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PREFACE 

This repor t  presents the r e s u l t s  of s tud ie s  conducted during 

the period June 20, 1968 - Ju ly  1 9 ,  1969, under NASA research cont rac t  

NAS 8-21432, "Lunar Surface Engineering Propert ies  Experiment Defini- 

tion." This study was sponsored by the Advanced Lunar Missions 

Directorate ,  NASA Headquarters, and was  under t h e  technica l  cogni- 

zance of D r .  N. C. Costes, Space Science Laboratory, George C. Marshall 

Space F l igh t  Center. 

The repor t  r e f l e c t s  the combined e f f o r t  of four facul ty  inves t i -  

ga to r s ,  a research engineer, a p ro jec t  manager, and s i x  graduate 

research a s s i s t a n t s ,  representing several engineering and s c i e n t i f i c  

d i sc ip l ines  pe r t inen t  t o  the study of lunar sur face  material proper t ies .  

James K. Mitchell ,  Professor of C i v i l  Engineering, served as Principal  

Invest igator  and w a s  responsible f o r  those phases of the work con- 

cerned with problems r e l a t i n g  t o  the engineering proper t ies  of lunar  

s o i l s  and lunar s o i l  mechanics. Co-investigators were W i l l i a m  N .  

Houston, Assistant Professor of Civ i l  Engineering, who w a s  concerned 

with problems r e l a t i n g  t o  the engineering propert ies  of lunar  s o i l s ;  

Richard E. Goodman, Associate Professor of Geological Engineering, 

who w a s  concerned with the engineering geology and rock mechanics 

aspects of the lunar  sur face ;  and Paul A. Witherspoon, Professor of 

Geological Engineering, who conducted s tud ie s  r e l a t ed  t o  thermal 

and permeability measurements on the lunar surface.  D r .  Karel Drozd, 

Assis tant  Research Engineer, performed laboratory tests and analyses 

pe r t inen t  t o  the development of a borehole probe f o r  determination 

of the in-s i tu  cha rac t e r i s t i c s  of lunar s o i l s  and rocks. John 

Hovland, David Katz ,  Laith I. Namiq, James B. Thompson, Tran K. Van, 

and Ted S. Vinson served as Graduate Research Assistants and ca r r i ed  

out many of the s t u d i e s  leading t o  the r e s u l t s  presented i n  t h i s  

repor t ,  Francois Hew6 , Assis tant  Spec ia l i s t ,  served as p ro jec t  

manager and contributed t o  s t u d i e s  concerned with lunar rock mechanics, 
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U l t i m a t e  ob jec t ives  of t h i s  p ro jec t  are: 

Assessment of lunar s o i l  and rock property da ta  usfng 

information obtained from Lunar Orbi ter  and Surveyor 

missions 

Recommendation of both simple and sophis t icated in - s i tu  

t e s t i n g  techniques t h a t  would allow determination of 

engineering propert ies  of lunar sur face  materials. 

Determination of the  influence of va r i a t ions  i n  lunar  

sur face  conditions on t h e  performance parameters of a 

lunar roving vehicle.  

Development of simple means f o r  determining the f l u i d  

and thermal conductivity properties of lunar sur face  

materials. 

Development of s t a b i l i z a t i o n  techniques f o r  use i n  loose, 

unconsolidated lunar su r face  materials t o  improve the  

performance of such materials i n  lunar  engineering 

appl icat ion 

The scope of s p e c i f i c  s tud ie s  conducted i n  s a t i s f a c t i o n  of  these 

objectives is  indicated by the following l is t  of contents from the 

Detailed F ina l  Report which is presented i n  fou r  volumes. 

of the  investigators’associated with each phase of the work are 

indicated 

The names 

VOLUME I I 

MECHANICS AND STABILIZATION OF LUNAR SOILS 

1. 

2. 

3. 

Lunar S o i l  Simulation 
(W. N. Houston, L. I. Namiq, and J. K. Mitchell) 

Lunar Surface Traf f i c a b i l i t y  Studies 
(J. B. Thompson and J .  K. Mitchell) 

Foamed Plas t ic  Chemical Systems f o r  Lunar S o i l  S t a b i l i z a t i o n  
Applications 
(T. S .  Vinson and J. K. Mitchell)  
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CHAPTER 1 

STUDIES ON CONDUCTIVITY OF LUNAR SURFACE MATERIALS 

(D. F. Katz, P. A, Witherspoon, and D e  R, Willis) 

I. OBJECTIVES 

The overa l l  object ive of t h i s  investAgation is t o  develop a 

means of measuring the permeabili ty of lunar s o i l s  and rocks i n  s i t u .  

