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PREFACE

This report presents the results of studies conducted during
the period June 20, 1968 - July 19, 1969, under NASA research contract
NAS 8-21432, "Lunar Surface Engineering Properties Experiment Defini-
tion." This study was sponsored by the Advanced Lunar Missions
Directorate, NASA Headquarters, and was under the technical cogni-
zance of Dr. N. C. Costes, Space Science Laboratory, George C. Marshall
Space Flight Center.

The report reflects the combined effort of four faculty investi-
gators, a research engineer, a project manager, and six graduate
research assistants, representing several engineering and scientific
disciplines pertinent to the study of lunar surface material properties.
James K. Mitchell, Professor of Civil Engineering, served as Principal
Investigator and was responsible for those phases of the work con-
cerned with problems relating to the engineering properties of lunar
soils and lunar soil mechanics. Co-investigators were William N,
Houston, Assistant Professor of Civil Engineering, who was concerned
with problems relating to the engineering properties of lunar soils;
Richard E. Goodman, Associate Professor of Geological Engineering,
who was concerned with the engineering geology and rock mechanics
aspects of the lunar surface; and Paul A. Witherspoon, Professor of
Geological Engineering, who conducted studles related to thermal
and permeability measurements on the lunar surface. Dr. Karel Drozd,
Assistant Research Engineer, performed laboratory tests and analyses
pertinent to the development of a borehole probe for determinatibn
of the in-situ characteristics of lunar soils and rocks. John
Hovland, David Katz, Laith I. Namiq, James B, Thompson, Tran K.. Van,
and Ted S. Vinson served as Graduate Research Assistants and carried
out many of the studies leading to the results presented in this
report, Francois Heuzé, Assistant Specialist, served as project

manager and contributed to studies concerned with lunar rock mechanics.
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Ultimate objectives of this project are:

1

2)

3)

4)

5)

Asgessment of lunar soil and rock property data using
information obtained from Lunar Orbiter and Surveyor
missions.

Recommendation of both simple and sophisticated in-situ
testing techniques that would allow determination of
engineering properties of lunar surface materials.
Determination of the influence of variations in lunar
surface conditions on the performance parameters of a
lunar roving vehicle.

Development of simple means for determining the fluid
and thermal conductivity properties of lunar surface
materials.

Development of stabilization techniques for use in loose,
unconsolidated lunar surface materials to improve the
performance of such materials in lunar engineering

application.

The scope of specific studies conducted in satisfaction of these

objectives is indicated by the following list of contents from the

Detailed Final Report which is presented in four volumes. The names

of the investigators associated with each phase of the work are

indicated.

VOLUME 1 )
MECHANICS AND STABILIZATION OF LUNAR SOILS

1. Lunar Soil Simulation
(W. N. Houston, L. I, Namiq, and J. K. Mitchell)

2, Lunar Surface Trafficability Studies
(J. B. Thompson and J. K. Mitchell)

3. Foamed Plastic Chemical Systems for Lunar Soil Stabilization
Applications

(T,

S. Vinson and J. X. Mitchell)



VOLUME II
LUNAR SOIL PROPERTIES FROM PHOTOGRAPHIC RECORDS
Soil Property Evaluations From Boulder Tracks on the Lunar

Surface
(H. J. Hovland and J. K. Mitchell)

Deduction of Lunar Surface Material Strength Parameters from.
Lunar Slope Failures Caused by Impact Events - Feasibility
Study

(T. S. Vinson and J. K., Mitchell)

VOLUME III
BOREHOLE PROBES
The Mechanism of Failure in a Borehole in Soils or Rocks

by Jack Plate Loading
(T. K. Van and R. E. Goodman)

Experimental Work Related to Borehole Jack Probe and Testing
(K. Drozd and R. E. Goodman)

Borehole Jack Tests in Jointed Rock - Joint Perturbation and
No Tension Finite Element Solution
(F. E. Heuzé, R. E. Goodman, and A. Bornstein)

| VOLUME 1V
FLUID CONDUCTIVITY OF LUNAR SURFACE MATERIALS

Studies on Fluid Conductivity of Lunar Surface Materials
(D. F. Katz, P. A. Witherspoon, and D. R, Willis)
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CHAPTER 1

STUDIES ON CONDUCTIVITY OF LUNAR SURFACE MATERIALS
(p. F. Katz, P. A. Witherspoon, and D. R, Willis)

I. OBJECTIVES

The overall objective of this investigation is to develop a
means of measuring the permeability of lunar soils and rocks in situ.
It has been proposed to design and test a surface probe that can
measure permeabilities with reasonable accuracy. Because of the lack
of any atmosphere on the moon, it will be necessary to utilize gas
in operating the probe. 1In the current year's work, a theory of gas
flow in porous media appropriate to the surface probe has been
developed. The theory is applicable to probe operation in the lunar
environment as well as on earth. 1In addition, the design of experiments

to check the theory has begun.

