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1. INTRODUCTION
 

The purpose of this study is to lay the groundwork and provide a 

basis for field evaluation of the SD-53 Strapdown Inertial System both in 

a van and in an aircraft. The Inertial Sensing Unit (ISU) of the system con­

tains three Single Axis Platform (SAP) gyros and three Pendulous Integrating 

Gyro Accelerometers (PIGAs). For both the van and flight test programs, 

a Minneapolis Honeywell 516 computer will be used to process the inertial 

sensor outputs. 

The study was divided into the following six tasks: 

* 	 Define detailed objectives of the van and aircraft tests 

* 	 Establish a philosophy of the evaluation and 

an approach to fulfill the objectives 

* 	 Define an evaluation system configuration and 

approximate performance requirements 

* 	 Define possible tests to collect data required to 

-fulfill the objectives 

* 	 Consider how the test data is to be reduced 

* 	 Provide an approximate estimate of the evaluation 

system precision 

Since the purpose of the study is only to perform a preliminary test 

design, no detailed procedures, error analyses or data reduction programs 

are provided. The report is organized according to the above topics, and 
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includes conclusions and recommendations. Several related non-van or 

aircraft tests and analyses that can significantly support the field test 

program are described briefly. 

A preliminary survey of the literature was made relative to field 

testing of inertial systems, with particular emphasis on van and flight 

testing of strapdown systems. Several of the more comprehensive 

references are [1, 2, 3, 4, 5, 6, 7]. Other references including ones 

in more restrictive areas, are included in Section 8. 

Numbers in brackets f[ ]) throughout the report correspona Lo r ert'encu 

numbers in the bibliography (Section 8). 
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2. OBJECTIVES OF TEST PROGRAM
 

The objectives of the' field test program are defined first in general 

terms and then in more detail in order to better specify the test program 

and to provide a measure to which the results can be assessed. The five 

major objectives of the test program are: 

* 	 Assess accuracy performance 

* 	 Identify and characterize major system and component error 

sources and verify math models of SD-53 system. 

* 	 Record inertial sensor outputs under field conditions for 

off-line studies. 

" 	 Assess the ability of the SD-53 system to meet its design 

objectives and provide design information as required. 

* 	 Determine operational characteristics of the SD-53 system. 

An additional objective for the van test program is to prepare for the 

subsequent flight test phase. The detailed objectives are discussed next. 

All of the proposed test procedures and subsequent data 

reduction recommendations in this report are designed to fulfill the 

major objectives presented above and the detailed objectives discussed 

below. The first major objective (to assess accuracy performance) 

consists of characterizing the errors associated with each of the following 

navigation parameters as a function of time: 

The precision with which the navigation errors are determined should 
be at least several times the accuracy of the SD-53 system and sufficient 
to provide design information should it be needed. 
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Geographic Coordinates 

* 	 Position (La, Lo, H) 

* 	 Velocity (VN' VE. VV)
 

" Attitude (A H 'A P , AR)
,
 

" Attitude rate of change (A1H , Ap, AR)
 

Tangent Plane Coordinates 

* 	 Position (X I Y Z 

* 	 Position rate of change (X s , Ys , Z7s 

* 	 Attitude (AX, Ay, Az) 

* 	 Attitude rate of change (A X A, Az), 

The accuracy of each of the above parameters should also be determined 

as a function of: 

1. 	 vehicle environment (e. g., vibration, rate and 

acceleration maneuver profiles, shocks, power 

supply variations, etc. ). This includes performance 

evaluation while stationary in order to establish a 

base-line condition. 

2. 	 System configuration (e. g., specific navigation algorithms 

used, compensation applied, use of external fixes (position 

and/or velocity), ISU mounting arrangement, etc.). 

* 
Symbols are defined in the Glossary (Appendix H) 
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3. Quality of external fixes and references 

4. Quality of initial alignment and calibration. 

The quality of the initial alignment is merely the errors in the above 

navigation parameters at t = 0 and should be characterized as a function 

not only of the first three factors above, but also of the alignment pro­

cedure and alignment time. It is very desirable to demonstrate the 

navigation function and accuracy performance in real time (vs. using 

recorded sensor data), for at least one of the two coordinate frames shown 

above in order to provide as realistic operational conditions as possible, 

to minimize the risk of relying on intermediate test equipments and 

extra handling of data, and to provide real time monitoring of the system 

in the event of abnormal behavior. 

The second major objective (to identify and characterize major 

error sources and verify math models of SD-53 system) is intended to 

suppport analytical studies of the system, to verify and establish con­

fidence in the math models used, and to provide basic understanding of 

system error propagation characteristics. Such information is necessary 

not only to support current analyses but also to specify system configura­

tions for the ultimate applications of the SD-53 inertial system and to 

provide creditable estimates of expected performance under conditions 

peculiar to each application. Since it is most likely that candidate systems 

for a given space mission must be evaluated and selected without having 

demonstrated performance in the actual application, trade-off studies 

must be based on predicted performance (which can be believed only to 



the extent that existing math models are able to predict performance in 

the van (and flight) tests). A by-product of this objective is to determine 

which calibration terms may-be estimated in the van or aircraft and there­

by provide a basis for possible field calibration. 

The third major objective (to record inertial sensor outputs under 

field conditions) consists of digitally recording during each test the counts 

obtained from each SAP and PIGA before any compensation. The recorded 

outputs are then to be used to perform off-line (i. e., post-test time) 

studies that include the following: 

* 	 Design and evaluation of algorithms (i. e., coordinate 

transformation matrix, velocity transformation, 

navigation, attitude transformation, initial alignment 

and calibration, and yaw monitor). 

" 	 Determination of the effect of and need to compensate 

for such errors as SAP misalignments, mass unbalance, 

OA angular acceleration error, etc. and PIGA misalign­

ments, scale factor error, etc. 

* 	 Determination of system accuracy in navigation coordinate 

frames other than the one(s) used in real time. 

The inertial sensor data should be recorded at.least as frequently as the 

maximum anticipated update rate of the coordinate transformation matrix 

(CTM) and the velocity transformation operation, in order to fulfill all 

objectives. 

* 
Except for gyro bias torquing 
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The fourth major objective (to assess the ability of the SD-53 

system to meet its design objectives and provide engineering design 

information) is intended to provide assurance that the system under 

test will meet the requirements of the final application(s) for which it 

is intended. Also that required engineering design information be 

obtained, as necessary, to continue development of the system. If 

improvements or changes are deemed necessary, it is desirable to have 

obtained sufficient engineering information from the test program to 

support hardware and/or software design changes as well as improvements 

in procedures and other operational characteristics. This objective is 

ih contrast to that of determining the existing accuracy and operational 

characteristics of the system, whether they be better or worse than the 

design objectives. 

The fifth major objective (to determine operational characteristics 

of the SD-53 system) is intended to accumulate operational experience 

with the SD-53 system in the following areas: 

* Reliability 

* Availability 

* Repairability 

* Reaction time 

* Operability 

Each of these terms is defined in the Data Reduction Section (6. 4. 6). 

It is also desirable to determine which inertial system calibration terms 

can be estimated in the van and in the aircraft. Since the van and flight test 
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programs are largely evaluations of an engineering model of the SD-53 

system, most operational characteristics observed during testing cannot 

be directly extrapolated to be the same as for a production model. However, 

the information is desired for the following reasons: 

* 	 To provide a basis for improvements, where necessary. 

" 	 To provide a more realistic prediction of characteristics 

in a given final application, when the SD-53 system is 

compared to other candidate systems. 

The additional major objective for the van test program (to pre­

pare for the flight test program) is intended to provide experience with 

the inertial and evaluation systems under field conditions, to provide base 

line performance of the system, and to minimize the time that an aircraft 

must be made available, both for equipment installation and checkout and 

to 	perform the flight tests. A significant savings in time and effort is 

anticipated since many of the equipment integration, checkout and calibra­

tion activities for the inertial and evaluation systems are common to both 

the 	van and flight test programs. Furthermore, it is intended that most 

test procedures and data reduction techniques be checked out as part of the 

van test program and that operational and data gathering problems be solved 

before installing the equipment in the aircraft. Checkout of computer pro­

grams and algorithms to be used during flight tests is also intended, as 

well as operation of the altimeter input and change in vertical position deter­

mination. Operational experience during the van test phase can indicate 

improvements to minimize flight test time and inefficiencies, including 

spares required, preventive, maintenance, etc. 

The evaluation system consists of all equipments and procedures used to 
evaluate the SD-53 inertial system. 

The U. S. Naval Air Development Center estimates the time and cost are 
reduced about 60 to 70% [7]. 

-8­



3. PHILOSOPHY OF SYSTEM EVALUATION 

3.1 GROUND RULES 

In addition to the objectives discussed in Section 2, there are 

several ground rules to be followed in specifying the field test program. 

Standard test instrumentation is to be used wherever possible, and there 

should be a minimum reliance on special equipments not readily available. 

Furthermore, the relative complexity of the evaluation system, equip­

ments, procedures and techniques is to be minimized in order to increase 

the probability of obtaining usable data at minimum cost with flexibility 

to make changes, if required. For this reason, the initial flight test pro­

gram will not be conducted on a specially instrumented test range. 

A Minneapolis Honeywell 516 computer is to be used in both the 

van and flight test programs to process all the inertial sensor outputs and 

to act as a buffer in recording them on tape. The NASA Coordinate 

Transformation Matrix Computer (CTMC) [8] will at most be used in 

parallel with the 516 computer, since it still requires further development. 

Therefore, the test program discussed in this report will not consider the 

CTMC as part of the system at the present time. 

Evaluation of pitch, roll and yaw angle accuracy, as indicated by 

the SD-53 system under dynamic inputs, is considered to be of secondary 

importance at the present time. Not only because of this is little attention 

to be given to the problem, but also the test equipment and related data 

collection and reduction functions are somewhat complex and would require 
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not insignificant development efforts. Photographic methods to obtain 

heading to approximately 6 mn (la) and attitude (pitch and roll) to 3 min 

(10) are described in [3]*, however considerable time and effort is 

required. Not attempt will be made to evaluate the attitude rate accuracy 

of the SD-53 system. 

Although both digital and analog recorders are available, their 

characteristics are such that any requirement to accurately time synchronize 

data from the two recorders is to be avoided. However, time synchronization 

of data between channels from the analog recorder is less difficult and can 

normally be done with sufficient accuracy. 

3.2 APPROACH 

The approach described here provides a means to fulfill all 

to perform allobjectives discussed in Section 2. The basic approach is 


system under
functions that are required to align and navigate the SD-53 


various conditions and to measure the errors in its indicated outputs,
 

all in real time. The emphasis is on demonstrating the performance
 

during operation (in contrast to post-test processing of recorded inertial
 

sensor data). It is not recommended to use the latter approach to demon­

strate system operation and performance since extra data handling is
 

required,and recording problems or interrupts could cause a large
 

increase in the test time required to obtain satisfactory data. It is desirable,
 

In [9], a I ml-n accuracy is claimed.
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however, to record the inertial sensor data simultaneously with the 

computation of the alignment and navigation functions, if possible , to 

minimize test time, to allow computation of the effect of certain error 

sources, to provide data in the event problems are detected, etc. 

The field test programs have been developed such that most of the 

inertial and evaluation systems, equipments, procedures, and techniques 

used are the same for the van and flight test programs. Therefore, a 

good deal of the equipment checkout, integration and calibration activities 

required for the flight test program will already be accomplished as part 

of the van tests. Included in this category is a computer program to ini­

tially align the SD-53 system analytically, before entering the navigate 

mode. Although externally provided vertical and heading references can 

be used in the van [1, 5, 4], such an approach is not considered 

feasible in an aircraft. It is recommended that analytical alignment be 

developed and checked out as part of the van test program. 

It is recommended that long term navigation performance of the 

system be demonstrated using a geographic (North, East,Vertical - NEV) 

coordinate system, and that short term navigation and guidance be based 

on a Tangent Plane (TP) coordinate system. It is desirable to demonstrate 

performance in each coordinate system in real time, if possible; sep­

arately if not. If computer requirements and available test time and 

schedules are such that a choice must be made, it is recommended that 

*If not possible, test runs should be repeated performing the recording 
and computation functions separately. 

Defined as the NEV coordinate system just prior to entering the navigate 

mode and nonrotating relative to inertial space thereafter. 
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long term navigation in NEV coordinates be demonstrated in real time 

for the following reasons: 

* Equations for navigation in NEV coordinates will already 

be programmed since they are required for inertial 

(analytical) alignment, whether TP or 1EV coordinates 

are used following the alignment. 

* 	 Navigation in NEV coordinates requires calibration of 

the gravity vector only in the vertical acceleration loop. 

This eliminates an error source regarding navigation 

in the horizontal plane, thereby improving the precision 

with which system long term performance may be 

determined. Although this is more critical during the 

flight tests, the programs should be checked out during 

the van tests. 

* 	 Operation in NEV coordinates provides feedback 

corrections (by way of the Schuler and earth loops) 

which tend to limit the growth of errors and assures 

more linear operation. 

If the computer is unable to perform the navigation and alignment functions 

in real time, recorded inertial sensor outputs may be processed post­

.test as a last resort. 

Evaluation of system accuracy performance is recommended on 

the following two levels: 
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* 	 Direct measurement of system indicated outputs. 

* 	 Indirect estimation of system internal errors and error 

sources. 

Direct measurement of vehicle position and velocity is generally 

possible at discrete times. Also the ISU orientation when in the van can 

be measured directly using facilities in the NASA alignment building at 

MSFC. These direct measurements can also be used in various combina­

tions to estimate certain errors and error sources within the inertial 

system, using appropriate math models and estimation filters (and/or 

smoothers). Two such programs are discussed in Appendices C and E 

(viz., analytical alignment and reset). The effect of other error sources 

on the navigation and attitude errors can be estimated using the inertial 

sensor outputs directly (e. g., effect of mass unbalance, compliance, 

scale factor errors, etc. ). It is significant to note that the above references 

are not based on inertial principles, thereby assuring an independent mea­

surement of the SD-53 inertial system errors. If attitude and attitude rate 

errors were to be measured directly, a second inertial system (one 

already developed and proven) could be used. Attitude rate errors can also 

be measured using separate rate gyros. 

It is considered important in the assessment of SD-53 system 

accuracy to determine the errors associated with the test equipment and 

evaluation system so that confidence levels on the test results can be 

ascertained. Similarly, the van and aircraft test environmental conditions 

Generally, the velocity reference measures the average vehicle velocity 
over a short period of time and hence the inertial system velocity would have 
to be measured over the same period in order to make a direct comparison. 
*
 

e. g., gyro bias errors, attitude and relative heading errors, earth loop 
misalignments, etc. 
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should also be determined. This includes not only vehicle motions (maneuvers, 

vibrations and shocks), but also potentially significant errors in the inertial 

system support equipments (e. g. , power supply variations, grounding 

problems, ISU temperature, etc. ) 

Special van routes, aircraft flight paths, and maneuvers can be 

specified to checkout specific error sensitivities or system functions. 

However, such tests generally involve supporting analyses and more 

extensive data reduction and so are considered to b of lower priority. 

There are certain non-field special tests performed on a subsystem 

level, along with supporting analyses, that can be integrated with results 

from the field tests. Such tests and analyses are only briefly considered 

since they are more involved with possible uses of the field test data than 

with the field tests themselves. 

It is considered important to maintain a test program log in order 

to correlate problems and unusual equipment behavior and results with 

significant events, conditions, etc. This can provide realistic inputs 

into the assessment of system operating characteristics. In addition, 

sufficient information should be made available during each run to assure 

usable data is being obtained. This implies the definition and utilization 

of run abort criteria. 



4. SYSTEM CONFIGURATION AND REQUIREMENTS 

This section describes both the SD-53 Inertial System and an 

evaluation system consisting of various test equipments, references and 

procedures. Figure 4-1 is a functional diagram of these two systems and 

It will be noticed that not all functionsshows the relationships involved. 


need be performed in real time (i. e., when the inertial system is operating
 

inthevanor aircraft). Definitions of symbols used are contained in Appendix H.
 

Each of the major systems of Fig. 4-I are described below in 

Sections 4. 1 and 4. 2. The remaining sections describe the various refer­

ences that can be used to evaluate the SD-53 system. 

For purposes of test design, certain assumptions will be made 

concerning errors associated with the inertial and evaluation systems. 

Assuming the inertial system is near the upper limit of the state-of-the­

art of aircraft systems, a 1/3 n.m. per hr. buildup of RMS position error 

with time is compatible with the following inertial system error sources: 

gyro bias: - 4 mdh (millidegrees/hr) 

random* gyro drift: - 4 mdh, 3 hr correlation time 

accelerometer bias: 1i0 Ag 

random accelerometer - 5 gg,2/3 hr correlation time 

drift: 

assumed to be Markovian processes with RMS errorRandom drifts are 
and correlation times as shown. 
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initial vertical error: 1-2 sec 

initial heading error: < 6 sec (with optics); -3 O sec La sec (using 
analytical alignment) 

initial velocity error: < . I kt. 

initial position error: < 50 ft. 