I t  has been proposed t o  design and test a surface probe t h a t  can 

measure permeabi l i t ies  with reasonable accuracy. Because of t he  lack 

of any atmosphere on the moon, it w i l l  be necessary t o  u t i l i z e  gas 

i n  operating the probe. In the  current  year ' s  work, a theory of gas 

flow i n  porous media appropriate t o  the surface probe has been 

developed. The theory is applicable t o  probe operation i n  the  lunar 

environment as w e l l  a s  on ear th .  

t o  check the  theory has begun, 

In  addi t ion,  the design of experiments 

11. INTRODUCTION 

A. Conceptual Description of Probe 

A schematic drawing 05 the  probe is given, i n F i g u r e  1-1, 

The system bas i ca l ly  cons is t s  of a holding chamber containing 

pressurized f l u i d ,  a disc-shaped source, and pressure measuring devices 

imbedded along with bhe source i n  a c i r cu la r ,  impermeable s k i r t .  

The holding chamber contains the  charge of gas f o r  an individual  

measurement, and i s  connected by valves t o  the disc source and t o  a 

l a rge r  gas storage tank. A s ing le  switch re leases  the charge of 

gas ,  and ac t iva tes  a t i m e r  l inked t o  the surface pressure t ap .  

source pressure i s  achieved by a servo connection between the  release 

valve and an e x i t  t ap .  The connecting valve between the holding 

Constant 
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chamber and the  s torage tank insures  tha t  only a small port ion of 

t he  gas supply i s  consumed per  measurement, This a l so  allows f o r  

var ia t ion  i n  source pressure a s  required by varying permeability. 

can then compute permeability from a record of  pressures and flow r a t e s .  

One 

In the design of t h e  probe, due consideration must be given 

t o  s i z e ,  weight, du rab i l i t y  requirements, etc. Conceptually, it 

seems feas ib le  t o  u t i l i z e  a w a s t e  gas,  such as COS, In view o f  current  

p rac t i ce  on ea r th ,  a miniatur izat ion of the probe i s  suggested. 

However, any miniatur izat ion i s  l i m i t e d  by the  requirement t h a t  the 

source diameter be large compared t o  t h e  pore dimensions. 

B. Flow i n  Porous Media i n  the Lunar Environment 

Due t o  the  high vacuum i n  the lunar  environment, there  e x i s t s  

a basic problem of determining the  dominant flow regime during probe 

operation. A s  t h e  average pore s i z e  and/or f l u i d  pressure decrease, 

the  fundamentdl nature of gas flow changes. 

from viscous flow i s  the relaxat ion of the no s l i p  boundary condition 

The i n i t i a l  departure 

on the  i n t e r s t i t i a l  surfaces.  The resu l t ing ,  augmented f l o w ,  while 

s t i l l  viscous i n  nature ,  exhib i t s  a grea te r  temperature dependence 

than previously. 

fur ther ,  the continuum nature of the f lu id  breaks down, and the  flow 

A s  the e f f ec t ive  degree of rarefact ion increases  

must be modeled from a molecular point  of view. In general ,  account 

must be taken of both intermolecular co l l i s ions ,  and co l l i s ions  

between moLecules and the i n t e r s t i t i a l  boundaries. However, when a 

high degree of ra refac t ion  is  achieved, the former become negl igible  

due t o  the r e l a t i v e  scarc i ty  of f l u i d  molecules. The f l u i d  parameter 



ind ica t ive  of t h e  pa r t i cu la r  flow regime prevalent  i s  the  Knudsen number, 

where A is  the mean f r ee  path of the  molecules - A  defined here as Kn - - 
d - d' 

of the  f l u i d ,  and d is an average pore cross  sec t iona l  dimension. For 

viscous flow, Kn << 1, whereas f o r  the so-called Knudsen flow, Knd >> 1. 
d 

The geometrical complexity of the pore s t ruc ture  of  rocks 

precludes "exact" solut ions of the f lu id  equations of motion, and one 

is  forced t o  work i n  terms of  averaged flow quant i t ies ;  see Appendix A. 

This approach has  proven successful i n  t r e a t i n g  terrestrial ,  continuum 

flows. It is, therefore ,  not unreasonable t o  expect t h a t  t r a n s i t i o n a l  

flow i n  the  lunar  environment may a l so  be amenable t o  such an approach. 

Henceforth, a l l  flow quan t i t i e s  re fer red  to  are averages. I t  is  a l s o  

necessary t o  assume t h a t  the porous med ium of i n t e r e s t  is homogeneous 

and i so t ropic .  

