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1. Introduction

'	 The primary purpose of this paper is to state and prove a

'	 structure theorem for time invariant multivariable linear systems. The

theorem can be used for controller design and synthesis and is applied

'	 here to the problems of realization ([1)) and decoupling ([2], [31).

We consider systems of the form

1

1	 where x is an n-vector, called the state, a is an m-vector, called
the input, b•	 is a p-vector, called the output, and	 A, B, C	 are con-

' N

stant matrices of the apps-cpriate dimension.	 We assume that the matrices

B	 and	 C	 are of full rank.	 Now,	 it is well-known ([41, [51) that if

the pair	 -(A,B)	 is controllable, then there is a Lyapunov transforma-

tion	 C	 such that the system

' (2) z = 9 A 9-1N
+ CBS	 ,	 x=C0 1z

is in "companion" form.	 The systems (1) and (2) are equivalent and

i have the same transfer matrix	 T(s).	 In section 2, we shall show that

if state variable feedback of the form	 u = F x, + w	 (or	 u = F C lz+ti)

' is applied to (1) (or (2)), then the resulting transfer matrix	 TF(s)

' is of the form	 C S(s) jl(s)Bm	where	 C,B^	 are constant matrices,

S(s)	 is a matrix of single term monic polynomials in	 s, and	 6 (s)

is a matrix of pol no-iiials in 	 s	 whose coefficients d:pend on	 A+B F.

s
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This result is generalized to systeris which are not completely controll-

able in section 3 and applied to the problems of realization (section l^)

and decoupling (section 5).

2. A Structure Theorem for Controllable Systems

Suppose that the system (1) is completely controllable. Let

K = [B, A B,...,An-1B]. Then the n X nm matrix K has rank n and

it is possible to define a "lexicographic" basis for R  consisting

of the first n linearly independent columns of K possibly reordered

(cf. (51). We let L be the matrix whose columns are the elements of

the "lexicographic" basis so that

(3)	 L = [bl,A bl,...,A 
al- l

bl,b^r..., Ac2-lb 2 ,..., Acm lb ]

where bl, ... ,bm are the columns of B. Setting

k

(^+)	 d0 = 0, d  = E vi	 k.= 112,...,m
i=1

and letting 4k be the dk th row of L 1, we can see that the matrix

Q given by

6

3

3
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generates a Lyapunov transformation for which (2) is in "companion" form

(I 4	 if we let	 =	 1 B	 B	 C=•^ I^+) ^ Morerecisel precisely )	A	 A	 = QN 	N	 ^ N	 N1 and N

C 	 then (2) becomesN

A
Z= A z + B u, Y = C ,Z„

N

where A= ( aid ) is a block-matrix of the form

X11 ••. Alm
A	 n

A
(7)	 A =	 N21 ... N m

A	 A

Aml ••. Amm

with A.. a ai X ci companion matrix given by

(6)

3

3

^x

0	 1
0	 0

(8)	 A. = 0	 0
adi,di_1+1 adi,di_1+2

... 0	 0

0	 0

0	 1
adi.odi_1	 adi.,dl
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for	 i	 j	 and with	 B= (bid )	 an	 n X m matrix

0	 0 0 00

1	 bd1,2 bdl,3 bdl,m

( 
10

)	 B= 0	 0 0 0

0	 1 bd2,3 bd2,m

0	 0 0 1

We now have

PROPOSITION 2.1 Let N = F x + w = F z + w where F = F Q-1 . Then

the transfer matrices of the _systems 	 _ (A+B F) ,xr+B w, y = C x and

(A+B F)+Bwr, y = C z are the same.
N

Proof: Simply note that C(si -A-B F) 1A— C Q 1Q(sI-A-B 
F)-1Q=1Q B =

C Q-1[ ( sl -Q A Q-1-Q B FQ-1) -1Q B= C(sI-A-B F) B.

