
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

1'

EXTENDED SPL
AN ASSEMBLY LANGUAGE FOR

THE SCC 4700 COMPUTER

March 1970

by

Billy P. Buckles

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER

COMPUTATION LABORATORY

MAN-MACHINE SYSTEMS BRANCH

under contract NAS8-18405

Man-Machine Systems Section
Systems Development Operations'

i
COMPUTER SCIENCES CORPORATION'

Huntsville, Alabama

N71 - 1 47 7RN
d	 (ACCESSION N	 Ri	 HRU)

O	 (PA ES)
}
J
e (N)k5A C OR TMX OR	 AD NUMBER)	 (CATEGORY)

o .̂

° je .mar

CR - 1°U 3j

NASA CONTRACTOR
REPORT

EXTENDED SPL - AN ASSEMBLY LANGUAGE FOR THE SCC 4700 COMPUTER

3

Prepared under Contract NAS8-18405

by

Billy P. Buckles

COMPUTER SCIENCES CORPORATION
SYSTEMS DEVELOPMENT OPERATIONS
HUNTSVILLE, ALABAMA

For

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA

,^ s7g o

b^ d'

May 21, 1970

g3

EXTENDED SPL
AN ASSEMBLY LANGUAGE
FOR THE SCC 4700 COMPUIER

EXTENDED SPL
AN ASSEMBLY LANGUAGE FOR THE

SCC 4700 COMPUTER

by	 3

Billy P. Buckles

ABSTRACT

Presented in this report are the syntax requirements and coding
aids available for constructing source statements for ESPL.
Examples and tables are used to explain the relationships be-
tween the symbolic source statements and the machine data that
is generated.

EXTENDED SPL
AN ASSEMBLY LANGUAGE FOR

THE SCC 4700 COMPUTER

Billy P. Buzkles

SUMMARY

Extended SPL consists of instructions and directives. Instructions
are assembled directly into machine executable operations while
directives generate data or exercise control over the assembly
process.

Convenient methc-ds are provided to represent values inherent to
the assembly r-rocess. These include decimal and hexadecimal
notation, literal declaration, and a hierarchy of operators for
compufaLion in-line.

Several instructions and/or directives may be combined into a
macro definition and retrieved subsequently by referencing the
macro name. Specified elements of the macro definition may be
changed with each call. Macros may be nested up to seven levels.

Error flags and operator messages are provided to indicate
abnormal conditions detected either within the source statements
or peripherals utilized by the system.

TABLE OF CONTENTS	
3

PAGE

INTRODUCTION	 i

1. BASIC LANGUAGE FORMAT 1
1.1 GENERAL DESCRIPTION 1
1.1.1 LABEL FIELD 1
1.1.2 OPERATION FIELD 1
1.1.3 VARIABLE FIELD 2
1.1.4 COMMENT FIELD 2
1.2 RELATIVE ADDRESSING INSTRUCTIONS 2
1.2.1 AUTOMATIC ADDRESS MODE SELECTION 2
1.2.2 USE OF LITERALS 3
1.3 IMMEDIATE OPERAND INSTRUCTIONS 3
1.4 EXTENDED OPERATION CODE INSTRUCTIONS 3
1.5 SHIFT INSTRUCTIONS 4
1.6 OPERATE INSTRUCTIONS 4
1.7 CHANNEL COMMANDS 5

2. EXPRESSIONS 7
2.1 DEFINITION OF EXPRESSION 7
2.1.1 ELEMENTARY TERMS 7
2.1.1.1 LABELS 7
2.1.1.2 DECIMAL INTEGER CONSTANTS 7
2.1.1.3 FIXED-POINT DECIMAL INTEGERS 7
2.1.1.4 HEXADECIMAL INTEGERS 8
2.1.1.5 FLOATING POINT DECIMAL NUMBERS 8
2.1.2 OPERATORS 9
2.2 USE OF PARENTHETICAL EXPRESSIONS 9
2.3 LITERALS 11

2.4 CONSTRUCTION OF EXPRESSIONS 11

2.4.1 RULES GOVERNING EXPRESSION SYNTAX 11

2.4.2 EXAMPLES OF EXPRESSIONS 12

3. MACROS 14

3.1 THE MACRO DIRECTIVE 14
3.2 THE ENDM DIRECTIVE 14
3.3 THE MACRO SKELETON 14
3.3.1 SKELETAL STATEMENTS 14
3.3.2 DUMMY ARGUMENTS 15
3.4 THE MACRO CALL STATEMENT 15
3.5 MACRO NESTING 15
3.6 MACRO EXAMPLES 16

.I. ..

PAGE

4. ASSEMBLER DIRECTIVES 17
4.1 FUNCTIONS OF DIRECTIVES 17
4.2 DIRECTIVE DESCRIPTIOi^ 17
4.2.1 BBSS, BYTE BLOCK STARTING STORAGE 17
4.2.2 BCI, BINARY CODED INFORMATION 17
4.2.3 BCIC, BINARY CODED INFORMATION AND COUNT 18
4.2.4 BEAU, BYTE EQUIVALENCE 18
4.2.5 BPAR, BYTE PARAMETER 19
4.2.6 BPTR., BYTE POINTER 19
4.2.7 BSS, BLOCK STARTING STORAGE 20
4.2.8 CALL, CALL 20
4.2.9 DEC, DECIMAL 20
4.2.10 DED, DOUBLE DECIMAL 21
4.2.11 END, END OF ASSEMBLY 21
4.2.12 ENDF, END OF CONDITIONAL ASSEMBLY 22
4.2.13 ENDM, END OF MACRO SKELETON 22
4.2.14 EQU, EQUATE 22
4.2.15 EVEN, EVEN LOCATION COUNTER 22
4.2.16 IFT, CONDITIONAL ASSEMBLY 22
4.2.17 MACRO, MACRO DEFINITION 23
4.2.18 NAME, EXTERNAL NAME 23
4.2.19 OPD, OPERATION DEFINITION 23
4.2.20 ORG, ORIGIN 23
4.2.21 PAR, PARAMETER 24
4.2.22 RDEF, REDEFINE TABLE SCAN 24
4.2.23 XPTR, EXTERNAL POINTER 24
4.3 THE PROGRAM TRACE STATEMENT 25

5. OPERATING PROCEDURES 26
5.1 EXECUTING PROCESSOR CALL 26
5.2 ASSEMBLY OPTIONS 26
5.3 ASSEMBLER I/O 26
5.3.1 SOURCE INPUT 27
5.3.2 SOURCE FIVE UPDATING 27
5.3.2.1 THE "ADDITION" CARD 27
5.3.2.2 THE "DELETION" CARD 28
5.3.2.3 THE UPDATE DECK 28

6. LISTINGS 29
6.1 THE CONCORDANCE LISTING 219

6.2 THE PROGRAM LISTING 29

APPENDIX A ERROR CODES
APPENDIX B ERROR MESSAGES
APPENDIX C ASCII TABLE
APPENDIX D RULES FOR RELOCATION OF BINARY TERMS
APPENDIX E OPERATE I_JSTRUCTIONS

INTRODUCTION

This manual describes Extended SPL 4700, an assembly
language for the SCC 4700 computer. Its syntax design and

mnemonic designations are based on SPL 4700, the assembly
language provided by Scientific Control Corporation (SCC).

