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Abstract

To investigate magnetic nozzle processes, a
theoretical quasi-one dimensional analysis was em-
ployed. Included in the analysis are the effects
of unequal electron and ion temperatures and elec-

ts	 tron thermal conductivity. The acceleration of the
plasma is controlled by an imposed magnetic nozzle.
The parameters that control the flow are the nozzle
shape, the ratio of kinetic pressure to magnetic
pressure, and the ratio of the nozzle throat radius
to the collisional mean free path. Results show
that higher nozzle exit velocities than a corre-
sponding adiabatic flow are achieved. Also, the
plasma temperature remains higher throughout the
nozzle than a corresponding adiabatic flow.

Introduction

Plasma devices such as the MPD arc( 1 ) and the
Q machine wind tunnel( 2 ) produce high speed flows
in a diverging magnetic field. One possible ex-
planation for the acceleration mechanism in these
devices is that the diverging magnetic field acts
as a nozzle. Axial acceleration occurs as a result
of both the magnetic pressure exerted by the nozzle
and the conversion of thermal motion into axially
directed motion. To investigate magnetic nozzle
processes, a theoretical quasi-one dimensional
analysis was undertaken.

The recent analysis of Walker and Seikel(3)
considers this same problem in a different manner.
Their analysis considers the flow near the axis of
the nozzle including the electron thermal conduc-
tivity. The main assumptions of their analysis are
that the ion temperature is negligible and that the
Hall parameter (electron cyclotron frequency/
electron-ion collision frequency) is a constant, at
least near the nozzle's axis.

The geometry of the problem considered in this
study is shown in Fig. 1. An imposed axially sym-
metric magnetic field controls the flew. Any
change in the magnetic field from induced currents
is neglected.

One fairly simple method of analyzing this
plasma flow is by a quasi-one-dimensional analysis
similar to those applied in ordinary gasdynamics.
In the case of a fully-ionized plasma, however, we
must consider two species (ions and electrons) ra-
ther than a single species. Also, since electrons
are much lighter than ions, the electrons tend to
have larger random energies and therefore a higher
temperature than the ions. The small electron mass
also results in large values of the thermal con-
ductivity for the electrons. Therefore, in the
analysis herein unequal electron and ion tempera-
tures as well as electron thermal conductivity are
included.

Quasi-One Dimensional Equations

The quasi-one dimensional equations are de-
rived in appendix A by integrating the various

equations over the control volume shown in Fig. 1
(this is a segment of the nozzle). Also, the fol-
lowing assumptions are made.

(1) Plasma properties are uniform across the
nozzle

(2) No current in x direction, J x = 0
(3) Quasi-neutrality, ne = ni
(4) Heat flux in r and B directions is

negligible
(5) Viscous forces are negligible
(6) No energy added to flow
(7) Ratio of electron to ion mass, me/mi = e2,

negligible compared to 1
It should be noted that 1 is the basic assumption
for any quasi-one dimensional analysis.

Under the above assumptions the following
equations are derived in appendix A.

Ve = Vi = V	 equal x-components of 	 (A4)
electron and ion velocities

	

ApV - (ApV)z=0	 plasma continuity	 (A5)

or,

Fjiv = (KrMx=0

dB2
PV dV + ^ + 1 r = 0 Plasma momentum (A17)
di dx 2µo dx

dq
pV -I -	 + 5 P + x = 0 Plasma energy ( A25)

di' 2 2 p	 dx

_
kTe dV + d 3 kT + 1 dqx = - 3e2

Vei0-Te - kTi)
V dx dx 2	 _nV dx	 V

	kTe dA	 electron energy	 (A31)
A dx

	

_	 2—
dqx +	 V dA + 16 dV + 5 knTe dTe

dx	 (A dx 5 dz ) 2 me dx

	= 1.866 Veigx	 electron heat flux (A34)

The bars appearing in the above equations are used
to denote dimensional variable quantities. The
subscripts a and i are used to denote electrons
and ions, respectively. All quantities are de-
fined in the usual. manner; V is velocity, T is
temperature, p is mass density, ?i is number den-
sity, p is pressure, B_ is magnetic field strengt4
q is heat flux, and A is the cross sectional
area of the nozzle at position R. The quantity
Vei is the electron-Ion collision frequency for
transfer of momentum given by Equa. (A28) in the
appendix. In appendix A, Equa. (A17) is derived
without assuming that B ,, and Br are uniform
across the nozzle. However, in the above equations
it has been assumed that B. and B r are uniform
across the nozzle.
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Li addition to the above equations, we need
expressions for the total pressure p, and Br.
For the total pressure we have

p nekTe + nikTi = nRk(T i + Te )	 (1)

Define the temperature,

16 3 dV	 5Te dTe + 3

5 V dx+1^ 
4cM.1V' dx
	 dx

1
-1.866*	 v - g	 (l0a)

lei EM*V A dx

To = Te + Ti	 (2)

therefore

P = RkTo 	 (3)

The magnetic field is assumed to determine the
nozzle shape,

dR = 
Br	 (4)

dx Bx

where R is theynozzle radius at position x.
Also, from v . B = 0 and assuming Bx is uniform
across the nozzle (see equation immediately pre-
ceeding Eq. (A16)),

BxA = ( BxA)3F=0	 (5)

We now nondimensionalize the equations using
the following definitions.

