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SECTION O,
SUMMARY

This is the written portion of work performed uncer NASA
Contract NAS2-5233 -~ "“Report on Pioneer's 6/7 Plasma Probe Instrument
Simulation Study." In response to the direction of the Technical
Monitor, -this report concentrates on part A.1.(2) of the work state-
ment “recommendations concerning the design and construction of a second
generation version of this algorithm ..." The recommendations contained
herein are designed to be applicable to the analysis of data from the
Tater 3 Collector Electrostatic Analyzer System. As per the contract,

a minimum of six days were spent in consultation with Ames Scientists
during the summer of 1970.

The results of three independent studies are reported here. They
are 1.) Optimization of Numerical Quadratures in the Plasma Probe
Non-Linear Least Squaves Parameter Estimation Program, 2.} An
Alternative Technique for Estimating the Helium Fraction and 3.)

Linear Estimates of the Piasma Parameters.
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SECTION 1.
INTRODUCTION

Effort on this contract has been concentrated on the develop-
ment of techniques for estimating as many as possible of the (steady-
state) plasma parameters, from data observed by Pioneer 9 type instru-
ments. The basic technique for doing this for Pioneer 6 and 7 has
involved a mathematical model of the instrument response, and a math-
ematical model of the solar wind particle velocity vector distribution,
as a function of its parameters. A non-linear least squares algorithm
in conjunction with these models, has been successfully used to esti-
mate the parameters. Work under this contract has proceeded under the
assumption that this basic technique is sound for 9 type instruments.
The 9 instrument response functions are of somewhat different shape

than those for Pioneer 6 and 7.

Loosely speaking, the kth data peint I, 1is modeled as

k
Ik = Ik(e), where

I(e) = MWk(v)f(v;e)dv . (1.1)

v is a velocity vector, wk(ﬁ) is the total instrument response to a

unit number density cold beam with velocity vector v at the kth
choice of azimuth, coliector, and energy step combination, and
f(v,08) is the particie velocity vector distribution, as a function of

its m parameters, 6 = (91,62,...,Sm). These parameters include the
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components of the mean vector(s), and pressure tensor(s), number

density, helium fraction, etc. wk(v) is obtained from the calibration

data and the impulse response of the electronics.
The non-linear least squares program atiempts to iteratively

choose the parameter set & = (91, 62,...,9m) sog that the modeled data
points Ik(s) are close to the corresponding observed data points I,

in an appropriate least squares sense. In order to do this, it is
necessary to have reasonable starting guesses for the parameters, and

to evaluate Ik(e) for various parameter sets © to some appropriate

level of accuracy, in an efficient manner.
The main body of this report consists of three sections.
Section 2 is concerned with the problem of efficient and accurate com-

puter evaluation of (1.1) given wk(v) in tabular form, and trial

values of 6. This problem is nontrivial, because, among otheq reasons,
the operation must be repeatedly performed many times.

In Sectioﬁ 2 we consider the class of quadrature formulae which
would be exact if f{vi8) were 1inear in the components of v. (The

guadrature coefficients then depend on Wy and are pre-calculated).

A fairly sharp upper bound for the quadratures error is given, which

depends (for given wk(v)) on the number and location of the quadrature

points and the largest possible value of the mixed second partial

derivatives of f{vi6) with respect to the components of v.
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If the instrument response windows are much longer in the 8
direction than in either the v or o direction (which is apparently
the case), it makes sense to consider a linear array of quadrature
points in this direction only.

For this case a feasible procedure is given whereby, for any
fixed number n, the optimal set of quadrature points may be found.
The optimal set of points is that set for which the error bound of the
quadratures error is the smallest possible, assuming that a linear
array is adequate. Upon finding the optimal set for each n under
consideration, the corresponding error bound may be determined to see
if it "is within the system accuracy constraints: kThen’the set with
smallest n meeting the system constraints is selected.

The adequacy of the linear array assumption may be checked
by inspection of the final optimal set as determined above. A two
dimensional procedure is described, for use if the one dimensional
array is not adequate.

In a simple analytic example the number of quadrature points
required to meet a fixed error bound was found to be reduced by about 25-
30% by use of the procedure given, as compared to equally spaced
points.

Although the procedure given may appear to require a large
amount of effort, the more time consuming steps {involved with
organization and numerical integration of the calibration data), will

have to be done for any accurate numerical integration procedure.
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Section 3 briefly describes a least-squares procedure for
estimating the Helium fraction, which probably has the advantage of
being more stable than letting the Helium fraction be a free para-
meter in the general non-linear least squares parameter estimation
program.

Section 4 gives an algorithm for linear estimates of the
plasma parameters. A draft of this section was delivered informally
in August, 1970.

Section 5 is conclusions, and Sectién 6 contains three

appendices.
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SECTION 2.
OPTIMIZATION OF THE NUMERICAL QUADRATURE
2.1. General Considerations in the Optimization of the
Numerical Quadrature, Introduction.

Let f(v,8) be the particie velocity vector distribution

with parameters o, 8 = (61,62,...,em). Let wk(v) be the instrument
L

response to a unit number density cold beam with velocity vector v
at the kth choice of collector, energy step and instrument position
relative to the solar-oriented ecliptic coordinate system. In the

discussion below we will suppress the subscript k. Thus w(v)} = wk(v)

for fixed k. w(v) 1is determined in the laboratory, for selected
values of v, and the functional form of F(v,8), as well as bounds
on the possible values of © are known. The problem considered here
is to develop an efficient quadrature procedure for evaluating

numerically
I{(s) = IIrf(v,e)w(v)dv . (2.1.1)

It is highly desirable to do this with as few quadrature points as
possible, since, I(8) must be evaluated (for each k) for many
different values of 6, each time the plasma parameters are estimated
iteratively by non-linear least squares.

Let

v:

f(e) = E] f(x”,8) fi{fw(v)dv (2.1.2)
v
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where n is the number of quadrature points, R1’R2""’Rn are n

disjoint regions in Euclidean 3 space to be determined, whose union

is S, S being the region for which w(v) > 0, and x°

2

v=1,2,...,n are n vectors to be determined, x¥ e RU. Equation
(2.1.2) is known as the quadrature formula. ff[w(v)dv is calculated
R

v .
and stored in advance, so only given linear combinations of f(x",8),

for v =1,2,...,n are calculated during the iterative estimation of
8. Then

I(s) - f(e) = gffzij(v)[f(v,9)-f(xv,e)]dv . (2.1.3)
y=

hY

By expanding f(v,0) is a Taylor series about x’, and letting

v = (v1,v2,v3), xV = (xf,xg,xg), we have

3
f(v,0)-F(x%,0) = ] ALCE) ()

(vi-x¥)(vj—x§) (2.1.4)

v=v,

where v, is some point between v and xv, depending on v.

