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Abstract

To investigate magnetic nozzle processes, a
theoretical quasi-one dimensional analysis was em-
ployed. Included in the analysis are the effects
of unequal electron and ion temperatures and elec-
tron thermal conductivity. The acceleration of the
plasma is controlled by an imposed magnetic nozzle.
The parameters that control the flow are the nozzle

‘shape, the ratio of kinetic pressure to magnetic

pressure, and the ratio of the nozzle throat radius
to the collisional mean free path. Results show
that higher nozzle exit velocities than a corre-
sponding adiabatic flow are achieved. Also, the
plasma temperature remains higher throughout the
nozzle than a corresponding adiabatic flow.

Introduction

Plasma devices such as the MPD a.rc(l) and the
Q machine wind tunnel(2) produce high speed flows
in a diverging magnetic field. One possible ex-
planation for the acceleration mechanism in these
devices is that the diverging magnetic field acts
as a nozzle. Axisl acceleration occurs as a result
of both the magnetic pressure exerted by the nozzle
and the conversion of thermal motion into axially
directed motion. To investigate magnetic nozzle
processes, a theoretical quasi-one dimensional
analysis was undertaken.

The recent analysis of Walker and Seikel(3)
considers this same problem in a different manner.
Their analysis considers the flow near the axis of
the nozzle including the electron thermal conduc-
tivity. The main assumptions of their analysis are
that the ion temperature is negligible and that the
Hall parameter (electron cyclotron frequency/
electron-ion collision frequency) is a constant, at
least near the nozzle's axis.

The geometry of the problem considered in this
study is shown in Fig. 1. An imposed axially sym-
metric magnetic field controls the flcw. Any
change in the magnetic field from induced currents
is neglected.

One fairly simple method of analyzing this
plasma flow is by a quasi-one-dimensional analysis
similar to those applied in ordinary gasdynamics.
In the case of a fully-ionized plasma, however, we
must consider two species (ions and electrons) ra-
ther than a single species. Also, since electrons
are much lighter than ions, the electrons tend to
have larger random energies and therefore a higher
temperature than the ions. The small electron mass
also results in large values of the thermal con-
ductivity for the electrons. Therefore, in the
analysis herein unequal electron and ion tempera-
tures as well as electron thermal conductivity are
included. 3

Quasi-One Dimensional Equations

The quasi-one dimensional equations are de-
rived in appendix A by integrating the various

equations over the control volume shown in Fig. 1
(this is a segment of the nozzle). Also, the fol-
lowing assumptions are made.
(1) Plasma properties are uniform across the
nozzle
(2) No current in x direction, J, = 0
(3) Quasi-neutrality, ne = nj
(4) Heat flux in r and ¢ directions is-
negligible
(5) Viscous forces are negligible
(6) No energy added to flow
(7) Ratio of electron to ion mass, mg/m; = €2,
negligible compared to 1
It should be noted that 1 is the basic assumption
for any quasi-one dimensional analysis.

Under the above assumptions the following
equations are derived in appendix A.
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The bars appearing in the above equations are used
to denote dimensional variable quantities. The
subscripts e and i are used to denote electrons
and ions, respectively. All quantities are de-
fined in the ysual manner; V is velocity, T is
temperature, p is mass density, T is number den-
sity, P 1is pressure, B is magnetic field strength
Q@ 1is heat flux, and A 1is the cross sectional
area of the nozzle at position X. The quantity
Vei 1is the electron-ion collision frequency for
transfer of momentum given by Equa. (A28) in the
appendix. In appendix A, Equa. (Al7) is derived
without assuming that By and B, are uniform
across the nozzle. However, in the asbove equations
it has been assumed that By, and B, are uniform
across the nozzle.



