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1. Introduction

The primary purpose of this paper is to state and prove a
structure theorem for time invariant multivariable linear systems. The
theorem can be usecd for controlier design and synthesis and is applied
here to the problems of realization ([1]) and decoupling ([2], [3]).

We consider systems of the form

(1) Xx=Ax+Bu , y=¢x

where x is an n-vector, called the state, u is an m-vector, called
the input, y is a p-vector, called the output, and A, B, C are con-
stant matrices of the apprcpriate dimension. We assume that the matrices
B and C are of full rank. Now, it is well-known ([4], [5]) that if
the pair - (A,B} is controllable, then there is a Lyapunov transforma-
tion Q such that the system

* -1 -l
(2) £2=QAQ7z+9By , x=69z2
is in "companion; form. The systems (1) and (2) are equivalent and

have the samc transfer matrix T(s). In section 2, we shall show that
-1

if state variable feedback of the form w=F x +w (or u=F Q 2z+x)
is applied to (1) (or (2)), then the resulting transfer matrix 1&45)

are constant matrices,

A =] A A A
is of the form C §(S)§t (s)gm where C,B

S(s) 'is a matrix of single term monic polynomials in s, and Eﬁfs)

is a matrix of polynomials in s whose coefficients depend on A+B F.




This result is generalized to systems which are not completely controll-
able in section 3 and applicd to the problems of realization (section k)

and decoupling (section 5).

2. A Structure Theorem for Controllable Systems

Suppose that the system (1) is completely controllable. Let
K=1(B, AB ...,An'lB] Then the n X nm matr;x K has rank n and
it is possible to define a "lexicographic" basis for Rn consisting
of the first n lincarly independent columns of K possibly reordered

(ef. [5]). We let L be the matrix whose columns are the elements of

the "lexicographic" basis so that

(3) L= Ak, A b,y e 87270, 2% )
where 21"";2m are the columns of B. Setting

(L) d

k~= l,2,.oo,m

and letting L& be the dk-th row of L;l, we can see that the matrix

Q egiven by

(5) Q-

o




generates a Lyapunov transformation for which (2) is in "companion" form

([4), [5]). More precisely, if we let E =QA g'l, E =Q B, and @ =
c g’l, then (2) becomes
(6) t=Rz+Bu, y-Cz

where 1 = (313) is a block-matrix of the form

- ~ 1
Ry oo Ay
() A= | %1 fem
L_ﬁml ot ~mm
with éii a o, X oy companion matrix gijey by
"o 1 cee 0 o
_ 0 0 o 0
(8) R, = |: : : :
T 0 0 0 1l
a ) a ' 8 8
Ldi,di_fl dy,d 142 d,d,-1  “dy,d,
and éij a oi X aJ matrix given by
o LN ] o 1
(9) 3. =|° :
43 0 0
8 8
i di’dj-1+l di’dJ




for i #J and with E = (Si;j) an n X m matrix given by
o 0 0 e e @ 0
1 b b b
dl,.2 d1,5 d,,m
(o) B=|0 © 0 0
1 b b
? . .d2’3 .da,m
(o} (o} 0 1
]

We now have

PROFOSITION 2.1 Let w=F x+w=Fz +y where F=FQ ", Then

~

the transfer matrices of the systems % = (&Jfg §)~+§ ¥, y=Cx an

-

t= (2D zBw y-

~ ~

t{o}d

Zz are the same,

Proof: Simply note that G(sI-A-BE) B'= ¢ Q Q(sI-A-BE)RRE -
calt(raa e pEe I R B - HerAh D7