Since B as given by (10) has zero rows except for the dl-th,

d2-th,...,dm th rows, we need only calculate the corresponding columns

of (sI-A-B F)	 in order to obtain the transfer matrix TF(s)

C(sj-A-B F) -'B, = C(sI-A-B F) ti. Moreover, B F has zero rows except

for the d1-th, d2-th,...,dm th rows and so A+B F is again a block

matrix of exactly the same form as A. In other words, A+B F = (mid)

is a block matrix of the form

given by



X11	 •••	 elm

^21	 ..•	 m2m

(11)	 A+BF=

•̂Mi	
...	 (D Mm

where	
0ii	

is a	
a  

X 
of	

companion matrix given by

0	 1 ...	 0 0

1 0	 0 ...	 0 0

(12) ^i

0	 0 ...	 0 1

0di'di-1+1	 40di'di_l+2
...	

@di' d1-1 ^di'di

and	 0. 	 a	
of

X a.	 matrix given by

0	 0 ...	 0

0	 0 ...	 0

0di' dj-1+l 	 mdi'dJ-1+2 ...	 mdi,d^

for	 i	 J.	 These two simple observations are basic to the structure

theorem 2.2.

THEOREM 2.2	 Suppose that the pair 	 (A,B) is controllable and let

ZF(s) = C(sI-A-B F) 1B	 be the transfer matrix of the system z =N N N N NN N	 ^^ w N

(A+B F)x+Bwr, y	 C
N

x.	 Then

5
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(14)
	

Tz( s) = C S( s) 8-1( s)

where k _ Q-l ^ S(s) is the n X m matrix given

ti

( i5 )	 s( s)

1	 0

s	 0

sol-1 0

0	 1

0	 502-1

0	 0

.	 0

.	 0

0

0

0

SQm-1

Z(s) is the m X m matrix ( 8F'ij (s)) with entries given by SF)ii(s)

det(s4i-Z i ) and BF,ij (s) = -mdi'd

J- 
1+1-todi'd 

3
.
-
.1+2 -...- Sai-10diod

.	 3
for i j J. andBm is the m X m matrix given by

1 bd 2	 bd m
1	 A 1

0 1	 b 
(i6)	 RM n 	 .

0 0	 1 j

where	 = Q	 _ (bid).

Proof: In view of proposition 2.1. we need only show that Z(sI-A-P)-

C S^(s)B (s)B . To do this, it will be sufficient to show that
^m
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(17)	 (sI-A-B F)	 = S(s) 5Fl(s) Rm

or s equivalently, that

( 18)	 (sI-^-S £) S(s) = B B-lBF(s)

But (18) is an immediate consequence of the definitions of S(s) and

8F,(s). Thus the theorem is established.

This seemingly innocuous and easily proved theorem has, as

we shall see, a number of significant consequences. For a beginning

we have

COROLLARY 2.3	 The matrices C^ S(s) and ,B^m are invariant under

state variable feedback (i_e. do not depend on F). Moreover, only the

dk-th
)
 k*= 1) ...,m^ rows of A = Q A Q-1 can be altered by state vari-

able feedback.

Proof: An immediate consequence of (15), ( 16) and the definition of

8F(s).
Al

COROLLARY 2.4 Let p = m and C*(s) = 

^

C S ( s). Then the inverse s-

tem ([6]) to (1) exists if and only if C*(s) is nonsing_lar.

Proof: The inverse system exists if Cho uwt;4 it the transfer matrix

Z(s) is nonsingular and so the corollary follows from the theorem

as Bm and 8^(s) are nonsingular.

3
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COROLLARY 2.5 Let. Ys) = det(sl-A-B F). Then ;.^,(s) = det(SF(s)) and

if p=m

(19)	 det T
£ 
(s) = (det C*(s))16,,(s)

where TB(s) = NF(S v 'y s) ( i.e. NF(s) is the numerator of the trans -

fer matrix).

1
Proof: By the definition of TF(s) we have TF(s) = NF(s)lL^,(s) . It

t follows from the theorem that

NF(s)	 C*(s)DF(s)9B
(20)

_	 ^m

7s 	̂ det( bF s 
N

1lwhere S- (s)	 DF(s)/det(8r(s)) . However, ^,(s) and det( 8(s)) are
It

both monic polynomials of degree n and the entries in NF(s) are

polynomials of at most degree n-l. It follows that A(s) - det(SF(s))

rand hence, that (19) holds ( since det(SF
I(s)) - l/det(S,(s)) and

	

.Y	 N

det	 = 1).