In addition to the above equations, we nced
expressions for the total pressure 7, and Br’

For the total pressure we have

P = figkT, + MykT; = Ak(T; + Te) (1)
Define the temperature,
T =T, +7, (2)
therefore
B = AT, (3)
- The magnetic field is assumed to determine the
nozzle shape,
&R _ ]i (4)
ax B,

where R is the_nozzle radius at position X.
Also, from V. B =0 and assuming By is uniform
across the nozzle (see equation immediately pre-
ceeding Eq. (A16)),

ByA = (BxA)x=0 (s)

We now nondimensionalize the equations using
the following definitions.
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The asterisk subscript is used to denote conditions
that exist at the nozzle throat. Unbarred quan-

tities are dimensionless, Ty = (T ), and 1s 1is
the throat radius. Also, veis has been defined as

a function of Ty rather than Tex = (Te)x=0-

If Egs. (AS) and (3) are used to eliminate
5, M, and P, Egs. (A17), (A25), (A31), and (A34)
become, respectively, the following dimensionless
equations
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Appearing in Egs. (7) to (10) are the throat Mach
number My, the ratio of the throat radius to the
throat mean free path 1la/A,;,, the magnetic pres-
sure term G(x), and the square root of the mass
ratio e.
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The term By is the ratio of kinetic pressure to
megnetic pressure at the throat.

e (1s)

1
= B
g Xx

(The approximation Famyf (eq. (A8)) is used
throughout the paper.) ¥rom Egs. (7) to (10) we
see that the solution will depend on the param-
eters My, By, (14/Ae; ), and e. Also, ve must
know the area, A, as a'function of x. As we
shall see later, My will be determined by the
value of (Te)x=0. The parameter By determines
the relative energy density of the magnetic field
compared to the thermal energy density. Large By
implies small magnetic fields. The parameter

1./A is a measure of the "ccllisionness" of
the ﬂsv. A large value of this parameter means
there are many collisions occurring. For the basic
equations from which the quasi-one dimensional
equations are derived to be valid, the flow must
be collisional. Therefore, ls/Aej, 2 1. The mass
ratio € merely depends on the gas considered.

In Eq. (10a) the dT¢/dx and vq terms have
a coefficient proportional to l/ex‘. Since this
quantity is of the order of 10%, the other terms
in Eq. (10a) will be small compared to the dT./dx
and vq terms. As a result the following approx-
imate heat flux equation was used.

BPg 4Ty

5 4AV dx

lg

-1.8586 q (10b)

el

If Egs. (7) to (10) are so.. .3 for the var-




ious derivatives the following results are ob-
tained.
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_ 5lwey2 .2
D= E[M’V (To 2 're)] (20)
o = (22 )n;3/2[55:98 5a | 3¢ (g _zp )| (21)

25 6 T,

ein AVOMy

In obtaining these expressions we have used the re-
sults of Eq. (A28) in the appendix.

Vei _._n 1n Agy
Veiy 'r272 1n Agy,

(22a)

Since 1ln Ay; 1is a slowly varying function we have
used the approximation,

1

11
i e (22v)
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The continuity equation has been used to replace n
in Eq. (27b).

Critical Point

The system of Egs. (16) to (19) has a critical

point when D = 0 or when,
e 2
Py v
R LA Mez =
S ¥ 2 4 2 ¢2
3 lﬂ’o He + 5 €

where

e (24)
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3 e

Equation (23) shows that the critical point occurs
at a subsonic Mach number. In order for the flow
to pass smoothly through this singular point, the
numerators in Egs. (16), (17), and (19) must go to
zero when D = 0. The first two terms in the nu-
merators of Egs. (16), (17), and (19) are propor-
tional to dA/dx. Therefore, wvhen dA/dx = O
these terms will vanish. The last term in the nu-
merators of Egs. (16), (17), and (19) will vanish
when @ = 0. As a result, by requiring that da/dx
=6 =0 when D=0 the solution will be con-
tinuous at the critical point. From the require-
ment 6 = 0, we obtain a condition on the heat flux
at the critical point (see eq. (21)).

€T,
25 Cx
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The reason for the asterisk will be explained
shortly.