This document is intended as a reference manual and assumes the
user is familiar with digital computer programming in general
and the SCC 4700 digital computer in particular.

Extended SPL 4700 was implemented under contract NAS8-18405

in support of Man-Machines Systems Branch, NASA, MSFC. It is
designed to relieve the programmer from menial chores without

relinquishing the tight machine control afforded by assembly
language programming.

In this document, instructions are symbolic representations
of machine commands which are translated by the assembler.
Directives are messages which control the assembly process or

create data. Comments appear only on the assembly listing and
are ignored during the assembly process. Statements consist of
these three classifications and are entered via punched cards
at the DCT-132. Device selection is not incorporated due to the
unique programming methods required for communications I/0.

Extended SPL 4700 is a three pass assembler. The address
mude selection feature requires the additional pass. The
source statements are read once. Programming features provided
by Extended SPL 4700 include the following:

FREE FORM SOURCE FORMAT

A field may begin in any column but must be separated

from the previous field by a blank. An exception is the
label field which must begin in Column 1. Unless other-

wise stated, blanks may not appear within a field.

MNEMONIC OPERATION CODES

Directives and machine instructions are written symbolically
and are translated by Extended SPL 4700 into assembly and
machine functions.

CONVENIENT DATA REPRESENTATION

Extended SPL 4700 allows data to be specified as decimal,
hexadecimal, or alphanumeric. It provides both floating

and fixed point decim. . l constants. Binary point specifica-
tion is permitted in fixed point numbers. In addition, a
hierarchy of arithmetic / logical operators is provided for
fixed point constant manipulation.

LITERAL REFERENCING

Certain instructions which reference a storage address may
reference instead a literal. The literal table is assembled
beginning in the first unused location following the user's
program. Literals may be fixed point, floating point, or
relocatable variables.

SELECTIVE OBJECT OUTPUT

Object code may be generated in absolute binary format or

relocatable binary format. The option may be specified
external or internal to the assembly process. In event of

conflict the internal specification prevails.

SOURCE PROGRAM EDITING

A line edit capability is included within the assembler.
Corrections tc ^ program are assembled as entered if the

original sour c e code can be retrieved from a disk file.

CONCORDANCE LISTINGS

A concordance listing with an alphabetical listing of all
labels referenced, the value, the type, and the statement
numbers at which each was referenced is provided as a program-
mer option.

CONDITIONAL ASSEMBLY

Statements within a program may be assembled or skipped
depending upon the value of assembly parameters.

ADDRESS MODE SELECTION

Certain memory reference instructions can be either one
or two computer words long depending on their relative
addresses. As a programmer option, the assembler will
select the optimum address mode.

PROGRAM LISTINGS

A printout consisting of source statements input to the

assembler and object code generated is provided as a
programmer option.

ii

ERROR CHECKING

Each source statement is evaluated thoroughly for incorrect
usage of the language. Errors are indicated on the assembly

listing.

MACRO CAPABILITIES

Statement sequences often used ma y be defined as macros and
generated again in the program code stream by means of a
single reference label. Macros may be nested up to seven
levels.

EXECUTION TRACE CAPABILITY

Program trace stateme-ts may be inserted into the source deck
and assembled or ignored on programmer option. The trace
statement will create linkage to a system program that prints
the trace identifier on the console device during program
execution.

iii

1.	 BASIC LANGUAGE FORMAT

1.1	 General Description

In writing instructions for the Extended SPL 4700
assembler language, the programmer is primarily concerned with
four fields: !Abel, Operation, Variable, and Comment. With

the exception of the label field, a field may begin in any
column but must be preceded by a blank.

1.1.1	 Label Field

Labels consist of from one to six alpha-
numeric characters and must begin in column one. The first
character of a label must be alphabetic. The character, $, is
considered to to alphabetic but is generally reserved for
system programs. The label field is optional unless otherwise
stated and is used to identify a line of code.

CORRECT LABELS:

TABLE
SR24
I
$START

INCORRECT LABELS:

1XAR	 (First character not alphabetic)
S1.T	 (Non-alphanumeric character)
VARIATE (More than si-t characters)

1.1.2	 Operation Field

The operation field must follow the label, if
a label is present, and consist of:

• An instruction mnemonic and possibly

indirect F.ddressing designation,

• An assembler directive,

• A mnemonic previously used in the label
field of a MACRO directive (See MACROS),
or,

• A mnemonic previously used in the label
field of a OPD directive (See ASS.^LER
DIRECTIVES).

The operation field is terminated by one or more blanks.

1.1.3	 Variable Field

The variable field begins at the first non-blank
character following the operation field and is terminated by one or
more blanks. Its format is controlled by the type of operation
field employed and is omitted in some cases.

1.1.4	 Comment Field

The comment field begins at the first non-blank
character following the variable field or operation field if the

variable field is omitted. It is used by the programmer for
clarifying information and is ignored during the assembly process.

The comment field may contain imbedded blanks.

A comment statement may be inserted into the code stream by

by placing an asterisk (*) in column one.

1.2	 Relative Addressing Instructions

A "Relative Addressing Instruction" may reference data
directly that is in direct memory or is within relative addressing
range of the instruction's location. Otherwise, it must reference
the data indirectly through another computer word. 	 -

The format is;

LABEL OPERATION VARIABLE I ('OMMENT

IDA	 m, X

3

Label and comment fields are oo:ional. Indirect addressing, if
desired, may be specified by placing an asterisk (*) immediately
following the operation mnemonic. The variable field consists of
two subfields. The address subfield designated by "m" is manda-
tory and consists of an expression. The index subfield is
optional and must be entered as shown. The subfields are separated
by a comma.

1.2.1 Automatic Addressing Mode Selection

The programmer may specify that the assembler
select the optimum addressing mode. In this case the programmer
codes relative addressing instructions directly referencing the
data and the assembler will insert the indirect address word if
needed.

2

-^_	 ^^'.	 -a ter=

3

For example, on instruction coded as

will be assembled as if coded

if the value "SAVE" does not meet the requirements for direct
referencing.

1.2.2	 Use of Literals

The "m" subfield may be replaced by a literal.

This is done by entering an equal sign (=) and following it with
an expression. (See Paragraph 2.3, Literals.) All literals used
are assembled in a table beginning at the first location not used
by the program.

1.3	 Immediate Operand Instuctions

Instructions which reference data within the same com-
puter word are "Immed-_ate Operand Instructions".

LABEL OPERATION VARIABLE COMMENT

LDL m

Label and comment fields are optional. The variable field must

consist of an absolute expression. If an ASCII character is
desired, enter quotation marks (") in the variable field and
follow with a single ASCII character.

1.4 Extended Operation Code Instructions

Instructions that do not require a variable or need an
additional computer word to reference an operand are "Extended
Operation Code Instructions". The format is

7.

