-	 -.-'-' -	 -	 2-

1	 .	 s	 4
4 

- .----,	 -------	 -------- ----.---	 -	 - 

162 

are obviously two. dimensional (due to the injection and suc-

tion at the wick interfaces), there would seem to be no -- : - 

logical reason to assume that the concentration distribution 

• is also-not two dimensional. 	 If this is the case then the -. 

vapor must be richer in the more volatile component only in . 

the immediate vicinity of the liquid vapor interface.	 The  

conservation of species requirement would then mean that at  

each axial position the following 'condition must be satis-

fied.

J
o()u (y)dy	 cp(y)u(y)dy	 (4-14) 

IV 
vapor	 wick 

An infinite number of component density and velocity distri-  

butins exists which satisfy the above equation. 	 It is	
. I 

readily apparent that situations may exist where a partial.	 •' 

separation of components is possible. 	 The exact nature of	 - 1 

the resulting component distribution, however, must be deter- .	 . 

mined either experimentally or from: the solution of the 	 -• - 

eight equations mentioned earlier. 

Since a solution to the equations is virtually impossible .	 .	 ..	 ,.	 .. 

due to an insufficient number of boundary conditions, an •-• 	 - -.
•.. 1-	 •-'. 

experimental solution to the problem was instigated	 The 

experimental apparatus employed and the results obtained 

with it in the investigation are dcscribed in subsequent chap-

ters : 

._1
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CHAPTER V:	 EXPERIMENTAL APPARATUS 

Introduction . 

The experimental program consisted of three phases. 

During the early stages of the investigation it was dccideJ 

that some effort should he committed to the study of wicking 

materials.	 it was	 felt; that an adequate knowledge of van- 

ous types of wicks was a prcrcuisitc to the design of heat.
 

pipes.	 Of special	 interest was the maximum height to which- 

liquids
	 could be raised by capillary forces. 	 Of equal 

mportancc was	 te mgnitudc of the velocity at which fluid  

could he delivered at any chosen height	 in the wick.	 This, 

velocit y can then be used to calculate a conservative limit-'. .• 

ing mass circulation rate-assuming that all of the liquid 

is removed from the wick at a particular height. 	 The pro-
5. 

duct of this mass circulation rate and the latent heat of - 

vaporization provides a measure for the maxmun he-it traits-

port capability of a heat pipe. 	 The validity of using a 

dynamic velocity measurement 	 technique to predict the steady •. -
•.

- 

ctitc mass	 flow withi	 a saturated capill	 structure	 is 

somewhat questionihie	 Wetting difficulties associated with 

the moving liquid interface most certainly impede the flow. 

The difference bctccr the rising and falling equilibrium 

heights discussed earlier in the literature survey 	 was	 also 

-	 :--..•	 . -: 

- I



.- 1 ..	 - 

-	 164 

attributed, to such wetting problems. 	 However, a qualita-

tive comparison of capillary induced mass flow rates :ay 

certainly be made using this technique. 	 . 

Hence an apparatus was designed and constructed which 

-	 I allowed in one experiment the measurcmnt. of both the m.xi-

mum wicking height and 	 the liquid velocity as a function of 

• height.	 Later a conventional cylindrical heat pipe was 

• -	 constructed and operated with a single component fluid.- 

The construction of and experimentation with a co-planar -• 

heat pipe concluded the experimental phase of the irwcsti- 

gation	
The dimensions of this rectangular heat pipe were 

such that it should, however,. be referred to as a vapor 

chamber.	 Two side walls were made transparent to allow 

visual and optical observations of the wick and the vapor 

core.	 Experiments in this heat pipe were performed with • 

both single and two component working fluids. 
.5

 

W ick	 InvestigationInvectigition 

For this phase of the invcctigUiO' an an)1ratus Was 

developed winch allowed the advancing liquid front in a - 

porous sample to he continuously monitored.	 The apparatus  

consisted of a rigid balance beam to which the test speci-

men was attached at one end and compensating balance weights. 

at the other (see Figure S.1).-	 The be-in was supported on a 

shirpened tool steel	 fulcrum which could be adjusted accord7. 

ing to the weight of the test specimen	 Once the dr y spcci- 

men	 %as hilanccil with the compensating weights	 a Daytonic 

.•.	 .:.

-	 -5	
-- 

S	 . 	 . 	 •	 . 	 -	
•	 5•5 •
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(152A-1) load ccli was rigidly attached-adjacent to the 

• compensating weights.	 The liquid level In the ran beneath	 • 

the specimen was then slowly raised by adjusting the height 

of a larger liquid r"scrvoir which was connected to the pan 

with a flexible syphontube.	 This method of liquid height 

control eliminated any surface disturbances in the pan 

beneath the specimen and also guaranteed a constant liquid L 
level as the specimen began to transport liquid from	 the 

pan.	 The rising liquid exerted a force on the beam which 

was sensed by the load cell and converted into an electri-

cal signal which was suitably amplified and finally recorded 

with a honeywell strip chart •recorder.	 With known porosi-

ties of the	 test sr,ccirmens. and measured distances hctwcn 

fulcrum and	 the supporting point of the specimen and between 

fulcrum and	 the at tzichmen t of the	 load cell	 respect I VC Jy, 

the strip chart	 recording.could casi ly he converted to a 

transient	 liquid height versus	 time graph.	 'The maximum 

wicking eight was simply the height at which no 'further-.H 

variation of the signl could be detected 

Elevei	 porous metal specimens acquired from the General 

Electric Company were tes-ted.	 The porous metals are marketed 0

Jo	

0.•; 

under the trade name of. 'foam Metal". 	 The y had various • 

porositics and were	 fabricated from two different materials, 

nickel and copper.	 Of the eleven specimens, only the two

• 

nickel smpIcs of the aighest densLtv y ielded repeatable 

data.	 It	 is believed that	 th	 copper spcctmcns oxidized 

• •	 •	 •	 0	 • 	 -•	 ••.	 00	 0	 ••	 •
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/ Fand that their wetting properties decreased to such an 

extent that essentially no water could be "wicked".	 The 

maximum wicking height obtained with one of the nickel 

samp les was	 16.5 cm.	 - 

Cylindrical Heat	 flc 

Next a conventional cylindrical heat pipe was con-

structed.	 The heat pipe was composed of three sections 

bolted together resulting in an overall 	 length of 71.1	 cm 
(see Figr	 5.2).	 The two end sections were madc of 2.54

4 
cr.i O.1). 	 brass tubing while tlic center section was made of 

2.51 cm O.D.	 stainless steel	 tubing,	 the	 lengths of the 

evaporator, adiabatic,	 and condenser sections were rcspec 

S

tivelv	 2.i	 cm,	 20.3 cm,	 an	 2.7 cm.	 The Sections were 

separated from each other by bakel ire rings which were 

scaled with sheared annealed copper gaskets. 	 The hakclitc 
rings	 as well	 as	 the low thermal	 conductivit y stain1es 

steel	
.adiabatic section	 reduced the. axial 	 heat	 conduction 

through the container walls. 	 The brass walL; of the con-

denser and the evaporator tended to reduce 	 the radial	
•.	 :. 

temperature drop.
 

The condenser was surrounded by a 5,08 cm O.P. 	 stain-
less steel	 tube.	 Cooling water supplied from a constant S 

head supply trk was puped through the annulus. (see I igurc 

5.3). . Since the pump was a constant disp1acncnt pump, a 

bypass	 line to the condenser was required to regulate thc 

water flow through tho 	 ondcner annulu.	 By ohscrviig the

'4



• Tub• Thermocou ple	 Junctione I
b Icid	 Hsotr. g stainless	 Steel	 Tub* 

• Condsns.r ,	 344tion k Bo)sILts 

d AdIcetIc	 Stio I 'b"	 Ring 

• Evpotsiu	 Section 3 Wick 

Fig .rc	 5.2 Cylindrical Heat Pipe

flow meter in the main line and by adjusting the valves in 

,both lines, any given flow rate from 8.7 liters per minute 

to 178 liters per minute could be easily maintained. 

Nine ch-oiTc1-a1umcl thermocouples were placed firmly 

against the exterior of the container wafl at various axial 

positions. Thermocouple potentials were measured vith a 

potentiometer by selecting any desired thermocouple with an 

isothermal switch. The reference junction was immersed jn 

a distilled water-ice bath.  

Four Ogden hose clamp type band heaters were installed 

firmly around the evaporator. The power input was con-

trolled with a Powerstat and monitored with a wattmeter. 

