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ABSTRACT

A weakly ionized plasma in a strong and nonuniform magnetic field

exhibits an instability analogous to the flute instability in a fully ionized

plasma. The instability sets in at a critical magnetic field. To study

the final state of the plasma after the onset of the instability, we numerically

integrate the plasma equations assuming a certain initial spectrum of small

disturbances. In the regime we studied, numerical results indicate a final

steadily oscillating state consisting of a single finite amplitude mode

together with a time independent modification of the original equilibrium.

Our numerical results agree with the analytic results obtained by Simon in the

slightly super-critical regime. As the magnetic field is increased further,

the wavelength of the final oscillation becomes nonunique. There exists

a subinterval in the unstable wave band. Final stable oscillation with a

wavelength in this subinterval can be established if the initial disturbance

has a sufficiently strong component at the particular wavelength.

I!



1. Introduction

The information one obtains from a linear stability analysis is the

critical value of some external parameter for the onset of the instability and

the wavelengths of the modes which begin to grow. After a period of exponential

growth of the unstable modes to finite amplitudes, the linearized equation

with the assumption of infinitesimal perturbation is no longer valid.

To learn the ultimate fate of the excited modes and the final state of

the plasma, a nonlinear treatment is necessary. In the case of instabilities

in a weakly ionized plasma obeying simple moment equations, Simon s has develored

a general theory describing the final oscillating state of the plasma.

j	 The initially stable plasma is assumed to become unstable upon small fractional
I

increase p of some external parameter. By expanding with respect to the
t

small parameter p, the final amplitudes of the steadily oscillating states, the

frequency shifts and the time independent change in the equilibrium distribution

can be determined in terms of A-

Another possible approach to the nonlinear stability problem is through

numerical integration of the plasma equations using a computer. One assumes

a certain initial spectrum of small disturbances and studies its development

in time to learn the behavior of the plasma upon onset of instability.

The work of Sato and Tsuda2 is such a study of the cross-field instability.

In this paper, using a similar computational approach, we study the

nonlinear evolution of an instability which causes the convective flow of a

weakly ionized plasma in a strong and nonuniform magnetic field. Part of

this problem has been discussed by Kadomtsev 3 in the quasi-linear approximation.

Nonlinear analytic results describing the final steadily oscillating states

in the slightly super-critical regime, p << 1, have also been obtained by

3



f

E_

II

Simon4 using the general theory of Ref. 1. However, the computational approach

has the advantage of not involving the assumption of small super-criticality.

Thus we can study the behavior of the plasma as the external parameter is

increased further from its critical value for the onset of the instability.

This is the purpose of the present investigation in addition to comparing

the numerical results in the slightly super-critical regime with the analytic

results of Ref. 4 (hereafter referred to as I).

The instability we studied is analogous to the flute instability in a

fully ionized plasma. Consider a weakly ionized plasma filling the space

between two infinitely long concentric cylinders (cf. Fig. 1). Let us assume

that an azimuthal magnetic field H^ decreasing along the radius as l/r,

exists in the space between the cylinders and that in the equilibrium state

all quantities vary in the radial direction only. The oppositely directed

drifts of electrons and ions in the nonuniform field produce no charge separation

in the equilibrium state. However, a z-dependent density perturbation will

produce charge separation and associated electric fields. The resultant

E X H drifts, coupled with an appropriate equilibrium radial density gradient,

can cause growth of the initial perturbations. Diffusion due to collisions

with the background neutrals tends to smooth out these perturbations and

hence the magnetic field has to exceed a certain critical value for the

instability to occur.

In Sec. 2, we write down the basic equations of the system and describe

the equilibrium state as given in I. We then write the equations governing

the perturbations and give a brief account of the linear stability analysis.

The perturbation equations are properly scaled in Sec. 3. We then expand

the perturbations in Fourier series and arrive at an initial Value problem

involving an infinite number of interacting modes. In carrying out the
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numerical integration on an IBM 360 computer, we approximate the system by

one with a finite number of modes and consider initial white-noise-like or

weighted small perturbations. The time development of these perturbations

at various magnetic field strengths above the critical field is presented

in Sec. 4 and Sec. 5. We give a final discussion in Sec. 6. In the regime

we studied, our computed results indicate a final steadily oscillating state

with the dominance of a single finite amplitude mode together with a time

independent modification of the equilibrium distribution. The final oscillating

state approaches that given in I when the magnetic field is slightly above

its critical value.