Since ﬁ as given by (10) has zero rows except for the dl-th,
da-th,...,dm-th rows, we need only calculate the corresponding columns
of (sL—é-ﬁ :lf\")'l in order to obtain the transfer matrix QE( s) =
C(sI-A-B F) ']‘g = :(::_( sL—E-ﬁ ﬁ)'lﬁ. Moreover, i i has zero rows except
for the dl-th, da-th,...,dm-th rows and so E—bﬁi is again a block .
matrix of exactly the same form as E. In other words, §_+§ i = (oi .1)

is a block matrix of the form



1y o Qamj
LN ] 2

1%
le [ X N ] o

where ¢ is a o0, X 0, conpanion matrix given by

11 1 X%
" 0 1 ees O 0 W
o o oo o o
RN s )
o o LN J o 1
¢ ¢ ese & ¢
. dsdy )41 4y, 42 dy,d5-1 44,4 -

and ¢ is a o0, X o, matrix given by

~j i J
K 0 vee O
(13) o = : H .
M3 1o 0 vee 0
¢ L : eoe ¢
| *ag08y 10 44,8, 1% 45,8

for 1 f J. These two simple observations are basic to the structure

theorenm 2.2,

THEOREM 2,2 Suppose that the pair (A,B) ; is controllable and let

IE(S) = ¢(sI-A-B E)'lg be the transfer matrix of the system % =

(A*BE)x*B %, ¥y = C x. Then




(14) 1(s) = § ()G (o,

where ﬁ =C Q-l, S(s) 4is the nxm matrix given by

1 0 o o o 0

8 0 e o o 0

g%1-1 0 0
(15) S8(s) = | o0 1 (o

0 '02-1 (o]

0 0 g%n-1

‘gz(s) is the m X m matrix (Bp’ij(s)) with entries given by bF,n(s) =

det 8 - md 6 8 = -0 -.0 -000= 301-1.
(15, 24) = p,15(%) dy,8y 141700, ,05 02 8,4
for 1 43, and B is the mXm matrix given by

J-1 J

1 b &t b
612 Adlm
o 27 ... B
(26) 0 2"
) 1
i 4

where ﬁ =QB= (Sid)'

Proof: In view of proposition 2,1, we need only show that &'I’E‘i f")']i =

¢ g(s)gil(s)ﬁm. To do this, it will be sufficient to show that




A A

A LI _1 A
(17) (s1-8-8 DB - (915 (9)F,
or, equivalently, that

A A A A sl
(18) (sI-A-8 D)s(s) = B B M0.(s)
But (18) is an immediate consequence of the definitjons of §(s) and
QF( s). Thus the theorem is established.
This seemingly innocuous and easily proved theorem has, as
we shall see, a number of significant consequences. For a beginning,

we have

COROLIARY 2.3 The matrices §, §( s) and ﬁm are invariant under

state variable feedback (i.e. do not depend on {‘) Moreover, only the

d-th, k' = 1,...,m, rows of 5 =QA g'l can be altered by state vari-

able feedback,

Proof: An immediate consequence of (15), (16) and the definition of

QE( s).

COROLIARY 2,4 Let p=m and C*(s) = @ §(s). Then the inverse sys-

([6]) to (1) exists if and only if g*(s) is nonsingular.

T(s) 4is nonsingular and so the corollary follows from the theorem

as ﬁm and gg(s) are nonsingular,

-
ouneRAR




COROLLARY 2.5 Let Ay(s) = det(si-g-g E). Then A(s) = aet(gE(s)) and

if p=m
(19) det T(s) = (det £x(s))/Al(s)
where !:E( s) = Q_E( s)/AF(s) (i.e. EE( s) 4is the numerator of the trans-

_f_e_r_ matrix).

Proof: By the definition of gz(s), we have ".!‘_E(s) = nz(s)/AF(s). It

follows from the theorem that

N(s) gD (e)f,

(20) (s © d&(@)—

where (s) = Qz(s)/det(b (s)). However, A(s) and det( L(s)) are
both monic polynomials of degree n and the entries in !E( s) are
polynomials of at most degree n-1, It follows that AP( s) = det( 1( s))

(s)) = 1/det(5.(s)) eand

and hence, that (19) holds (since det(8. &

det Em =1),

X

COROLLARY 2,6 E(s) = _‘Q(s) B ¥ 8s).