IT. INTRODUCTION

A. Conceptual Description of Probe

A schematic drawing of the probe is given in Figure 1-1,
The system basically consists of a holding chamber containing
pressurized fluid, a disc-shaped source, and pressure measuring devices
imbedded along with the source in a circular, impermeable skirt.
The holding chamber contains the charge of gas for an individual
measurement, and is connected by valves to the disc source and to a
larger gas storage tank. A single switch releases the charge of
gas, and activates a timer linked to the surface pressure tap. Constant
source pressure is achieved by a servo connection between the release

valve and an exit tap. The connecting valve between the holding
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chamber and the storage tank insures that only a small portion of
the gas supply is consumed per measurement. This also allows for
variation in source pressure as required by varying permeability. One

can then compute permeability from a record of pressures and flow rates.

In the design of the probe, due consideration must be given
to size, weight, durability requirements, etc. Conceptually, it
seems feasible to utilize a waste gas, such as CO,. In view of current
practice on earth, a miniaturization of the probe is suggested.
However, any miniaturization is limited by the requirement that the

source diameter be large compared to the pore dimensions.

B. Flow in Porous Media in the Lunar Environment

Due to the high vacuum in the lunar environment, there exists
a basic problem of determining the dominant flow regime during probe
operation. As the average pore size and/or fluid pressure decrease,
the fundamentél nature of gas flow changes. The initial departure
from viscous flow is the relaxation of the no slip boundary condition
on the interstitial surfaces. The resulting, augmented flow, while
still viscous in nature, exhibits a greater temperature dependence
than previously. As the effective degree of rarefaction increases
further, the continuum nature of the fluid breaks down, and the flow
must be modeled from a molecular point of view. In general, account
must be taken of both intermolecular collisions, and collisions
between molecules and the interstitial boundaries. However, when a
high degree of rarefaction is achieved, the former become negligible

due to the relative scarcity of fluid molecules. The fluid parameter

1-3



indicative of the particular flow regime prevalent is the Knudsen number,
defined here as Knd = %7 where A is the mean free path of the molecules

of the fluid, and 4 is an average pore cross sectional dimension. For

viscous flow, Knd << 1, whereas for the so-called Knudsen flow, Knd >> 1.

The geometrical complexity of the pore structure of rocks
precludes "exact" solutions of the fluid equations of motion, and one
is forced to work in terms of averaged flow quantities; see Appendix A.
This approach has proven successful in treating terrestrial, continuum
flows. It is, therefore, not unreasonable to expect that transitional
flow in the lunar environment may also be amenable to such an approach.
Henceforth, all flow quantities referred to are averages. It is also
necessary to assume that the porous medium of interest is homogeneous

and isotropic.

It seems likely that in the immediate neighborhood of the
fluid source,-the flow will be viscous in nature, and, thus, basically
prédictable by current techniques. However, the nature of the
evolution of Knudsen flow, as the distance from the source increases,
is extremely difficult to foresee at this time. Detailed theories
for transition flow, namely solutions of the Boltzmann equation, for
even the simplest geometries are quite scarce. As a result, this
report introduces the concept of local similarity in treating the gas
flow. This approach makes maximum use of physical intuition about the
flow field, and requireés experimental calibration of the probe on a
sample of known material. It does not, however, require actual solution
‘of the fluid equations of motion. Such an approach to the problem
seems far more reasonable, as a first effort, than some approximate

over-simplified solution.
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III. THE LOCAL SIMILARITY METHOD

A, Basic Theory

In the analysis of terrestrial fluid flow in porous media,
effective use if made of a simplified, integrated form of the equation
of motion in which the velocity, or flow rate, is taken to be
proportional to the pressure gradient. For continuum flow this is

known as Darcy's Law, and can be written
v = C(p)Vp (1-1)

where v is the velocity vector and p is pressure. The coefficient C
contains parameters that characterize the particular problem, basically
viscosity and appropriate pore dimensions. For incompressible, continuum

flow, C is independent of pressure, and is normally written

(1-2)