COROLLARY 2.6
4( s)_ 

,S
0
(s)- BmF S( s) .

r_	 _Proof: From (18) it follows that Z k160(s) B S( s) -
1 8F( s) .

Equating the-nonzero rows in this equality gives us the corollary.

'	 We observe that entirely analogous results can be obtained

for observable systems by a consideration of the dual system ([11, [71)

r
(21)	 - A1 x + Civ j, Y - B' x

which is controllable if and only if (1) is observable. While we shall

not derive the results for observable systems here we shall use them

without further ado in the sequel.
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3. A General Structure Theorem

Consider the system (1) and again let K = [B,A B,...,A n 73).

However, we no longer assume that (1) !.s cuntrollable and so, the n x rim

matrix K has rank r with r 5 n. To obtain a structurz theorem in

this general context, we shall consider a cou1.rollable extension of (1)

and apply theorem 2.2. With this in mind, we let q - n-r and W be

the r-dimensional subspace of Rn spanned by the columns of K. Denot-

ing the orthogonal complement of W by W 1 so that R  = W +)WI and

1
letting ^1,...,^	 be a basis of W , we consider the system

°Ax+Bev, Y = C X
N

where Be is the n X (m+q) matrix given by B= [^ B l•••]. The

system (22) is controllable and there is a Iyapunov transformation

which carries (22) into block companion form. We note that Ce is a

nonsingular n x n matrix. It follows that the system

A	 A	 A
=Az +B u, =Cz

where A A Q,^+e , B = QeB, and C = C Cel is equivalent to (1). More-

over, the matrix A is in block companion form, the last n-r rows of

are Q, and the lower left-hand n-r X r block of A is Q. Thus,

the last n-r rows of A cannot be altered by state variable feedback

of the form u - F z+w. We now have;

(22)

(23)
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THEOREM 3.1 Let TF(s) = C(sI-A-B F) 1B 
be the transfer matrix of the

N

system	 _ (A+B F) ,xr=-B w, y = C x. Then
N	 ^^

( 24)	 (s) = C a s )I,. ^ u( s) bFlc(s),BM

q, u s£, 

whereC = C Q e l , S(s) is the n x m matrix given by

1 0 0

s 0 0

sal-1	 0	 0

0	 1	 0

(^5)
	

S(s) =I

0	 sat-1
	

0

0	 0	 sam 1

^0	 0	 0

(with bl^ A b 1,...,el- 1,...,em-lb a "lexicographic" basis of the
M

range of K so that J , = r) ., ,j, u(s)	 det SF,u(s) j SF(s) is the

(m+q) x (m+q) matrix (SF ij (s)) with entries given 
by SF,ii(s)

det(sI-0	 andsF i (s) _ ' ^d	 . +1 ...- sal-1od d
	 for i

i' d 
J -1	 i' 3

i
i

k



Proof: Clearly we need

S(S) ru(S)SFrc(s)_M
U( S)

the completely controll

only show that C(sI-A-P F)

where F = F	 We shall do this by considering

able system

0
t

t

t

t

0
e

6
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k
where dk
	 or o ir 

f = 1 for i = m+l r ... r m+q r and A4 F = (mid)
i=1

[ 0,,] so that

SFr 
ll( s) ... SFr 1-( S )	 SFr ^M+l( S ) ... SFr ]p+q(s)

i

( 26)	 ^'F( s) _
	 SFrml ( s) ... S

Frmm 
(s)	 i	 •

N	 -' 
SFrm+^m+l(s) ... bFrm+l n+q(s)

Q	

'	 •

I	 •

' 
SFrm+V+l(s) ... SFrm+V+q(s)

sFrc(S)	 sFrrcu(s) +

0	 Su(s)
w-Fj

and where I'Mis the m x m matrix consisting of the nonzero rows of

B.N

(^7)
	

k = A z+ Beyj Y=Cz

with ,B	 Q^^ = B^ and applying theorem 2.2.

+ sF,cu(s) involves only constant terms and the off-diagonal terms in .5 (s)

ar-e constant.