Proof: From (18), it follows that g Em _\Q(s) - g z S(s) = g lm 8(s).

Equating the-nonzero rows in this equality gives us the corollary.

We observe that entirely analogous results can be obtained

for observable systems by a consideration of the dual system ([1], [T7])
(21) R=Ax+C'y, y=px

which is controllable if and only if (1) is observable. While we shall
not derive the results for observable systems here, we shall use them

without further ado in the sequel,

PSP R




3. A General Structurc Theoren

Consider the system (1) and again let K = [B,A 2,'”,5'!1-1&].
However, we no longer assume that (1) *s controllable and so, the n X nm
matrix K has rank r with r & n. To obtain a structurs theorem in
this general context, we shall consider a conurollable extension of (1)
and apply theorem 2.2, With this in mind, we let q = n-r and W be
the r-dimensional subspace of Rn spanned by the columns of K. Denot-
ing the orthogonal complement of W by wt so that R, =W gw“ and

i
letting El’“"gq be a basis of W , we consider the system
(22) k=Ax+BY, y=Cx

vwhere B is the n X (m+q) matrix given by R, = (B Qlongq]. The
system (22) is controllable and there is a Lyapuni:n} transformation Q'e
which carries (22) into block companion form, We note that Qe isa

nonsingular n X n matrix, It follows that the system

(23) £=Az+Bu, y=¢Cz

where i = g;lé Qe B = QB, and = ¢ Q;]' is equivalent to (1), More-
over, the matrix 3 is in block companion form, the last n-r rows of
B ere Q, and the lover left-hand n-r X r block of A is Q. Thus,
the last n-r rows of g cannot be altered by state variable feedback

of the form us= 2 Z+We We now haves
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THEOREM 3.1 Let :‘P-F(S) C(sI-A-B F)~ lg Dbe the transfer matrix of the

~

system % = (A+B F)x*B W, y = C Xx. Then

~ ~

(24) AORSEOLY (s).,F L (9B,
| RO

where § = g S( s) 1s the n X m matrix given by
1 Y ees O i
s 0 0
_ L1t 0
0 1 0
(25) - 8(s) =] ; : :
0 802-1 0
0 0 ¢%m-1
o 0 0
b —

(vith b, A bl,...,A"l'lbl,...,A" ‘lb a "lexicographic" basis of the

range of K so that 12‘16 =r), AE (s) = det & L (s), "',1‘:(8) is the

(m+q) X (m+q) matrix ( F,i;j(s)) with entries given by & ¥, ii(s) =

-20 0= 80‘1-10 ‘tE i f J

det(sl-gn) and 51?',1,1(8) = ’d;j

-¢
dg,d; 141 N
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k

where d = L i % =1 for i =m+l,...,m+q, and @»tﬁf:z(oij) =
i=

[QiJ] so that

bp’n(s) - 5p,lm(s) 'BF,J,ml(s) 5r,1p+q(s)

(26) Ep(s) - G?’ml(s) - Bp’mm(s) I

~ - -— — -— -— — -

: 6}‘:m+;m+l( 8)eee 81? m+]’m+q( s)

2 D
'5?,m+qp+1(s)"' 5?,m+qp+q{fzd'
' +

and where gﬁ is the m X m matrix consisting of the nonzero rows of

Proof': Clearly we need only show that §(s£-§-ﬁ ﬁ)'lﬁ =

>

S(s (s)5. (s B where F = '1. We shall do this by considering
~ u ~Fc ~

oRe

the completely controllable system

¥
M)
WX

(27) E=Az+ z

e YT

. with ﬁe'= Q. B, end applying theorem 2.2.