2. Basic Equations and Linear Stability Analysis

We consider a weakly ionized plasma filling the space between two

conducting grounded long cylinders with radii R and R + d respectively, where d << R

(cf. Fig. 1). We will assume quasineutrality, i.e. the number densities of

electrons and ions are equal. Ionization at the two cylinders is achieved

in such a way that a constant density s is maintained at the inner cylinder

and a density s - 6s at the outer cylinder, where 6s << s. There is also

an applied strong steady toroidal magnetic field produced by a current flowing

along the inner cylinder. If we assume the plasma current to be negligible,

by Maxwell's equations the magnetic field H is in the 0 direction with

intensity decreasing as l/r.

Since the density of the charged particles is considerably lower than

the density of neutral particles, we can assume that the neutral component

is stationary. We shall describe the behavior of electrons and ions by the

equation of continuity and the equation of motion of each species. They

have the form
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an + p• ( nvt ) = 0
at	

(2.1)

T pn = + en0(P ±	 ( NxH) — --	 (2.2)i

where the superscripts + and - refer to ions and electrons respectively.

Here n is the species number density, v the average velocity ; T the temperature,

e the absolute value of electron charge, cp the electric field potential, m

the mass, and T is the average collision time with the background gas.

The upper sign choice in these equations is for ions, the lower is for electrons.

In writing these equations we have assumed that the plasma is quasineutral

(n ;:zt% n = n) and the temperature of each species is maintained spatially

uniform by frequent collisions with the background neutral gas. We also

assumed that the frequencies of the motion we study are much less than the

collision frequencies so that the inertia term can be ignored. The electric

field is presumed electrostatic in nature.

We can solve for nv} from Eq. (2.2) and substitute the results into

Eq. (2.1). We obtain two equations for the determination of n and cp. In

cylindrical coordinates these equations have the form

of 
_F 

ra_^	 Dior+nb1br

+	 +	 +
+ 1 ( -D : n + nb-.Lk ) + -^- (-D,i^ + nb1 )r b9	 ra	 rao	 6 	 z	 oz

	

+	 i
* (lZ	 ,l+nb^aT)-(-D,.Tz-+nb,.a^)^ = C (2.3)
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where 0 x H = 0 has been assumed. Here for each species b = eT/m is the

mobility, D = TT/m the diffusion coefficient, and b 1 and Dl represent b and D

each divided by 1 + (Dr )2 where 0 = eH/mc is the cyclotron frequency. The

magnetic field is assumed to be so strong that (CYr)2 >> 1 for both electrons

and ions.

We shall repeat here the definition of the equilibrium state as given

in I. Let us consider an equilibrium in which the density and the potential

,,re functions of r only. Eq. (2.3) reduces to

+	 ±
r d L r t -Dl d T Nb1 dr ^^ = 0

where N and V are the equilibrium density and potential respectively. Making

use of the fact DL H 2 — r` as is b l and eliminating the b l terms between

the two equations implied above, one finds that

r dr (r dr) = 0

and hence

N= A+ B r Z

The corresponding equation for V is

dV	 const.
dr	

rte..".

Since N is positive in the region of integration and since V must vanish

at both ends, we must have

V ° 0	 (2.4)

Adjusting the cc*,st ants on N to fit the boundary conditions, one has
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s R+d	 ^	 R Z-rr- g -	 i-(T)	 (2.5)
(R+d -

It can be shown that a necessary condition for the instability is that

Nr2 decrease in the outward direction. Hence, to assure that we have such

a configuration, we require that

S 	
6s R+d

(R+d - R

or expanding

As 2d	 (2.6)

Henceforth, we can use the approximation

1dr(r2N) 3' - d	 (2.7)

Let us now consider a density perturbation n l (r, z, t) and a potential

perturbation V 1 (r, z, t) superimposed on the above equilibrium state. No 8

dependence of the perturbation quantities is assumed since ve expect the most

unstable mode to be of the interchange type with no variation along the

magnetic field. Substituting

n = N(r) + n t (r, z, t)

tp = V(r) + V 1 (r, z, t)

into Eq. (2.3) and meking use of the properties of the equilibrium solution,

we arrive at the following equations governing the perturbations.
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1 a (rD+ and )at - r a T 	 ar -