V	 X	 Te	 Ton = p = ^, V= 
V

-, X= 
1*

, Te= T*, To=T*,

v= vei , A=A = A^ q=	 qx
(T 0 1	A* n1*	 /2kT*2 men*)3 2

Br = Br

(Bx)*

The asterisk subscript is used to denote conditions
that exist at the nozzle throat._ Unbarred quan-
tities are dimensionless, T* = (To)x=0 and 1 * is
the throat radius. Also, vei* has been defined as
a function of T* rather than Te* = (Te)x=0-

If Eqs. (A:,) and (3) are used to eliminate
p, n, and p, Eqs. (A17), (A-5), (A31), and (A34)
become, respectively, the following dimensionless
equations

2 _ To d  + 1 dTe =	 To dAG(x) +	 (7)
3	 V::) dx V dx	 AV dx

dToS M.:V dV + S	 + _A	 d^c = 0	 (8)
3 * dx	 2 dx	 :, c; * dx.

Te dV + - dTe +^ A ^ =	 *	 (To - ?Te)1	 E V
V dx	 dx	 15 EM* dx .	 I L* M* V

- Te dA	 (9)
A dx

Appeariag in Eqs. (7) to (10) are the throat Mach
number M*, the ratio of the throat radius to the
throat mean free path 1*Aei*, the magnetic pres-
sure term G(x), and the square root of the mass
ratio E.

^^,	
=2

M*22 = miV*	
(11)

3 kT*

k

ILK:
Tei*

vei*

2
G(x) _ _ A dBr - 1 dA 3

OX

)2 - 2 d2A (13)
dx	 40 2 dx A 	

dx2

E =	
me	

(14)
1

The term P* is the ratio of kinetic pressure to
magnetic pressure at the throat.

n*kT*
^* =

	

_L_ 2	
(15)

B2po -*

(The approximation p.umirr (eq. (A6)) is used
throughout the paper.) From Eqs. (7) to (10) we
see that the solution will depend on the param-
eters M*, 6*1 (1*/Xei ), and e. Also, we must
know the area, A. as a*function of x. As we
shall see later, M* will be determined by the
value of ( Te)x=0 • The parameter P* determines
the relative energy density of the magnetic field
compared to the thermal energy density. Large 0*
implies small magnetic fields. The parameter

1*/Xii	 is s measure of the "ccllisi.onness" of
the Flgw. A large value of this parameter means
there are many collisions occurring. For the basic
equations from which the quasi-one dimensional
equations are derived to be valid, the flow must
be collisional. Therefore, 1 * Ne i* Z 1. The mass
ratio a merely depends on the g--is considered.

In Eq. (10a) the dTe/dx and vq terms have
a coefficient proportional to 1/EM.. Since this
quantity is of the order of 102 , the other terms
in Eq. (10a) will be small compared to the dTe/dx
and vq terms. As a result the following approx-
imate heat flux equation was used.

g 5Te dTe	 1*
-1.866	 q	 (lOb)

5 4AV dx	 ei

If Eqs. (7) to (10) are soi .d for the var-

(6)
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ious derivatives the following results are ob-

tained.

1d ST -T	 SGV+B

	

dV	 A dx (2 °	
e + 2.

= V	 (16)

	

dx	 D

dT
c _

dx

A dx[3 M
*V* (T° -Te )

J
+GV

L
3 M*V2 -Te

J
+

L
3 M*V2 -To 0

D

(17)

	dT	 1

	

e = -1.244	 q	 (1B)
	dx	 5 ei T5/2

e

3 =
dx

^I dA M2V2T +GVT -(M2V2 -T )B
- 5	 EM* A dx ** e	 e *	 o

(19)
	2 6 A L	 D

Appearing in Eqs. (16) to (19) are the quantities,

	

D 2 .2V2 
(To  5 

Te/J	
( 20)

e	 1* T-5/255.98 ^

	

+ 3E	
(To-2Te) (21)

	Aei*	 25	 6 Te AV2M*

In obtaining these expressions we have used the re-
sults of Eq. (A28) in the appendix.

vei	 n	 In Aei	 ( 22a)
v = vei* = Te 2 in Aei* 

Since In Aei is a slowly varying function we have
usea the approximation,

v = u	 =	 1	 (22b)

T3/2 AVT3/2e	 e

The continuity equation has been used to replace n
in Eq. (2°b).