* (s) involves only constant terms and the off-diagonal terms in 5 (s)

~E’u

‘§E, cu

are constant,
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F F
~ -l ~ ~ ~ .
Let Ee = -I:eg"e where E-e = o so that Ee = o « Since
Since B, =[B Ql,...,gq], we have, by the definition of Q,
. .~ 0
Bo- |2
P
| Iq
|
and BF =BF., It follows that (sI-A-BF) = (SZ’Q‘EeEe) and hence,
that the transfer matrix of (27) under the feedback y = z‘eyz is given

by G(sI-A-B F)718_. However, (27) is controllable and thus, by theorem
2.2,

(28) (s8-8 D78, = § 5,095 (<)
where §_ (s) 4is given by ] .

s() =| &), @

and ge,mq is the m+q x m+q matrix given by

-
) B Q
'Ee,lmq""",""'
2 1 &
v

By equating the appropriate blocks in (28) and noting that
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- |
|
(det gbu(s))add gz,c(s) , -(adj QE,C(S))QE,N(S)(MJ L

~
|

(29) gle= |- - — - — = - 5 N

k e " (et g ()aas & (5)

+ :
aet B (s) det By (s)

where adj( ) denotes the adjoint of a matrix, we deduce (24). Thus,

the theorem is established.

COROLIARY 3.2 é\., u(s) is independent of F and the uncontrollable poles
J

~

of the system % = (A+B F)x+B ¥, y =C x are the zeros of ég,u(s)[= %,u(s)].
Corollary 3.2 is simply a statement of the fact that the un-

controllable poles cannot be altered by state variable feedback. We also

note that the factorization (24) involves the well-known pole-zero can-

cellation of the uncontrollable porticn of the system ([8]).

COROLLARY 3.3 The matrices §, S(s) and _ﬁm are invariant under state

variable feedback,

COROLLARY 3.4 Let p=m and C*(s) = G S(s). Then the inverse sys-

tem to (1) exists if and only if C*(s) is nonsingular,

COROLLARY 3.5 Let p =m and let A£(S) = det gg(s). Then det(I.(s)) =

(det g*(s))(ALu(s))/AE(s) where Ap(s) = %u(s)%c(s).

We again observe that entirely analogous results can be ob-
tained for systems which are not observable by a consideration of the
dual system (21). We use these results without further ado in the se-

quEl .
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4, The Problem of Realization

We now apply the structure theorem to obtain an algorithm for
solving the problem of realization ([1], [9]). More precisely, we con-

sider the following

REALIZATION PROBLEM: Let T(s) be a p X m matrix whose entries Tij(s)

are rational functions of s. Suppose that Tij(s) = nij(s)/dij(s)

where nij(s) and dij(s) are relatively prime end degree nid(s) <

degree dij(s)’ Then, determine a triple (A,B,C) of matrices such that

(30) | 7(s) = g(sI-A) "B

and (A,B) is controllable and (A,C} 4is observable., Such a triple

is called a minimal realization of T(s) ([1],[9]).

Kalman and Ho ([9]) proved that thé realization problem has a
solution and provided a constructive_prqcedure for determining a minimal
realization., Here, we present an alternate constructive algorithm for
determining minimal realizations. A computer program has been déveloped
for applying the algorithm. |

The basic steps in the algorithm are

STEP 1 Calculation of the least common multiple of the denominator
polynomials [dlj(s)""’dpj(s)] in each column of T(s).

