
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



W
co
{

z

G ^

N
W ^VV
a

a
a
z

Lo g WMG! AU OVI

NASA CR-727K6

GF 1170 AEG 126
I

TASK II STAGE DATA AND PERFORMANCE REPORT

FOR

INLET FLOW DISTORTION TESTING

VOLUME I

EVALUATION OF RANG! AND DISTORTION TOLERANCE
FOR HIGH MACH NUMBER TRANSONIC FAN STAGES

By

I r

or o
x	 o
~r^^a

W.A. Tesch and V.L. Doyle

GENERAL ELECTRIC COMPANY
Aircraft Engine Group
Cincinnati, Ohio 45215

Prepared For

I

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

January 1971

NASA Lewis Research Center
Contract Nk93-11157

Charles H. Voit Project Manager

^^„ .•,w:►--s	 -	 --was= :^-^— 	 -



IF

a
i;

I

i'
1

NOTICE

1

This report was prepared as an account of Government sponsored
work. Neither the United States, nor the National Aeronautics
and Space Administration (NASA), nor any person acting on
behalf of NASA:

A.) Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, apparatus,
method, or process disclosed in this report may not
infringe privately owned rights; or

B.) Assumes any liabilities with respect to the use of,
or for damages resulting from tn,r iise of any infor-
mation, apparatus, method or ;,rocess disclosed in
this report.

As used above, "person acting on behalf of NASA" includes
any employee or contractor of NASA, or employee of such con-
tractor, to the extent that such employee or contractor of NASA,
or employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his employment
or contract with NASA, or his employment with such contractor. i



r\

i	 ,	 ,.

NASA CR-72786

GE R70 AEG 426

TASK II STAGE DATA AND PERFORMANCE REPORT

FOR

INLET FLOW DISTORTION TESTING

VOLUME I

EVALUATION OF RANGE AND DISTORTION TOLERANCE
FOR HIGH MACH NUMBER TRANSONIC FAN STAGES



,\

ry ^

ABSTRACT

A variable geometry stage consisting of a 1500 ft/sec tip speed, medium

aspect ratio rotor, a variable camber inlet guide vane and a variable-stagger

stator was tested under conditions.of tip radial and 90° one-per-rev circum-

ferential distorted inlet .flow. Overall performance and stall limits were

determined for each inlet condition at 70% 2 907o and 10076 of design speed.

Extensive surveys of flow conditions were made for the case of circumferential

distortion. In addition, blade element data were obtained when testing with

radial distortion,

Volume I of this report contains a presentation and discussion of the

inlet distortion test results while Volume 1I contains complete tabulations

of the data.
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SECTION I

SUMMARY

i
This report presents the results of the NASA Task II Stage testing

with inlet flow distortions. The Task II Stage consisted of a 1500 ft/sec

tip-speed rotor, with an aspect ratio of 2.36 and a design pressure ratio

of 1.686, together with variable-camber inlet guide vanes and variable-

stagger stators.

Testing was performed for two combinations of inlet guide vane and

stator setting angles for both tip-radial and circumferential inlet flow

distortion. The two tested vane schedules consisted of an inlet guide vane

setting angle of 00 with a stator setting angle of 0°, and also an inlet

guide vane setting angle of 40 0 with a stator setting of 8 * . Values for

the distortion parameter, (P
max	 min max

P )/P	 , equal to 0.172 and 0.159 were

obtained for radial and circumferential distortion respectively at 100

percent speed'.

Overall performance and stall limits were determined with both the tip

radial and circumferential inlet flaw distortions at 70 %, 907o and 100% speeds.

In the case of circumferential distortion, extensive radial and circumferen-

tial flow'surveys were made. Radial :flow surveys and blade element data were

also obtained for the radial distortion condition. For e all tests, the rota-

ting stalls originated at the rotor tip. With both distortions, the stage

suffered significant losses in efficiency. Stage total-pressure ratio and

weigh, flow _losses for both inlet flow distortions were appreciably less with

the 40* inlet guide vane stage configuration than with the zero turning con-

figuration.
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SECTION II

INTRODUCTION

The need to reduce the size and weight of gas turbine engines for ad-

vanced military and commercial aircraft has led to the use of high-tip-speed

fan and compressor stages. The Task II Stage was designed under NASA Contract

NAS3-11157 to obtain data on the efficiency, stall margin and distortion tole-

rance of high-tip-speed stages and to investigate the use of variable geometry

features to maintain performance at off-design operating conditions.

The design of the NASA Task II Stage is presented in Reference 1. Refe-

rence 2 documents the testing of the Task II Stage with undistorted inlet

flow.

This report presents the performance of the NASA Task II Stage when
tested with tip-radial and 90° one-per-rev circumferential inlet flow dis-

tortions. Performance was determined for each inlet condition at two combi-

nations of inlet guide vane and stator setting angles. For convenience, the

inlet guide vane and -stator schedule combination will be abbreviated as the

numerical value of the inlet guide :vane setting angle followed by the numerical

value for the stator vane setting angle. Thus the combination of a 400 IGV

1	 (inlet guide vane) setting angle with an 8 0 stator adjustment would be written

as the 40 0 /8° I GV/stator schedule.
J.