(25a)

For any value of Te, that gives a physically
meaningful solution D < 0 just upstream of the
critical point (see eq. (20)). Therefore, in order
for the flow to be accelerating the nurerator of -
Eq. (16) must be negative. in magnitude. For the
values of By and lg/)\ei* considered here, the
predominate term in the numerator of Eq. (165 is
the first one, which is multiplied ty (1/A)(dA/ax).
Therefore, in order for the numeratcr to be nega-
tive, dAfdx < 0. Similarly, just downstream of the
critical point D > 0. In this case dAfdx must
be positive. Since dA/dx goes from negative to
positive in passing through the critical point we
have established the critical point as that corre-
sponding to the minimum area of the nozzle (i.e.,
the throat). It is for this reason that the aster-
isk subscript is used on the quantities in
Eq. (25a). Also, since we have nondimensionalized
in terms of the throat properties, To, =1, Vpg=1,
Ay = 1 and Eq. (25a) becomes the following.

eTe
25 6 *
“ Bl w w-t =
Using Eq. (20) at the critical point we obtain an
expression for M.

M =1 -%Te* (26)

It should be pointed out that the condition
dAfdx = @ = O is not the only one that will make
the numerators of Egs. (16), (17), and (19) vanish.
However, based on ordinary gasdynamic flows, it
appears physically meaningful that the critical
point should occur at the throat. Also, the re-
quirement 6 = O establishes a boundary condition
on the heat flux in terms of T_.

Nozzle Area Ratio

So far it has been established that the equa-
tions describing the flow have a critical point.
Further, this critical point has been fixed at the
nozzle throat and yielded a boundary condition on



the heat flux. 'This information was obtained with-
out specifying the cross-sectional area variation
of the nozzle. To integrate the equations, how=-
ever, we must specify how the nozzle area veries
with X.

The nozzle radius dependence on X was
assumed to be the fcllowing.

R=axP+1, (27)
where 1x 1is the throet radius and a and p are
constants. Using Eq. (27) the area can be calcu-
lated. In dimensionless form it is the following.

- (agr? + 1)° (26)
A= (Agx* +
where,
-1
Ag = alh (29)
From Eq. (28) the following is obtained,
p-1 y
LA o f—E {30)
A dx P
Agx +
Also, from Egs. (4), (5), and (27) to (29),
p-1
PA_X
Bp = ———— (31)

?
(Asxp + 1)

and using Eq. (13),

20%(p - VA7 [ 4 1 <2p-3
G = AgxP - 1| —=—— (32)

B -1
L (AgxP + 1)

Dependence of Solution on Electron Temperature

Considering Egs. (16) to (19) and (25) to
(32), we see that the solution will depend on the
following quantities; e, By, (lx/Meiy), Ag, P, and
T.,- The first three of these parameters have al-
regdy been discussed. The quantities Ag and p
merely determine how fast the area changes with x.

Since Te* is a boundary condition on the
electron temperature it might at first seem that
solutions should be obtainable for all values of
Te, from O to 1. However, it was found that for
given values of the other parameters a physically
meaningful solution was obtained for only one valuz
of Te,. By a physically meaningful solution is
meant one in which T, § T, for largs values of x.

Asymptotic Sclution

For very large x the expected results are
Toy Tey 9+ 0 and V-V, where V_ 1is som2
asymptotic limit. However, Egs. (16) %o (19) will
not produce such results. This can be seen by con-
sidering Eq. (19) for large x. In this case

a4 . g
ax S vey2
2 M
—tes e g flx) 3 E M aTe
A p5/2 \N\ey 2 Y6 A ax
e

vhere Eq. (18) has been used. From this expression
we see that q will be increasing while T, 1is
decreasing for large x. Such a result is not
rhysically meaningful since both T, and g
should approach czero as x approaches infinity.
"herefore, the integration of Egs. (16) to (19) was
2ut off when q started to increase. This oc-
surred for values of' the area ratio, A of the
order of 100. A discussion of how this result in-
fluences the conelneious of the analysis is pre-
seutea in the RESULTS section.

Adisbatic and Isentropic Solutions

It is of interest to compare Lue solution ol
Egs. (16) to (19) with the sdiabatic and isentropic
flows for a similar nozzle. To obtain the adia-
batic solution we merely let q = O in Egs. (7) to
(10). 1In this case Eq. (10) is not used and :
Eq. (9) (electron energy)- is decoupled from
Egs. (7) and (8). Equation (8) can be integrated
to obtain

g

T, = = (1-Vv2) +1 (33a)

We also obtain from Egs. (7) to (9) the following
results for dV/dx and afg/dx;