Critical Point

The system of Eqs. (16) to (19) has a critical
point when D = 0 or when,

m V2	 2

Di' = i	 =	 (23)
2= kT	 Me + 5 E2

where

mV2

Me=	 e	 ( 24)
5 kT
3 e

Equation (23) shows that the critical point occurs
at a subsonic Mach number. In order for the flow
to pass smoothly through this singular point, the
numerators in Eqs. (16), (17), and (19) must go to
zero when D = 0. The first two terms in the nu-
merators of E s. (16), (17), and (19) are propor-
tional to dA^dx. Therefore, when dA/dx = 0
these terms will vanish. The last term in the nu-
merators of Eqs. (16), (17), and (19) will vanish
when 9 = 0. As a result, by requiring that da/dx

A = 0 when D = 0 the solution will be con-
tinuous at the critical point. From the require-
ment B = 0, we obtain a condition on the heat flux
at the critical point (see eq. (21)).

25	 6 fie* (2Te
* - To 	 (25a)

4* = 18.66 . J M.A*V*

The reason for the asterisk will be explained
shortly.

For any value of Te* that gives a physically
meaningful solution D < 0 ,just upstream of the
critical point (see eq. (20)). Therefore, in order
for the flow to be accelerating the numerator of
Eq. (16) must be negative.in magnitud f:. For the
values of P* and Z*/lei* considered here the
predominate term in the numerator of Eq. (16j is
the first one, which is multiplied ty (1/A)(dA/dx).
Therefore, in order for the numeratcr to be nega-
tive, dA/dx < 0. Similarly, ,just dcwnstream of the
critical point D > 0. In this case dA/dx must
be positive. Since dA/dx goes from negative to
positive in passing through the critics.2 point we
have established the critical point as that c;,rre-
sponding to the minimum area of the nozzle (i.e.,
the throat). It is for this reason that the aster-
isk subscript is used on the quantities in
Eq. (25a). Also, since we have nondimensionalized
in terms of the throat properties, To* = 1, V* = 1,
A* = 1 and Eq. (25a) becomes the following.

eTe

18?66	 5 M. (2Te* - 1)
	 (25b)

Using Eq. (20) at the critical point we obtain an
expression for M*.

M2 =1- ? T	 (26)*	 5 e*

It should be pointed out that the condition
dA/dx - e = 0 is not the only one that will make
the numerators of Eqs. (16), (17), and (19) vanish.
However, based on ordinary gasdynamic flows, it
appears physically meaningful that the critical
point should occur at the throat. Also, the re-
quirement e - 0 establishes a boundary condition
on the heat flux in terms of Te*.

Nozzle Area Ratio

So far it has been established that the equa-
tions describing the flow have a critical point.
Further, this critical point has been fired at the
nozzle throat and yielded a boundary condition on

t

i

N
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the heat flux. This information was obtained with-
out specifying the cross-sectional area variation
of the nozzle. To integrate the equatiuns, how-
ever, we must specify how the nozzle area varies
with x.

The nozzle radius dependence on z was
assumed to be the fcllowing.

R = axp + l * 	(27)

where I* is the throe'.t radius and a and p are
constants. Using Eq. (27) the area can be calcu-
lated. In dimensionless form it is the following.

	

A = (As rp + 1) 2 	(28)

where,

As = al 
P-1
	 (29)

From Eq. (28) the following is obtained,

	

1 dA = 2pAs	
xp

-1	 i )30
A dx	

(A..p +

Also, from Eqs. (4), (5), and (27) to (29),

xp-1

	

Br = pAs	
?	 (31)

( As X
P + )

and using Eq. (13),

G - 2P2(P - 1)A?
1

p+l
A 
xp _x2p-3

 s	 (32)
P

	

- 1	
3

(Asxp + 1)^ 

Dependence of Solution on Electron Temperatures

Considering Eqs. (16) to (19) and (25) to
(32), we see that the solution will depend on the
following quantities; e, 0* , (I*Aei* ), As, 'p, and
Te The first three of these parameters have al-
ready been discussed. The quantities As and p
merely determine how fast the area changes with x.

Since Tr.* is a boundary condition on the
electron temperature it might at first seem that
solutions should be obtainable for all values of
Te* from 0 to 1. However, it was found that for
given values of the other parameters a physically
meaningful solution was obtained for only one value
of Te* . By a physically meaningful solution is
meant one in which Te :^ To for large values of x.