It seems l i k e l y  t h a t  i n  the immediate neighborhood of  the 

f l u i d  source, t he  flow w i l l  be viscous i n  nature,  and, thus,  bas ica l ly  

pred ic tab le  by cur ren t  techniques. However, the  nature of the 

evolution of Knudsen flow, as the  distance from the source increases ,  

is extremely d i f f i c u l t  t o  foresee a t  t h i s  t i m e .  Detailed theor ies  

for t r a n s i t i o n  f l o w ,  namely so lu t ions  of the  Boltzmann equation, f o r  

even the  simplest geometries are qui te  scarce. A s  a r e s u l t ,  t h i s  

report introduces the  concept of  l o c a l  s imi l a r i t y  i n  t r e a t i n g  the  gas 

flow. 

flow f i e l d ,  and requi res  experimental ca l ib ra t ion  of the  probe on a 

sample of known material. 

of the  f l u i d  equations of motion. 

seems f a r  more reasonable, as a f i r s t  e f f o r t ,  than some approximate 

over-simplified solut ion.  

This approach makes maximum use of physical  i n t u i t i o n  about the 

It does not ,  however, require  ac tua l  solut ion 

Such an approach t o  the problem 
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111. THE LOCAL SIMILARITY METHOD 

A. Basic Theory 

In the  ana lys i s  of t e r r e s t r i a l  f l u i d  flow i n  porous media, 

e f f e c t i v e  use i f  made of a s impl i f ied ,  in tegra ted  form of  the equation 

of motion i n  which the  velociky, o r  flow rate, i s  taken t o  be 

proport ional  t o  the  pressure gradient .  For continuum flow t h i s  i s  

known a s  Darcy's Law, and can be wr i t ten  

where v - i s  the ve loc i ty  vector and p is  pressure.  The coe f f i c i en t  C 

contains parameters t h a t  character ize  the p a r t i c u l a r  problem, bas i ca l ly  

v i scos i ty  and appropriate pore dimensions. For incompressible, continuum 

flow, C is  independent of pressure,  and is  normally w r i t t e n  

k C E -  
1-1 

where 1-1 i s  v i scos i ty ,  and k i s  termed the permeability. Thus, 

permeabili ty depends upon the s i z e  and shape of the inters t ices ,  and 

has dimensions of length squared. For both s l i p  flow and Knudsen flow, 

C is  pressure dependent (Carmen, 1956). It is, therefore ,  suggested 

t h a t  Equation (1-1) may be cha rac t e r i s t i c  of flow i n  porous media i n  

general .  This assumption i s  made, and thus C ( p )  can be thought of 

as a "master" d i f fus ion  coe f f i c i en t  encompassing a l l  flow regimes. 

C(p) can be rendered dimensionless by def ining 
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where E is a dimensionless function of pressure. It is assumed that 

L2 has is a function of local pressure (or Knudsen number)" only. 

dimensions of area, and can be thought of as a generalized permeability, 

applicable to all flow regimes. These are the basic local similarity 

assumptions. They embody all the necessary physics of the flow field. 

The validity of these assumptions will be discussed below. 

Consider now a steady, isothermal flow field dependent upon only 

one space variable, denoted by r, i.e. a one-dimensional, cylindrically 

symmetric, or spherically symmetric problem. Henceforth such problems 

will be referred to as "symmetric." Equation (1-1) becomes 

The continuity equation can be written 

A 

clpvrj = Q (1-5) 

where a is the area fraction, cf. Appendix A ; p is the average density 

and Q takes on different values 

the nature of the symmetric problem. 

h 

(see Table 1-11, depending upon 

*Pressure and Knudsen number are inversely proportional. See Appendix B . 
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TABLE 1-1 

Type o f  Symmetric Problem 

One - D i  mens i on a 1 

Here Q refers to the dimensional mass flow rate, Ar,is the total 

cross-sectional area of the rock in one-dimensional flow, and R is 

the cylinder length for cylindrically symmetric flow. Combining 

Equations (1-31, (1-41, and (1-5). 

C 

Assume that the gas is perfect, so that p = pRT, where R is the gas 

constant and T is the temperature. Then 

Since e ( p )  is dimensionless , it can be expressed as a function of a 

dimensionless pressure <: 
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The p a r t i c u l a r  form of 5 i s  motivated by the  f a c t  t h a t  e can be 

considered as being only a function of an appropriate Knudsen number 

(see Appendix B ) Thus 

c : - - -p=-  LV 1 

L 2 VRT Kn 

w h e r e  V =  /8RT - t he  mean thermal speed, and Kn i s  the  Knudsen number 
71' L 

based on the "length" L,  Kn 

rearranging , 

E - A Subs t i tu t ing  i n  Equation (1-7) and L L' 

(1- 10) 

This i s  a fundamental s i m i l a r i t y  re la t ion .  F(5)  is  a "universal" 

funct ion,  i n  t h a t  da t a  from - a l l  symmetric problems, p lo t t ed  according 

t o  Equation (1-10)fa l l  on the  same curve. I t  should be noted t h a t  F ( < )  

is  not  the onry poss ib le  universal  curve. Mult ipl icat ion by any r e a l  

function of 5 y i e l d s  an equally universal  curve. 