The corresponding RMS velocity error is approximately . 5 kt with a 

superimposed Schuler error of about . 1 kt. The above numbers are 

based on a simplified preliminary analysis shown in Appendix E. 2, and 

in no way are they to be interpreted as reflecting actual performance of 

the SD-53 inertial system. They are intended merely to aid in the initial 

design of the test program and specification of the evaluation system. It 

is desirable that the evaluation system measure the above quantities with 

a precision at least as good and preferably several times better than the 

errors shown. 

4. 1 SD-53 INERTIAL SYSTEM 

The basic element of the SD-53 Inertial System is the Inertial 

Sensing Unit (ISU) and associated support equipment. The ISU is described 

in [10] and consists of three Single Axis Platform (SAP) gyros and three 

Pendulous Integrating Gyro Accelerometers (PIGAs) all mounted rigidly 

to a support structure. The ISU also contains associated electronics, 

temperature systems, etc., as well as an optical cube and an azimuth 

porro prism. The SAP input axes (IAs) are mutually perpendicular and 

form equal angles with a normal to the ISU base, and the PIGA IAs are 

nominally parallel to the SAP IAs. The associated support equipment 

Currently gyros using output axis air bearings are installed in the SAPs. 
Although acceptable for short term applications, (say < 15 minutes), the air 
requirements would be excessive for long term applications. However, for 
the van and flight test programs this is not a serious limitation. 
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includes power supplies, air supplies, air conditioning, monitoring and 

operating equipment, etc. 

The other major element of the SD-53 Inertial Navigation System 

is a digital computer. For the van and flight test programs, a Minneapolis 

Honeywell 516 computer will be used to process the inertial sensor outputs. 

The functions to be performed are as follows: 

" 	 Generation of the coordinate transformation matrix 

(perhaps using a four parameter, third order algorithm). 

* 	 Velocity transformation into the stable coordinate frame. 

* 	 Generation of navigation parameters (latitude, longitude, 

vertical position, velocities North, East and vertical) 

* 	 Euler angle attitude transformation (roll, pitch and heading 

relative to North) 

* 	 Analytical alignment (using position and velocity as 

references, with option to include measurements of the 

change in heading error 

o 	 Compensation for SAP and PIGA drift rates and PIGA 

angular rate input, and possibly other errors as well 

(see below). 

-The parameters listed are for a geographic NEV coordinate system. 

If if'is found necessary to measure the change in vehicle heading, a
 
separate "yaw monitor" may be required. This is considered in more
 
detail in Section 4. 5.
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The computer program must also be capable of accepting certain data inputs 

and instructions from the operator, as well as display navigation data out­

puts, system status, key parameters, certain groups of data, etc. Compu­

ter programming considerations are included in Refs [4, 8, 11]. 

The 516 computer may also be programmed to perform some evaluation 

system functions, as discussed in the next section. 

The only external reference required to perform the basic navigation 

function is altitude. An altimeter is essential to provide accurate vertical 

position change and velocity over the long term since the integration of 

vertical acceleration would be open loop otherwise. It is recommended 

that the altimeter be provided for the van tests as well as flight tests so 

as to check out the system. 

Position and/or velocity references are not required while navigating, 

although inertial system accuracy can be improved significantly if correc­

tions based on such references are applied periodically. For the basic test 

program, it is recommended that the navigation program be capable of accep­

ting position, Velocity, heading and attitude corrections at discrete times. 

A second phase of the test program may include a mechanization option in 

which the Schuler loops are damped using an external velocity reference. 

The primary purpose of the analytical alignment algorithm is to 

initialize the coordinate transformation matrix prior to entering the navigate 

mode (i. e., drive to null the heading and vertical tilt errors of the stable 

coordinate frame ), as well as provide initial position and velocity. Gen­

erally, initial position is no problem; however, if the vehicle is being 

Assuming a geographic NEV coordinate system 
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vibrated and/or buffeted during alignment, the instantaneous velocity may 

be much larger than the allowable initial velocity error and so cannot be 

set directly to zero (assuming the vehicle to be "stationary"). A properly 

designed alignment algorithm, however, can provide an accurate initializa­

tion of velocity. A by-product of the recommended alignment process is to 

provide SAP gyro bias error estimates for each SAP. Estimation of the 

vertical component of the SAP bias errors is improved significantly (in 

time and precision) by periodically measuring the change in indicated 

heading. If the change in actual heading can be assumed to be zero, (or 

actually measured, as discussed in Section 4. 5 below), the change in 

heading error can be determined and used by the alignment algorithm. 

A discussion of the procedure and the expected accuracy is included in 

Section 5. 4, as well as an alternate method of alignment (viz., physical 

alignment). It should be noted that compensation for SAP (and PIGA) 

bias drifts can be made in the 516 computer by adding counts at the 

proper rate to the counts received from the ISU. 

It is recommended that compensation for SAP and PIGA gyro bias 

errors and PIGA angular rate input be provided as a minimum. Prelim­

inary analysis also indicates that compensation for SAP misalignments 

should be provided. For example, a 1800 turn with a SAP nonorthogonality 

(6) of 60 sec would cause an error (60) in the SAP of: 

This assumes alignment that includes a 900 rotation of the vehicle, as 
discussed in Section 5. 4. If in an actual application the vehicle cannot 
be rotated, the strapdown system could be mounted on a rotatable table. 

.720­



60 - 180 657. 3 

= 3.146
 

= 188 sec (4.1-1)
 

Errors of this order of magnitude are probably not compatible with the 

accuracy potential of the rest of the system, as well as not being acceptable 

for many applications. Compensation for gyro g-sensitive drift may also 

be required r4. 121. 

Another source of error for which compensation may be required 

is the sensitivity of gyros to angular accelerations about their output 

axes (OAs) [ 4, 12 ]. The sensitivity is proportional to the gyro I/H 

ratio (i. e., float inertial to wheel angular momentum ratio), and is shown 

in Appendix A to be potentially critical when components of the angular 

motion about the gyro input axis (IA) are synchronized with components 

about the gyro OA . Such a condition may exist in an environment of 

angular vibrations, and any compensation would have to be performed 

more often than the compensations discussed above. Components of the 

motion about the OA that are not synchronized with components about the 

IA can produce relatively large apparent input rate errors; however, the 

resulting navigation errors are generally small. The OA acceleration 

sensitivity can also produce pseudo-coning effects, which should be analyzed 

for the van vibration conditions expected (or measured). Refs. [13, 

SIn this case a rectification effect occurs and the SAP gyro physically 
drifts about the SAP IA, 

-21­



12, 4, 1] consider these errors as well as other potential error 

sources, including coning and orthogonality errors. 

If any compensations are to be provided, they should be incorporated 

in the design before system test data is taken in order to evaluate the sys­

tem as close to its final configuration as possible (see Appendix F. 2). 

4.2 EVALUATION SYSTEM 

The evaluation system consists of the following five major elements: 

* Van (or aircraft) 

* Test equipment within the van (or aircraft) 

* References to which the inertial system outputs are compared 

* Test procedures 

* Data reduction 

The first two subsystems are described in this Section (4. 2), and the 

recommended references are discussed in Sectiofls 4. 3, 4. 4 and 4. 5. The 

last two items are considered in Sections 5 and 6, respectively. 

A picture of the van is shown in Fig. 4-2. The vehicle is shown 

parked in the alignment building on the alignment table and the opening in 

the right side of thevan for viewing the SD-53 system azimuth porro prism 

A fluid floated, floor level rotatable precision table capable of supporting 
the van with a stability of a few arc seconds. 
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Figure 4-2 Photograph of Van (without Generator Trailer) 

4 i 

Figure 4-3 Photograph of SD-53 ISU and Some Support 
Equipment (Inside Van) 
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is shown. The cargo space of the van is air conditioned. Not shown in the 

picture is the auxiliary generator that will be towed behind the van. The 

generator provides regulated 208V, 3 phase power as well as regulated 28V 

dc. During the initial road tests, van speed was limited to approximately 

20 mph due to lateral oscillations of the 4-wheel generator trailer. Vibra­

tions of the van would be expected to be lower at this speed (based on results 

from other van test programs [1, 11]), and the motion of the trailer will 

cause significant motions and possibly nonrepresentative effects. Although 

the van/trailer has been driven at higher speeds more recently with no such 

oscillations, it is recommended that the van vibration measurement tests 

(described in Appendix B) be run and analyzed to determine whether or not 

any changes in the van/trailer configuration are desirable. 

Figure 4-3 is a picture of the SD-53 system Inertial Sensing Unit 

(ISU), supporting structure, air supply and support console, as mounted 

in the van. The ISUJ structure is rigidly mounted to the floor of the van, 

and a fixture on the structure top provides limited (- 10) adjustment of the 

ISU. Bubble levels and an azimuth mirror mounted on the fixture are 

calibrated to the ISU optical cube such that one of the SAP axes can be 

aligned parallel to the earth's polar axis within a few arc-seconds (the 

SAFsare about 360 from the horizontal, which is approximately the latitude 

at Huntsville). This is done by physically jacking the van and turning the 

alignment table until the bubble levels are at null and a theodolite system 

indicates the desired angle"between the azimuth mirror and a true North 

reference in the alignment building. 

There are three linear and three angular vibration sensors mounted 

on the ISU base, and a FM Analog tape recorder system is available to 
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record the data. Appendix B considers requirements of the vibration pick­

up and recording system. During the tests, it is desirable to be able to 

monitor any signal being recorded. Test procedure and data reduction con­

siderations are discussed in Sections 5. 4, 5. 5 and 6. 4. 5 respectively. 

It is recommended that the analog tape recorder system be capable 

of receiving certain critical analog signals, such as power supply voltages, 

temperatures, etc. This is discussed more fully in Section 5. 1. 

The Minneapolis Honeywell 516 computer is considered part of the 

evaluation system (as well as of the inertial system) since it performs 

certain evaluation functions as described in Section 6. In conjunction with 

obtaining velocity fixes, as described in Section 4. 4, the computer must 

be capable of accepting discrete inputs for controlling the averaging (or 

filtering) of the position fix taking process, as discussed in Section 4. 3. 

-

In conjunction with the recording of the inertial sensor data, the 

computer is currently intended to act as an interface between the SAP and 

PIGA outputs and the digital tape recorder. It is planned to accumulate 

SAP and PIGA counts over 10 ms periods and form 40 bit words in the 

computer at the rate of 240 words/sec. When 2000 of these words have 

been formed, they are recorded on 2400 ft. reels with a density of 556 

bits/inch. At the above rate, data can be recorded for approximately 27 

minutes. Although this is ade4uate to assess short term performance, 

other arrangements would be necessary to record data for the long term 

(e. g., 4 to 6 hours). Preliminary calculations indicate that fewer bits per 
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word may be adequate for the inputs expected and hence longer runs can 

be made. However, to record for 3 to 4 hours (or longer), a second tape 

handler and associated switching may be required. 

In the flight test program, additional equipments are required in 

the aircraft to obtain position (and possibly velocity) fixes. These are 

discussed in Sections 4. 3. 2 and 4. 4. 2 below. Consideration should be 

given to including some of these equipments in the van in order to detect 

and correct equipment integration problems and to determine error charac­

teristics of the equipments. 

4.3 POSITION REFERENCES 

4. 3. 1 Van 

The position reference used in the van test program consists of 

surveyed checkpoints alongside the road. There are two different pre­

cisions required to assure satisfactory results. For short term naviga­

tion (say <10 to 15 minutes), the change in position from the starting point 

is of interest, and the precision requirement of the reference points is 

high. Surveyed position checkpoints with errors less than about 25 ft. , 

relative to the starting point, should be adequate and are considered 

feasible [5]. 

For long term navigation (up to 4to 6 hours and more), the absolute 

position of the vehicle relative to the earth's coordinate frame is of interest, 

and the precision requirement of the checkpoints need not be as good as 

that above. Measurement of vehicle position within 5 to 10% would probably 
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be sufficient to evaluate position accuracy of the inertial system. However, 

to initially align the system, absolute position errors of several s&c (which 

is equivalent to several hundred feet) would cause errors comparable to 

the PIGA error. A more stringent requirement is to be able to measure the 

inertial system position error (on an absolute basis) to about 50 - 100 ft, 

in order to estimate errors internal to the inertial system. The technique 

to do this is called "Reset" and is described in Section 6 (Data Reduction 

Requirements) and in Appendix E. U. S. Coast and Geodetic Survey Charts 

may be adequate for this degree of precision, since accuracy of the charts 

is about 50 to 200 ft. [7]. 

Assuming a pressure altimeter will be used as the altitude reference 

in the flight test program (vs. a radar altimeter), van tests should include 

checkout of the instrument and its interface with the inertial system, as 

well as performance of the total altitude and vertical velocity system. 

Assuming a Mark 2 or 3 altitude computer system is used [ 14 ], altitude 

error should be less than approximately 25 to 75 ft. (95% of the time). 

In Ref. [18], la errors of about 25 ft. to 50 ft. are considered possible. 

4. 3. 2 Aircraft 

There are a number of references that can be used to determine 

the position of an aircraft. Since the basic flight test program will not 

be conducted on a specially instrumented test range, references such as 

precision radars and tracking theodolites are not assumed to be available. 

The most accurate position reference consists of surveyed checkpointi 

at the runway and landing the aircraft to make the comparison. Although this 

is acceptable for certain tests, generally the desired maneuver, shock and 

vibration acceleration profiles preclude widespread use of such a reference. 

However,- the reference can be used at the end of each flight. 
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The next most accurate reference is obtained from airborne 

photographs of known checkpoints on the ground. This technique 

is used extensively [3, 6, 7, 15, 16, 17,9] and has an expected 

precision of 20 to 100 ft.,when a good quality, stabilized camera system 

is used, and the aircraft altitude is less than about 5000 ft. The possibility 

of using a hardmounted camera instead of a stabilized one may help reduce 

costs. Compensation for aircraft attitude could be based on the indicated 

roll and pitch outputs of the inertial system. For example, an alignment 

error between the ISU and the camera system of 10 min (the verticality 

spec of the camera system used at the Central Inertial Guidance Test 

Facility at Holloman AFB [ 16 ], would cause a 15 ft. error at 5000 ft. , 

in addition to other errors. Additional analyses would be required to develop 

such a hard mounted camera system, as referred to in Appendix F. 1. 

For these flight paths that can be constrained to operation near 

airports, fixes can be taken at low altitudes and. speeds by flying over the 

center line of the runway and actuating a mark switch at a known position 

along the runway (assuming'the required approvals can be obtained). The 

same technique can be used for any known landmark (such as crossroads, 

towers, etc. ), again subject to approval of local authorities. A variation 

of the method would use the outer and/or middle markers of an ILS system 

(after having determined their accuracy by say, photographic fixes). 

150 ft. is reported in [17], and in [9] an accuracy of 20 ft. at 40, 000 
ft. is claimed. 

Assuming photos are not taken soon after turns, since transients in the 
camera system vertical normally occur due to the velocity changes. 

The inertial system error in indicating the attitude of its optical reference 
(OR) should be small compared to the ISU alignment to the camera system 
(viz. , less than 10 sec physical misalignment between the gyros and the OR, 
and less than 1 to 3 min in the attitude computation, depending on the 
algorithm used). 
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Accuracies of 150 to 600 ft. may be obtainable, depending on the equipment 

used and degree of calibration [ 18 ]. Some of the newer landing systems 

(such as the Scanning Beam Microwave system) can provide position 

information anywhere in the vicinity of the airport (say out to 25 miles) 

with distance accuracy of 75 to 100 ft. (1r), bearing to 2. 5 to 6 ft/nm and 

elevation to about 3 ft. /nm [.18, 19 ]. 

Somewhat more flexibility in flight path planning is possible by using 

fly-overs of VOR stations [ 7]. Fixes can be taken relatively frequently 

(every 10 to 20 minutes or so). Although lateral errors should be small 

(from 20 to 35 ft. per 1000 ft. from the station [ 18, 20 ],. further studies 

(or tests) are required to determine longitudinal accuracy. 

Essentially unlimited flight operations are possible by using one 

or more l6ng-range radio navigation aids (such as Decca, Loran, satellites 

Omega, etc.). Typical accuracies of Decca range from 2 00 ft. (la) [1] 

to . 1 to 25 nm [ 15 ]. For Loran C, accuracies of .25 nm are reported 

[3, 15] and Omega is even less accurate [20]. In [21], satellite 

position accuracy is reported as about 500 ft. Shorter range navigation 

system based on various combinations of bearing and distance measure­

ments to one or more ground stations include VOR (VHF omnirange radio), 

radar beacons, TACAN (Tactical Air Navigation that uses UHF radio 

signals), and VORTAC (a -combination of VOR and TACAN). The bearing 

errors are given in Table 4-1 and the distance measurement error ranges 

from 150 to 600 ft. (lcr) [18, 20]. A brief description of the various 

radio aids (including an extensive bibliography) is contained in [23 ], and 

error models for VOR, DME, TACAN and Decca are included in [24 ]. 

A more detailed analysis of VOR and DME errors is included in [20]. 
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System Bearing Error 

Precision VOR 

Present Modern Equipment 

Conventional Equipment 

3' to 131/1000' 

251110001 

35'/1000' 

Based on data from [18]. The 3,/1000 figure is from [22]. 