3

i

4

LABEL	 OPERATION	 COMMENT

JRT

Label and comment fields are optional. If indirect addressing is

desired an asterisk (*) must :immediately follow the operation
mnemonic.

	

1.5	 Shift Instructions

"Shift Instructions" are immediate operand instructions

with an additional subfield, the index.

LABEL	 OPERATION	 VARIABLE	 COMMENT

SLL	 m, X
I

The "m" subfield is mandatory and must be an absolute expression.
Label and comment fields are optional. The index subfield of

the variable field is optional and must be entered as shown if
desired. A comma separates the subfields.

	

1.6	 Operate Instructions

The general register change and test instructions in
the SCC 4700 are termed "Operate Instructions". A total of 512
operate instructions are available to the programmer. Table 2
lists the basic operation mnemonics and their function. The
general form is:

LABEL OPERATION	 VARIABLE COMMENT

RCPY	 I	 s, d,	 t

The label and comment field are optional along with the skip-test (t)
subfield of the variable field.

The source (s) a nd destination (d) subfields of the variable
field are mandatory. Permissable entries in each subfield are

one of the characters A, B, E, or X, and depict one of the hard-
ware registers.

7i
i

4

The skip-test subfield depicts a test performed upon the con-

tents of the destination register upon completion of the operate
instruction function. A skip is performed if the test is true.

Table 1 contains a list of permissable entries and their function.

SKIP-TEST
SUBFIELD

FUNCTION

N If the contents of the destination registe!
is negative upon completion of the operation,
a skip is performed.

Z If the contents of the destination r^_gister

is zero upon completion of the operation, a

skip is performed.

r. If the contents of the destination register
is positive and non-zero upon completion of
the operation, a skip is performed.

TABLE 1

If the skip test subfield is not specified, no skip-test is performed.

The subfields are separated by commas.

1.7 Channel Commands

"Channel Commands" are not CPU instructions but data
words processed by an I/O channel when the IOC instruction is pro-
cessed by the CPU. A channel command is programmed following the
IOC instruction. If the IOC instruction specifies indirect
addressing, the word following must be a pointer to a channel
command.

The correct form is:

LABEL OPERATION VARIABLE COMMENT

SIO m, X

4

5

3

Table 2 contains the operation field mnemonics, their functions

and assembled values. The label and comment fields are optional
as is the index subfield of the variable field.

The device number and the values of the block mode and

interrupt arm bits, if non-zero, must be entered by the program-
mer using the mandatory "m" subfield in the form of an absolute
expression. Optionally, the value or any portion thereof may be

placed in the index register if the index subfield is specified.
A comma must separate the subfields.

CHANNEL COMMANDS

MNEMONIC FUNCTION ASSEMBLED VALUE

SIO Start I/O '0800

HIO I	 Halt I/O 10000

XMT Transmit 11000

EOA Execute Order In A '1800

OUS Output Unit Status '2800
TWC Terminate When Complete '3800

SDR Skip If Device Ready '4800
SDA Skip If Device Available '5000
IIU Input Interrupting Unit '5800
IUS Input Unit Status '6000
ISB1 Input Status Byte 1 '6400

ISB2 Input Status Byte 2 '6800

ISB3 Input Status Byte 3 '6000

i

Table 2

6

f

2.	 EXPRESSIONS

2.1	 Deft-nition of Expression

An expression is an elementary term or a series of

elementary terms connected by operators. Blanks are not permitted

within an expression.

2.1.1	 Elementary Terms

Elementary terms consist of labels, decimal

and hexadecimal integer constants, and floating point constants.

An elementary term does not contain an operator.

2.1.1.1	 Labels

used as an elementary

it substitutes the
ad from the label's

used, the mode (i.e.
of the statement in

Any label may be

term. When the assembler encounters a label,
value of the label's address or a value deriv
use with a directive. If an address value is
byte or word) is based on the operation field

which the expression appears.

	

2.1.1.2	 Decimal Integer Constants

A decimal integer constant may appear
in an expression as a string of one or more integers of the set 0-9.
A sign may precede the constant if the term occurs at the beginning

of the expression or the term is separated by parentheses. In any
other case the sign is interpreted as an add or subtract operator.

EXAMPLES:

15
-27
(-27)
5

A single precision integer, I, must be in the range -32,
768	 I	 32,767. Exceeding the range will cause an error indica-
tor to be set. Double precision decimal integers must be in the

range -214, 783, 648 	 I	 214, 783, 647 . Double precision is

assembled only if the DID Directive appears in the operation
field of the statement.

	

2.1.1.3	 Fixed-Point Decimal Integers

A fixed-point decimal integer consists

of two parts:

7

(a) A decimal integer that may be

	

signed or unsigned and consists	 =-

of the character set 0-9 and
"." (decimal point),

(b) A binary place part that consists

	

of the letter B followed by an	 =_

unsigned decimal integer.

The binary place part must follow the decimal integer with no inter-
vening blanks. The integer following the letter B denotes the
position of the binary point in the assembled number. If a decimal

	

integer, i, follows then 0	 i	 15 for single precision integers

and 0	 i	 31 for double precision integers. Assume that the

binary place part is B5, then the binary point will be between
bits 5 and 6 of the assembled integer. Fixed-point decimal integers

are used only with DEC and DED directives.

EXAMPLES:

1OB5
1.7B4	 i

-126.5B12

-276B9

	

2.1.1.4	 Hexadecimal Integers

Hexadecimal integers consist of the
character set 0-9, A-F immediately preceded by an apostrophe (').

A plus or minus sign may precede the apostrophe provided it is
separated from any previous operator. No overflow checking is

performed when this form is used making it ideal for "Bit-Picking"

functions.

EXAMPLES:

'9DO
-'F000
'llc
-'90

	

2.1.1.5	 Floating Point Decimal Numbers

Floating point decimal numbers con-

sist of two parts:

(a) A decimal part consisting of a
string of characters from the
set 0-9, "." (decimal point),
and

8

(b) An optional exponent part, con-
sisting of the letter F followed
by a signed or unsigned integer,

that represents a power of ten
by which the number is to be

multiplied.

Floating point numbers are assembled into three consecutive computer
words. The first two are the mantissa with an associated sign.
The third is the exponent with an associated sign.

	

0	 15
WORD 1	 l S	 MANTISSA (MSB)

	

0	 15
WORD 2	 1	 MANTISSA LSB

	

0	 15
WORD 3	 S	 EXPONENT

Floating point terms are assembled only if they appear in a literal
(see Paragraph 2.3, Literals), or appear in a statement having a

DEC or DID directive in the operation field. A floating point
decimal term may not be combined with other terms within an expres-

sion.

EXAMPLES:

5.0
117E-4
-6.137E16
76.174E+4
-17.4
+9700E-12

2.1.2	 Operators

A hierarchy of seven operators are provided on

three levels. Level 1 operators are assembled first and Level 3
operators are assembled last. Table 3 contains the use and
combinational characteristics of the operators.

