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A RANDOM DISTRIBUTION OF RADIAL MOTIONS

William R. Thickstur,, Jr.
Theoretical Mechc.nics Branch

ABSTRACT

Two quite unrelated problems motivated the efforts desc-ibed in this

report. One pertains to the question of whether a singularity in space-

time can develop from an initially non-singular distribution, of matter.

The other problem pertains to the initial distribution of comet orbits

about the sun from which certain "capture" theories attempt to predict

the observed number of short period comets. For both of these problems

it is instructive to start with a model consisting of a random distrubu-

tion of part?.cles constrained, however, to strictly radial motion in a

central gravitational field.
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1.	 INTRODUCTION

Imagine a swarm of particles with random i relocities and distances

from a suitable origin. For exampl,: a swarm of comets about the sun, or

a cluster of galaxies tinder their mutual gravitational attraction.

Further suppose the system is in quasi-equilibrium, i.e. only very slowly

permit the density of the distribution to change, e. g. because of random

close encounters or a weak resi6ting medium. It is inotructive to :;cn-

cider a grossly simplified version of such a swarm of particles by
A

restricting attention to rarely radial motions. This model may be moti-

vated by two quit-- unrelated problem.- which we may take up in turn.

First, fcr a swarm of comets it should be noticed that we on Earth

o:,>> oee or observe those that come within one or two Astronomical

Units (A.U.) of the Sun. Hence that sub-set of the set of all long

period comets contains only those whose orbits are long slender ellipse

with eccentricities close to one. Thus we only obse.rv%- those that from

time to time drop almost radially toward the Sun from a grea t, distance.

One might at first glance get the impression that such comets are sort

of kept out in "deep storage" for centuries at a time only to drop in 	 =_

for short visits. In a sense this is true as we shall show. Further,

by varying the randomness of the distribution ore might hope to throw

some light 3n an old question about the short period comets usually

attributed to Laplace but most recently studied by Everhard(1).

Secondly the model to be discussed in this report may be reviewed	 --

as an attempt to start with a simple easily visualized Newtonian 	 --

picture and then by slowly increasing the density at the center try,	 -=

1



.,o to speak, to creep up upon a gravitational collapse as predicted by

general relativity. In the first section of this report then we shall

discuss the random distribution of radial motions in Newtonian Mechanics.

Then we shall review briefly the classical solution of Oppenheimer and

3nyder (2) on gravitational collapse. Finally we shall view collapse

from the point of view of a non-uniform density distribution.

2. THE MOTIONS IN NEWTONIAN MECHANICS ABOUT A CENTRAL BODY

Imagine the swarm of particles with random velocities and distances

frora thc. origin. We desire thei-- distribution for all subsequent time.

The equation of motion for each i-s given by

e
(2.1)	 d rr = - G -

M! 
,	 (M = 	 mass,G the gray . eonst., r the

dt2	r2	 disiance)

1

1

if one assumes each can be regarded as moving in a central V ' ,i and

ignore the shielding effect which occurs when the motion cf the one

particle is within most of the mass of the swarm.

The motion of each particle is next regarded as purely radial. This

idealize:=. the motion of a long slender ellipse. The motion may be des-

cribed as follows. (These my be verified by differentiating, or by

referring to a standard text such as Szebehely(3).)

(2.2)	 _	 (1 + cos ,y)

+ sin I
2



(2.4)
t, = J M t

^J a

where the new radial variable C instead of r is

( 2.3)
	

S = r /a

•

and a new time t' instead of t is

In there variables the rrAion is in the sense of increasing fir. Equation

(2.2)furnishes, for y = 0, C = 2 , and t' = 0. Subsequently S decreases

to zero as * increases to n; for which value t' = n . The plot of

the motion in the (C, t')-plane is a cycloid, with its cusp cor-

responding to infinite speed at the origin (occurring at t' = n ).

The particle then rises back to its maximum distance at C = 2 , or in

the original variable, at r = 2a.	 Denote this value by t.

Before leaving these familiar relations, observe that the single

particle spends most of its time out near r =., and very little near the

origin. It will be worth stating this precisely in what follows by

defining a density distribution for a single particle whose integral

over the whole radial path is the mass m of the particle.