The maximum power input was 1000 watts. 	 •	 •	 .-

Small access tubes were provided on both ends, of the 

heat pipe. The tube at the condenser was utilized for •

•1 
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c lsoth,ma$	 Switch t Differential	 Pressure	 Troe4ucor 

4 Pblontloinottir m Absolute	 Pressure	 Transducer 
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I Constant	 Head Took a Recorder 
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b Flow	 Mete,	 ... g AC	 Power	 Vorioc 

I BuIl4Ig	 Water	 Supply .	 r Thermocouple	 Junctions 

Figure 5 3 Schematic Diagram. of 

Cylindrical Heat Pipe Facility.
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fluid addition or removal, and If desired ; Lor the evacua-

tion of the pipe with a mechanical vacuum pump. 1n opera-

tion It also served as a pressure tap connection to a 

differential pressure transducer. The access tube on the 

evaporator wa.; connected to the other side of the differ-

ential pressure transducer and also to an absolute pressure 

transducer, both manufactured by the Pace Engineering Corn-

pany. The pressure signals were amplified with a Pace 

carrier demoJulator, model CD-10, and finally recorded with 

a four channel Sanborn recorder. Prior to operation the 

differential transducer was calibrated against different 

heads of water acting on one side of the diaphragm, while 

the other side remained cxpoecI to the atriosp)icrc. Fufl 

scale deflection on the Sanhorn recorder was ohtained for 

pressure differentials ranging from '1, psi in the evaporator 

to • l psi in the condenser. Based on repeated calibrations, 

the accuracy obtained was ± .02 psi for any given pen rosl 

tion. The absolute pressure transducer was calibrated with 

a Heise pressure gauge and full scale pen deflection was 

obtained for absolute pressures ranging from 0 to 45 psia. 

The 'ccuracv for any given pen deflection wis ± 4 pcta 

The hOLt pipe was mounted on 't pivot which allowed the 

pipe to be ,, operated in any orientation	 repcct to 

gravity . Although two wicks	 re cmnloid during the experl- 

( r $, for the mtJor1t) of the experiments a wiz consisting 

of four layers of ISO mesh stainless steal screen with a 
•	

.•	 •-.	 •.-

-	 Ii
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wire diameter of .0026 Inches was used. 	 The screen was hold 

firmly against the interior of the container tall 	 by a cc'iled 

steel spring.	 Prior to a s sembly.	 the pipe Interior,	 as well 

as the screen wick and spring were thoroughly degreased by 

repcncd rinses with trichiorethyleno, ethanol, 	 md dis-

tilled hater.	 In addition,	 the stainless steel rcrccn wcs 

pissiatcd w---Lh i dilute nitric acid solution	 The other 

hick Lsd consisted of a silicon oxide cleth which 	 is rear-

keted under the trade name of Refrasil by the Hitco .Copany.  

The particular form of this cloth used was a braided tubular 

slceing with
	 it 

nominal	 inner diameter of	 1.91 cm.	 The 

sleeving was	 retained	 in time heat pipe in an annulus between 

the centaiwr wall	 and a smaller diameter p:r1oratcd	 teflon 

iul.c.

The pipe was prlrmari ly operated in	 the hori:oatal or 

near horizontal	 orientation both with and without	 inslzt-

tion.	 The	 insulation consisted of approximately	 3	 inches	 -. - 

of vermiculite which completely surrounded the entire pipe 4 

This	 ifl IsUlltiOfl material was	 ho'ciz because	 it could be 

simply poured	 into a ret urn& structure which curounded 

the	 heat	 pi- )e 	 is	 likewise,	 c,cil	 rcmo,bJe 

The energy transported Cron the evaporator to the con- - 

denser was calculated in the	 following numner.	 Thepire NZIS 

first evacuated and if desired, 	 insulated.	 The power input 

was selected, and once steady state operating conditions 

were achieved nine mxm.il 	 temperatures were recorded	 This

-1 
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procedure was repeated 'for several power inputs. The heat 

pipe was divided into nine segments, each segment containing 	 V 

one of the thermocouples. The initial, evacuation of the 

pipe insured that all energy added was either lost from the 

surfacc of a particular segment, or conducted to the next 

segment, i e no energy was transferree through the vapor ­. 

core. Encgy balances were made for each segment and the . 

heat loss from each segment was computed. This loss and. 	 1: 
the measured temperatures were then used to-calculate-the  

thermal resistance between each seguv	 and the surrounding 

cnironment	 Since the pipe was rui 	 various poker 

levels, and consequently various temperatures, these therma:'. 

rcsistance; were established as a function of temperature 

III each segment. For the actual heat pipe test, the tern- 

poratures were again m':asurcd and again a-n energy balance 

was made, this time however 1;c1uding energy transfer wi.thin-I- 	 .1. 
the vapor space. The heat loss from each segment was found 

bv employing the tcmper'' re dependent thermal resistances 

obtained with the evacuated pipe 	 The heat transfer rate 

de to heat pipe actO' was considered to be tne sum ef the 

ene.rgy transfers to the vapor core in the evaporator	 or 

the uninsulated cc, the accurac y of the above method was 

very good	 During the determination of the external thermal 

- -.	 resistances as a function of temperature,: arninirnum of. 

95.4% of the 'energy input could be accounted for, .while for 

the insulitd cases,' a minimum of 87 4% could be accounted 

for

f-i 
--	 .-	
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The working	 fluid in a!l tests was distilled witer. 

The pipe was charged initially with ameasured quantity of 

hater after which	 it was placed in a vertical position with 

the evaporator below the condenser. - The heatcis were 

turned on and steam and air were ejected from the pipe at 

the top where the stein was condensed, collected and 

measured.	 When the collected condensate indicated that the 

•	 desired amount of water remained in the pipe, a valve was 

shut and the pipe was ready for operation. 	 The vacuum pump 

was employed to periodically withdraw noncondens-ibic gases 

which occasionally accumulated in the pipe.	 The experi-. 

mental data obtained with this heat pipe will be presented 

and discussed	 in	 chaptcr k'!.  

Rectangular Heat Pipe 

A rectangular geometry was employed so that two sides 

could he made of glass, allowing visual observations of th 

wick,  and possible optical measurement.. 	 phenomena occur-

ring in the vanor core 	 The dimensions of the vapor space 

were 35 cm from end to end, by 22.7 cm from window to window, 

by 14 cm from wick to wick	 (see Figure 5.4).	 The entire 

structure was made of stainless steel with 	 635 cm plates 

used for the longer side walls and 2.54cn plates employed 
• - 

for the ends	 The plates were welded together -inc the i 

sides	 for the r.riountng of the windows were machined and 

ground flat	 nd p-irailcl	 The windo'is were 1.43 cm thick 

and were held in place with two hr ckets u h i Ch fastened to



b Strip Heaters ;Glass Plate 

C Wick

Figure 5.4	 Rectangular Heat Pipe 

the end plates. Natural rubber gaskets together with a thin 

film of vacuum grease provided the seal between the windows 

and the stainless steel walls. The structure was mounted 

on a stand which permitted the pipe to be positioned in any 

orientation with respect to gravity. 

The wick consisted of two porous .635 cm thick sheets 

of sintered nickel fiber. These were manufactured by the

I. 

Uuyck Metals Company under the trade name of "Feltmctal' 

and the particular form employed was P1315	 The porosity 

was given as 85% and the average pore size was 74 microns 

The wicks were held firmly against the interior walls of

- 

V I



-	

M* 

4 -,

175 

the pipe. with three brass strips which were screwed against 

the	 635 cm stainless steel plitc 

Packing glands wer6 provided on the condenser wall for 

nine thermocouple probes	 Seven were symmetrically placed 

-	 -, on the centerline between the two windows and two wer 

placed close, to the windows to check the twodimcnsicna1ity Uj 

of the device.	 To types of probes were used 	 The upper-., 

most and lowermost probes on the ccnter1ic were puriased - 

from the Conax Corporation and were ,I mm in (L1ametr.	 The 

other probes were made "in hous&' and were 1.9 	 diameter  

and 4	 cm long, and were of the copper- cotnta	 type 

The packing glands contained a teflon bushing which was 

compressed against the probe shaft to provide a leak proof 

seal	 and y et permitted movement of the probes to any desired 

location.	 The two smaller diameter probes were located in 

thin grooves	 cut	 into the underside of the wick material.,-.' 

The thermocouple probes were calibrated against a  

mercury in g  a s,s thermometer which could he read to the 

nearest	 .2 °F.	 A thermostatically, controlled bath pro-

vided constant temperatures	 for clibrition from 55 °F to 

151 °r	 For conver'icnce,	 a least square fit straight line 

was fit through the calibration points and extended for all 

temperatures measured during the experiments 	 The accuracy 

of this	 technique "ithin the calibration range	 ±	 5 °r 

For temperatures considerabl y in excess of 151 °r,	 the error 

is estimated to be somewhat greater due to the nonlinearit y L 

-	

-
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of the thermocouples, however, it was anticipated, and later 

justified, that. such high temperatures occurred only under 

dry out conditions in the tick and hence an accuracy of 

± 1 1/2 - 2 01 was adequate 

The wiring diagram - for the temperature measurement.. 

system is illustrated in Figure S S	 Eleven thermocouple 

junctions were used in the experiments. During the early	 2. 