(@]
i
==

where | is viscosity, and k is termed the permeability. Thus,
permeability depends upon the size and shape of the interstices, and
has dimensions of length squared. For both slip flow and Knudsen flow,
C is pressure dependent (Carmen, 1956). It is, therefore, suggested
that Equation ({(1-1) may be characteristic of flow in porous media in
general. This assumption is made, and thus C(p) can be thought of

as a "master" diffusion coefficient encompassing all flow regimes.

C(p) can be rendered dimensionless by defining



E(p) = %—2— C(p) (1-3)

where C is a dimensionless function of pressure. It is assumed that

¢ is a function of local pressure (or Knudsen number)* only. L? has
dimensions of area, and can be thought of as a generalized permeability,
applicable to all flow regimes. These are the basic local similarity
assumptions. They embody all the necessary physics of the flow field.

The validity of these assumptions will be discussed below.

Consider now a steady, isothermal flow field dependent upon only
one space variable, denoted by r, i.e. a one~dimensional, cylindrically
symmetric, or spherically symmetric problem. Henceforth such problems

will be referred to as "symmetric." Equation (1-1) becomes

v =cp® (1-4)

The continuity equation can be written

apvrl) = (1-5)

0>

where o is the area fraction, cf. Appendix A ; p is the average density
and QO takes on different values (see Table 1-1), depending upon

the nature of the symmetric problem.

*Pressure and Knudsen number are inversely proportional. See Appendix B .
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TABLE 1-1

Type of Symmetric Problem

Symbol One-Dimensional Cylindrical Spherical
J 0 1 2
Q 0/A, Qe Q/4n

Here Q refers to the dimensional mass flow rate, Ar,is the total
cross~-sectional area of the rock in one~dimensional flow, and lc is
the cylinder length for cylindrically symmetric flow. Combining
Equations (1-3), (1—4),and (1-5).

~

L2 t o~
0= o= pricmEP (1-6)

Assume that the gas is perfect, so that p = pPRT, where R is the gas
constant and T is the temperature. Then

2

_L®
0 =aqa IRT r pC(p)”E' (1-7)

Since C(p) is dimensionless, it can be expressed as a function of a

dimensionless pressure (:

:

o
~
=

C(p) (1-8)



The particular form of L is motivated by the fact that ¢ can be

considered as being only a function of an appropriate Knudsen number

(see Appendix B ). Thus

C = w1
= 2urt P Kn_ (1-9)
= 8RT .
where V = T the mean thermal speed, and KnL is the Knudsen number

based on the "length" L, KnL = %u Substituting in Equation (1-7) and

rearranging,

aLZAl rjp e _ F(2) (1-10)

gurr %

This is a fundamental similarity relation. F(Z) is a "universal"
function, in that data from all symmetric problems, plotted according
to Egquation (1-10)fall on the same curve. It should be noted that F(;)
is not the oniy possible universal curve. Multiplication py any real

function of { yields an equally universal curve.

B. Method for Determining Permeability and Area Fraction

By developing dimensionless relationships in this manner,
Equation (1-10) can be used to determine both permeability L2 and the area
fraction 0. For example, if the flow field for the lunar probe can
be approximated as spherically symmetric, then j = 2 and 6 = Q/4T.

Equation (1-10) becomes

2( 47 2 _dpi _ _
oL (QuRT r‘p dr} = F(T) (1-11)



Since F(l) presumably holds for any symmetric flow in porous media,
this function can be uniquely determined by appropriate experimentation

in the laboratory.

To apply Equation (1-11) to an unknown rock sample, one must fix
the flow rate Q and measure temperature T, from which U = U(T) is
easily determined. If pressure taps are appropriately spaced in the
. , 2. d
skirt of the probe (cf. Figure:1-1) then r FE% can be measured at two or
more different values of r. This enables one to determine two different
values of the bracketed expression in Equation (1-11) which are sufficient

to determine both L and d.