Thus
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Lo b v
=1 j=1 BxJ .

~ 3 '
I(e) - I{e) = {E 1 Mj{jw(v)(vjﬂ ?].’)dv}

n 3 3 e
- g_,fff av) § 7 EEO (o (v
v=1 =° Rv i=1 j=1 aviav.
J
V=Y,
(2.1.5)
If x:]f is always chosen so that
féff vjw(v)dv
j = ],2,3 . (2.].6)

X =

J jff w(v)élv ’
R
v

then the first term in (2.1.5) is identically 0. In Appendix A we

show that, for a Maxwellian distribution

2
max 2f(v.0)l o (2.1.7)
Vv, 8,51,.] Bviavj
where
. 3/2"‘ S (2.1.8)
kTi
where N dis the number density, A3 T o s where k is Boltzman's

constant, m is the particle mass, and T, is temperature along the

direction of the eigenvector of the pressure tensor corresponding to
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the eigenvalue li. Jﬁ% is in units of velocity. If f(v,a)’fs~the sum

of two Maxwellian distributions as in (3.2.5) then (2.1.8) holds with
N replaced by Np+2Na’ Np and Na being the proton and a-particle

number densities, respectively. Also,letting [[x||= x{+x3+x3,

3 3

1 L (v vy < 32 (v5-x)% = 3 [jv-x"||*
<3mx |lgmlf ., veR (2.1.9)
T EmeR,

max ||&-n|] is the maximum dimension of the region R,. Therefore,
£,neR

¢

if xg is chosen as in (2.1.6), then
|1(e) I(e)l < ~M Z max ||£-n”2-[I[w(v)dv . (2.1.10)
1&, ne v

The main idea of the preceeding discussion (Egns. (2.1.3)-(2.1.6) and
{2.1.9)-(2.1.10)) has been adapted from a memo of Mr. John Day, of
Informatics.

Assuming that w(v) has units of current per unit number density,

then I(8) - I(6) has units of current, M has units of (number

2

density x ve]ocity's), max ||&=n||®* has units of velocity” , and

E,neRv
fffw(v)dv has units of {current x number density -1y velomty ).

V
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http:2.1.9)-(2.1.10

We now.proceed under the assumption that accuracy standards on
the quadrature can be established based on 1) the requirements for
accuracy in the non-linear least squares program 2) the accuracy of
the calibration data w{v) and 3) other system errors (including
digitization, timing uncertainties and the inability to accurately
recover the signal current at the output of the collectors). Thus, we

n
wish to find n, and {Rv} so that n 1is as small as possible
v=1

subject to the constraint

|1(8)~ I (8)] < Z'M Z max ||g-n|FJ[[f w(vldv < C, (2.1.11)

V= g sT]E '\J

where C, is given (in units of current).

Thus, we must find the smallest feasible and practical n, and

n n
corresponding sets (R} _, {x'} for which
v=1 v=1
} max fleenll? fff wiv)dv < Cy = S C . (2.1.12)

v=1 E,naR

The remainder of this Section is divided into four subsections. In

Section 2.2 we derive some theoretical Tower Bounds for

E max ||£-nllzj¥t[w(v)dv . (2.1.13)
v

v=1 E,naRv

The purpose of this is twofold. 1. The results can be used to tell us
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whether it is worthwhile to attempt to improve a given choice
n

of | {Rv} , that is, how close is a given choice to the best
v=1
obtainable, 2. The conditions under which the theoretical Tower

bound is attained give us some qualitative criteria for a good set
n

{Rv} for given n. In Section 2.3 we discuss qualitatively some
v=1

of the calibration data available during the period of this study.
Based on the criteria developed in Section 2.2, it appears that a
satisfactory solution may well be obtained by exploiting the fact that
the instrument response windows are much narrower in the radial .

(increasing %9 and azimuthal (@) directions than the elevation

(B) direction.
In Section 2.4, the results of Section 2.3 are used to formulate

n
the problem of choosing the {Rﬁ} as a much simpleyr problem, namely
v=1

as a problem in determining boundaries in one dimension, instead of

three. For this simpler problem we given an algorithm for obtaining

n
starting guesses for the boundaries of the regions {Rv} : which
\):
minimize
] I |
Poma etz ) wenay (2.1.13)
v= E,HERV R\)

for any given n. The calibration data is used to define w(v) here.
The use of Newton's method to iteratively improve the choice of

boundaries to minimize (2.1.13), and the convergence properties of
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this method, are described. For each candidate value of n, then, the
best or near best set of boundaries may be found by the method described.
Then the smallest n for which the inequality (2.1.12)} holds may then
be selected, Section 2.5 discusses a check for determining whether

the one-dimensional solution is adequate. A iwo dimensional procedure

is discussed in the (unlikely) case that it is not. In Section 2.6

a simple example is discussed in which s> roughly 30% fewer quadrature
points are required for the best choice of points as compared to -

equally spaced points, for the same accuracy.

2.2, Theoretical Lower 3ounds for the Quadrature Error
and Properties of a Good Choice of Regions
By use of the Holder and Jensen inequalities we first obtain
a theoretical lower bound on
n
Y max ||£-n|[E[[[ w(v)dy (2.1.13)
v=1 g ’nE:R\J R\)
over all possible choices of regions {Rv} whose union covers S,
By examining the conditions under which this theoretical Tower bound
is attained, we obtain clues as to the properties of a good choice
of regions.
The velume V of a sphere in 3 dimensional Euclidean space

is given by

V = g-da . (2.2.1)



where d is the diameter. Since a sphere is the geometric figure
which maximizes the ratio of the volume to the longest dimension, we

always hava

max_|[E=nll2> ¢ (Uf ) (2.2.2)

Esns

Fi ~
where ¢ = Cy = (%3 2 1.54 and equality is obtained if and
only if Rv is a sphere. In general, S, the region over which

w(v) > 0, cannot be partitioned into spheres., If S is partitioned

by, say plane surfaces only, then we will have C = 84 = 2% = 4,

obtained for RU a cube, since then yi73 . length of a side = 2
x longest dimension.