In addition to overall performance and the effect on stall limits, blade

element data were obtained for the case of radial distortion. Blade element

data used for velocity diagram calculations, were recorded using traverse

probes at each blade row inlet and exit. For the case.-of circumferential

distortion, detailed flow surveys were performed at each blade row inlet and

discharge. These were obtained by rotating the circumferential distortion

screen to various positions relative to the fixed rakes and traverse probes.
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SECTION IIT

APPARATUS AND PROCEDURE

1. TEST COMPRESSOR STAGE

The Task II Stage used for this program consisted of a 1500 ft/sec tip-

speed rotor and variable-geometry guide vanes and variable-stagger stators.

The Task II Stage test vehicle employed much of the existing hardware from

earlier Task I testing performed under this contract, including the stators.

New hardware included the IGV assembly and rotor.

Table I is a summary of Task II Stage blade row design parameters and

predicted performance. Additional details of the Task II Stage design are

given in Reference 1. The inlet corrected weight flow of the Task II Stage

was selected to be 226 lbs/sec, with a specific weight flow of 41.62 lbs/sea-

sq ft of annulus area. The required Task II rotor tip diffusion factor of

0.35 and the rotor tip speed of 1500 ft/sea dictated that Task II rotor total-

pressure ratio to be just under 1.7. The rotor blades employed arbitrarily
shaped tip sections to minimize shock losses and excess flow area. These

sections were smoothly blended to a double-circular-arc-type section at the

hub. The stator had double-circular-arc-type vane sections at the outer part

of the blade which blended into arbitrarily shaped hub sections designed

especially for low suction surface Mach numbers. Stator hub solidity was
2.155, and aspect ratio was 2.065 with radially non-constant chord. The

inlet guide vane was derived from an uncambered NACA series 65 airfoil with
a maximum thickness to chord ratio of 10%. The vane was made in two parts

to accomplish camber variation.' The nose part, whose chord was 20.437o of the
total chord, was fixed in the axial direction. The rear flap, with a chord

that was 79.577o of the total, could be rotated to vary the trailing edge

angle. The solidity, based on the sum of the nose and flap chords, ranged

from 1.299 at the tip to 1_,788 at the hub.

2. TEST FACILITY

Performance tests were conducted in General Electric's house compressor

test facility in Lynn, Massachusetts. The test compressor drew atmospheric

'I



air through two banks of filters. The first filter bank was intended to

remove 227o of the particles larger' than 3-5 microns (dust spot test), and

the second filter bank was intended to remove 90-9570 of the remaining par-

ticles down to the same size. The air then passed through a coarse-wire

inlet screen, into the bellmouth and then through the distortion screen and

compressor. In the exit assembly, the compressor discharge flow was split

into two concentric streams. The inner air stream was passed into an exit

pipe containing a .flow straightener and a venturi flow meter and then was

exhausted to the atmosphere. The outer air stream passed through a slide

cylindrical throttle valve into a collector. Two pipes, each of which con-

tained a flow straightener and a venturi flow meter, then discharged the

outer stream to the atmosphere. Power to drive the test compressor was

provided by a high-pressure non-condensing steam turbine rated at 15,000

horsepower. A schematic diagram of the test facility is shown in Figure 1.

3. INLET DISTORTION EQUIPMENT

The Task II inlet distortion screens were the same as those used in the

Task I distortion testing performed under NASA Contract NAS3-11157. Both

radial and circumferential distortions were tested. The radial distortion

screen for Task II, shown in Figure 2, covered the outer 4070 of the annulus

area, while the circumferential screen, shown in Figure 3, spanned a 90 * arc

from hub to tip. Both screens were made of 20-mesh 0.016-inch diameter wire,-

giving a screen open area of 0.46. The screen material was selected to give

a distortion parameter, (P	
minP )/P max , equal to 0.20 with a design flowmax 

of 226 lbs/sec at 10076 design speed.

The support screen, which spanned the entire annulus and to which the

distortion screens were attached, was designed to be rotated 360 0 past the

instrumentation for the circumferential inlet distortion testing. The support

screen material was one-inch-square mesh with 0.093-inch diameter wire, and

gave anopen area of 83.470. The Task II support screen was designed to sepa-

y;	 .^^fr



The distortion screens were located one rotor diameter forward of the

rotor leading edge, and were mounted in a cylindrical section approximately

one-rotor diameter long which was inserted into the test vehicle only

during distortion testing.

4.	 INSTRUMENTATION

A listing of fixed and traverse instruments provided for each phase of

the distortion testing is given in Table II.	 The locations of these instru-

ments, and of hub and casing static taps are shown in the instrumentation

schematics, Figures 4 and 5.

All traverse probes were calibrated for Mach number and pitch angle

effects, and these calibrations were used in the data reduction calculations.

Static wire calibrations for thermocouple sensors were properly accounted
i

for.	 Fixed temperature and pressure rakes were calibrated for Mach number

effects, but these proved to be small enough for the case of pressure ele-

ments to be neglected.