To do this observe either by going back to (2.1) and obtaining the

first integral or more directly from ( 2.2 ) that

(2.5)	 d = - =

hence the reciprocal of at , is proportional to the relative time spent in

3
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the interval C to C + dC. Let uc denote the density by vt,
, with

(

	

2.6)	 j aIt (r) dr = m, the particle miss.
U

Then one has

	

( 2. 7)	 Qt(r.) 	 3 ^
	

(r
n 1,T-T--

 r

Notice, as stated, that (TIt (0) = 0, whereas a (.t) is infinite, so indeed

In this sense such a particle is indeed out in "cold storage" and only

"drops in" from time to time.

If now we have a swarm of particles n
,,
 in number, each of mass m,

all in radial orbits of major axis t, but uniformly distributed in all

directions, we wy define a density p t(r) for all of them defined so that

V-C integral over t:-ie whole space out to r = .t will be nItm:

	

n m	 r A)1/2

	

( 2.8)	 p't( r) _	 ^a, 0 < r < t
( t)1- r -t

	

0	 , rat.

Notice p
t,
(0) is no longer zero because of the large supply from

all directions that enter a small neighborhood of the origin.

Let us next make the swarm less artificial by permitting a wide

distribution of r:nergies, characterized by ,t, to be present. Indeed

let as introduce a distribution in t, namely µ(t) with n, now being the

number with maximum distances from t, to t + dt. Then for the density

c?istiibution p(r) for the whole cluster, we have

4
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p(r) = J pt, dt
f	 r

where the lower limit must be r, not zero since the function p,(r)

vanishes for t s r. Thus

	

(2.10)	 p(r) - m r-3/2 J 4(t')==

	

6rr2	 r	 It -r

Before continuing we should discuss the ccnsistency of this equation.

It appears to define p(r) for a given distribution of orbit sizes $&0.

However we assumed the ceucral force law (2.1) in the derivation. Thus

(2.10) is correct for the density of comets, for example, wr^se total mass

is negligible compared to a central body such as the sun; but (2.10)

will not hold for a swarm of particles in their mutual field because ^'f

the shielding effect. We shall discuss this latter point in the next

section.

To get some fcelit for (2.10) and to keep the integrations easy,

let us consider a simple power distribution for µ(t)-and write

	

(2.11)	 µU) = cl
-n

	

.0
	 .

If we let N :lenote the total number of all energies out to some 	 =-

remote l.h.ct value of t say L, we may chose c so that

L	 =	 _--

	

(2.12)	 J µ(t)U	 N.0



'1'?;e n

(x.13)	 ^ - L2-n) N,	 n <2.

We chose tl:e restriction n < 2 here because any lxirger value givr.s such

r^ high central concentration that, as we shall see, the total mass at the

origin becomes infinite. To evalu^lte th,^ intQgral in (2.10) we set

x = (.^-r) /r, whence

w	 m	 r(2) I'( n--2l)
c1L	 ^ -n	 dx	 ^ - ^

I - Jr an(^-r) l 2 - r	 ^O (1.+x)nx1 2 - r"	 r(n)	
,

or as we pre°er tc+ write

I'(n-^)

Thus from (2.10) we nave

(2.15)	 p (r) = C r `n;l) ,	 C = Nm 2-n- ^ r n - 1 2)
n	 n	 L2-n ^2	 I'(n)

Finally intega^ating over a sphere of radius r we find for the muss

(2.16)	 ^ r) ^ knn Cn 
r2-n.	

-

To sum up ab ."allows: For any arbitrary distribution µ(^) of - --

orbit sizes the corresponding density distrit^utio^n p(r) is gi ren by (2.10) •



In the special case oi' all hHVing the same size ^ the density is given

by(2.8). In the special case of µ(•G) given by a plausible Power lT^w (x.11.)

the density is given by(p^) and t}ie mass interior to a sphere of radius

r is given by (2.1,6) . Thus n=2 corresponds to the usual infinite mass-at-

the-origin, central field approximation. Cases with n < 2 correspond to

less concentration, and indeed n = -1 gives a uniform density.

Example: Suppose an sstronoraer is aware at any one ti^re of 5 comets in

our neighborhood (i.e. a cube 1 A.ti. nn a side centered at r - 1) whose

mzi^^or axes are known to be 1000 A.U. How marry are there altogether?

Ans. 1C, 000, 000.

3 . THE MUTfJAL Ix1Tt0I+^ IN NEWTONIAN h^(^iANICS .