2.2	 Use of Parenthetical Expressions

Any expression containing more than one elementary term
may be divided into sub-expressions by means of parentheses. Paren-
thetical expressions may be nexted to any depth. The inner-most
sub-expression is evaluated first without regard to the level of
operators in the outer sub-expressions.

f

9

LEVEL OPERATOR DESCRIPTION

-- LOGICAL DIFFERENCE (EXCLUSIVE
OR)

1 ++ LOGICAL SUM (INCLUSIVE OR)

** LOGICAL PRODUCT (AND)

* ARITHMETIC PRODUCT

/ ARITHMETIC QUOTIENT

2
COVERED QUOTIE a/b IS+ 6af
EQUIVALENT TO	 --F—)

+ ARITHMETIC SUM
3

- ARITHMETIC DIFFERENCE

Table 3

HIERARCHY OF OPERATORS

3

a

.,

10

,,E ,,	 !	 ^..	 _^
.:--4 - 	 j _

	

2.3	 Literals

Any of the basic relative addressing instructions may
reference a literal in the "m" subfield of the variable field. A

literal consists of an expression immediately preceded by an equal
sign (-). Literal expressions may not contain a label, used as

an elementary term, which corresponds to an address value greater

than the current address value of the program being assembled.

A referenced literal will be assembled into a literal table
starting at the first location not used by the program being pro-
cessed. A value will appear in the literal table only once regard-
less of the number of times it occurs as a literal expression.

	

2.4	 Construction of F`rpressions

Syntax errors occurring in expressions are indicated
on the program listing. If a syntax error is encountered during
evaluation, the generated value of the expression may not be
reliable.

2.4.1	 Rules Governing Expression Syntax

The following rules used in conjunction with
Appendix D form a comprehensive guide for construction of expres-
sions.

• A literal must be preceded by an equal
sign (a).

•	 4 plus (+) or minus (-) preceding an expres-
sion is allowed.

•	 Floating point expressions may contain

only the single elementary term.

•	 Expressions must be single precision

unless a directive in the operation field
specifies otherwise.

•	 Parenthetical expressions may be nested
to any level with the inner -most sub-
expression evaluated first.

• An operator may not consecutively follow

another operator and an elementary term
may not consecutively follow another

elementary term with the following exceptions:

11

^-

(a) a minus may follow the covered
quotient operator; and

(b) a minus or plus may precede an
elementary term if an open paren-
thesis separates it from the pre-
ceding operator.

In both cases the plus or minus is

interpreted as a sign indicator and not
as an operator.

•	 Labels representing address values may be
used subject to the following conditions:

(a) Functions may not be performed on
address values that cause them to

lose their addressing properties;
and

(b) Expressions which render an address
value are converted to the mode
(word or byte) dictated by the
operation field.

•	 Imbedded blanks are illegal.

Expression syntax errors are indicated on the program listing.

2.4.2	 Examples of Expressions

LEGAL:

4*7+'D +'C
COST+7
'18*(-4*(16+2//7))

If TABLE is an address value in
byte mode then

TABLE//-1

Converts to an address value in word
mode. No value other than -1 may be
substituted without causing the
expression to lose its basic address-
ing properties.

If TABLE is an address value in word
mode then

I

3

12

TABLE//1

Converts to byte mode. Obviousl-, no

value other than 1 may be substituted

for the second elementary term.

ILLEGAL:

4*7(4--5)
consecutive elementary terms

14+(7*(16-'A)
missing parenthesis

6E4+1.7
combining floating point elementary terms

(108+(7**(PRICE+6)))
if PRICE is an address value its adressing
properties are lost

15//17++' 1D
double precision

F..

13

3.	 MACROS

3.1	 The MACRO Directive

The MACRO directive denotes the beginning of a MACRO
skeleton, a body of code that can be reproduced in the code
stream by means of the MACRO call statement.

The general form is:

LABEL	 OPERATION	 COMMENT

ANY	 MACRO

The comment field is optional.

3.2 The ENDM Directive

The ENDM directive denotes the end of a MACRO skeleton.

The general form is:

LABEL	 OPERATION	 COMMENT

ENDM
i

Label and comment fields are optional. If a label is used
it will assume the address value of the next computer word
assembled.

3.3 The MACRO Skeleton

Statements occurring between the MACRO directive and
the ENDM directive are called skeletal statements.

3.3.1	 Skeletal Statements

The general form of a skeletal statement is:

LABEL OPERATION VARIABLE COMMENT

Valid Label Valid Operation An expression;
or dummy or dummy argu- may contain
argument ment dummy argu-

ment(s)

14

3 1.

The contents and format of the variable field are dictated by the

type of operation field. If indirect addressing is required and
the operation field is a dummy argument, it may be followed by an

asterisk (*). Indexing may be specified in the variable field

either through the argument list or by coding the index subfield

into the skeletal statement.

3.3.2	 Dummy Arguments

Dummy arguments appear in the MACRO skeleton
and are substituted with the desired character stream from the

argument list when the MACRO is called. Dummy arguments are of
the form "#i" where "i" is a decimal integer of the set 0 through

19.

The dummy argument, #0, may appear only in the label field

and will cause a label appearing in the MACRO call statement to
be substituted for it. If a label appears in a MACRO call state-
ment and no #0 dummy argument appears in the MACRO skeleton the
label will automatically be attached to the first statement in
the code stream that results from expansion of the MACRO skeleton.

The dummy arguments #1 through #19 are replaced by the
corresponding character streams appearing in the argument list
of the MACRO call statement.

3.4 The MACRO Call Statement

The general form of the MACRO call statement is:

LABEL	 OPERATION I VARIABLE	 COMMENT

A MACRO NAME ARGI;ARG2;...

Label and comment fields are optional. The MACRO name appearing

in the operation field must be previously defined in the label field
of a MACRO directive. The variable field contains the argument list
if dummy arguments are used. An argument may not contain an imbed-
ded semi-colon (;), and the variable field may not contain imbedded
blanks. The number of arguments must be equal to the greatest

integer used as a dummy argument in the MACRO skeleton. Arguments
are separated by semi-colons.

3.5	 MACRO N,^ting

MACROS may be nested to a level of seven deep by

placing a MACRO call of a previously defined MACRO in the MACRO
skeleton. Nesting may be accomplished to the same level by using

MACRO names in the argument list of MACRO call statements, causing
the skeletal statement to generate another MACRO call.

15

4

3

3.6	 MACRO Examples

The example below shows how a MACRO is designated and
assembled when called.

The MACRO skeleton:

3	 SAVE	 MACRO
4	 #0	 STA	 #1
5	 STB	 #1+1
6	 S'i X
7	 PAR	 #1+2
8	 ENDM

The MACRO call and expansion:

87	 SAVE	 SY1X23
0042 7431
0043 3431
0044 0638
0045 0075

The example below shows one method by which MACROs may be nested.