GV + O-‘E
L] N - (34a)
ax  heyZ
-3/2
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ax My \Neg ) av2 ° ¢
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GV + MZVZ LA
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This system of equations has a critical point when,

2y2
Mve -1, =0

or when

7
2 T
=="

W=

= 1 (36)

This is the ordinary gasdynamic situation where the
eritical point cccurs at M = 1. Similar t> the
case for q f 0, the critical point must occur st
the nozzle throat in order for the flow %o pass




smoothly through this point.
is the throat Mach number, My =

Therefore, since Mg
1 and Eqs. (33a)

to (“5a) become, respectively
To==(1-V3) +1 (33p)
T
oV + =2 dA
%1 = V|— A_dx (34p)
X
V-,
ar 1, \ 1237 ; ,
—_— = 2¢ Ty - 2T,
dx )\eil sz
o Jevezid
- &im, - A dx | (35p)
3
V-,

Equation (33b) yields the maximum velocity
ratio that can be attained in an adiabatic flow for
a monatomic gas. To reach the maximum velocity,
the flow is expanded until To - 0. Therefore,
from Eq. (33b)

I
0

(Vmax) ag = (37)

For isentropic flow, q = O, and no current may
flow in the plasma. The magnetic field term G
results from the J x B term in the plasma momen-
tum equation. Therefore, since J -+ 0, G- 0 as
well. Under these conditions the usual one-
dimensional isentropic flow equations for a mona-
tomic gas (v = 5/3)) are obtained.(4) The temper-
ature and velocity are related by Eq. (33b) and the
flow Mach number is given as a function of the area
ratio A Dby the following expression.

M+ 6M® - 16 AM + 9 = 0 (8)
Since My =
V= MyT (39)
Using Eq. (39) in (33b) we obtain T, as a func-
tion of M.
To = =t (40)

3+M2

Equation (23) can be solved for M(A) and then
used in Eqs. (39) and (40) to obtain V and T,
as functions of the area ratio A.

Results for the adiabatic (egs. (33b) to (35b))
and isentropic (egs. (38) to (40)) cases will be
compared to the complete solution in the following
section.

Results

Equations (1¢) to (19) were integrated using
the Runge-Kutta method. The integration was
started near the throat of the nozzle (x = 0).
Since the throat is at the eritical point it is not
rossible to begin the integration at exactly x =
0. However, 1t was found that different starting

points very close to x = 0 did not greatly effect
the solution obtained. For all the cases pre-
sented here the following starting value were
used; Xy = 0.001, Vy = 1.0001, and T,, = 1.0. An
iterative process was necessary to establish the
proper value of the initial electron temperature
Teyr The critical heat flux , and Mach number
My, were calculsted using Eqs.q?zs‘b) and (25), re-
spectively. Solutions were obtained for various
values of the parameters By and (1y/Aety) in
argon (e = 3.71x10-3).

In Fig. 2 the complete solution is compared

to the adiabatic and isentropic solutions for

g = 0.02, p=2, By = 5, &nd(lg/)\gj_ ) = 5. The
velocity and temperature profiles for the adiabatic
and isentropic cases are nearly the same. That is
why they are shown together in Fig. 2. There are
two significant things to notice from these re-
sults. First of all, velocities higher than the
adiabatic limit can be attained when q # O. Sec-
ondly, the electron temperature, and likewise the
total temperature, remains relatively high through-
out the nozzle. The cause of this temperature re-
sult is the large thermal conductivity for the
electrons.

Changing PBx while keeping the other param-
eters constant results in only a slight change in
the velocity and heat Fflux profiles. Increasing
Bx produces a small increase in the velocity. =
The temperature profiles show a greater change with
Bx. Figure 3 illustrates this effect. Larger
values of B, result in higher temperatures
throughout the nozzle. Such a result is expected
since large values of Py mean that the thermal
energy density is large compared to the magnetic
energy density.

The effect of the collision parameter 1,/
Nei,, is more pronounced than By. Increasing the
valle of lu/Me1, produces smaller values for V,
Tos Te, and q. Figure 4 shows this effect on V,
and Ty. Large values of liﬂei. imply a more
collisional flow. As the flow becomes more colli-
sional the electron thermal conductivity is de-
creased. Therefore, the flow approaches the adia-
batic limit and the resulting lower values for V,
Toy Te, and Q.