Therefore, provided only planes are used to partition S,

then

v=1 E,neR

) e el fff (a2 ¢, ] [fff d\jm [fff w(v)ﬂ (2.2.3)

with equality holding if and only if {Rv} are all cubes.

fhe famous Molder inequality says, for any o, B positive

numbers with o+ = 1, and a{v), b(v) positive functions,
jl;ff aa(v)bB(v)dVi [fRﬂ‘a(v)dv}a l:fRff b(v)dv] ° (2.2.4)
v, v v
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with equality holding if and only if a(v) 1is a constant times

b(v). Letting a=-§- - B =

e

, al{v)=1, blv) = w(v}), we have

fRf W5(v)av g[fff dﬂw[gf w(v)dﬂg/5 ,  (2.2.5)

Ry

and,taking the 5/3 power of both sides, we have
_5/3 2/3
[gf w3/5(v)va < [.gfdv] [gfw(v)d\zl (2.2.6)
v v v

and
5/3
\"

] (2.2.7)

with equality holding if and only if w(v) is constant on each Rv'

, vi} [fRff dv]Z/s[gf w(v)d\] > c,é] [fRff /50

By Jensen's Inequality (see Appendix B), we have

, 1 [fff w/3()a
v=1 R,

5/3 5/3
v v

1" o b 5, e
| V=l Rv

- 5/3
- ;.2_53 _f{fwsls(v)d\] (2.2.8)

with equality holding if and only if

j;;ff w3/5(v)dv = gwa/S(v)dv . all w,v . (2.2.9)
v i
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In summary, for any partition of S dinto R disjoint regions

n
{Rv} . whose union is S, a universal lower bound for (2.1.13) is
'\):
given by
5/3
n Cal-
Y max |[e-n]P jffw(v)dv >—§§—l:fflw3/5(v)dv] . {2.2.10)
v=1 E,nsRv Rv “n S

The lower bound is attained if and only if equality obtains in
(2¢22.2), (2.2.7) and (2.2.8)) which means (restricting the partitions

to planes, to simplify the discussion).

i} A1l the Ru are cubes (that is, the ratio of

volume to (diameter)® is maximized

ii) w(v) 1is constant on each R,

i11})  The volume of Rv is inversely proportional
to w3/5(xv), X’ e R, -
This lower bound cannot be obtained for arbitrary w(v) since,
for example 1) and i) require w(v) to be constant on cubes. However,

from the above we may make the following semi-quantitative statements

about properties of a good partition.

i) The ratio of the Tongest to the shortest dimension of

each R, should not be too large
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ii) The regions should be chosen so that w(v)

does not vary much for v e Rv .

iii) The volume of the regions should be small where

w(v) 1is large, and conversely.

2.3 Analysis of the Calibration Data and Simplification of
The Problem
The following discussion assumes, for concreteness, that the
calibration coordinate system is a spherical coordinate system. In

a spherical system a cold beam with rectangular coordinates (V1’V2°V3)

has velocity r = (v%+v§+v§)]/2, and angles of incidence o and B8

where

vi = rcos gsina \
v, = rsing | (2.3.1)
V3 = rcos B cos a

See Figure 2.1. In what follows the volume element dv] dv2 dv3

is replaced by the spherical volume element r2? cos 8 drdgde. If the
calibration coordinate system is not exactly spherical, the appropriate
volume element should be used, but the remainder of the discussion
below is unaffected.

Let w(v¥§v2,v3) be the response of the instrument to a cold

beam of protons of unit number density and coordinates ViaVgsVsa.

w(v],vz,v3) is actually measured by 1) Fixing r and R and
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varying o. 2) Fixing r and & and varying B. 3) Choosing
anew r and repeating 1) and 2). Thus, it will be conveniént
to perform some calculations involving calibration data in the
calibration coordinate system.

Figures 2.2 and 2.3 reproduce some calibration curves and a
plot which were available while this study was being performed. Com-
plete labels and scale factors were not all provided and the missing
information is omitted. Some labels have been added according to the
coordinate system assumed in Figure 2.1.

Figure 2.4 shows a hypothetical calibration curve as it might
appear if the incidence angles a, B are kept fixed and the calibration
bean velocity is varied. Based on discussions with ARC personnel, it
is assumed that the resolution of the instrument in the (E/q)
direction, i.e. in the direction of increasing beam velocity, is very
narrow compared to the resclution in the direction of changing «
or B.

That is, the width of the curve in Figure 2.4 is very narrow
compared to that of Figure 2.20,when both are visualized in a common
rectangular system.

Figure 2.5 depicts schematically o and B calibration curves
transformed to a rectangular system, for fixed r. Inspection of
Figures 2.3 and 2.4 and their visualization in a common rectangular
coordinate system reveals that the region $ in a rectangular system for

which w dis not zero is shaped roughly 1like a possibly flattened hot dog.
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A cross section of this hot dog shaped region, for fixed r, is the
shaded region of Figure 2.5, The full hot dog shaped region S s
depicted schematically in Figure 2.6. This is the region that must
be partitioned. Due to the highly elongated shape of this region, it
is consistent with the criteria for a good partition at the end of
Section 1. to consider partitions perpendicular to the Tong axis of
S. There is considerable benefit to being able to describe the
partition simply in the calibration coordinate system. To this end,
consider slicing (i.e. partitioning) the hot dog S with cones of

constant g. If this is done, then a Region Rv consists of all

points whose polar coordinates (r, a,B) satisfy

(r, a,8) € S'
(2.3.2)
B, X B < B

where the cones determined by B = Bv and B = Bv+] are iwo

boundaries of Rv' Figure 2.7 shows a cross section of the region S
in the r, B plane, for o =0, and a cross section of Rv with

boundaries B = Bv and B = Bv+1'

Then, if we abuse notation by letting w(r,o,B) be the

instrument response to a beam with spherical coordinates r, o, B,

then
ff B\JH 2 0
- 2
v Bv a=0 r=0

(2.3.2)
2.13



Of course the Timits r =0, r=¢« and o =0, o=2r could be

replaced by the extreme values of r and o inside S.

Define
2m ®
h(g) = cos B fdaf w{r,a,8)rdr . (2.3.4)
a=0 r=0
We may rewrite (2.3.3) as»
i
f 'w(vl,vz,vs)dvldvzdv3 '= i. h(g)ds . (2.3.5)
Vv

We next suppose that the longest dimension of Rv will always be in the

B direction. If S 1is to be partitioned into, say 8 or 9 regions
then this is reasonable since the hot dog S is around say 8 or 9
times as long as it is thick, locosely speaking. In this case, the
maximum dimension of Rv is given by

max |{&€-n|] = relB.  1~B.] (2.3.6)
E,neR Y

where r, 1is some intermediate vaiue of r 1in S. See Figure 2.7.
With the restrictions that a) S is to be partitioned by cones of
constant B and b) the longest dimension of Rv is in the B8

direction, we may write
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m
) max il&iﬂ”zjlrw(v VoV )dv,dv,dv,: <
Y v

Bv+1

Cqlrai)? §1|B\,+1-B\,sz h(g)d8 (2.3.7)
‘\):

B\)

where r,.. 1is some intermediate value of r 1inside S, and where
B] and Bn+] are the extreme 8 values for points in S (see

Figure 2.7). B is in radians in {2.3.7). If h(B8) and n are

given, it is possible to give an algorithm for choosing BosBaseessBy
to minimize

B

n v+l
) Isvﬂ-s\,lzf h(g)ds . (2.3.8)
v=1 B,

We do this in Section 2.4. To conclude this section we discuss the

determination of h(B) from calibration data.