Asymptotic S, lution

For very large x the expected results are
Tr,, Te , q - 0 and V - V., where VW is some
asymptotic limit. However, Eqs. (16) to (19) will
not produce such results. This can be seen by con-
sidering Eq. (D) for large x. In this case

4

5	 em, M2V2OTei55.98
26A * 	 25	 6 - e 2

d^c ^	 e

dx	 5 M2j,2
2 k

.8F6 —
el! 
2 

l*	 3	 EMk dTe
= 1	

—) -
A T5e/2 lei*

= 
2 6 A dx

where Eq. (18) has been used. From this expression
we see that q will be increasing while T e is
decreasing for Large x. Such a result is not
ihysically meaningful since both Te and q
:,hould approach zero as x approaches infinity.
'.'herefore,the integration of Eqs. (16) to (19) was
tut off when q started to increase. This oc-
2urred for values o1' the area ratio, A of the
order of 100. A discussion of how this result in-
fluences the concl-c:,,ns of the analysis is pre-
senteu in the RESULTS section.

Adiabatic and Isentropic Solutions

It is of interest to compare Lue solution of
Eqs. (16) to (19) with the adiabatic and isentropic
flows for a similar nozzle. To obtain the adia-
batic solution we merely let q = 0 in Eqs. (7) to
(10). In this case Eq. (10) is not used and
Eq. (9) (electron energy)-is decoupled from
Eqs. (7) and (8). Equation (8) can be integrated
to obtain

2

To = ! (1 - V2 ) + 1	 (33a)
3

We also obtain from Eqs. (7) to (9) the following
results for dV/dx and d'Te/dx;

G + To PA

dV a V 	 A dx	 (34a)
dx IM—Y _ To

d 	 -_ 2e*	 Te	
(7' - <T )o	 edx	 ?4* ei* AV2

GV + M*V2 1 dA

3 Te	 c' 2	
A dx	

( 35a)
V - To

This system of equations has a critical point when,

M*V2 - To = 0

or when

^2 miV
M	 5 _ = 1	 (36)

3 ko

This is the ordinary easdynamic situation where the
crLt-cal point cccurs at M = 1. Similar to the
case for q i< 0,, the critical point must occur at
the nozzle throst in order for the flow to pass

ti_
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smoothly through this point. Therefore, since Mk
is the throat Much number, M* = 1 and Eqs. (33a)
to (: • ;,a) beenm( , , respectively

To 1 (1 - V2 ) + 1	 (33b)

GV + T—o
(]V = V	 A dx	 (34b)
,lx	 V2 -

 T
o

	dTe	
I- !L(To - 2T e)dx	

(Ti—
*) AV 

GV+V21dA
P. Te	 A dx	 (35b)
3	 V2 - To

Equation (33b) yields the maximum velocity
ratio that can be attained in an adiabatic flow for
a monatomic gas. To reach the maximum velocity,
the flow is expanded until To - 0. Therefore,
from Eq. (33b)

(Vmax)ad = 2	 (37)

For isentropic flow, q = 0, and no current may
flow in the plasma. The magnetic field term G
results from the J x B term in the plasma momen-
tum equation. Therefore, since J 0 1 G ^ 0 as
well. Under these conditions the usual one-
dimensional isentropic flow equations for a mona-
tomic gas (Y = 5/3)) are obtained.( 4) The temper-

ature and velocity are related by Eq. (33b) and the
flow Mach munber is given as a function of the area
ratio A by the following expression.

M4 + 6M2 - 16 AM + 9 = 0	 (:+8)

Since K, = 1,

V = M 
V`o	

(39)

Using Eq. (39) in (33b) we obtain To as a func-
tion of M.

T, =	 (40)

3 +M^

Equation (33) can be solved for M(A) and then
used in Eqs. (39) and (40) to obtain V and To
as functions of the area ratio A.

Results for the adiabatic (eqs. (33b) to (35b))
and isentropic (eqs. (38) to (40)) cases will be
compared to the complete solution in the following
section.

Results

Equatifms (16) to (19) were integrated using
the Runge-Kutta method. The integration was
started near the threat of the nozzle (x = 0).
Since the thr• at is at the critical point it is not
possible to begin the integration at exactly x =
0. However, it was found that different starting

points very close to x = 0 did not greatly effect
the solution obtained. For all the cases pre-

sented here the following starting value were
used; x* = 0.001, V* = 1.0001, and To* = 1.0. An
iterative process was necessary to establish the
proper value of the initial electron temperature

Te* . The critical heat flux q*, and Mach number
M* , were calculated using Eqs. (25b) and (25), re-
spectively. Solutions were obtained for various
values of the parameters p* and (1 * Nei*) in
argon (e = 3.71x10-3).

