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TECHNICAL MEMORANDUM X-64535

GENERAL RELATIVISTIC PRECESSION OF A GYROSCOPE
IN AN INCLINED ORBIT

SUMMARY

The general relativistic precession of a gyroscope in an inclined orbit
is calculated. The magnitude of the precession is found to be proportional to
the cosine of the inclination angle, apart from periodic terms. It is shown
that the geodetic precession cannot be separated from the motional precession
no matter what initial orientation is chosen for the gyroscope.

INTRODUCTION

A perfectly spherical gyroscope in orbit around the earth will precess
as a result of two relativistic effects. The first and larger effect results from
the motion of the gyroscope along a geodesic in a 4-space which is not flat;
this is called the geodetic precession. The second effect is associated with
the rotation of the earth and is called the motional or Lense-Thirring preces-
sion., A polar orbit was originally chosen for the Stanford Gyroscope Relativity
Experiment because this orbit will allow these two effects to be separated.
Recently, it has been suggested that a preliminary test flight of the Gyro
Experiment be performed on Skylab II, for which an inclined orbit is planned.
In this paper we calculate the expected gyroscopic precession for such an
inclined orbit and show that one cannot separate the geodetic and motional
precession.

THE GEODETIC PRECESSION

First, we will consider the geodetic precession, which is generally
about two orders of magnitude larger than the motional precession. To obtain
this precession we must solve Schiff's equation [1] for the orbit under con-
sideration. This equation will be written as

ig»»-—a

= = SxL , (1)




T (r xvVv) |, (2)

which is a first order equation in the gyroscope spin vector S. 2GM/c? is the
Schwarzschild radius of the earth, and T and v are the orbital position and
velocity vectors. L has been defined to be antiparallel to the orbital angular
momentum vector.

_In the simple case of a circular orbit for which T is constant, the
vector S simply precesses about L with constant angular velocity w = lfl
and S - L remains constant. For the more general case in which L is not
constant, one must obtain T and v, thus L, as functions of time from an
integration of the orbhit equations and then obtain S as a function of time by
integrating equation (1).

For a circular inclined orbit about the earth, the orbital plane will
not remain fixed in space. Because the earth is not perfectly spherical, the
orbital plane will precess about the earth's axis in such a way that the orbit
inclination angle and radius remain nearly the same. So to good approxima-
tion, one can consider that the orbital angular momentum, and thus f, will
remain constant in magnitude and precess about the earth's axis with an angular
velocity @. Classical perturbation theory [2, equation 11.15,6] gives Q as

3d
_ 59 :
Q p; (cos i) wo , (3)

]

where 1 is the orbital inclination, wo is the orbital angular velocity, and J, is

the earth's mass quadrupole moment. T, can then be written in the form

L = L;sinQt
X

L = LcosQt (4)
y

LZ = - Lz .

where L; and L, are positive constants. The z-axis has been chosen to
correspond to the earth's axis while the x-y plane coincides with the eguatorial
plane. L has been given a negative z-component so that the orbital angular
momentum vector has a positive z-component, Initially L is in the y-z plane,
It precesses in a direction consistent with the fact that the nodes regress for
an oblate body.




When 1 is given by equation (4), the following analytic solution to
equation (1) can be obtained,

SX = -Cysing sinQt - C, [sin (wt + ) cosQt - cos (wt + ¥) sinQtcos ¢ ]
Sy = -Cysind cosQt + Cylsin (wt + ) sinQt + cos (wt + P) cosQtcos ¢
SZ = Cysingcos (wt+ ) + Cycos¢p , (5)
where
1/ 1/
w = [L2+92+2L29:| 2, L= [L12+L22]2 ,
sin ¢ = Lj/w (6)

cos ¢ = (Lp + Q)/w

and the constants C;, C,, and ¥ are determined by the initial condition on'S.