1

tests two: dimensionalityof the device was ascertained and 

subsequently only seven thermocouples terc.cmp16yód ' in ' the 

heat pipe,	 all	 located midway between the windows..	 The	 .	 . 

remaining thermocouples were used to measure the ambient 

air temperature,	 thermostat bath temperature, and the inlet 

and outlet	 temperatures of the condenser coolant.	 All 

thermocouple voltages were measured against a single refer-

ence junction which was	 immersed in a disti lied water-ice 

mixture.	 All wire connections were made	 in an	 isothermal	 .	 . .	 . 

enclosure,, and solid copper wires housed in a shielded 	 . 

cable led to an isothermal switch and ultimately to a 

digital volt meter of the type Vidar 510 	 Integrating Digital.: 

Voltmeter (flV')	 The inaccuracy of this	 instrument accord-

ing to the Vidar Manual	 is "typically less than ±	 07% at 

full scale including the effects of non-linearity, 	 24 hour 

drift,	 5	 °C temperature change, 	 10 11.	 line voltage change.- I 
and attenuator inaccuracy all added in rms 	 fishion"	 The 

drift problem was reduced by rc-calibrtion of the DV1 

which was done	 immediately prior to any data acquisition.	 .	 ... 

I,	 .	 .	 .. .
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The condenser surface of the heat pipe (vapor chamber) 

as maintained	 it a constant temperature by circulating 

•	 cooling water through a bank of two times eight thin walled 

brass tubes, shown in Figure 5.4. 	 This particular design 

as selected because it allo.cd the condenser area to be 

easily	 controlled by	 ncrely interrupting the flow in any 

number of tubes	 The water was supplied from a constant 

temperature bath and the flow rate was measured with a flow 

meter as depicted in figure S.6. 	 Between the flow meter 

and the actual condenser su'facc the flow was divided into 

eiics	 The sixteen currents by 	 two manifolds placed inseries. ;

first manifold divided the flow . into two streams, one for 

each side of the heat pipe,	 and the second manifold thich 

was mounted on the heat pipe support subdivided the two 

flows into eight parts each.	 The opposite manifold arrange-

ment was used to recombine the flows after they had passed 

thrA igh the condenser tubes	 The to thermocouple probes 4 

used to measure the condenser inlet and outlet temperatures 

were placed	 inside of the "one to to" wanifolds	 For the 

purpose of clarity the "one to eight" manifolds as well 

the sixteen individual condenser tubes arc not shown in 

igure 5. 6.	 The constant temperature bath which supplied 

the condenser coolant	 fluid t.as a Lauda \L3S0 Thermostat 

The thermostat consisted of a reservoir, circulating pump, 

and -t temperature control unit	 The reservoi r , was	 fxllcd 

tith distilled water- and connected to the manifolds	 forming 

-
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a clocJ loop, through which the fluid was circulated by a 

Duplex pump	 The reservoir temperature was maintained 


constant by bucking the heat losses with an adequate heat 

input. The heat loss was controlled either by a continuous 

flow of cold tap water or by an auxiliary Freon refrigera-

tion unit while the heat was supplied by an electrical 

resistance heater instafled inside the bath. . This type of 

temperature control avoids the fluctuations normalLy 

encountered when the resistance heater is periodically 

cycled to aaintai1 a desired temperature. Such temperature 

fluctuations were easily sensed by the thermocouples in the 

manifolds and since the fluctuations were out of phase with 

one another (due to the diffcrent positions in the flow 

path), an accurtc •letcriniriat ion of the inlet and outlet 

condenser teriperatures was difficult UhCll the on-off tempera- - 

turc controlling mode was used. 

The evaporator was heated with ten Ogden strip resist-

ance heaters. Fire heaters were located on each side of 

the pipe as shown in Figure 5.4. All heaters were connected 

in parallel and the power input was controlled and measured 

by an AC variac and a wattmeter, respcctiv.y. Each heater 

had a maximum power rating of 150 watts at 120 volts, hcnce 

limiting the maximum power input t.o the heat pipe to 1500 

watts. As with the condenser, this design was considered 

desirable since the evaporator area could be varied simply 

by disconnecting the leads to various heaters. 	 :.
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The gage pressure in the test section was meacurcd with 

a mercury manometer which as coiincctcd to the condenser for 

horizontal operation of the pipe and to the evaporator for 

vertical operation 	 The pressure could be read within


± 5 mm Hg A mercury barometer located near the test 

section indicated the prevailing itnosphcric oressure so 

that the ihsolut& pressure in the test section could he 
'I

easily determined 

Access tubes were instilled in the evaporator end ill 

for the charging of fluid to the pipe and for a pipe 
connection to a mechanical vacuum puiip The procedures 

usedto charge and operate the pipe were as follois. The 

pipe was first evacuated to remove as mach air aspossible. 

It was then placed at a moderate angle lion the horizontal 
OA •.3	 ri..*...	 -	 - with	 rie	 cvapouiiou vii	 tvp.	 wuu.	 uii	 iu	 Vt	 I tUtU	 flsI' 

forced into the pipe from -i huret by atmospheric nrcsure 

resulting in a pool of liquid at the bottom 	 The top idck 

was saturated h	 rotating the condenser into .i ton position 

and applying power to the lower bank of resistance heaters 

while only the top bank of condenser tubes was cooled 

This caused a p referred condensation on the upper wickand 

resulted in	 total saturation of both wicks. 	 linough	 fuid-- -.	 - 
-c--: 

was added so tha t a slight mount of excesS liquid remained 
t •.-	 :-.	 .-. 

on the lower wick after both hicks had been saturated 

This procedure	 ms repeated occasion-ills	 during the cxperl- 

mcnt5 and especially after. a relitRels	 high heat	 flux	 test 

-•	 I
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for which a partial drying of the top wick was often experl-

1 -- enced. -- The majority of cases investigated were steady  

state, although several 	 tests weremade for which transient 

temperatures were reccrded in response to 	 step change in 

power input to the et'aporator..  

For the steady-state nodcs,the temperatures were - 

measured at 3 cm intervals starting 1 cm from the evaporator . 

end wall., ' The cordenser inlet and outlet temperature, as .	 ---------

ell as the room and bath tcmperlture were recorded every 

time the thermocoupies in the pipe were read, and the 

.icrigc values were used in subsequent data reductions 

The gage pressure in the test section and the atmospheric  

pressure were read midway through the temperature readings - 

so that an average value could he Used if. these values 

changed.	 A complete set of data required approximately one	 - 

• hour of time due to the repeated movement of the probes by  

3 cm increments and the sihsequent waiting period for the  

temperature readings to stabilize 

The cnerg	 tr-'n.portcd by 	 the hct pip's "as 'determined 

calorimetrically.	 However, because of the prscnce o	 heat 

lo s ses	 from both the pipe and the calorimeter ., tubing and 

the effect of heatconduction along thewalls, 	 the following .r 

reasoning in ascertaining thee losses was usod 	 l%hLrt the 

- - coolant flow is atatempraturc different from.room tempera-:... 
--i

ture, 
the outlet temperature, To 	 i11 be different from ut 

the inlet temperature,due to 	 exchange heat cxcaigc with Int 

I
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room air.	 As shown in Figure 5.7, ii	 the ambient temperature 

Is	 less than the coolant tc;iperature (given by T 1 ) and the 

power input to the heaters is ze:o, then lout is less than S 

T in and vice versa.	 In addition,	 if for a particular differ-

ence	 n coolant and ambient temperatures the power input is 

greater than zero, then the additional energy conducted	
S 

along the the heat pipe wall will further increase 	 Tout	 Tin• 

The procedure adhered to for the calibration cons ited 

of the evacuation of the pipe, and the subsequent measuring
S 

of the c,lorinctcr temperature difference, 	 Tout	 Tin' 

for various coolant tenperatures and he-it additions. - The 

coolant	 flaw rate was maintained constant at 200 Kgn/hr.	 •. 

The	 resultant curves which 	 are	 illustrated	 in	 Fig-,--re	 5.7 

were used as	 reference curves	 in the experiments. 	 That is,	 • 

any increase in tcperaturc difference 	 Tout - I jfl )	 above 

these curves was considered to he d.e to th 	 mass transfer 

and phase change proccs taking place insdc of the heat 

pipe	 ro'- cx-irrnlc,	 if the coolant	 tcsiperatur, was	 25 °C 

.above room temperature and the heat input to the evaporator 

was	 300 watts,	 the calorimeter temper-iture difference 

xpectcd would be a rpi'.acly	 -1	 5 °C	 However,	 if a 

temperature differcnce	 f - S °C was measured during the 

experiment, the-i a difference of 4 1	 "C would he used in 

the calorimetric equatio'i to calculate the energy transport 

in the heat pine	 Since during norna 1 heat pipt opeIatOn 

the pre s
ence of fluid in the evaporator wick cduct.d a lowor

-	 7 

- 

.-.	 -
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temperature there than in the absence.of fluid	 (such as was 

the case during calibration), the reference lines	 in Figure 

5.7 would probabl y be situated somcwh it iotcr and conse-

quentl y the actuil heat pipe energy 	 transfer was somewhat 

grcatr than predicted b y this technique 

Experimental data obtained with the rectangular heat 

pipe will he presented and discussed in chapter VI

I 
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CHAPTER VI: EXPERIMENTAL RESULTS -	 .