B. Method f o r  Determining Permeability and Area Fract ion 

By developing dimensionless re la t ionships  i n  t h i s  manner, 

Equation (1-10) can be used t o  determine both permeabili ty L2 and the  area 

f r ac t ion  a. For example, i f  t he  flow f i e l d  f o r  the lunar  probe can 

be approximated as spher ica l ly  symmetric, then j = 2 and Q = Q/47F. 

Equation (1-10) becomes 

h 

(1-11) 
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Since F(C) presumably holds f o r  any symmetric flow i n  porous media, 

t h i s  function can be uniquely determined by appropriate experimentation 

i n  the  laboratory.  

TO apply Equation (1-11) t o  an unknown rock sample, one must f i x  

the  flow r a t e  Q and measure temperature T,  from which p = p(T) i s  

e a s i l y  determined. I f  pressure taps  are appropriately spaced i n  the 

s k i r t  of the probe (cf. Figure  1.-1) then r can be  measured a t  two o r  

more d i f f e ren t  values of +. This enables one t o  determine two d i f f e ren t  

values of the bracketed expression i n  Equation (1-11) which a r e  s u f f i c i e n t  

t o  determine both L and a. 

2 d  

A simple procedure i l l u s t r a t i n g  the  method of calculat ion 

can be out l ined as follows. From Equations (1-9) through (1-11) 

(1- 12a) 

(1-12b) 

(1- 12c) 

I f  follows t h a t  curves of F(5)  vs C and r2p  * vs p ,  p lo t t ed  on d r  

i den t i ca l  log-log scales, d i f f e r  only i n  the  posi t ions of t h e i r  

respective or ig ins  of coordinates. Thus, the  two measured values of 

r2p 2 are p lo t ted  versus p on log-log paper, and F(C) vs C i s  p lo t ted  

on iden t i ca l  paper. 

o ther ,  and maneuvered, keeping respective axes mutually p a r a l l e l ,  u n t i l  

The two p l o t s  a re  then placed on top of each 
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t he  t w o  experimental po in ts  l i e  on the  known curve.. The coordinates 

of the o r ig in  of the experimental plot  r e l a t i v e  t o  the universal  

one then c l e a r l y  y i e l d  both a and L. See Figure 1-2. 

As drawn i n  Figure 1-2, F(G) w i l l  be a monatonic funct ion of 5. 

However, a problem of uniqueness i n  determining a and L w i l l  arise 

if these are regions where, on the log-log sca l e ,  F(G) i s  l o c a l l y  

l i nea r .  I f  the experimental po in ts  correspond t o  such regions,  then 

the pos i t ion  of the o r i g i n  of t he  experimental p l o t  is no t  uniquely 

determined. This d i f f i c u l t y  can, pr inc ip le ,  be circumvented, however, 

by r ede f in i t i on  of the  universal  curve such t h a t  it has adequate 

curvature throughout. 

C. Discussion of Assumptions 

The concept of l o c a l  s i m i l a r i t y  contains  the following bas ic  

assumptions: 

(1) flow is  steady 

( 2 )  flow is  independent of the i n i t i a l  pressure i n  the  

porous medium 

(3 )  a s i n g l e  length character izes  the  f l u i d  conductivity 

of the  porous medium 

(4) flow is isothermal. 

The f i r s t  and second assumptions are not independent. This is  shown 

q u a l i t a t i v e l y  i n  Figure 1-3. 

rock is  riot steady, due t o  the  presence of t he  pressure (and densi ty)  

"wavefront," i . e .  t h e  boundary between those por t ions  of the rock 

Clear ly  the flow f i e l d  i n  t h e  e n t i r e  



FIGURE 1-2 EXAMPLE OF MATCHING PROCEDURE IN DETERMINING 
PERMEABILITY AND AREA FRACTION 
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that contain gas molecules from the source, and those that do not. 

The velocity of propagation of this front will depend in part upon 

the initial fluid pressure in the rock. Sufficiently close to the 

source, however, it is not unreasonable to presume that time 

variations in the flow field will be less significant, and subsequently, 

the influence of the initial pressure. Strictly speaking, then, the 

local similarity theory can only be applicable in this “quasi steady“ 

region. It is assumed that this region is large enough to permit 

the necessary pressure measurements. 