We will now demonstrate explicitly that this is a solution to equation (1). By

differentiating equations (5), we obtain

[ds |
dt

—_d‘-t——

-QCy 8in ¢ cos Qt + Cy [ (R - w cos ¢) sin (wt + P) sin Ot
- (w -"Q cos ¢) cos (wt + ¥) cos Qt]

QCy sin ¢ sin Qt + Cy [(Q - w cos ¢) sin (wt + ) cos Qt
+ (w - Q cos ¢) cos (wt + ¥) sin Qt]

- wCy sin ¢ sin (wt + P)




Using equations (4), we have

S,L, - SZLy i Sy[—Lz} - 8,lL; cos Qt]

SxI)=|sL -8L |-= 8,[Ly sin0t] - 8 [-L,]

SL -SL S [Ly cos Qt] - 8 [L; sin Ot
RN I e

and now substituting from equation (5), this becomes
Cy [Ly sin ¢ - Ly cos ¢] cos Qt - CyL, sin (wt + ) sin Qt
-Cy [Lycos ¢ + Ly sin ¢p] cos (wt + ) cos Qt

-C; [Ly sin ¢ - Lj cos ¢] sin Qt - C,L, sin (wt + P) cos Qt
+Cy [Ly cos ¢ + Ly sin ¢] cos (wt + ) sin Qt

-LyC, sin (wt + ) [cos? @t + sin® Qt] - L,C, cos ¢ cos (wt + )
L [-sin Qt cos Qt + cos Ot sin Q)

Now from equations (6), we have

Ly sin ¢ - Ly cos ¢
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-Q + (Ly + Q) = -(Q - wcos ¢)
Ly = wsin¢

3

so that a comparison of the expressions for d—S>/dt and S x L shows that they
are equal. Hence, equations (5) have been shown to be a solution of




equation (i) when L is given by equation (4). It can also be shown, using
equations (5) that

S -8 =8+8%+82=ci+cf

—
so that S remains constant in magnitude, as it must.

This solution to equation (1) _was obtained by transforming to a
rotating coordinate system in which L is at rest. In this system, S precesses
about T, and one can write a solution to equation (1) in the rotating system
immediately. When this solution is transformed to the nonrotating system,
equations (5) are obtained. The problem is mathematically identical to the
motion of a magnetic dipole in a magnetic field with a constant z-component
and a rotating component in the x-y plane. This configuration is often
considered in NMR work.

Using standard identities for the products of two trigonometric
functions, equations (5) can be written in the form

S = -Cysin ¢ sin Qt - Czu—gﬁ—(&sm [(w - Q)t+ 9]

—Cz-(i—_—gpiﬂsin [(w+ Q)t + ¥]

_ . ¢
S = -Cysin ¢ cos Qt + C, (4 + ;OS )cos [(w - Q)t + 9]

-Cz-g—i-—_——cgs——@—cos [(w+ Q)t + ¢l

2

SZ = Cycos ¢ + Cy sin ¢ cos (wt + )

so that S consists of terms with frequency w - Q, ©Q, w, and w + £. We can
simplify this expression by using the fact that 1. «< Q; that is

3GM |r x v| _ 3GM (R
2¢%r r? 2¢°R \ r 0




where R is the earth's radius. Now since J, ~ 10~° R?, we have from
equation (3) that § ~ 1073 wo ~ 5 degrees/day for a near-earth orbit so that

10-9
gﬁ 0 wo o6
Q 10’g wo ¢

Expanding the first of equations (6) to first order in L/Q, we have

Y

2L, L2 |2 L
£, 2 & =2

Q[1+9+92] “Q[i"'g]’

€
I

so that

w-Q = Ly (7)
and

sin ¢ =~ Ly/Q (8)

all valid to first order in L/Q. By expanding w to second order in L/Q and
using the expression for cos ¢ in equations (6), we find

2
cos ¢ = 1 - %(%1) , (9)

so that (1 - cos ¢) is second order in (L/Q).

If we let the initial value of § be-§o, then at time t = 0, equations (5)

give
(o] .
SX = -Cy sin ¥
syO = -Cysin ¢ + C,cos ¥ cos ¢ (10)

SZ = Cqycos ¢ + Cy cos P sin ¢

These three equations can be solved for C;, C, and ¥ to give

3 -1 0 ) o .
» = tan {“Sx/[sy cos ¢ + SZ sin qb] }




0 o
C, = § - i )
Cy 5, cos ¢ Sy sin ¢ (11)
o)? o\ o\? .,
[(SA> + Sy cos® ¢ + (SZ sin® ¢
+2(s°)(s® n o |2
. z cos ¢ sin ¢ R

and a substitution of equations (10) into equations (11) verifies that this is a

Q
(3~
|

solution, So that for any initial—S’O, a solution can be constructed. At any
time t, the angle © through which the spin vector S has precessed can be
obtained from the equation

— —»O
© = cos™? [S—SZS_ :l ,

where S is given by equations (5) and §° by equations (10). This is not a
very convenient way to compute O, Since © is very small, it is easier to use
the following method. Define the vector B by the equation

S=5°+B . (12)

Then, we have
7
meo - Ex8°% _ [Bx3° _ [Bx3% - B« 9] .
S = Sz = Sz - SZ

Using a standard vector identity this becomes

e . 1
sin@ = [SZBZ - (§°. B)Z] %2 [g
since

%2 = () .