T 
r r[r(N+nl;bITa

dz( Dl azl l

D - L-6 If n'
+ a Z- [(N+nl ) bi ^ z

+ { IZ 1"t }{ (( N+nl) bl zl, , ẑ I (N+n1) bl ATl , = 0

Since Dl — H-2 r2 as is b C we may write

^n l _ + 1 	 3 a nd i n1 1	 + +) t ^^,^
at	 D1C^ar {r ^r ) + a Z'	 {'^	 Dl i a z

1	 1+ b^ ((r N 1 ) +Naz i J + {rtt)bl rZaT(r N)Ẑ
_	 1	 3IVl ^	 VI l
+ b1 C r; ar(r nlTr ) + az(nlaz ),

+ (^} 
) bl^r ar(rnlaz )- ^z- ( n1 T̂ ),	 0	 (2.8)

By virtue of the boundary conditions, we expect an d/ar to be of order nl/d
and similarly W .1/6r to be of order V l/d. In Eqs. (2.8) r-derivatives may
therefore be brought through r-dependent coefficients and allowed to act

directly on an d/ar, W .I/ar, n l (W .I/ar) and n l (aV l/az). The neglected terms
(involving r-derivat i ves of the coefficients) are small compared to those

retained in the parameter d/R or 6s/s. Hence using Eq. (2.7) one obtains

an d _ DD ,a2 + ^n.1 ± T c 2 ant + blN( ^vi+ fV1)
at	 ar	 az2 e H r ^z

- H 
ba 

zl 7 b j r(n1S) + a (n aVl J1C	 laz )

V	

V J+ H t ^r(nlaz ) ^z"lnlar1 ) = 0
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The coefficient of each term is a very weak function of r in the annular

region and may be assumed constant. Defining x = r - R and neglecting small

quantities of order d/R, we may write

1a n1 Dl( a^II 
+ a11) ±Tic 2 ant + b± s ( â Vl + gVl )a^	 ax	 az	 e H 1, dz	 1 axe az

C 6s avl 	 tr	 avl	 a	 aye 1
H d az + b' X (nlax ) + az( nlaz ),

z	 ,,.L
+ HbX(nlaz ) - az(nl7X ), = 0

(2.9)

Eqs. (2.9) are the approximate equations governing the perturbation quantities

n l and V1.

Let us now consider infinitesimal perturbations, when terms involving

products of n l and V 1 become negligible. The resulting linearized equations

and the boundary conditions suggest perturbations of the Form sin(nmc/d)

exp(iwt + ikz) where n is any positive integer and k is the axial wave number.

Substituting perturbations of the above form into the linearized version of

EqL (2.9) and solving for the real and imaginary parts of w, we find 

R = kc (2 (T-b+- T +b ) + s s (D- D+	 +	 1
H eR	 1	 1 s^	 (b1+ bL

w I _ (k +^! ) (Dibl+ Dybi) - ( 2bs /edeR) (kc/H) (T+ +T-)
z s 2

(. 2^ Kz) ( bl+ b:)
	

(2.10)

where K = n7/d. The imaginary part of w is negative at large value of H

and the instability can occur. The neutrally stable state occurs when

2 2 s	 t
+T+ ) (fZ 'r ) _ (k + ^c

	 nn R $
k =K	 2 d-s (2.11)
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The right-hand side is a minimum for k = X = TT/d. Hence the critical field

H
c 
at which the instability sets in is given by

d 6s

which is much larger than unity, in accord with our initial assumptions.

Solving for Hc, we find

2 _	 T( 2 C2 	SH^	
b 5- d-S

In Fig. 2, we plot on the H-k plane the neutral stability curves representing

W_ = 0 for various values of n. The plasma is linearly stable for H < H .
C

Modes with small wavenumber do not produce sufficient polarization electric

field for their growth while modes with too large a wavenumber are damped

out by diffusion. So the instability first sets in only with the critical

wavenumber k
c 	 c

= TT/d and n = 1 at H = H .

3. Machine Calculation

In this paper, we are concerned with the development of finite amplitude

motion for H > H c . We shall integrate the full Eqs. (2.9) in time on a

computer, assuming small initial. perturbations, and look into the ultimate

fate of these perturbations.