Table 4-1 Accuracies of VOR 

Altitude error from the inertial/ altimeter system can be checked 

using the ILS system (or Scanning Beam Microwave system, if available). 

A radio altimeter can also be used to provide an independent measurement. 

In [ 25 ], accuracy of 10 to 30 ft. is implied. In [ 9 ], a laser altimeter 

is described with accuracy better than 5 ft. (for altitudes from 2000 to 

6000 ft. , depending on reflectivity of ground). 

4.4 VELOCITY REFERENCES 

4.4.1 Van 

The most accurate velocity reference (relative to the earth) consists 

merely of stopping the van. However, because of van engine vibrations, 

wind buffeting, movement of personnel, etc., the inertial system indicated 

velocity should be averaged (or filtered) to make a more precise measure­

ment of inertial system velocity error. Preliminary calculations indicate 

that averaging for 36 seconds should be quite adequate for the more precise 
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requirements (viz., analytical alignment and reset)? The analyses in 

Appendices C and E indicate acceptable performance using a . 02 ft/sec 

precision in measuring the velocity error. 

It is possible to measure the inertial system velocity error while 

moving, by measuring the time to go past two landmarks alongside the 

road. If the van speed is 25 mph, and 36 seconds of averaging is acceptable, 

a distance of 1300 ft will be traversed. The resulting precision in measuring 

the velocity error equals . 04 ft/sec per ft of error in knowing the distance 

between the landmarks and . 14 ft/sec per 0. 1 seconds in timing the passing 

of each landmark (for initializing velocity averaging of the inertial system 

output). Such a technique is feasible, but does require a timing scheme and 

accurate survey of the checkpoints. Velocity should be measured to at 

least . I to. 15 ft/sec to evaluate the velocity accuracy of the inertial system 

(exclusive of the alignment and reset requirements of about . 02 ft/sec -­

see above). 

A second method of measuring velocity of the van relative to the 

road is by means of a "5th wheel" towed by the van [ 4, 5 1. One or 

more pulses are generated for each revolution of the wheel, and the 

indicated velocity is given by: 

V = C (4.4-1)
AT 

where C is the circumlerence of the wheel and AT is the time to go 

through one revolution of the wheel. A clock interrogated by the wheel 

*In [ 5 1, velocity is averaged for 10 sec. 
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pulses and knowledge of the wheel circumference are sufficient to determine 

the average van velocity over the interval between pulses. In essence the 

5th wheel is a distance measuring device and velocity is determined by 

differentiation. The components of the vehicle velocity (in NEV coordinates) 

may be determined by using the inertial system heading, pitch and roll 

indications to resolve the 5th wheel indicated velocity. 

The major errors in the technique are due to bounce of the wheel, 

uncertainties in the effective circumference of the wheel, and timing 

accuracy. Exclusive of wheel bounce,a . 1 ft. /sec precision at 40 kts 

(= 67. 6 ft/sec) is compatible with a . 1% measurement of the effective 

wheel circumference (say 1/8" for a 3 ft. diameter wheel) and a . 1% 

measurement of time (say . 14 msec per . 140 sec for each revolution of 

the wheel, at 40 kts. ). Since velocity may be averaged over considerably 

longer intervals, with little loss in sys-tem evaluation precision, the 

timing accuracy can be relaxed proportionately. To achieve . 1% pre­

cision, the inertial system heading error and alignment of the 5th wheel 

to the inertial system should be within 3. 5 min. This would require 

careful alignment and calibration of the inertial system, good mechanical 

alignment and stability of the wheel (e. g., . 018" for a 1 1/2 ft. wheel 

radius), and an accurately navigating inertial system. Pitch and roll 

errors are not as critical. 

4. 4. 2 Aircraft 

The most accurate velocity reference (besides landing the aircraft) 

that relies on the inertial system to a minimum is a doppler radar. The 

Velocity as well as position fixes at the beginning and end of each flight 
are recommended, as discussed in Sections- 5. 4 and 5. 5. 
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velocity outputs are generally resolved through the indicated aircraft 

heading to obtain the North and East components of velocity, which are 

then compared to those from the inertial system. Accuracies from 1. 5 

to 3.0 ft/sec over land have been reported [3, 18]. The accuracy is 

degraded over water depending upon movement of the water and surface 

condition. 

Accurate position fixes can be used in conjunction with a Kalman 

filter, as discussed in Appendix E, to estimate the inertial system velocity 

error. This approach has been discussed in the literatue [ 26 ], and 

appears to be attractive (to the extent the system can be modelled and 

knowledge of high frequency velocity error variations is not required). 

Preliminary analyses summarized in Appendix E indicate that velocity 

error can be estimated within . 4 ft/sec using position fixes every 24 

minutes (with an accuracy of 240 ft. ). Smoothing of the data, rather than 

filtering, can increase the precision even more, as shown in Appendix E. 

Accurate position fixes can also be used to make an independent 

measurement of aircraft speed which can then be compared to the filtered 

inertial system velocity over the same time period [ 16 ]. Two or more 

accurate photographic fixes would probably provide the most accuracy. 

The basic error equation for averaging using two position fixes is derived 

from the simple relationship 

V = AD/AT (4.4-2) 

Filtered over a period of time 
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to obtain
 

6V_ 6(AD) A(AT) (4.4-3) 
V AD AT 

where the prefix 6 denotes error and AD refers to the distance travelled 

by the aircraft over the time AT, at an average velocity V. The sensitivity 

of the method to position and timing errors (8(AD) and 8(AT), respectively) 

is illustrated by assuming an aircraft speed (V) of 200 kts and an averaging 

time (AT) of 1 minute. The corresponding distanced travelled is 3. 3 nm. 

Considering AD and AT to be determined from two measurements for 

each quantity, and assuming the measurement errors to be uncorrelated 

random variables, the resulting precision in measuring the inertial system 

velocity error is determined from Eq. (4. 4-3) to be . 024 ft/sec per ft. of 

position measurement error and .781 ft/sec per 0. 1 seconds in 

timing each fix. The best precision available (without special test range 

instrumentation) would require good quality airborne photographs. Assuming 

a position measurement accuracy of 20 ft. , as discussed in Section 4. 3 2, 

the average velocity error over I minute would be abbut.5 ft/sec (assuming 

the effect of the timing error would be negligible). 

There are other methods of measuring the speed of the aircraft 

accurately [3, 16, 15], including the use of tracking radars, 

cinetheodolites, and transponders. However, they require flights over 

To obtain a 20 ft. position accuracy at 200 kts, the time error. in the 
photo fix would have to be less than about 1/50 sec, which at .78 ft/sec 
per . 1 sec would cause . 16 ft/sec velocity error (a negligible amount). 
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specially instrumented test ranges, and therefore they will not be discussed 

in detail here 

4.5 OTHER REFERENCES 

Bubble levels are used as a vertical reference in the van test pro­

gram during physical alignment of 'the ISU. To be compatible with the 

accuracy potential of the PIGAs, they should be accurate to several arc­

seconds.
 

The azimuth alignment system used in the van test program need 

not be quite as accurate; however, for some applications it may be desira­

ble to align to 6 sec. For long term navigation, alignment to 30 sec is 

probably acceptable, assuming gyro bias and random drifts about 4 mdh 

each. 

It is recommended that the analytical alignment technique utilize 

measurements of the change in inertial system heading error (A6A1H), 

both in the van and aircraft test programs. The measurement is made as 

follows: 
A (6A = (AHI - A HT) 2 (AHI - AHT)1 

(A - AHI1) -(AIT2 A HT 1) 

=AAHI -AAHT (4.5-1) 

According to the ground rules (Section 3. 1), the initial flight test program 
will not be conducted over specially instrumented ranges. 

I. e., azimuth mirror calibration to ISU cube, optical alignment theodolites 
and survey of the North benchmark. 
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where subscripts I and T refer to indicated and true, respectively, and 

1 and 2 refer to the two different times at which the measurements are 

made. If the change in the true heading of the vehicle is negligible r(say 

<20 sic), the change-in-heading reference may be' considered to be zero 

(i. e., AAHT= 0). However, if it cannot be assumed that the vehicle heading 

is not changing (even when stopped on the road or in a parked aircr.aft), a 

separate yaw monitor may be necessary to measure AAHT. Note that no 

absolute heading measurements are required, only the change. Preliminary 

studies of the analytical alignment technique (see Appendix C) indicate that 

a white noise of 20 sec can be accepted, and that possibly larger vehicle 

motions may be tolerated, even after filtering. 

A yaw monitor could be implemented in many ways. However, con­

ceptually a technique of measuring the change in lateral displacement of 

the vehicle at two different points, relative to the ground (while parked), 

can provide the desired infor mation. For example, measurement of lateral 

displacement to . 016 inches at two points 20 ft apart on the vehicle would 

provide the following precision: 

6 (AA 016 x2 ( 7 3)3600
HT 20 x 12 

= 19.5 sec (4. 5-2) 

Actually, a larger error cn be tolerated since multiple measurements over 

the 36 second interval can be averaged (or pre-filtered) before being pro­

cessed by the analytical alignment algorithm. A more detailed study would 

be required to establish more firm requirements. 

*Based on preliminary studies of the analytical alignment technique (Ap­
pendix C). 
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5. PROCEDURES 

The purpose of this section is to discuss the various procedures 

that are recommended to obtain the required test data. The procedures 

are in accordance with the approach outlined in Section 3 and are designed 

to provide the necessary information for fulfilling the objectives of Section 

2. The intent of this section is to lay the groundwork and provide a basis 

for generating the detailed procedureq at a later time. 

A second test phase is referred to for the purpose of identifying 

certain tests that may be performed depending upon the outcome of the 

initial test phase. In addition, several special tests that are recommended 

in support of the field test program are listed in Appendix D. Since they 

are not directly a part of the field tests, they are given only nominal 

consideration here. Second phase tests and special tests are referred to 

explicitly: all other tests are considered to be part of the basic test pro­

gram. 

5. 1 TEST DESIGN, DATA COLLECTION AND DISPLAY 
CONSIDERATIONS 

It is important that each test be designed to provide statistical 

significance to the results obtained, either based on data from the indivi­

dual test or in conjunction with data from other tests. To this end, the 

accuracy objectives discussed at the beginning of Section 4 (System Con­

figuration and Requirements) are intended to be used as a guide in designing 

accurate tests. Each test should be designed with explicit consideration 

of specific objectives to be achieved and how the resulting data is to be 

processed. Consideration of test conditions, particularly changes from 
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those of other tests, is important as well as specification of the number of 

runs to be made (to obtain statistical significance) and the length of each 

run. In certain cases it may be desirable to design the tests so as to 

separate the effects of measurement repeatability from system or com­

ponent stability. In all cases, rules for aborting runs should be specified 

in order to minimize test time, to facilitate the analysis of operational 

characteristics and to achieve a maximum of usable results. Procedures 

for monitoring system operation are necessary*, and must be correlated 

with available system outputs, displays, and computer program specifi­

cations [16, 11]. If performance is excessively erratic or unexplainable, 

component and/or system level tests in the lab. may be necessary. Several 

references relative to test design considerations are [4, 5, 1, 2, 27, 3, 

16, 17]. 

It is strongly recommended that a comprehensive log be maintained 

during the entire van and flight test programs and that it be keyed to real 

time and include at least the following: 

#*
 

" 	 Identification of system configuration for each test, 
including references used (viz. , position, velocity, etc.), 
modes, initial conditions and instrument settings, etc. 

* 	 Changes of system components or equipments that may 
affect system performance. 

* 	 All significant events that may affect system accuracy 
and operation.' 

* 	 All erratic system behavior, failures, time to diagnose 
repair and return of equipment to on-line operation. 

* 	 Tabulation of all significant test conditions during each test. 

For both normal and abnormal behavior. 

**"System" as used here includes both the SD-53 Inertial system and'the 

evaluation system. 
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Faithful maintenance of a comprehensive log can make the difference 

between efficient data taking, cataloging, and troubleshooting vs. unnec­

essary repetition of runs and abandonment of potentially useful data already 

taken. Included as part of the significant test conditions is a characterization 

of the "motion profile" of the inertial system. The low frequency aspects 

consist of vehicle maneuvers and ground track, whereas the high frequencies 

are due to linear and angular vibrations of the vehicle and the inertial 

system. The low frequency characteristics are specified by the detailed 

test procedure for any given run. To characterize the van vibration 

environment, it is recommended that a series of tests be performed as 

specified in Appendix B. It is also recommended [16] that the analog 

recorder be used to routinely record and monitor certain critical quan­

tities that could adversely affect system operation should they become 

faulty (e. g., system power supplies, ISU and vehicle internal ambient 

temperaturs, gyro air bearing supply pressure and flow rate, etc. ). Such 

monitoring could be most useful should problems or erratic operation 

develop. It would also be desirable to record the vibration sensors outputs 

during all tests, if possible, to provide reasonableness checks on the 

PIGA and SAP outputs, as well as to monitor input motion to the vehicle. 

Again, if performance is excessively erratic or unexplainable, lab. tests 

may be necessary. 

Other data collection requirements have been discussed in Sections 

3 and 4. 

5.2 EQUIPMENT INSTALLATION AND CHECKOUT 

Before navigation performance tests can be initiated, it is necessary 

to perform equipment installation tests in'both the van and aircraft. This 

includes debugging, grooming and functional checkout of all equipments 
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(including power supplies and other support equipment), integration of 

equipments, support and test equipment alignments and calibrations (as 

necessary), and preliminary performance tests to checkout procedures 

and data gathering operations. Included in this phase are installation 

type tests on the SD-53 inertial system, including gross operation of the 

system in the alignment and navigate modes (both stationary and moving) 

under conditions anticipated during the final test phase. 

Calibration of the evaluation system equipments is important in order 

to realize the precision potential of the equipments and better evaluate the 

inertial system. Procedures to do this are beyond the scope of this study, 

however, the accuracy goals are as discussed in Section 4. Sufficient tests 

and data should be specified to determine the error characteristics of 

critical evaluation system equipments (including the optical alignment equip­

ment and associated azimuth surveys, surveys of each checkpoint on the 

road, surveys of checkpoints used in the flight test program, aircraft 

position fixing using photographs, digital data recorder system, and the 

vibration pickup and recording system). It is recommended that certain 

equipments be recalibrated periodically, including the bubble levels and 

azimuth mirror on the ISU support fixture, recorder systems, optical 

equipment, etc. 

5.3 PRE-NAVIGATE SD-53 SYSTEM CALIBRATION PROCEDURES 

Although some calibration terms can be determined with the system 

in the vehicle, most terms are best determined using the laboratory test stand. 

Laboratory tests should be done periodically to check calibrations in the vehicle 

and to detect and/or verify abnormal situations should they occur. 

A by-product of the pre-navigate alignment of the system in the vehicle, 

estimates of the three SAPwhich is described in the next section (5. 4), are 
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apparent gyro bias errors. Actually, the estimates are the sum total of 

error sources such as mass unbalance, compliance, misalignments, OA 

acceleration error (if the vehicle is vibrating), as well as constant SAP 

gyro drift. To the extent that these terms remain constant, the bias 

corrections applied to the system are proper. Appendix C contains a prelim. 

inary analysis of the analytical alignment procedure, where it is shown that the 

gyro bias estimation errors are eipected to be approximately 4 mdh for 

the level components of the gyro drifts and 4. 5 mdh for the vertical com­

ponent. These values are essentially the same as the assumed random gyro 

drift rates, and can be interpreted as being about the best estimates possible 

in the time taken (viz., 36 min. ). Since the assumed gyro correlation times 

are 3 hours, alignment times of that order would be required to estimate 

the true bias error. It is recommended that the SAP gyro bias corrections 

estimated by the analytical 'alignment algorithm be applied by the 516 

computer, as described in Section 4. 1. 

Additional calibration terms may be estimated with the system in the 

van by utilizing the bubble levels on the ISU mounting fixture and the optical 

North reference in the alignment building, as described in Section 4. 2. 

With the orientation of the ISU cube known precisely (within several arc 

seconds) relative to the earth's rotation and gravity vectors, the apparent 

bias errors of the PIGAs can be estimated to approximately that accuracy. 

Actually, the estimates are the sum total of errors due to misalignment 

and scale factor errors, as well as constant PIGA gyro drift. Review of 

post-test data can establish stability characteristics of the terms and 

determine which terms are more likely to change. The technique can also 

provide a fairly direct measure of SAP gyro apparent drift. 
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It is recommended that tests be defined to check the calibration 

portion of the analytical alignment algorithm. This is further considered 

in the next section. Once the algorithm is proven to perform properly, 

it may be used to calculate calibrations and alignments on the road and 

in the aircraft. 

It is likely that a more detailed investigation could establish pro­

cedures to determine more calibration terms while the system is in the 

vehicle. 

5.4 PRE-NAVIGATE SD-53 SYSTEM ALIGNMENT PROCEDURES 

The first step in the pre-navigate alignment process is to zero 

all SAP and PIGA counters. This is recommended so that the individual 

gyro OA/SA orientations relative to the ISU cube axes will be known (in 

case significant sensitivities exist) and to provide controlled initial condi­

tions for all tests. The PIGA counters are easily initialized since each 

PIGA IA is nominally 361 above horizontal, and consequently each PIGA 

gyro is always rotating (at 11. 95/sec per g input, less than 1 minute is 

required to go through a full revolution and pick up the zeroing pulse). 