Let
WaB) = [ wlr,s)ridr . (2.3.9)
r=0
Then o
n(®) = cos B [ wlaBde . (2.3.10)
a=0
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#{a,8) is the area under the curve r2w(r,o,B), as a function of r,
. where the curve w(r,0,B) as a function of y 1is shown in Figure 2.4.

IT the calibration points are taken at a sufficiently fine grid,
(n,) (1 (2 (n,)
g = (1) (2 BT, o a3 o

’ooo’B o = ] ""Sa ]

M @ ()

LR SRS S R o , then

n_n .
n(6) = cos gl T {WG&LJﬂﬁﬁa&wu
=1 k=1 (2.3.11)

| a(s+1)£a(j-1)) ( r.(kﬂ);n(k-n )

where v:@ik),a(j),s(i)) are measured values of w, and a(o)

3

(n +1) (n _+1)
o &, 0 ang e T are suitably chosen.

We may write

. ot GIF_ETy -y g
h(e{1) = cos glH) .E? o ;u : Ly (o9 ,68)y  (2.3.12)
J:

where

2@ gty . kg‘: w(r(k),a(j)’s(i)) (r(k))z(r(kﬂ);r(k-ﬂ)

wGﬂ“hé”)#w : (2.3.13)

2
3

r=0
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If the calibration points in the r direction are sparse,
as in Figure 2.4, then the approximation in (2.3.13) will not be good,

and care must be taken to get sufficiently accurate values of
;(u(j) ’B(i )).
Now, suppose we have determined h(g) for

(1) (2)
8 B

(n,) . .
sv-esB 8 where a(lij) - 8(1) is’ much smaller
than the difference between two possible region boundaries Bytl - Bv'

Say B(i+}) - 8(1) ~ 1°.  HWe will then proceed below as though

h(g) =0 for B<By, and B >8 and is known continuously for

n+l

By < B < B yq. The next section gives an algorithm for minimizing

(2.3.8).

2.4  Choosing an Optimal Set of {8,:835++58,}

The problem now is to choose BrsBgseessBy satisfying

By < By < ... <B <B ., tominimize f(Bz,Bs,...,Bn) given by

B+l
8 2
(8ebgsennsty) = T (Bug-8) [ neyee . (2.8.7)
3
\Y

By the Holder inequality of (2.2.4) with a= %-, B = %— we have
Byrl 3 Byt %— Byl 1
3
f dg f h(s)ds) 3f [h{g)1 7 a8 . (2.4.2)
B

8, B,
' 2.17



Hence, upon cubing both sides of (2.4.2) and summuls, we have

n B\Jﬂ B\JH s
ZT (B,41-8,) f h(B)ds > I( f [h(s)]”gds). (2.4.3)
U:

\J B\J

Equality holds in (2.4.3) if and only if h(B) 1is a constant for
By SB 2By o

By Jensen's inequality, we have
3 . 3

o (Porl 1 . Bl 17 Byt 1
f [h(e)1° dg | >n ;‘;)j f [h(8)1° d =-Jz- f h(e)T de
_v=1 n

By By By

(2.4.4)

with equality holding if and only if the {Bv} are chosen so that

Bt 1 Bne1 1
[ m@Pe = [ hEFe . (2.4.5)
B, B,

The (unique) values Bﬁ,B%,...,Bﬁ for which (2.4,5) is

satisfied may be found graphically by plotting

1 Bnt) 1
H(B) [ ) de/ [ in(e)T’ a8 (2.4.6)
By &

and graphically finding 83 which satisfies
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H(BY) = — , v=2,3,..n . (2.4.7)
This graphical procedure is illustrated in Figure 2.8.
Now the set BE,Bg, vees B: found this way does not, in
general, minimize f(Bz,...,Bn) since equality does not, in general

hold in (2.4.3). However, it is shown in Appendix C that

B* B }
0 vl n+l 1 )
_g*)2 . 3
L ®ag) [ nee - — [ [he)T” ds
B3 By
(2.4.8)
T E ne)
< g*, . ~p* max ‘(e
— Lo 19utl Py
Bt 1|
o 1 3
where, dccording to(2.4.4)—~ 4{ [h(B)]” dB
- n
B
1

is an absolute JTower bound for f(82,33,...,3n). For the derivative
h' not too large, and |B§+]-83I“ small (remember B 1is in radians
here), (2.4.8) shows that the chosen Bg,s*,...,sg, found by solving

(2.4.7) will be close to the best possible set. The next step is to

calculate f(B*,...,B:) and determine if

3
3 M % Cylrag) 2F(BSse.oBY) < C) (2.4.9)

(Recall Equations (2.1.11) and (2.3.7))}. If not, n may be increased,
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or a second order improvement in the choice of the {Bv} attempted.
Given the set (65,...,63) of starting values determined as above,
various iterative techniques can be used to minimize f(sz,...,sn)

numerically. Most Tikely an adaptation of-the Marquardt algorithm in
use in the Plasma Probe non-linear least-squares estimation program
can be made to do the job. At this level, the improvement possible
will, in general, be only second order. For completeness, we describe
a relatively simple procedure for improving the set

(85,83,...,83). It is Newton's method in n-1 dimensions. It will be

be convenient to use vector notation to discuss Newton's method. Let

B o= (ByseresB)s F(B) = F(Bys....8 ) given by (2.4.1) and Tet

of (§)
38,

g(B) = B3 (2.4.10)
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i 38,90
385 2%n
22f(B)
A(B) = 383 : (2.4.11)
32F(B) azf(E!
36y36, 2p2
We have
B
of (B) . - 8. +)2h(B. (2.4.12)
‘alsr' 2(81-83) [ h(8)dB + (B5-;_y)*n(By)
8.1
Bi+1
2(8;497B;) ]" h(g)ds + (B;,1-8;)% h{s;)
B
i=2,3,....0
Bit]
o - a8 .
' i-1

(2.4.13)

+  h'(g;) EB,.-BH)’-- (81-+1-B1-)2J
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] , Bis1
9°f - o0°f -
oB.0B. - BB- aB. = -2 (B.H_-I”B.[)(h(si_l_'l )+h(6i)) + f h(B)dB
i i+l i+l 3

i
i = 233,0-.9"‘]