The perturbation equations will first be put into dimensionless form.

isle take the characteristic length in the x and z directions to be d and Ad

respectively, where A is an adjustable parameter. The characteristic time

is taken to be the approximate period t* of the critical mode in the limit

of b+ << b and T+ ;Zt; T ,

(2.12)



E

Y

4

i

2
t* = 2d eH s

T+ c bs
(3.1)

E

l
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Making use of the following dimensionless variables,

= x/d

= z/ (Ad)

T = t/t*

p = nl/bs

T = V1/(e 6s )

We obtain from Eqs. (2.9),

) p	 alp	 1 alp) 
_ A 1 

a
a T = A.t ( a + n2 a 52	 2A )5

+ A I c 2	 + 2 a

+ A3 1 (p on ) +	 a, (p a )J

_	
q 

(P .0) _ (P n )^

Bata 2 + -a ) — B,1

+ B ( a..	 + 1 a23 aq 2 n a^,)

+ B4 C-1 (Pan +	 ^( Pad )] = o

(3.2)

(3.3)

13^^+)

(3.5'

where	 A l = 2b + c b s

4d	 s
AZ = R	 bs

A3 = 2H	 +
bl

c
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1

_ 2H s	 +	 - T-B1 - c 
bs( 

b L bl ,r+ )
I

'	 B3 = cH S bl+ b1)

f

'	 B4= cH ( b++bl)

Eq. (3.3) is obtained from the ion version of Eqs. (2.9) and Eq. (3.4)

is obtained by eliminating an l/h between the two Eqs. (2.9).

Let the density perturbation p(^, t, T) and the potential perturbation

Y'(T , g , T) be expressed by
f

p(rI, , T) _	 pnm( T) sin(r.Trq) exp(imTr )
r1 =1 ?+t-n

T; I,^ ,T) = ;n ±3 n̂^(T) sin(nTrn) exp(imTT^)
n.1 M=;-W

(3.6)

Here the choice of the sine series in the x direction satisfies the boundary

conditions, and we use a discrete wave spectrum with a fundamental wave

number of Tr/(Ad) to approximate the continuous wave spectrum in the z direction.

We substitute the Fourier series in (3.6) into Eqs. (3.3) and (3.4) and

obtain the following system of equations

gym= — A 1 TF2 (n2 + ( M Pnm — i1^TT
M PnmaT

- Alrr2 n2 + ( 7-)^ nm+ i27Tn Tnm

TFA3 f n nm + 
m
n unm, + iTT WYIM

(3.7)

(n = 1, 2, 3, ----, m = 0, f 1, f 2,----)



r	 2B1 T^ In 2 + (.M) 3 Pnm + iB rr M Pnm

• B3Tf [n2+ ( n )2 ^ nm

• 2TrB4 (nUrym+ M VrlM) = 0

(n = 1, 2, 3 ----, m = 0, f 1. f 2, ----)

where Unm , Vrim and Wnm are terms bilinear in p i j and `Yi j and represent

interactions between various modes.

00	 pp

Unm 
=

I .E  P.	 r . z ,+
q	 J: i ,	 ^2 J (Y")	 - U-n7 J U+n)

V	
-	 ^' f pnm	

q=-m n 19 ^^ 2 j(m4) j^ U-n7 j z (.^+n )z

Here the summation on ,j is over odd integers if I f n is even or zero and is

14

(3.8

over even integers if k t n is odd.

`̀
oo

wnm =L,Um+nq )Y ^nfl)(hrq)ig
+ (Im—nq) sgn(n-f)fq Pn-i I(m-q)

Here sgn(n) = n/ In l if n # 0 and sgn(0) = 0.

Computations restrict us to a finite sub-system of these equations.

We use the finite sum

N	 _

,T') = E t Pn ..0-) sin(nTrl) exp (imw^)

P^ ,T) _	 ' V4T-) sin(n7) exp(im-rrf) .

(3.9'
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to approximate the series in (3.6) and restrict n and m in Eqs. (3.7) and

(3.8) to 1 s n s N and 0 s Iml 5 M. The series in the expressions for Unm,
i

Vnm and Wnm are simply terminated by choosing p ig = If = 0 whenever

i > N or Ijl>M. We also make use of the reality conditions, p*
nin  = pn(-m)

and rim 
_ n. _

M) where the asterisk indicates the complex conjugate. Thus

we can further restrict the index m to 0 S m S M and obtain 2 X N X (2M + 1)

real equations from Eqs. (3.7) and (3.8) for 2 X N X (2M + 1) real unknowns,

name ly, ( P no , per, P I ) and ( `ono , ^nm , i
nm ) where 1 s n S N, 1 s m s M

and the superscripts R and I denote the real and imaginary parts respectively.