The SAP counters are also easily initialized (following turn-on of the 

system) by merely rotating the vehicle through several rotations until the 

zeroing pulses are picked up. 

There are two procedures that can be used to initially align the 

inertial system just prior to entering the navigate mode. The first pro­

cedure is more applicable to the van test program and is referred to as 

"physical alignment". It utilizes bubble levels mounted on the ISU support 

fixture along with an azimuth mirror that is referenced'to true North 
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(see Fig. 4-1). The van is driven onto a fluid floated alignment table in 

the alignment building (see Fig. 4-2) and physically jacked until the bubble 

levels read nulls. Next the table is rotated until the desired iSU azimuth 

mirror angle relative to North has been achieved, as indicated by a theo­

dolite system. The bubble levels and azimuth mirror have been previously 

calibrated relative to the ISU cube such that when the alignment is com­

pleted, one of the SAP IAs is parallel to the earth's polar axis. Sufficient 

information is then available to initialize the Coordinate Transformation 

Matrix (CTI) and bias all three gyros. Although the method can be used 

on the road (with reduced accuracy) [1, 5, 4], it is not considered practical 

for the flight test phase due to excessive aircraft motions. 

The second method is applicable to both the van and aircraft test 

programs and is referred to as "analytical alignment". It utilizes a com­

puter algorithm that processes the PIGA outputs (after transformation 

through the CTM) to determine the alignment parameters (viz., the ele­

ments of the CTM). A velocity reference is required during the process 

(see Fig. 4-1). The algorithm also provides estimates of initial velocity 

error and gyro bias errors, as discussed earlier. The procedure con­

sists of initially inserting coarse estimates of vehicle pitch, roll and 

heading into the computer. Following a brief period of coarse alignment, 

the system enters a fine align mode which establishes the system vertical 

and heading (via gyroconzpassing). The primary component of the heading 

error will most likely be the East component 6f gyro drift. The algorithm 

also provides an accurate estimate of the North gyro drift, a less accurate esti­

mate of vertical gyro drift, and no information on the East gyro drift. Initial 

In addition, it is recommended that change in heading error be measured 
in order to obtain a more accurate estimate of the vertical component of 
gyro drift. 
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studies have been based on an alignment time for this phase of about 15 

min. Although the system has been aligned at this point, the initial heading 

error can be reduced significantly (and the other level component of gyro 

drift estimated) by rotating the vehicle 90* and repeating the fine align 

process.
 

The recommended alignment procedure consists of rotating the 

vehicle 900 and performing an analytical alignment prior to and immediately 

following the rotation. The inertial sensor outputs should be recorded 

during the process. Appendix C contains a more detailed discussion of the 

analytical alignment technique, including a preliminary analysis to deter­

mine its accuracy potential. It is shown that the vertical tilt errors can 

be reduced to an amount approximately equal to the total accelerometer 

drift error (i. e., bias plus random drift, each equal to about I sec). 

Following the 900 rotation of the vehicle, the heading error is reduced to 

an amount approximately proportional to the estimation error of the East 

gyro bias, which in turn is about equal to the random drift of the gyro 

(viz., 39 sec of heading error is caused by 4 mdh bias error of the East 

gyro). The other level component of gyro drift is also estimated to approx­

imately 4 mdh, and the vertical component is estimated to about 4. 5 mdh. 

Without the change in heading error measurement, the vertical gyro bias 

estimation error is increased significantly, as shown in Fig. C-6. 

Several navigation runs should be made following alignment without 

the 900 rotation in order to measure actual performance under such condi­

tions. All other runs preceded by an alignment with the 900 rotation can 

be degraded analytically post-test time using empirically determined statistics 

of the difference in the alignment techniques. This method is described 

further in Section 6. 5. 4. 
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The analytical alignment procedure can be checked under benign 

conditions as part of the van test program by first performing a physical 

alignment in the alignment building and then immediately initiating an 

analytical alignment (without moving the van). Changes in the Coordinate 

Transformation Matrix (CTM) elements are readily available from the 

computer and can easily be transformed into tilt and heading errors. The 

feasibility of the 900 rotation procedure (and use of heading error change 

measurements) can also be evaluated and the resulting accuracy determined. 

The first series of tests should be conducted with the van engine off and 

the generator disconnected. A second series of tests with the engine on 

and the generator connected is also recommended., 

Analytical alignment under road conditions can be evaluated using 

the following procedure: 

* 	 perform a physical alignment in the alignment building 

* 	 place the system into the navigate mode and drive out 

onto the road 

* 	 park the van and calculate an analytical alignment 

The CTM corrections calculated are indicative of the quality of the 

analytical alignment (as well as the amount of error build-up while in 

the navigate mode). An. alternative procedure that may be more accurate 

is 	 to park the van alongside the road (for the entire test), perform the 

pre-navigate alignment analytically, enter the navigate mode, and take 

many position and velocity fixes over a 1/2 to 1 1/2 hour period. The 

reset technique described in Appendix E can then be used to make a 
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smoothed estimate of the system state vector at the time the analytical 

alignment was completed and the navigate mode initiated. Absolute azi­

muth error can be determined adequately by returning the van to the 

alignment building after all fixes have been taken with the system still 

in the navigate mode, and making an optical azimuth measurement. The 

effect of generator and van engine vibrations can be determined by running 

series of tests with and without the vibrations. 

Consideration should be given to performing analytical alignments 

at various attitudes and headings of the van to determine if any sensitivity 

and/or linearity problems exist. Accuracy can be assessed by placing 

the system into navigate mode following the initial analytical alignment 

and then immediately performing a physical alignment to check the 

elements of the coordinate transformation matrix. 

If possible, the inertial sensor outputs should be recorded during 

all of the above tests in case design changes are required and reprocessing 

of the data is desired. This could save significant amounts of van test 

time and data handling, as well as provide controlled (realistic) condi­

tions for evaluating different algorithms. Once the analytical alignment 

algorithm is proven to perform properly, it may be used to calculate 

alignments (and gyro bias calibrations) on the road and in the aircraft. 

5. 5 NAVIGATION TESTS WHILE SYSTEM IS STATIONARY 

It is recommended that several navigation runs (in geographic 

coordinates) be made with the SD-53 inertial system in the van, while 

parked on the alignment table with the trailer/generator disconnected. 

This will establish a baseline of performance under the most ideal field 
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conditions. Use of the bubble levels and optical azimuth reference in 

the initial alignment as well as during the navigate mode will provide 

even more information on the baseline performance. Several runs should 

also be made (either simultaneously with the above, or separately, if 

necessary) to record the inertial sensor outputs. This can provide infor­

mation on random drift characteristics'of the SAPs and PIGAs under the 

van conditions, but with a somewhat benign environment. As mentioned 

in Appendix B, the van vibration environment should also be recorded 

under these conditions. Runs should be repeated using Tangent Plane 

coordinates. Also runs should be made with the generator connected and 

the van engine running. 

A second series of runs identical to the above, with the van 

rotated 90, is recommended to determine if any heading sensitivities 

exist (for the benign conditions) and to check the various navigation 

algorithms. Runs at each cardinal heading are desirable, if test time 

permits, as well as at intercardinal headings. 

Since essentially perfect position and velocity fixes are available 

continuously, the reset technique described in Appendix E can be checked 

for proper and accurate performance. The physical alignment monitoring 

provides attitude and gyro drift information which, in addition to the posi­

tion and velocity errors, .is sufficient to check each estimate provided by 

the reset technique. 

If sufficient test time is available, a third series of tests should 

be considered in which position fixes and the reset technique are used to 

compute and apply corrections to the inertial system. Not only does this 

show potential accuracy performance, but measured results can be compared 

to predicted results, as discussed in Appendix F. 2,to increase confidence 

in math models. 
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The above runs should also be taade with the inertial system in 

the aircraft. Although optical alignment will probably not be feasible, 

baseline performance can be established, including the measurement of 

the aircraft vibration environment. 

5. 6 NAVIGATION TESTS WHILE SYSTEM IS MOVING 

The tests described in this section are generally applicable to both 

the van and aircraft test programs. Exceptions are discussed where sig­

nificant differences exist. However, tests involving measurements in 

the alignment building (viz. , physical alignment) apply only to the van 

test program, and the velocity averaging time is about 1/2 minute for the 

van tests and about I minute for the aircraft tests. Because flight test 

time is considerably more expensive than van test time, flight tests must 

be planned very efficiently and fewer flight tests should be scheduled. 

Depending on van test results, some of the tests described below may be 

eliminated, or at least reduced in scope. 

The normal test procedure is to initiate and terminate all van test 

runs in the alignment building so that alignments may be made before and 

after each run. Following initial alignment , the van is driven out onto 

the road. In the case of the aircraft tests, analytical alignment is per­

formed after each flight, 'as well as before. Periodically the vehicle (van 

or aircraft) should be stopped (or landed), for some of the tests, and position 

The analytical alignment is used for certain tests and physical alignment 
for others. An optical azimuth measurement should be made in all cases, 
if time permits, to check the alignment and provide additional information 
should problems develop. 
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and velocity fixes taken. The time between stops may range from 10 to 

25 minutes. For other tests, the vehicle should not be stopped (so as not 

to change the acceleration profile) and just position fixes taken periodically 

(also velocity, if possible, as explained in Section 4. 4). Runs should 

generally last 3 to 4 hours, with several runs allowed to go for 6 to 8 hours 

in order to assess performance over extended periods and to collect infor­

mation required to more accurately analyze errors within the inertial 

system's earth loop (using the reset process) . Runs should be made over 

several different courses to provide a variety of conditions (frequency and 

magnitude of turns, rates, vibrations, etc. ). If possible, runs for the 

same conditions should be repeated at least 5 times to establish repeatability 

characteristics and reasonable confidence in the resulting statistics. The 

reset process is checked by estimating the system errors for those times 

that an analytical or physical alignment is made or computed. 

Although it is difficult to define special vehicle paths to accentuate 

specific error sources (for design purposes) [2] the effect of groups of 

error sources that are a function of vehicle direction (e. g., certain 

misalignments, mass unbalances, PIGA bias error, etc. ) can be detected 

by reversing the vehicle direction every 42 minutes in order to excite the 

Schuler loops [16]. To a certain extent the effects can be isolated by 

operating at cardnr1 heirlinas. 

One series of tests should be run in which the vehicle is stopped for 

periods of 15 to 30 minutes, during which time an analytical alignment 

should be calculated (but not applied to the system). Results from such 

tests could then be compared to results from the reset calculations to 

The reset process is described in Appendix E. 
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verify proper operation of both techniques. In conjunction with this, some 

effects of OA acceleration error may be check by performing an analytical 

alignment (or reset computation) with the engine running, then rotating 

the vehicle 1800 and repeating the alignment or reset. Since the CA/SA 

axes of each SAP will have rotated relative to the body axes, any rectified 

drifts due to OA acceleration error may change and hence be detected as 

apparent gyro bias changes. A 900 rotation along with an alignment or 

reset can also provide useful information in the same area, as well as 

for other vehicle headings. 

A series of tests should be performed with the vehicle traveling in a 

relatively constant direction for at least several hours, during which time 

frequent (say every 10 minutes) position fixes should be taken without 

stopping. The vehicle should then be turned approximately 900 and run for 

another several hours. The vibration environment should be essentially 

the same (statistically) for the whole time, From reset calculations, any 

apparent gyro bias changes can be detected. The course of the vehicle 

should include altitude changes in order to provide changes in vertical 

distance. 

Another series of tests are recommended to check accuracy over 

the short term (<10-15 min). The system should be programmed in Tan­

gent Plane coordinates (if possible); otherwise the inertial sensor outputs 

must be recorded. The system is aligned physically in the alignment 

building (in the case of the van) and then moved in an approximately constant 

direction for 30 to 60 min, during which time very accurate position fixes 

should be taken (without stopping) every 5 min. or so (more often, if 
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possible). If possible, velocity fixes should also be taken (without 

stopping) . This information will provide assessment of system per­

formance over the short ru6. If accurate fixes are taken often enough, 

internal system errors may be determined using the reset technique. A 

series of tests should also be run using the analytical alignment technique 

instead of physical alignment, to determine the resulting accuracy degra­

dation for short term runs. If all short runs in Tangent Plane coordinates 

are initiated from the same starting point, the conversion of the position 

references from geographic coordinates into Tangent Plane coordinates 

need only be done once, 

If the SAP head angle sensitivity studies mentioned in Appendix F. 2 

have not been made, several of the above tests should be repeated using 

other combinations of initial head angles of the SAPs. If performance 

changes significantly, the studies discussed in Appendix F. 2 should be 

undertaken. 

If initial test results indicate that SAP and/or PIGA compensations 

are required; several of the above tests should be repeated as a second 

phase of the test program, using the compensation algorithms in the real 

time processing of the inertial sensor data. 

Consideration sh6uld be given to a series of tests in which position 

fixes and the reset algorithm are used to compute and apply corrections 

to the inertial system in real time (these tests may be performed as part 

A fifth wheel velocity reference would be particularly useful here, in the 
case of the van tests. 
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of the second phase of the test program, depending upon test time available, 

results of the first test phase, and results of special analyses involving 

analytical resets of the data (see Appendix F. 2 item 8). The effect of 

Schuler loop velocity damping can be approximated by taking frequent 

fixes and using the reset process to compute and apply appropriate 

corrections. If a "continuous " velocity reference is made available 

(e. g., a 5th wheel for the van or a doppler radar for the aircraft) , and 

the Schuler loop mechanization equations suitably changed, damping can 

be applied without using the reset process. Even with this configuration, 

the further improvement in performance possible by position fixing and 

reset corrections can be demonstrated in real time by a series of (second 

phase) tests. 

* 
Essentially equivalent performance may be possible by taking noncon­

tinuous velocity fixes every 2 to 10 minutes, using other types of velocity 
references. 
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6. DATA REDUCTION REQUIREMENTS AND EXPECTED PRECISION 

The purpose of this section is to indicate ways in which the test data 

may be processed in order to evaluate the SD-53 Inertial system and ful­

fill the objectives discussed in Section 2. The intent of this section is 

to lay the groundwork and provide a basis for generating detailed data 

reduction procedureb at a later time. An indication of evaluation precision 

is also included. 

The first two parts of this section (viz., approach and performance 

criteria) establish a perspective for the remaining three subsections (viz., 

real time data evaluation, post-test.data reduction, and special analyses). 

The special analyses involve ch6akout of certain special techniques, as well 

as analyses used for design purposes. Generally, the special studies 

require a minimum of supporting analytical analyses. Additional studies 

that involve more information than just that obtained from the test program 

are discussed in Appendix F. 2. 

The data reduction recommendations generally apply to both van 

and aircraft test data. However, in certain cases procedures are dis­

cussed which are applicable to only specific types of test data. 

6.1 APPROACH 

The first step in the data reduction process is to edit all data to be 

processed so as to reject wild points , as well as to reject blocks of data 

Wild points can be validly rejected only if they could have been detected
 
by some operational scheme (in real time), or if they have no significant
 
effect (good or bad) on actual performance of the inertial system.
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that can be detected as unwanted according to previously defined rules. 

An 	interesting data editing technique used successfuly at Edwards AFB is 

descirbed in [28]. Whenever blocks of data are rejected, an input to an 

appropriate reliability figure should be made. In the case of real time 

data monitoring and processing, run abortion rules should be defined, as 

well as data rejection criteria. 

Consideration of the following parameters is recommended in the 

evaluation of inertial system performance. 

* 	 direct accuracy measurement of system indicated position, 

velocity and heading/ attitude outputs 

* 	 indirect estimation of system internal errors and error 

effects (e. g., gyro drift, vertical tilt, algorithm and update 

errors, etc.) 

* 	 determination of system operational characteristics (viz., 
. reliability, operability, and maintainability) 

Each of these categories are considered in more detail below. The system 

performance characteristics should be presented as functions of the following 

conditions: 

Many of the internal errors can be estimated using the reset technique 
described in Appendix E. The analytical alignment technique can also be 
used (see Appendix C and Sections 4. 1, 5. 3 and 5. 4), as well as the physical 
alignment method (see Section 5. 4). Certain'algorithm error effects can 
be estimated using "perfect references", as described in Appendices A. 2 
and G. 
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* 	 inertial system configuration 

* 	 key evaluation system characteristics (e. g., quality and 

frequency of position and velocity fixes) 

* 	 type of alignment 

* 	 elapsed time from completion of alignment 

* 	 high frequency motion profile of vehicle (i. e., angular and 

linear vibrations) 

* 	 low frequency motion profile of vehicle (i. e., course, 

speed, maneuvers, etc. ) 

* 	 prefiltering time used in determining velocity errors 

It is recommended that the following three performance qualities be deter­

mined for each parameter, wherever possible: 

" 	 repeatability 

* 	 stability 

* 	 absolute accuracy 

The performance criteria recommended for the data reduction program 

are defined and discussed next. 