S5F =0 for §# -1,0,1 (2.4.14)
aBiaBi+j

= 2,3,...,0-1

Necessary and sufficient conditions that f(g**) be a
{local) minimum are that g(B**) = 0 and A(B**) be strictly positive
definite. (A matrix A is strictly positive definite if XAX' >0 for

all vectors X.) Here we then have

F(B) = F(Rwx) +(BEe)g(Br*) + LE-BAGE) (B-E) +
higher order terms (2.4.15)
and, if g(p**) = 0, then TF(E)-F(B**) > 0 1in the neighborhood of

B**, A sufficient condition that A(E) be strictly positive

definite is

2403 2 263y |\ *
2*f(B) 22f(8) %%)_ i, = 2,3,....n . (2.4.16)
9g3 983 LA

This condition holds here if
[} - 2_ - 2 i
h'(8;) I(Bi Bi_1)2-(Bs4q si):l i=2,3,...,n  (2.4.17)
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is positive or sufficiently smail negative.

If the variation in h(B) for B8, , <B <B,,, isnot large

compared to h(p) for B, ; < B:< B, ¥, or, if

_a Y2 - _ 2
(B54778;)% = (B;-8B: )* , then

h‘(si)[?ei-si_])z- (Bi+1-81)%] (2.4.18)

is small compared to the' remainder of the contribution to
2t

2
oB3

s that is, to
Bi+1
4(Bia-B;_)h(e;) + 2 [ h(s)ds (2.4.19)
Bi-1
and can be ignored. In the computations below it may be appropriate to
do this. If not, hl(si) shouid be estimated from the calibration data,
possibly by first smoothing h(R).
To derive Newton's method expand g(B) to the first order in

a Taylor series about §*. Then

t

g(8) = g(B*) + A(B*)(B-8*)' . (2.4.20)

L/ Note that this is independent of the units in which g is

measured.
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Then, to get g*f for which g(ﬁ%f) = 0, we have

g(Brx) = 0 = g(B%) + A(B*) (Br*-B*)" (2.4.21)

and B** is obtained from
N S T (o T (2.4.22)

This procedure may be repeated with B** as a new starting guess.
If A(B) is strictly positive definite for all § with

By < By < ... < B, then f(8) 1is a convex function with a unique
minimum, and Newton's method is guaranteed to converge to the minimum.
If, whenever h(B) 1is increasing at 8;, we have (31"51-1)>(31+1'31)
and conversely, then A 1is strictly positive definite. This will be
the usual case for the starting guess B* = (83,83,---383), since,
loosely speaking, the method for choosing g* selects B$+1-B$

inversely proportional to the average of h}/3(B) for Bs[@?,s?+1].

Thus we may expect that this procedure will converge rapidly to values

of Bys«-esBy which minimize (2.4.1).

So far, we have assumed that the longest dimension of the
regions found this way is in the B direction. If this turns out to be
the case then if (2.4.9) is satisfied, then (2.7.11) will be satisfied.

If S 1is much wider in the o direction than 6311-83*, where
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(83*,63,...,83*) are the solutions found above then 2 dimensional

partitions should be considered. These are discussed in Section 2.5.

2.5 Partitions in Two Dimensions

A two dimensional partition procedure assumes that there is

only one quadrature point in the r direction but ng points in the
B direction and Ny, in the o direction. Suppose a set
(B%*,B**,...,B;*) of boundaries for the quadrature regions has been

found as in Secfion 2.4, which meets the accuracy specifications in
the sense that (2.4.9) is satisfied. Then there is no point in con-
sidering any partitioning in the a-direction, provided that

33:] - 83* is greater than the angular width of S 1in the «

direction.

If the resulting partitions in the B8 direction are half or
one third of the width of S 1in the o direction, then the simplest
procedure is to divide all the regions Rv in half by a contour of
constant o down the middle. In the unlikely circumstance that the
solution partitions in the B direction are very small compared to
the width of S in the o direction, it is recommended that the
problem be turned around to solve for partitions (ug*,a**,...,a;*)

in one dimension the same as was done for g.
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That is, substitute g{o} for h(R), where g{a) is given by

T

gla) = ,[ cos B dB .j‘ wir.,a,p)rédr |, (2.5.1)
g=-w r=0

analogous to (2.3.4), and proceed as before. Then let the final 2

dimensional partitions Ruv’ = 1,250..5n"s v=1,2,...,n have

boundaries determined by {a,B) e Ru , if a;* <o < ok

v utl ?
63* <B< 3311 . An {overly generous) error bound for the quadratures

is given by the error bound determined individually in either the o,
or B8 direction, if either direction always is the direction of the
longest dimension of the regions.

It can be shown that if ¢(a.,p) defined by

v(e,8) = wla.B) cos B (2.5.2)

can be factored into the form

#(a:8) = ¥y (e)uy(8) (2.5.3)

then the procedure for solving the Qrob?em separately in each dimension
will give the partition (in 2 dimensions) minimizing (2.1.13).

(Recall, for example, that the function f(x,y) =1, 8y < X < 8y,

b <y f.bz’ and zero elsewhere, is the product of two functions

f1(x) fz(y), where f](x) =1, a5 5 X2 a,, zero elsewhere, and
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fz(Y) =1, by <y<b,, and zero elsewhere. A bivariate normal curve

suitably oriented also has this factorization property.)

2.6. Relative Efficiency of the Optimal Set of Quadrature Points
In this section we give a crude example to illustrate the
comparison of equally spaced quadrature points in B8, that is,

(82’53""’gn)’ where

=l . vl (2.6.1)

versus the B: chosen according to

63 satisfies H(Bs) = E%l (2.6.2)

where H(B) 1is given by (2.4.6).

For simplicity, and without loss of generality, let By = 0,
By = 1. As the example, Tet h(B) = gP. [Note that the results

below will be the same for h(B) = KgP and [0,1] replaced by any

interval.]

Then s
Bn+1 1 %
F(BysBgs-+sB,) > T(BE*.85*s- .- sB7%) 3—1; f[Bp] dg
By
1 1
= 1 (2.6.3)
n* (1+5)°



where (B5*.8%*,...,8%*) are the optimal set.