STEP 2 - Construction of a standard controllable realization (A s ,C.)
. _ ~cing?ae

(not necessarily minimal);




STEP 3 Construction of a minimal realization by applying a suitable
transformation to [Qé,gé,gé}.
We shall examine each of these steﬁs in detail paying particu-

lar attention to step 2,
Now let gd(s) be the least common multiple of the denominator

polynomials {dld(s)""’dpd(s)) (which are assumed, for convenience,

to be monic)., Let h., denote the degree of g.(s) and let T*(s) be
J

J
the p X m matrix given by

03 (5)/6y(s) .« . . ng(e)/ey(s)

(3 s) = |
nx (s)/gy(s) - o . n(s)/gy(s)

where nij(s) = nij(s)gj(s)/dij(s).‘ In other wondé, T*(s) is obtained
from T(s) by multiplying each numerator nij(s) by gd(s)/dij(s)

and replacing each denominator dij(s) ﬁy gJ(s). The construction of -
T*(s) completes step 1.

m k
Let n, = Lh, and pk=§hj. Since gd(s) is the least

1 J
o=
common multiple of [dlj(s)""’dpj(s)) and degree nij(s) < degree diJ(s)

and the dij(s) are- assumed monic, we have

hj hj-l
(32) 'GJ(B) = 8 + les AT Tjhd
hjél hJ-Z
(33) ngd(s) = Vs LT vijhj

for all i,j and suitable constants er, Vije Let ch be a com-
)

panion matrix corresponding to gj(s) so that
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0 1 0
0 (o} 0
L A = . . .
(34) A, 3 : : :
0 o 0
"r "r e o o -
h h,-1 1l
gy "Ting J
L __ . et
and let &c be the n, X ny block diagonal matrix given by
Re,1 0 ,
' A
L 2 Aem

If gc is the nl X m matrix with zero entries in all but the pk-th
rows, each of which is zero except for a 1 in the k-th column, then

the pair [g.c ,gc] is controllable. We now have

PROFOSITION 4.1 Let gc be the m X n, matrix given by

— 1

_ ! ! -
Yun, ‘mnr ot Ymay Yam, c 00 a2ttt Ym
|
Y2in, Y2m-1 c 0 Yemy Yeen, v V221 -1
: (36) % = L] L L] . L ' L]
. . . . | .
f |
valhl vplhl-l Vo o Y ph, *°° Vol Yol

Then [Qc,gc,gc] is a controllable realization of 1I(s).
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Proof: Since [Qc,gc] is controllable, it follows from the structure

theorem 2.2 and the definitions of » that

Rer Bor S

(37) C(s1-4) R, = GU(EN R, ,

where Ec,m =1 Q;l(s) = diag[l/gl(s),...,l/gm(s)], and CX(s) =

Y45 =

(n;d(s)). Since nIJ(s)/gj(s) = nij(s)/dij(s)’ we deduce that gc(sl-ﬁc B,

(ny J(s)/di j(s)) = T(s). Thus, the proposition is established.
This proposition completes the description of step 2,

As regards step 3, we consider the triple [éé,gé,gé] and
apply a Lyapunov transformaticn ge of the type used in section 3 to

. n.-1
it. Letting n be the rank of [g! ALC!.+eA_ < ¢.] and setting A! =

-1 P -l
QAL B - 88 B - BE ve o

- - r |
gl &l 5
(38) [ , A =

|
!
|
|
gn -n,p : in-n,n !

1 )
(]

- =2 (ol

and Eé = [B' *qpl.n] where C' is nXp, A' is nXn end B' is
m X n, Since T(s) = gc(sl'éc)-lgc; it follows that T'(s) = §é(s£r§é)'1§é =
g'(s;—&')'lg' or, equivalently, that I(s) = g(slré)-lg. Thus,

(A,B,C) 1is a realization of T(s). But (A,B,C} is both controllable

and observable and hence, is a minimal realization ([9]5. The triple

(A,B,C} 1is in "observable canonical form". The actual available program

also produces a minimal realization in "controllable canonical form" as

well as all the relevant Lyapunov transformations, A sample of the com-
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puter program printout for an example of Kalman's ([1] p. 182) is given
in the appendix. A detailed write up and listing of the program can be

obtained from the authors.