6. 2 PERFORMANCE CRITERIA 

The following ten performance criteria are recommended in the 

data reduction process for the evaluation and characterization of the 

inertial system accuracy performance: 
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1. Error 

2. Average 

3. Peak-to-Peak 

4. Ramp 

5. Ensemble Root Mean Square 

6. Time RMS 

7. Sample Variance 

8. Power Spectral Density function 

9. Cross Power Spectral Density Function 

10. Frequency Function 

The term "Error'T is defined as an indicated value minus true value. The 

ensemble RMS is based on an ensemble of measurements at a given time 

(or elapsed time from a starting point), whereas the time EMS is based 

on measurements taken as a function of time. 

6.3 REAL TIME DATA EVALUATION 

It is recommended that sufficient raw and semi-processed data be 

made available during each test run to assure with some reasonable con­

fidence that usuable data is being obtained. Therefore, run abortion 

criteria must be defined and implemented, as well as means to output and 

display the data. 

In the case of the analog recordings, it would be desirable, if 

possible, .to produce strip chart recordings (in addition to the tape recording) 

for comparison by the operator to acceptable values. If this is not possible, 
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other means (such as panel meters) should be provided for monitoring on 

a spot check basis. Another alternative would be to digitize the voltages 

and compare them periodically, within the 516 computer, to acceptable 

values. If vibrations are measured, they could be compared (perhaps 

statistically) to the PIGA outputs, if sufficient bomputer space and time 

were available. 

During normal navigation runs, generation of error plots vs. time 

of at least the following parameters are recommended [3, 5, 16] whenever 

available: 

* 	 6La, OLo, 6H 

for outputs in Geographic (NEV) coordinates0* VN, VE 6V V 

*0xs, 6Y 6z 
.s .s 

, 

*s for outputs in Tangent Plane (TP) coordinates 
* 6X s, 6Ys,6Z ( 

To the extent that external position and velocity references are available in 

real time in inertial system coordinates, they should be subtracted from 

the corresponding inertial system position and velocity outputs to form the 

above errors. Precision of the measurements depends upon the accuracy 

of the references used, as discussed in Sections 4. 3 and 4. 4. If possible, 

the computer should compute the radial position and velocity errors vs. 

time. If the reset and/pr alignment algorithms are provided in the 516 

computer, time plots of the following quantities should also be maintained 

2 o21l/2 

Radial position error is defined here as (6La 2+ 6Lo ) for NEV 

coordinates and (6X2+6y2+Z2) 1 / 2 for T. P. coordinates. The radial 

* 

S S S 	 A 

velocity error is defined as the time rate of change of the radial position 
error.
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in real time, as applicable and depending upon the availability of position 

and/or velocity fixes: 

* 6A H ' 6Ap, 6AR 

* 6B G , 6R G 

The estimation precision of these terms is presented in Appendices C and 

E. Tabulations of all the calibration terms, whether used in the navigation 

process or not, should be maintained. 

A measure of system performance that can be checked easily during 

each test run is the degree of orthonormality maintained in the C (Coordinate 

Transformation) matrix. Derivations of CC T from the identity matrix are 

indicative of computer algorithm errors (such as roundoff, truncation and 

commutativity errors). 

6.4 POST-TEST DATA REDUCTION 

The recommendations in this section are concerned primarily with 

processing of the test data to evaluate and characterize the SD-53 inertial 

system. This is done in nine different areas, each of which is discussed 

below. Checkout of special techniques and analyses used for design pur­

poses are described in,Section 6. 5 (Special Analyses). 
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6. 4. 1 Pre-Processing of Data 

Before any of the performance criteria listed in Section 6. 2 can be 

calculated, it is necessary to edit the data, as discussed in Section 6. 1. 

In addition, any position and velocity reference information not expressed 

in inertial system coordinates must be so transformed. This includes 

position fixing of the aircraft from aerial photographs, [6] as well as trans­

formations into NEV or TP coordinates, as required. 

6. 4. 2 Determination of Navigation Accuracy 

The navigation accuracy of the SD-53 inertial system is defined as 

the time arying errors of the following indicated output quantities: 

a 6La, 6Lo, 6H ­

* 6 VN , VE , 6VV for outputs in Geographic (NEV) Coordinates 

* 6A, Ap 6AR j 

* 6X , 1, 6z 1.. s *s *s 
* 6Xs, , 6Z for outputs in Tangent Plane (TP) CoordinatesS -S S
 
0 6A 6A Y 6Az
 

Comp tation of the above quantities, as well as the radial error, are nor­

mally computed during each run as part of the real time data evaluation 

(see Section 6. 3). If necessary, the computations can be performed post­

test time, as is the case for the processing of recorded inertial sensor 

data. The determination of attitude errors was considered as a ground 

rule to be of secondary importance (see Section 3. 1), and is determined 
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only when an alignment (physical or analytical) is performed. No tests 

or references are provided to evaluate attitude rate accuracy, as discussed 

under the ground rules. 

A statistical measure of the above quantities is determined by compu­

ting the average and RMS of each parameter as a function of time for runs 

having the same test conditions. The Student's t and F tests are used to 

establish 95% confidence limits to account for limited sample sizes. If 

the average is significantly different from zero, a bias in the system is 
indicated (probably due to error source(s) that are constants for one system, 

but random with zero mean if many systems were to be tested). 

A single figure of merit (FOM) traditionally used to characterize the 
positional accuracy of an inertial system for periods less than about 6 hours iE 

the CEP rate. If the CEP rate for different test conditions is not statistically 
different, as determined by the F test, a combined value can be computed 

to provide greater precision. This technique can also be applied to the other 

parameters listed above. System sensitivities are indicated whenever 

results for different test conditions are found to be significantly different 

(statistically). Several references relative to data reduction in this area 

are [27, 5, 29, 30, 31, 3, 16]. 

6. 4. 3 Determination of Calibration Accuracy and Stability 

Gyro and accelerometer calibration data obtained from physical 

and/or analytical alignment at the beginning and end of each run should be 

plotted vs. time for general monitoring purposes. Changes from system 

turn-off to turn-on should be computed and plotted to establish stability. 
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Computation of the average, ramp and sample variance performance cri­

teria provides a statistical measure of the stability characteristics. Gyro 

bias changes as a function of time during runs should be computed using the 

reset technique described in Appendix E, and the same performance cri­

teria computed. Calibration precision using the reset technique is shown 

in Fig. E-6 of Appendix E to be approximately 3 mdh for the level gyros 

(after taking 6 fixes over 1/2 hour). In the case of the flight tests, data 

over a period of about an hour is required to obtain 3 mdh precision. Esti­

mation of vertical gyro bias error takes considerably longer for both the 

van and flight test conditions (see Fig. E-6). 

Potentially more accurate estimates of the gyro bias errors during 

navigation runs are possible for those periods when analytical alignments 

were computed, Performance better than that shown in Appendix C can 

be expected since initial bias errors will be smaller. The most precise 

estimates for the van tests are obtained from the physical alignment process 

since attitude of the ISU can be measured to several arc-s4conds. The 

corresponding cross-coupling of earth rate is less than . 5 mdh. 

Evaluation of the analytical alignment process to estimate gyro 

bias errors is as described in the next section. 

6. 4. 4 Determination of Alignment Accuracy Using the
 
Analytical Alignment Algorithm
 

The absolute accuracy of the analytical alignment technique is 

determined during the van test program by comparing each of the following 

alignment parameters to those obtained from a physical alignment performed 

simultaneously: 
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* attitude relative to vertical and true North 

* initial velocity error (3 components) 

* initial position error (3 components) 

From repetitive runs under the same .conditions, the average and sample 

are computed to determine absolute accuracy and repeatability ofvariance 

the analytical alignment algorithm. The Students' t and F tests are used 

to establish 95% confidence limits to account for limited sample size. If 

a bias in the alignmentthe average is significantly different from zero, 

process is indicated. The level of precision is determined by the accuracy 

of the physical alignment (approximately several arc-seconds)and by the 

The above data reductionresolution of the inertial system indicated outputs. 

procedure is repeated for the other test conditions described in Section 5. 4 

Comparison of the*(Pre-Navigate SD-53 System Alignment Procedures). 

statistics can identify possible sensitivities in the analytical alignment 

technique. 

Accuracy of the analytical alignment technique under road conditions
 

is checked in two ways, as described in Section 5. 4. In the first method,
 

physical alignment data is obtained, and data processing is as described
 

above. In the second method, many position fixes (and velocity fixes,
 

if available) obtained in the navigate mode following alignment are used
 

a smoothed estimate of
in conjunction with the reset technique to make 

the state vector (of errors) at the time the analytical alignment was com­

pleted and the navigate mode initiated. Absolute azimuth error is measured 

using the optical reference in the alignment building. The precision of the 

This second method can also be used in the aircraft test program. 
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estimation process is expected to be somewhat better than that indicated 

in Appendix E since many more fixes will be taken. The form of the data 

processing is the same as that described earlier in this section. 

6. 4. 5 Determination of Operational Conditions 

Data reduction in this area is primarily concerned with the linear 

and angular vibration measurement tests described in Sections 4. 2, 5. 1 

and Appendix B. It is recommended that the following statistics be com­

puted for each of the six vibration acceleration parameters and for the 

various test conditions: 

* power spectral density 

* RMS of vibration amplitude 

* peak-to-peak values of vibrations 

0 principal frequency components and RMS magnitudes 

In addition, 3 angular and 3 linear cross power spectral density functions 

should be computed to determine the degree of correlation between axes 

[11, 12]. Vibration data from both the van and aircraft tests hould be 

processed.
 

The various quantities routinely recorded on the analog recorder 

for each run should be plotted out to determine typical ranges of variation 

for each quantity. If this .is not possible for each run, it may be adequate 

to examine the data only when abnormal or poor inertial system performance 

is experienced. In addition, as a minimum, representative blocks of data 

should be processed to determine the average and sample variance for 

Such as system power supply voltages, temperatures, etc. 

-63­



each parameter in order to establish the nominal conditions under which 

the inertial system was evaluated. 

6. 4. 6 Determination of Operational Characteristics 

The primary operational characteristics are defined in terms of 

reliability, availability, repairability, reaction time, and operability. 

As mentioned in Sections 5. 1 and 6. 1, categories of system failures must 

be identified, and are closely related to the run abort and data rejection 

criteria. The definition and determination of each of the operational 

characteristics is as follows: 

(1) Reliability: probability that system performance is satisfactory 

for 	a given time 
A n 
R(T) = ns,+snf 

where
 

n5 = the number of runs satisfactory over time T
 

nf = number of runs that fail before time T 

A 

R = estimate 	of reliability over time T 

The reliability should be determined for various values of T , considering 

only inertial system hardware failures. Separate reliability figures could 

also be computed to include operator faults and failures of the evaluation 

system, as well as various definitions of "satisfactory system perfor­

mance" (depending on the run abort and data rejection criteria). 

Including the time at which the navigate mode is initiated. 
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For T = 0', several "system turn-on" reliabilities can be defined 

depending upon conditions prior to system turn-on (e. g., number of hours 

since last system shut-down, last repair, etc.). 

(2) 	 Availability: ratio of all navigation run times during which inertial 

system performed satisfactorily to sum of total run 

time and time to repair. 

A ET 
A= ST+T 

where 

ET = sum of up times (in navigate mole) from each runu 

ETR = sum of all repair times required to allow inertial 

system to be operational (exclusive of preventive 

maintenance time and time from system turn-on 

to entering navigate mode) 
A 

A = estimate of availability 

(3) Repairability: mean time to repair 

n 
A 1 r 
R =- E (T)

n.r i1l Ri 

where 
ST R = sum of all repair times (see above) 

nr = number of times system repaired 

A 
R = estimate 	of repairability 
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A 

Several variations of R are possible depending on the definition of 
11repair" (e. g., time to detect failure, time to fix system, time to 

checkout, total time). The ability to identify and localize failures and 

the complexity of executing repairs is best described qualitatively. 

(4) 	 Reaction Time: mean time from system turn-on to entering the 

navigate mode. 

Several components of the mean reaction time could be computed 

considering the times to warm-up and times to align analytically (or 

physically); however, one number for the total'process is probably ade 

quate for an initial field test program. 

(5) 	 Operability: Usefulness of displays, computer I/O and operator 

functions, complexity and time for turn on/off, 

calibration, alignment, monitoring and mode changing, 

fix taking (position and velocity), reset corrections, 

ne- rqi 

These operational 	characteristics are best described qualitatively. 

Analysis of the operational characteristics could be extended to 

include failure analyses, tabulations of number of system starts, total 

number of system operating hours, etc. Frequency function plots 

(histograms) should be considered as a means to graphically illustrate 

the time functions of some of the above characteristics. 

-66­



It is to be noted that Mean Time Before Failure (MTBF) cannot be 

adequately estimated if system shut-downs are intentional rather than due 

to failures. The reliability figure of merit, as a function of time, ade­

quately characterizes the system in this respect. 

6. 4. 7 Determination of Internal Inertial System Errors 

The reset technique is used to make indirect estimations of the 

following errors and error sources that are internal to the inertial system: 

(1) gyro drift 

(2) attitude and relative heading errors 

(3) earth loop misalignments 

(4) Schuler loop misalignments 

As shown in Appendix E, estimates are made of each element in 

the state vector, which represents the variables used to model the system. 

The precision with which this can be done is indicated in Appendix E; 

however, more detailed analyses are required to include other error 

sources, refine the math models, determine acceptable number and 

spacing of fixes, etc. Time ptots of the estimates should be made, if 

not already done as part of the real time data evaluation (see Section 6. 3). 

Data from all runs having the same test conditions can be combined 

statistically and checked for significance, as discussed in Section 6. 4. 2. 

Significant changes from one group of fixes to another should be correlated 

with changes in operational and/or environmental conditions (including 
moving vs. stopped, in flight vs. onroad vs. in alignment building, different 

vibration levels, changes in heading, and different SAP head angles). 

Particularly of gyro drift and attitude errors. 
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i ne gyro ann accelerometer random drift characteristics can be 

determined from the sensor output recordings obtained during physical 

alignment. A number of statistics can be computed, including auto and 

cross correlations, frequency functions, ramps, etc. Time series 

analysis should also be considered to better determine the math models. Such 

statistical information is important to improve the analytical alignment 

and reset techniques and to provide more accurate analyses in general. 

R. 4. 8 Effect of Certain Error Sources 

' Data obtained from the special test sequences described in Sec­

tions 5. 4, 5. 5 and 5. 6 are processed to determine the effect, if any, of 

certain error sources. Possible sensitivities of the alignment process 

to the attitude of the van could be checked by performing analytical 

alignments at various attitudes and checking them using the physical 

alignment method. Any significant differences, as determined by the 

Student t test, would indicate a sensitivity. Similarly, heading sensitivity 

in the navigate mode can be checked using the physical and/or analytical 

alignment or reset techniques, as available and appropriate. 

A preliminary check of the OA acceleration error effect due to 

engine (van or aircraft) vibration is performed by computing resets (or 

analytical alignments) at various cardinal (and other) headings. Any 

significant gyro drift changes may be indicative of a significant OA accel­

eration error effect, depending on the correlation of the accelerometer 

outputs. The tests can be performed with the vehicle stationary or moving, 

as described in Sections 5. 5 and 5. 6, as well as for various SAP head angles. 

Similar checks of coning effects may also be possible. 
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6. 4. 9 Effect of Reset Corrections and Velocity Dampinf-

The determination of navigation accuracy when resets are applied 

is different from the methods described in Section 6. 4. 2, which apply 

primarily when no corrections are made. Since CEP rate has meaning 

only over the interval before the first reset is applied, and an equivalent 

CEP rate over a given number of resets can be misleading, a different 

figure of merit (FOM) is desirable. It is suggested that the time RMS* 

of the measured navigation outputs be computed, not only when resets are 
applied but also for those conditions when corrections are not made but 

for which comparisons are desired. Such a FOM will tend to become 

stationary over multiple reset intervals, and the precision of its estimate 

can be improved by considering an ensemble of time RMSs. 

The CEP rate figure of merit is recommended for the evaluation 

of the inertial system when external velocity information is used to damp 

the Schuler loops, although the time RSM FOM is also valid. If reset 

corrections are also applied, the CEP rate FOM is not particularly 

meaningful, as discussed above, and therefore the time RMS FOM 

should be used. 

6. 5 SPECIAL ANALYSES OF TEST DATA 

The data reduction described in this section is concerned with 

checkout of certain special techniques, as well as analyses used for 

The time RMS is based on error measurements taken over a period of 
time. 
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design purposes. The analyses are based primarily on test-data 

obtained from the field tests as described in Section 5, and require a 

minimum of supporting analytical analyses. Additional studies that 

require more information than just that obtained from the test program 

are discussed in Appendix F. 2. 

6.5. 1 Evaluation of Reset Technique 

The reset technique can be evaluated several ways. Direct checks 

of the estimates can be made by comparison to estimates using the analy­

tical alignment algorithm (both at the time the navigate mode is initiated 

and whenever an analytical alignment is calculated while navigating). In 

the former case, more accurate comparisons can be made in the van test 

program whenever a physical alignment has been performed. Data reduc­

tion details are discussed in Section 6. 4. 4. 