In Ref. 5 the plasma properties were measured
in the magnetic nozzle of a low power MPD arc. It
is difficult to compare these experimental results
with the theory since the values of B, and 1./
Aei, appropriate to the experiment are not known.
However, there is qualitative agreement between
the theory and experiment for the electron tempera-
ture. The expcrimental electron temperature de-
creases much slower than that in an adiabatic ex-
pansion which is in agreement with the theory.

It has already been pointed out that tre as-
ymptotic behavior of the heat flux equation is not
physically meaningful. This raises two questions.
Is the heat flux equation correct? If it is in-
correct, how are the results effected. The first
question can not be answered without experimentally
testing the electron heat flux equetion used in
this analysis (eq. (A34)). However, a qualitative
answer can be given for the second question. As
long as electron heat flux, g, exists, no matter
what equation we use to describe it, the conclu-
sions about higher temperatures and velocities




than a corresponding adiabatic flow (q = 0) will
still be valid. This is so because the presence of
heat flux gives the electrons another mechanism for
transporting their energy down the nozzle and
therefore producing higher temperatures. This addi-
tional transport of thermal energy down the nozzle
eventually ends up being converted into directed
energy (V°/2). As a result higher velocities than
the adiabatic case (q = 0) will always be attained.

Conelusion

Two significant results were obtained from the
quasi-one dimensional analysis of a magnetic nozzle.
First of all, higher velocities than the adiabatic
limit can be attained in the nozzle. Secondly, the
‘electron temperature and therefore the total tem-
perature remains high throughout the nozzle. Both
of these results occur because of the inclusion of
the electron thermal conductivity. The experimen-
tal electron temperature measurements of Ref. 5 in-
dicate that the temperature remains high throughout
the nozzle. This result agrees qualitatively with
the theoretical result.

Appendix A
Quasi-One Dimensional Equations

The steady-state quasi-cne dimensional equa-
tions are derived by integrating the plasma equa-
tions over a control volume (which is a segment of
the nozz.z) such as that shown in Fig. 1. For ex-
ample, consider the steady-state continuity equa-
tion for the ions or electrons.

% (ngus,) = 0 (A1)

The subscript s denotes either electrons or ions.
Also, cartesian tensor notation is used.

Integrating Eq. (Al) over the control volume

ylelds
‘[% (nsusi)dr =0

Now apply the divergence theorem and assume nNgugy
is uniform across the nozzle.

fnsusihids = AngVs - (AngVg) o =0 (A2)
S

In obtaining Eq. (A2) the condition ugshj = O on
the nozzle's lateral surface, was used, where h
is the unit vector perpendicular to the control
volume surface S. The quantity Vg, is the x
component of the velocity of species s(Vg > 0).

Eguation (A2) holds for both the ions and
electrons. Using Eq. (AZ) for the ions and elec-
trons the following expressicn for the current den-
sity in the x direction is cbtained.

J:_: = E(Hl'v'l - neve) = -l- (Anivi - Meve)x=o(A5)

>

where e 15 the magnitude of the electron charge.

Assuming Jy = O and charge neutrality (ny =
n, = n), Eq. (Asf yields,

Ve=Vy=V (A4)
where V 1is the x component of the plasma mean
velocity. Also, Eq. (A2) for the ions and elec-
trons together with the result (eq. (A4)) can be

used to obtain the continuity equation for the
plasma.

AoV = (ApV)4o0 (hs)
where
P=pgt+pg=mn +mn, = n(mi + me)
and since mg << my,
pmp; = mn (as)

The steady-state plasma momentum eguation is,
(in MKS units) neglecting the gravitational term
the following (eq. 17.14 of ref. 6). .