In carrying out the time integration, we used Hamming's modified predictor-

corrector method with a special Runge-Kutta procedure for starting values.

It is a stable fourth-order integration procedure. The routine for evaluating

the time derivative a pnm/ aT is as follows. First, the spectral density

pnm for all n and m are given as initial values or obtained from the previous

time step. We then solve the system of linear algebraic Eqs. (3.8) in the

unknown potentials iron - Second, a P_ rim /2rrnm/a'r is then evaluated using Eq. (3.7).

It is essential that the solutions of Eqs. (3.8) be sufficiently accurate

in each step that rounding errors can never accumulate to any great extent.

We used q Gaussian reduction method with iterative refinements. 5 The diagonal

dominant property of the coefficient matrix enables us to obtain solutions

with 6 digit accuracy in the norm of the solution vector in a few iterations.

The time step used in integration must also be smaller than the period of

the fastest motion of the system. We chose the time step such that the

estimate of the local truncation error given by the predictor-corrector

method is always less than 10 - '3 . It is also necessary that N and M be chosen

sufficiently large that enough modes be included in the calculations. We
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have no mathematical criterion for the requirement on N and M. However, one

can see from Fig. 2 that modes with n > 2 are heavily damped when the

instability first sets in for modes of n = 1. We therefore chose N =

4
and neglected any modes with n > 2. In addition, one can see that, for

i

H > Hc , only modes with an axial wavenumber k in the band kl< k < k2 have

positive growth rates. We chose our modes centered around these modes.

Choosing M = A2 with A = 2, 3, 4 successively, we increased the number of

modes included as well as the fundamental wavelength. A finite number of modes

might be sufficient to describe the system if modes at both ends of the

spectrum remain at low level during the time of interest.

The following numerical values of system parameters are used in computation.

b /b+ = 102 , T /T+ = 20, 6s/s = 10-3 and d/R = 10-5 Notice that the

inequality (2.6) is satisfied.
i
E

4. Results in the Slightly Super-Critical Regime

We first investigated the evolution of an initial white-noise-like

disturbance when the magnetic field is slightly above the critical value Hc.

We assumed as initial values Ip I = 10-3 for all n and m with the initial
rim

I
phase determined by random numbers.

Fig. 3 shows the time development of various modes at H = 1.05 He

under the assumption of N = 2, A = 2 and M = 4. The numbers of each curve

represent the mode number n and m defined in Eq. (3.9). Initially the various

modes are observed to grow or decay exponentially in time. This is what one

expects since the initial perturbations are small and linear analysis giving

exponential growth or decay should be valid. The initial growth rate and
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oscillating frequency of each mode are in good agreement with that given by

Eq. (2.10) of the linear analysis. Thus we have a good check on our computing

codes. One notices in Fig. 3 the growth of the mode with n = 2, m = 0 as

well as the critical mode n = 1, m = 2. The mode (2, 0) represents a modification

to the equilibrium density. Its sign (not shown in the figure) is negative

so as to reduce the equilibrium density in the region near the inner cylinder

and increase it near the outer wall. That is, it acts to flatten the density

gradient which is what we expect the nonlinear correction to do. Due to this

change in equilibrium density, the critical mode (1, 2) levels off subsequently

and a final steadily oscillating state with the saturation amplitude shown

is reached. The final oscillating frequency is also shifted from that given

by linear analysis evaluated at the critical field.

We ran another computation under the same conditions, however, with the

number of modes increased by choosing N = 2, A = 3, M = 9. The results are

shown in Fig. 4. The same final oscillating state as in the previous case

is reached with the critical mode labeled (1,3) because of the different

value of A assumed.

Fig. 5 shows the results obtained at H = 1.1 H c . Notice that three

modes (1, 2), (1, 3), and (1, 4) are located in the unstable wave band and

they all have initial positive growth rates. Some of the modes like (1, 5),

(1, 1), and (2, 1) which decay initially are excited through mode interactions.