Overall performance measurements were obtained from fixed instrumen-

tation at stage inlet and exit, located at seven, radial positions on design

streamlines passing through the 5%, 10%, 3Wo, 50%, 70%, 9%, and 95% of

annulus height from the tip at Plane 1.51. 	 The inlet total pressure forward

of the distortion screen was measured by six 7- element pitot-static rakes

located at Plane 0.01. 	 The inlet total temperature was measured with.24

chromel-alumel, thermocouples distributed over the face of the vehicle inlet

screen.	 The inlet total pressure aft of the distortion screen was obtained

by two 7-element total-pressure distortion rakes located at 'lane 0.18 in

the 30 0 and 195 0 circumferential positions.	 Figure 6(a) illustrates one of

i

these rakes.	 Stage exit conditions were measured at Plane 2.20 with seven {
i

14-element total-pressure and total-temperature wake rakes.	 An example of

these rakes caii be seen in Figure 6(b).	 Discharge static pressures were

measured by eight hub and eight casing static taps at the exit plane.

5
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Radial distortion blade element immersion data (total pressure, total

temperature, static pressure and flow angle) were measured at each blade row

inlet and exit by a 4-parameter combination probe designated T-1, T-3 1 T-8

and T-11 in Figure 5. For circumferential distortion, traverse data were

recorded at the 10%o, 50% and 90% immersions by the 4-parameter probes instead

of at the usual seven immersions. Figure 6(c) is an enlarged photograph of

the sensing head on the combination probe. The combination probe designated

T-3 at plane 0.95, the inlet guide vane exit, had the capability of traversing

circumferentially. This capability insured that measurements 'taken at the

inlet guide vane exit would be taken in mid-channel between adjacent inlet

guide vanes and not in a vane wake.

Three hot-wire anemometer probes at Plane 1.51 were used during all

stall tests at the 10%, 50%n and 90% immersions to determine the initiation

of stall and the radial extent of the stall cells. For all other testing

the hot-wire probes were removed from the airstream. One of the probes is

illustrated in Figure 6(d).

P

5. DATA REDUCTION METHODS

Three separate computer programs were used to reduce the test data.

The Overall Performance Data Program computed average fluid properties at

each measuring station from data measured by feed instruments and calcu-

lated overall stage and rotor performance parameters such as total-pressure

ratio and adiabatic efficiency. The Blade Element Data Program calculated

vector diagram and blade element performance parameters for seven streamline

sections. This program reduced data from both fixed and traversing instru-

ments. These two computer programs were used primarily to reduce data obtained

during radial inlet flow distortion testing. A special Circumferential _Dis-

tortion Data Program was used to calculate vector diagram data at numerous

circumferential, radial and axial locations during circumferential inlet

flaw distortion testing. This data reduction computer program also calcu--

lated overall performance data from average fluid properties determined by

special circumferential/radial mass-averaging methods. Input data were

obtained from both fixed and traverse instruments at twelve different cir-

cumferential positions of the distortion screen.

11^1	 ^
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Several assumptions were made that were common to all three data re-

duction programs.	 First, it was assumed that the radial position and meri-

dional slope angle of each stream surface on which data were recorded were
fixed at the design value for all operating conditions.	 Second, all mass-

averaging calculations used to determine average total temperature and total

pressure were formulated in terms of enthalpy and entropy. 	 Finally, the real

gas properties of dry air were used in all thermodynamic calculations.

Additional details of the data reduction methods used appear in the

following sections.

a.	 OVERALL PERFORMANCE DATA PROGRAM
x

Average test vehicle inlet conditions ahead of the inlet distortion
s

screen were taken as the arithmetic average of the Plane 0.01 thermocouple
and total-pressure rake readings.	 With radial inlet Flow distortion the

average stage inlet total temperature was calculated as mentioned above,

but inlet total pressure was radian	 mass-averaged from readings of theY	 g	 g

two distortion rakes located at Plane 0.18 between the distortion screen

and the inlet guide vanes. 	 The static pressure used in the mass-averaging
procedure was determined at each of the seven radial instrument positions by

linear interpolation versus radius between arithmetically averaged hub and

casing wall static pressure values. 	 Total pressure at each radial position 3	 '

was taken as the arithmetic average of the values given by the two inlet
1

distortion rakes.	 An approximate value of average inlet total pressure was
a'

also calculated by this program for the case of circumferential inlet flow i

distortion.	 At each radial instrumentosition, thep	 pressure reading from_:.

the Plane 0.18 rake located in the 2700 undistorted region was weighted

three times as heavily as that from the rake located in the 90 0 distorted -

region when calculating the local average pressure with circumferential dis-

tortion.	 These were then mass-averaged radially as in the case of radial'
inlet flow distortion.	 With either inlet distortion, the flow at Plane 0.18

was assumed to be axial.