1^
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F	 F

Let Fe = FcQ	
where 

Fe =
	 eN so that F	

N	
Since

0	 0
Since Be = [ B Sl, ...,], we have, by t e definition of

0

B	 B
^c	

N I I

	

I	 q

and R F = R F. It follows that (sI-A-RK) - (sI-A-F F ) and hence,^,e —e 	 eNe

that the transfer matrix of (27) under the feedback yr = F—ex+w is given

by C(sI-A B F) -1B e . However, (27) is controllable and thus, by theoremN N N N N

—1.
(28)	 C( sI-A= '  F N	 - "'

.Gi b N N N N/ Ne - C. Nek s ) aF ( s) Be m+qN

where Se(s) is given by

Se(s) = S( S )	 Q

i	
,-q

and ,B^ m+ is the m+q X m+q matrix given by
q

I

0

- Ae,m+q = - - - !
0	 IN	 '	 N(1
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By equating the appropriate blocks in (28) and noting that
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i

t
(det F',(s))adj BF'c(s)	 -(adj SF'c(s))SF,cu(s)(adj &F'u(=)

8F1( s) = 	- — - —	 - - - - - - - - - - - - -
0	 (det SF c(s))adj SF u(s)

N f 	 )

det SF u(s) det Sr c(s)
N,	 N'

where adj( ) denotes the adjoint of a matrix, we deduce (24). Thus,

the theorem is established.

COROLLARY 3.2 4 u(s) is independent of F and the uncontrollable poles

of the system k = (A+B F)x,+B w, y = C x are the zeros of 4 u(s)[ = -tb u(s) ].
NJ

Corollary 3.2 is simply a statement of the fact that the un-

controllable poles cannot be altered by state variable feedback. We also

note that the factorization (24) involves the well-known pole-zero can-

cellation of the uncontrollable portion of the system ([8]).

COROLLARY 3.3 The matrices C, S(s) and ,B^ are invariant under state

variable 'feedback.

COROLLARY 3.4 Let p = m and C*(s) = C S(s). Then the inverse sys-

tem to (1) exists if and only if C*(s) is nonsingular.

' COROLLARY 3.5 	 Let p - m and let	 Q (s) = det SF(s) .	 Then	 det (TF(s) )

(det C*(s))(6^u(s)V,^(s) where	 ''(s) _ A	 U(s) £,c(s)
We again observe that entirely analogous results can be oh-

tained for systems which are not observable by a consideration of the

dual system (21). We use these results without further ado in the se-

quel.

3
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4. The Problem of Realization

We now apply the structure theorem to obtain an algorithm for

solving the problem of realization ([1], (9)). More precisely, we con-

sider the following

REALIZATION PROBLEM: Let	 T(s)	 be a	 p X m	 matrix whose entries	 T. j s

are rational. functions of	 s.	 Suppose that	 T
ij

(s) = nij(s)/dij(s)

where	 n
ij

(s)	 and	 d
ij

(s) are relativelyr̂ ime and degree	 nij (s) <

degree d i^(s).	 Then, determine a triple	 (A,B,C)	 of matrices such that

(30) T(s) = C(sI-A)- —
LL
B

and (A,B) is controllable and (A, C) is observable. Such a triple

is called a minimal realization of T(s) ([1],[9]).

1	 Kalman and Ho ([9]) proved that the realization problem has a
solution and provided a constructive procedure for determining a minimal

realization. Here, we present an alternate constructive algorithm for

determining minimal realizations. A computer program has been developed

1	 for applying the algorithm.
The basic steps in the algorithm are

STEP 1 Calculation of the least common multiple of the denominator

polynomials (d (s), ... ,dp^(s)) in each column of T(s).

STEP 2 Construction of a standard controllable realization (A ,B ,C }
Nc ^c ^c

(not necessarily minimal).
t

e
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STEP 3 Construction of a minimal realization by applying a suitable

transformation to (A' C'c,RI).

We shall examine each of these steps in detail paying particu-

lar attention to step 2.