However all modes finally subside except the oscillating critical mode (1, 3)

with an axial wavenumber k = rr/d and the time independent modification given

by the mode (2, 0).
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We also ran computations at other field values. To summarize our

computed results in the slightly super-critical regime, we plot as functions

of magnetic field the difference 6w between the final oscillation frequency

and the linear oscillation frequency evaluated at the critical field (Fig. 6),

the squared final oscillation amplitude of the density wave and the magnitude

of the time independent change in the equilibrium density (Fig. 7),and the

squared final oscillation amplitude of the potential wave and the magnitude

of the time independent change in the equilibrium potential (Fig. 8). In

these figures, we also plot the analytic results obtained from Eqs (3.10),

(3.11), (4.7), (4.8), and (2.23) of I. The analytic results are valid in

the limit p = (H-Hc )/Hc << 1. It is seen indeed that the analytic results

and our numerical results are in good agreement in this limit.

5. Results at Higher Magnetic Fields

We tried next to extend our computation with the magnetic field increased

further. To include more modes in the unstable wave band k l < k < k2,

we chose A = 4 and M = 16. Fig. 9 shows the time development of various modes

at H = 1.3 H c . Only modes with amplitude larger than 10-4 at T = 30 are

shown in the figure. It is seen that initially each mode grows or decays

much more rapidly because of the increased magnetic field. Some of the modes

which decay initially begin to grow in a short time. These include Lhe mode

(2, 1) and some other modes not shown in the figure. After a period of

interactions, all these modes as well as those which grow initially begin to

subside leaving a steady oscillation of the mode (1, 5) with an axial

wavenumber k = 1.25 rr/d, and the mode (2, 0) giving the time independent

change of the equilibrium distribution. Fig. 10 shows a similar evolution



19

of modes at H = 1.6 HC .	 in this case, however, the final oscillation is

dominated by mode (1, 6) which has an axial wavenumber k = 1.5 rr/d.	 The

modes	 (1, 5) and (1, 6) happen to be the modes with the largest growth rates

at H = 1.3 H and H = 1.6 H	 respectively.	 Their rapid growth seems toc c

enable them to take over the other modes.

To study more closely the problem of wavenumber selection, we ran some

computations under the assumption of a weighted initial disturbance. That

is, we put the initial magnitude of one of the modes in the unstable wave

band k l < k < k2 at larger magnitude than the rest. To be more specific, we

put the weighted amplitude at 2 x 10 s and the other amplitudes at 10-4.

Fig. 11 shows results obtained at H = 1.3 HC with the assumption of such a

weighted initial amplitude for the mode (1, 6). It is seen that stable final

oscillation with the dominance of the mode (1, 6), instead of the mode (1, 5),

can be established. The weighted initial amplitude of the mode (1, 6) is

sufficiently strong that it can dominate and force down other modes which have

larger initial growth rates. Fig. 12 shows the results obtained at H = 1.3 HC

with the mode (1, 7) weighted. Contrary to the previous case, final oscillation

with the mode (1, 7) cannot be reached. The mode (1, 7 seems unstable with

respect to perturbation of other modes and the mode (1, 5), which has the

largest linear growth rate, takes over and finally dominates. %`ut of the

seven modes (m = 2, 3, ---8) inside the unstable wave band at H - 1.3 FC,

we find it possible to establish final stable oscillations of the mode with

t
m = 4, 5, or 6 if the particular mode has its initial amplitude weighted

with respect to the rest as described. Similarly, we find that, at H = 1.6 HC,

it is possible to establish stable final oscillation of the mode with

m = 4, 5 1 6, 7, or 8 out of the ten modes (m = 2, 3, ---11) inside the

unstable wave band.
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6. Discussion

We would like to point out that the final state of the plasma indicated

by our computed results is in sharp contrast with that obtained by Sato and

Tsuda2 for the case of the cross-field instability. Their computed results

indicate that the instability develops explosively into a strong turbulence,

while we hwe the dominance of a single finite amplitude mode up tQ H = 1.6 Hc.

We do not have direct experimeYi.Lal sup; -,rt for the dominance of the single

mode. However recent experimental worke on a similar macroscopic instability

in a weakly ionized plasma, namely the spiral instability of the positive

column, indicates the dominance of a single mode for magnetic field strengths

up tc many times the critical value. Transition from laminar convection to

turbulent convection could possibly occur at higher magnetic fields than those

we investigated here. We do not go to higher magnetic fields because of the

increased number of modes needed and the increased computing time.