V 

Balance Beam	 --:	 - 
-: 

The balance beam described in chapter V was used to 

measure the transient wicking chiricteristic', of eleven 

porous "roam Metal" specircns 	 A particular test was mi-

tiatcd by allowing the lower surface of the sample to touch 

a liquid pool which was slowly elevated beneath it. The 

sample weight, and hence the liquid height, was continuously 

monitored for approximately thirty minutes. The sample 

surface was left exposed to the environment so that a snai3 

amount of 1 icu id cviporation undoubtedly took place. How-

ever, for runs of relatively short d---ration this effect may 

he neglected. Th.s, of course,- is not the case for long 

duration runs; for example, up to 2 months have been reported 

in other studies where a saturated environment -must h. 

cmplo) ed.  
1-

I
-0.f all the specimens tested, the best wicking rate was 

obtained with i 40 40 dense nickel sample	 The transient 

height crsus time curve for this sample with water is test 

fluid is presented in Figure 6.1.-'Also  illustrted is -. the 

curve for 85% (tense nickel I I Feltmctal"; as supplied by the	 - 
•	 ---:.	 .-	 :-	 -:.	 -	 *1 
manufacturer.- The cn.rves illustrated in FIure 6.2 were  

obtained by numerically differentiating the height versus 	 ,--
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time curves and replotting as a function of height.	 These 

curves, are useful in comparing the relative merit.of various 

wicks for poténtia.l. heat pipe use. 	 From these curves it is 

easy to see why .the "Feltmctal" was ultimately chosen for 

use in the coplanar heat pipe 

For all nickel samples tested, the data were repeatable 	 .• .. ..	
- 

over a time span-of approximately one month.	 For the copper .	 .-..1 

samples, however, the wicking performance decreased with 

increasing time.	 The transient rise of water in a 45% dense  

copper sample is illustrated in Figure 6.3. 	 The higher 

curve was measured shortly after the sample was received 	 . .	 . 

from the manufacurcr while the lower curve was measured 

twenty-five d2:s later.	 The change in performance was attri-

butod to oxidation of the wick which was readily apparent 

fr	 the discoloration of the copper. 

The significance of the data obtained with this device 	 - 

lies not in the actual values measured since none of the 

samples tested were used in subsequent ) ,.oat pipe designs.' - 

but in the method used to measure them. A device has been 

- esigned and tested which continuously and accurately moni-, 

tors an advancing liquid-front within a porous sample. This 

is a distinct improvement over spaced visual sightings of .:. 

the advancing liquid since often the liquid line, in the wick 	 '. 

is difficult to see	 To overcome such difficulties organic 

dyes are often added to the liquid, or litmus strips are 

taped to the sariple surface 	 Such techniques often influ-




ence the data to such an extent as to make it almost 

-	 -	 --	 -	 -
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meaningless.	 The balance beam, moreover, maybe easily ad- - 

justed to different sensitivities by simply moving the ful-

crum.	 For long duration runs the device may be adapted to 

provide a saturated environment around the sample by enclosing 

the entire beam within a plexiglas box. 	 . . 

 y1indical Heat Pipe

. In all of the tests with the cylindrical heat pipe . 

distilled water was used as a working fluid 	 Prior to the 

actual heat pipe tests, the pipe was operated dry at several 

power inputs.	 This,	 in effect, calibrated the pipe so that 

for subsequent tests with a fluid in the pipe, th 	 actual . 

heat transport of the pipe could be determined using the 

method discussed in chapter V. 	 With a stainless steel screen 

as wick, and water as a working fluid, several tests.wcre  

• conducted at different power inputs with the pipe oriented :. 

horizontally	 (0	 00),	 and insulated.	 The. measured, axial.. •, 

wall temporaturo distributions are presented in Figure 6.4  

as a function of power input 	 The poker values in parenthe-

ses indicate the power actually t.cansferrcd by the heat pipe 

while the first value represents the power input. 	 Tempera--	 , 

•1
ture profiles for the insulated case were quite similar even 

.	 S	 • •.	 - 	

' 	 -: 

though the losses from the surface of the pipe were much 

smaller.	 The rather abrupt temperature change at the con,-  

denser entrance is probably due to the presence of a ron- - 

condensable gas	 Carnesale, et al	 [36] and Marto and 

)4osteller E801 also observed this behavior in their low 

-	 -	 •1
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4.-

temperature water heat pipes	 As with the other experimental 

investigations, the thermocouples iere not placed close 

enough together to verify Lyman and Huang's (129) theory 

- which predicts large temperature gradients in the wick at 

the' junction botween the adiabatic section and the condenser 

for wick matrices of low thermal conductivity.	 It is Inter-

esting to note that the wall temperature behaves as expected' 

for a pipe with a floating temperature source and a fixed 

temperature sink.	 For the tests depicted in Figure 6.4 the 

absolute pressure within the pipe varied from 11 to 28.S 

lbs/in 2 and closely paralleled the saturation curve as 

expected	 The differential pressures indicated that the 

evaporator pressure was above the condense' pressure but all 

values were very nearly zero and no trend could be detected. 

In Figure 6.5 the effect of pipe orientation at a 

constant power input is presented. 	 The power actually trans-

• fcrred as indicated by the va1uo	 in ' parenthoses, however,	 --

was not constant	 It is evident that the temperature in 

the evaporator begins to increase for angles from the lion- 

zontal as snail as 3 degrees	 When the angle was increased 
to 8 degrees	 (corresponding to approximately a 11.5 cm 

difference in elevation between the evaporator and condenser) -	 •-

the evaporator t emperature began to a pproach that obtained 

for a completoly dry pioc, hence indicating almost complete 

-dick dryout	 This apparent dryout was caused by the inability 

of the screen wick to supply fluid to the evaporator at 

rate equal to that of the evaporatic.n proccss 

1 1 1	 11111gPIN,	 lo lls	 I	 MIN
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The heat pipe was also operated with a Rofrasil wick 

Several tests were madeand temperature profiles qualitative-

ly similar tothosc.of Figure 64 were obtained.	 Continued - 

testing, however, indicated a significant decline in heat 

pipe performance as evidenced by the high temperatures 

measured in the evaporator for eien relatively low heat flux 

tests.	 Subsequent inspection of the wick indicated a high 

degree of deterioration 	 The fiber was semi-dissolved and 

when squeezed produced a gritty milky white fluid which 

seemed to contain many finà fibers and powder.	 It was con-

cluded that Pefrasil cloth is rn	 a desirblc heat pipe wick 

Coplanar Heat Pipe 

The experimental program utilizing the coplanar heat  

1 ! pipe consisted of 67 tests.	 Either pure water or pure 

- I methanol or some mixture oF watcr and methanol was used as 

a working fluid in all tests.	 This combination of fluids 

was chosen because 1). they were. easily attainable. 	 2) they 

are completely miscible, 3) their vapor pressure character--

istics are such that a large temperature d 4 ffeerce could 

be expected if the components completely separated at con-  

- stant pressure, and 4) their binary equilibrium curves do -

not exhibit an zeotropic point. - Of the 67 tests, all but	 -	 - 

6 utilized a relatively cool condenser sink temperature of 

approximately 630F.. 63°F	 this temperature varied about 3 degrees 

-- - -in either direction depending on the ambient and tap water -:


temperatures	 The remaining 6 tests were conducted with 
I
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elevated sink temperatures (as high as 145°F). For the 

tests with the "cool" sink temperature, 45 were conducted 

with "normal" heat pipe orientations, i.e., either horizon-

tal or with the evaporator above the condenser. Five differ- 	
- 

ant mass fractions of methanol (0.0, 0.25,0.50, 0.75, 1.00)

v. were employed at each of three orientations, I.e.,  horizontal 

(a - 0 0 ), a	 45°, and vertical (a • 90 0 ), for each of 3 

power inputs, to the evaporator (50, 100, 250. watts). All	 • 

of theze experiments were conducted under steady state 

operating conditions in the pipe. In addition to these tests, 

2 trials were conducted with the evaporator below the con-

denser (i.e., as a reflt'x condenser), 10 trials were per-

:-W

formed to determine the influence that stratification ha_ on 

the steady state temperature profiics,- and 4 	 tests	 '.ce con-

ducted to study the transient behavior of the p.pe after a 

step change in power input to the evaporator.	 The effect of 

stratification and the procedures adhoràd to for data reduc-

tion is discussed	 in Appendix A.	 ..	 .	 . 

For a series of constant composition tests, 	 the pipe. 

was charged	 in the following manner.	 First	 it was evacuated	 ..	 ........ 

and then approximately 800 cm 3 of the desired mixture were 

pressure fed into the pipe.	 A vacuum was again applied 	 •	 .	 -	 -• . 

until vigorous boiling of the excess liquid took place 

This assured that Saturation conditions were present in the 

pipe	 The pipe was then sealed and the upper wick was 

saturated as explained in chapter V.	 The amount of fluid 

added . allowed for compli'te saturation of both wicks as well 	 :
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as some excess fluid which resided on the lower wick 	 Each 

of the 45 "normal" tests were begun by setting the power 

input and pipe orientation to the desired values. 	 All 

thermocouple probes were positioned so that the probe tips 

were 1 cm ariy from the evaporator end wall	 (x/L	 1/35). 