143 CAT	 MACRO
144 #0	 LDA #1
145 #2 #3
146 #4* #1,X
147 JMP D
148 ENDM
149 RAT	 MACRO
150 CAT FOLLIE;ADD*;#l;STA
151 STA #1
152 ENDM
153 RAT B,X

019E C5ED
019F 9FD1
OlAO 7FEB
OlAl 45 D5
OlA2 77CE

10

4.	 ASSEMBLER DIRECTIVES

4.1	 Functions of Directives

The symbolic assembler directives within extended SPL

control or direct the assembly processor just as operation codes
control or direct the central processor unit. These directives
are represented by mnemonics entered in the operation field of a
statement. They are used to equate expressions, to adjust the
location counter, and to afford the programmer special control-
over the generation of data.

4.2	 Directive Description

The general format is:

LABEL	 OPERATION	 VARIABLE	 COMMENT

Directive

All directives do not necessarily contain all four fields. A
detailed description of the 23 directives in Extended SPL follow.

4.2.1	 BBSS, Byte Block Starting Storage

The BBSS directive is used to reserve a
block of core for data storage or working area. The variable
field must contain an absolute expression, the value of which

determines the number of bytes reserved. If a label is present
it is assigned the byte address value of the first byte in the

block. The BBSS directive in no way affects the contents of the
core reserved.

111	 031A	 FOLLIE BBS	 3

starting byte address

4.2.2	 BCI, Binary Coded Information

The BCI directive is used to insert ASCII

data into the object code. The variable field is of the form:

dstringd

where "d" is the alphanumeric string delimeter and "string" is any

set of ASCII characters that do not contain "d". As each character
is decoded it is inserted into the next available byte. If a label
is present it is assigned the byte address value of the first

ASCII character. See Appendix C for a partial list of ASCII codes
as used by the BCI directive.

17

137 02F6 0041	 BCI	 'ABCDE F'
02F7 0042
02F8 0043
02F9 0044
02FA 0045
02FB 0020
02FC 0046

ASCII Data

Byte Address

4.2.3	 BCIC, Binary Coded Information and Count

The BCIC directive, like the BCI directive is
used to insert ASCII data into the object code. It is decoded in
the same manner as the BCI directive except the first byte
generated is the count of ASCII characters occurring between the
two string delimeters in the variable field.

Character Count

138	 02FD 0003	 BCI	 'ABCDE F'
02FE 0041
02FF 0042
0300 0043
0301 0044
0302 0045
0303 0020
0304 0046

— ASCII Data

Byte Address

4.2.4	 BEQU, Byte Equivalence

The BEQU directive equates the symbol in the
mandatory label field with the value of the expression in the
variable field. Generally the expression field contains an
address value. The programmer should be aware that if the symbol
in the label field is used in subsequent expressions and is an
address value, it will assume the mode dictated by the operation
field of the statement in which the expression occurs. The

18

19

variable field may not contain a floating point number nor a
symbol representing an address value greater than the current

location counter. The BEQU directive does not affect the value
of the location counter.

133813	 F	 BEQU	 E

Byte address of "E"

4.2.5	 BPAR, Byte Parameter

The BPAR directive is used to insert byte
data into the object code. The variable field contains one or
more absolute expressions separated by semi-colons. As each
expression is evaluated it is inserted into the next available
byte of the program being processed. If a label is used it is
assigned the byte address of the first byte generated.

122 02CE

02CF
02D0
02D1
02D2

02D3

02D4
02D5

L_

OOOA	 BPAR	 'A;'B;'C;'D;'E;'F;O;-3
OOOB
OOOC

OOCD
000E
OOOF

0000
OOFD

Generated Byte Data

Byte Address

4.2.6	 BPTR, Byte Pointer

The BPTR directive is used to insert a data
word, generally a byte address, into the object code. The variable
field contains one or more expressions separated by semi-colons.
The programmer should be aware that symbols representing address
values that appear in the variable field are converted by the
assembler to byte mode during the expression evaluation process.
If a label is used, it is assigned the address value of the first
word generated.

121 02C8 O1C8	 BPTR	 ORG+'100;*;-3
02CA 02CA

02CC FFF D

Generated Data

Byte Address

sup. -- 	 -- —

4.2.7	 BSS, Block Starting Storage

The BSS directive is used to reserve a block
of core for data storage or working area. The variable field must

contain an absolute expression, the value of which determines the

number of words reserved. If a label is present, it is assigned
the address value of the first word in the block. The BSS directive
in no way affects the contents of the core reserved.

232 0131 0132	 PAR	 SYRA20
233 roO132	 SYRA20	 BSS	 5
234 0137 0408 SYRB20 RCPY XtA

Address of First Word

4.2.8	 CALL, Call

The CALL directives generates a calling sequence
of two computer words in the object code and necessary linkage in-
formation for r'.,e relocatable loader. The variable field must con-
tain a symbol, indexed if desired, that is used in conjunction with
a name directive ir. anotherprogram. A label, if present, assumes 	 i

the address value of the first word generated. The CALL directive

	

may be used only in relocatable programs. 	 -

143 0085 ACO1	 CALL $EY23
143086 0000

144 0087 OOCD	 PAR	 SY1B24+1

Address value of $SY23
Assigned by relocatable loader

4.2.9	 DEC, Decimal

The DEC directive is used to insert binary
data into the object code the variable field must contain one or
more signed or unsigned decimal numbers separated by semi-colons.
A variable field entry may be of the form:

DECIMAL INTEGER

FIXED POINT DECIMAL INTEGER

FLOATING POINT

Floating point entries are assembled according to the form in
Paragraph 2.1.1.5. Decimal integers and fixed point decimal in-

tegers must be single precision and are assembled into a single
computer word. An error indication is given in case of overflow.

20

5E+1;-1;-15.E-1

If a label is used it is assigned the address value of the first
word generated.

156 02AF 0001	 DEC	 1;1.5;1.5131;.1
02130 6000
02131 0000
02B2 0001
02B3 6000
02B4 6000
02135 0000
02156 0001
02B7 FFFF
02B8 A000
02119 0000
02BA 0001

4.2.10 DID, Double Decimal

Like the DEC directive; the DID directive is
used to insert binary data into the object code. The variable field
is subject to the same form except decimal. integers and fixed point
decimal integers are assembled into two computer words and must
exceed 32 bits before an overflow indication is given. If a label
is used it is assigned the address value of the first word generated.

156 0234 0000 DED	 1;1.5;1
0235 0001
0236 6000
0237 0000
0238 0001
0239 6000
023A 0000
023B 6000
023C 0000
023D 0001
023E FFFF
023F FFFF
0240 A000
0241 0000
0242 0001

4.2.11 END, End of Assembly

The END directive causes a halt of the assembly
process and must be the last physical statement in the program.
If an expression is entered into the variable field, its value
designates the starting address at which execution is begun. If
several programs are being assembled and are to be linked before
execution, only one may contain a starting address.

2,1

156	 END

6 Errors
0 Bytes Unassigned

4.2.12 ENDF, End of Conditional Assembly

The ENDF directive designates the end of a
portion of code that may be assembled or omitted depending on
certain internal values. It 1.7 used in conjunction with the IFT 	 }
directive and requires no variable field. For further details
see Paragraph 4.2.16, the IFT directive.