Now let g^(s) be the least common multiple of the denominator

polynomials (d
li

(s), ... ) d
pi

(s)) (which are assumed, for convenience,

to be monic). Let h  denote the degree of gj
(s) and let T*(s) be

the p X m matrix given by

n* ( s ) /gl( s ) . . . n**
in (s)/g.(s)

(31) T*( s)

npi( s ) / gi( s ) . . . n* (s)lgm(s)
PM

where n* (s) = ni^(s)g^(s)/dij(s). In other words, T*(s) is obtained

from T(s) by multiplying each numerator n
ij
(s) by gi(s)/dij(s)

and replacing each denominator d i^(s) by g^(s). The construction of

T*(s) completes step 1.
m	 k

Let nl = E hi and pk = E h
j
. Since gj (s) is the least

3=1	 1
common multiple of (dli(s),...,dpi(s)) and degree n ij (s) < degree dij(s)

and the d
ij
(s) are assumed monic, we have

h	 h -1
(32) $j( s) = s	 + rils 1 +...+ rjh

3

h-1	 h-2
(33) n* (s) = vi,is 	 + yij2s 	 +...+ yijh

3

for all i,j and suitable constants Tjk, v
ijk 

Let Â ,c'i be a com-

panion matrix corresponding to gj (s) so that
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0
i

0	 1	 0

0	 0	 0

(34) A

j^

0	 0	 0

rjh^	 -'rih^_1	 -1'j1

and let Ac be the nl X nl block diagonal matrix given by

ÂC 1	 0

(35) Ac F	 ^'2 .

0^AI-	 —c J M

If k is the nl X m matrix with zero entries in all but the p k th

rows, each of which is zero except for a 1 in the k-th column, then

the pair ( ,A Itc) is controllable. We now have

FROFOSITION 4.1 Let 2c be the m X nl matrix given by

vllhl v11hl 1 v1 i

1

v12h2	 .	 . .	 v121 1 . . .	 viml

v21h1 v21h1 1 v211 1 v22h2 	'	 v221 i	 v2ml

36	 c 1

vplhl vplhi 1 vpli	 : vp2h2 	vp21 	 vpnl

Then (A 1 B P C,^) is a controllable realization of T(S).
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Proof: Since ( Ac) BC) is controllable, it follows from the structure

theorem 2.2 and the definitions of A c , Bc , Cc , that

1	 (37)	 Qc(s^ Ac)- ^-c CC(F) sc l(s)Ac m

where
Be
	= ,1 	 5-1(s ) = diag( l/gl(s) Y ... , l/gm(s) ] , and	 Cc(s)	 =m	 Mlf

' (nii(s)).	 Since	 ni^(s)/g^(s)	 = ni^(s)/dij(s)^ we deduce that	 Cc(sI-Ac) -Bc =

( (nij(s)/dij(s)) = T(s).	 Thus ) the proposition is established.

This proposition completes the description of step 2.

'

As regards step 3, we consider the triple 	 (At .CC,BI )	 and

apply a Lyapunov transformationQ	 of the type used in section 3 to^e	 nl-1
it.	 Letting	 n	 be the rank of [kcI AcCI ... Ac	

CI]	 and setting

aeAca 	 c' = Q Cam', BI = BIQ el , we have

C'	 A'N	 N

(38)Cc	 '	 ^ =	 I
Cni nip	 Qnl-n,n

i
1

and	 BI _ [B'	 ]	 where	 C' is	 n x p, A'	 is	 n X n	 and	 B'	 is-n1 1m x n.	 Since	 T(s) = Cc(sI-Ac) 
l 
Bc ; it follows that	 T I 	 BC'(sI-AC)--Cc'

B'(sI-A')-1C'	 or 	 equivalently, that	 T(s) = C(sI-A) 1B.	 Thus

(A,B,C)	 is a realization of 	 T(s).	 But	 (A^ B,C}	 is both controllable

and observable and hence, is a minimal realization ([9]). 	 The triple

(A,B,C}	 is in "observable canonical form".	 The actual available program

also produces a minimal realization in "controllable canonical form" as

well as all the relevant Lyapunov transformations. 	 A sample of the com-
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putcr program printout for an example of Kalman's ([1] p. 182) is given

in the appendix. A detailed write up and listing of the program can be

obtained from the authors.