We would also like to mention that the idea of studying the wavenumber

selection problem using a computational approach has been mentioned in the

work of DiPrima rind Rogers. 7 The nonuniqueness of the wavelength of the

supercritical flow also occurs in some nonlinear hydrodynamic instabilities.

The experimental work of Snyder e indicates the possibility of obtaining

Taylor-vortex flows of different wavelengths.

In summary, our numerical investigation shows that a weakly ionized

plasma in a strong and nonuniform magnetic field is subject to an instability.

Upon the onset of the instability, convective flow develops in the plasma

and a final steadily oscillating state, dominated by a single finite amplitude

mode together with a time independent modification of the original equilibrium,

is reached. The final oscillating state approaches that given by the

analytic results of Simon4 in the limit H — Hc . we find the dominance of a
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single mode up to H = 1.6 H c . However, the wavelength of the final oscillation

reached is nununique and depends on initial conditions. For initial white-

noise-like disturbances, we find that the mode with the largest linear growth

sate will force down other modes and dominate. For weighted initial

disturbances, we find there exists a subinterval of wavenumbers inside the

unstable wave band. Final stable oscillation with a certain wavelength in

this subinterval can be established, if the initial disturbance has a

sufficiently strong component at the particular wavelength.
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Figure Captions

Figure 1.	 Geometry of the problem and picture of instability mechanism.

Darkened areas indicate density enhancement due to perturbation.

+ and - signs indicate polarization charges resulting from

oppositely directed drifts of electrons and ions.

Figure 2.	 Neutral stability curve of magnetic field H versus axial

wavenumber k for various radial wavenumbers n. The plasma

is stable for H < Hc . The dashed line represents a band of

unstable wavenumber at the operating magnetic field.

Figure 3.	 Evolution of Fourier components of density wave at H = 1.05 He

for the case of white-noise-like initial disturbance. The

curves are labeled according to the mode numbers n and m.

Those modes not shown in the figure decay to less than 10-4

before T = 1.

Figure 4.	 Evolution of Fourier components of density wave at H = 1.05 H
c

for the case of white-noise-like initial disturbance. The

curves are labeled according to the mode numbers n and m.

Those modes not shown in the figure decay to less than 10-4

before T = 2.

Figure 5.	 Evolution of Fourier components of density wave at H = 1.1 He

for the case of white-noise-like initial disturbance. The

curves are labeled according to the mode numbers n and m.

Those modes not shown in the figure decay to less than 10-4

before T = 3.



I

t

f

e
	

Figure 6.	 Comparison of the frequency shift 6w as a function of magnetic

field H from analytic results (line) and that from present

numerical results (circles). bw is the difference between

the final oscillation frequency and the linear oscillation

frequency evaluated at the critical field we

Figure 7.	 Comparison of the squared final amplitude of the density

wave 
IP 'A l

2 and the magnitude of the time independent modification

to the equilibrium density IP20I as functions of magnetic

field H obtained from analytic results (lines) and from

present numerical results (squares and circles).

Figure 8.	 Comparison of the squared final amplitude of the potential

wave l `Y A I 2 and the magnitude of the time independent

modification to the equilibrium potential I'Y20 1 as functions

of magnetic field H obtained from analytic results (lines)

and from present numerical results (squares and circles).

Figure 9.	 Evolution of Fourier components of density wave at H = 1.3 iic

for the case of white-noise-like disturbance. The curves are

labeled according to the mode numbers n and m. Those modes

not shown in the figure have magnitude less than 10-4 for

T s 30.

Figure 10.	 Evolution of Fourier components of density wave at H = 1.6 He

f
for the case of white-noise-like disturbance. The curves

are labeled according to the mode numbers n and m. Those

modes not shown in the figure have magnitude less than 10-4

for T Z! 40.
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Figure 11.	 Evolution of Fourier components of density wave at H = 1.3 He

for the case of weighted initial disturbance. The curves are

labeled according to the mode numbers n and m. The mode

with n = 1 and m = 6 is the weighted component. Only the mode

(2, 0) and modes with initial positive growth rate are shown

in the figure.

Figure 12.	 Evolution of Fourier components of density wave at H = 1.3 He

for the case of weighted initial disturbance. The curves

are labeled according to the mode numbers n and m. The mode

with n = 1 and m = 7 is the weighted component. Only the

mode (2, 0) and modes with initial positive growth rate are

shown in the figure.
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