5. The Problem of Decoupling

.Wé now apply the structure theorem to obtain some results re-
lated to the problem of decoupling. This problem has been examined
previously by a number of authors (e.g. [2], [3]) and a number of rele-
vant questions have been resolved. Here, our main emphasis will be on
the question of pole assignability, More precisely, consider the fol-

lowing

DECOUPLING PROBLEM Let % = A x+B 4, y = C X be an m-input, m-output

system. Does there exist a pair of matrices (F,G} such that the

transfer matrix

(39) QAR DR E - Iy (o)

is diagonal and nonsingular? (i.e. does the state variable feedback

.u =F x+G w "decouple" the system?).

A necessary and sufficient condition for the existence of a
decoupling pair was first given in {2]. In particular, it has been

.

shown that the system ~

(ko) k=Ax+Bu y=¢Cx
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can be decoupled if and only if B* is nonsingular where B* 1is the

mXm matrix given by

= f 7
S R l@.
(41) o
-
c A mB
~m~ &
with S0 the i-th row of C, and fi = min[(J: giéjg # 0),n-1]. B* and the

f; can also be characterized in the following way (ef. [3]): 1let

zF,G,i(s) be the i-th row of the transfer métrix EF’G(s); then. f, =
min[(j: lim sj+12F c.1(8) # 0)},n-1] and B*G= lim A(s)Tp o(s) where K(s)
8§ 9o L f,+1 § Jw ’

is a diagonal matrix with entries s . It can be shown ([2], [3])
that B* and the fi are invariant under state variable feedback.
Here, we shall use the structure theorem to answer the fol-

lowing questions:

QUESTION 1 Assuming that (40) can be decoupled, what is the maximum
number of closed loop poles which can be arbitrarily specified while

simultaneously decoupling the system?

QUESTION 2 Assuming that (40) can be decoupled, yhich closed loop poles

are invariant under decoupling state variable feedback?

QUESTION 3 How can a decoupling pair which specifies the maximum number

of closed loop poles be implemented?

While these questions are to some degree resolved in [2] and
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[3], we provide a complete and elementary answer to them here,

Let IKS) be the transfer matrix of (40). Then T(s) =
c* (‘)'Z;;Ey (s)gm where (C*(s) = c 8(s) by the structure theorem
J3.1s We recall that g*(s) and :%‘s) are invariant under state
variable feedback. Now we let pi(s) be the greatest common divisor
of the polynomials which are the entries in the i-th row gf(s) of
¢*(s). We note that pi(s) is invariant under state variable feedback,
We let r, be the degree of pi(s) and we use the notation ap to

denote the degree of a polynomial (thus, ry = bp ). We now have
i

THEOREM 5.1 Suppose that the system (L40) can be decoupled. Then (1)

the maximum nﬁmber v of closed loop poles which can be arbitrarily

specified while decoupling is given by

n .
L2 «X £, +1)
(42) v jL-l(ri'r 1 *+1)

and (i1) the invariant poles under decoupling feedback are the zeros of

A(s) and (det g*(s)l/ v T Py(8)-

Proof: Let (F,G) be any decoupling pair. Then z? G(a) =

e(sI-A-B E)'lg G is a diagonal matrix with entries n i(s)/dii(')

where nii(') and d 1(s) are relatively prime, We Pote that, since
« min(j: lim 89 ’1;, 6,1() £ Q), 3, =3, -f,-1. It follows from

8 S Byg ii
corollary 3.5 and the definition of the pi(l) that

+Note that B* is nonsingular .
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m nn(s) m

(43) 1-17(_)- 1r pi(s)det c (s)w det G

where C* (8) is the matrix with rows 9;1,1( s.) = f)l(-ST ci(s). Since
AE(B) = %(B)Ag)c( s), we have !

m
(bk) o, = iE‘.l( r, +f, +1) +3‘i1

F,c

where Bﬁ is the degree of det gﬁ(s) and BF - is the degree of
]

AL"( s). Now, it is clear from theorem 3,1 that

(45) Tp o 105 B2 () = gi(s)

and hence, that nn( s) is a common divisor of the entries in g;(s)
(since nﬁ( s) and dii( s) are relatively prime). 1In other words,

i( s) must divide pi( s) and so, bn Er Since no more than

i°
ii.
%6 poles are assignable through (F,G} and 2 a =
1-1 ii i=1 ii
m
2 (3, +f;+1), we deduce that at most v = Z (r,+f,+1) poles are
e Pgg 177 - qat = L

assignable while decoupling.