As mentioned before, to treat the case where there is no large

central mass ^so that particles in ^i;he inner regions of the swarm are

shielded, we must give up equation (2 1). To correctly account for the

shielding even in this setting of pure radial motion is difficult, it

involves integrating r - ^' M(r)/r2 for M(r) arbitrary, working through

to an equation analogous tol^^.G) and then regarding the latter as na

inte ,ral equation for that µ(^) which furnishes the given M(r) . We

shall not at•^ •̂ mp'; this is general but consider the problem for M(r)

given as a power law is the same spirit as the last section.

Indeed for

i

=- r



we have

1'

r	 •,

(3 •^)	 ^ r) _ ^ prz dr cLn a 1^rr 
J	

pr`dr
^	 o

i_

r	 4n C
r^-n ^	 n < 2_ ^+rr ^	 Cn rl-n dr ^ 2 - n

0

-^ and hence
OrrCnUr-nr--GM	 -

-- 2	 2-n
^'	 , r
^^' -

Orr C G_
^-` n

Let	
^ - 2 - n	

, s o
=_

-= —

r
l-n

^ E	 n^ l
__-

-
d	 I-n	

^

(3.4)
dt

___

e^

^'

_-

t•]here E is li^rely an integration constant . = _

F'ins.11y	 t	 may be obtained by quadrature as an incomplete gamma

^-^ ^^__^ function.	 However tre behavior of the solution is easily found from
-^ ^^ -
_.^ _
_-°_:;

"-^
(3.4).	 The principle effect of the shielding is to remove the infinite _

-_	 _

y-^_ ^, _ velocity at the origin for n < 1.	 If j^re restrict attention to bounded -	 --
;^._ =v.

^^ ^^_, orbits and choose	 E	 so that r(0) _ ^G, the motions qualitatively may be
- - -	

__sketched as in the Figure 1. ^_^
_.

-	 -
--	 -	 -

_
=—
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FREE FALL PATHS

Figure 1

Notice that n = 1, the logarithmic case, serves as the dividing line

betacen those orbits that return on themselves and those that cross tre

origin (The understanding here is trat the radial paths are thought of

as approximating long slender ellipses in the n= 2 case). The n - 1

case is that of a uniform dint cloud of constant density.

To continue as described af`^er equation (2.5), we have from (3.4),

(3.5)	
L(r) =
	

a	
,

E - 2 rl-n
1-n	 =

where a is a suitable constant chosen so that the integral of Q^

taken over r is the mass of the particle. We eschew the detail here

explicitly expressing a in terms of m and n by suitable gamma Yuncti

	

9 =_ -_=- -— =	 ^°



i

If wF: pursue the more general case through tc the analogue of equation

(2 .l^) we obtain

p	
^nr2 ?^ ^r	 1-n 1-n	 ^.l	 r

or introducing x through ^ = rx

(3 . 7)	 p(r) = ^ ^1^-n rs	 (^ ^, (rx) dx	 s =
4n ^^	 l ti x1-n _ 1 ^	

2

1`Iow this relaticn is based on the assumption (3.1), hence we seek a

function µ(^,,) for which this is tree cas? . But frorn the form of (3.7)
-^_

=

	

	 it is clear that w(^) must be a power function in .^ if p is to be a

Dower function in r. `i'hus we aasucie

where m is an as yet unknown power. Absorbing all the constants and

equating (3 .l) to (3.7)

C r-(1+n) = C' 
r 

(n- 3 +2m) /2 + m

^ z .
n	 n

-:^_;

hence we have a solution provided

f.

(3.9)

and

(4 . o)

Cn^ = Cn,

m=2 -^n.

to



Thus we have a family of solutions to (3.7) depending upon n.

The functional dependence of the va^•ious variables may be summarized in

1	 a table as shorn in Table 1. The extreme central concentration n = 2 is

.	 on the left, the complete lack of concentration is n = -1 on the right.

power
variable of r n=2 n=1 n= 3 n=0 n= -1

p - 1-n -3 -2 1.33 -1 0

r -n -2 -1 -0.33 0 1

µ 1 - ^
2	 2

-2.5 -1 0 0.5 2

E-r2 1-n -1 (logr) 0.66 1 2

M 2-n 0 1 1.66 2 3

TABLE 1

The case n = ^ has a rather nice interpretation. Consider a system of

particles initially at. rest and uniformly distributed and suddenly

allowed to fall under their mutual gravitation. T1 an if we allow their

energies to be unchanged, but the phases of their motions to drift	 _

incommensurably, the state of motion can shift statistically from n = -1

ton = 1/3. It may be of interest to pursue the question implied here

more seriously in view of the recent efforts of Barnes and Whitrow (19)	-_

and Penston(20) . However we shall not fellow this line of argument 	 —_

further in this report .	 _	 —	 - j

-	 — - -	 ^ =	 --
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i E . 1^'LATIVZCTIC GRAVITATIUIQAL CONTFACTION