A simple procedure illustrating the method of calculation

can be outlined as follows. From Equations (1-9) through (1-11)

- v B}
InZ =1lnp + ln(2uRT IJ (1-12a)
in F(T) = 1n r2p dp + 1n aLz—éE- (1-12b)
dr QURT

2, dp
d 1n F(T) _ d 1n(r P dr]

dint  dilnp (1-12c)

If follows that curves of F({) wvs [ and er gﬁ-vs p, plotted on
identical log-log scales, differ only in the positions of their
respective origins of coordinates. Thus, the two measured values of
rzp %E are plotted versus p on log-log paper, and F(I) vs [ is plotted

on identical paper. The two plots are then placed on top of each

other, and maneuvered, keeping respective axes mutually parallel, until



the two experimental points lie on the known curve. The coordinates
of the origin of the experimental plot relative to the universal

one then clearly yield both a and L. See Figure 1-2.

As drawn in Figure 1-2, F(Z) will be a monatonic function of T.
However, a problem of uniqueness in determining o and L will arise
if there are regions where, on the log-log scale, F(C) is locally
linear. If the experimental points correspond to such regions, then
the position of the origin of the experimental plot is not uniquely
determined. This diffjculty can, principle, be circumvented, however,
by redefinition of the universal curve such that it has adequate

curvature throughout.

c. Discussion of Assumptions

The concept of local similarity contains the following basic

assumptions:

(1) flow is steady

(2) flow is independent of the initial pressure in the
porous medium
{3) a single length characterizes the fluid conductivity

of the porous medium

(4) flow is isothermal.

The first and second assumptions are not independent. This is shown
gqualitatively in Figure 1-3. Clearly the flow field in the entire
rock is not steady, due to the presence of the pressure (and density)

"wavefront," i.e. the boundary between those portions of the rock
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that contain gas molecules from the source, and those that do not.

The velocity of propagation of this front will depend in part upon

the initial fluid pressure in the rock. Sufficiently close to the
source, however, it is not unreasonable to presume fhat time

variations in the flow field will be less significant, and subsequently,
the influence of the initial pressure. Strictly speaking, then, the
local similarity theory can only be applicable in this "quasi steady"
region. It is assumed that this region is large enough to permit

the necessary pressure measurements.

The assumption of steady flow for operation of the surface probe
can be examined quantitatively for two limiting cases: (a) slightly
compressible, continuum flow, and (b) Knudsen flow. In both cases
the governing equation becomes the diffusion equation (Carman,
1956). A solution to the equation for the precise geometry of
the probe (without the assumption of spherically symmetric flow) has
been given by~Se1im et al. (1963). Steady state flow is effectively
reached for T = 103, where T is a dimensionless time which can be written
T = ég;-. Here t is time, "a" is the source radius, and D can be thought
of as the diffusivity appropriate to the particular flow regime.- For

slightly compressible, continuum flow, D = %ﬁ , where ¢ is porosity and

k is the continuum permeability mentioned earlier. For Knudsen flow,

1dav o : I -
D = 3-—%-, i.e., D is simply the Knudsen diffusivity DKA divided by
porosity.

For continuum flow, consider a typical situation where ¢ = 10_1,
a = 107! cm, U= 10t poise, p = 10° dyne/cmz, and 10—11 cm? <k K 10—8 cm?.
(Continuum flow isn't expected for k < lO“11 cm®.) Then 10”2 sec <t <10

sec, so that steady state flow is feasible.



Now consider a typical Knudsen flow situation with the same
values of ¢ and "a" as above., Let T = 102 °K so that V = 10% cm/sec.
— w3 . —
For most rocks, 10 ® cm <d < 10 ocm. It follows that 10 z <tg 102

sec. So, for the rarefied limit, as well as the continuum one, steady

state flow appears feasible in probe operation.

It is also instructive to utilize the Selim et al. solution

in considering the assumption of spherically symmetric flow. Their
results show that, at the surface of the porous medium, for r < 5.633a
the steady flow field appears spherically symmetric. Thus, the surface
pressure taps in the probe would have to be replaced in this region,

a quite reasonable design requirement. The Selim et al. results also
show that over practical time periods, there is essentially no flow

at the rock surface for r £ (10a). Thus, for a = 0.1l cm, a reasonable
radius for the impermeable skirt might be, say, 3 cm. This requirement

is also compatible with the envisioned probe design.