Average stage exit total pressure and total temperature were calculated
from data measured by the Plane' 2.20 wake rakes,.	 A simultaneous radial, and

a.
F	
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circumferential mass-averaging procedure was used to properly account for

variations of measured properties across the stator spacing as well as

radially. The static pressure required at each of the seven radial measure-

ment positions was again obtained by linear interpolation between average

wall static pressure values. In addition to overall fluid properties at

Plane 2.20, this data reduction program also calculated average total, tem-

perature and total pressure 'xt each radial position by mass-averaging cir-

cumferentially across each wake rake. Flow angles at Plane 2.20 were assumed

to equal zero degrees plus or minus any stator stagger adjustment. In order

to calculate more accurate total properties with circumferential distortion

at each specific discharge wake rake radial and circumferential location,

the static pressure associated with each particular wake rake was interpo-

lated from readings of hub_ and casing wall static taps located at the same

circumferential position as the wake rake,, These methods of obtaining dis-

charge conditions were believed to oXfer excellent accuracy for axisymmetric

flow fields expected with radially distorted inlet conditions, but to be only

approximate for circumferential distortion testing.

Rotor exit total pressure at each of the seven radial measurement posi-

tions was taken as the arithmetic average of the three highest readings on

each stage exit wake rake. Total temperature at each radial position was	
"rye a

assumed equal to the stage exit value. Average total pressure at the rotor

exit station was calculated by a radial mass-averaging procedure which used

a weight flow at each radial position calculated from stage exit properties

and flow angles.

During undistorted inlet tests, inlet guide va:ie total-pressure loss

coefficients were determined using special test procedures as discussed in

Reference 2. The rotor inlet total pressure at each immersion at Plane 0.95

for the distortion testing was determined using a table of inlet guide vane

loss coefficients versus inlet Mach number and guide vane turning angle. The

guide vane inlet Mach number was calculated using the distortion rake total

pressure and the static pressure obtained through a linear interpolation

between arithmetically averaged casing and hub measured static pressures. 	
t
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The average rotor inlet total pressure was calculated using a radial mass-

averaging procedure, assuming the flow angle at the rotor inlet, Plane 0.95,

equal to the inlet guide vane camber angle. The IGV losses determined from

the undistorted inlet tests were used for both radial and circumferential

inlet distortion testing. This procedure was only approximate with circum-

ferential distortion due to the guide vane incidence angle variations re-

sulting from the non-axisymmetric flow.

The average total temperatures and total pressures at the stage inlet,

rotor inlet, rotor exit and stage exit measurement stations were used to cal-

culate overall performance parameters of total-pressure ratio, total-

temperature ratio and adiabatic and polytropic efficiency for the stage as

a whole and for the rotor as an isolated blade row. The weight flow was

corrected to standard day conditions at Plane 0.18. In addition, the Over-

all Performance Data Program calculated Local average total temperature and

total pressure at seven radial positions at each measuring station which

could be used as input data to the other data reduction computer programs.

b. BLADE ELEMENT DATA PROGRAM

Blade element and vector diagram data were obtained at seven immersions

for rotor, stator and inlet guide vanes during radial distortion tests. Cir-

cumferential uniformity was assumed for all such data. The primary data used

for blade element calculations were obtained by combination probes at each

blade row inlet and exit. These probes measured total temperature and pies

sure,static pressure and flow angle at Planes 0.18 (IGV inlet), 0.95 (IGV

exit/rotor inlet), 1.51 (rotor exit/stator inlet) and 2.20 (stator exit).

After the thermodynamic properties had been determined at seven radial

positions at each measuring plane, they were transferred along streamlines to

the leading and trailing edges of each blade row. The slopes, radii and'i

streamtube convergence along streamlines between measurement station and

blade edge were assumed to remain fixed at the design values for all flow

conditions. The tangential velocity was obtained at the edges of the blades

by applying the condition of constant moment of angular momentum along each

streamline. The calculated meridiona'l Mach number at the measurement station

9_
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was used to determine the meridional Mach number at the blade edge from the

strea:mtube convergence relationship illustrated in Figure 7. This method

was a good approximation when the radius change between the blade edge of-

the measurement station was small. However, since there was appreciable

swirl velocity at the rotor trailing edge, any large radius changes would

adversely affect the approximate results. Table III gives the constants

used in these computations for the inlet guide vane, rotor and stator. With

the measured total conditions assumed to be constant along the design stream-

lines and the tangential velocities and meridional. Mach numbers determined

at blade edges in the above manner, the velocities, Mach numbers and all

vector diagram components were determined at the edges of each blade row.

Calculated blade element performance parameters included diffusion

factor, static-pressure-rise coefficient, total-pressure loss coefficient

and loss parameters adiabatic and polytropic efficiency, plus total-

temperature and total.- pressure ratios. Alternate values of rotor and

stator total-pressure loss coefficient and loss parameter and of blade

element efficiency were calculated by using total temperature and rotor

exit total pressure measured by the stage exit wake rakes in place of the

combination probe measurements at Plane 1.51.

c. CIRCUMFERENTIAL DISTORTION DATA PROORRAM

With the non-axisymmetric flow produced by circumferential inlet flow

distortions, special procedures were required in order to determine the cir-

cumferential variation of vector diagram parameters and to calculate overall

performance from fluid properties that had been mass-averaged circumferentially

as well as radially. At certain operating conditions,compressor speed and

weight flow were maintained constant and the distortion screen was rotated

to twelve different circumferential positions. Both fined and traverse in-

struments were read at each screen position.