In Fig. 2 the complete solution is compared
to the adiabatic and isentropic solutions for

As = 0.02, p = 2 , P* = 5 , and ( 1* Nei *) = 5. The
velocity and temperature profiles for the adiabatic
and isentropic cases are nearly the same. That is
why they are shown tcgether in Fig. 2. There are
two significant things to notice from these re-
sults. First of all, velocities higher than the
adiabatic limit can be attained when q j 0. Sec-
ondly, the electron temperature, and likewise the
total temperature, remains relatively high through-
out the nozzle. The cause of this temperature re-
sult is the large thermal conductivity for the
electrons.

Changing 0* while keeping the other param-
eters constant results in only a slight change in
the velocity and heat flux profiles. Increasing
0* produces a small increase in the velocity.
The temperature profiles show a greater change with
P* . Figure 3 illustrates this effect. Larger
values of p* result in higher temperatures
throughout the nozzle. Such a result is expected
since large values of 0* mean that the thermal
energy density is large compared to the magnetic
energy density.

The effect of the collision parameter Z*/
Nei*, is more pronounced than P* . Increasing the
value of 1*Nei* produces smaller values for V,
To, Te l and q. Figure 4 shows this effect on V,
and To. Large values of 1* Nei* imply a more
collisional flow. As the flow becomes more colli-
sional the electron thermal conductivity is de-
creased. Therefore, the flow approaches the adia-
batic limit and the resulting lower values for V,
To, Tel and q.

In Ref. 5 the plasma properties were measured
in the magnetic nozzle of a low power MPD arc. It
is difficult to compare these experimental results
with the theory since the values of 9* and 1*/
Nei* appropriate to the experiment are not known.
However, there is qualitative agreement between
the theory and experiment for the electron tempera-
ture. The experimental electron temperature de-
creases much slower than that in an adiabatic ex-
pansion which is in agreement with the theory.

It has already been pointed out that tie as-

ymptotic behavior of the heat flux equation is not
physically meaningful. Phis raises two q,-estions.
Is the heat flux equation correct ,' If it is in-
correct, how are the results effected. The first
question can not be answered without experimentally
testing the electron heat flux equation used in
this analysis (eq. (A34)). However, a qualitative
answer can be given for the second question. As
long as electron heat flux, q, exists, no matter
what equation we use to describe it, the conclu-
sions about higher temperatures and velocities
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than a corresponding adiabatic flow (q = 0) will
still be valid. This is so because the presence of

heat flux gives the electrons another mechanism for
transporting their energy down the nozzle and
therefore producing higher temperatures. This addi-
tional trannport of thermal energy down the nozzle
eventually ands up being converted into directed

energy (V'12 )• As a result higher velocities than
the adiabatic case (q = 0) will always be attained.

Conclusion

Two significant results were obtained from the
quasi-one dimensional analysis of a magnetic nuzzle.
First of all, higher velocities than the adiabatic
limit can be attained in the nozzle. Secondly, the
electron temperature and therefore the total tem-
perature remains high throughout the nozzle. Both
of these results occur because of the inclusion of
the electron thermal conductivity. The experimen-
tal electron temperature measurements of Ref. 5 in-
dicate that the temperature remains high throughout

the nozzle. This result, agrees qualitatively with
the theoretical result.

Appendix A

Quasi-One Dimensional Equations

The steady-state quasi-cne dimensional equa-
tions are derived by integrating the plasma equa-
tions over a control volume (which is a segment of
the nozz_z-) such as that shown in Fig. 1. For ex-
ample, consider the steady-state continuity equa-
tion for the ions or electrons.

a 
(nsusi) = 0
	

(Ai)
axi

The subscript s denotes either electrons or ions.
Also, cartesian tensor notation is used.

Integrating Eq. (Al) over the control volume
yields

a 
(nsusi)dT = 0

axi

Now apply the divergence theorem and assume nsusi
is uniform across the nozzle.

nsusi h idS = An sVs - (AnsVs) x=0 = 0 (A')

In obtaining Eq. (A?) the condition us ihi = 0 on
the nozzle's lateral surface, was used, where h
is the unit vector perpendicular to the control
volume surface S. The quantity V^ is the x
component of the velocity of species s(Vs > 0).

Equation (A') holds for both the irons and
electrons. Using Eq. (AC) for the ions and elec-

tro,is the following expression for the current den-
sity in the x direction is rbtained.