Steady state conditions were considered present when the 

measured temperatures varied less than 	 1°F per hour.	 The 

achievement of steady state usually took between S and 8 

hours after the operating conditions were changed.	 For a 

particular test, the'tqmpeiature field within the pipe was -

determined by measuring the output signal of each of the -S 

probes in the vapor space as well as of the 2 probes under 

the wicks at 3 cm intervals along the pipe axis. 	 In addi- 

non, the room, tnermostatic bath, and calorimeter inlet and

outlet temperatures were recorded for each axial position 

of-the probes. The temperatures weremade nondimensional 

by subtracting the calorimeter inlet, temperature and divid-

ing by the difference between the maximum temperature and 

the calorimeter inlet temperature. This procedure was 

performed twice, once using the maximum temperature measured 

in the vapor space only, and once including-the temperatures. 

under the wicks	 The resulting dimensionless profiles were 	 I	 i 
plotted by a Calcoinp Plotter as a function of the dimension-	 - 

less axial distance, x/L 

Several typical temperature profiles for 0	 00,e	 450,	 H

and e = 90° are illustrated in Figures 6 , 6.7 * 6.3 respec-

tively.. These curves have in common a methanol mass fraction-: -- -

1J 

- -,--

_
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of 50% and a power input to the evaporator of 100 watts. 

The profiles for the horizontal, case (Figure 6.6) indicate 

that the vapor temperature changed very little in th' axial 

direction. In fact for the centerline probe, with ie 

exception of the extreme right hand point the temperature 

range was between 82.6°F and 83.3°F. The temperature 

• difference between the top and bottom vapor probes averages 
- .
	 70C	 A ;	 ctci	 -. Ac	 V app A UA S LoLa I. .L	 I  S t I 074	 a 7* tab. .,e .7 s ta - aaata - a t.1 ..... 

the wick temperatures are higher in the evaporator and lower 

in the condenser. In addition, the top wick temperature in 

the evaporator is hotter than the lower wick temperature. 

This is to be expected because any condensation on the end 

walls or the windows is gravity fed to the lower wick while 

the upper wick may not be totally saturated. In addition, 

the upper wick is in contact with a higher temperature 

vapor than the lower wick. For the case where the angle of 

inclination o = 45 0	 (Figure 6.7),	 the same trends are evident 

with one exception;	 ow the vapor temperatures exhibit a	 - - 

definite variation along the pipe axis. 	 This phenomenon is - 

agtin caused to some extent: by the occurrence of stratifi-

cation.	 The curves illustrated in Figure 6.8 are for aver--  

tical orientation of the heat pipe and again display some .	 V.. 

degree of stratification in the axial direction. 	 The vapor . 

temperatures at any particular cross-section are now nearly 

constant with slight deviations occurring in the evaporator 

section.	 The wick temperaturcF follow-the same trend as 

observed for the other pipe orientations.	 The highest curve 

•	 -.'	 .	 .	 V	 - 	 , . 	 V..-..	 , 	 . 	
: 	

.:'	
-:	 - 	 . 	 -.	 - 	

-''•--	
'----

1 
-:'' 

•	 .	 .	 V	 ..

t1 

V..
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in the evaporator Section indicates 'a semi-dryout condition 

for one of the wicks	 This particular curve was measured - 

under the wick which was designated as the bottom wick in 

Figures 6 6 and 6.7.	 This asymmetric condition was noted 

several times and means that one wick operated more effec-
I 

tively than the other. 

The data obtained for other mass fractions and power 

inputs wore qualitatively though not quantitatively similar. 

The	 dryout phenomenon of wick	 was observed several times and 

was especially prevalent for high methanol content and high

hoat input tests. 

An evaluation of the measured heat transfer rates leads 

to several conclusions. The average heat transferred for 

all tests was greatest for horizontal pipe orientations,.less 

for 450 inclinations, and the smallest for vertical orienta-

tions. In addi.ion, the pipe efficiencies. (as determined 

by the ratio of the energy transferred to the energy input)- 

exhibited the same trend as a function or orientation. 	 - 

These average efficiencies were 40 00, 22%, and 15.3% for hor-

izontal, 45 0 , and vertical orientations, respectively.. For -. - 

the horizontal case, no correlation appeared to exist - 

between the pipe efficiencies (averaged over the three power 

inputs) and the mass fraction of methanol in the pipe. ..For' 

the 45° case, however, .the average efficiencies were greater 

for the pure component tests than for the two component 

tests with the minimum efficiency occurring at a methanol 

mass fraction of O.S. The vertical test1ndicat .ed the same 

4 

-	 44	 4	 -  
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behavior as the 450 :tes ts with the exception of the pure 

methanol experiments where dryout often took place 

When the heat pipe was operated as a reflux condenser, 

Le., with the evaporator located below the condenser, no 

significant temperatU	 variations were measured at differ-

ent positions in the vapor core. 	 The temperatures for a 

particular location, however, fluctuated 	 p to lF	 These 

fluctuations were probably caused by the presence of strong 

convection currents. 	 The temperature profiles under the 

wick	 were. qualitatively similar to 
those obtained for hor- 1: 

zontal heat pipe qperation 

The temperature profiles measured in the heat pipe when -	 1 

n elevated sink temperature was employed were similar quail.- 

tatively to those obtained for lower sink temperatures. 	 The 

higher temperatures, however, contributed to wick dryout as 

as evidenced by the lower heat transfer rates which were 

measured 

•	 The pressures for the single component tests were found 

to be the saturation pressures corresponding to the wick 

temperatures in the adiabatic section	 For a majority of 

tests, moreover, the pressure was determined by the wick 

temperature at the location where the temperature profile 

in the vapor crossed the temperature profile in the wick, • 

i.e., where the vapor and . wick temperaurS were identical.,. 

The basic question as to whether or not the components 

in a two component heat pipe separate will now be considered 

A conclusive verification of separation (or the lack of it)
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was attempted using a Mach-Zchnder l Titerferometer.	 The com-

bination of the measured index of refraction changes and the 

temperature field would then have indicated concentration 

changes.	 This technique, however, was not successful due to 

the inhomogcneity of the vapor condensation on the optical 

windows in all tests which made the attainment of reasonable 

interference patterns impossible.	 A referral to the multi-

component, multiphase literature, e.g. 	 Bosnjakovic and 
•	 ... 

Blackshear [135), nevertheless indicates that due to the 

isobaric nature of the vapor core, any separation must mani-

fest itself in temperature changes.	 Moreover, these temper-

ature changes should be dependent primarly on the difference • 

in component concentrations between locations and should
t 

not be evident	 for heat pipes employing only single component 

working fluids.	 The behavior of two component heat pipes 

can thus be ascertained qualitatively by comparing their 

ch,irdctcrlstics with those obtained for pure component heat 

pipes

As evident	 from the	 the temperatures within • raw.data, 

the vapor spa.c for both single and two component fluids 

were dependent to	 large degree on the vertical direction , a 

This behavior is explained by the fact that -the vapor 

v1ocitics	 (on the order of 2 cm/dec) were insufficient to 

completely overcome buoyancy effects which tended to form a. • 

stable stratified vapor. ,	 The res'lting temperaturedistri- 

butions within the. vapor are thus a result of both the 	 • :-	 •: • 

stratification effect and the operationdi characteristics

I



- 

of the heat pipe	 the stratification effect is essentially 

a pure conduction process-and maybe accounted for using..	 .- 

the  technique described in Appendix A.	 The dimensionless 

temperature profiles illustrated in Figure 6.9 were obtained 4 
by subtracting the stratification profiles from the dimen- 

stonless temperature distributions which were measured when

. 

the heat pipe employed pure water as a working fluid.. 	 The	 • 

- resulting curves indicate the behavior of the temperature	 . 

field within the vapor as compared to the behavior expert

enced for pure stratification.	 Several- trends are dis-

cernible from the figure	 The corrected profiles for the 

pure water tests are consistently negative in the evaporator - 

•	 and positive in the condenser.	 This means that the center-

line temperatures in an operatitg single component heat pipe 

are cooler in the evaporator and warmer in the condenser 

than the temperatures which would be observed if only pure 	 --	 - -	 - 

-	
. stratification accounted for the entire temperature field.  

- Such a behavior	 indicates that	 the axial temperature distri- - 

-	 I bution within the vapor space is tending toward an isother-

mal condition as is to be cxpcctc.d for a single component 

- heat pipe. - The higher temperaturcs 	 in the condenser may be  -	 -	 .	 .	 -	 .	 .	 -. . 

attributed to. the forced flow of the hot vapor from -the 	 . •;. --	 - 

evaporator which tended to heat the vapor in the condenser. 