4.2.13 ENDM, End of MACRO Skeleton

See Section 3, MACROS.

4.2. 14 EQU, Equate	
z

The EQU directive is used to equate the symbol
appearing in the mandatory label field with the value of the expres-
sion in the variable field. The variable field may not contain a
floating point value nor a symbol representing an address value
greater than the current location counter. The EQU directive does
not affect the contents of the location counter.

412	 0 OS A	 EQU	 5

Value Equated with "A".

4.2.15 EVEN, Even Location Counter

The EVEN directive is used to assure the next
value assigned to the location counter by the assembler is even.

If the value of thn location counter is already even it remains
unchanged. If the location counter is odd it is incremented by
one. A label, if used, is assigned an address value equal to the

location counter prior to the possible incrementing.

131	 018A	 EVEN

LNext Address Assigned

4.2.16 IFT, Conditional Assem'lily

The IFT directive and the ENDF directive are
used to bracket .s cote sequence that is to be assembled or ignored
depending on certain conditions. The expresion in the variable
field of the IFT directive is evaluated. If the value is false
(zero) the statements that occur up to the next ENDF directive are
ignored by the assembler. If the value is true (non-zero) the

22

statements up to the next ENDF directive are assembled in the

normal manner. A label attached to the IFT directive is assigned
an address value equal to the current value of the location
counter.

123 IFT	 0
124 LLL	 1
125 ENDF
126 IFT	 1
127 0180	 02E2	 LLL	 2
128 ENDF

4.2.17 MACRO, MACRO Definition

See Section 3, MACROS.

4.2.18 NAME, External Name

The NAME directive specifies symbols that
may be referenced by external programs. The variable field con-

tains one or more symbols, separated by semi-colons, that occur
in the label fields of other statements in the same program. The

NAME directive used in conjunction with CALL directives and XPTR
directives in other programs will generate object code to enable
the relocatable loader to create linkage. It may be used only in
programs specified as relocatable. The location counter is not
affected.

118	 '-JANE	 ORG

4.2.19 OPD, Operation Definition

The OPD directive is used to define mnemonics
that may be subsequently usee in the operation. field. The manda-
tory label field contains a symbol that is equated to the absolute
expression in the variable field. The symbol may then be used
as an operation conforming, to the statement fczn of the extended
operation code instruction as described in Paragraph 1.4. The
location counter is not affected by the OPD directive.

137	 0200 FAD	 OPD	 '0200
138	 RDEF
139	 018E 0200	 FAD

4.2.20 ORG, Origin

The ORG directive is used to change the con-
tents of the location counter to the value of the expression in
the variable field. If a symbol representing an.-.address value

appears in the variable field expression, it must have been prev-:)usly
defined. If the expression is absolute then the mode of the program

being asserbled becomes absolute, regardless of the external speci-
fication. Initially, all programs are assumed to begin at zero and
the mode relocatable if not otherwise specified externally.

23

3

119 0064	 ORG	 ORG
120	 0164	 ORG	 ORG+'100

4.2.21 PAR, Paragraph

The PAR directive is used to insert single
precision data words into the object code. The variable field
contains one or more single precision expressions, either
absolute or relocatable, separated by semi-colons. If a label
is present it is assigned the address value of the first word
generated.

124 016B 640A B	 LDL	 'A
125 016C 0020 C	 PAR	 '20;-6;A;B;D

016D FFFA
016E 0005
016F 016B
0170 0171

126 0171 FFFF D	 PAR	 A-6;*+2;C
0172 0174
0173 016C

Generated Data

Address

4.2.22 RDEF, Redefine Table Scan

Mnemonics appearing in the operation field may
be assembler defined operation codes and are entered in the opera-
tion table; or they may be user defined, via MACRO and OPD direc-

tives, and are entered in the user symbol table. If a user defined
mnemonic is identical to an assembler mnemonic the assembler
normally chooses the one from the operation table. The RDEF

switches priority to the user symbol table. Succeeding RDEF
directives inverts the priority sequence from that being used at
the time.

For further details, see Paragraph 4.2.19, The OPD Directive.

4.2.23 XPTR, External Pointer

The XPTR directive used in conjunction with
the NAME directive in another program generates object code to

enable the relocatable loader to create linkage. The variable
field contains one or more subfields separated by semi-colons.

Each subiield contains a symbol which occurs in a NAME directive
of another program. A subfield may be indexed by following it
with ",X". The assembler reserves one word of storage for each
subfield. At load time the address of the externally defined
symbol will be inserted into the reserved word by the relocatable

24

loader. A symbol in the label field is assigned the address

value of the first word generated. The XPTR directive may only
be used in relocatable programs.

130 0178 8000	 XPTR	 SIN,X;COS
0179 0000

4.3	 The Program Trace Statement

A"Program Trace Statement" will be assembled only
	 i

if the trace option is present among the external parameters.
(See Section 5, Operating Procedures.) If the trace option is

not specified the program trace statement is ignored during the
assembly process.

The general form is:

LABEL	 OPERATION	 COMMENT

Any Name J_
The label field must contain a period(.) in column 1. The opera-

tion field commences with the first non-blank character after
column 1. The operation field contains a mnemonic conforming to
the specifications in Paragraph 1.1.1. The assembler will
generate linkage to a system program that, at execution time,
prints the contents of the operation field on the console device
each time the trace code sequence is encountered, Use of the
trace option is not limited to relocatable programs.

116 056A 0756	 POINTI
056B 504F
056C 494E
056D 5431

25

.; —
	

NO

5.	 OPERATING PROCEDURES

5.1	 Executing Processor Call

Due to incomplete configuration, details of loading
and executing Extended SPL have not been concluded. This section
of the document will be replaced when final configuration is
reached and again when integration of extended SPL under an
operating system occurs. In the meantime, a usable copy with
loading procedures will be maintained for programmer use.

5.2	 Assembly Options

Upon beginning processor execution a prompting message
is typed on the IBM Selectric:

"ESPL"

The operator then types at the selectiic a string of upper case

alphabetic characters, representing external control parameters,
followed by a carriage return. These parameters include:

A - Absolute Base Mode

R - Relocatable Base Mode
L - List Symbolic File

0 - Generate Object File
N - Do Not Generate Object File
X - Produce Concordance Listing

U - Update Disk Symbolic File
I - Do Not Map Relative Addressed Instructions
P - Produce Object File On Paper Tape
T - Assemble Trace Statements

If a lower case or non-alphabetic character is entered the prompt-
ing message is displayed again and the operator may begin again.
A slash (/) typed on-line will nullify all preceding parameters
and the operator may follow with a new set.

If neither "A" nor "R" is entered, reloc.,table base mode is
assumed. If neither "0" nor "N" is entered, an object file is
created.

5.3 Assembler I/O

The operator may specify binary object output on the
paper tape punch by entering the "P" option during initialization.
If the "P" option is omitted and an object program is desired,
the dick is assumed to be the output device.