Jx = e(niVi - rije) = 1 (AniVr - AneVe)•{_0(A3)
A

where a is the magnitude of the electron charge

Assuming .J= 0 and charge neutrality (n i =
ne = n), Eq. (A6^ yields,

Ve = V 1 = V	 (A4)

where V is the x component of the plasma mean
velocity. Also, Eq. (A,') for the ions and elec-
trons together with th- result (eq. (A4)) can be
used to obtain the continuity equation for the
plasma.

APV = (A F)V) x=0 	(A5)

where

P = Pe + Pi = m in i + mene = n(mi + me)

and since me << mi,

P "Pi = m in	 (A6)

The steady-state plasma momentum equation is,
(in MKS units) neglecting the gravitational term,
the following (eq. 17.14 of ref. 6).

oUi L+ a 1+Z +	 - JlBmclmj - oEj = 0	 (A7)
axi axi 	ax,

Where, Ui is the plasma velocity, Pij is the
stress tensor, p is the scalar pressure, J l is
the total current density, Bm is the magnetic
field strength, Elm is the alternating tensor (or
Levi-cevita density , r is the net charge den-
sity, and E	 is the electric field. Since n e "
n i , o = 0. Also, neglecting the stress tensor the
following is obtained from Eq. (A7).

PUi a-a + ^L = J lBmc lmj	 (A8)
ax i axj

Using the steady state plasma continuity equation
(eq. 17.9 of ref. 6)

a(PUi)	
0	 (A9)

axi

in the first term of Eq. (Ab) and Maxwell's equa-
tion,

aEiji = µo I	 (A10)

for J l , the following result is obtained,

[oUjU
j

1 	 7
" B iB.I I+asB0 (All)
 µoJ	 J LLLo

where the fact that aB ipx l = 0 has been used.

Ii' Eq. (Ail) is now integrated over the con-
trol volume shown in Fig. 1 and the divergence
theorem applied, the following is obtained.

Ui Uj - 1 B IB idS +^ rp + BB h^dS = 0
Jg L Po	 8 lL	 20.1

U
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Since the nozzle surface S' is assumed to be de-
termined by the magnetic field, Bihi = 0 and
Uihi = 0 on 3'. Therefore,

o	 µ^	 2µm

/Ao=A(x=0)

1

PVU
	 B B	 /	 1

!	 ^ ^ + I p + B
? 

)&x^
J

dA
 µo	 \	 No

Since B i h i = 0 on the nozzle surface this becomes

f A(x)	 o
BxdA' -	 BxdA; = 0

0

Taking the x derivative yields

x
B	 dA = - /A( ^x dA'	 (A16)
x r=R dx	

0	
ax

+ f p + B̂ h,dS' = 0
 2µo

The quantity bxj = 0 for x # 3 and bxj = 1
if x = J.

hxdS' = - dA dx'	 (A13)
dx'

Using Eq. (A13) and the assumption that the plasma
properties are uniform across the nozzle gives the
following for the x component of Eq. (Al2)

TApV`' + pA - CAPV2 + pA] x- 0	 prdA\dx'

f ``

dx

+ =	 A(x) (B2 - B2)dA'
2µo 0

21 
J AO

B= - DX)dA'

µ0 0

Substituting Eq. (A16) in (A14) results in the
plasma momentum equation.

 aB2
dV 2k 

+ 

1	 r	 ,

IV dx + dx 2µoA f

A ( x )
 ax

x
P.
	

(Bx - Bxl r_Rl 6Bx dA'	 0 (Al 7)
/ ax

It should be noted that the plasma properties have
been assumed constant across the nozzle in obtain-
ing Eq. (A17). However, the magnetic field has not
been assumed uniform across the nozzle. If we
assume that Bx is uniform so that Bx = BxIr-R,•
then the B x term in Eq. , (A17) vanishes.

The steady-state plasma energy equation is the
following (eq. 17.20, rE f . 6)

a 2 p 5 aUi 	111i	 aqiU1 axi + 2 p axi + P1j axi + axi.

= J 1 (E 1 + U2Bmc jmi ) (A.18)

t

where the fact that Be = 0 uas been used.

Now take the x derivative, using 1,eibnitz's
rule to differentiate the integral terms.

PV dV + L + 1

	

dx dx	

foA(x) aBr

2µA 	ox

i fA(X) aBx	 dAdA' + '$x	 0 (A14)

	

-'u,	 0	 ax	 [ r=R ax

where the result AoV = constant (eq. (15)) has
been used. The last term in this expression eel
be rewritten using Maxwell's equation

aB
p B i = 0	 (A15)

oxi

Integrating Eq. (A15) over the volume using the di-
vergence the:Irem yields the following

aB
d

_i r =

axi	
f B ih id3 = 0

r

Where qi is the total heat flux defined with re-
spect to the plasma flow velocity. If the momentum
equation (eq. (A7)) is multiplied by Uj and the
result added to Eq. (AlC), the following is ob-
tained.