The assumption of steady flow for operation of the surface probe 

can be examined quantitatively for two limiting cases: (a) slightly 

compressible, continuum flow, and (b) Knudsen flow. In both cases 

the governing equation becomes the diffusion equation (Carman, 

1956). A solution to the equation for the precise geometry of 

the probe (without the assumption of spherically symmetric flow) has 

been given by Selim et al. (1963). Steady state flow is effectively 

reached for T = l o 3 ,  where 9 is a dimensionless time which can be written 

Here t is time, ‘la” is the source radius, and D can be thought 4Dt 9 s -  

of as the diffusivity appropriate to the particular flow regime. For 

slightly compressible, continuum flow, D E !% , where @ is porosity and 

k is the continuum permeability mentioned earlier. For Knudsen flow, 

a2 . 

$11 

, i.e., D is simply the Knudsen diffusivity D divided by 1 dc D = -- 
3 c Q  KA 

porosity. 

For continuum flow, consider a typical situation where @ lo-’, 

a N IO-’ cm, 11 lo-’ poise, p l o 6  dyne/cm2, and lo-’’ cm2 <, k 5 lo-* cm 2 . 
(Continuum flow isn’t expected for k <, lo-’’ cm2.) Then sec 5 t 5 10 

sec, so that steady state flow is feasible. 
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Now consider a typical Knudsen flow situation with the same 

values of $ and "a" as above. 

For most rocks, lom6 cm <, d 5 lom3 cm. It follows that lom2 5 t 2 lo2 

sec. So, for the rarefied limit, as well as the continuum one, steady 

state flow appears feasible in probe operation. 

Let T N l o 2  OK so that V 2 l o 4  cm/sec, 

It is also instructive to utilize the Selim et al. solution 

in considering the assumption of spherically symmetric flow. 

results show that, at the surface of the porous medium, for r 5.633a 

the steady flow field appears spherically symmetric. Thus, the surface 

pressure taps in the probe would have to be replaced in this region, 

a quite reasonable design requirement. 

show that over practical time periods, there is essentially no flow 

at the rock surface for r <, (loa). Thus, for a = 0.1 cm, a reasonable 

radius for the impermeable skirt might be, say, 3 cm. This requirement 

is also compatible with the envisioned probe design. 

Their 

The Selim et al. results also 

The problem of characteristic lengths is fundamental to flow 

in porous media, and, even for purely continuum flows, is as yet 

unresolved. In the local similarity analysis there can be formal 

dependence upon only a single characteristic dimension, L. Current 

theory on flow in porous media often introduces two characteristic 

dimensions. One is associated with effective pore diameter (denoted 

above by d), and the other, with effective pore length. If the 

proposed experimentation reveals the necessity of introducing a second 

characteristic dimension, it will have to be done empirically. 
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IV, COMPARISON WITH EXISTING THEORY 

9 
d r  

The most systematic  approach t o  the problem of t r ans i t i ona l f low i n  

porous media has  been made by Mason e t  a l .  (1961, 1962, 1963, 1964, 1967) 

i n  t h e  form of t h e  "dusty gas models". This model treats the overall 

t r anspor t  of a s ing le  or multicomponent gas i n  a porous medium as a 

mult iple  d i f fus ion  problem. The pore s t ruc tu re  i s  considered t o  be 

one of  the d i f fus ing  species ,  bu t  is constrained t o  remain s t a t iona ry  

as a uniform d i s t r i b u t i o n  of "dust" p a r t i c l e s .  The s t a r t i n g  poin t  

i n  the  analysis  i s  a "master" d i f fus ion  equation governing the  e f f e c t s  

of viscous t r a n s f e r  of momentum i n  the  d i f fus ion  of a multicomponent 

gas mixture. This equation w a s  derived using the  advanced " th i r t een  

moment" approximation of the k i n e t i c  theory of gases (Zhdanov, 1962).  

Only steady one-dimensional f l o w s  are considered, and i n e r t i a l  e f f e c t s  i n  

the  continuum regime are neglected. Porosity and t o r t u o s i t y  e f f e c t s  are 

introduced empirically.  For isothermal flow of a s ing le  component 

gas,  the  following equation i s  derived: 

(1-13) 

Here a l ,  b, c l ,  c g  are constants ,  one of which must be determined 

experimentally. Since Q = p r a A ,  where A i s  the  area of t h i s  f l u i d  

source, Equation (1-J3) can be rewri t ten:  

Equation (1-14) i s c o n s i s t e n t  with the  loca l  s i m i l a r i t y  expression, 

(1- 14) 

Equation (1-41, f o r  one dimensional flow with 
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0- + 

1 + 1 P  1 + 1 P  
Knd 0 '0 Knd 0 '0 

(1-15) 

Equation(1-15)has the  same quant i ta t ive  pressure dependence as  

an equation obtained by Wakao e t  al ,  (1965). 

isothermal flow t h a t  i s  undergoing t r a n s i t i o n  i n  porous media. 

of Wakao e t  a l .  can be expressed as 

For steady, one-dimensional 

The r e s u l t  

(1- 16) 