A similar trend was observed for the pure methanol tests for 

the orientation where .6	 45 0 . although the behavior	 as not 

as clean)	 pronounced	 For the vertical	 tests the tendency 

toward isothermalization for metnanol Was 	 cry slight, zt 

-	 -
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especially in the evaporator where dryout often occurred.	 •• •. - 

However, the behavior in the condenser qualitatively matched 

that obtained for pure water. The behavior or the corrected 

profiles for the probes nearer to the wick exhibited the same 

behavior as the centerline probes for both pure water and 	 - 

pure methanol.	 .	 .	 -••	 .	 --.- .	 : -• 

The conduct of the two component tests may now bocorn-

pared to that obtained for pure water. To account for the 

pressure differences between various tests, the temperatures 

are made nondisac.sional by subtracting the saturation tern- . 

poraturc of methanol and dividing by the difference in the 

saturation temperatures of water and methanol. 	 The satura 

tion temperatures are evaluated-at the measured pressure for 

each particular test situation.  

The dimensionless temperature profiles for the two com-

ponent	 tests are plotted in Figures 6.10 through 6.13. 	 The 

curves	 in each figure are tor a common power input and pipe 

-orientation.	 In addition,	 the profiles are normalized with 

respect to the corresponding profile which was obtained for 

pure water.	 This means that the temperature distribution'..
S.. 

for pure water is represented in these figures by a hori- •	 -. 

zontal straight line where the ordinate has 	 value of onc. 

This ncrrn&1ization technique is used so that the behavior 	 - 

of the two component temperature profiles- with-rcspoct to 

those for pure water are more vividly-illustrated. 	 - It is 

not meant to imply that the pure water heat pipe operated in 

a	 completely	 isothermal -ranncr. •	 -	 • •	 •	 .	 • •	 - 
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In regards to Figures 6.10 through 6.13, several obser-

vations may be made.	 In all cases the 'temperature profiles 	 .	 . 
•

indicate- a consistent behavior. 	 That is, the temperatures 

are always higher in the evaporator and lower in the conden-

ser.	 Moreover, with the exception of Figure 611, where the 
•	 •	 S 

•	 profiles are very close and oven overlap, the tests with the
- 

higher water content working fluids exhibit higher . tempera-

turcs.
•: 

The data (not shown) for a power input of 250 watts •. 

showed somewhat the same trends.	 flowever,.the occurrence of 

drvout in the evaporator wick produced some deviations from 

the abcnc prufile shapes	 This, of course, was due to the 

fact that there was no heat pipe action occurring in the 

dried out caporator. - 

The effect of cross axial temperature variations for 	 •• 

90 0 and 0	 450 are illustrated in Figures 6.14 and 6.1S' 

respectively.	 These curves are plotted with respect to the 

stratification profile as measured for each particular probe 

Each figure presents three sets of curves corresponding to 

each of the two component mixtures 	 The two profiles 

each set compare the corrected temperiture profile near the 

wick with that obtained at the pipe centerline. -enterline	 It	 is clear 
S	

S	 S	
- 	 - 	 . 

from the figures that the ccntcrli'ic temperatures are higher
S 

than the near wick tempeituros in the evaporator and the 

difference becomes much smaller as the cordenser section is 

approached

sA 

-	 -• -'	 " 	 - -S. 
S.-:-	 -.	

- 	 .-. - 
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.CHAPTER VII:	 CONCLUSIONS AN 1) RECOMIINDATIONS 

• •• 

A comprehensive literature collection connoced of 

•-	 publications,	 papers presented at meetings and reports of 

:	 varying nature, which appeared during the period from 1964 

through midyear 1970 on heat pipe technology and on related 

topics, was class
i
fied and evaluated.	 Although	 it is 

to 
be 

:t1	 expected that Russian heat pipe publications may well exist, 

none were found	 in, the common	 literature indexing syctems. 

An experimental program was conducted which consisted 

of three parts.	 The	 first part	 involved	 the design,	 eon-

struction, and operation of a device to measure transient 

wicking heights	 in porous samples.	 The sccond part	 con- 

sisted of the design and operation of a conventional cyl in- 

drical heat pipe while the	 final phase of the	 investigation 

H	 involved the design, 	 construction,	 and experincntation with 

-a. two componCnt coplanar heat pipe.	 •	 • • 

Conclusions	 • • 

A critical	 evaluation of the	 literature leads to scv-  

eral conclusions	 regarding the state of t 	 art of heat pipe • 

tcchno1og>.	 An abundance of data on heat pipe materials 	 . . -. 

including working fluidproperties,wiCk-flUid	 ineractioflS,. 

and material compatibility was generated in the course of 



sizeable ' ntimber of	 c3carch programs; bu f little of fort was 

sr 	 on a	 vstematic classification and evaluation of mate- 

rials in view of their potential	 for heat pipe application.. 

tcncrally the six	 interdependent proccscs ; which are 

i q sunu.d to effect the functioning of the beat pipe 	 in the 

o-cilled heat nir'c regime are	 in agreement with irot quill- 

tjt.xc ohcervjtjon' 	 ecr,	 the evaporation mchanism, 

in particular, which	 jr. commonly regarded to take	 :lacc at .. 

the	 liquid-wick vznor interface 	 is the subject of sonc con-

troeis' 

(.oiicirtcr,hlc effort his been spent on the prcdlCtLOfl of 

the capillar y	 lirni t,	 but only a marginal effort on 	 the	 sonic 

- and hoilin	 limits.	 The entrainnnt	 limit	 rccluirs	 even 

more attention because virtually no attempt has been made to 

formulatc an anal y tical	 model.  

Discrepancies between	 theoretical	 predictions	 and cxpc-ri-. 

•.
mental observations of the	 four operating limits were	 lound. 

The deviation was notably severe for thccas	 of the boiling 

limit.	 Although the heat pipe promises 	 potential solutions 

to problems	 of temperature control,	 passive heat	 trans Icr,	 .• 

•	 •1 heat	 flux conversion and variabi: thermal' conductance, 	 some	 ..-' 

of the heat p	 Lppli.catiOflS	 appear to have been suggested'	 .. 

in view of eventual 	 government	 funding of extensive research •.	 .	
• 

programs.
-	 .	 ..	 -: .	 •.•	 .- .	 •. .1 

lhc techniques used and the data obtained durng the	 .-. 

course of this	 investigation lead to the	 following conclusions.
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Construction details are given for a low cost apparatus 

for the measurement of wicking properties.'- . ! It permits an 

accurate and continuous indication of the position of the 

advancing liquid front within a porous sample. 

For thó cylindrical heat pipe the axial temperature


profiles as a.munction of por input behave as expected for 

a heat pipe civploying a fixed temperature sink and a float-	 0 - 

ing tcmperaturc.source. . Tile 	 tcmperaturc drop measured 

at the condenser end of -the pipe is largely unaccounted for. 	
0 

Since the same behavior was observed b y other investigators 

who used a fixed temperature sink, it appears that this .phc-

nomenon may be attributable to this particular mode of opera- 0 

tion and not to. the cotnonly- acccptJ presence of a stagnant 

lavc r of noncondensab Ic gas. The performance of the cy 1 in-

dri cal heat Pipe was sign iiicintiy reduced (evidenced by the 

increase in evaporator wall temperature) as the inclination 

from hor :ontal was increased . The data showed that the :-

maximum wicking height for the stainless steelscrCen, 

0)

	

	 was installed in the pipe, was in the neighborhood of 12 cm. 
0 

The number of screen layers used and the Ii riness with ihich 

they are pressed against, the container wall certainly infhi- :-

ences the wicking characteristics of the wick.	 0 

The data obtained with the cop lunar heat pipe operated . 

•	 at ;j fixed sink temperature and with floating source tempera- 


i-tires lead to the- following conclusions.. The temperatures 

•	 a1on V the wick d'isn1ay cons idc rah l	 va.riati on from the	
.• - - . .
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evaporator to thc condenser.fhis heat pipe worked more 

efficiently and transported more energy when operated in a 

horizontil position is compared to a situation with the 	 h 
evaporator above the condenser	 In addition, the low vapor 

velocities norrutted stratification to considerably influ- 

ence the tcneriture distribution sithi the pipe (tapotemperature  

chanher) 

is rcgardc to the hc 3vuior of two corponent heat pipes, 

the data indicated that under no conditions did complete 

separation of the components tal;e place as deduced from a 

one dimensional rgunent	 The to component heat pipe 

revealed the snc temnerature characteristics as a single 

component heat pic when in a horizontal orientation. This 

behavior na' he due to sone nix h which took place in the 

liquid accumulated bn the surface of the lower wick. Thus 

the entire vapor space,, in effect, was in equilibrium with 

1 cons tlflt COfl)OitLOfl fluid 

For the tests %%.hcre the c  iporitor wis located 

 

above 

the condenser, however, the excess liquid resided only at 	 .,	 = 

•	 ..'-.	 the condenser end of the nine. For these cases, the axial 

ter'per1turt ditrihut ons obtained-with a two cornonent 

working fluid differed, to some extent, from those ohtincd 

•	 2	 with zi single component working fluid. Such behavior i nd.- 

ctes tnat a partail separation of ti ' e cormenents did occur 

The e'fect which condensation on the' windows had on th 

tendenc y tow.ird component separation is u p nO' n, hoeei 

i
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it can be argued that this effect was small for two reasoes. 