PUi	 + 5 _jL (p U1 ) + 3 ( P1 U )
ax i 	2 ax i 	axi	 3 J

+a11 = J
1E1 (A19)

1

Now use the steady-state continuity equation,

a(pUi)	
0 (A20)

axi

to re-write the first term in Eq. (A19),

ai

ax
 rnUi(U2 + 2 ^+

	
(PijUS) +
	

m JiEi(A21)I
L	

0)] 
axi	 axi
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Using Maxwell's equation,

aB
(p x B) i =	

m 

e l"! ° unTI	 (A22)
axi

the term Ji E i can be written as

	

(! IBM)

JiEi 	
elim

1

since %g - 0 in steady state conditions. There-

fore, Eq. (A71) becomes the following.

axi [
"Ui(2",

	

 ^ 2 P^	 ax i	 ax i

+ sal	

nn Etim 0 (A23)
(Ei

 µ

To complete the set of quasi-one dimensional
equationa we need the steady state electron energy

equation and the heat flux equation. The heat flux

q	 that appears in Eq. ( A%:5) is the sum of the
electron and ion heat fluxes. flowever, since gion/
qe is of the order (m„/miin)I/? (ref. 6, p. 62,
p. 155), the ion heat flux gion, will be neglected.
Therefore, qx • (le x.

x

The s eady -state electron energy equation is
the following ( ref. 6, eq. (12.4a))

	

a' ae	 sue1a , p + 5 
pe 

i + pe _ + i
axi (2e i	 e	 2	 axi	 i3 ax i 	axi

	

3memion	 aeveik(T1 - Te)	 (A26)

(me 
+ mion) 2

The x component of the ate. -s *.ate electron heat
flux equation is also obtained from Ref. 6
(eq. 12.9)

If we now neglect the viscous term and the Poynting
vector term EiBm and integrate the result over 	 6gex 7	 6 e i 7	 3%. 2	 auei
the control volume in Fig. 1 using the divergence	 'lei ax i + 5 

qex 
axi + 5 qei ax i + 5 

qei 
ax

theorem, tnc following is obtained,

jA(x) I 0V\U' + 5 P) + qdA
LL 

`2 	 2

/'AJ 1 [(ijoV2+5p+ydA' 2 P
	x o

+ ^j f ,)Ui y2 + 5 L'^ + q 	 = 0	 (A24)

J IL 	 2 p	 JS'

Now assume the plasma properties are uniform across
the nozzle and that qr and qe are negligible.
Then, using the fact that Vihi = 0 on S'
Eq. (A24) becomes

 5^	 1 f V V2 +SP

	

L
pV+	 +	 A	 +
(iT

 .,	 ) 

qI - I' (,	 2 p
) 

qx o

/'_

J
q  a- dx' = 0

0	 dx'

where UE and U have been assumed small com-
pared to Ux _ V f i . e. , U2. V ) . Now take the x

derivative and use the continuity equation
(P 1. (AS)).

nV ^L (L2. + 5 L1 + dqx = 0	 (A25)

dx	 2 p	 dx

Equation (A25) is the steady -state plasma energy
equation. In obtaining Eq. (A':5) the electr,mag-
netic energy transfer given by the Poynting vector
has been ignored.

a	 e	 a S kTe+ Pe	 a peixt

ax ^
5 kT

2 	 1 + pexi ax i (2 me 	 Pe axi (^nel

+ e`le1BmElmx = - 1.866 veige,,	 (A27)
me

In obtaining the right hand sides of Eqs. (A26) and
(A27) results of Ref. 6 given on pages 63 and 150-
152. were .ised ( the diffusion velocities are assumed
to be small). The quantity ve i is the electron-
ion collision frequency for transfer or momentum
given in MKS units by the following expression
(ref. 7, p. 252),

vei = 3.62x10-6 ni 
InAei	 (A28)
7T2_2
Te

3

	

Aei = 1.23x10 7 Te	 (A29)
	ne 	

=

It should be noted that the heat flux vector used
In Eq. (A25) is defined in terms of the mean gas
velocity Ui while the heat flux vector used in
Eqs. (A26) and (A27) is defined in terms of the
species mean velocity ue i . However, in tLe prob-
lem being considered ue x = uionx = ux so that
the;x or E1. (A25) is equivalent to qex of
E43. (A26) and (A27).