The subscr ip t  o r e f e r s  t o  reference conditions a t  the  gas source. The 

f i r s t  t e r m  i n  Equation (1-16) corresponds t o  simple Po i seu i l l e  flow. Wakao's 

second term, t o  s l i p  flow, and the t h i r d  term, t o  Knudsen flow. Wakao's 

equation contains no disposable constants ,  bu t  i t s  j u s t i f i c a t i o n  i s  

l a rge ly  h e u r i s t i c ,  and is  based on the  s ing le  cap i l l a ry  model f o r  flow 

i n  porous media. S i m i l a r l y ,  t he  addi t ional  e f f o r t s ,  l i s t e d  i n  Reference 8 ,  

a re  e s s e n t i a l l y  h e u r i s t i c .  Unfortunately, experimental v e r i f i c a t i o n  

f o r  a l l  the above work has been confined t o  measurements on s ing le  

c a p i l l a r i e s  o r  bundles of c a p i l l a r i e s .  

The only experimentation on t r a n s i t i o n a l  flows i n  ac tua l  porous 

media has been the  recent  work of Kuang and Ramsey (1968). Their experiments 

consisted of s teady,  one-dimensional flows, i n  which la rge  r e l a t i v e  

pressure d i f fe rences  between the  ends of the  rock samples were achieved. 

However, a l l  pressures  remained of the  order of atmospheric, and r a re f i ed  

e f f e c t s  were assumed t o  be present  only by v i r t u e  of the  s m a l l  pore 
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s i z e s  of the  rock samples. 

Wakao equation, C f .  Equation (1-16) e However, it should be emphasized t h a t  

the  a p p l i c a b i l i t y  of the da ta  t o  the  present  problem is  questionable 

due t o  the lack of in-vacuo condi t ions.  

The data are i n  good agreement with the  

The f i n a l  work of  i n t e r e s t  is  t h a t  of Sreekanth (19681, H e  conducted 

experiments on t r a n s i t i o n a l  flows i n  s ing le  tubes i n  which l a rge  

r e l a t i v e  pressure drops w e r e  achieved, the  tube e x i t s  being maintained 

a t  vacuum conditions.  Three d i f f e r e n t  tubes were used, with length-to- 

diameter r a t i o s  of 4.77, 9.66, and 15.03. The flows were steady and 

isothermal.  Sreekanth's  da ta  f o r  pressure d i s t r ibu t ion  agree extremely 

w e l l  with a continuum analys is ,  u t i l i z i n g  an approximate method of 

accounting f o r  compressibi l i ty  and assuming ve loc i ty  s l i p  

Sparrow, 1965). Such an ana lys i s  i s  cons is ten t  with the  l o c a l  s i m i l a r i t y  

approach, and an e f f e c t i v e  C ( p )  can be deducted. 

(Ebert and 

(1-17) 

Here Re 5 A%, a Reynolds number based on mass flow rate; bi is  a 

constant ,  of order  one, contained i n  the s l i p  boundary condition 

( V ) w a l l  = - b i h ( ~ ) w a l l t   here (%Iwal1 is the  normal der iva t ive  of 

ve loc i ty  a t  the w a l l ;  and X i s  a . ~ e a k l y  varying function of l o c a l  

IT ?Jd 

Knudsen number, which i s  e f f e c t i v e l y  a constant of order one. 
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Due t o  the  f a c t  t h a t  t h e  Wakao e t  a l .  approach, c f ,  Equation (1-16). 

which is intended for  flow i n  porous media, is derived from a cap i l l a ry  

model, it is  i n s t r u c t i v e  t o  apply t h e i r  equation t o  the  Sreekanth da ta .  

In so doing, it is necessary t o  s e l e c t  only those r e s u l t s  with small 

values of R e  and l a rge  values of Vp/p 

t o  t r a n s i t i o n a l  flow i n  porous media. 

because these a re  appropriate 

Here Vp is  the pressure drop 

e 

along the  tube, and p is  the  background pressure.  If calculated 
e 

e 

volumetric flow r a t e s  V a r e  compared with the  experimental da t a ,  the 

accuracy improves with increasing length-to-diameter r a t i o .  This is  

t o  be expected s ince  the  Wakao theory assumes f u l l y  developed flow, 

independent of c a p i l l a r y  entrance e f f e c t s .  Typical r e s u l t s  f o r  the 

longest  of the th ree  tubes are shown i n  Table 1-2. As expected, the  

T A B L E  1-2 

COMPARISON OF VOLUMETRIC FLOW RATES 

CALCULATED FROM WAKAO THEORY WITH SREEKANTH DATA 

'calculated [cm3] fi 'measured [d] min Percentage e r ro r  

(Wakao e t  a l . )  (Sreekanth) % 

1.45 7%. 76 77.64 
2.84 639.52 556 .OO 
7.86 1199.54 990.50 

10.25 335.64 293 .OO 
20.05 31.254 29 48 
26.53 6.02 5.95 

9 
13.1 
17.4 
12.7 
5.6 
1.2 
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A grea te s t  accuracy is  f o r  the  highest  -E, and lowest V ( i a e e  the  lowest 
'e 

Reynolds number) e 

However, the  ca lcu la ted  pressures along the  tube length do not  

compare n e a r l y  a s  favorably w i t h  the  data  for  l a rge  values of &. 
some instances,  these pressures  become doublevalued near t h e  tube end. 