U oP
oUy =, i1, % _ J1Bn€ymj - oBj = O (A7)
axi axd
Where, Uj 1is the plasma velocity, P;jy is the
stress tensor, p is the &calar pressure, J; is
the total current density, B, is the magnetic
field strength, € is the alternating tensor (or
Levi-cevita density), ¢ is the net charge den-
sity, and E; 1is the electric field. Since n_ m~
ng, o= 0. so, neglecting the stress tensor ihe
following is obtained from Eq. (A7).

o 4+ 2« JyBpern

A8
dxy  Oxy e

Using the steady state plasma continuity equation
(eq. 17.9 of ref. 6)

3 o0y )

ey =0 (A9)

in the first term of Eq. (At) and Maxwell's cqua-
tion,

(a10)

for J;, the following result is obtained,

d 1 3 B?
— | pUjUy = =—B;B;| + =— |p + —| = 0 (All)
R e

vwhere the fact that 3B;/dx; = O has been used.
If Bq. (All) is now integrated over the con-

trol volume shown in Fig. 1 and the divergence
theorem applied, the following is obtained.

f [DUIUJ - LBtB}‘dS #f P+ Bi ths =0
S Bo (] A,



is assumed to be de=-
0 and

Since the nozzle surface 8S'
termined by the magnetic fleld, Bihy =
Uihi = 0 on 8'. Therefore,

(x)
f [DWJ X (p N li)%]u.
0 Ho ZHo
A°=A(X=0) B 2
- J{; [DWJ - _:_21 + (p + %E)bx‘)]u

B® :
p + =}hds8’' =0
' ‘é ( Z“O)hJ

The quantity 8yj = 0 for x#J and Byy=1
1f x = J.

(a12)

dA 4x'

dx'

n,ds’ (A13)

Using Eq. (Al3) and the assumption that the plasma
properties are uniform across the nozzle gives the
following for the x component of Eq. (Al2)

X
Asz + pA - [A;,V2 + pA] el f p(:—i)dx'
0
& A(x)
* 2_"_ / (Bzz. - Bi)dA'
o 0

1 Ao 122 @2y ..,
'a.[ (Br"x)dAo

where the fact that BG = 0 has been used.

Now take the x derivative, using Leibnitz's
rule to differentiate the integral terms.

A(x 2
vl e, 1 ) 3¢ gy
dx dx 2poA ox

A B2 5
/ (%) & dA" + 7By,
(.uofl

where the result ApV = constant (eq. (AS)) has
been used. The last term in this expression can
be rewritten using Maxwell's equation

- OBy
V*B==——==0
3%y

dal.
- 0 (A14)

(A15)

Integrating Eq. (AlS) over the volume using the di-
vergence theorem yields the following

/ &1 dr =
bxi

Bihids =0

Since Bih; = 0 on the nozzle surface this becomes

A(x) [Ao
/ BaA' - [ Beaay =0
0

Taking the x derivative yields

) @,
xlr-ﬁ_--[ axx dA

Substituting Eq. (A16) in (Al4) results in the
plasma momentum equation.

2
v 8, 2 r(x)a&m\
dx  dx 2uA ox

- af(x) (Bx - Bxlm) ™ aa'l =0 (A7)
0

It should be noted that the plasma properties have
been assumed constant across the nozzle in obtain-
ing Eq. (A17). However, the magnetic field has not
been assumed uniform across the nozzle. If we
assume thut B_ 1is uniform so that By = B’-lr-R"
then the By ferm in Eq., (A17) vanishes.

(A16)

The steady-state plasma energy equation is the
following (eq. 17.20, ref. 6)

3
> au U

Ui 2 +§p—1+P1J.—1.+§3
iy 2 ;I Oxy  dxy

= Jy(By + UiBpegng) (A18)

Where q; is the total heat flux defined with re-
spect to the plasma flow velocity. If the momentum
equation (eq. (A7)) is multiplied by U, and the
result added to Bq. (All), the following is ob-
tained.

__)
(2 53 2}
U + = U. — (P;4U
e S, Bt

—= J4Ey (A19)
Now use the steady-state continuity equation,

a( DU1 )
- £

(a20)

to rewrite the first term in Eq. (Al19),

) U2 3
SZ [DU‘(Z_ + gi)] + g‘a—; (PiJUJ) + BT: E Jisi(ﬂl)



Using Maxwell's equation,

(v x 5)1 = ﬁ €1mi = Wedi (A22)
Bxl
the term JyE; can be written as
d [EiBnm
J,E, » o = €
i1 axl ( ™ 1im
since WKE = O in steady state conditions. There-

fore, Eq. (AZ?1) becomes the following.