	Now convert Eq. (A26) into the quasi -one dl-	 =	 —_

	

mensional form. First of all, neglect the viscous 	 -	 -
term, Pe { . Also since (me/mion)« It mem1 n^
me + mionl2 

'W 
m,/mion• Therefore, Eq. (A26Y can be

written as the following. 	 _	 =-



rV due- 3E`neve i k(Te - TI)JAdx'
l` dx'

gXAV - ( gxAV) x-0 + S1	 qx dx' A dx'-C
b

I

a'le'	 ap

	

u elp,, +	 - neia 5
71 t ( ?,	 axI	 axi

-3E`'nevel k(Te - T L ) (A30)

Where, c : = (me/minn). Integrating Eq. (A30) over
the control volume In Fig. 1 and using the diver-
gence theorem results in the following.

J A(r)	

^ f

r

r 	L^	
'0	 I _ peV + g x11A' ..	 I` Pe V + q xlJJ x-0 dA,,

f

+ 	 pe uel + gellhidS'
J

	

J	 loci axe - 3¢ ^neveik(Te - Ti), dT1	 L	 i

Using the relations dY = A dx', h xdS' = -(dA/
dx')dx', ue ih i = 0 on the surface S' and assum-

ing that qr anu qP are negligible the following

Is obtained

r A(x)	 -^^ rr	 1
JO	

LS Pc
V + 9x^dA^	

L20	
1PeV + gx!^^

0	 L

- .f
gx a , dx'

0

ape- 3c 2neve l k(Te - T j A dx'

 JJ

Now use the u:sumption that the plasma properties
are un,ifo m across the nozzle.

r	 x
Ar= peV + q ,cl	 PeV + q x -	 qx	 dx'1
Ll	 JJ	 2 L	 0	 dx'

kT„ d  + d	 kTn + L d';x
V dx dx (2	 )	 nV dx

- 3E, ve k (Te - T I ) - kTe dA (A31)
iV	 A dx

Equation (A31) is the quast-one dimensional electron
energy equation.

Now consider the quasi-one dimensional form of
the electron heat flux equation. Neglect the stress
tensor terms in Eq. (A%.7) and rewrite as follows.

a	 7.	 auel	 aue il 7 aux
axI (i^e i x ) + 5 [fix U, + qe i ax J + 5 ^1 axI

kT

+ pe ax 7. e + m `lej%m Imxme	 e

-1.866 ve `le
i x

Integrating over the control volume in Fig. 1 and
applying the divergence theorem yie'.ds the follow-
ing.

f A( X) ge xV dA' - 
3 

Ao (qe.V)dAo
x=0

	f 	
[qe,due
	aue

+ , IexuelrldS + S ,^ 	axi + gI ax1 dY

	

S 	 1

+ 5 r qe I aix d1 + f,- Pe ('— mr, / dl

+ e
	

gelBmclmxdy = -1.86r,	 velgexdr	 (A-Sz)

	

me	 T

Take the x component of Eq. (AM). Using the
approximations that ger and 

qe6 are negligible
and that the plasma properties are uniform across
the nozzle ylelde

[ei

where uer and uep have been neglected In cum-
p:.r[sun to we = V. TukinE the x derivative and
using pe = n,.kTe and Eq. (A") yields the follow-
Irig.

n f,V' 	 kT) + `tqx - W..Te dne = -.ijneyalk(T -T
dx	 dx	 dx

Using the electron continuity equation to replace
dn,,/dx results in the following.

+J 
!x 

pe 
d	 kce^

f
A dx' - -1.866	 veigxA dx'

dx'	 m	 0

A53)

where the subscript "e" on qx has been dropped
since qex '"qx.  In obtaining Eq. (A33) the re-
sults d y = A dx' and ue ihi = 0 on S' have
been used. Taking tea x derivative results in
the quasi -one dimensional electron heat flux equa-
tion.

it
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The electron pressure, p 	 has been replaced by Press, New York, 	 1354, Chapter 4.
nekTe = nkTe	 in Eq. (AAi .

The complete set of quasi-one dimensional 5. Bowditch, D. N.,	 "Investigation of the Discharge

equations for, V, T , T , and	 qx	 are given by
('1),	 (A^4).Eqs.	 (AS),	 (A17^,	 (A-,51,	 and

and Exhaust Beam of a Small Arc Plasma Thrust-
or,"	 Paper f:r -:fay , Mar.	 1.166, AL4A,	 New York,
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Figure 1. -Magnetic nozzle.
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Figure 2. - Comparison of solution with adiabatic and	 --
isentropic solutions. Magnetic nozzle parameters,

	

p - 2 and As . 0. 02, ratio kinetic to magnetic pres-	 -
sure	 5, collision parameter 1:,1 Xei.: = 5.
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Figure 2. - Continued.
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Figure 2. Concluded.
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Figure 4. -Effect of collision parameter on velocity and 	 -_
total temperature.	 Magnetic nozzle parameter p = 2	 —
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