Stage exit total temperatures and total pressures, measured at Plane

2.20 by wake rakes, were obtained in the form of local mass-averaged values

at 10, 30, 50, 70 and 90% immersions at each screen position by processing

the fixed instrument data through the Overall Performance Data Program.



r'

Stage exit static pressure and flow angle were measured by a .dour- parameter
traverse probe at Plane 2.20 immersed to the 10, 50 and 9076 immersions at
each screen position. At Planes 0.18, 0.95 and 1.51, the stage inlet, rotor
inlet and rotor exit planes, the total pressures, static pressures and flow
angles were measured at three immersions by four-parameter probes. Rotor

exit total temperatures were also obtained from the Plane 1.51 Pour-parameter

probe.

These data were then input to the Circumferential Distortion Data Program.
Input data were first corrected for variations in atmospheric conditions by

applying temperature and pressure correction factors 6 and 6 as determined
from the Plane 0.01 data listed in the output of the Overall Performance

Data Program for the appropriate screen position. The stage inlet tempera-
ture was then assumed constant, equal to 518.688 0R. Radial interpolations

versus radius were used with the data from the traverse probes -to determine
fluid properties at the 307o and 70%Q immersions where traverse data were not
recorded. The circumferential position of each instrument, and thus of each

item of measured data, relative to the distortion screen centerline was then
determined. Finally, by linear interpolation versus circumferential position,
a value of total temperature, total pressure, static pressure and flow angle
was deduced at twelve standard circumferential positions and five radial

positions at each of Planes 0.18, 0.95, 1.51 and '2.20.

These four fluid conditions, plus the assumption of design streamline
slope angle, were sufficient to calculate all vector diagram components at
each of the standard points in the flow field. In addition to calculating
vector diagram data, the Circumferential Distortion Data Program also used

this extensive set of data to calculate an average value of total temperature
and total pressure at each measuring station. These were obtained by a mass-
averaging procedure which accounted for circumferential as well as radial
variations. These average fluid properties were then used to calculate the
total-pressure ratio, total-temperature ratio, and adiabatic and polytropic
efficiency for the stage and for the rotor as an isolated blade row. Values
of weight flow corrected to standard day conditions, W3g/6 at both IGV



inlet and rotor inlet were calculated using 6 values obtained from fully

mass-averaged total pressures at Planes 0.18 and 0.95.

6. TEST PROCEDURE

The distortion testing of the NASA Task II Stage was performed at 70%Q,

90% and 100% of rotor design speed for each of two specified Stage confi-
I r	 gurations with radial and circumferential inlet flow distortions. The two

configurations consisted of the nominal (0°/0°) and 400 /8* IGV/stator

schedules selected for undistorted inlet testing, as described in Reference

2.

The first part of each test run was concerned with defining the stall

points for t .at particular stage configuration and inlet flow distortion.

When determining the stall point, the discharge throttle was closed until

strain-gage and hot-wire anemometer signals indicated that rotating stall

cells had formed in the rotor. Three shielded hot-wire anemometers were

immersed to the 10, 50 and 907o'positions at Plane 1.51 and oscillograph

traces were obtained which showed the radial extent of the stalled region.

The throttle valve was then reset to an unstalled condition close to the

stall limit and overall performance data were recorded.

An ICPAC* trace was obtained whenever the vehicle was stalled, and the

approximate stalling weight flow was obtained by recording the ICPAC flow

at the instant stall was detected. The true stalling weight flow was obtained

from a correlation of ICPAC flow versus actual weight flow using values

obtained during overall performance testing.

a. RADIAL DISTORTION TESTING

When the stall limits for radial distortion had been established, over-

all performance data were recorded at 70, ` 90 and 1007o of rotor design

* The ICPAC (Instantaneous Compressor Performance Analysis Computer) is an
analogue circuit which senses weight flow and pressure ratio, and which
plots these quantities nearly instantaneously to provide an approximate
on-line compressor performance map.
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speed for both IGV/stator schedules at discharge throttle valve settings

where maximum flow, near-stall and intermediate flow conditions were

expected.

During radial distortion testing, blade element traverse tests were

accomplished using the combination probes located at Planes 0.18, 0.95,

1.51 and 2.20 for three flow conditions for each IGV/stator schedule. For

the nominal IGV/stator schedule, blade element traverses were performed for

flow conditions of 1007o design speed at both maximum weight flow and near-

stalling flow; a traverse was also obtained at 70% speed at the intermediate

flow condition. For the 40°/8° IGV/stator schedule, blade element data were

obtained at 707c design speed at maximum flow and near-stalling flow, and

also at 10076 design speed at the intermediate flow condition. At the con-

clusion of each blade element traverse, the probes were retracted out of

the airstream and overall performance data were recorded.

b. CIRCUMFERENTIAL DISTORTION TESTING

Circumferential distortion overall performance testing methods were

similar to those used with radial distortion. Once the stall points had

been identified for 707o, 90% and 10076 of rotor design speed, overall per-

formance data were obtained fov flow conditions of maximum flow near-stall

and intermediate flow for each speed at both IGV/stator schedules.