First, once the condensation formed on.thc windows it 

appeared to remain relatively stable so that - the condor.scr 

wick became the location of preferred condensation and thus 

played a dominant role in establishing the operating charac-

teristics of the pipe.. 	 Second,	 the temperature distribution 	 - 

within the vapor core showed no changes in the cross axial - 
direction (normal to the windows) while changes were cvi-

dent	 normal	 to	 the	 wicks.	 .	 ...	 ...	 .. h. 
The merits of the heat pipe have been somewhat exag-

gerated.	 This is especially true for low temperature appli-
) 

cations	 in a gravity field where the selection of the wick 

is of primary importance.	 Most of the wicks used are incom- 

pletely described	 in the	 literature.	 Often no cleaning	 .. 

procedure is reported even though this	 is as	 important as. 

the wick select ^_ ^n	 itself.	 The use of the better "grooved' 

wicks requires sp;in1 machining techniques which are not 

readily available	 to all	 investigators.

The	
isothermal. nature of heat pipes which is so highly.	 . 

touted	 in the literature does not always occur. 	 . In	 fact,	 .. 

for fixed temperature condensers,	 it appears to be the 

exception rather than the rule 

While the heat pipe may be usefui	 for high temperature	 ... 

and	 space applications,	 it	 shQuld not	 be .regarded	 as	 the-..... . .• 

ultimate soiuton to mtny ordinary heat transfer prob)rn.  

where greater economy,	 performance,	 an	 r'lability arc	 .. 

possible with more conventional heat transfer devices.
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Recommendations 
The study of the heat pipe literature leads to several 

recommendations	 A	 .00rdtnatcd m terials research program 

is essential	 In addition to assessing the desirability of 

potential w1cling materials, this program should also pro-

vide for the investigation of the effect which various r 

cleaning procedures and treatment techniques have on the 

wicking characteristics of potential heat pipe wic1. 

The influence which the external boundary conditions 

1 (i.e., either fixed or floating temperature) have on, the 
operatioral characteristics of heat pipes is unclear	 A 

experimental study in wih a given 'heat pipe could .scquon- 

tiallv be subjected to the various 	 types of boundary condi-.-
S 

tions would be useful.	 S 

Additional work is needed on the theoretical nredjc-

tions of the operating limits of heat pipes. 	 In particular, 

the boiling and entrainment limits need more work.  

Several recommendations are in order regarding an ex-

perimental extension of the work reported in this stuny,	 The 

behavior of the two component working fluid could be more 

easil y detected by cnploying a heat pipe whose geometry 

dictated higher vapor velocities. ' If such a gco T try	 as 

used,	 the consequence of stratification 0- i	 the resulting L 
tc1perature profiles could be neglected, 

The use of the	 intcrfrometer to measure the LonLentra-

tioi distribution within 	 .he vapor space still appears 	 Las 

ble	 Ilohe\er,	 xzajor design chigcs	 in the test	 section	 -ire 

";
I
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necessary in order to avoid the condensation of: the vapor on 

the inside of the windows.	 A design in which the windows 

arc thermally insulated, from both the ambient environment
 

•	 and the walls of the pipe should solve the condensation 

problem.	 Thcrtaal	 Insulation from the ambient conditions 

may be possible by using composite windows consisting of 

two pieces of glass with an evacuated space between them. 

Isolation of the windows from the test section walls, however, 

appears to be very involved.- 

•	 The chemical analysis -3f the vapor with a gas chromato-

graph is desirable to ascertain the eventual separation into 

• two compor;cnts.	 Such a tcchniq':e howevcr,would virtually '• 

,necessitate a direct Connection of the chroriatogranh to the  

•	 test section to insure 	 that	 the vapor sample	 is not contami-

• nated.	 An investigation of two component mixtures whose 

equilibrium curves exhibit an a:eotropic point c:uld he 

undertaken.	 in addition,	 the effect of the various types of - 

boundary condition<	 on the characteristics of a two component • 'S 

beat pipe should he investigitel 

-
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Stratification had a significant 	 influence on the . 

•	 steady state temperature	 field within the vipor space.	 It 

was especially	 important for the coplanar heat pipe because  

of the tow vapor velocities which were prevalent in the	 . -. -	 -•. 

vapor core 

Since the evaporator was	 located above the condenser..
:-

•	 for 0	 450	 and	 0	 90°,	 ntahlc operating conditions existed. 	 .. 

That	 is,	 the	 lower densi ty, higher temperature vapor tedcd 

to accumulate at	 the top of the vapor space 	 in the ev:perntor 

while	 the hi- Ii or density,	 iotcr	 tetperattirc	 vapor	 resided	 in 

the cor.dcnser.	 Because, heat	 addition	 took placc	 at	 the	 top	 .	 . 

of the vaper space,	 no major concction currents occurred 	 .	 •.	 . 

and the prirary no 	 of energy	 transport	 (for pure stratifi- 

cation) was effected by conduction through	 the vapor space. - 	 .	 • .	 '•	 • 

Con'cqucflt' ,	 for a cituat ion where no 'icat pipe action 

cxlctc the termerature distribu l	 on within the vapor core 

nust satisfy LapJtcc t s	 ution under the assumption of 

cons tnt thermal conductl3t) of the vper. In reality, 

hocr,	 it ma	 t ry with tcmperlttl rc up to	 ipproxinitclv 

1S	 fron c:-. d	 to	 nd 

The temperature distributior i ithin tc 	 por cpa	 as 

determined	 b) utIlLzng the	 10 	 between thermal and I 
...•-..-...---•..-, .. 5-'



Z36 

electrical systems	 The vapor space was modeled on a sheet 

of Tclàdcltós paper. 	 It was .assumed that the vapor at 'the 

wick surface in the condenser was at some tcrrncriturc L. 

and that the vapor at the wick surface
	
in the evaporator has 

at another temperature,	 l	 in the electrical	 inalog,	 this W. I,

implies that these surfac 	 were maintained	 it	 i constant 

voltage.	 All other boundaries of the va por space were con-  

sidered to be adiabatic and thu5 were open circuits. in the  

electrical analog model.	 The resulting lines of constant 

voltage (and hence the analogous isotherms) were determined 

using a DC Null Detector and are	 illustrated is-	 Figure A.I. 

The dimensionless axial	 temperature distributions corro- '. 

sponding to each of the 	 robe locations	 are presented in  

Figure i.2,

	 These distributions	 are,	 of course,	 highly	 - 

idealistic resulting	 from the assumed'boundary conditions. 

in actuality,	 the	 temperatures at	 the wick surface' hi both  

the evaporator and condenser were not constant *	 Also the-  

end walls undoubtedl y were not adiabatic. 

To verify whether conductionwas indeed the dominant 

factor	 in establishin g	 the	 striti[ic'd tcm-er,turc dstrxbu- 

tton,	 ten tests were conducted	
Each test cnplo ed 11 hick 

in on!	 the eaporator end of the heat pipe '.	 A sufficient
I 

amount of fluid was	 i'itroduced into the coplanar tipe so 

that some excess	 liquid always remained in the condenser 

section	 Ihe pipe	 evacuated until	 the liquid pool I 
boiled,	 thus	 as'uring	 that • saturat on conditions were
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initial ly ' present.	 The heaters were	 then cner.	 Td and the .: 

resulting steady state 	 temperature distributions 	 in the 

vapox 	 space were-measured.	 Since the absence of a wick	 in j 

the condenser sectirni prevented liquid from reaching the -'-• j 

evaporator,	 the wicks	 rapidl y dried out and the resulting 

temperature distribution was determined so1cl. 'b y 	 the I 

occurrence of stratification. 	 As expected,	 the dimension - 
- - 

less temperature distributions were essentiall y 	 indcpendznt • 

of composition, pressure, and temperature.	 Two such distri-

butions are presented in Figures A.5 and A.4	 for the center-

line probe and for orientations of 0 = 900 and 0 = 45°. 

Simi mr dist ributions were measured 	 for the other probes.
-	 S 

The sin, i  Ian tv between the ncasuid distribution? 	 and --

those obtained with 	 the electrical	 analog suggests	 that con-

duction does	 indeed establish	 the	 temperature	 N eli..	 Thc 

• di ffcrcnt values	 ILear the ends	 of the pi pe are rrohably	
S 

caused b y 	 the	 idealized boundary	 c6ndi tions which were .	 .	 . 

employed in the c1.cr . ical	 analog apprnu' 
S S	 S	 -	 S	 S	 S	 55	 • 

The experimentally determined	 stratification ' f.rofiles 

for c tch probe were used for subsequent data compxi isons j 

with	 the stratific-ttin	 profile. 
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APPENDIX I:	 PROBE CONDUCTION 
-	 - 

The temper iturc measurement with i	 relatively high 

thermal condncti-vi tv probe in a medium of very low con- F 
•	 ductivity naturally	 leads to some errors.	 To assess	 the I 

influence that the room tcniperaturc, T0 ,	 irioses on	 the 

ncasurerner.t of the vapor temperature, T.,	 the	 following	 -• f. j S.--

tcchniue ias used.	 The temperature actuall y measured at 

the probe tip,	 i, was 'clatcd to T 0 uiid T	 using te 

standard expression	 for the temperature distribution along 1 

a	 finite rod	 :h ich protrudes 	 from a heat	 source with heat 

lo-ses	 to it constant	 terneraturc vapor environment as given 

by Jacob [ISSI.	 This expression	 is	 given as	 • • 

o	 -	 ( 1 •4	 p)C_mt	
— 

72 FI 00	 1	 Pe	
T

, 

her 

0	 f	 -	 T,	 0	 1	 -	 T	 (13	 2) 
C	 0	 0.	 C 

•	 •	 -	 -	 • --'-

I he)	 •	 -	 -	 - 
ii	 =	 -q	 (B-.)