?n their now classic report on gravitational contraction (1939),

Uppenheimer and Snyder (`) obtained a solution of t±ie Einstein equations

of g eneral relativity that correspond to the fall of a ball of matter of

uniform density. Indeed it had previously been shown for sufficiently

large mass concentrations that "cold" matter must contract ( ^^. The

implice,tionG of this, especially for stellar theory has prompted numerous

papers ^irrce
(5-18) . 

The literature is iu fact much too extensive to

review 'here. The basic conclusion seems inescapable and has led

Geroch(1^ ) , Hawking^ ll) , and Penrose (1`) to propose rigorous mathematical

proofs, under fairly broad assumptions, that such collapse must occur.

One feature of the original Oppenheimer-Snyder paper that is

bothersome, is the fact that to obtain a first result of this kind they

quite n^iturally considered the simplest case. It turns out that a

uniform cloud of particles, co-moving, will contract steadily and

uniformly dawn to a point singularity. In spite of general theorems

such as that of Penrose it is interesting to look at other specific

e^camples . One r^:cent example due to Israel( 13) considers a thin

spherical shell of matter that collapsed due to its own gravity.

Israel would have it rebound; appearing to go backwards in time after

the "bounce". Other examples suggest themselves. Before going into

them, we shall review the principle results of Oppenheimer and Snyder

here. TY.ey assume, :or an observer at rest at a great distance, the

Scl;warzschild metric given in term,:, of coordinates (r, 8, gyp, t) by

^-

12



(^+ •1) ds` a (1 - ro ) dt` - (1 - moo
) -1 dr

2 - r2 (dA z + singe d:o2)

For the falling matter they introduce co-moving coordinates

( R, A, co, T) with metric

( 1E .2)	 ds2 = dT` - ew dR2 - ew (del + singe dcQ2 ) ,

where u^ and w are functions to be determined. Since the matter is at	 -

.rest in these coordinates and any internal stresses and pressures arm
3

taken as negligible, all components of the stress tensor vanish except 	 .=-=_

_^ -
T^4 = p(R). Substitution into Einstein's equations then furnish equa- 	 _ _-

tions for iu and w; indeed they find	 -	 -_—°

(4•j)	 ew = ew w'2/1+f2(R),

where f(R) is arbitrary. A restricted clsss of solutions is found for

f(R) = 1 for which they find

with F and G arbitrary functions of R. Since the equations are invariant

under a coordinate transformation such as taking R to be a function of a 	 -_-

new variable R# , only one of F and G is really arbitrary so they set 	 —

G = R3/2 . If nvw the density p(R) be given initially as po(R) they find ^-

--	 -	 - 13 =-	 ` _- - - -- -- -



We h-sve repeated much of the argument here because we wish to use these

^qutr.tions for po(R) chosen as in Section 3. 4t this point the easiest

case ie tc^ take po(R) = const. However such a distribution cannot ex-

tend to^sll. P, but most fall off faster at infir_ity; so they introduce

a value Rh suet; that pc( R)	 const . R s R.^, pn(R) = 0 for R > Rb . One

then wishes to obr--,erne the collapse in the (r, A, gyp, t) coordinates.

Ttie trarlaformation is obtaine3 by finding r = r( R,T) , t = t(R, ^) using

(^ .3) n.nd (4.4) to transform (4.2) over to (4.1.) . SkiF- •{ ng the details

here, we shall simply give the result (ro being the Schwarzschild radius

corz•eGpondin.g to tl^e total mass .)
1 _ I-^	

e/vR (1 - 2 ro`Rb 3i ` •r)	 R < Rb

(^^.G)	 r =
- ^ 3 -3^2 2/3

R (1 
2 
ro R	 T)	 R > Rb

1=
r2 + ro^

	

^? (Rs^z _ rslz) - 2( rro) ^ + ro ^,n 	 , R >
^ro	

r(r •7)	 t'{ ^ :,,	
i
J Id( y) ,	 R < Rb

'-^	 where	 `

^	 2

	

`	 ;i

_^-.:	 ^	 Here M(y) must be chosen to satisfy continuity at R = Rb which furnishes

	

•	 -:^

(4•c)	 M( ) _ ? r "^( s^a - 
ro

s^2 s^2) - 2r ^ + r ^f,n ^fl	 _=	 -
^ 	 ^	 Y 3 0 ^	 Y	 oY	 o '^—•	 —_	 _

__-= '	 =	 Y 1	 __--

The appearance of the solution is easiest to visualize by appropriate

graphs. Figure 2, gives the paths R = const. in the mixe8 (r,T)-plane.