In addition to overall performance testing, detailed radial and cir-

cumferential flow surveys were made. These surveys were performed using

the distortion screen rotation capability and the combination traverse

probes. Screen rotation tests were performed at flow conditions similar

to those used for the radial distortion blade element traverses. For each

operating condition, at each _of twelve circumferential dis tortion screen

0positions spaced every 30 , overall performance data were recorded and

traverse data were obtained at immersion positions of 107o, 50%, and 907o.

At each screen position, following the traverse test, the probes were

retracted out of the airstream and overall performance data were recorded.

These data were processed using the Circumferential Distortion Data Program
4

as discussed in the Data Reduction Methods section,

a.
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SECTION IV

RESULTS AND DISCUSSION

The testing reported herein was conducted on the NASA Task II Stage

{

subjected to inlet flow distortions. 	 The performance of the stage with

undistorted inlet flow is documen-Od in Reference 2.	 The performance

obtained with radial and circumferential inlet flow distortion i s presented

in the following sections.

1.	 RADIAL DISTORTION TEST DATA r^

The distortion screen used to produce the tip-radial distortion is

shown in Figure 2.	 At 1007o design speed, near the limit of stall -free opera-

tion and with the nominal IGV/stator schedule, the severity of the distortion

pattern is indicated by the value of the distortion parameter (P 	- P	 )/
max	 min

P
	 equal to 0.172.	 Figure 8 shows the distortion parameter variation for
max '
both radial and circumferential inlet distortions over the weight flow range t

at all speeds tested. 	 These data were calculated from overall performance

results with radial and circumferential distortions.
H

a.	 OVERALL PERFORMANCE DATA

r	 A listing of overall performance readings obtained with radial distortion `;e

is given in Table IV(a). 	 The stage performance map based on the overall per--
R
V

Eformance data for the nominal IGV/stator schedule is shown in Figure 9.4

Similarly, Figure 10 	 resents the performance ma 	 for the 40° 8° IGV /statorY^	 g	 P	 P	 P	 / ^

schedule.	 The dashed lines on these maps indicate the performance of the

stage with undistorted inlet flow as presented in Reference 2.	 As can be

seen there was a significant reduction in adiabatic efficiency and total-

pressure ratio for both stage configurations due to the tip-radial. distortion.

The radial distortion stall lines are indicated on the performance maps,

Figures 9 and 10, for the two IGV/stator schedules. 	 The stalling weight flow`'

and total-pressure ratio were obtained as discussed in the Test Procedure

Section.	 Rotating stalls were encountered at all speeds.	 Ocillograph traces

obtained from shielded hot-wire anemometers indicated that the rotating stall

14
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cells were most severe at the tip and were very weak at the hub in all
instances.	 At 100% of design rotor speed, the tip-radial distortion re- t

sulted in reductions in stalling total-pressure ratio from 1.76 to 1.645

and from 1.425 to 1.37 for the nominal and 40 0 /8 0 IGV/stator scheduler,

respectively, when compared to the undistorted inlet stall line. i

b.	 BLADE ELEMENT DATA

Figures 11(a)-(d,) present radial profiles of total and static pressure,

total temperature, axial velocity and flow angle obtained from blade element

traverse measurements at 1007o speed near stall with the nominal (0 0 /0°) IGV/
z'

stator schedule.	 Figures 12(a)-(d) present similar data obtained at 7070

speed near stall with the 40 0 /8 0 IGV/stator schedule.	 Radial distributions

of 'rotor and stator diffusion factors for conditions near stall and maximum

flow are presented in Figure 13 for the 0 0 /0 0 IGV/stator schedule at 100%

speed and in Figure 14 for the -40°/8° IGV/stator schedule at 70% speed.

Rotor and stator total-pressure-loss coefficient, total-pressure-los,s para--

meter, and deviation angles calculated by the blade element data program are

plotted against diffusion factor over the speed range for each of seven }

immersions.	 Figures 15(a)-(g) and 16(a)-(g) show the nominal (0 0 00 ) IGV/

stator schedule blade element data, while the results for the 40°/8 0 IGV/ a

stator schedule are displayed in Figures 17(a)-(g) and 18(a)-(g). 1:
7

A complete tabulation of blade element data with radial distortion is

given for all three blade rows in Appendix B, Volume II of this report.
1.

2.	 CIRCUMFERENTIAL DISTORTION TEST DATA

The distortion screen used to produce thecircumferential distortion

is shown in Figure 3. 	 The screen covered a _90 0 arc of the inlet annulus

area at plane 0.10.	 A value for the distortion parameter, (P 	 - P I
max	 min.