Indirect checks of the reset technique math models can be made in 

both the van and aircraft test programs by using a series of fixes to estimate 

the future propagation of the output errors and comparing them to the 

actual errors. Also, the expected covariance can be computed and compared 

to the sample variance actually measured. If compatible performance can 

be demonstrated, confidence in the math models and reset algorithms is 

increased.
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6. 5. 2 Data Processing of Analog Recordings 

If unexpected performance of the inertial system is suspected, 

the analog recordings should be analyzed to determine if any of the 

parameters recorded are not normal. To establish a norm, recordings 

under similar conditions but when system performance is normal must 

also be analyzed. Various performance criteria can be computed 

including power spectral density, RMS of amplitude, peak-to-peak 

variations and principle frequency components and RMS magnitudes. 

Histograms may also provide useful information. 

6. 5. 3 Effect of Changes in Computer Algorithms 

The data processing considered here is limited to the compari­

son of navigation accuracies as a function of different computer 

algorithms (viz., compensation, alignment, CTM, VTM, navigation 

and attitude algorithms). This includes both real time and post-test 

processing of the inertial-sensors outputs. Other methods of deter­

mining the effect of compensation,, based on more information and 

analyses than that available from the basic test program, are discussed 

Appendix F. 2. 

The mean-and RMS of each navigation parameter are computed 

as a function of time as discussed in Section 6. 4. 2, for runs having the 

same test conditions and combination of algorithms. The Student's t 

and F tests are then used to determine if there are any statistically 

CTM and VTM are the Coordinate Transformation Matrix and Velocity 
Transformation Matrix algorithms, respectively. 
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significant differences between the results obtained when different 

combinations of algorithms are used. 

If the navigation performance using more extensive compensation 

is shown to be- significantly better, confidence in the quality of the math 

models is increased. If no .ignificant improvement results, it is more 

likely that the error effects are small, since incorrect math models 

would tend to degrade performance. 

It may be possible to compare different combinations of algorithms 

statistically using less test data by computing the time RMS errors in 

the navigation parameters, as discussed in Section 6. 4. 9. 

6.5.4 Evaluation of Alternate Alignment Techniques 

It was recommended in Section 5. 4 that alignment consist of 

rotating the vehicle 901 and performing an analytical alignment prior to 

and immediately following the rotation. The effect on navigation accuracy 

should the alignment be made without the 900 rotation can be estimated by 

comparing alignment errors using only data from the first half of the 

alignment procedure with that from the full procedure. The error propa­

gation models (used as a basis for the reset technique) can be used to 

estimate the degradation of navigation accuracy due to the additional 

alignment errors. The method can be checked by comparing the predicted 

performance to that actually measured from several test runs (as referred 

to in Section 5. 4). The recorded inertial sensor data can also be processed 

Test data is selected such that all other test conditions are the same, 
statistically.
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with and without the 900 rotation, and the resultant navigation errors 

examined. 

Similar comparisons regarding alignment accuracy and resulting 

navigation performance can be made considering alignment with and without 

the use of the yaw monitor and with and without measurement of vehicle 

heading changes during alignment, both for the van and aircraft test programs. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

Since most of the recommendations to be made are based on conclu­

sions drawn from the study, the conclusions and recommendations are 

listed together. The items are organized into specific categories, and 

those items that contain recommendations are preceeded by the letter "1". 

7.1 	 INERTIAL SYSTEM 

R(l) The preliminary study indicates that sufficient measurements 

can be made on the SD-53 Inertial System, both in the van 

and in the aircraft, to adequately evaluate it in accordance 

with the test objectives discussed in Section 2. Therefore, 

it is recommended that the inertial system be implemented 

as discussed in Section 4. 1 and that the computer be pro­

grammed to provide the functions listed. 

R(2) 	 It is recommended that long term navigation in NEV coordinates 

be demonstrated in real time. If possible, performance should 

also be demonstrated in real time using TP (Tangent Plane) 

coordinates. If this is not possible in real time, recorded 

inertial sensor outputs may be processed post-test time. 

R(3) 	 If the inertial sensor data cannot be recorded while the system
 

is navigating in real time, consider additional runs during which
 

only the sensor data is recorded (for representative conditions).
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R(4) Preliminary studies indicate that compensation most likely will be 

required for at least gyro and accelerometer drifts, misalignments, 

and OA acceleration induced errors. It is recommended that 

appropriate compensation algorithms be developed and included 

in the system mechanization before field testing begins. 

R(5) If either analytical studies or field test results indicate significantly 

poor performance that may be corrected by additional compensation, 

consider providing the required algorithms and rerunning some of 

the field tests to demonstrate improved accuracy. Some of the 

special studies that should be completed early in the field test 

program are discussed in Appendix F. 2. 

R(6) The inertial system computer should be capable of accepting and 

applying discrete reset corrections, as well as certain other 

inputs as described in Section 4. 1. The ability to continuously 

damp the Schuler loops using an external velocity reference is not 

considered important for the basic field test program, particularly 

since the process can be approximated by frequent reset corrections. 

(7) Preliminary investigations indicate'that only a few calibration terms 

can be determined with the inertial system in the van or aircraft. 

Further study of 'the physical alignment process would very likely 

identify test procedures to determine additional calibration terms 

with the system in the van. 
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7.2 PRE-NAVIGATE ALIGNMENT
 

R(1) An analytical alignment technique is required in most final applica­

tions and therefore should be developed and tested as part of the 

van and flight test programs. Preliminary analyses indicate that 

development of such a method is feasible and should be adequate. 

It is recommended that the method described in Sections 4. 1 and 

5. 4 be developed further. 

R(2) Use of a 900 rotation of the inertial system about the nominal 

vertical during alignment is recommended since it provides 

bias estimates to the two level components of gyro drift, and 

significantly improves the gyro compassing heading accuracy. 

R(3) Use of heading error change measurement is recommended since 

the biasing accuracy of the Z component of gyro drift can be 

improved significantly. 

R(4) It is recommended that a yaw monitor be developed, 

analyses and tests so indicate. 

should further' 

(5) The 10 wedge for physically aligning the ISU relative to the earth's 

polar axis is no longer required since the original CTMC (Coordinate 

Transformation Matrix Computer) [ 8 ] is being replaced in the test 

By increasing accuracy and reducing test time. 

-76­



program by another computer (the Minneapolis Honeywell 516), and 

the 516 can be programmed to account for earth rate components 

along any axis. This is true for physical as well as analytical 

alignment. 

7.3 EVALUATION SYSTEM 

R(1) The taking of accurate position fixes is not expected to be a 

significant problem in the van test program. However, in the 

flight test program, accurate position fixes probably will be 

available only from photographs and landing the aircraft . Less 

accurate, but adequate position fixes can be expected if the 

flight path is restricted. 

(2) 	 Velocity fixes are expected to be more difficult to obtain (aside 

from stopping the vehicle). Adequate velocity fixes are possible 

with the van moving, but accurate velocity measurements in 

flight are more difficult without special equipment (e. g. Doppler radar). 

R(3) It is recommended that a fifth wheel velocity reference not be 

the basic van test program since sufficient testprovided in 

data can be obtained without it. 

(4) 	 Although pre-navigate alignment of the inertial system is possible
 

with only a velocity reference, the fluid floated table in the
 

Assuming tests are not performed over highly instrumented, special 
test ranges. 
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alignment building is useful as a check on the analytical aiignment 

scheme and can be used to accurately measure some of the 

calibration terms with the inertial system in the van. 

R(5) It is recommended that the significant error characteristics of the 

test equipment be determined as additional inputs into the data 

reduction process in order to properly interpret the results. 

R(6) Since preliminary calculations indicate that the inertial sensor 

outputs can be recorded digitally on one reel for only 1/2 hour, 

consider alternatives to increase the recording capacity (including 

more efficient tape use, smaller word sizes per unit time, longer 

sampling intervals, longer tapes and the use of two tape recorders 

so reels can be changed with no loss of information). 

7.4 TEST CONDITIONS 

R(1) Preliminary studies indicate the importance of measuring the 

vibration characteristics of both the van and aircraft, since the 

resulting navigation errors can potentially be critical. It is 

recommended that the measurements be made as early in the 

test program as possible since they influence the test design 

and are needed to support related analyses and to determine 

compensation algorithms, as required. 

(2) If maximum van speeds are limited to about 20 mph, vibration levels 

can be expected to be lower. From the MISER test program [ 1], 
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linear vibration accelerations are irom z2 to ouTo nigner ior 

speeds greater than 20 mph, and the angular accelerations are 

from 200 to 400% higher. 

R(3) If van/trailer vibrations are determined to be significantly non­

representative of those expected in the final application(s), the 

present van generator configuration should be reviewed for possible 

changes that may provide a more representative environment. 

7.5 TEST DESIGN 

R(1) To fulfill the test objectives with a minimum of test time, and yet 

provide sufficient redundancy, a methodical definition of test and 

data reduction procedures is required, as well as specification of 

certain special analyses and nonfield supporting tests. Associated 

with this is the careful definition of run abort and data rejection 

criteria, which can also contribute to a more meaningful deter­

mination of the operational characteristics of the inertial system. 

R(2) Faithful maintenance of a comprehensive test log is recommended 

since it can make the difference between efficient data taking, 

cataloging and troubleshooting vs. unnecessary repetition of runs 

and abandonment of-potentially useful data already collected. 

R(3) If the effect of the calibration terms is significant, further study 

of the test procedures may provide techniques to isolate the effect 

of additional individual error sources. 
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R(4) A second level of testing should be considered if sufficient changes 

are indicated as a result of van and/or flight tests (particularly if 

this is the case regarding compensation.) 

7. 6 RESET 

R(l) Development of the reset algorithm is recommended since it iE 

very useful in the estimation of internal errors and as a check 

on the system math models, without interruption of the navigation 

process. This is particularly advantageous in the flight test 

program. When velocity fixes are not available, the inertial 

system velocity error can be estimated by the reset algorithm. 

R(2) Although the resets can be computed post-test time, real time 

estimation is recommended in order to improve monitoring of 

the system. 

,(3) The reset technique can be adapted to process real test data so 

as to determine the expected system performance that would 

result if reset corrections had been applied to the system. 

R(4) A second level of testing is recommended if reset corrections 

are to be actually applied in real time to demonstrate improved 

performance, since modifications to the reset algorithm would 

be required to account for control being applied to the system. 
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7.7 SPECIAL TESTS AND ANALYSES 

R(1) The supporting tests and analyses described in Appendices D and 

F. 2 are recommended in order to make the most efficient use of 

the field test time and to make significant contributions in fulfilling 

the test objectives. 

R(2) An error analysis of the inertial system under van and flight test 

conditions is recommended after tests have been completed 

successfully and it is desired to increase confidence in the math 

models for additional analyses. Such an analysis could also be 

used to rank the error sources in order to identify the critical 

ones. 

(3) The techniques discussed in Appendix G can be used to evaluate 

the various transformation and navigation algorithms, particularly 

if improvements are deemed to be necessary. 
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APPENDIX A 

EFFECT OF ANGULAR ACCELERATIONS ABOUT GYRO OA 

A. 1 ANALYSIS OF ERROR SOURCE 

The analysis in this section is considered preliminary since the 

intention is only to determine the form and potential seriouisness of the 

error propagation. Although representative of the total effect, the 

analysis is not complete and only one simplified vibration model is 

considered. 

Figure A-1 indicates a typical SAP configuration, in which it is to 

be noted that rotation of the body about the IA of SAP #1 causes a change*1 

in the orientation of IA2 and IlkS relative to OA1 . 

N I Gyro 

OA ..IAIAIA1

Figure A-1 SAP Configuration 

Neglecting the dynamics of the gyro and the feedback loop, the equations 

for the SAP outputs are: 

(w )iA1
pb = (Wib)l -IH ibOl (A-i) 
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(Wpb)3 = (Wib)22 (Wb)0 2 (A-a) 

(w (w) •i( (A-3) 
3 ibb 3 HpbH (ib03 

where 

Wph is indicated angular velocity 

w ib is true angular velocity 

0 letter subscript is output axis of gyro 

numerical subscript identifies each individual gyro 

I is output axis moment of inertia to spin angular momentum 
H ratio C- . 001 see) 

The SAP IA orientations are mutually orthogonal and the angles of the
 

OA's about IA are defined relative to the other SAP OA's as shown in
 

Fig. A-2.
 

0A 1 

IA2 IA 3 

OA 0A 2 

IA1
 

Figure A-2 IA-OA Configuration 
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The error in the output of each SAP (ZL 2, 3) due to output axis angular 

acceleration is therefore 

Hdt
H dt 

[(w. ) sin
ib 2 

+ (w b )
1 ib 3 

cosg ] (A-4) 

2 

6w 3 

= 

=-

3 

1 d
H dt 

I_1 

Hdt 

bbb
[(wib)Ssi3 2 + (w)1 

[(wb ) sing + (w b 

ib I -n3 ib2 

COSA 
2 

cosP ] 

3 

(A-5) 

(A-6) 

where 

and 
a i 

i= 

-= 

. + 450 

tb 
t b w jWb) dr(-8 

(A-7) 

(A8) 

Considering the first term in Eq. (A-4), 

d -I 
dt H 

(wbb)
w i ) 2 

sinfo, (A-9) 

the angular rate term is expanded as follows: 

(wbb)ib 2 
= (wb )2 +w

ie 2 2 
(A-l0) 

where (w ) is the component of earth rate along the IA axis,
ie 2 2 

w is the angular rate about the axis defined by the IA of gyro 2, 

relative to the earth. 

and 
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Consider I. to be a sinusoidal angular acceleration of the body about 
axis i (i = 1, 2, 3), defined as follows: 

i = Wio sin(wnt +0.) (A-11) 

Wi0 
w. eos(w t +$.) (A-12)

1 w n 1 
n 

where 

w.10 = 18 rad/sec2 (A-13) 

w = 20 Htz (A-14) 
n 

From Eqs. (A-8, -10, and 12), 

W. 
a = -i sin(wnt +b + (wie t (A-15) 

1 2 n 1 ie i 
w 

n 

Substituting Eqs. (A-10, -7 and -8) into Eq. (A-9) yields: 

d I bb b 
-[H- (Wib)2 si ll =H 2 1 ib 2 2 iel1 1 1](A_16) 

The term w 2 sin 1 contributes virtually nothing (<10- ft. )to the 

errors because of the high frequency (wn) content of the term. This is 

easily seen since the transfer functions of the latitude and longitude 

errors caused by gyro output rate errors at w are: 

n 
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w2w W.sinL 	 w. sinL 
s le4	 (A-17)6La = s 	 le 

wN (s2+w2)(s2+w.)	 w4(w2+w2 )s2 +w2 
. s ie n 

2 w 2 
8La SWs 

6 w E (s 2 +w 2 )(s2 2) (w)3 

s ie n 

2w. cosL w. 
ww 2 w cosLW2 (A-19)6La Ws ie cos s i e 

6wV (s2 	 2 2 2 
s ie n 

26Lo w 2secs L(s 2+w ie cos 2L) w s secL (A-20) 

2 3 
_-w = 2 2 2 

N s(s +w )(s +w.e) 	 w 
s i~e n 

2 2 
6Lo = 

2 s w 
2 
e si_ s w e siL(A- 21) 

26wV s(s 2+w 2)(s2+w 
s ie n 

where 

erruor6La,6Lo are 	latitude and longlrue 

are the North, East and down components of 
6w" 6wE, 6w V 


the gyro output rate errors
 

w s Schuler frequency 

w. earth 	rate 
le
 

L latitude 
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Coning motion can also produce an indicated constant drift rate. 

The drift rate is 

6w = (l( - cosfl) (A-28) 

where A is the coning half angle 

is the coning angular frequency 

w=12- - (A-29) 

aw =W n( (i (A 0)) 

w I (A-3)
n 

.0 

S1W 
n 

. 1)2
H 

io
8w 2 (A-32) 

n 

For the above parameters 

6w = . 07/hr (A-33) 

A. 2 VAN TEST OF OA COMPENSATION SCHEMES 

If the recorded SAP outputs are to be used to test OA compensation 

schemes (including the effect of no compensation at all), then the procedure 

shown in Fig. A-3 can be used. 
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The products of earth rate and vibration rates in Eq. (A-16) cause even 

smaller position errors (in Eqs. A-17 through 21) than the *2 term. 

The dominant rectified error term in Eq. (A-16) is w1 w 2 . 

w w
1 2 

10 W20 coS(wr +0i ) 

2 n 1 
w n 

cos(w t+02) 
n 2 

(A-22) 

The rectified component is 

(A-23)W10 w20 1 cos(O1 - 62)
2 2 

w 
n 

Assume worst case phase, i. e., cos( 1 -0 2) = + 1, the constant output 

rate error of gyro 1 due to motion about the lAs of gyros 1 and 2 is: 

6Wl 120H2 2.120/hr (A-24)i = 
w n 

for 

.001 sec (A-25) 
H 

w 1 0  w 2 0 = 18 rad/sec (A-26) 

.w =20Hz (A-27)
n 

An error of this magnitude would cause completely unsatisfactory 

performance of the inertial system. 
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OA Compensation Schemep 	 i CTM!,VTIM&
 

Recorded SAP 	 Navigation 
AlgorithmsOutputs 

Recorded 
PIGA Outputs CTMI,VTM& _ 

Navigation + 

Algorithms 

Best OA Compensation Errors Due to OA 
Scheme Compensation Scheme 

Figure A-3 Evaluation of SAP OA 	Compensation Schemes 

Providing super position theory can be applied, it makes no difference 

whether the recorded SAP outputs have or have not already been com­

pensated for the effects of other error sources. Similarly, the PIGA 

outputs may be simulated, if desired. For design purposes, it may be 

useful to directly compare the outputs of the compensation schemes. 