5. The Problem of Decoupling

We now apply the structure theorem to obtain some results re-

lated to the problem of decoupling. This problem has been examined

previously by a number of authors (e.g. [2]. [3]) and a number of rele-

vant questions have been resolved. Here ., our main emphasis will be on

the question of pole assignability. More precisely, consider the fol-

lowing

DECOUPLING PROBLEM Let $ = A x +B u, y G A be an m-input .. m-output

system. Does there exist a pair of matrices {F A G) such that the

transfer matrix

(39)	 C(sZ-A-B F) lz G ' T , ( S)
Is

is diagonal and nonsingular? (i.e. does the state variable feedback

u F x+G w "decouple" the system?).

A necessary and sufficient condition for the existence of a

decoupling pair was first given in t2]. In particular, it has been

shown that the system

(40)	
k= A x+ B u)	 _ C X.
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can be decoupled if and only if B* is nonsingular where B* is the

m X m matrix given by

f

clA 1B

(41)	 ^* _
^f

cAMB
.0'V ^

with c,, the i-th row of C. and fi - min[(J: c AJB ^ 0),n-1]. B* and the

f 
can also be characterized in the following way (cf. [3)): let

TF.G.i(s)
	 be the	 i-th row of the transfer matrix TF.G(s); then fi

min[(J: lim sJ+ F G i(s) / 0),n-1] and 8 ^= "m4s)4G(s) where o(s)
s -, Co	 , ,	 fi +1_	 s -4 oo

is a diagonal matrix with entries s 	 It can be shown ([2], [31)

that B* and the f  are invariant under state variable feedback.

Here, we shall use the structure theorem to answer the fol-

lowing questions:

QUESTION 1 Assuming that (40) can be decoupled, what is the maximum

number of closed loop poles which can be arbitrarily specified while

simultaneously decoupling the system?

QUESTION 2 Assuming that (40) can be decoupled, which closed loop poles

are invariant under decoupling state variable feedback?

QUESTION 3 How can a decoupling pair which specifies the maximum number

of closed loop poles be implemented?

While these questions are to some degree resolved in [2] and
%I
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1 (3), we provide a complete and elementary answer to them here.
Let

( s) 	
T(s) be the transfer matrix of (40). Then T(s)

C*(s) 	 6 (s)k where C*(s) = C S(s) by the structure theorem
777 1

3.1. We recall that C*(s) and 26(s) are invariant under state

variable feedback. Now we let pi(s) be the greatest common divisor

of the polynomials which are the entries in the i-th row Qj(s) of

C*(s). We note that p i(s) is invariant under state variable feedback.

We let r  be the degree of pi(s) and we use the notation a  to

denote the degree of a polynomial (thus, r  = api ). We now have

THEOREM 5.1 Suppose that the system (40) can be decoupled. Then (i)

the maximum number v of closed loop poles which can be arbitrarily

specified while decoupling is given by

M
v • E (ri+fi+l)

i=1

and (ii) the invariant poles under decoupling feedback are the zeros of

U(s) and (det C*(s) )l tr pi (s) .
i=1

Proof: Let (F AQ) be any decoupling pair. Then EF G(s) .
i

C(sT-A-Z E) -'z C is a diagonal matrix with entries nii(s)/dii(s)

where nii(s) and dii(s) are relatively prime. We note that, since

fi • min(J: Um sJ+
F G 

i(s) Q)^ an	 ad -fi-1. It follows from
s -► =	 "

	
ii	 11

corollary 3.5 ani the definition of the p i(s) that

+Note that S* is nonsingular .