P	 , equal to 0.159 was determined from tests for the near-stall limitmax
condition at 100% design speed with the nominal IGV/stator schedule.	 The -

nominal distortion screen centerline position was 195° from top center
to insure that the center of the 'screen would be aligned with one of the

distortion rakes.	 Figure 8 shows the variation of the circumferential

distortion parameter over the entire weight flow range tested based on

15
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maximum and minimum total pressures on the inlet distortion rakes (R-7 and

R-8, Figure 3) with the center of the distortion screen in the nominal position,

195 0 from top center.

a. OVERALL PERFORMANCE DATA

Table IV(b) contains a listing of the overall performance readings

obtained with circumferential inlet distortion. Figure 19 presents the com-

pressor performance map for the nominal (0 0 /00 ) IGV/stator schedule. Simi-

larly, Figure 20 contains the performance map for the 40 0 /8° IGV/stator

schedule. The dashed lines indicate the performance of the stage with un-

distorted inlet flow. The performance maps were constructed using adjusted

overall performance data.

Due to the limited sampling of data for single readings taken with the

distortion screen in the nominal position, the Overall Performance Data Pro-

gram calculated somewhat inaccurate average values of fluid properties and

overall performance parameters for circumferentially distorted flow. In

order to obtain data more representative of actual flow conditions, overall

performance and traverse data were obtained at twelve screen positions for

a single operating point as described in the Test Procedure Section. The

screen rotation test data were processed using the Circumferential Distor- 	
1 '̂• `• F A

tion Data Program to obtain circumferentially as well as radially mass-

averaged stage inlet and exit total pressures, and stage exit total tem-

peratures. A correlation was then made between the eircumferential__dis-

tortion output average properties and the corresponding properties obtained

from the single overall performance reading at the nominal distortion screen_ 	 ?

position. Results obtained 'using readings 10-21, 22-33, 34-45, 77-88,

119-130 and 132-143 were correlated with data from readings 10, 22, 34, 77,
N

119 and 132, respectively, which were obtained with a nominal (195°) dis-

tortion screen centerline position. A set of average correction factors was

then obtained for stage pressure ratio and discharge total temperature for

each IGV/stator schedule. These corrections were then applied to the readings

for which no screen rotation tests were performed and new overall performance

narameters were calculated. Table IV(b) and Fi gures 19 and 20 reflect the



The performance maps show that both configurations suffered significant
losses in efficiency due to the circumferential inlet distortion. However,

the weight flow and pressure ratio penalties with the 40 0 /8 0 IGV/stator

schedule were less than with the nominal schedule.

The circumferential distortion stall lines are indicated on the perform-
ance maps, Figures 19 and 20, for the two IGV/stator schedules tested. As

in the radial distortion case, rotating stall cells were most severe at the
rotor tip and weakest at the hub. For the nominal IGV/stator schedule at

1007o design speed, the circumferential distortion resulted in a decrease in

stalling total-pressure ratio from 1.76 to 1.66 when compared to the clean

inlet stall line. Similarly, at 1007o design speed, the 40°/8° schedule showed

a decrease in stalling total-pressure ratio from 1.425 to 1.38.

b. FLOW SURVEY DATA

Figures 21-23 and 34-26 present circumferential profiles of flow condi-
tions at each plane for -the nominal (0'/0°) and 40°/8 0 IGV/stator schedules,

respectively. Data is presented for 10 %6, 507o and 901/6 immersions. q, detailed

listing of flow properties and velocity diagram data is given in Appendix C
of Volume II. These data were obtained during screen rotation tests and pro-
cessed by the Circumferential Distortion Data Program.



APPENDIX A - SYMBOLS

Symbol Description. Units

A Annulus or Streamtube Area in.

C Chord Length of Cylindrical Section in.

Ch Enthalpy-Equivalent Static-Pressure-
Rise Coefficient, ie for Rotor:.

Y-1

Ch	 29Jc ti
p2 1( p1 i

Y	 - l 2	 2- (U2 	- U1p
1

Cp Static-Pressure- Rise Coefficient,	 ie ---
for Rotor:

P2	 - Pi
C= ---

P	 P1	 P1

c Specific Heat at Constant Pressure, 0.2399
p Btu/lb- °R '

D Diffusion Factor: ---

V	 r2 V82 -r1 V81
i

DRotor - 1 - V-1	 2r -a V-1 ' Y

V	 ri Vo l -r2Ve2
D	 - 1	

+

IGV/Stator	 V1	 2'r Q V1 x

9 Acceleration Due to Gravity, 32.174 ft/sect

i Incidence Angle; Difference Between Flow deg
Angle and Camber Line Angle at Leading Edge
in Cascade Projection

J Mechanical Equivalent of Heat, 778.161
ft-lb/Btu.

Kbl Effective Area Coefficient Due to Wall ---
Boundary Layer Blockage

M Mach Number ---
l 

^.

N Rotational Speed- rpm `.	 t

19 '::
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APPENDIX A - SYMBOLS (Continued)

Symbol Description Units

P Total or Stagnation Pressure psia

p Static Pressure psia

r Radius in. I

r Mean Radius, Average of Streamline Leading in.
and Trailing Edge Radii

T Total or Stagnation Temperature °R

t Static Temperature OR

U Rotor Speed ft/sec

V Air Velocity ft/sec

W Weight Flow lbs/sec
r

Z Displacement Along Compressor Axis in.