In  
Pe 

Typical r e s u l t s  for  the  l o n g e s t t u b e  a r e  shown i n  Figure 1-4. Clearly,  

then, the  approaches of Sreekanth and Wakao e t  a l .  a r e  not  equivalent.  

Nonetheless, while t he re  i s  some question as t o  which i s  more appl icable  

t o  flow i n  porous media, ne i ther  con t r ad ic t s  the l o c a l  s i m i l a r i t y  

hypothesis made i n  t h i s  work. 

I .or - - -  WAKAO FORMULA 
SREEKANTH FORMULA 

0 SREEKANTH DATA 

0.4 

0.2 

0 

\ 
\ 
I 

0 0.2 0.4 0.6 0.8 I .o 

FIGURE 1-4 T Y P I C A L  COMPARISON OF WAKAO AND SREEKANTH FORMULAS 
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V PROPOSED EXPERIMENTATION 

In the final quarter of this year's work, plans were made €or a 

series of experiments aimed at developing a probe prototype. 

simulate the effects of the lunar environment, all experiments will be 

conducted on rock samples enclosed in a vacuum chamber. 

this will be the first work of this kind that has been attempted. 

To 

To our knowledge, 

Facilities currently available in the Aeronautical Sciences Laboratories 

- 6  are easily able to maintain significant flow volumes at a vacuum of 10 

Torr , and with the aid of auxiliary equipment, a vacuum of Torr 

can be reached. These pressure levels will enable us to examine the 

effects of rarefied gas flow without having to duplicate the much lower 

vacuum Torr ) of the lunar environment. 

The first experiment will consider one-dimensional flow. This is 

the simplest geometry, and will enable us to develop a familiarity with 

appropriate peocedures for handling gas flow through porous media under 

high vacuum conditions. 

The first consists of a single, cylindrical rock specimen, with pressure 

taps embedded in the rock, cf. Figure 1-5a. In the second configuration, 

the pressure taps are placed in gaps between cylindrical "wafers" of rock, 

cf. Figure 1-5b, in order to insure that measurements of average pressure 

are obtained. 

Two basic rock configurations are being considered. 

By selecting rocks o€ appropriate permeability and controlling absolute 

pressures at the necessary levels, it should be possible to obtain conditions 

that vary from continuum viscous flow to flow with a high degree of 
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GAS 
INLET 

ROCK SPECMEN OUTLET TO 
VACUUM PUMP 

d- ENCLOSING JACKET 

TO 
PUMP 

FIGURE 1-5 SCHEMATICS OF PROPOSED CONFIGURATIONS FOR 
EXPERIMENTS ON ONE-DIMENSIONAL FLOW 
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rarefaction. 

test of the local similarity method. 

In so doing, the results obtained will provide a necessary 

One of the fundamental considerations in the design of the lunar 

permeability probe is its range of application. 

permeabilities can the lunar probe be expected to yield satisfactory 

results, given the operating conditions that prevail on the lunar surface? 

Can the probe be applied to consolidated and/or unconsolidated rocks? 

These problems can be investigated by varying the permeability of rock 

samples, and noting those conditions of temperature, flow rate, and 

absolute pressure that are practical for the envisioned probe. 

Over what range of 

Another consideration is the type of gas to be used. Is there any 

advantage to be gained by using a single component gas rather than a 

gaseous mixture? From the experimental standpoint, it will be possible 

to use both approaches and thus provide data for another design factor 

of the probe. 

In subsequent experiments, the applicability of the envisioned probe 

to spherical flow conditions will be investigated. 

design criteria for such features of probe construction as the necessary 

size of the probe skirt, and the optimum positioning of pressure taps. 

The results of this work can then be used to build and test a probe 

pro to type. 

This work will provide 

V I  e CONCLUSIONS 

A theory of gas flow in porous media appropriate to the lunar surface 

permeability probe has been developed. 

of local similarity and utilizes the assumptions of steady, isothermal, 

and symmetric flow assumptions that have proven possible for terrestrial 

flows. This concept of local similarity is more general than the few 

This theory is based on the concept 
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existing theories for transitional flow in porous media. 

consistent with what is judged to be the best of such work. 

of experiments to check this theory and develop a probe has begun. 