The problem of characteristic lengths is fundamental to flow
in porous media, and, even for purely continuum flows, is as yet
unresolved. In the local similarity analysis there can be formal
dependence upon only a single characteristic dimension, L. Current
theory on flow in porous media often introduces two characteristic
dimensions. One is associated with effective pore diameter (denoted
above by d), and the other, with effective pore length. If the
proposed experimentation reveals the necessity of introducing a second

characteristic dimension, it will have to be done empirically.



IV. COMPARISON WITH EXISTING THEORY

The most systematic approach to the problem of transitional flow in
porous media has been made by Mason et al. (1961, 1962, 1963, 1964, 1967)
in the form of the "dusty gas models". This model treats the overall
transport of a single or multicomponent gas in a porous ﬁedium as a
multiple diffusion problem. The pore structure is considered to be
one of the diffusing species, but is constrained to remain stationary
as a uniform distribution of "dust" particles. The starting point
in the analysis is a "master" diffusion equation governing the effects
of viscous transfer of momentum in the diffusion of a multicomponent
gas mixture. This equation was derived using the advanced "thirteen
moment" approximation of the kinetic theory of gases.(Zhdanov, 1962).
Only steady onewdimensional flows are considered, and inertial effects in
the continuum regime are neglected, Porosity and tortuosity effects are
introduced empirically. For isothermal flow of a single component

gas, the following equation is derived:

3

= 1+ ciplidp -
0 aip + b[l - czp”dr (1-13)

Here aj;, b, c1, ¢2 are constants, one of which must be determined
experimentally., Since Q = proA, where A is the area of this fluid

source, Equation (1-13) can be rewritten:

- ROl 1+ cipl||dp 1-14
oA P aip + b(l + csz dr ( )

Equation (1-14) isconsistent with the local similarity expression,

Equation (1-4), for one dimensional flow with



RT|1 1+ c1p
= ot +
C(p) p(alp b 1T+ cop

(1-15)

Equation (1-15)has the same quantitative pressure dependence as

an equation obtained by Wakao et al..(1965).

isothermal flow that is undergoing transition in porous media.

of Wakao et al. can be expressed as

For steady, one-dimensional

The result

2 b
x?p 2
olp_ i P 1 p D
8y \p 4] KA Kn., p KA
1 o do o
C(p) = = + + (1-16)
PP__.,.Knd 1+Knlp-—— 1+Knlp——
Py o a Fo a Po
\ o o )
The subscript o refers to reference conditions at the gas source. The
first term in Equation (1-16) corresponds to simple Poiseuille flow. Wakao's
second term, to slip flow, and the third term, to Knudsen flow. Wakao's

equation contains no disposable constants, but its justification is

largely heuristic, and is based on the single capillary model for flow

in porous media.

Similarly, the additional efforts, listed in Reference 8,

are essentially heuristic. Unfortunately, experimental verification

for all the above work has been confined to measurements on single

capillaries or bundles of capillaries.

The only experimentation on transitional flows in actual porous

media has been the recent work of Huang and Ramsey (1968).

Their experiments

consisted of steady, one-dimensional flows, in which large relative

pressure differences between the ends of the rock samples were achieved.

However, all pressures remained of the order of atmospheric, and rarefied

effects were assumed to be present only by virtue of the small pore



sizes of the rock samples. The data are in good agreement with the
Wakao equation, Cf. Equation (1-16). However, it should be emphasized that
the applicability of the data to the present problem is gquestionable

due to the lack of in-vacuo conditions.

The final work of interest is that of Sreekanth (1968). He conducted
experiments on transitional flows in single tubes in which large
relative pressure drops were achieved, the tube exits being maintained
at vacuum conditions. Three different tubes were used, with length-to-
diameter ratios of 4.77, 2.66, and 15.03. The flows were steady and
isothermal. Sreekanth's data for pressure distribution agree extremely
well with a continuum analysis, utilizing an approximate method of
accounting for compressibility and assuming velocity slip (Ebert -and
Sparrow, 1965). Such an analysis is consistent with the local similarity

approach, and an effective C(p) can be deducted.

srbiReKn_ ¥ 2 3 3
SN0 1 (s R 4 R B 8
P p 2 az\lp 4 p 2 p | |BRekKn 64ReKn?
o do do
(1-17)

Here Re = %'%E’ a Reynolds number based on mass flow rate; b; is a

constant, of order one, contained in the slip boundary condition

(v)wall = —.blk[gg)wall' where [%g)wall is the normal derivative of

velocity at the wall; and X is a weakly varying function of local

Knudsen number, which is effectively a constant of order one.