Now

2= 38°+B) S°+B) =st+2B.-8°+ B




so that

S° . B) = -BY2 (13)
i 1
4772 2] 72

sin @ = —18—2— [52]32 + %—} = %B— [1 + i(g” . (14)

A general formula for sin © can be calculated using equations (5), (10), (12),
and (14) but the result is quite complicated. So we will restrict ourselves

to three specific choices of §© and work out explicit expressions for © in

these cases only.

1, Sy0 = 8§, SX0 = 0, SZO = 0;i. e. ,—gis initially perpendicular to

the earth's axis and in the plane formed initially by T, and the earth's axis.
From equations (10) we have

p=0 , Cy=-8sin¢g , Cy, = Scos¢

so that equations (5) become

wn
i

S |:sin2 ¢ sin Qt - cos ¢—(—1—Jr——ggs—9—)-sin (w - Q)t

- cosg‘b(—i——-g—ogﬂsm (w + Q)t]

[02]
i

S [Sin2 ¢ cos Qt + cos qS(—i—%Mcos (w - Q)t
- cos ¢(1—-§M)—cos (w + Q)t:]

S
Z

it

S [cos ¢ sin ¢ (cos wt - 1)]
Now from equations (8) and (9) we note that sin® ¢ and (1 - cos ¢) are
second order in L/Q. Also, we are interested in times of the order of 1 year

so that from equation (7)

(W - Q)t ~ Lyt < 1, (15)




since L ~ 3.5 x 107% rad/year. We can then expand the sin function to obtain

S~ - S[Lyt] (16)

so that SX is linear in t to first order in L/Q. Also

SZ o S[%] [cos wt - 1] (17)

from equations (8) and (9), so SZ oscillates with frequency w ~ § to first

order. The precession angle © can be calculated as follows: Using equations
(12) and (13) we have

o]¥.

- —=o Y -BS |2
B -2(B - 8 2 y
-S—_—_[(Sz g):l = N2 gz

i

N2 [1 ~ gin® ¢ cos Qt - cos ¢>—(—1—+—§-9—S—-¢3—)—cos (w - )t
(1 - cos ¢) 7y
+ cos qb——-——z—-——?—cos (w + Q)t]

If we now use equations (8), (9), and (15) to expand this to second order in
L/Q and (w - Q)t, we find that B/S « 1 and

L\2 | 3 ' 1 7
6 === [th]2+<—1> {——2cos9t+§cos (w+sz)t] (18)

w |

2 2

1 L
s0 © is not strictly linear in t but only becomes so for t > Lifly_. L (T
Lz Q LZ 2m

~ 10 days, where T ~ 60 days is the precession period of Q.

2. SXO = 8, SyO = 0, SZ0 = 0;1. e., Sis initially perpendicular to

the earth's axis and to the initial value of L, From equations (10) we have

ZI)Z—W/Z,CIZO,CZ:S

S = S[—(—i—j—gmcos (w - Q)t + d - ZOS ) cos (w + sz)t:l




2

5, = s[ﬁwi%‘im sin (@ - @)t - ACOS D) iy 4 Q)t}

wn
fl

S sin ¢ sin wt

Again we see that, since (1 - cos ¢) is second order in 1L/, we have after
expanding sin (w - Q)t to first order that

8, = 8 [Lyt) (19)

and SZ has an oscillatory behavior with frequency w ~ Q. The precession

angle is calculated in the same way as is case 1:

1
- —0 |1 _ o\|7
B 2@ -89 |7 2<BXSX)
U R~y E— = |7
S S s?