From the definition (2.4.1) of f(82,83,...,8n),

1
. 1 = 1 1
F(Bys8gseesBy) = { h(B)s = - gy - (264
For p = 3, the solution to (2.6.2) is
1
g* = (=1y2 s V= 2,3,...40 (2.6.5)
v n
and
2 [V
n l. .]_ ARt
fegs...88) = 5 |@F - &hY [ et s
\)3
' v-T
n
n 1 142
= —1— 3 (vz - (u-1)2) (2v-1) . (2.6.6)

In® v=1
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[

For p =3, f(EZ""’én) -—l; . Letting
4n ’
f(B%,...sB¥)
o(n) = J2n (2.6.7)
f(Ba,---,Bn)
we have
n
om) = ¢ L OEenVH e (2.6.8)
v:

8(n) 1is tabulated below for n = 4,5,...,10

8(n)

.631
.605
.587
.b75
- 565
.558
.552

b=

oW I O

—t

The absolute lower bound on f(B**,...,Bﬁ*) for p=3

s —— x %—, whereas f(B%,...,B%) = - e(n) .

4n? 4n?
So for this case, f(Bg,...,Bg) is very close to the lower
bound on the error, which is half that for equally spaced points. Since
the error bound is inversely proportional to n?, then the general
conclusion, for this example, is that the number of quadrature points

may be reduced, over the equally spaced case, by a factor of at least

) Zi = .71,
V2
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SECTION 3
ESTIMATES OF THE HELIUM FRACTION

3.1. Introduction

In this section we briefly present two relatively simple
methods for estimating the Helium fraction. The methods are based on
the use of the same non-linear least squares parameter estimation
program for which the quadrature methods of Section 2 were developed.
We only briefly discuss the relative accuracy of these methods as
compared to other methods, since it will depend crucially on how well
the instrument resolves the proton and learticle distributions.

However, a comparative accuracy study should not be hard to perform,

given a complete non-linear least squares program with data simulation.

3.2. Assumptions and Definitions
The particle velocity vector distribution fp(v,ep) for
protons is assumed to be of the form

-1

_l - 1 - EH
; : (v up)PpDARPp(V Hy)
fp(v,ep) = 377 3 e (3.2.1)
(2w) f
0V,
i=1 P
where Np is the proton number density, ﬁp is the proton bulk
velocity vector, T_. is an orthogonal matrix and D is a diagonal

p AP
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matrix with diagonal elements A‘ip’ i=1.,2,3, where

KT,

=...__.P.1 i =
Aip - s 1 1,2,3 (3.2.2)

k is Boltzman's constant, T is the proton temperature in the

ip

th

direction determined by the i~ column of I _, and mp is the proton

P

mass.
If the instrument calibration is performed with a proton beam,
then the particle velocity vector distribution of o-particles looks

to the instrument like fu(v,ea) given by

1 -Tp !
I R

1
3
I VX
1:

1 1d

where Nu, My ' ,D ) R A

o’ e’ Mo? Nia and m, are defined for a~particles

analogous to the same quantities for protons. Assume now that
def def def

up =M, T M Pp = ra =T and 4T1p = Tia’ Then Aip = Aia = Ai’

since 4mp =m,. Let g(v,u,Z) be defined by

vz (v-p')

- 1
glv,u.k) = (3.2.4)
(2“)3/2IZ|1/2
with T = FDAP'j Then the sum of the two particle velocity vector
distributions looks to the instrument like

3.2



Folvs8 47, (v,8,) = N g(v,u,EM2N, g(v,V2u,E) . (3.2.5)

Let wk(v) be the instrument response at the ™ combination

of collector, energy step and relative instrument position,
k=1,2,...,n.%  Then the kth data point, or instrument response

I, due to an input (3.2.5) is modeled by

I = Ik(Np,Na,u,Z) = Np fffwk(v)g(v,u,z)dv

+ ZNGIEVJk(v)g(v,ﬁu,z)dv, {3.2.8)

k =1,2,...5n
3.3. Description of the Method

Let hk'i = hki(u,Z), i=1,2, k=1,2,...,n, be defined by

hk}(u:z) = fﬂwk(\l)g(vausﬂ)dv (3.3.1)

k=1,2,8.,n

o s2) = 2 [[[w (vV)gv.vZu,z)dv

The system of equations (3.2.6) may be rewritten

3.3

2/ This i is unrelated to n of Section 2, we are running out of symbols.



hyz N, ihp N\ ((1-6)
= N
22 Ny hyp  hoy §
. (3.3.2)
hyo Py hpg

where N= N W, > and § = Nc5Np+Na) .

p

3.3.1. Equations for Method 1

Let H = H{(p.,Z) be the n x 2 matrix with kith entry hki'

If u,z are assumed, and the data I1""’In are given, then, using

A

(3.3.2), the least squares estimates Np and ﬁa for Np and N,

are given by

ﬁp I

A = W L, R HGLD) (3.3.3)
N I

o n

The Helium fraction § 1is estimated by ﬁa/(NP+ﬁa).

3.3.2. Equation for Method 2 “

If N, 4,2 and I],...,I are given, the least squares

n

estimate & for & dis, from (3.3.2)

?
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A
2 i=1
WRLUPAY

J—
0 e~133

(Li-hyq)(hso-hig) o (3.3.4)

3.3.3. The Procedures

Procedure for Method 1: Obtain starting values for u and %
by the use of the non-linear least squares program with Na assumed
0. ([Delete all obvious 100% a~particie data from the data set.]

Using these u and Z, determine Np and ﬁa via (3,3.3). ‘Intﬁb&écé

the mode]

fp(v,ep)+fa(v,8a) = Npg(v,u,z) + Nu-Zg(v,/fp,Z) (3.3.5)

into the non-Tinear least squares program with ﬁp and ﬁu fixed,

and 1w, I as parameters to be fitted. Using the updated estimates of

u and I, obtain new ﬁp and ﬁa from (3.3.3).

Procedure for Method 2: Obtain starting guesses for N, u,
and I as in Method 1. (Starting guess for N = starting guess for

Np). Using these values for N, pand £ estimate & by the use of

(3.3.4). Iterate, if necessary by replacing ﬁ and ﬁu by N(1-6)

p

and N§ in (3.2.5) with N a free parameter and & fixed.
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3.4. Conclusion

Either method is simple, assuming the existence of auxiliary
programs which must be developed in any case. The general model (3.2.5)
with all parameters to be determined may aiso, of course, be used in
the non-linear least squares program. In the case where the two
distributions are poorly resolved by the instrument, then there is some
reason to believe that either of the above methods, particularly
Method 2 if & 1is small, would tend to ﬂe more stable than fitting
the full general model simultaneously.