2 oUg .U_2.+§2 ¢M+ﬁ
bxi 2 2p bx1 axi

+ L(l_iﬁ) €14 = O (A23)
Bxl Mo

If we now neglect the viscous term and the Poynting
vector term EB, and integrate the result over
the contro! volume in Fig. 1 using the divergence
theorem, thc following is obtained,

A
/ = [aV(U_2 +2 E) + q,JdA' -
0 2 2p
Ao 2 :
-f [oV(g— + % f) + qx]“o

0
+ f [oui(ﬁ + 2 2) + ql] hds' =0  (A24)
2 2p

S’

Now assume the plasma properties are uniform across
the nozzle and that q, and qg are negligible.
Then, using the fact that Vihy = 0 on 8'

Eq. (A24) becomes

2 2
o v—+-5-2+q‘A-pV V35 E +a, A,
2 2 : 2 2p
X
-/ q, $4_ax' = 0
(o dx'

where Ug; and U. have been assumed small com-
pared to U, = V {l.e., U m V2). Now take the x
derivative and use the continuity equation

(eq. (A5)).

(Azs5)
dx \ 2
Equation (A25) is the steady-state plasma energy
equation. In obtaining Eq. (A25) the electromag-
netic energy transfer given by the Poynting vector
has been ignored.

To complete the set of quasi-one dimensional
equationa we need the steady state electron energy
equation and the heat flux equation. The heat flux
q, that appears in Eq. (A25) is the sum of the
efectron and ion heat fluxes. /lowcver, since qyon/
4e 18 of the order (my/m, . )1/2 (ref. 6, p. 62,

p. 155), the ion heat flux qi,,, will be neglected.
Therefore, qy = q.x.

The s eady-state electron energy equation is
the following (ref. 6, eq. (12.4a))

9
e l(l p.) + % Pe

bxi 2 Bxi eiJ bxi axi
3m_m
- ._0192_5 Beve k(Ty = Te)  (A26)
('e * mion)

The x component of the ste. ,-state electron heat
flux equation is also obtained from Ref. &
(eq. 12.9)

dugy

aex 7 duey 7 dvey o
i d 5l E TR st TR
\!
3 (8¥e),p 3 (5%, 2 [2ix
’p°3x(2-.)+°"‘3xi(2:)+peaxi 2ene)
+ nle QeyBm€imx = -1-866 Veide, (a27)

In obtaining the right hand sides of Eqs. (A26) and
(A27) results of Ref. 6 given on pages 63 and 150-
152 were used (the diffusion velocities are assumed
to be small). The quantity vg; 18 the electron-
ion collision frequency for transfer or momentum
given in MKS units by the following expression
(ref. 7, p. 252),

1n
vey = 3.62x1076 n, 7 (A28)
T.
Agy = 1.zmo7‘/§ (A29)

It should be noted that the heat flux vector used
in Eq. (A25) is defined in terms of the mesn gas
velocity U; while the heat flux vector used in
Egs. (A26) and (A27) is defined in terms of the
species mean velocity Ugy. However, in tie prob-
lem being considered ue, = ujony = ux S0 that
the gy of Eq. (A25) is equivalent to ge, of
Eqs. (A26) and (A27).

Now convert Eq. (A26) into the quasi-one di-
mensional form. PFirst of all, neglect the viscous
term, Peys. Also since (me/mion)<< 1, memy
mg + Myon}” m me/my,,. Therefore, Eq. (A26) can be
written as the following.



de d
2 (= % Wiia. - 4
a“( "eip) Y My

. a
- -.’;e"nev

elk('l" - '1'1) (A20)

Where, ¢© = (my/myon). Integrating Eq. (A30) over
the control volume in Fig. 1 and using the diver-
gence theorem results in the following.