Flow Angle; Angle Whose Tangent is the Ratio deg
of Tangential to Axial Velocity

Flow Turning Angle, op = pi - 02 deg x.

y Ratio of Specific Heats

y" Blade-Chord Angle (Stagger) , Angle in Cascade deg

I
Projection Between Blade Chord and Axial
Direction

8 Pressure Correction, P	 /14.696 psia
Actual

s° Deviation Angle, Difference Between Flow deg
Angle and Camber Angle at Trailing Edge
in Cascade Projection

E° Slope of Meridional Streamline deg

Efficiency_

8 Temperature Correction, T 	 /518.7°R
Actual

8° Circumferential Position From Top Center deg
x

20
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APPENDIX A -- SYM13OLS (Continued)

Symbol	 Decription	 Units

K°	 Angle Between Tangent to Blade ,Meanline and 	 deg
the Axial Direction

a	 Solidity, Ratio of Chord to Blade Spacing	 ---

^°	 Camber Angle, Difference Between Angles in 	 deg
Cascade Projection of Tangents to Camberline
at the Extremes of the Camberline Arc

w	 Total Pressure Loss Coefficient 	 ---

P2 '	 - P2
Rotor: U

id 	 -, IGV/Stator: w = Pl_P^
Pi - pi	 Pi -pi

t)Coss2	
Total Pressure Loss Parameter

2CY

Subscripts

t



APPENDIX A - SYMBOLS (Concluded)

Subscripts	 Description

1	 Leading Edge

2	 Trailing Edge

0.01	 Measurement Station Designation

0.18	 Measurement Station Designation

0.95	 Measurement Station Designation

1.51	 Measurement Station Designation

2.20	 Measurement Station Designation

Superscripts

	

	 Description

Relative to Rotor

*	 Critical Flow Condition
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Table I. Summary of Stage Design Specifications and Performance

Rotor inlet corrected tip speed, ft/sec
Stage inlet corrected weight flow, lbs/sec
Stage total- pressure ratio
Stage adiabatic efficiency

Number of inlet guide vanes
Inlet guide vane total-pressure loss, percent
inlet total pressure

Inlet guide vane exit flow angle, deg.

TASK II
STAGE

1500
226.0
1.659
0.854

24

0.37
0

36.5
0.5

41.62
1.526
0.368
1.686
0.883
1.4
2.36
44

Rotor inlet tip diameter, in.
Rotor inlet hub: tip radius ratio
Rotor inlet corrected weight flow per unit annulus
area, lbs/sec -sq ft

Rotor inlet tip relative Mach number
Rotor tip diffusion factor
Rotor 'total-pressure ratio
Rotor adiabatic efficiency
Rotor tip solidity
Rotor aspect ratio
Number of rotor blades

Stator inlet hub absolute Mach number
Stator exit flow angle, deg.
Stator Lub,diff usion factor
Stator total-pressure loss, percent stator inlet
total pressure

Stator hub solidity
Stator aspect ratio
Number of stator vanes

0.766
0
0.435

1.22
2.155
2.065
46

t

K



Fable II. Summary of Instrumentation Used For Task II Distortion Testing;

Lm- ation	 I	 Instrumentation

t ► , l ► 1	 6 7-element pi tot-static rakes
Vehicle	 I	 24 total-temperature thermocouples
Inlet

u.Is	 2 7-element total pressure distortion rakes
Stage 	 1 4-parameter com p+ -..<<tion probe (total temperature
Inlet	 and pressure, static pressure, flow angle)

t ► .95	 1 4-parameter combination probe with circumferential

R()tor	 traverse capability

Inlet

1.^1	 1 4-parameter combination probe

Stator	 3 hot-wire probes

Inlet

2.20	 7 14-element wake rakes (total temperature end pressure)

Stage	 1 4-parameter combination probe

Exit

26
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Figure 16(a).	 Stator Blade Element Data for 0 0 . i 0 11 IGV/Stator
Schedule Measured at 5% Immersion from Tip.
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Figure 16(c),	 Stator Blade Element Data for 0 0 /0 0 IGV/Stator
Schedule Measured at 30% Immersion from Tip.
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	Figure 16(d).	 Stator Blade Element Data for 0 0 /0 0 IGV/Stator
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	 Circumferential Distortion Profiles of Flow Conditions at 10'J
Percent Speed Intermediate: Flow with 40"/8 0 IGV/Stator Schedule
at Plane 0.18.
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	 Circumferential Distortion Profiles of F:ow Conditions at 100
Percent Speed Intermediate Flow with 40°/8° IGV/Stator Schedule

at Plane 0.95 (Concluded).
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	 Circumferential Distortion Profiles of Flow Conditions at 100
Percent Speed Intermediate Flow with 40°/8 1 IGV/Stator Schedule
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	 Circumferential Distortion Profiles of Flow Conditions at 100
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Figure 26(c).	 Circumferential Distortion Profiles of Flow Conditions at 70

Percent Speed Near Stall with 40 0 /8 0 IGV/Stator Schedule at
Plane 1.51.
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