The OA compensation scheme to be tested is compared to a "bese' 

OA compensation scheme. The best OA compensation scheme should not 

be a perfect compensation scheme since a perfect OA compensation 

scheme is unstable. This can be shown by the following simplified 

analysis. Consider the )'s to be constant at 45'. Then 

The performance degradation due to no compensation at all is determined 
by using only the "Best" compensation scheme in Fig. A-3. 
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" bI I -b 
p -p (wb(W) 	 1 

pbl 
-

H 'F2 H 	 ibI 

bI(w) 
2 p. -Hp 	 (w)ib2 (A-34) 

I 	 b(wbwb ) I p 
ibpb3 VVH 

where p is the Laplace transform operator. Eq. (A-34) is solved for the 

actual body rate vector to obtain: 

b ± I 2 bb) 1 

(w) 1 p 	 (- P) (w
ib2 11 	 (/b)H 

b 	 I p)2 I b 
lwi2o__p]3 	 "2V2I­3W 	 Tpb)2ibP2 [ 	 ­

b I I )2 ( b .
 
(wib) p (-p- 1
 

(A-35) 

The presence of the term 1 1 shows 	the instability (a pole is 

in the right half plane). Hence a perfect OA compensation scheme should 

not be used for long term navigation. A technique that can be used is given 

in Ref. [32]. 
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The procedure shown in Fig. A-3 and discussed in this section 

can also be used to evaluate algorithms for compensation of other error 

sources (such as coning and inter-axis coupling). 
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APPENDIX B 

MEASUREMENT OF VAN VIBRATION ENVIRONMENT 

The van angular vibration environment should be measured about 

three nominally orthogonal axes, according to the following considerations: 

1. 	 Accuracy of measuring magnitude of the vibrations should 

be at least 7 to 10%. 

2. 	 Phase error between any two pairs of axes should be less 

than 2% (70). At 40 Hz, this corresponds to a time syn­

chronization requirement of . 4 ms. 

3. 	 For each test condition, data should be taken for at least 

20 sec, and preferably 2 minutes. There is no need to 

take data for longer than 5 minutes. 

4. 	 It is desirable to be able to measure any angular rates 

greater than approximately l/sec about any axes, 

whatever the frequency. For example, a . 50 vibration 

at 1 Hz corresponds to an angular rate and acceleration 
2

of 3. 14/sec and . 33 t ad/sec , respectively. If this were 

characteristic of a van vibration component due to the 

trailer/ generator, the effect would be significant. 

5. 	 Measurements from the MISER van test program [1] 
below 20 rad/sec 2 

indicated angular accelerations were 

and 	frequencies less than 25 Hz. 
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Measurements should be made under a variety of conditions, including the 

following: 

1. 	 Van parked in the alignment building, engine off and 

trailer/generator disconnected physically. 

2. 	 Van parked on the roadside, engine off but generator 

connected. Repeat with engine on and for a range of 

different wind conditions. 

3. 	 Van and generator moving along a smooth paved road 

at 20 mph with normal tire pressures. Repeat for 

other speeds and lower tire pressure. 

4. 	 Repeat No. 3 above for more rough roads, railroad 

tracks, bumps, and a range of wind conditions. 

5. 	 Repeat No. 3 above for a range of turning rates
 

and accelerations and decelerations.
 

6. 	 Van started abruptly from a stop by racing the van 

engine and the quickly engaging the clutch. 

The 	effect of the trailer/generator can be determined by repeating several 

of the tests for the same conditions but with the trailer disconnected 

(assuming a separate power source sufficient to excite the vibration 

pickups and drive the recorder can be carried within the van). 

areSome considerations in making vibration measurements 

included in Refs. [33, 1, 11, 12] particularly regarding problems arising 

due to vibration sensor mounting resonances. 
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APPENDIX C 

ANALYTICAL ALIGNMENT CONSIDERATIONS 

C. I 	 INTRODUCTION 

Analytical alignment of inertial systems has been used in various 

forms in a number of applications [5, 37, 38, 39]. For the field test pro­

grams on the SD-53 inertial system, the analytic alignment scheme can 

serve two purposes: 

The obvious use of analytical alignment is to align the 

system prior to entry into the navigation mode, using veloc­

ity error measurements over a 10 to 20 minute period. 

This serves as an alternative procedure to the physical 

alignment method described in Section 5. 4. 

* 	 Under certain conditions, the alignment algorithms can 

be used to estimate the attitude errors and equivalent gyro 

bias errors while the system is in the navigate mode. The 

basic procedure is to stop the vehicle for about 10 to 20 

minutes while recording the velocity error data. The data 

may then be processed at the completion of the test period 

(if necessary) using alignment algorithms. 

Several variations of the above basic analytical alignment procedure are
 

as follows:
 

o 	 A 90' rotation of the vehicle at the end of the 10 to 20 minute 

period followed by a second alignment run, for better atti­

tude estimation and estimation of all gyro biases. This 

procedure is described in detail in this appendix and in 

Section 5. 4. 

-99­



In addition to utilizing velocity data, the change- in-heading 

error can be observed and used to significantly improve 

estimation of the vertical component of gyro bias. 

6 

C.2 ALIGNMENT PROCEDURES 

The basic block diagram of fine alignment is shown below in 

Fig. C-I. 

- - - - - - I II 
Gyro Outputs Update 

I Heading I ISample & Holdi 

Cn j Transformation r---'i Initial Value
 
C7ompensationo Cb I j
 

I I I-

Heading Error IChange A 

Acceleromete n + Accelerometer Error Filter A 

Output C Measurements b itr ---pG 

L_[0 0 g I]T -_ A 
A 

Figure C-i Block Diagram of Fine Align 

If instrument biases are to be estimated, they are required in the 

b frame. Although they are estimated in the n frame, they can be trans­

formed into the b frame since for the present problem the biases can be 

assumed constant in the n or n frame (the changes in the elements of 
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C are small). With this assumption, the filter can be designed on the
b .

basis of a time invariant system and measurement. 

Vertical deflections can be compensated (if they are known) at the 

end of the last stage of fine align, since they appear as equivalent accelero­

meter biases. 

The block entitled "filter" in Fig. C-I can be a recursive optimal 

filter, a finite memory filter or a least squares filter. The choice involves 

tradeoff studies involving mostly on-board computer limitations (scaling, 

memory and speed tradeoffs). 

The two horizontal components of gyro drift rate can be very effec­

tively estimated by reorienting the vehfcle by a nominal 900 rotation about 

vertical and repeating the alignment (see Fig. C-2). The vertical compon­

ent of gyro bias can be estimated with a significant increase in precision 

Rotate Vehicle 900 
Align About VerticalAin 

15 min (6 min)15rn 

Figure C -2 Alignment Sequence 

by measuring,change in heading error as shown by dashed lines in Fig. C-I. 

Another possibility is to rotate the vehicle again about the East axis (about 

300). 
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C. 3 	 PRELIMINARY ANALYSIS OF EXPECTED ACCURACY 

A sampling rate of once every 36 secs was assumed to attenuate 

the effects of vibration. To obtain this rate the AV pulses would be 

summed for 36 sec. The noise due to vibrations was assumed independent 

after 36 	see, and at an RMS level of 10 ug. 

The parameters used for the alignment schemes are: 

* 	 Initial Conditions
 

a[0N(0)] = a[¢E (0)] = a[OV (0)] z 10
 

* 	 Gyro Errors 

0 Bias = [BGN] a[BGE] = a[B ] = .0500/hr 

=* Random drift a [RGNI = C[RGE] = a[RGv] .004/hr 

-0 Correlation time (T ) 3 hr 

• Accelerometer Errors 

* Random drift = a[RAN] = a[RAE] 5g 

* Correlation time (r) = 2/3 hr 

In 	[5], velocity is averaged for 10 sec.
 

a denotes standard deviation.
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S Measurement Error-q 

* 	 Vibration caused errors = [VI] = 7[V2 ] = lOug 
(assumed independent or white every 36 sec). 

* 	 For the measurement of heading error change, 
a 20 sec white noise error cr[V 3 ] is assumed. 

For the analysis, the analytical alignment was assumed to be performed at 

a latitude of 450 

Using the models shown in Fig. C-3, the expected accuracy of 

analytical alignment with and without measurements of heading error 

change are.shown in Figs. C-4 and C-5. The precision improvement in 

biasing the vertical component of gyro drift, due to measuring heading 

error change, is about an order of magnitude, and approaches the precision 

with which the other components of gyro drift can be estimated. A slight 

improvement in the precision of the initial heading alignment also results. 

The effect of the 90' vehicle rotation is also apparent. During the first 

alignment period (before the vehicle is rotated), the error in the East 

component of gyro drift is equal to the assumed bias r (viz., . 0500/hr), 

since the term is unobservable, and the corresponding heading error is 

almost 1000 sec. Upon rotating the vehicle 900, the component of gyro 

drift originally in the E/W direction now lies in the N/S direction, where 

it can be observed and estimated, as shown in Fig. C-5. The heading error 

also decreases radically, as shown in Fig. C-4, by more than a factor of 

20. 
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Figure C-5 Gyro Bias Estimation Precision Using Analytical Alignment 
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APPENDIX D
 

SPECIAL TESTS RECOMMENDED IN
 
SUPPORT OF FIELD TEST PROGRAM
 

There are several special tests that should be performed in support 

of the field test program. Although not considered in depth here, since 

they are not directly a part of the field tests, the results are expected to 

contribute significantly to the total SD-53 system evaluation effort. Some 

of the tests are as follows: 

1. 	 Determine in the laboratory the SAP OA to IA 

frequency response, in support of the OA angular 

acceleration sensitivity studies. 

2. 	 Check sign conventions of certain calibration terms by 

performing the calibrations; then inserting intentional 

changes wherever possible and repeating the calibrations. 

Considerable test time in the field may be saved by 

avoiding inadvertent sign reversals. 

3. Cross coupling of SAP and PIGA gyro internal misalignments 

due to encoder zeroing error can be checked by biasing the 

gyro pickoff signal an amount proportional to the IA about 

OA internal misalignments. Repeating the calibration 

tests that estimate the internal misalignments will provide 

a measure of the cross-coupling effect of the IA about SA 

internal misalignment, due to encoder zeroing error. 
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4. 	 The SD-53 inertial system attitude algorithm should 

be checked on the laboratory test stand to verify it 

for use in the analytical alignment process when 

indicated heading changes are required to estimate 

the vertical component of gyro drift. The check should 

also verify the algorithm for the flight test program, 

where attitude of the aircraftmay be required at the time 

photographs are taken for position fixing. 

5. 	 Perform tests to verify proper operation and adequate 

accuracy of the yaw monitor, should such a reference 

be required for the analytical alignment technique (see 

Section 4. 5 and Appendix C). 

6. 	 Perform tests to determine error characteristics of 

photograph technique for determining position of aircraft. 
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APPENDIX E 

RESET TECHNIQUE FOR ESTIMATION OF 

INTERNAL INERTIAL SYSTEM ERRORS 

During the van and aircraft tests precise external position 

information (fixes) are available periodically, and at times velocity of 

the vehicle is also known. This information can be combined at discrete 

times with the inertial system outputs to estimate the error states (x) as 

depicted in Fig. E-i . The process is referred to as "reset" since the 

estimates of the error states can be used to correct, or reset, the systen 

to provide improved performance. In this application, reset will be used 

only to estimate internal errors in.the inertial navigation system (INS). 

The purpose of this appendix is to indicate (in a preliminary way) the 

precision with which the INS errors may be estimated for several 

different field test conditions and characteristics of the fix taking devices. 

The nominal performance of the INS is determined first, for the same 

conditions assumed in the reset analysis that follows, in order to illus­

trate the significantly better precision of the reset process compared to 

the basic accuracy of the INS itself. 

Since simplified math models were used, a more complete analysis 

would be required to more fully evaluate the technique. Analyses should 

also be made to determine the trade-off between estimation precision vs. 

amount of data used to make the estimates so that real or equivalent para­

meter shifts can be readily detected. 

The process has been used in various forms in a number of other applica­
tions [30, 5, 34, 17], including the use of Kalman filters and least squares 
estimation. 
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Fix Taking 
Device

SXt xF 
Inertial ±ixX + x x - x
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Sources System 
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Filter 
Xt true values of observable states and/or 
x-. error in state as indicated by INS Smoother 

I 
xF error in state due to error in 

fix taking device Estimate of 
Error States (x) 

Figure E-l Error State Estimation (Reset) 

E. I SYSTEM MATH MODEL 

The basic error equations of the inertial navigation system (INS) 

for the van type of environment are: 

N = -WiesinL cE - wie sinL 6La + 6V E + u(w) N (E-1) 

-E = wle sinL EN + w iecosLa EV - 6V N + u(w) E (E-2) 

The equations for the aircraft application are similar, except additional 
terms proportional to the aircraft velocity must be included. For the 
relatively low van speeds, the terms can be neglected. 
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6 VE 

CV -Wie cosLa EE - w. cosLa 6La - sinL r Uw (E-3) 

6V N = gEE - 2w. e sinLa 6V E + u(a)N (E-4) 

V E = -gE N + 2wie sinLa 6V N + u(a)E (E-5) 

8VE = r6La (E-6) 

6V E = rdLo cosLa (E-7) 

where 

EN' EB North and East tilt errors 

azimuth error
 

6La Northpbosition error (angle units)
 

6V N North velocity error
 

6Lo East position error (angle units)
 

6V E East velocity error
 

r radius of earth
 

u(w) gyro drift rate errors
 

u(a) acceleration type errors
 

ev 

w. earth ratele
 

La Latitude
 

g gravity
 

The inertial system is assumed to be undamped. For the results 

presented in this report the error state diagram is determined from Eqs. 

(E-I through E-6). 



E. 2 NOMINAL PERFORMANCE OF INS 

To illustrate the significantly better precision of the reset process 

compared to the basic accuracy of the INS itself, the nominal performance 

of the INS must first be determined. For the results presented in this 

appendix, the system math model of Section E. 1 was used, assuming the 

following conditions and error sources: 

Initial Conditions 

Tilts OE E(0) = EN (0) = 2 sec 

Azimuth aE V(0) = 60 sec 

Velocity o[6 VN(0)] = o&[6VE(M)] = 0 

Position f[6La(0)] = o[6Lo(0)] = 0
 

Latitbde 450
 

Gyro Errors [u(w)] 

bias a[B G] = .0040/hr 

=randorh o[RG] .0040/hr, correlation time (r) = 3 hr. 

Accelerometer Errors [u(a)] 

random a[RA] = 5 mg, correlation time (r = 2/3 hr. 

The deflections of the vertical are assumed known along the test path and 

hence do not appear as error sources in the equations. 

Results of the analysis are shown in Figs. E-2 through -E-5 for the EMS 

navigation errors (position, velocity, platform tilt and heading error) under 
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the van test conditions. The reset estimation errors for the various 

parameters and several test conditions, as determined in Section E. 3, 

are also included on the curves to illustrate the efficacy of the estimation 

process. The precision with which the gyro bias errors can be estimated 

is shown in Fig. E-6. 

E. 3 RESET PRECISION USING POSITION AND VELOCITY FIXES 

The reset scheme used to estimate the performance of the INS 

is based on combining INS outputs with external information (position 

and/or velocity) via Kalman filters and/or smoothers using DRC's state 

variable programs. The external information need not be uniformly 

spaced in time and can also be continuous. Studies of smoothing aircraft 

INS outputs with sparse position fixes have been studied by DRC" [26]. 

The system and Kalman filter models used in the analysis of the 

reset parameter estimation precision are given in Section E. 1, and assumed 

conditions are as shown in Table E. 1. Several combinations of van and 

aircraft fix conditions were chosen to represent the effect of frequent 

good position (and velocity) fixes, as well as the effect of less frequent, 

poorer quality position fixes. The RMS estimation errors are presented 

in Figs. E-2 through E-6 for each of the three combinations of fix condi­

tions. In addition, the effect of smoothing the information is shown for 

the aircraft tests. 

The reset estimation precision is significantly better than the 

basic .velocity and tilt'accuracy of the INS itself." In the case of heading, 
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the estimation precision improves somewhat following the analytical 

alignment, until the effect of random East gyro drift predominates. In 

Fig. E-6, the estimation precision of the North and Vertical gyro drifts 

improves as more fixes are taken, whereas the East gyro drift cannot be 

separated from the initial heading error. 
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Assumed Conditions Van Tests (No Vel. Fixes) Van Tests (with Vel. Fixes) 

Fix Conditions 

Position 60 feet 60 feet 

Velocity none . 02 feet/see 

Fix Frequency 6 minutes 6 minutes 

Initial Conditions 

Heading 60 sec 60 sic 

Tilts 2 sec 2 see 

Instrument Errors 

Gyros 0040/hr'bias ,0040/hr bias 

.0040/hr randomC. T. 3 hrs.
22 

.0040/hr random, C. T. 3 hr. 