_—---	 _ -_ lk	 -	 ---	 _ -
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Figure 3 shows the motion in (r,t) . The latter show;; the ^,henomena

1;uok-n as cut off . Ii we denote the moment of canplete ^:ollapse by 
TCR

we :;ee that the falling motions appear to slow down for t in the

neighborhood of 
TCR 

and rather quickly approach asymptotic d:istanees

which n.re the Schw3rzschild radii f'or tY.e total mass interior to each.

i
TY:at ; s t•m^^ ^ re, Lim 2 I^ = 1E ro, e^;c . each finding a limiting posi-

tion. Sin ^ the asymptotic values axe in i'act approached rather quickly

for t 
T"R 

one may ask if this is an effect of 'the assuraption that all

t}-,e particles started out together and hence al_1 converged at the same

time. We may also wonder at the consisteu ^.y of this picture with the

^	 N^^^Y-toriisn picture of 3eetion 3 where: particles may fall from different

initial pciuts at different time.

To s.nswer some of these questions let us first point out an

important distinction between the particles falling in Section 3 and

the co-moving coordinate R following the motion here. Co:isider a small

volume of space in the neighborhood Y, of a point at distance R i^.itially.

The voL.u^e Y at any instant contains mass. The momentum components Ti4

of the stress tensor will be zero even for matter in motion, so long as

the net flux into or out of Y is zero. Thus R, the "coordinate-following- 	 ^

the-motion", only has this meaning in the sense that the center of mass

of Y has a motion described by r ^ r(R;t) such as shown in Figures 2 or

`^	 3. Thus individual particle motions different from the mean collapse
1

motion can be understood to be encompassed by the relativistic theory.

On the other hand the picture in Section 3 suggests that we look at other 	 s ^

motions following equation (4.5) with po(R) chosen from Table 1. Per- 	 --

baps we can sort of sneak up on the singularity without the common

16



suddeness of T - TCR ohown in Figure 2. WP shall indeed take this up

in Section 5.

Before leaving the subject of uniform collapse, it is worth one

more fact of note. If each region chara:,terized by the coordinate R is

furnished with a clock, the cicc;k will sppear to stop at a certain

proper time TL before the critical value of T• Moreover this occurs

asymptotically as R appears to sink down to its ultimate lowest value,

say rL . This defines a curve rL = rL( TL) iL the (r,T) -plane beyond

which further collapse is unobservable to our distant rest observer.

This may be found from (4.7) (corresponding to y=l), with a little

algebra, and is shown on Figure 2 a; the dashed line.

5. COLLAPSE FOR ALTERNATIVE DENSITY DISTRIBUTIOIIS

In this section we shall adopt an assumed power law

(5.1)
	

P - CuRu

t

i_
where u = - (1+n) in terms of the exponent in (3.1), and introduce the

co-moving coordinate R = r(0) in place of r(t). Following Oppenheimer

and Snyder, as described in Section 4, the only departure comes after

(4.5). We shall follow their argument for general u. Actually looking 	 i-

at Figure 2, we see that by taking po( R) - const . for R s Rb , Po( R) = 0

for R > Rb they have in a sense covered two cases; u a 0 and v - -3•

So that for 0 < u < - 3 we m%y expect the paths of constant R in the

figure to resemble those labeled v - -3 rather than all converging to

•

17
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r CR as in the u = 0 cane. That this 1s indeed the more general situation

we shall see shortly.

Let us integrate (4.;) then to find

F2 1
3 +y u R3 +u + constant.