A(x)
f [% PV + qx]dl\' " g [% PeV + qx] Ay
0 ’ x=0
o [
sl

d
[u,x s T 3e°ngveik(Te - 'ri)]ar
N axi

Using the relations dr = A dx', hdS' = -(an/
dx')dx', ug,hy = O on the surface” S' and assum-
ing that qp ana gy are negligible the following
is obtained

A(x)
[ e L oo
X

dA

- ax -, dx'
-

.[ [u°1 ?_pe_ - SCZneVeik(Te = Tl)]A dx'
oxi

Now use the assumption that the plasma properties
are uniform across the nozzle.

x
PeV + Qx| - Aoé peV + x| - Qx A gy
2 2 dx'
0
x dpe
. V —= - Ze’ngve,k(Te - Ty)|Adx'
dx’

and ue, have been neglected in com-
= V. Taking the x derivative and
and Eq. (A?) ylelds the follow-

—r T
23 Jen

where ue
parison to Ue,
using pe = nﬁkT
ing.

n,V ‘.L(_’ kT‘,) + ‘_i& - VET dne = =3¢°n k('l' 1)

v
dx\” dx ¢ Ix . -

Using

the eleetron continuity equation to replace
xin'_/d.v.

resuits {n the following.

uedA
A dx

Equation (A31) is the quasi-one dimensional electron
energy equation.

Now consider the quasi-one dimensional form of
the electron heat flux equation. Neglect the stress
tensor terms in Eq. (A27) and rewrite as follows.

b\bi

due due
g —
oxg ey bx]

(“°1“° )+ '[ ey 5 %81 3x;

kT,
+ Pe gx (5 )’ = QoyBn€imx

= -1.866 vy, dg

Integrating over the control volume in Fig. 1 and
applying the divergence theorem yie'ds the follow-

ing.

A
/ (x) %xv aa’ _/Ao (qexv)”o Ay
(¢ 0

dug dug

+ f Qe Ve idS" + % [ E,x r" + Qgy -5?1-]67

s'

Sug KT

4 5

[ gz [nE(tD)e

+:[ qell.cllxd)' = -1.860‘/‘: veiq.xdf (ASZ)

Take the x component of Eq. (A32). Using the
approximations that Qep and Qe are negligible
and that the plasma properties are uniform aciross
the nozzle yielde

LAV - (qAv), o + 2L [ ax S5 A ax'

d o kTQ ' =
+ Pe — |= A dx' = -1.866 | veiQyh dx'
0 ax'\¢ m, o

(As3)
where the subseript "e" on 4y has been dropped
since g, m qy. In obtdnlng Eq. (A33) the re-
sults dr = A dx' and Ue;hy =0 on 8' have
been used. Taking tae x “derivative results in
the yuasi-one dimensional electron heat flux equa-
tion.



Vﬁ+

-_—s
dx ax

16 av], & KPnTe &
5 dx = Mg

v dA
gy | = = +
"[Adx

= =1.866 veidx (A34)
The electron pressure,
nekTe = nkTe in Eq. (asds.

The complete aet of quui-one dimensional
equations for are glven by
Eqs. (AS), ), (A,oi (531), and (A34)

has been replaced by
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7~ CONTROL VOLUME

< MAGNETIC FIELD LINES

Figure 1. - Magnetic nozzle.
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SOLUTION
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(A) VELOCITY PROFILE.

Figure 2. - Comparison of solution with adiabatic and
isentropic solutions. Magnetic nozzle parameters,
p=2 and Ag=0.02, ratio kinetic to magnetic pres-
sure B, = 5, collision parameter L./ hei,-,, =5,
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(B) TEMPERATURE PROFILES.
Figure 2. - Continued.
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(C) HEAT FLUX PROFILE.
Figure 2. - Concluded.
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Figure 3. - Effect of kinetic to magnetic pressure ratio,
B, on total temperature. Magnetic nozzle parameter
p=2 and Ag=0.02, collision parameter L,I)\e;* =5,
VELOCITY
RATIO,
Ve=V| V¢
| | | | | J
0 4 8 12 16 20 24
DIMENSIONLESS DISTANCE FROM THROAT, x = x/L.
L ] | 1 ] | J

0 L1 52 B1 3.4 8L0 157
AREA RATIO, A = A/A,
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Figure 4, - Effect of collision parameter on velocity and
total temperature, Magnetic nozzle parameter p= 2
and A = 0,02, ratio of kinetic to magnetic pressure

Be = 5.
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(B) TEMPERATURE PROFILE.
Figure 4, - Concluded.
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