Accelerometers 5pg random,C.T. -hr
3 

5 g grandom,C.T.-hr.
3 

Test Conditions 

Latitude 450 450 

Vehicle Velocity (negi) (negi) 

Notes: (1) 	 The initial system conditions and inertial instrument errors are the same 
used to determine the nominal INS performance (see Section E. 2). 

(2) 	 Unless noted otherwise, all errors are assumed to be white noise. 

Table E-I Conditions Assumed in Analysis of Reset Precision 

Aircraft Tests 

240 feet 

none 

24 minutes 

60 sic 

2 sec 

.0040/hr bias 

.0040/hr randorC. T. 3 hr. 
2
 

5 gg C.T. -hr.

3 

450 

200 kts. East 

as those 
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Figure E-2 Inertial System Position Errors for Van Test 
Conditions 

•-.16­



knots ft/sec.8 
N 

• 1.2A 
.7 


0
s4 .56
 

.8
 
0 

£4 

.6
 
U1 

3
 
@ .4
 

.2 ,j.iltering
 

2
. 1 . X .2
 
X XXYXXX XXX) XXXXX;XX XXXXXXX X )CXXX XX>XXXY)<XXKXV4;)X
 

X L _ 0 o 0 0 G 0 0
 
M, p smoothing . rwith veloci fixes 

0 XY X XX XX)X)Cx XXX XX kXX )CTXXXXX XX>cXXXRXX Kx XXX

1 2 3 4 5
 

Time, hrs
 

Notes:
 

0 Velocity estimation error using reset (aircraft conditions)
 

x Velocity estimation error using reset (van conditions)
 

No velocity fixes taken, except as noted.
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APPENDIX F 

SPECIAL ANALYSES IN SUPPORT OF THE FIELD TEST PROGRAM 

There are several special analyses that should be performed in 

support of the field test program analyses. The first group of analyses 

are required to implement the test program as outlined. The second group 

of analyses are not directly a part of the van and flight test programs, and 

so are not considered in depth here. However, the results are expected to 

contribute significantly to the total SD-53 system evaluation effort. 

F. 1 	 REQUIRED ANALYSES 

The special analyses required to implement the test program as 

outlined include the following: 

1. 	 Development of a suitable reset process to characterize 

errors and error sources within the inertial system (when 

operating in its normal navigate mode) using external 

fix information. Aspects of the design and analysis are 

considered in Section 6 and Appendix E. 

2. 	 Development of a yaw monitor, if yaw motion of the van 

or aircraft is excessive to achieve satisfactory biasing 

of the vertical gyro (see Sections 4. 5 and 5. 4 and Appen­

dix C). 

3. 	 Derivation of equations and a technique to obtain position 

of aircraft from photographs and inertial system indicated 

*The process should be developed primarily for operations in NEV coordi­
nates, and secondarily in. Tangent Plane coordinates. 
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attitude, as discussed in Section 4. 3. 2. The analysis is 

to include consideration of calibration and alignment of 

the camera system. 

4. 	 Derivation of necessary equations to convert position 

references into geographic or tangent plane coordinates, 

as necessary. 

5. 	 If the effect of alternate alignment techniques is to be 

estimated as described in Section 6. 5. 4, a small 

statistical analysis would be required to determine the 

degradation of navigation performance due to degradations 

in the pre-navigate alignment process. Alternate alignment 

techniques include no 900 rotation of the vehicle, no yaw 

monitor, and no measurement of heading error change 

during the alignment. 

6. 	 If a fifth wheel speed reference is to be provided, analyses 

are -required to specify equipment functional and perfor­

mance requirements, data processing algorithms, etc. 

Although both the reset and the analytical alignment algorithms can provide 

estimates of errors internal to the inertial system, the reset algorithm is 

not limited to the vehicle being stationary, it utilizes position fixes (pri­

marily), and it can perform smoothing as well as filtering. It is expected 

to be particularly useful during the flight test phase. 
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F. 	2 ANCILLARY ANALYSES 

Although the following analyses are not required to implement the 

basic field test program, they are recommended in order to check certain 

aspects of the system design and to increase understanding of the system. 

The following three analyses should be performed before most of the inertial 

system tests are run in order to determine if large accuracy degradations 

are to be expected, and if so, how to provide significant improvements: 

1. 	 Using the real time recordings of van (and aircraft) vibra­

tion data, for various combinations of vehicle maneuvers 

and initial head angles of the SAPs, generate a real time 

simulation of the response of each SAP to at least each 

of the following error sources: 

* 	 OA angular acceleration sensitivity 

* 	 coning 

* 	 g and g2 calibration terms 

* 	 misalignments 

The resulting SAP error functions can then be used to determine 

the degradation in SD-53 system performance (separately, 

for each error source). Potential problem areas can be 

identified, and recommendations made as to which terms 

should be compensated and to what precision. 

Potential error sources are discussed in [13, 4, 12, 11]. 
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2. 	 If serious performance degradations are detected, 

generate compensation algorfthms, as required, and/or 

specify the recommended initial head angle of each SAP. 

The degree of performance improvement can be estimated 

by repeating the real time simulations of item I above 

after incorporating the comparison algorithms in the 

SAP models. 

3. 	 Even if no serious degradations are detected (from 1 above), 

a covariance error analysis may be desirable to determine 

the effect of other vibration models (e. g., expected booster 

characteristics), as well as the effect of other error sources. 

If the van or aircraft vibrations are significantly different 

from those expected in the final application(s), studies 

may be in order for determining how a more representative 

test environment can be provided. The relative importance 

of each calibration term and error source can be established, 

and in conjunction with results from item 1 above, recomm­

endations made concerning terms to be compensated and 

associated precision requirements. 

4. If inertial sensor data has been recorded during real time 

tests, compensation algorithms for individual error sources 

can be evaluated using the method outlined in Appendix A. 2 

Consideration should also be given to a simulation analysis. using 
statistically generated inputs. 
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(for OA acceleration compensation). The processed output of 

a particular compensation algorithm to be tested is com­

pared to that from a "perfect" compensation algorithm 

(for the same error source), each having been provided 

with the identical input (from the recorded inertial sensor 

data). Error sources that can be evaluated this way include: 

* OA angular acceleration sensitivity 

* coning effects 
2 

* g and g sensitivities 

* internal and external misalignments 

* scale factor errors 

" bias errors 

The effect of no compensation for the particular error source 

can be determined using the same method. 

Other recommended analyses are as follows: 

5. The effect of different transformation and navigation 

algorithms can be determined using the methods described 

in Appendix G. If inertial sensor data has been recorded, 

the algorithm errors can be determined for real time 

functions of angular rate and linear accelerations. To 

the extent the system is linear, gyro and accelerometer 

that the algorithm introduces negligible errors.Perfect in the sense 
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errors will cancel, as shown in Fig. G-1. The appendix 

also describes algorithm evaluation using analytical 

solutions and simulation. 

6. 	 Perform error analyses of SD-53 system under van (and 

flight) test conditions. Compare predicted performance 

to measured results in order to verify math models used 

and to establish confidence and creditability in future 

predictions of performance expected from the final system 

design in the final application. 

7. 	 If vibration effects are small statistically, combine the 

measured performance of the inertial system with the 

predicted effect of the vibration profile (based on covar­

iance or simulation studies) to determine a more 

realistic estimate of system performance. 

8. 	 Determine effect on navigation accuracy of computing and 

applying resets to real data (post-test time) . Define a 

reset regime of fix taking and application of corrections 

that is expected to be representative of conditions in the 

final application of the SD-53 system. Note that the 

effect of Schulelr loop velocity damping can be approximated 

by 	including frequent velocity fixes. Compare analytic results 

It is recommended that this be done only for NEV coordinates since very. 

accurate position and/or velocity fixes would be required in Tangent Plane 

coordinates (over the short term). Second phase tests may investigate 
such possibilities. 
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statistically to runs during which resets were computed 

and applied in real time, if data is available. If results 

in math models and analysesare compatible, confidence 

are increased. 
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APPENDIX G 

EVALUATION OF TRANSFORMATION 
AND NAVIGATION ALGORITHMS 

The recorded inertial sensor outputs can be used to evaluate the 

following algorithms: 

1. Coordinate Transformation Matrix (CTM) update 

2. Velocity Transformation Matrix (VTM) 

3. Navigation Algorithm 

The procedure is to process the recorded gyro and accelerometer outputs 

using a proposed set of algorithms and then to process the same data using 

very accurate algorithms. The difference in output can be attributed to the 

combined errors of the algorithms. The errors caused by the gyros and 

accelerometers will cancel in the subtraction process, if the system is 

assumed to be linear. The procedure is depicted pictorially in Fig. G-1. 

Note that three combinations of the above algorithms can be checked this 

way (viz., 1, 1 and 2, and 1,2 and 3). 

A second method of evaluating algorithm errors is by analysis and 

simulation. In this procedure the only error source is the algorithm in 

question.. Each of the algorithms listed above can be evaluated sepatately. 

Detailed procedures of evaluating the coordinate transformation matrix 

(CTM) algorithm are discussed here. 

G. 	I EVALUATION OF COORDINATE TRANSFORMATION MATRIX 
- (CTM) UPDATE ALGORITHM 

The verification that the CTM update algorithm meets the specification 

can be done by analytic solution and simulation. 
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Gyro 
Errors
 

Input Angular + + Gyro 
Velocities Outputs 

Acceleration t + x + xa 
Errors Algorithmss+ To be Tested 

Input Accelerations CC. 
+ Outputs 

Very Accurate x + x. + 

Algorithms - I ­

where x t are true outputs 

x. are errors caused by the inertial instruments
(gyros and accelerometers) 

xa are errors caused by the algorithms 

Figure G- I Field Test Evaluation of Algorithm Caused Errors 
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Various methods of evaluating algorithm errors are discussed after the 

block diagrams describing the analytic solutions(Fig. G-2)and simulations 

(Figs. G-3, G-4, and G-5.) 

_ Analytic Solution 

to
 
Test Algorithm 

Angular Velocity Algorithm Errors 

Analytic S olution 
to C=CO 

Reference Solution 

Figure G-2 Analytic Solution for CTM Algorithm Errors 

The simplest type of simulation is to compare a digital computer solution 

)f the algorithm to be tested with an analytic solution of the reference, as 

depicted in Fig. G-3. Since analytical solutions of the CTM differential 

equation appear in the literature, [40, 41, 42] they willnot be reproducedhere. 

A full simulation generates a computer solution for both the test 

algorithm and the reference (i. e., true) solution, as shown in Figs. G-4 

and G-5. 
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Digital Solution Algorithm 
Errors 

aAnatic Solution 
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Figure G-3 Simple Simulation for CTM Algorithm Errors 

General Rates 
and Vibrations 

Computer Solutions 
of 

Test Algorithms 

Algorithm 

Errors 

Figure G-4 

Computer Solutionsl 

of 
Reference 

Full Simulation for CTIM Algorithm Error 
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In general the true or reference solution is generated by an integration 

algorithm. For a meaningful simulation this algorithm must be signifi­

cantly more accurate than the update algorithm. An expanded diagram is 

shown in Fig. G-5. 

ompens ation 

Gyro Errors 

Vehicle Maneuver 

Gyro Modelw. 

Rotational 
Vibration Rates Referencesuto +<' 

Algorithm 

Errors 

Figure G-5 Expanded Diagram of Full Simulation 

The algorithm induced drift is the upper envelope of the algorithm 

error as depicted in Fig.. G-6. 
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Figure G-6 CTIVI Algorithm Drift Rate Error
 

G. 2 EVALUATION OF NAVIGATION ALGORITHMS 

Two methods can be used to evaluate the Navigation Algorithms. 

The first method depends upon models of the error sources. Evaluation 

of the system errors is accomplished by the use of the system error 

equations. Models for errors in numerical integration schemes and round­

off errors are discussed in the references [36, 35]. The system errors due 

to terms dropped in determining the navigation set (e. g. , Coriolis terms 

or the gravity model) can be evaluated by considering the dropped terms 

as error terms and propagating these terms through the error equations. 

The error equations for the navigation set can be written in space state 

form as 
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6 = F(t) 6x + w(t) (G-1) 

by = C(t) 6x (G-2) 

where 

6x are the error states 

by are the output errors 

w(t) are the error forcing functions 

F(t) is in general a time varying matrix evaluated 
along a nominal vehicle path 

A solution to Eq. (G-1) can be expressed as 

t 
6x(t) = 0(t, 0) 6x(O) + f 0(t,T) w(")dr (G-3) 

0 

where the transition matrix satisfies 

= FO (G-4) 

A diagram showing the procedure is contained in Fig. G-7. 

(t) Error Equations 6x 

C M Ay___of Inertial 

Navigation System 

Figure G-7 Propagation of Errors Through Inertial 
Navigation System 
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If the forcing function models can be generated, then the system 

error can be evaluated by the existing state space computer programs at 

DRC. 

The second method involves generating a reference solution using 

an assumed vehicle path and comparing its output, as shown in Fig. G-8,with 

the output of the Navigation Algorithm for the same vehicle path input. 

Random and 

( a ta 

|AccelerometersAgoih 
Navigation 

Deterministic 
Inputs 

(Rotational and 

INavigation 
Set Errors 

Translational) 
--

Computer 
Generated .-

Reference Solution 

Figure G -8 Full Simulation of Navigation Set 

A preliminary evaluation of the Navigation Algorithms is possible 

using the first method, and the second method can be used to verify results. 
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APPENDIX H
 

GLOSSARY
 

Formation of Symbols 

6F ) error in (') 

A (-) change in () 

I ]T transpose of matrix 

C) denotes time rate of change of variable 

-) denotes average 

Major Symbols and Abbreviations 

A R Vehicle Euler angles defined as rotations 

through AR, A and A H of the ISU cube 

AP about its X, Y and Z axes, in that order. 

WhenAH = AP = AR = 0, the X, Y, Z cube 

are" IIand NEV geographic coordinate frames 

coincident. 

Ax Vehicle Euler angles defined as rotations through 

AX, Ayand A of the ISU cube about its X, Y 

"yYand Z'axes, in that order. When Ax = Ay = A Z , 

the XYZ cube and Tangent Plane coordinate 

AZ frames are coincident. 

BA' BG 	 Vectors of accelerometer (PIGA) and gyro (SAP) 

biases, respectively. 
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V 

n 
C, Cb CTM 

CEP 

g 

H 

IA 

INS 

La 

Lo 

NEV 

OA 
pG 

PIGA 

R 

LA 1G 

SA 

SAP 

t 

VBVelocity 

vG 

VTM 

Coordinate Transformation Matrix(from body to "nominal" coordinate frames) 

Circular Error Probability 

Gravity 

Height of vehicle above starting point 

Input axis of inertial sensor 

Inertial Navigation System 

Geographic Latitude 

Geographic Longitude 

North, East Vertical geographic coordinate 
frame (V is plus down) 

Output axis of inertial sensor 
Position vector in geographic coordinates 

= [La, Lo, H]T 

Pendulous Integrating Gyro Accelerometer 

Radius of Earth 

Vectors of random accelerometer and gyro 
drifts, respectively 

Spin Axis of Inertial Sensor 

Single Axis Platform (contains gyro for 
measuring .inertial rate of vehicle) 

Time 

White noise associated with measurement of 
system outputs 

vector of vehicle relative to inertial 
space, in body coordinates 

Velocity vector of vehicle relative to the earth 

in geographic coordinates = [V N , VE, V1 T 

Velocity Transformation Matrix 
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We, Wie 	 Earth rate vector, magnitude of earth rate 
relative to inertial space 

WA' W G White noise associated with accelerometer an( 
gyro random drift, respectively 

XYZ, b -YZcoordinate frame defined by ISU cube 
axes (down is positive). 

X Indicated change in vehicle position in space 
(Tangent Plane) X direction 

Y 
s 

indicated change in vehicle position in space
(Tangent Plane) Y direction 

z fndicated change in vehicle position in space 
(Tangent Plane)Z direction 

Z Vector of measurements of system outputs 
B Incremental angle changes in body coordinates, 

as derived from the SAP outputs 

EGyro drift rate error 

Tilt :of computed local level coordinate frame 
relative, to vertical 

TA' 7G 	 Markoff time constants associated with 
accelerometer and gyro random drift, 
respectively 

0 N' OE -¢vMisalignments 	 of computed earth's rotation 
vector, coordinatized in the NEV geographic 

)ordinate frame 

Subscripts 

b body coordinate frame (XYZ) 

E East 

F Fix 

H Heading 

n Nominal coordinate frame (NEV) 
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N North 

0 Initial 

P Pitch 

R Roll 

S System 

V Vertical 

y Tangent Plane coordinate axes 

Abbreviations of Units 

kt Knots 

mdh Millidegrees/hour 
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