(42)

A
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m. n ii (s )	 ^( )
(43) c 

d 
,s = rPi(s)det CII(s)^ s det G

i= 	 ii	 i-1

where C* (s) is the matrix with rows eC* 	 pi sl	 Ci(s) . Since

ys) _ ^(s)^1^c(s), we have

M
aF c = E (ri+fi+1) +aII
i=1

where aII is the degree of det CA(s) and 6  c is the degree of

% c (s). Now, it is clear from theorem 3.1 that

(45)TzaG,i(s)G	
SZ)c(s)	 Ci(s)

and hence, that nii(s) is a common divisor of the entries in C*(s)

(since nii(s) and dii(s) are relatively prime). In other words,

nii(s) must divide pi(s) and so, a^ 9 ri . Since no more than
m	 ii	 m
E ad	 poles are assignable through Q,G) and E ad •
i=1 ii	 i=1 ii

M	 m
E (a +f +1), we deduce that at most v = E (r +f +1) poles are
i=1 nii i	 i=1 i i
assignable while decoupling.

Writing T - (s) as a diagonal matrix with entries gii(s)/..(s)
N

nii( s )/dii(s), we deduce that gii( s ) must divide pi(s) L^(s) or,

equivalently, that

	

gii( s )	pi (s)
(}	 = qi s

(44)
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for i = 1, ...,m and polynomials g i (ms) with 6ql = ri +fi+1. It fol-

lows that det TF G(s) = V (pi(s))/ 7T (qi (s)) and hence, from (43) that
'	 i=1	 i=1

m
(47) ,(s) = detCiI (s) u(s)det G n qi ( s)

i=1

	

dPt*( s	 m= m	 u(s)det G Ti q. (s)

i=1pi(s)	
i=1 1

SinceCiI(s) is invariant under decoupling feedback, it follows that

the zeros of nu(s) and det GI I(s) are invariant poles under decoupling

feedback.

Thus, to complete the proof we need only construct a decoupling

pair (F,G) such that the resulting polynomials q i(s) are arbitrary

polynomials of degree ri+fi+l. To begin with, we note that the transfer

	

u( s ) 1	 u( s ) - 1 	 -
matrix T(s) = C*(s)77 

SO c
(s)Bm = P( s)C**i(s) — 8^ c ( s) ,B^ where

	

, 1	 u	 ..'
P(s) is a diagonal matrix with entries pi(s). Setting

(48) mss) ` -11 7J7 sor,c(s)Bm

s
3

,I



6

1
we can easily ee that r.+f. = min ( j:1 1	 ( j : lim sj + ^II i(s) / 0] and that

 -a CO	 )

BII = limL^I(s)T11(s) = B* where NII(s) is a diagonal matrix withS -► CO

r.+f.+l
entries s 1 1	 (Note that the pi(s) are monic). Moreover, as

C*(s) is given by C S(s) and pi(s) is the greatest common divisor

of the entries in C (s), we can write C! (s) in the form CIis(s)

for some constant matrix C 	 S(s) is given by (25)). In

other words, TII(s) is the transfer matrix of the system k = A ,xr+B ,ur,

'	 xII = CIIx 
where C

II = CII = CIIQ (and Q is the Lyapunov transformation

corresponding to ( }+0)). Since P(s) is diagonal, it will be sufficient

'	 to construct a decoupling pair (F,G) for the system

'	 ( 49)	 :k =Ax+Bu=C x
N N N V N XII _II_

'	 such that the closed loop poles are arbitrarily placed. However, let-

ting d i = ri+fi and applying the synthesis procedure of (2] p. 655,

we find that (49) can be decoupled and all its closed loon poles
d +1 di

assigned. To be more explicit, if q 1(s) = s i	 m^s^,+ *.hen the
j =0

decoupling pair is given by

d M

(50)	 P B
*_ 

^0 ~,C 
A'-A*] , G B*-1

where d = max d i, the Mk are diagonal matrices with'entries mk

'	 1	 m	
di+l

(i.e. Mk = diag(mk)...,mk]), and A* = CI.I;iA	 ) (i.e. the i - th

di+1
row of A* is given by C^ iA
	

). This completes the proof.

Clearly, it is enough to consider the case of a monic qi(s).

i

)

0
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Appendix

A sample of the computer print-out for an example of Kalman's

Q I)) is given here. The transfer matrix is given by

3(s+3) ( s +5)	 6( s+1)	 2s +7	 2s+5
s+1 s+2 s+q	 s+2 s+	 s+3 s+	 (S+2)(S+3)

M/_% —1
	

2	 1	 2( s+5)	 8(s+2)
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