Due to the fact that the Wakao et al. approach, cf. Equation (1-16).
which is intended for flow in porous media, is derived from a capillary
model, it is instructive to apply their equation to the Sreekanth data.
In so doing, it is necessary to select only those results with small
values of Re and large values of Vp/pe because these are appropriate
to transitional flow in porous media. Here Vp is the pressure drop
along the tube, and pe is the background pressure. If calculated
volumetric flow rates 6 are compared with the experimental data, the
accuracy improves with increasing length~to-diameter ratio. This is
to be expected since the Wakao theory assumes fully developed flow,
independent of capillary entrance effects. Typical results for the

longest of the three tubes are shown in Table 1-2. As expected, the

TABLE 1-2

COMPARISON OF VOLUMETRIC FLOW RATES
CALCULATED FROM WAKAQ THEORY WITH SREEKANTH DATA

. 3 3
%5 Vca]cu]ated[%gﬁ} Vmeasured&%%ﬂ Percentage error
(Wakao et al.) (Sreekanth) %
1.45 78.76 71.64 9
2.84 639.52 556.00 13.1
7.86 1199.54 990.50 17.4
10.25 335.64 293.00 12.7
20.05 31.254 29.48 5.6

26.53 6.02 5.95 1.2




greatest accuracy is for the highest sey and lowest G (i.e. the lowest
e
Reynolds number) .

However, the calculated pressureg along the tube length do not
compare nhearly as favorably with the data for large values of éEu In
some instances, these pressures become double-valued near the tibe end.
Typical results for the longest tube are shown in Figur; 1-4. Clearly,
then, the approaches of Sreekanth and Wakao et al. are not equivalent.
Nonetheless, while there is some question as to which is more applicable

to flow in porous media, neither contradicts the local similarity

hypothesis made in this work.

10 - — — WAKAO FORMULA
SREEKANTH FORMULA

0.8} O SREEKANTH DATA
0.6

P

Po 04}

FIGURE 1-4 TYPICAL COMPARISON OF WAKAO AND SREEKANTH FORMULAS
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V. PROPOSED EXPERIMENTATION

In the final gquarter of this year's work, plans were made for a
series of experiments aimed at developing a probe prototype. To
simulate the effects of the lunar environmment, all experiments will be
conducted on rock samples enclosed in a vacuum chamber. To our knowledge,
this will be the first work of this kind that has been attempted.

Facilities currently available in the Aeronautical Sciences Laboratories
are easily able to maintain significant flow volumes at a vacuum of lO_6
Torr , and with the aid of auxiliary equipment, a vacuum of LI.O_8 Torr
can be reached. These pressure levels will enable us to examine the

effects of rarefied gas flow without having to duplicate the much lower

-1l .
vacuum (10 Torr ) of the lunar environment.

The first experiment will consider one-~-dimensional flow. This is
the simplest geometry, and will enable us to develop a familiarity with
appropriate p%ocedures for handling gas flow through porous media under
high vacuum conditions. Two basic rock configurations are being considered.
The first consists of a single, cylindrical rock specimen, with pressure
taps embedded in the rock, cf. Figure 1-5a. In the second configuration,
the pressure taps are placed in gaps between cylindrical "wafers" of rock,
cf. Figure 1-5b, in order to insure that measurements of average pressure

are obtained.

By selecting rocks of appropriate permeability and controlling absolute
pressures at the necessary levels, it should be possible to obtain conditions

that vary from continuum viscous flow to flow with a high degree of
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rarefaction. In so doing, the results obtained will provide a necessary

test of the local similarity method.

One of the fundamental considerations in the design of the lunar
permeability probe is its range of application. Over what range of
permeabilities can the lunar probe be expected to yield satisfactory
results, given the operating conditions that prevail on the lunar surface?
Can the probe be applied to consolidated and/or unconsolidated rocks?
These problems can be investigated by varying the permeability of rock
samples, and noting those conditions of temperature, flow rate, and

absolute pressure that are practical for the envisioned probe.

Another consideration is the type of gas to be used. Is there any
advantage to be gained by using a single component gas rather than a
gaseous mixture? From the experimental standpoint, it will be possible
to use both approaches and thus provide data for another design factor

of the probe. -

In subsequent experiments,.the applicability of the en;isioned probe
to spherical flow conditions will be investigated. This work will provide
design criteria for such features of probe construction as the necessary
size of the probe skirt, and the optimum positioning of pressure taps.