Due to the unique characteristics of communications line I/0,
source input device selection and symbolic output device selection

26

is not provided. The source input device is assumed to be a
remote station card reader and the symbolic output device is
assumed to be a line printer at the same remote station.

	

5.3.1	 Source Input

Upon completion of parameter selection a
prompting message is typed at the IBM Selectric:

"INITIALIZE COMM LINE".

After the operator ascertains the line is ready, the cards may be

placed in the card reader hopper and the card reader started. No
further intervention is required.

	

5.3.2	 Source File Updating

The procedures for creating and deleting
source files on the disk as well as identifying them for proces-

sor manipulation has not been defined and cannot be included within
this document. The basic procedure for updating them will remain
stable and the purpose of this paragraph is to describe the control
cards necessary.

If updating is desired the "U" option must be specified in
the input parameter string.

5.3.2.1	 The "Addition" Card

If additional source statements are
to be added they may be punched on cards in the normal manner and 	 3
preceded in the source deck by an "addition" card in the form

IN

where slash (I) appears in column 1 and N is a decimal integer
specifying the sequence number of the disk source file after ,which
the following source statement(s) are to be added. N follows the
slash with no intervening or imbedded blanks. For example:

LDA 4

/55

will cause a LDA instruction to be inserted after image number 55
in the source file.

27

5.3.2.2	 The "Deletion" Card

The "Deletion" card will delete
source statements from the disk source file. It may or may not

be followed by source statement(s) to replace the deleted state-
ment(s). The form is:

/N1, N2

where N1 and N2 are decimal integers representing sequence numbers
to be inclusively deleted. N2 must be greater than or equal to
N1 and follow the slash (/) with no imbedded or intervening blanks.
They are separated by a comma. For example:

STA C

/ 17, 17

will delete image number 17 from the source file and replace it
with a STA instruction.

5.3.2.3	 The Update Deck

Deletion and addition cards may be
combined in any manner with source statement cards. The only
restriction is that the sequence number(s) on an update control

card must be greater than the sequence number(s) on the preceding
control card and less than the one(s) on the following control
card.

28

r

6.	 LISTINGS

6.1	 The Concordance Listin

If the "X" option is specified among the external para-

meters a concordance listing will be produced at the symbolic

output device preceding the program listing. The concordance

listing contains the following information;

• An alphabetic ordered list of all symbols
appearing in the label field and not attached

to OPD or MACRO directives.

•	 The value of the symbol, either an address
value or an equated value.

•	 The type of value, either absolute (A) or

relocatable (R).

• A numerically ordered list of statement numbers

that reference each symbol.

6.2	 The Program Listing

The program listing will be generated if the "L" option
is included among the external parameters. The symbolic and
assembled data included are:

COLUMNS

	

2-6	 Statement Sequence Number

	

9-16	 Error Flags (See Appendix A)

	

19-22	 Address Value of Assembled Image

	

25-28	 Binary Value of Assembled Image

	

31-110	 Symbolic Image

The listing is followed by messages to aid the user in error
analysis.

X.XXX ERRORS

contains the number of assembly errors encountered in the source
statements.

XXXX BYTES UNASSIGNED

contains the number of bytes which occurred internal to the

assembled program to which no value was assigned due to EVEN
directives and combined use of byte generating directives with

word generating statements.

29^

3
3

CJ^

f_

r:^

CJ

,``I

C!

c,
(-
r-i

N t l t.: _.
C	 h^^ !' J C
r-i	 r^ r

I^ c ^ I_L e^ t'
rJ J I.1 Ll G
r1i=)C C C
c^oo^c

^ N cJ c
, ỳ C{ <^,^^^'

^ C^^ C'? C'i r.

r-i

L
L

C_

cJ^
rn
w^

1 C'^ n to C
i r-i 1^ ^; c-J

G C.) U CJ
) n c^ r7 :-^

r ! : r1 rr v
J N N CJ N

C'" [C^ C:
^... ^ ^. ^
C•7 t nI ..) Cr)

C.. C• : ^ f i

t`-• r^ ^
i t` C C' L

r-i r

I

IIL C. L' _

^ cr
•.

CJ
r! n ^ C

r'L^U C
O n O L

t^l rn
C?NN C
CJ J t-^ -
C^ rl ri r
}'>->' ^
C'7 (,7 V7 r.

r^
f

'I N C
i r`

)I C- ^^i
L 1 Ll

1 r^

r^	 c
t-- c^	 .^

^	 Ir-I CJI	 CJ

l.li Cv r'iIC^ cV GJ f•^.

r-i r

G • r
l_^ C
n c
oc

1 rl ri ri H r-I N N N

I

i

C. ..I : C C C C'

i ri l^ 1 ri L • C` CJ t~ L'•
11..x(1 ': c^c. r rn ^J
? 0 0 O C r3, r e--1 r-I
)OOCC_^ r^ 'CCU

M -:
N C
L- C
^- >
L7 C

rr^i_;
J N N
.' \^ L.

C'^ U
'^ -'^ '" C N CJ

cJ cJ N <.. C : L

^;.. r ,^..L}.
G7 V') ! ^ C C7 C7

i
i

:^

L^

l
c^	 1

C

i

C

i
i {

I
3

I

I

I,
I

C7

H_'

^ Hr i ^ -^"
Ha
w

^
6

U

^' i^J N =- L1 O
r1 r- r: rI r-i C.1

i r-i r-I	 ri r-i r")

• L^ ^i^l^ M O C7I
C_ f^' n C^ O C
U C7 C.^ r-I ri G

+occ,^oo

i``
,I

t

J N N CI N CJ N I
J[.'	 t':^ ^'C.WIIII.
i ri r^ r-i rl ri ri ^ `

1C^f.^ (^ (.7(nC7

30

UNREF

will be printed and followed by a list of mnemonics that appeared

i:^ the label field of a statement but was not referenced in the
variable field of another instruction.

MUL DEF

will be printed and followed by a list of mnemonics that appeared

in the label field of more than one statement,

^.

31

i

APPENDIX A

ERROR CODES

A	 -	 Not allowed in absolute assembly.	 A CALL, XPTR, or
NAME directive appears in an absolute program.

B	 -	 A trace statement specified an invalid identifier.

C	 -	 Constant overflow. 	 An expression was specified that
caused the generated machine word to overflow.

D	 -	 A MACRO skeletal statement contained a "#" not followed
by a decimal digit.

E	 -	 Expression.	 The expression in the variable field con-

tains one or more syntax errors.

G	 -	 Invalid origin.	 The variable field of an ORG directive
contains one or more syntax errors.

I	 -	 Index incorrect.	 The index subfield of a memory
reference instruction contains something other than "X".

J	 -	 Image overflow.	 The combination of arguments specified
during a MACRO expansion.n created an image greater than 3

80 characters.

K	 -	 Label.	 The label field is blank and the operation field 3
contains an EQU, BEAU, OPD or MACRO directive.

L	 -	 A presumed symbol begins with a character other than $
or alphabetic character.