Writing Ev Q( s) as a diagonal matrix with entries q,,(s) / QE( s) =
nn( l)/dii(l), we deduce that qn( 8) must divide pi( s)AE( s) or,
equivalently, that = = .

a,(s)  ,(s)

(46) ~OREND
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qi = ri+fi4l. It fol-

lows that det T (s) = T (p;(s))/ 7 (q;(s)) and hence, from (43) that
i=1 i=1

for i =1,..,.,m and polynomials qi(s) with 9
m m

. A -
(¥7) Aifs) = det gil(s) Ah(s)det G v qi(s)
-:E—g—g-l-ah(s)det G n qi(s)

1T1P;(s)

Since Q;I(s) is invariant under decoupling feedback, it follows that

the zeros of Ah(s) and det gil(s) ere invariant poles under decoupling

feedback.
Thus, to complete the proof we need only construct a decoupling

pair (F,G) such that the resulting polynomials qi(s) are arbitrary

polynomi;ls of degree ri+fifl. To begin with, we note that the transfer

(s)

4 (s)
matrix T(s) = C*(s)m 5t (S)B P(S)C* (s)%—T 'Q,c(s)B where

Ks) isa diagonal matrix with entries pi(s) Setting

As)

(18) 39 = G2y %o .




we can easily see that r +fi = min(j: lim sj+1211 i(s) # Q) and that
H

i
§
BY = slffzfﬁI(S)EII(s) = B* where £ﬁ1(s) is a diagonal matrix with
r +fi+l
entries s (Note that the pi(s) are monic). Moreover, as

c*(s) is given by § S(s) and pi(s) is the greatest common divisor
of the entries in g;(s), we can write gil(s) in the form §11§(s)
for some constant matrix §II (where $(s) is given by (25)). In
other words, gII(s) is the transfer matrix of the system %X = A x+B u,

Y1 = CriX where 211 = §II = §IIQ (and Q 4is the Lyapunov transformation
corresponding to (40)). Since P(s) is diagonal, it will be sufficient

to construct a decoupling pair (F,G} for the system

(49) k=AxBy

such that the closed loop poles are arbitrarily placed. However, let-

i " ri+fi and applying the synthesis-procedure of [2] p. 655,

we find that (49) can be decoupled and all its clgged loor poles
= d,+l i

assigned. To be more explicit, if q,(s) = s -'Z:m§s5,+ then the
. j=0

ting d

decoupling pair is given by
- d 1
(50) E=BTIINCAA], G- B
0 I .

where d = max d,, the Mk are diagonal matrices with'entries mi

i’
‘ . - di+l

row of A* is given by E&Li& : ). This completes the proof.

) (i.e. the i-th

Clearly, it is enough to consider the case of a monic q,(s).
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Appendix
A sample of the computer print-out for an example of Kalman's

([1)) is given here. The transfer matrix is given by

3(s+3)(s+9) 6(s+1) 2547 2545
S+1)(s+c)(s+ (s+2)(s+%) (s+3)(s+5) (s+2)(s+3)
_ 2 1 2(s45 8(s+2) g,
%(8) = 5+3)( s+ 545 : (s+1)( s+2$% s+3) (s+D)(s+5)(s+0) |
2 2
2(s"+7s+18) -2s 1 2(5s”+27s+34)
(s+1)(s+3)(s+D) r§+lSZs+5, E;? s+l)(s+5)(s+>

S

b —

([1] p. 182).

J

Nl
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