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SOLAR CYCLE VARIATION OF PLANETARY

ENOSPHERIC TEMPERATURES

S. ?. Bauer
Laboratory for Pia::etary Atmospheres

NASA Goddard Space Flight Center
Greenbelt, Maryland

The purpose of this note is to show that a simple scaling law, based on an

approximate solution of the heat balance equation, can be used to determine the

variation of exospheric temperature Tm over a solar cycle. T m is defined as the

temperature of the isothermal region (on account of heat conduction) extending

into the exosphere. Thus. T m also controls the escape of gases from planetary

atmospheres.

It is assumed that in the thermosphere, the effective heat input due to EUV

radiation, Q^^, is balanced by the divergence of a conductive heat flux, E (ne-

glecting IR radiation from atmospheric constituents) according to

divE=Q^^	 (1)

e

i

where E _ -K^ (T) dT/dz, with K^ (T) the thermal conductivity and the dT/dz

the temperature gradient Hrith altitude and Q = n, Q F . I e -' with n. the
^^	 ^ e	 ^	 ^	 ,

number density of the absorbing constituent, ^ e its average absorption cross

section, e^ the heating efficiency of solar EUV radiation of intensity I W outside

the atmosphere (i.e., in the exosphere) and r = Jo n^ ^ e dz the optical depth.

Thc; integrated form of (1) is given by

(': 
W	 T^

J

e^ I,^ (1 - e-") dz = J	
K^ (T) a.	 (2)

z^	 TD

F
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where T^ is the exospheric temperature, T^, is the temperature at the mesol^ause

E	 and z^ and z ° arc the corresponding altitudes.

In the acronomic literature it is generally assumed that K^ ^ - A ^ T 1 s based

E	 on a rigid sphere approximation.' However, as pointed out recently, 2 suc',1 a
1s

temperature dependence may not always be applicable. E.rperimenta'_ data 3 and

quantum-mechanical calculations° show that fur atmospheric gases K ai = l, o T vt ,

where v^ > 0.5, so that the temperature dependence in the beat conduction

^	 equation will not be identical for all planeta: y atmo"spheres as the result of

their different composition. (K o = 67 T ° 71 , Kco	 1.5 X T i _ s ; KHe = 21 T o '/5
2

and K H = 16.4 x Z,o. ^a )a.a

Integration of (2) following some simplifications leads to

e^ 
I`"	 ^-I{o(Tm+1 _Toes)	 (3)

^ (^^) ^a

if we assume that T -• 0 at ^ , i.e., in the exosphere, anti •^ ~ ^ at z o , i.e., at

the base of the thermosphere, and allowing for (n (z^,) ^ fl ) 1 » z m - zo

(since^a '^ 10" t ' cm2 and exospheric densities are of the order 10 8 em_
3
 ).

For n (z m ) we substitute the density at the exobase n h = (^^ H) -1 which derives

from the exospheric condition that the mean free path is of the order of the	 "

local scale height H = k T om, /mg, where k is the Boltzmann constant, m is the	 °-

mean mass and g is the acceleration of gravity at the exobase and o^ is the

gas kinetic collision cross section.

f

Thus, we can write (3), neglecting T o compared to T^ (which seems

permissible, at least for the terrestrial planets) as
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i

.:^

v	 E^ I^k.r°
«	 ( )

K° ^ g ve	 4a

^	 and thus

Tm « I^^v	 (4b)

From satellite drag ehRervations over a gnlar C;^:C ` rt is know,. +.hat the ter-

restrial exospheric (daytime) temperature ranges from ti 800°K at solar r,^'ni-

mum to ti 2000 ° K at solar r.:aximurn leading to a ratio T^ (SMax)/T^, (SMin) = 2.5.

Although an empirical ^•^latio*. exists aetween solar 10.7 cm radio flux, S 10 ^

	

(which is an indica:o^ of solar activity) and exospheric temperature s the exact	 -

relationship bet<^.eeri S 1 ^ ^ and the EUV intensity I m has yet to be established:

Since fo: the terrestrial thermosphere. T^ « Im^ 0 ^ 71 , we infer from a temperature

ratio of 2.5, that the EUV intensity has changed by a factor ti 1.9 over the solar

cycle. This seems to be consistent with o'^servatioiis b and modelling of the

terrestrial ionosphere.

For a CO 2 atmosphere (Mars, Venus) where T„ « I ii .2a holds, we obtain 	 E

a temperature ratio over the solar cycle of ^ 1.7. For Mars, Mariner 4 ob- 	 ^

	

servations e near solar minimum showed an exospheric temperature T W ti 300°K,	 ^ . ,

while Mariner 6 and 7 measurements 9 near solax maximum showed T m ti 500°K.

.

	

	 Our estimated ratio of T„ over a solar cycle, thus agrees well with the observ-

ations. For Venus, Mariner 5 measured Tm ti 650 ° K near the middle of the

solar cycle. l ° Thus, according to our estimate., the exospheric temperature of

Venus at solar minimum should be T m ^ 47G° K and that at solar maximum

Tm ti 800°K.

t
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Recently it was suggested ) ^ that the ratio of thermal energy 3.%2 kT, to

gravitational energy mF^ gr, of hydrogen is about 1/2 for the solar corona as

well as for the earth's exosphere (r is the planetocentric distance). This leads 	 •

to the condition that the thermal velocity of hydrogen with = (3 kT/m H ) 1 '^ is	 ^

about equal to its circular orbital velocity vo = ^. (Note that the escape ve-

locityvm = ^ vo ). From this relationship Matora'- 1 estimated the "limiting"

exospheric temperature of a planet to be given by TW timygr/3 k. Accordingly,

he obtained the estimates of T^ ti 400°K for Mercury, 800°K for Venus, 2000°

for Earth, 300°K for Mars and 25,000°K for Jupiter as exospheric temperature

for a gravitationally stable atmosphere. This limit is similar to the condition

of Opik is according to which atmospheres with an escape parameter B =mgr/

kTm < 1.5 are unstable. This condition corresponds to vch /v o = for with /vm

= 1. (lt should be noted, however, that with significant escape, the "effective"

temperature well above the exobase, will be less than T^ due to the loss of

high velocity particles),ia

Thus, Earth and Venus seem to have exospheres which are stable even at

solar maximum although they are subject to escape (B < 15), while the exosphere

of Mars is stable only near solar minimum, and escape should be excessive

near solar maximum.
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