Drcpping the non-essFntial constant we may write

222 _ ICU(5 . 2)	 F= -y It 2 ,	 Y - ^^ 3+v

hence ew/2 = r furnishes in place of (4.6)

2 ^3

(5 . 3)	 r	 R(1- Yri,1/22)

Thus this motion is a solution of Einstein's equations and indeed should

describe a possible relativistic behavior of the swarm of particles

described in Section 2. Thus evean though the motion 1s a "non-zero-

temperature-motion", collapse can still occur. ( This is in large part

due to the zero angular momentum of pure radial motions.) To see what

the motion looks like to our distant observer we need, in addition to the

function r = r(R, 'r) given by (5-3), a relation t = t(R, ,r) . This is

obtainable (still following	 ) by solving

t(R -r)	 r	 -r	 at a
T	 aT	 r R

for t(R, ,r) regarded as a first order partial differential equation,

I.
k=

I

i

N

18



€	 since ar^^T and ar^^R are. obtsined from (5.;3). Thus cne finds

(5.4)	
j Y R	 2	

^t	
(1-y T R	 )	 ^t _

	

+	 0.
v/^ 1 3 ^T	 u + 

v^2	
aR

'	 ( 1-YTR	 )	 (1-y 3 R	 )

If ^ ^ gyp( R,T) be any first integral of this equation the general sol^.^tion

is t = ^(cn) , for ,^ an arbitrary function . Dfote however that for all

u < 0 the density given ty (5.1) decreases to zero as R ^ ^, so we aish

the mapping (R,T) -- (r,t) co apr,roe.ch the Schwarzschild field asymptoti-

cally for all t. This fixes the function ,^. At this point one could,

for given v, carry out the integration of (5.^) by _etting up the

equations

	

^^+^	
U 2 2^3

(5.5)	 aR = ^ n 2 
(1+ vT R

1+ u+ YTRv/2
3

If M = ^ po(R)R` dR be the total mass of the system, and we denote t,y

rs the Schwarzschila radius ::orresponding to M, we may now write the

transformation as

2 ^3
r ^ R(1 - Y T Rv/2)

(5.6)

'	 } 
Ys 3 ^
	 + 2c^ - ^n	 + 1 ,

- 1

-_ _	 ^.^here ^ ^ tp(R, T ) is any solution of (g .5) .
^_

Of particular interest will be tY.e solution m(t^,z) ^ 1 whicY.

- _-	 describes the locus is the (R,T) space of all points that map tot = ^+

_	
19

^^



r

in the (r,t) space. These are the ultimate-lowest--apparent-radii

reached. It is cf passing interest to note that 15.5) is separable

for two cases, y = c) and v = -2. Even in the u = -2 case, however, a

numerical integration is ne,:e:;ary.

RatheZ• than get into a detailed solution of (5.5) we will content

cur elves with a few comments on the nature cf solutions.

Figure !+ furnishes a sketch of the curves i •=r(T) described by (5.31

for y = 1, u = -1. These have been extended across the r=0 axis in the

spirit of a "rebound" from she singularity. It should be noticed that

two difficulties occur. For one thing if we compare with the Newtonian

figure 1, we see tha+, for all u, not only n > 0, one has dr/dT infinite.

r

The i;ase v ^ -1

FIGURE ^+
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s

i

i

mhis is a reflection of the fact that even though r is only a coor-

dinat^^ variable, none-the-less r=0 is the apparent location of a true

singuls.rity since the intrinsic curvatures are infinite.

Secondly, as continued across r=0, neig'r^boring curves cross forming

an envelope eo that the coordinatE transforsssatior, (R,T) -^ (r,t) is no

longer single-valued. This leads to two questions. One: what is the

equation of the envelope? Two: Does the snapping ever break down with

such a fold before the axis is crossed? The answer to the latter ques-

	

uj2	 uj^2
tion is no, since for u < 0, R2 > Rl implies R^	 :. Rl	and hence

u%2	 v/2

1-YTF^	 > 1-YTR ,

provided 1 - Y T Rl u ^2 > 0. Thus rz( T) > rl (T) if rz(0) > rl (0) for all

T for which rl > 0.

That ar envelope does in general exist for negative r is found from

(5.3) by direct construction, i.e. eliminating R from (5.3) using

.. _c+r^ c.: = 0. ire equation of the envelope is

_ 2

Th° case u • = 0 degenerates to a point at T =T OR, the case u = -3 gives

i
r = Y"" T2 3 . For v = -1 we have r proportional to T 2 as shrnm in

Figus^ 4.

The only really basic difference then between the case v 0 and

'	 other power laws is that instead of the whole space seeming t o sismzltaneously

settle down to the ultimate state as in Figure 3, one hs,s the inner regions

effectively cut off first, followed by the outer regions laver, so that

21



one must view a steadily expanding "black hole".
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