The results of this ‘work can then be usedhto build and test a probe

prototype.
VI. CONCLUSIONS

A theory of gas flow in porous media appropriate to the lunar surface
permeability probe has been developed. This theory is based on the concept
of local similarity and utilizes the assumptions of steady, isothermal,
and symmetric flow assumptions that have proven possible for terrestrial

flows. This concept of local similarity is more general than the few
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existing theories for transitional flow in porous media. It is entirely
consistent with what is judged to be the best of such work. The design

of experiments to check this theory and develop a probe has begun.
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APPENDIX A

AVERAGE QUANTITIES FOR A SYMMETRIC FLOW

In Equation (1-5), the area fraction ¢ is defined

Ar

R L
A (r)) (a-1)
where
(
Ar one dimensional
A(r,) E<2ﬂr120 cylindrical symmetry (a-2)
4ﬂr§ spherical symmetry

Here r, is a reference length large compared to a typical pore dimension,
and Ap(rl) is the total pore area normal to the mean flow at r = r,. It
is assumed that 0 is a constant property of the porous medium. This

assumption requires that the rock be isotropic, and becomes more accurate

with increasing ‘'values of r.

The "average" velocity is defined

5 =1 .
% (r) = @ “' v, (v cda

Ap(r) (A-3)

Here Z’P is the "local" velocity in an individual pore. Similarly, the

mass flow rate can be expressed



Q= fj pp(r:YIZ) zp (r,y,z) - _d_A;_p
Ap(r)
= pv (1) A () (A-4)

where pp is the local density in a pore. Now continuity equation can

be expressed, cf. Equation (1-5),

@ p ()7 (@ =9 (A-5)

In order to satisfy Equation (A~5), the average density is then defined as

v () (3a-6)

In the test of this report, the bars have been dropped from all

average quantiﬁies.
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APPENDIX B*
KNUDSEN NUMBER

From the kinetic theory of gases,
1 -
u = 5 by ApV (B-1)
where by is a dimensionless constant of order one, and A is the mean

free path. Invoking the perfect gas law, taking b; = 1, and

rearranging Equation (B-1),

1
P (B~-2)

. Then

Ef>

A Knudsen number based on L can be defined,KnL =

Kn = 2URT

L v

o =

(B-3)

so that, for an isothermal flow, KnL,and p are inversely proportional.

*As a general reference, see Chapman, S. and T. 0. Cowling (1964),
The Mathematical Theory of Non~Uniform Gases, Cambridge Univ. Press,
New York.
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SYMBOLS
a source radius
ai constant (cf. Eq. 13)

A = ma’ area of fluid source

A(r) reference area

Ap total pore area normal to flow

Ar total cross-sectional area of rock

b constant [cf. Eq. (13)]

b, constant of order one appearing in slip boundary condition
by constant of order one

cq constant [cf. Eq. (13)]

Co constant [cf. Egq. (13)]

C master diffusion coefficient

E dimensionless master diffusion coefficient

d average pore diameter, and tube diameter

D moméhtum diffusivity appropriate to a particular flow regime
DKA = %-dv' Knudsen diffusivity

F universal function of dimensionless pressure, equivalent to E'l
3 index for one dimensional cylindrically symmetric, or

spherically symmetry flow
k continuum permeability

A
Knd =3 local Knudsen number based on pore (Or tube) diameter



'U<

V=

<

STES

/8RT

v

A
2
d

m

reference Knudsen number based on pore (or tube) diameter

local Knudsen number based on L
tube length

reference length for cylindrically symmetric flow
square root of generalized permeability
generalized permeability

pressure

background pressure

reference pressure

mass flow rate

reference mass flow rate for symmetric flow

length coordinate for symmetric flow

reference length

gas. constant

Reynolds number based on mass flow rate
time
temperature

gas velocity

local velocity in pore

mean thermal speed of gas
volumetric flow rate
axial coordinate along tube

area fraction
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LV
= 2URT
A
A

(e}
i
p
°p
_ 4Dt
=
¢
X

1 . .
P=tn dimensionless pressure

L

mean free path

mean free path at reference conditions
viscosity

density

local density in pore

dimensionless time

porosity

weakly varying function of Knd, assumed a constant of order one
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