Y
) [1 RUETLY) P ayp s Lo d) oo, mt] z

Expanding these terms to second order in L/Q and (w - Q)t, we find again
that B/S « 1 and

1
2y /2
o = SE - { [L,t]? + <%1> [1 oosz(w + Q)t:l} (20)

and again we have an oscillatory term in the expression for © but the detailed

time dependence is different from case 1. Fort >» %1 (é), © again becomes
linear in £, 2

3. SZO = 8, SXO =0, Sy0 = Q; i. e., S is initially parallel to the

earth's axis. Equations (10) give y = 0, C4 = Scos ¢, C; = S sin ¢,

S = -8 [sinc,b cos ¢ sin Ot + singb-g—i-j—gos—q&sin (w - )t

X

+ sin qs(—i—"-—g—of—fz’lsm (@ + Q)t:l

10




i+ 5
Sy = -3 [sin¢> cos ¢ cos Qt - sinqu——é-(—)—s-’—jé—)—cos (w - Q)¢

+ sin @jl—l—gﬁﬂcos (w + Q)t}

SZ = S [cos? ¢ + sin® ¢ cos wt]

The dominant terms in'S become, to first order in L/,

SX = —S(%) sin Qt (21)
s = s<—1‘-1> [1 - cos Qt] (22)
N Q

with only terms with frequency . SZ is constant to first order in L/, The

expression for the precession angle is

1
-2 (B : s°> /2
Z Z
Sz

o~ B
T8

1
N2 sin ¢ [1 - cos wt] /- (23)

Il

so that © is periodic with frequency w ~ Q.
THE MOTIONAL PRECESSION

The complete version of Schiff's equation, including both geodetic and
motional precession, is

s - -
S ' 24
a - Sx b (24)
e

1= _
L L+-(;2—;3_|:?(U r) O:I

ST E

i1




where o is the earth's angular velocity and I its moment of inertia. Now the
first term in H oscillates with period equal to the orbital period so that the
exact solution to equation (24) for a precessing circular orbit is much more
complicated than the solutlon to equations (5), which we have already found.
However, the effect of H can be taken into account by replacing H by its
average over one orbital period T. The justification for this statement is
contained in the following argument:! If we integrate equation (24) over an
orbital period t and divide by T, we obtain

_ — t+T
(t + T% - S(t) _ % f at'[S(th) x L'(t) ] (25)
t

Now S (t') can be expanded in a Taylor series about t:

S(t) =§’(t)+9—%§tﬁ(t'-t)+...

. — — terms of higher
' '
S(t) + [S(t) x L))t - t) + { order in T }

Defining the average value of S over an orbital period as

+T

<§(t> =—;— [ a8t
f

we see that if we differentiate this equation we obtain the_lgft hand side of
equation (25). So that substituting the Taylor series for S (t') in the right
hand side of equation (25) gives

d<§>(t> ; =T
e

-7 [ @ T (e x {S(t) + [Se)x THe)I(E -t) +. ..} .
i

Now if we neglect the second and higher terms in the bracket and we replace
S(t) by <S(t)> in the bracket, this equation will still be valid to first order

in f‘, and it can then be written

d<S(t)> <S(t)> <L' >

1. A more rigorous argument could probably be given by applying some kind
of classical perturbation theory to equation (24),

12




where

t+T

Ly =5 [ e
i

This means that to first order in T (t), the average value of g(t) over an
orhital period satisfies equation (24) with L (t) replaced by <L' (t)> S0
that we can replace H by <_}—1>> in equation (24) if we are interested only in
the average value of 'S over an orbital period.

This type of argument is borne out by the solution given in the first
section if we congider T to be 7, the period of the precession of L. rather than
the orbital period. The terms with period 7_= 21/Q in equations (5) are seen

to contribute nothing to the average value of S which is seen to precess about
the earth's axis; i. e., about the average value of L to first order in L.

We also note that this argument allows us to drop the restriction to
circular orbits in the previous calculation. Since T x V is a constant for
. 1 1 1
noncircular orbits, we simply replace = by <?> , the average of 3 over

the orbital period, in the expression for L. This is given by [2, equation
11.15.4]

<;13-> ) a3(1 _162)/2 ’

where a is the semimajor axis of the orbit and € the eccentricity.