"For the case of the two distributions resolved to the extent
that two distinct peaks are identifiable, these methods should be
compared with methods based on the relative peak heights, etc. For

the case of the distributions completely rescolved, Na may be

Fal

estimated in a least squares sense by Na given by

E Lo

a %
J 2
K k2

=z
il

(3.4.7)

where the summation is taken only over k for which Ik contains

no contribution from protons, and u and I are determined

independently from the proton data.
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SECTION 4

LINEAR ESTIMATES OF PLASMA PARAMETERS

4.1. Introduction

Linear estimates of the plasma parameters (for data from protons
only) can be made, because the parameters are simple functions of the
moments, which can be viewed as linear functionals. The linear
estimates can be expected not to be as accurate as the non-linear
estimates when the Maxwellian distribution holds, since the latter
uses a known functional form for the particle velocity vector distri-
bution. However, the linear estimates will be cheap to compute, since
the coefficients can be calculated ahead of time. Also the Tinear
estimates of the moments are reasonable estimates of the moments
irrespective of the true nature of the particle velocity vector dis-
tribution. Their accuracy (not counting the errors induced by poor
calibration data) may be examined ahead of timehby simulation.

Let f(v,0)- v be the particle velocity vector distribution,
where 6 stands for the parameter set © = {N, u,Z}, as defined in

previous sections and v = (Vl’VZ’VS)' (We are assuming data from

protons only).

If

] -1
flv,8) = N - Q{V“H)Z (vou )t

————— (4.1.1)
(2m)¥? |z]
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then

=2
]

.[I[f(v,e)dv number density
coordinates of bulk (4.1.2)

1 .
s = willviflv.0)dv , i = 1,2,3
! NJQT ! ’ velocity vector

1 j' ,
. — Ml v.v.Ff(v,8)dv -1 p. = entries of the
H N '[T 1J T pressure tensor,

E= {Uij} .

Q
n

As before, let wk(v), k =1,2,...,n, be the current at the

output of the target at the kth observation step due to a cold proton
beam of unit number density and velocity vector v. The observed data

points Lo k=1,2,...,0, (that is, current at the output of the

target) are given by

I, = J]];wk(v)fe(v)dv . k=1,2,...,n, (4.1.3)

It will be convenient to use the inner produce notation (f,g),

(t.0) = I etatoa (2.1.4)
Let

g (v) = 1

5; (v} = vy ,1=1,2,3 (4.1.5)

9i5(V) = vy L 1,3 =1,2,3
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Then, writing f, for the function of v defined by f(v,8).

e

N = (gosfe)

1

N]J.i - (gisfe) is= ]:293 (4-]°6)

N(Gij‘"uiuj) = (gij :fe)

We will find Tinear least squares estimates of the 10 quantities
Ny Mg, §=1,2,3 5 Nlogsrugu,), 123 =1,2,3.

Estimates of the parameters N, Hy and og5 can then be computed

from these quantities.

4.2. The Method in One Dimension

To help in understanding the method as well as its pitfalls,
we describe it in some detail for functions defined on the (one-
dimensional) real line, as opposed to 3-dimensional velocity vector
space.

In one dimension we wish to estimate

v o= o mftedy g ) =
w o=/ g (VF(v.0)dv g (v) = v (4.2.1)
Mo2h?) = [ G,FnL00dy  6,(v) = v2 .
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See Figure 4.1, 1In order to carry out the method we must have a finite
region of integration outside of which f(v,8)} is known to be always

negligible. Call this region R. We will let

(f.9) = [f(nglvidv . (4.2.2)
R

Let'H n be the (assumed n-dimensional) linear space of all
n

finite .1inear combinations of the functions {wk(v)} . Let us
k=1

~

comceptually approximate 51. (v) by an element 51. (v) din the space

3., (1=0,1,2).
& n
g.i(v) = kZ'I cikwk(v) (4.2.3)

where the {cik} are to be found. Choose the {Cik} to minimize

2

[{a0- 1 coom ) av
k=1

=

It

llg; () - g5 (V)]I2

el

(4.2.4)
~ n
= [ gw-2 Lo Gkt 2L CakCiglig
R
where -
g = fg].(v)wk(v)dv i=0,1.2
R (4.2.5)
bkﬁ, = fwk(v)wg(v)dv
R
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The coefficients (c{1,c12,...,cin) which minimize (4.2.4) are

easily shown to be given by
= -1
(C.i'lscizgu--,c.in) “ (ai],aiz,...,ain)B (4.2-6)

th

where B is the n xn symmetric matrix with k& entry bkz'

B will be diagonal if the instrument "windows" de not overlap (in

velocity vector space). HNote that gi(v) will approximate gi(v)
very nicely in the region of interest if the {wk(v)} are as in

Figure 4.1 but not so well if they are as in Figure 4.2. See

Figures 4.3 and 4.4.

Once the coefficients (611’°12""’Cin) , 1 =0,1,2, are

chosen, we approximate the desired moment
g, () (v.6)dv (4.2.7)
R .

by

o n n
{gi(VJf(v,e)fiv = kzl cikfwk(v)f(v,e)dv = Ve . (4.2.8)

i=20,1,2.

An error bound 1s given by the formula

~ n ~ E]
F{ ADLILES RN { (g; (v)-g; (v))F(v,0)dv
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(Cauchy-Schwartz Inequality)

< [ Jtayw)-g; )7y, | fz(v,e)ﬂ
R R

Ve o o» 1/2 1/2
= [[g; (v)-g; (WIT ~ [I£{v,8} i

(4.2.9)

Note that the function

A n

f(v,8) = kZ] fkwk(x) (4.2.10)
where

(Fpufgoeeaf) = (13(8),0n0,T (007 (4.2.11)

is an approximation to f(v,8) in . . ¥ , and satisfies

(9;(v)-g; (v), F(v,8)) = 0 . (4.2.12)

Hence we may replace the right hand side of (4.2.9) by

[ (3 (v)-g, () (F(v.0)-F(v,0))ay
R

< llg; (v)-g; (11 V72 [1£(v,0)-F(v,0) /2

0f course ||f(\.r,e)-¥(v,€3)II”2 is not generally known in advance.
Thus the error bound for the moment estimates depend on how well gi(v)

and f(v,8) may be approximated by Tinear combinations of the window

functions {wk(v)}n
k=
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4.3. The Estimates in Velocity Vector Space

The formulas are unchanged for three dimensional space. It

is necessary to establish numerically from the calibration data the

quantities
CH fffwk(v)dv k = 1,2,...,0
R
ali) = fffvjwk(v)dv j=1.2,3, k=1.2,....n (4.3.1)
R
aéL’J) = _[[[injwk(u)dv , 1.3 =1,2,3, k=1,2,...,n
R

which play the role of By alk,and g in (4.2.5), and

bm = fffwk(v)wﬂ(v)dv . (4.3.2)
R

These are independent of observed data, of course, and are only

calculated once. The coefficients (c01,c02,...,c0n),...
(cg}’J),céé’j),...,cgi’j)) used in estimating the moments, analogous

to (4.2.7) and (4.2.8) are given by (4.2.6).