-	 :
L

'. 

and

-	 km -	 h
% 1 

-

r,J 
• ...-.---	 -s----
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In the expressions, I. is the length of the probe from the  

outside of the pipe, C is the probe circumference, 	 't is the 

cross sectional area,	 h	 is the contcctic heat transfer 

Coe fficic.n,	 and K is	 the effective thermal	 conductivity of - 

the probe	 The thnensionicss temperatures calculated with 

the above expressions are shown in Figure B.l as a 	 function 

of both the probe length and the convective heat transfer 	 •• =-••;;	 , 

coefficient.	 It	 is readily apparent that	 large c:rors are 

encountered when Ii is 'nrill I 

A conservative estimate of h was arrived at by assuming 

that the probes were orientated horizontally with free con-

vection as the only mode of heat transfer to the surrounding -.-

vapor.	 .\sszm.i.ng a	 temperature difference of SCF	 in	 the 

Grashof nunbcr and using an accepted correlation for the 

relationship of	 the Nusselt and Grashof numbers for	 free 

convection	 from a horizontal cylinder as given by Holman "H 

[139	 , the convective heat trans fer coefficient was 	 found 

to be approximately .	 S	 Btu/'n	 ftr	 This	 i1ue Of 'h 

uscJ to calculate the	 ictuil	 vapor temperatures for all I 

probe po'1t1on'	 and all	 tests which were compared with the 

temDcrattires measured at the probe 	 tip	 It was	 found that 

the probe tip temperature was 
in accurate indicttioi of the 

vapor temperature with the exception of the measurements 

taken at the	 last position in the condenser. 	 With the 

excention of this	 last point the readings	 ec	 in general 

urenc't	 ta  accurate	 to	 ithin	 1°F	 The me.is 	 ken at	 the 
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extreme probe position were often in error by as much as	 - 

10°F.	 However,	 this occurred only	 for the high heat flux	 f 

tests where the presence of forced convection certainly

resulted in an increased va1u	 of h and thus smaller errors - 

than arc indicated b y this approa
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The articles discussed in this appendix were presented 

at-the -Spacc Technology and heat Transfer Conference, Los 

Angeles, California, June 21-24, 	 1970.	 They are presented 

as i supplement to the p reviousl y discussed literatt'rc so 

that the preent report is as up to date a	 possible. 

•	 •Dcvcrali.[1401	 has	 found that the construction of mer-

curv heat pipes for high heat transfer rates is fccthlc 

•	 for operatiCt between 200 and 360C.	 Prcvious]y encountered 

wetting difficulties	 dh mrcury were virtuall y	 1ininatcd	 1;. 
by the additions of ma gnesium and t itani uui. 

•	 Schwart:	 [141)	 tested an ammonia-stainless steel 	 heat 
-	 •-•. 

'The operating characteristics wcrc comnired to the 

characteristics obtained with a geometrically identical heat 

pipe employing water as 	 a working fluid	 (58].	 It was	 iound 

that the ammonia pipe was more efficient in transporting 

thermal loads than the wfler pe up to an operating tempera -

turc of approximately 90°F.	 Above this	 tciiperatUre the : 

ammonia pipes	 rci,tivc advantage declined r ipidi>	 until dry-

out,	 at which point	 tic hater pipe	 ac able to transport. 

30 percent more encrcy.	 -	 -
1 

In	 i sintl	 r stu() ,	 Waters and Kine	 [142]	 tested the 

abilit,	 of an ammonia heat P1?C to operate	 for extended

13	 1 
7. 
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periods without	 failure by	 fluid loss or by degradation of 

the energy transport mechanisms. 	 The heat pipe used had an 

aluminum container and a stainless steel screen wicking 

structure.. Accelerated tine testing for, both continuous 

heat pipe operation,	 and with alternating freeze-thaw cycles 

indicated no 'degradation in thermal perforrruice 	 Subsequent 

rnetallrgica1 examination of the - pipe revealed little mate-

rial corrosion.	 The authors concluded that such a heat pipe 

should have a useful operating life in excess of 20 years 

when operated it about Sfl°I 

 cryogenic temperatuic range have been 	 ' Heat pi pes	 in the ' I. 
theoretically considered by Joy 	 11431.	 Equations	 for the 

op timum pore size, optimum wick 	 thickness ratio,	 and maximum 

heat	 transport were derived. 	 The effect of gravity was	 found 

to play a iior	 role and must	 be	 taken	 into consideration	 in 

cryogenic heatpipe design.	 The equations result in the 

selection of oxygen and a channel hick fr -in op timum cr)o-

genic heat pipe design	 in the	 temperature range 	 frori -77	 to 

90 0 k.	 .	 ,	 . 
 

Chi and C'gnaiowicz	 1144J	 also presented a theoretical 

mniIvc1s	 of cr'ocnic heat ppi'	 inc influence of	 liquid 

property variations, was	 found to be significant.	 The theory 

compared	 favorably with the experimental 	 results of Ilaskin 

[2Sj

Ferrel'.' and .ohnson	 [1IS]	 obtained	 experinental	 results 

for both	 the heat	 transfer coefficient and the-critical 	 heat	 •'	 ''
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flux through saturated beds of monel and glass beads. 	 The 

iiquid in thcneighhorhood of the heater was supplied only
A. 

bcapi'llar 'y ict ion	 Various wick	 inclinations were employed 

in the tests.	 The conduction mechanism through a thin 

liquid-bead layer in contact with the heating surface as 

propocd b	 Ferrell	 kind AlIciztch	 41)	 found to be 

substantially correct. 

•	 Soliman, et, al.	 [1461	 measured	 the effective	 thermal 

conductivity of both dry and water-saturated sintered fiber 

metal wicks.	 Correlations were found for the effective 

thermal	 conductivity in terms of the thermal conductiviticS 

of the solid and	 liquid phases and the wick porosity.	 Sub-

stantial	 differences	 in the effective conductivity were. 

•	 found when me asured either along or across the fibers an 

• this was	 attributed	 to the	 importance of the conact	 r(.-sir 

ance between	 fibers. 

•	 Th	 effect of the working fluid,	 in either the	 liquid  

or vapor phase, within the	 reservoir of hot	 reservoir gas-. 

Lontrolled he at pipes	 is	 invc ^ tlgatcd by Marcus and 

Fleischman	 11471.	 It was	 found that the presence of	 liquid 

in thc reservoir at startup results	 in tcmpOr(iry pressures - 

and temperatures	 in excess of design.conditions.	 A perfor-

atcd non -wetting	 plu.,	 't	 the	 reservoir entr ance' '..-is	 found 
• 	 • 	 • 	 : 	 - - 	 • 

to eliminate th i s problem. 

Bliss,	 et, al	 j18]	 tested	 a	 flexible heit	 pire	 subject 

to viiyiig degrees of bend anu virious	 transverse and

-
- 
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longitudilial	 vibrations while	 in an unbent mode. 	 It	 as 

discovered that	 flexible heat pipes are fcasbTc and that 

the degree of bend had	 little effect on operation.	 The 

vibrational	 environment,	 in genera],	 tended	 to increase the 

heat	 transfer capacity:	 hoticr,	 critical	 longitudi  

vibrational	 frequencies were found which caused cessation 

of h;t	 pipe	 ocr'ition 

!ilenas and Uarwell	 (149J describe the development and 

construction of Ia set of heat pipes designed to minimize 

•	 structural	 temperature gradients	 for the Number 3 O;\O Space- 

craft to be	 launched	 in	 1970. 

Carison	 and Hoffman	 11501	 studied	 the	 in!lucnce of mag-

neti c	 ii cl'Js	 on heat	 pipes.	 Such effects	 ;cre	 found	 to he 

important when e ectri cal ly	 conduct I ag working 	 fluids	 (such 

as	 liquid metals)	 are uscI aIm	 the pipe axis	 is	 not	 aligned 

with the magnetic	 field.	 For such cases,	 the presence of a 

magnetic field a]wa/s 	 reduces	 the heat	 flux capahi I ity of 

the heat pipe.	 However,	 this outcome may be reduced by 

desl '-nin g	 the pite with	 axompound w i ck- structure with 

lrgcr	 liquid	 flow passage and a p roportion-'tel	 smaller 

vapor flow passage	 than	 for	 the no-magnetic	 field design 

The equations necessar y	 for such a Jc- ign are presented

- 

-
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