We will now compute <H> for a circular orbit with inclination

angle i. To do this, we construct a coordinate system such that the orbit
is the x'-y' plane and the orbit normal is the z' axis. We will let@ be in
the y'-z! plane, so that it will make an angle i with the z' axis., In this
coordinate system the orbit is given by

r!' = -asinoat rt =20
X Z
2m
r' = acosat T = —
v o
— R
and o*x' = 0, cry‘ = ¢ gin i, GZ' = gcosi, sothat (¢ - v} = acry‘ cos at.

13




Letting <HX‘> , <Hy’> , <HZ'> denote the components of <ﬁ>

in this coordinate system we have

GI

i
H e
<HX> czag T

i

O 3

[ (-3 sin at) (o*y' cos at) ldt

2r
_ t
B SGI(ry sinor L,
T ¢*Ta’ 2
o
ar 1~
1 — = ' _ :
<HY> clad T g [(3 cos at) (Gy cos at) Gy]dt
2
o
GI 113 (ot 1
= f e | — hadid et _
czaSGyT a(S +4s1n2at) T
o
__GI . ) -
~ 2c¢%ad Ty
T
_HG L -1G
' — 1 o _ .
<HZ> T Of ( O.Z )dt C2a3 UZ .

Performing a rotation about the x'-axis through an angle i we have

Hy> <Hy'> cosi - <HZ'> sin i

3GIo
= 2—2—3- [sin i cos i]

<H '> sini + <H '> cos i
y z

Glo | sin® i 5. Io
= —5y 5 - CcO08“ 1 =—2‘6‘-§[1—30081]

It

Il

<HZ >

cta

<HX> = 0.

14




Since the orbital angular momentum, and thus f, remaing in the y-z plane after
the rotation, we see that <§> has components only in the plane which contains
Lando. The components of <§> perpendicular to this plane average to zero,
and we expect this to remain true for noncircular orbits. Now as the orbit
plane and fpreeess, <ﬁ> will remain in the plane described by T and o,

and T + <ff> will precess about the earth axis with period + = 27/Q. This
means that the solution to equation (24) for L' = L+ < ﬁ> can be obtained by

substituting T for L in the solution which we found previously for equation (1).
In other words we simply substitute L, for L, and Ly for L, in equations (5)
and all subsequent equations in the first section where

3Glo
L' = Ly + -3 [sinli i
1 1+ 52,8 [sinicosi]
Glo 2 .
| J— 4 —— 1 -
L, L, 202r3[ 3 cos® i]

It is now clear that H contributes to the precession no matter what
initial orientation for S is chosen. If S is initially oriented perpendicular to
the earth's axis (cases 1 and 2), it will, apart from effects with period 7,
precess about the z-axis with angular velocity L,' as described by equations
(16), (17), (18), (19), and (20) with L; (L,) replaced by Ly' (Ly').

Both T and H will contribute to the precession. IS is initially
aligned parallel to the earth's axis (case 3), it will exhibit oscillatory
behavior with period 7, as described by equations (21), (22), and (23), with
L; replaced by L;'. So H contributes to the precession in this case also.

For a general inclination angle i, H will contribute to the precession for any
initial orientation of S, since both L;' and Ly' contain the effects of H. (The
only exceptions to this statement occur for a polar orbit, an equatorial orbit,
and an orbit for which cos i = 1/N/3, i = 54 dg»grees. ) So that in general it

is not possible to separate the effects of L and H and thus verify the existence
of the geodetic and Lense-Thirring precessions separately for aninclined orbit.

SKYLAB I1 ORBIT

The nominal Skylab II orbit will be . circular at 235 nautical miles
inclined at 35 degrees. We will compute S for this case for the three initial
orientations discussed previously. For this orbit

r = 6.8 x 10° meters

15




and Kepler's Law gives for the period 7

Y.
s 2 .
T = Zﬂ[MGTI = 93 min

w, = (2m)/T

We have R/r = 0.94, so L = 7.2 arc sec/year, and L, = Lcosi = 5.9 arc
sec/year.

Now in units of earth radii R
J, = 1.08 x 1073

so that equation (3) gives Q@ = 6.5 degrees/day, T = 55 days, and

(%) = (%) sini = 0,10 arc sec.

The components of S for cases 1, 2, and 3 are plotted in Figures 1
through 7, using equations (16), (17), (18), (19), (20), (21), (22), and
(23). For this case, L, differs from L,' by less than 1 percent.
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