M	 -	 Multiple defined symbol.	 The symbol in the label field
appears also in the label field of other statement(s).

N	 -	 Name error.	 A symbol contains more than six characters. 4

0	 -	 Operation field.	 The operation field of a statement con-

Itains an illegal mnemonic.

P	 -	 No END directive. 	 An END directive was not encountered I
in the input file.	 One was supplied but the file is A
marked in error.

1
i

Q	 -	 Illegal equivalence. A symbol appeared in the variable
field of an equivalence statement which had not previously
been defined.

R	 -	 Range error. Automatic address mode selection was not
specified among the external parameters and a relative
addressing instruction referenced an address not in
direct memory and more than 256 locations away.

S	 -	 MACRO calls are nested to a level greater than seven.

T	 -	 Terminate statement error. A statement was terminated
with a character other than a space. Possibly an illegal
subfield was added.

U	 -	 Undefined. A statement contained a symbol in the
variable field which did not occur in the label field
of any statement.

V	 -	 Variable field. The variable field was omitted from a
statement requiring it.

W - Forward reference. An equivalence statement or literal

expression contained a symbol that had not been defined
previously.

X - A MACRO skeleton contained a MACRO directive.

Y - Undefined MACRO argument. A MACRO skeletal statement
references an argument that was not specified in the
MACRO call statement.

Z	 -	 Operate instruction specified incorrectly. Either the
source of destination subfields contain a character

other than .A, B, X, or E, or the test-skip sub-fields,
if designated, contains a character other than G, N, or
Z.

a

APPENDIX B

ERROR MESSAGES

If the assembler aborts processing due to internally detected con-

ditions, one of the following messages will be printed at both the
on-line console device and the symbolic output device.

$E 1

The update option was specified among the external parameters and
the disk source file specified does not exist.

$E 2

An I/O failure occurred on the input device.

$E 3

An illegal sequence identifier was entered on an update control
card. To continue the assembly might result in destroying the
original source file.

yE 4

Core storage was exceeded due to a macro definition.

$E 5

Core storage was exceeded due to length of user's symbol/literal
table.

APPENDIX C

ASCII TABLE

The table presented in this appendix represents only a partial
listing of the ASCII codes generated by BCI and BCIC directives.

0-30
1-31
2-32
3-33
4-34
5-35
6-36
7-37
8-38
9-39
A-41
B-42
C-43
D-44
E-45
F-46
G-47
H-48

(Blank) - 21
" (Quotation) - 22
'	 (Apostrophe) -	 27

(Comma) - 2C
-	 (Minus) - 2D
.	 (Period) - 2E

(Colon) - 3A
(Semi-Colon) - 3B

I-49 !	 - 21
J-4A # - 23
K-4B $ - 24
L-4C % - 25
M-41) & - 26
N-4E (- 28
0-4F)	 - 29
P-50 * - 2A
Q-51 + - 2B
R-52 / - 2F
S-53 < - 3C
T-54 e - 3D
U-55 > - 3E
V,56 ?-3F
W-57 @ - 40
X-58 \ - 5C
Y-5 9
Z-5A

4

3

. -	 -	 a --- -

APPENDIX D

RULES FOR RELOCATION OF BINARY TERMS

LEVEL 1ST TERM OP 2ND TERM RESULT DIRECTION NOTES

1 ABSOLUTE -- ABSOLUTE ABSOLUTE R TO L 1
ABSOLUTE ++ ABS>OLUTE ABSOLUTE R TO L 1
ABSOLUTE ** ABSOLUTE ABSOLUTE R TO L 1

2 ABSOLUTE ABSOLUTE ABSOLUTE L TO R 1
ABSOLUTE / ABSOLUTE ABSOLUTE L TO R 1
ABSOLUTE // ABSOLUTE ABSOLUTE L TO R 1
RELOCATABLE // 1 RELOCATABLE L TO R 1,2
RELOCATABLE // -1 RELOCATABLE L TO R 1,3

3 ABSOLUTE + ABSOLUTE ABSOLUTE L TO R 1
RELOCATABLE + ABSOLUTE RELOCATABLE L TO R 1,4
ABSOLUTE - ABSOLUTE ABSOLUTE L TO R 1
RELOCATABLE - ABSOLUTE RELOCATABLE L TO R 1,4
RELOCATABLE - RELOCATABLE ABSOLUTE L TO R 1

1. In "Direction" Column L is "Left" and R is "Right".

2. The 1st term moat be in word mode and the result is in byte mode.

3. The 1st term must be in byte mode and the result is in word mode.

4. The 1st and 2nd terms may be transposed with no effect upon the
result.

APPENDIX E

OPERATE INSTRUCTIONS

INSTRUCTION	 FUNCTION

RCP1	 The source register is copied
into the destination register.

RINC	 The source register is incre-
mented by one. The result re-

places the contents of the
destination register.

RADD	 The contents of the source
register is added to the con-
tents of the destination

register. The result replaces
the contents of the destination
register.

RXOR	 An exclusive OR is performed
between the source and destination

registers. The result replaces
the contents of the destination
registers.

RCMP	 The one's complement of the contents
of the source register is placed in
the destination register.

RNEG	 The two's complement of the contents
of the source register is placed in
the destination register.

RDEC The contents of the source register
are decremented by one. The result
places the contents of the destina-
tion register.

RSUB The contents of the destination
register are subtracted from the
contents of the source register.
The result replaces th y_, contents
of the destination register.

5

21 May 1970

APPROVAL

EXTENDED SPL
AN ASSEMBLY LANGUAGE FOR THE

SCC 4700 COMPUTE

The information in this document has been reviewed
for content and adherence to MSFC regulations. This
document in its entirety has been determined to be
unclassified.

Dr. A. N. Seitz
Chief, Man-Machine Systems Branch
NASA-George C. Marshall Space Flight Center

	GeneralDisclaimer.pdf
	0024A02.pdf
	0024A03.pdf
	0024A04.pdf
	0024A05.pdf
	0024A06.pdf
	0024A07.pdf
	0024A08.pdf
	0024A09.pdf
	0024A10.pdf
	0024A11.pdf
	0024A12.pdf
	0024B01.pdf
	0024B02.pdf
	0024B03.pdf
	0024B04.pdf
	0024B05.pdf
	0024B06.pdf
	0024B07.pdf
	0024B08.pdf
	0024B09.pdf
	0024B10.pdf
	0024B11.pdf
	0024B12.pdf
	0024C01.pdf
	0024C02.pdf
	0024C03.pdf
	0024C04.pdf
	0024C05.pdf
	0024C06.pdf
	0024C07.pdf
	0024C08.pdf
	0024C09.pdf
	0024C10.pdf
	0024C11.pdf
	0024C12.pdf
	0024E01.pdf
	0024E02.pdf
	0024E03.pdf
	0024E04.pdf
	0024E05.pdf
	0024E06.pdf
	0024E07.pdf
	0024E08.pdf
	0024E09.pdf
	0024E10.pdf
	0024E11.pdf
	0024E12.pdf
	0024F01.pdf
	0024F02.pdf