4.4, Conclusions

Clearly the accuracy of the method depends on the particular
instrument design as well as the unknown particle velocity vector
distribution. Errors in the calibration data and in the quantities
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(4.3.1) and (4.3.2) will also affect the results.

It is recommended that a pilot check of the accuracy of the
method be made as follows. A set of test cases f(v,6) are chosen,
(most reasonably Maxwellian). To study errors due to the method (as

opposed to errors due to faulty calibration data, the wk(v) may be

defined by smoothed calibration data. Using an accurate quadrature
procedure, the quantities in (4.3.1) and (4.3.2) are calculated. The

"data" Ik should be simulated via the same calibration data and

quadrature procedure
I, = _[[fwk(v)f(v,e)dv . (4.4.1)

The moments and parameters are then estimated via (4.1.8),
(4.1.6) and the appropriate 3 dimensional analogue of (4.2.7) and
(4.2.8) obtained by erasing the "™ in g; and g..
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SECTION 5

CONCLUSIONS

1. Optimization of Numerical Quadrature. Probably the most
difficult and time consuming part of the development of any accurate
quadrature procedure using a minimal number of quadrature points is the

determination of the volumes ‘[[Tw(v)dv or ‘[Bfw(v)dv, of the
S

Ry
calibration curves. Once this work is organized on the computer then

the development of optimal quadrature formulae as described in
Section 2 is not much more if any additional effort. If a quadrature:
~ routine ig_t9R2g~y§5ggfqristqugrd production work over a Tong period. .

of time, it is probably worth the investment to optimize this routine.

The discussion of this section has illustrated an appropriate
and relatively simple way to use the calibration data in the

quadrature routine.

2.  An Rlternative Procedure_%s described for estimatiné
the Helium fraction. It will reguire some simulation to compare this
procedure against other candidates. It is probably more stable than
estimating the Helium fraction simultaneously with the other parameters
in the non-linear least squares program.

3. A method for obtaining estimates of the plasma parameters
without iteration has been given. While this method is no doubt
cheaper than iterative non-linear least squares methods, its accuracy
has not been established here. It may be used, however, to provide
starting guesses for an iterative method. Furthermore, it provides
reasonable estimates of the moments of the distribution irrespective
of its functional form, and thus may provide some descriptive numbers
when the distribution is not Maxwellian.
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SECTION 6
APPENDICES

APPENDIX A
Upper Bounds on the Mixed Partial Derivatives

of The Maxwellian Density

Let 1 1
= 5iv-u) (v

f{v,0) A1

N
(2ﬂ)3/2|2|]/2
where 6 = (N,u,%), v = (v],vz,v3), a velocity vector. We show that

92f

max —— o« M A.2
- SV.oV.| —
V'l ’v23v33691 SJ 1 J
where
Moo= N ; ! A3
3/2 3 min
(2m) I JX;
i=]

where Amin is the smallest among (A1,12,13), the eigenvalues of the

pressure tensor I.

Represent £ as TD.,I'" where T 1is orthogonal and D

A A
th KT;
is diagonal with i1 entry Ay = o Let
2
13 s
2421 M
alx) = e , X = (x],xz,xs) . A.4
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Then

fF(v.0) = —N a(x) A.5

3
(217)3/2}{ JAi
1:

with
x = {v-u)r A.6

A= )z,
1

II.'.=1 w

(

i

Since the Jacobian of the above transférmation from v to x is 1

then

2 2
max 59—11—— = max |3 N A7
viavj axiaxj 3/2 3
(27) I Jﬁ}
i=1

The maximum curvature of g occurs at Xy = Xy = Xgs in

the direction of the %y axis where Ak is the smallest among

xl,xz,az , and so

° 2 2
_max 5%—%§~ = §—§ = iL A.8
1aJaxisxj 13 3Xk k

x]-xz—xs—o
since ,
s
2 Z2A '
—3—2 e k = %— A.9
oxy . k
xk=0

It is obvious that if +(v,8) is the sum of 2 Maxwellian distributions,

as in (3.2.5), then A.3 holds with N replaced by Np+2Na‘
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APPENDIX B

Jensen's Inequality

Let g{x) be any strictly convex function of the real variable

X, and let XysXpseeesX be any given n real numbers in the

n

domain of g, with
n
E X, - B.1

Then,

v§1 g(xu) > ng(x) B.2

with equality holding if and only if X, = X, V=1,2,...,0

Proof:

The straight Tine y(x) given by
y(x) = g* (%) (x-X)+g(X) B.3

is tangent to the strictly convex function g{x) at the point x = X

and is below g(x) otherwise. Thus

4] n
L 9lx) > ¢'(%) L (B0 ng(x) = ng(R)
=

U=

with equality holding if and only if X, = X, v=1,2,...,0.

6.3



To apply Jensen's inequality to (2.2.8), set g(x)

_[f w3/5(v)dv, and to apply to (2.4.4) set g(x)
Ry

B\H-]
[ ne) 13 .
g

v
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APPENDIX C
Proof of the Inequality in (2.4.8)

We show that

0 B3+ “n+l ?
L (B-s)® [ m@s - L | [ [n(e))' s
¥ B By
] le%, x| Ih* (6)] 1
g%, ,-B* max (g c.
— Loyl Ty
\"'1 € 83333.'_])

where the Bt satisfy

B3 Brt1
[ @1 e = L [ @1 e . c.2
BX By

Proof:

If the {83} satisfy the above condition, then, according to

densen's Inequality

R 3 g* 3
n+l n vt]
Ll [ @1 | = 5| [ w1 cs
ole R
1 v
where we are writing B} = B8y, BF41™ Bpyee

Thus, it is only necessary to show that
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" gk g¥ 3

V] vl )
(6x,,-80% [ nede - | [ [n(e)1"%a c.4
B 8%
< max th' (g)}] (B, -8%)".
88,5847 v

By the mean value theorem, there exists a Ev between Bs and

*
Bv+1 such that

B+
(ex-e0 n 3G = [ e e .5
B*
AY
and so
B* 3
vt
(B%,-64)°h(8) = | [ [h@)1/3ae| . C.6
B*
v
Now
h(g) = h(B) + (8-B,) b' (&) .7
where £ E(Bv’5v+1)’ and so
[h(g) - h(B) < |BX,4- *B, ) max  h'(e) . c.8

fe B:::B\H_] )

Substituting (C.6), (C.7) and (C.8) into (C.4) gives the

result.
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