It is entirely 

The design 
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APPENDIX A 

where 

AVERAGE QUANTITIES FOR A SYMMETRIC FLOW 

I n  Equation (1-51, the area f rac t ion  a i s  defined 

one dimensional r 

cy l indr ica l  symmetry 

spherical  symmetry 

(A- 2 1 

Here r l  is a reference length l a rge  compared t o  a typ ica l  pore dimension, 

and A (r l)  i s  the  t o t a l  pore area normal t o  the  mean flow a t  r = rl .  I t  P 
is assumed t h a t  a is  a constant property of the  porous medium. 

assumption requi res  t h a t  the rock be isotropic ,  and becomes more accurate 

This 

with increasing 'values  of r l .  

The "average" ve loc i ty  is  defined 

(A-3)  

Here v 

mass f l o w  r a t e  can be expressed 

is  the " local"  ve loc i ty  i n  an individual pore. Similar ly ,  t he  - P  
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p ( r , y , z )  v ( r , y , z )  e dA P -P -P Q =  
A (r)  P 

where p is the l o c a l  densi ty  i n  a pore. Now cont inui ty  equation can 

be expressed, c f .  Equakion (1-5), 
P 

(A-5) 

I n  order t o  s a t i s f y  Equation (A-s), the average densi ty  i s  then defined a s  

I n  the t es t  of t h i s  repor t ,  the  bars have been dropped f r o m  a l l  

average quant i t ies .  
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APPENDIX B" 

KNUDSEN NUMBER 

From the k i n e t i c  theory of gases,  

where b2 is a dimensionless constant of order  one, and is  the  mean 

f r e e  path.  Invoking the  pe r fec t  gas law, taking b2 = 1, and 

rearranging Equation (B-1) , 

Then 
x E - L L' A Knudsen number based on L can be defined,Kn 

so  t h a t ,  for  an isothermal flow, Kn ,and p are inversely proport ional .  L 

*As a general  reference,  see Chapman, S. and T. 0. Cowling (1964) , 
The Mathematical Theory of Non-Uniform Gases, Cambridge Univ. Press,  
New York. 
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SYMBOLS 

a 

a1 

A = Tra 2 

A (r) 

A 
P 

r A 

b 

bl  

b2 

C 1  

c2 

C 

C 

d 

D 

- 

source rad ius  

constant (cf. Eq. 13) 

area of  f l u i d  source 

reference area 

t o t a l  pore area normal t o  flow 

t o t a l  cross-sectional area of rock 

constant [ c f .  Eq. (1311 

constant of order one appearing i n  s l i p  boundary condition 

constant of order one 

constant [cf. Eq. (1311 

constant [c f .  Eq. (1311 

master d i f fus ion  coe f f i c i en t  

dimensionless master d i f fus ion  coe f f i c i en t  

average pore diameter, and tube diameter 

momentum d i f f u s i v i t y  appropriate t o  a pa r t i cu la r  f l o w  regime 

D = dv  Knudsen d i f f u s i v i t y  

F 

j index for one dimensional cy l indr ica l ly  symmetric, o r  

K A 3  

universal  function of dimensionless pressure,  equivalent t o  C -  “ 1  

spherical ly  symmetry flow 

continuum permeab il it y 

loca l  Knudsen number based on pore(or  tube) diameter 

k 

x 
d Knd = - 
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A 
d ra = 2 reference Knudsen number based on pore (or  tube) diameter 

do 

KnL = - l oca l  Knudsen number based on L 
A 
L 

R tube length 

reference length f o r  cy l indr ica l ly  symmetric flow 

square root  of generalized permeability 

C 
R 

L 

L2 generalized permeability 

P pressure 

background pressure pe 

P re f e rence pressure 

Q mass flow r a t e  

0 

A 

Q reference mass f l o w  rate f o r  symmetric f l o w  

r length coordinate f o r  symmetric flow 

r reference length 
1 

R gas constant  

R e  = Reynolds number based on mass flow r a t e  
IT w 

t t i m e  

T temperature 

V gas ve loc i ty  

V loca l  ve loc i ty  i n  pore 
P 

v = J -  '8RT mean thermal speed of gas 

V volumetric flow r a t e  

z ax ia l  coordinate along tube 

a area f r a c t i o n  

- - 
IT 

* 



1-30 

- 

dimensionless pressure < = -  = -  
2pRT Kn, 
LV 

x 
x 
v 
P 

0 

pP 

4Dt 
T = g 2 -  

@ 

X 

L 

mean f r e e  path 

mean free path a t  reference conditions 

v iscos i ty  

densi ty  

local dens i ty  i n  pore 

dimensionless t i m e  

porosi ty  

weakly varying function of Kn assumed a constant of order one d' 


